

1 **Vertex protein PduN tunes encapsulated pathway performance by dictating**
2 **bacterial metabolosome morphology**

3 Carolyn E. Mills¹, Curt Waltmann², Andre G. Archer³, Nolan W. Kennedy⁴, Charlotte H.
4 Abrahamson¹, Alexander D. Jackson⁵, Eric W. Roth⁶, Sasha Shirman³, Michael C.
5 Jewett^{1,7}, Niall M. Mangan^{3,4,7}, Monica Olvera de la Cruz^{2,7,8}, Danielle Tullman-Ercek^{1, 7},
6 #

7

8 ¹Department of Chemical and Biological Engineering, Northwestern University,
9 Evanston, Illinois, USA

10 ²Department of Materials Science and Engineering, Northwestern University, Evanston,
11 Illinois, USA

12 ³Department of Engineering Sciences and Applied Mathematics, Northwestern
13 University, Evanston, Illinois, USA

14 ⁴Interdisciplinary Biological Sciences Program, Northwestern University, Evanston,
15 Illinois, USA

16 ⁵Master of Science in Biotechnology Program, Northwestern University, Evanston,
17 Illinois, USA

18 ⁶Northwestern University Atomic and Nanoscale Characterization Experimental Center

19 ⁷Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA

20 ⁸Department of Chemistry, Northwestern University, Evanston, Illinois, USA

21 #Address correspondence to Danielle Tullman-Ercek, ercek@northwestern.edu

22 **Abstract**

23 Engineering subcellular organization in microbes shows great promise in addressing
24 bottlenecks in metabolic engineering efforts; however, rules guiding selection of an
25 organization strategy or platform are lacking. Here, we study compartment morphology
26 as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol
27 utilization microcompartment (Pdu MCP) system from *Salmonella enterica* serovar
28 Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor
29 from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic
30 function between these Pdu microtubes (MTs) shows that they provide a diffusional
31 barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to
32 native MCPs. However, kinetic modeling suggests that the different surface area to
33 volume ratios of MCP and MT structures alters encapsulated pathway performance.
34 Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT
35 formation to enable future engineering efforts on these structures.

36 **Introduction**

37 Spatial organization of biological processes is essential to life across many organisms,
38 from multicellular eukaryotes to unicellular prokaryotes. Once thought to lack subcellular
39 organization, bacteria utilize an array of strategies for segregating specific processes
40 within the cell. One such example is bacterial microcompartments (MCPs), which are
41 organelles that encase specific sets of enzymes in a protein shell^{1,2}. Genes associated
42 with MCPs are found in 45 bacterial phyla^{3,4}, and are classified by the metabolic
43 pathway segments they encapsulate. At the highest level, MCPs are classified as either
44 carboxysomes or metabolosomes based on whether they encase pathways involved in
45 anabolic or catabolic processes, respectively¹. Carboxysomes aid many carbon-fixing
46 bacteria by increasing CO₂ concentration in the vicinity of the carboxylating enzyme
47 ribulose bisphosphate carboxylase/oxygenase (RuBisCO)^{5,6}. Metabolosomes, on the
48 other hand, aid in metabolism of a broad array of substrates and thus encapsulate many
49 different pathway chemistries; however, these pathways typically share a unifying
50 feature of passing through a toxic aldehyde intermediate^{7,8}. Sequestration of this toxic
51 intermediate is thought to aid in metabolism of niche carbon sources such as 1,2-
52 propanediol and ethanolamine, providing a competitive growth advantage to the enteric
53 pathogens that often harbor metabolosomes^{9,10}.

54 MCPs represent attractive engineering targets in a variety of applications, from
55 bioproduction, where heterologous enzyme encapsulation could improve pathway
56 performance¹¹, to antibiotic development, where disruption of these MCP structures
57 could eliminate a competitive growth advantage⁹. However, metabolosomes in
58 particular exhibit diversity in shape and size, and it is not well-understood how these
59 features relate to function^{4,12–15}. A variety of engineering fields, from catalysis¹⁶ to drug
60 delivery¹⁷, have illustrated the importance of shape and size on nanomaterial
61 performance. The relevance of these features has yet to be meaningfully investigated in
62 MCP systems.

63 The 1,2-propanediol utilization (Pdu) MCP is a model metabolosome that aids in
64 breakdown of 1,2-propanediol¹⁸. Pdu MCPs exist in a variety of bacteria^{3,4,10}, and both
65 the encapsulated pathway^{10,18,19} and the structure²⁰ of these metabolosomes have been

66 investigated. The *pdu* operon contains 21 genes encoding for the proteins that make up
67 the Pdu MCP shell as well as the main pathway and cofactor recycling enzymes (Figure
68 1). Eight proteins compose the Pdu microcompartment (MCP) shell—PduA, PduB,
69 PduB', PduJ, PduK, PduN, PduT, and PduU^{21,22}. Of these eight proteins, seven
70 (PduABB'JKTU) contain one or more bacterial microcompartment (BMC) pfam00936
71 domains, and, as such, form the hexagonal multimers that assemble into the facets and
72 edges of the microcompartment^{22–27}. *pduN* is the sole bacterial microcompartment
73 vertex (BMV) pfam03319 gene in the *pdu* operon and is thus expected to form
74 pentamers that cap the vertices of the Pdu MCP²⁸. PduN is a low abundance
75 component of the MCP shell, but it is essential for the formation of well-formed
76 compartment structures^{21,22}. While prior studies have illustrated that aberrant structures
77 form in the absence of PduN, the functionality and nature of these structures have yet to
78 be explored in any detail. Further, studies on both alpha- and beta-carboxysomes
79 showed that strict closure of the shell is required for these microcompartments to confer
80 their biologically relevant growth benefits and that this cannot be achieved in the
81 absence of pentameric vertex shell proteins like PduN^{29,30}. It is unclear how important
82 this strict closure is for metabolosome systems like the Pdu MCP, as modeling studies
83 have shown that a moderate diffusional barrier between the cytosol and an enzyme
84 core is sufficient for mediating toxic intermediate buildup³¹. Previous work has
85 suggested the differing importance of various shell proteins, including PduN, in Pdu
86 MCP function²²; but questions remain about precisely how MCP morphology controls
87 Pdu pathway performance.

88 Here, we describe our detailed characterization of an MCP-related structure that we call
89 Pdu microtubes (Pdu MTs) that form when vertex protein PduN cannot incorporate into
90 the Pdu MCP shell, and use molecular dynamics modeling to understand the molecular
91 interactions responsible for this morphology shift. We investigate how encapsulated
92 pathway performance is impacted by this shift in morphology and use kinetic modeling
93 to interrogate what features of compartment geometry control toxic intermediate buildup
94 in the cell. Finally, we present a microscopy-based assay that screens for formation of
95 these Pdu MTs, enabling investigation of the key molecular features that govern PduN
96 incorporation into the Pdu MCP. Together, these results represent a key step towards

97 understanding the complex interplay between shell protein interactions, compartment
98 morphology, and encapsulated pathway performance.

99 **Results**

100 *PduN mediates the morphology of Pdu compartment structures*

101 We first explored the impact of PduN on *in vivo* assembly of Pdu MCPs using a
102 combination of fluorescence microscopy and transmission electron microscopy (TEM)
103 on thin cell sections of both wild type (WT, PduN-containing) and *pduN* knockout strains
104 (Δ PduN). Our fluorescence microscopy assay uses a green fluorescent protein (GFP)
105 reporter fused to an encapsulation peptide, herein referred to as ssD for signal
106 sequence from PduD, that is sufficient for encapsulation of heterologous proteins in Pdu
107 MCPs³². Thus, compartment distribution throughout the cell is indicated by the presence
108 of the green fluorescence associated with the ssD-GFP reporter encapsulated within the
109 MCP lumen. As in previous studies, expression of Pdu MCPs in the wild type (PduN-
110 containing) background results in punctate fluorescence throughout the cell (Figure 2c),
111 suggesting that well-formed compartments are distributed within the cell³³⁻³⁵. In
112 contrast, when the *pduN* gene is knocked out, expression of the *pdu* operon results in
113 lines of fluorescence, typically aligned with the long axis of the cell (Figure 2c). These
114 lines of fluorescence indicate the formation of elongated structures within the cell
115 capable of recruiting ssD-tagged GFP. Indeed, thin cell section TEM on cells expressing
116 the *pdu* operon in the *pduN* knockout strain confirms the presence of tube structures,
117 henceforth referred to as Pdu MTs (Figure 2c). Interestingly, both fluorescence
118 microscopy and thin cell section TEM show that these Pdu MTs appear to inhibit cell
119 division, as the structures traverse multiple cleavage furrows (Figure 2c, Supplemental
120 Figure S1). While striking, such elongated structures are not unprecedented in the MCP
121 literature—similar extended structures have also been observed in cells expressing
122 pentamer-deficient carboxysomes, for example²⁹. However, little is known about the
123 structure or protein content of these tube structures.

124 We thus sought to examine, in detail, the structure of the Pdu MTs formed by
125 expression of the *pdu* operon in our *pduN* knockout strain. These Pdu MTs are
126 comprised of many of the same shell proteins as Pdu MCPs, evidenced by the

127 presence of PduA, PduB, PduB', PduJ, and PduU bands by SDS-PAGE in both
128 samples (Figure 2b). Notably, bands associated with enzymatic cargo (PduCDE, PduG,
129 PduP, PduQ, PduS) are also present in the purified Pdu MT sample. TEM analysis of
130 purified Pdu MTs (Figure 2c, Supplemental Figure S2) shows that these tubes are 50. ±
131 10. nm in diameter, in agreement with diameters observed in cell sections. This
132 dimension is distinct from the 20 nm diameter of rods self-assembled from PduA and
133 PduJ shell proteins alone^{23,36}, indicating that some combination of the other shell
134 proteins present and the encapsulated cargo mediates the size and curvature of these
135 Pdu MTs^{36,37}. These results suggest that the Pdu MTs formed by our *pduN* knockout
136 strain are complex multi-protein assemblies, similar to Pdu MCPs.

137 Observing that knocking out *pduN* caused the formation of Pdu MTs instead of Pdu
138 MCPs, we hypothesized that PduN is directly responsible for mediating the morphology
139 of Pdu microcompartments. To test this hypothesis, we supplemented our *pduN*
140 knockout strain with a plasmid containing FLAG-tagged PduN and observed changes in
141 compartment morphologies at varying inducer levels using fluorescence microscopy
142 (Figure 2d). We find that increasing PduN-FLAG expression decreases the formation of
143 elongated structures (Pdu MTs), and increases the observation of punctate
144 fluorescence (Pdu MCPs) (Figure 2d). Interestingly, even with no inducer present (0
145 wt% arabinose), a decrease in the percent of cells with elongated structures is observed
146 (Supplemental Figure S3). This is likely a result of leaky PduN-FLAG expression;
147 because PduN constitutes only 0.6% of the total shell protein content, it is not surprising
148 that even very low levels of PduN would impact shell closure³⁸. We validated these
149 microscopy results by purifying compartments from a *pduN* knockout strain
150 supplemented with PduN-FLAG off a plasmid (0.02 wt% arabinose). These
151 compartments exhibit the characteristic polyhedral geometry of Pdu MCPs by TEM and
152 the characteristic banding pattern of well-formed Pdu MCPs by SDS-PAGE (Figure 2e).
153 Further, anti-FLAG western blotting on these same purified compartments confirmed the
154 presence of PduN-FLAG in these well-formed structures (Figure 2e). We conclude that
155 PduN plays a direct role in the formation of Pdu MCPs, likely by facilitating capping of
156 MCP vertices.

157 Next, we examined the molecular underpinnings of how PduN facilitates MCP closure
158 by investigating the interaction interface responsible for PduN incorporation using all-
159 atom molecular dynamics (AAMD) simulations. Previous work modeling the interface
160 between two PduA hexamers revealed that preferred interaction angles between
161 hexamers play a key role in higher-order assembly of these proteins³⁹. We
162 hypothesized that similar studies comparing the PduN interaction interface to the
163 PduA/PduA interface could yield insight into the specific, unique features that allow
164 PduN to initiate Pdu MCP vertex capping. We selected PduA as the interacting partner
165 for PduN based on previous studies showing that PduA and PduN interact *ex vivo*²¹. We
166 built an estimated model of the PduA/PduN and PduA/PduA interfaces using a
167 homology-based approach that leveraged the solved crystal structure of the HO MCP
168 (PDB: 5V74). This structure provides exquisite molecular detail of how homologous
169 shell proteins assemble to form an MCP shell (see Methods for details)^{15,37}. Using this
170 model as a starting point, we performed AAMD simulations of this interface to examine
171 the energetics associated with various bending angles between PduA and PduN as well
172 as between PduA and PduA (Figure 3). Specifically, we calculated the potential of mean
173 force (PMF) between each pair of protein oligomers as a function of the bending angle
174 between the two components (Figure 3b, e) and the distance between their centers of
175 mass in the y-direction (Figure 3c). More details on the calculation can be found in the
176 Methods Section and Supplemental Methods. The resulting PduA/PduN bending energy
177 landscape revealed a strong preference for a 40° bending angle between PduA and
178 PduN (Figure 3b) with the bending energy ($\Delta G_{0^\circ \rightarrow 40^\circ} = -6. \pm 2. \text{ kcal/mol}$) comprising over
179 half of the total interaction strength ($\Delta G_{\text{PduN/PduA}} = -10. \pm 2. \text{ kcal/mol}$, Figure 3c). This
180 preference for a bent interaction is distinct from the bending energy landscape of the
181 PduA/PduA interface, which has only shallow minima ($\Delta G_{0^\circ \rightarrow 34^\circ} = -1.2 \pm 0.3 \text{ kcal/mol}$)
182 that constitute less than a quarter of the total PduA/PduA interaction energy ($\Delta G_{\text{PduA/PduA}} = -11. \pm 2. \text{ kcal/mol}$ ³⁹) We note that this energy minimum at 34° is consistent with
183 previous models investigating PduA/PduA bending interactions³⁶. Interestingly, while the
184 bending angle preference is dramatically different between these two interfaces, the
185 magnitude of the PduA/PduN and PduA/PduA interaction is similar³⁹ (Figure 3c).
186 Together, this suggests that PduN could provide an energetically favorable bending

188 point that allows for the closure of the shell without requiring less favorable bending of
189 the PduA/PduA interface. Since this bending is intrinsic to the PduA/PduN interaction,
190 even dimers, trimers, or any other PduN-featuring oligomers would also be highly bent.
191 Thus, their incorporation would quickly disrupt the formation of any smaller Pdu MTs or
192 flat sheets that are likely present early in the assembly process due to the low
193 concentration of PduN.

194 *Pdu microtubes control the metabolic flux of the 1,2-propanediol utilization pathway*

195 Having shown that elongated Pdu MTs form in the absence of PduN, we next sought to
196 probe the metabolic functionality of these tubes, and how organization into MTs versus
197 MCPs impacts pathway performance. We hypothesized that the morphological shift
198 from Pdu MCPs to MTs may negatively impact pathway performance, as we expect the
199 Pdu MTs to have open ends that would increase exchange between the enzymatic core
200 and the cytosol.

201 We explored the impact of compartment geometry on Pdu pathway performance by
202 comparing the growth and external Pdu metabolite profiles (1,2-propanediol,
203 propionaldehyde, 1-propanol, and propionate, Figure 4a) of four strains—wild type
204 (MCP-forming), Δ PduN (MT-forming), Δ PduA PduJ (broken compartment control²³), and
205 Δ PocR (no *pdu* operon expression control^{40–42}). We grew these strains on 1,2-
206 propanediol with excess adenosylcobalamin (adoB12), a condition that permits
207 distinction of compartment-forming conditions that successfully sequester the toxic
208 propionaldehyde intermediate away from the cytosol^{22,43,44}. Cell growth and metabolite
209 profiles (Figure 4b, c) show that control strains, Δ PocR and Δ PduA PduJ, grow as
210 expected. When there is no expression of the *pdu* operon (Δ PocR), there is no cell
211 growth over time, as none of the enzymes capable of 1,2-propanediol metabolism are
212 present (Figure 4b). Metabolite tracking confirms that no 1,2-propanediol is consumed
213 (Figure 4c). When the operon is expressed, but compartments cannot properly form
214 (Δ PduA PduJ), cell growth and 1,2-propanediol consumption initially occur rapidly
215 (Figure 4b,c), as there is no shell protein barrier preventing enzymes access to 1,2-
216 propanediol. Consequently, this strain exhibits the most rapid initial generation of
217 propionaldehyde, propionate and 1-propanol (Figure 4c). However, after ~12 hours, a

218 lag in growth begins to occur as propionaldehyde buildup exceeds a threshold value.
219 This stalls propionate uptake into central metabolism, explaining both the observed
220 growth lag and the delayed propionate consumption in this strain between 12 and 30
221 hours (Figure 4b). Several groups have reported this in strains with a broken
222 compartment phenotype^{19,22,23,44}, where it was hypothesized that propionaldehyde
223 inhibits the methylcitrate pathway⁴⁵.

224 In contrast, strains containing Pdu MCPs (wild type) and Pdu MTs (Δ PduN) exhibit
225 growth profiles consistent with a well-encapsulated Pdu pathway²². Initial growth and
226 1,2-propanediol consumption are slightly slower than the broken compartment control
227 (Δ PduA PduJ). However, growth of WT and Δ PduN strains eventually surpass the
228 Δ PduA PduJ strain at later time points as propionaldehyde buildup begins to impact
229 growth. Strains containing Pdu MCPs (WT) and Pdu MTs (Δ PduN) both exhibit a lower
230 peak concentration of propionaldehyde than the broken compartment strain (Δ PduA
231 PduJ); however, the buildup of propionaldehyde is slightly more rapid in the Pdu MT
232 strain than the Pdu MCP strain, where there are detectable propionaldehyde levels at 9
233 hours of growth (Figure 4c). This suggests that the change in geometry from MCP to
234 MT subtly alters passive substrate transport in and out of the compartment, impacting
235 the accessibility of substrates to the enzymatic core. This could either be due to
236 changes in compartment surface area or potential open ends of Pdu MTs. Significantly,
237 compared to the Pdu MCP strain (WT), the Pdu MT strain (Δ PduN) exhibits lower peak
238 propionate concentrations and more rapid consumption of 1-propanol (Figure 4c). This
239 suggests that in these growth conditions, the Pdu MT geometry favors more rapid
240 uptake of propionate into central metabolism, again, possibly due to changes in average
241 substrate transport in and out of Pdu MTs versus Pdu MCPs. Taken together, these
242 results indicate that the diffusional barrier provided by the Pdu MT protein shell is
243 sufficient to prevent toxic propionaldehyde buildup in the cytosol.

244 *Systems-level kinetic modeling elucidates the specific role of compartment geometry in
245 adjusting encapsulated pathway performance*

246 Observing that strains containing Pdu MCPs and Pdu MTs exhibited slightly different
247 metabolite profiles over time, we hypothesized that the key difference between the

248 encapsulation vehicles in question, MCPs and MTs, is the surface area to volume ratio
249 of these structures. To interrogate this hypothesis, we modified a systems-level kinetic
250 model of the Pdu pathway³¹ to account for cell growth and treat the MCP and MT
251 geometries. We parameterized our model using literature values, and then adjusted the
252 MCP permeability and PduP/PduQ concentration to match features of propionaldehyde
253 time evolution in external media for the wild type strain (see Supplemental Table S4).
254 Specifically, MCP permeability was adjusted such that the timescale of propionaldehyde
255 buildup and degradation matched that observed in experiments, and PduP/PduQ
256 activities were adjusted such that the maximum propionaldehyde level did not exceed
257 levels previously reported to cause dramatic growth defects (<16 mM)¹⁹. Pdu MCPs are
258 modeled as spheres 140 nm in diameter²⁰ with 15 MCPs per cell, where MCP
259 permeability controls access to enzymes encapsulated in the MCP (further model
260 details are provided in Supplemental Document 2). The timescales of extracellular 1,2-
261 propanediol consumption and 1-propanol/propionate buildup in this Pdu MCP model
262 (Figure 5c) match our experimental data (Figure 4c) well—1,2-propanediol consumption
263 occurs between 10 and 20 hours, and initial propionate and 1-propanol buildup is
264 observed at 10 hours. This suggests that our model parameterization has correctly
265 captured key features of dynamic Pdu pathway behavior. We note two discrepancies
266 between the model and our experimental data: (1) propionate and 1-propanol are
267 eventually consumed in our experiments, and (2) absolute propionaldehyde
268 concentrations observed differ from those predicted in the model. These differences are
269 primarily due to exclusion of downstream reactions from the model and
270 propionaldehyde volatility in experiments, and are discussed in detail in the
271 Supplemental Discussion 1. Given that the timescales of propionaldehyde buildup and
272 consumption match our model, we believe that our model is sufficiently accurate to
273 allow comparison of propionaldehyde buildup in different compartment geometries.

274 We next adjusted our model to study how changing the geometry of the compartment
275 from spherical (MCP) to cylindrical (MT) impacted pathway performance. We assume
276 that Pdu MTs are cylinders 50 nm in diameter, and length equal to the length of the cell
277 (2.5 μ m). Metabolites diffuse into MTs through the surface along the long axis of the
278 cylinder, but not the ends (see Supplement for further details). The final parameter to

279 set in the model, then, was the number of Pdu MTs per cell. To allow direct comparison
280 to the spherical MCP base case, we kept as many parameters as possible equivalent in
281 the MT model, including enzyme number. We then tested the effect of differences in
282 geometry between the Pdu MT and MCP cases, namely a change in the surface area to
283 volume ratios between these two geometries. We could keep either the total surface
284 area or the encapsulated volume constant, but not both. We considered two limiting
285 cases: (1) total compartment surface area is the same in the MCP and MT models and
286 enzyme concentration increases or (2) total volume is the same in the MCP and MT
287 models and the enzyme concentration is constant. Comparison of these two limiting
288 cases illustrates the substantial difference in relative volume and surface area for each
289 of these compartment geometries (Figure 5c). In the case where the total compartment
290 surface area of MTs is the same as spherical MCPs, but enzyme concentration
291 increases 1.9-fold, we see little to no change in the metabolite profiles compared to the
292 spherical MCP case (Figure 5c). When total internal compartment volume is the same in
293 MTs and MCPs, there is 1.9 times more surface area for metabolite diffusion in MTs. As
294 a result of this increased available surface area for diffusion, 1,2-propanediol can more
295 readily diffuse into the MT, where PduCDE rapidly converts it to propionaldehyde. This
296 leads to increased peak propionaldehyde levels (Figure 5c). While the experimental Pdu
297 MT data lie between these two limiting cases, the modeling results illustrate the
298 influence of compartment geometry on encapsulated pathway kinetics. Specifically,
299 these modeling results suggest that compartment surface area is a key parameter in
300 dictating propionaldehyde buildup. Indeed, a local sensitivity analysis on all parameters
301 used in the model reveals that total compartment surface area is the dominant
302 morphological feature that controls external propionaldehyde buildup (see Supplemental
303 Discussion 1 and Supplemental Figures S4-5 for further details).

304 These results have both engineering and biological implications. In the engineering
305 realm, they suggest that compartment shape and geometry offer a unique handle for
306 tuning encapsulated pathway performance. Biologically, these results indicate that
307 compartment geometry can play a role in the effectiveness of toxic intermediate
308 retention, suggesting a rationale beyond strict closure for the formation of more
309 spherical compartment structures.

310 *An elongated, linked-cell phenotype is a facile, high-throughput method for detecting*
311 *pentamer incorporation that enables exploration of PduN mutability*

312 Having established the importance of vertex protein PduN in MCP closure and the
313 impact of compartment geometry on encapsulated pathway performance, we next
314 developed a microscopy-based assay for screening Pdu MT versus Pdu MCP
315 formation. This assay is based on the observation that Pdu MT formation *in vivo* results
316 in an elongated, linked cell phenotype (Figure 6a).

317 Analysis of microscopy data on cells expressing Pdu MCPs and Pdu MTs confirms that
318 the elongated cell phenotype is specifically associated with formation of Pdu MTs. We
319 performed microscopy and measured both the length and number of cells per chain of
320 at least 100 cells over three biological replicates in both an MCP-forming strain (WT)
321 and a MT-forming strain (Δ PduN). We find that the cell length is significantly different in
322 MCP-forming ($1.8 \pm 0.4 \mu\text{m}$, error is standard deviation) and MT-forming ($8 \pm 6 \mu\text{m}$,
323 error is standard deviation) strains ($p < 0.0001$) (Figure 6b). Furthermore, more than
324 80% of the MT-expressing cells form chains of 3 or more cells, whereas cells
325 expressing Pdu MCPs are always either single cells or double cells that are in the
326 process of properly dividing (Figure 6c). Thus, both cell length and percentage of linked
327 cells provide a convenient readout for distinguishing between strains expressing Pdu
328 MCPs and Pdu MTs. Notably, this linked cell phenotype is similar to that observed when
329 self-assembling shell proteins PduA and PduJ are overexpressed in *E. coli*²³, a
330 phenotype that has enabled rapid evaluation of the self-assembly propensity of point
331 mutants of these hexamers³⁹. We thus hypothesized that a similar strategy could be
332 leveraged to screen for Pdu MT formation. Importantly, we know that Pdu MCPs form
333 when PduN incorporates into the compartment shell, and Pdu MTs form when PduN
334 does not incorporate into the compartment shell. Consequently, we can use this MT-
335 related phenotype to determine whether PduN point mutations prevent or permit
336 incorporation into the compartment shell—linked cells would result from a non-
337 incorporating PduN point mutant that causes MT formation, whereas unlinked cells
338 would result from a PduN point mutant that correctly incorporates into MCPs.

339 We illustrate the utility of this phenotypic readout for screening PduN incorporation by
340 assaying point mutant libraries of two residues in PduN—a glycine at position 52 in
341 PduN (G52) and a threonine at position 88 (T88). We hypothesized that G52 would be
342 highly immutable, as it is buried in the predicted interface between PduN and PduA
343 (Figure 7a), and the addition of any side chain group would be expected to sterically
344 disrupt the stability of this interface¹⁵. As expected, most mutations at this residue result
345 in a high population of linked cells (>60%, Figure 7b, top), indicating that these point
346 mutants are forming Pdu MTs. Indeed, fluorescence and electron microscopy confirm
347 that cells expressing the *pdu* operon with PduN-G52C contain elongated Pdu MT
348 structures (Figure 7c). The prevalence of the linked cell phenotype, associated with MT
349 formation, in all PduN G52 point mutants suggests that these mutations do not permit
350 incorporation of PduN into the MCP shell, and thus show that the G52 residue is highly
351 immutable. Interestingly, one point mutant, G52N, in which the glycine is mutated to
352 asparagine, shows a lower percentage of linked cells than the PduN knockout ($p <$
353 0.01). Fluorescence microscopy on this point mutant suggests that there is a mixture of
354 structures in these cells, evidenced by the combination of fluorescent puncta and
355 streaks in these images (Figure 7c). TEM on thin cell sections and purified
356 compartments confirms this finding, showing the presence of both polyhedral and
357 elongated structures (see Supplemental Discussion 2 for detailed discussion). This
358 result suggests that the extent of cell elongation may be semi-quantitative, in that
359 shorter, but still linked, cells contain a mixed population of Pdu MCPs and MTs.

360 Next, we investigated the mutability of residue T88 in PduN, which sits at the top of the
361 PduA/PduN interface (Figure 7a). We hypothesized that this residue would be
362 amenable to mutation because it is not nestled in the pentamer/hexamer (PduN/PduA)
363 interface. Cells expressing compartments with PduN T88 point mutants all resulted in
364 low (<30%) linked cell populations (Figure 7b, bottom). Even mutation to proline, an
365 amino acid that typically disrupts protein structure, only results in $23 \pm 1\%$ of the cell
366 population to be linked. This combination of results suggests that strains expressing
367 compartments with PduN T88 point mutants generally produce well-formed Pdu MCPs.
368 Thus, we conclude that this T88 residue in PduN is highly mutable. We confirmed the
369 presence of well-formed Pdu MCPs in the Δ PduN::PduN-T88A strain using a

370 combination of fluorescence microscopy, TEM, and SDS-PAGE (Figure 7c). As
371 expected, fluorescence microscopy shows punctate fluorescence distributed through
372 the cell, an indicator of well-formed MCPs. TEM on thin cell sections confirms this
373 finding, showing proteinaceous structures similar to those found in the wild type strain
374 expressing Pdu MCPs (Figure 7c, Figure 2c). TEM on compartments purified from these
375 strains confirm the formation of characteristic polyhedral structures (Figure 7c), and
376 Coomassie-stained SDS-PAGE on these same purified compartments shows that the
377 protein content in these compartments is similar to that of compartments purified from
378 cells containing a wild type *pdu* operon.

379 Combined, these results illustrate the utility of this elongated, linked cell phenotype in
380 probing the molecular interactions important for compartment closure. We find that the
381 assay readily distinguishes between PduN point mutants that are permissive and
382 disruptive to compartment closure, evidenced by the differential trends observed in our
383 G52 and T88 point mutant libraries. We expect that this microscopy-based assay for
384 screening the functionality of PduN point mutants, tying PduN incorporation to a linked
385 cell phenotype, will prove useful in both basic science and engineering contexts.

386 **Discussion**

387 There is great interest in repurposing MCPs for metabolic engineering applications,
388 where they have the potential to alleviate bottlenecks such as slow pathway kinetics,
389 toxic intermediate buildup, and cofactor competition^{2,11}. While strides have been made
390 in loading non-native cargo into these systems in a controlled fashion^{35,46–51}, the
391 selection criteria for an MCP system in any given engineering application is lacking.
392 This includes MCP features such as size and morphology. Here, we report an in-depth
393 characterization of an alternative Pdu compartment geometry, Pdu MTs, which form
394 when vertex protein PduN cannot incorporate into the Pdu shell. Intriguingly, this shift in
395 morphology upon loss of BMV-containing proteins is not universal across compartment
396 systems—in the absence of vertex proteins, β -carboxysomes form elongated structures
397 similar to Pdu MTs²⁹, but α -carboxysomes predominantly form regular icosahedra³⁰.
398 Further, other metabolosomes can form closed icosahedra in the absence of
399 pentamers^{48,49,52,53}. We hypothesize that this may be a consequence of the molecular

400 interactions between shell proteins, specifically the preferred bending angle between
401 these shell proteins. On this front, we anticipate that MD simulations can provide key
402 insights towards understanding differences between compartment systems.

403 Comparison of growth and pathway performance in cells expressing Pdu MTs and Pdu
404 MCPs showed that Pdu MTs prevent buildup of the toxic propionaldehyde intermediate
405 in the native Pdu pathway. In conjunction with our systems-level kinetic model, this
406 result suggests that Pdu MTs provide a diffusive barrier between the cytosol and the
407 encapsulated enzyme core. However, we note that the morphology change from
408 spherical MCPs to cylindrical MTs necessarily changes the surface area to volume ratio
409 of the compartment. We expect that the different surface area to volume ratio made
410 available by these Pdu MT structures will prove beneficial to engineered encapsulated
411 pathways with different kinetic profiles. Future analysis of different encapsulated
412 pathways across different compartment geometries will provide valuable insight in this
413 regard.

414 The discovery of a genotype-phenotype link for Pdu MT formation provides a
415 microscopy-based method for screening formation of these structures that does not
416 require lengthy purification nor specialized equipment. Towards a fundamental
417 understanding of MCP assembly, this enables rapid characterization of point mutants
418 towards characterizing the fitness and mutability of different interacting residues in shell
419 proteins like PduN and PduA. For engineering purposes, this assay provides a facile
420 method for screening whether point mutations to PduN allow PduN incorporation into
421 the Pdu MCP shell. This could prove useful for incorporating reactive handles into this
422 shell protein, which is particularly promising in light of the potential utility of non-
423 canonical amino acid incorporation into MCPs^{54,55}. Combined, this brings us one step
424 closer to realizing the full potential of MCPs as engineerable bionanoreactors.

425 **Methods**

426 *Plasmid creation*

427 The sequence encoding for PduN was cloned into a Golden Gate-compatible pBAD33t
428 parent vector (p15a origin of replication, chloramphenicol resistance selection cassette)
429 using Golden Gate cloning⁵⁶. A C-terminal 6xHistidine or FLAG tag was added to the
430 PduN sequence during cloning. All primers are listed in Supplemental Table S3, and all
431 plasmids generated are listed in Supplemental Table S2. All cloning was performed
432 using *Escherichia coli* DH10b cells.

433 All PduN point mutants were first generated in the PduN sequence cloned into the
434 aforementioned pBAD33t vector prior to integration into the *Salmonella* genome (see
435 below for recombineering methods). PduN point mutants at glycine 52 (G52) were
436 generated using QuikChange site-directed mutagenesis with KOD Hot Start DNA
437 polymerase (Sigma Aldrich) on a PduN sequence. PduN point mutants at threonine 88
438 (T88) were generated using the entry vector method described previously^{57,58}. Briefly,
439 Gibson assembly was used to replace amino acids 80-91 in PduN with a constitutively
440 active GFP gene flanked by two Bsal sites. Point mutants were then ordered as single-
441 stranded DNA primers flanked by Bsal cut sites complementary to those in the entry
442 vector. The reverse strand was filled in using PCR with 12-mers directed to the Golden
443 Gate cut sites. Double stranded DNA was purified using a PCR cleanup kit and used in
444 Golden Gate assembly reactions with the entry vector. Candidate clones were screened
445 by green-white screening. The sequences of all point mutant plasmids generated were
446 confirmed by Sanger sequencing (Genewiz).

447 *Strain generation*

448 All strains used in this work are listed in Supplemental Table S1. Recombineering was
449 performed using λ red recombineering as previously described⁵⁹. Briefly, genetic
450 modifications were made by first replacing the gene at the locus of interest with a
451 cassette encoding for a chloramphenicol resistant gene (*cat*) and sucrose sensitive
452 gene (*sacB*). This *cat/sacB* selection cassette was amplified from the TUC01 genome
453 using primers that added homology to the genomic locus of interest. Genomic

454 incorporation of this cassette was confirmed by selection on lysogeny broth(LB)-Agar
455 supplemented with 10 g/mL chloramphenicol, followed by sucrose sensitivity screens on
456 select colonies on LB-Agar plates supplemented with 6% (w/w) sucrose. Next, the
457 *cat/sacB* selection cassette was replaced with the DNA encoding for the desired gene,
458 using either single-stranded DNA for knockouts, or purified PCR products for full genes.
459 PCR products used for PduN point mutant incorporation at the *pduN* locus or ssD-GFP
460 incorporation at the *pduD* locus were amplified from the respective plasmid using
461 primers that added homology to the genomic locus of interest. Replacement of the
462 *cat/sacB* selection cassette with the DNA of interest was selected for using sucrose
463 sensitivity. Clones were sequence confirmed by Sanger sequencing on PCR products
464 amplified from the genome at the locus of interest.

465 *Cell growth*

466 *S. enterica* growths for all non-growth curve experiments were conducted as follows.
467 Overnight cultures were inoculated from single colonies into 5 mL of LB, Lennox
468 formulation (LB-L) and grown at 30 °C, 225 rpm for 24 hours. For experiments in which
469 PduN-FLAG was expressed off a plasmid, overnight cultures were supplemented with
470 34 µg/mL chloramphenicol. Overnights were subcultured 1:1000 into 5 mL No Carbon
471 Essential (NCE) media (29 mM potassium phosphate monobasic, 34 mM potassium
472 phosphate dibasic, 17 mM sodium ammonium hydrogen phosphate) supplemented with
473 50 µM ferric citrate, 1 mM magnesium sulfate, 42 mM succinate as a carbon source,
474 and 55 mM 1,2-propanediol as an inducer of the *pdu* operon. For experiments in which
475 PduN-FLAG was supplemented off a plasmid, media was supplemented with 34 µg/mL
476 chloramphenicol and the specified amount of arabinose, both added at the time of
477 subculture. Cells were grown in a 24-well block for 16 hours at 37 °C, 225 rpm and then
478 prepared for imaging experiments (see fluorescence/phase microscopy and thin cell
479 section TEM below).

480 *Compartment expression and purification*

481 MCP expression and purification was performed using differential centrifugation as
482 previously described^{34,60}. Briefly, overnight cultures were started from a single colony in
483 5 mL LB-L and grown at 37 °C, 225 rpm. Overnights were supplemented with 34 µg/mL

484 chloramphenicol for strains in which PduN-FLAG was expressed off a plasmid.
485 Overnights were subcultured 1:1000 into 200 mL of NCE (again, supplemented with
486 ferric citrate, magnesium sulfate, succinate, and 1,2-propanediol, as above) and grown
487 at 37 °C, 225 rpm until OD₆₀₀ reached 1-1.5. Cultures for strains in which PduN-FLAG
488 was expressed off a plasmid were supplemented with 34 µg/mL chloramphenicol and
489 0.02% (w/w) arabinose, both added at the time of subculture. Cells were harvested by
490 centrifugation (4500xg, 5 min), and resuspended in lysis buffer (32 mM Tris-HCl, 200
491 mM potassium chloride (KCl), 5 mM magnesium chloride (MgCl₂), 0.6% (v/v) 1,2-
492 propanediol, 0.6% (w/w) octylthioglucoside (OTG), 5 mM β-mercaptoethanol, 0.8 mg/mL
493 lysozyme (Thermo Fisher Scientific), 0.04 units/mL DNase I (New England Biolabs, Inc.)
494 pH 7.5-8.0). Resuspended cells were allowed to lyse in this buffer by incubating at room
495 temperature for 30 minutes. Lysate was then clarified by two rounds of centrifugation
496 (12,000xg, 5 min, 4 °C). MCPs or MTs were separated from lysate by ultracentrifugation
497 in a swinging bucket rotor (21,000xg, 20 min, 4 °C), washed with buffer (32 mM Tris-
498 HCl, 200 mM KCl, 5 mM MgCl₂, 0.6% (v/v) 1,2-propanediol, 0.6% (w/w) OTG, pH 7.5-
499 8.0), and then centrifuged again (21,000xg, 20 min, 4 °C). MCP or MT pellets were then
500 resuspended in buffer (50 mM Tris-HCl, 50 mM KCl, 5 mM MgCl₂, 1% (v/v) 1,2-
501 propanediol, pH 8.0). Remaining cell debris in the sample was then removed by three 1
502 min centrifugations at 12,000xg. Purified MCPs or MTs were stored at 4 °C until use.

503 *Gel electrophoresis and western blotting*

504 Protein content of purified MCP or MT samples was assessed using sodium dodecyl
505 sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) paired with Coomassie-blue
506 staining or anti-FLAG western blotting. Loading of purified MCP or MT samples was
507 normalized by total protein concentration, as determined by bicinchoninic acid assay,
508 such that 1.5 µg protein was loaded per lane. Samples were diluted into Laemmli buffer
509 and heated at 95 °C for 5 minutes prior to loading. Samples were separated on 15%
510 (w/w) polyacrylamide Tris-glycine mini gels for 90 minutes at 120 V. Protein was
511 visualized by staining with Coomassie Brilliant Blue R-250.

512 Samples for western blot were prepared and separated by SDS-PAGE as above.

513 Samples were transferred to a polyvinylidene fluoride (PVDF) membrane using a Bio-

514 Rad Transblot SD at 25 V, 150 mA, for 35 minutes. The membrane was blocked in
515 TBS-T (20 mM Tris, 150 mM sodium chloride (NaCl), 0.05% (v/v) Tween 20, pH 7.5))
516 with 5% (w/w) dry milk for 1 hour at room temperature. The membrane was then probed
517 with a mouse anti-FLAG primary antibody (MilliporeSigma Cat# F3165) diluted 1:6666
518 in TBS-T with 1% (w/w) dry milk for 1 hour at room temperature. The membrane was
519 washed with TBS-T and then incubated for 30 minutes at room temperature with a goat
520 anti-mouse-horseradish peroxidase secondary antibody (Invitrogen Cat# 32430) diluted
521 1:1000 in TBS-T. Finally, the membrane was washed with TBS-T and subsequently
522 developed using SuperSignal™ West Pico PLUS Chemiluminescent Substrate (Thermo
523 Fisher Scientific) and imaged using a Bio-Rad ChemiDoc XRS+ System.

524 *Phase contrast and fluorescence microscopy*

525 Cells were prepared for microscopy on Fisherbrand™ frosted microscope slides
526 (Thermo Fisher Scientific Cat# 12-550-343), and sandwiched between the slide and a
527 22 mm x 22 mm, #1.5 thickness coverslip (VWR Cat# 16004-302). Coverslips and
528 microscope slides were cleaned with ethanol before use. Cells were imaged on a Nikon
529 Eclipse Ni-U upright microscope with a 100X oil immersion objective using an Andor
530 Clara digital camera. NIS Elements Software (Nikon) was used for image acquisition.
531 GFP fluorescence images were acquired with a C-FL Endow GFP HYQ bandpass filter.
532 A 200 ms exposure time was used for all fluorescence images. Brightness and contrast
533 in images across a given experiment were adjusted to the same values in ImageJ⁶¹.
534 Cell length was quantified using the segmented line tool in ImageJ⁶¹. Identification of
535 linked cells was done as previously described²³. Briefly, any cell body containing three
536 or more cell bodies divided by an identifiable cleavage furrow were counted as linked,
537 whereas cell bodies containing two or fewer cells (or one or fewer cleavage furrows)
538 were considered unlinked. Each cell body in a set of linked cells was counted as a
539 single “cell event.”

540 *Transmission electron microscopy*

541 Purified MT or MCP samples were prepared and imaged using negative-stain TEM as
542 previously described²⁰. Briefly, samples were fixed on 400 mesh Formvar-coated
543 copper grids (EMS Cat# FF400-Cu) using a 2% (v/v) glutaraldehyde in water solution.

544 Fixed samples were washed with MilliQ™ pure water and stained with 1% (w/v) uranyl
545 acetate solution. Grids were dried and stored prior to imaging. Grids were imaged using
546 a JEOL 1230 transmission electron microscope equipped with a Gatan 831 bottom-
547 mounted CCD camera. Measurements of MT diameter were performed using the
548 segmented line tool in ImageJ⁶¹.

549 Sample cells were fixed in 2% (v/v) Paraformaldehyde and 2.5% (v/v) EM Grade
550 Glutaraldehyde in a 0.1 M PIPES buffer, pH 7.4 and chemically processed with Osmium
551 Tetroxide, dehydrated with ethanol and acetone, and infiltrated with EMBed812 epoxy
552 resin within an mPrep ASP1000 Automated Sample Processor. The infiltrated samples
553 were embedded in block molds with pure resin and polymerized at 60 °C for 48 hours.
554 Ultrathin 60 nm sections of the embedded cells were cut at using a Leica UC7
555 Ultramicrotome and a DiATOME 35 degree diamond knife. Sections were collected on
556 Cu slotted grids with a formvar/carbon membrane and stained with Uranyl Acetate and
557 Lead Citrate to enhance inherent contrast within the electron microscope. Sample
558 sections were loaded into a Hitachi HD2300 cFEG STEM at 200kV and imaged with the
559 TE phase contrast and HAADF Z-contrast detectors. Image data was collected with
560 DigiScan, an e- beam rastering data collection system within Gatan Digital Micrograph

561 *Growth assay and metabolite quantification*

562 Growth assays on 1,2-propanediol as a sole carbon source were performed as
563 previously described⁴⁴. Briefly, overnights in 5 mL terrific broth (TB) without glycerol
564 (Dot Scientific, Inc.) were inoculated from single colonies and grown for 15-16 hours at
565 37 °C with orbital shaking at 225 rpm. Overnights were subcultured to an OD₆₀₀ of 0.05
566 into NCE media supplemented with 50 µM ferric citrate, 1 mM magnesium sulfate, 150
567 nM adenosylcobalamin, and 55 mM 1,2-propanediol. Cultures were grown in foil-capped
568 250 mL unbaffled Erlenmeyer flasks at 37 °C, 225 rpm.

569 At each time point, a 500 µL aliquot of culture was removed to quantify OD₆₀₀ and
570 metabolite levels. OD₆₀₀ was measured on a BioTek Synergy HTX multi-mode plate
571 reader and converted to equivalent OD₆₀₀ for a 1 cm pathlength. After nine hours,
572 culture samples from all strains except ΔPocR were diluted 1:5 in fresh NCE prior to
573 OD₆₀₀ measurement to ensure measurements were performed in the linear range of the

574 instrument. Error bars on growth curves represent standard deviation over three
575 biological replicates.

576 Cell culture sample not used for OD₆₀₀ measurement was centrifuged at 13,000xg for 5
577 minutes to remove cells. Supernatant was collected and frozen at -20 °C. Prior to HPLC
578 analysis, samples were thawed and filtered (Corning™ Costar™ Spin-X LC filters).
579 Filtered samples were analyzed on an Agilent 1260 HPLC system, separated using a
580 Rezex™ ROA-Organic Acid H+ (8%) LC Column (Phenomenex) at 35 °C. The
581 separation was isocratic, with 5 mM sulfuric acid as the mobile phase, flowing at 0.4
582 mL/min. Metabolites were detected using a refractive index detector (RID) as previously
583 detailed¹⁹. Metabolite concentrations were calculated from peak areas calculated in
584 Agilent ChemLab software using standards of the metabolites of interest (1,2-
585 propanediol, propionaldehyde, propionate, 1-propanol) at 200 mM, 100 mM, 50 mM, 20
586 mM, and 5 mM. Error bars on reported metabolite concentrations represent the
587 standard deviation over three biological replicates.

588 *All-atom molecular dynamics simulations*

589 The initial structure for the atomistic model of the PduA/PduN interface was generated
590 as follows. The PduA structure was taken from PDB 3NGK²⁵. The structure of the PduN
591 subunit was estimated using the Phyre2 web portal⁶². The pentamer structure was then
592 generated by aligning five copies of this PduN subunit structure to the BMC-P structure
593 extracted from PDB 5V74¹⁵ using the MatchMaker tool in UCSF Chimera^{63,64}. This
594 structure was then minimized using default parameters in UCSF Chimera's "Minimize
595 Structure" tool. To build the PduA/PduN interface, a BMC-H/BMC-P interface was
596 extracted from PDB 5V74, which is a solved crystal structure of a full microcompartment
597 from *Haliangium ochraceum*¹⁵. Chimera's MatchMaker tool was then used to align the
598 PduA hexamer and PduN pentamer to the BMC-H and BMC-P structures, respectively.
599 The PduA/PduN interface structure was then minimized again using the default
600 parameters in Chimera's "Minimize Structure" tool⁶³. The PduA/PduA interface was
601 generated in the same way, except using a BMC-H/BMC-H interface from the PDB
602 5V74 structure.

603 Prior to running simulations, the PduA/PduA and PduA/PduN models were solvated in
604 water containing 100 mM NaCl. Using the GROMACS molecular dynamics engine⁶⁵, the
605 system was subject to a 100 ps constant pressure, temperature (NPT) equilibration with
606 the protein backbones restrained. For the potential of mean force (PMF) calculation,
607 restraints were released or partially released for one PduA or PduN protein, while
608 keeping the other PduA protein backbone restrained. Steered MD simulations were then
609 run to create configurations where the proteins adopt many different bending angles or
610 distances (depending on the nature of the calculation). For the calculation of the
611 bending potential the freed protein was constrained to move in only two dimensions
612 such that only the bending angle between the two proteins changed. These
613 configurations were then run in parallel to gather the force data necessary for the PMF
614 calculation. More details for AA MD simulations are provided in the Supplement.

615 *Kinetic pathway modeling*

616 The kinetic model used to simulate the Pdu pathway was modified from previous work³¹.
617 Here, we moved beyond steady state analysis, and analyzed the metabolite profiles
618 over time to mirror the growth conditions in our experiments. We also explicitly modeled
619 the external media and accounted for increase in cell number based on the
620 experimental growth curve data. We calculate the dynamics of metabolites 1,2-
621 propanediol, propionaldehyde, propionyl-CoA, 1-propanol, and propionate within the
622 MCP/MT interior, cytosol, and media. Noting that metabolite diffusion with each region
623 is much faster than the enzyme kinetics and transport across the cell membrane or
624 MT/MCP shell, we assume that each volume is well-mixed and has no spatial variation.
625 Therefore, the main consequence of the chosen geometry is the surface area and
626 volume of each region.

627 Our model assumes that MCPs are spheres with a 70 nm radius and MTs are cylinders
628 with a 50 nm diameter and a length equal to that of the cell. Metabolites passively
629 diffuse into spherical MCPs over the entire spherical surface area at a rate determined
630 by the permeability of the shell. In MTs, metabolites can only diffuse into the cylindrical
631 volume along the long axis of the cylinder, and not at the ends, again at a rate
632 determined by the permeability of the shell. The permeability of the MCPs/MTs is

633 assumed the same for all metabolites. A set number of MCPs or MTs exist in a cell at all
634 times, set by the MCPs/MTs per cell parameter. Cells are assumed to be capsule
635 shaped.

636 All enzymes are assumed to exhibit Michaelis Menten kinetics. We assume that the
637 reactions catalyzed by PduCDE, PduP, and PduQ can only occur inside the MCP/MT,
638 and that the reactions catalyzed by PduL and PduW that convert propionyl-CoA to
639 propionate happen in a single step in the cytosol of the cell. The conversion of 1,2-
640 propanediol to propionaldehyde by PduCDE is assumed irreversible. The conversions
641 of propionaldehyde to either propionyl-CoA or 1-propanol by PduP and PduQ,
642 respectively, are both considered reversible. The conversion of propionyl-CoA to
643 propionate by PduL/PduW is assumed irreversible.

644 This model was implemented in Python⁶⁶, and is available on GitHub
645 (<https://github.com/cemills/MCP-vs-MT>). A detailed description of the equations is in
646 Supplemental Document 2. The parameters are summarized in Supplemental Table S4.

647 **Acknowledgements**

648 The authors thank and acknowledge members of the Mangan, Olvera de la Cruz, and
649 Tullman-Ercek groups for insightful discussions around this work. The authors
650 specifically acknowledge Dr. Chris Jakobson for plasmids used in this study. This work
651 was funded in part by the Army Research Office (grant W911NF-19-1-0298 to DTE) and
652 the Department of Energy (grant DE-SC0019337 to DTE and NMM and grant DE-FG02-
653 08ER46539 to MOdIC). NWK was funded by the National Science Foundation Graduate
654 Research Fellowship Program (grant DGE-1842165), and by the National Institutes of
655 Health Training Grant (T32GM008449) via the Northwestern University Biotechnology
656 Training Program. MOdIC thanks the computational support of the Sherman Fairchild
657 Foundation. This work made use of the BioCryo facility of Northwestern University's
658 NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-
659 2025633), the IIN, and Northwestern's MRSEC program (NSF DMR-1720139).
660 Molecular graphics and analyses performed with UCSF Chimera, developed by the
661 Resource for Biocomputing, Visualization, and Informatics at the University of California,
662 San Francisco, with support from NIH P41-GM103311.

663 **Author contributions**

664 C.E.M., C.W., N.W.K, A.D.J., M.O.d.I.C., and D.T.E. conceived this project. C.E.M.,
665 N.W.K., C.H.A., A.D.J., and E.W.R. performed experiments. C.W. performed atomistic
666 simulations. All authors contributed to analysis and interpretation of data. A.G.A., S.S.,
667 and N.M.M. contributed to development of software used in the systems-level kinetic
668 model. C.E.M. and D.T.E. wrote the manuscript. All authors reviewed and contributed to
669 the manuscript.

670 **Materials & Correspondence**

671 Correspondence to Danielle Tullman-Ercek.

672 **References**

673 1. Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F. & Sutter, M. Bacterial
674 microcompartments. *Nature Reviews Microbiology* **16**, 277–290 (2018).

675 2. Kennedy, N. W., Mills, C. E., Nichols, T. M., Abrahamson, C. H. & Tullman-Ercek, D.
676 Bacterial microcompartments: tiny organelles with big potential. *Current Opinion in*
677 *Microbiology* **63**, 36–42 (2021).

678 3. Axen, S. D., Erbilgin, O. & Kerfeld, C. A. A Taxonomy of Bacterial
679 Microcompartment Loci Constructed by a Novel Scoring Method. *PLoS*
680 *Computational Biology* **10**, e1003898 (2014).

681 4. Sutter, M., Melnicki, M. R., Schulz, F., Woyke, T. & Kerfeld, C. A. A catalog of the
682 diversity and ubiquity of bacterial microcompartments. *Nat Commun* **12**, 3809
683 (2021).

684 5. Kaplan, A. & Reinhold, L. CO₂ CONCENTRATING MECHANISMS IN
685 PHOTOSYNTHETIC MICROORGANISMS. *Annu Rev Plant Physiol Plant Mol Biol*
686 **50**, 539–570 (1999).

687 6. Espie, G. S. & Kimber, M. S. Carboxysomes: cyanobacterial RubisCO comes in
688 small packages. *Photosynth Res* **109**, 7–20 (2011).

689 7. Stewart, K. L., Stewart, A. M. & Bobik, T. A. Prokaryotic Organelles: Bacterial
690 Microcompartments in *E. coli* and *Salmonella*. *EcoSal Plus* **9**, (2020).

691 8. Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. Diverse Bacterial
692 Microcompartment Organelles. *Microbiol Mol Biol Rev* **78**, 438–468 (2014).

693 9. Prentice, M. B. Bacterial microcompartments and their role in pathogenicity. *Current*
694 *Opinion in Microbiology* **63**, 19–28 (2021).

695 10. Zeng, Z., Smid, E. J., Boeren, S., Notebaart, R. A. & Abbe, T. Bacterial
696 Microcompartment-Dependent 1,2-Propanediol Utilization Stimulates Anaerobic
697 Growth of *Listeria monocytogenes* EGDe. *Frontiers in Microbiology* **10**, 2660 (2019).

698 11. Jakobson, C. M., Tullman-Ercek, D. & Mangan, N. M. Spatially organizing
699 biochemistry: choosing a strategy to translate synthetic biology to the factory.
700 *Scientific Reports* **8**, 8196 (2018).

701 12. Lundin, A. P. *et al.* Genetic Characterization of a Glycyl Radical Microcompartment
702 Used for 1,2-Propanediol Fermentation by Uropathogenic *Escherichia coli* CFT073.
703 *Journal of Bacteriology* **202**, (2020).

704 13. Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K. & Bobik, T. A. A Bacterial
705 Microcompartment Is Used for Choline Fermentation by *Escherichia coli* 536.
706 *Journal of Bacteriology* **200**, (2018).

707 14. Zarzycki, J., Sutter, M., Cortina, N. S., Erb, T. J. & Kerfeld, C. A. In Vitro
708 Characterization and Concerted Function of Three Core Enzymes of a Glycyl
709 Radical Enzyme - Associated Bacterial Microcompartment. *Sci Rep* **7**, 42757
710 (2017).

711 15. Sutter, M., Greber, B., Aussignargues, C. & Kerfeld, C. A. Assembly principles and
712 structure of a 6.5-MDa bacterial microcompartment shell. *Science* **356**, 1293–1297
713 (2017).

714 16. Zaera, F. Shape-Controlled Nanostructures in Heterogeneous Catalysis.
715 *ChemSusChem* **6**, 1797–1820 (2013).

716 17. Sen Gupta, A. Role of particle size, shape, and stiffness in design of intravascular
717 drug delivery systems: insights from computations, experiments, and nature. *WIREs*
718 *Nanomedicine and Nanobiotechnology* **8**, 255–270 (2016).

719 18. Bobik, T. A., Havemann, G. D., Busch, R. J., Williams, D. S. & Aldrich, H. C. The
720 propanediol utilization (pdu) operon of *Salmonella enterica* serovar *typhimurium* LT2
721 includes genes necessary for formation of polyhedral organelles involved in
722 coenzyme B-12-dependent 1,2-propanediol degradation. *Journal of Bacteriology*
723 **181**, 5967–5975 (1999).

724 19. Sampson, E. M. & Bobik, T. A. Microcompartments for B12-Dependent 1,2-
725 Propanediol Degradation Provide Protection from DNA and Cellular Damage by a
726 Reactive Metabolic Intermediate. *Journal of Bacteriology* **190**, 2966–2971 (2008).

727 20. Kennedy, N. W. *et al.* Apparent size and morphology of bacterial
728 microcompartments varies with technique. *PLOS ONE* **15**, e0226395 (2020).

729 21. Parsons, J. B. *et al.* Synthesis of Empty Bacterial Microcompartments, Directed
730 Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle
731 Movement. *Molecular Cell* **38**, 305–315 (2010).

732 22. Cheng, S., Sinha, S., Fan, C., Liu, Y. & Bobik, T. A. Genetic analysis of the protein
733 shell of the microcompartments involved in coenzyme B12-dependent 1, 2-
734 propanediol degradation by *Salmonella*. *Journal of bacteriology* **193**, 1385–1392
735 (2011).

736 23. Kennedy, N. W., Ikonomova, S. P., Slininger Lee, M., Raeder, H. W. & Tullman-
737 Ercek, D. Self-assembling Shell Proteins PduA and PduJ have Essential and

738 Redundant Roles in Bacterial Microcompartment Assembly. *Journal of Molecular*
739 *Biology* **433**, 166721 (2021).

740 24. Tanaka, S., Sawaya, M. R. & Yeates, T. O. Structure and Mechanisms of a Protein-
741 Based Organelle in *Escherichia coli*. *Science* **327**, 81–84 (2010).

742 25. Crowley, C. S. *et al.* Structural insight into the mechanisms of transport across the
743 *Salmonella enterica* Pdu microcompartment shell. *Journal of Biological Chemistry*
744 **285**, 37838–37846 (2010).

745 26. Pang, A., Warren, M. J. & Pickersgill, R. W. Structure of PduT, a trimeric bacterial
746 microcompartment protein with a 4Fe–4S cluster-binding site. *Acta*
747 *Crystallographica Section D Biological Crystallography* **67**, 91–96 (2011).

748 27. Crowley, C. S., Sawaya, M. R., Bobik, T. A. & Yeates, T. O. Structure of the PduU
749 shell protein from the Pdu microcompartment of *Salmonella*. *Structure* **16**, 1324–
750 1332 (2008).

751 28. Wheatley, N. M., Gidaniyan, S. D., Liu, Y., Cascio, D. & Yeates, T. O. Bacterial
752 microcompartment shells of diverse functional types possess pentameric vertex
753 proteins. *Protein Science* **22**, 660–665 (2013).

754 29. Cameron, J. C., Wilson, S. C., Bernstein, S. L. & Kerfeld, C. A. Biogenesis of a
755 Bacterial Organelle: The Carboxysome Assembly Pathway. *Cell* **155**, 1131–1140
756 (2013).

757 30. Cai, F. *et al.* The Pentameric Vertex Proteins Are Necessary for the Icosahedral
758 Carboxysome Shell to Function as a CO₂ Leakage Barrier. *PLOS ONE* **4**, e7521
759 (2009).

760 31. Jakobson, C. M., Tullman-Ercek, D., Slininger, M. F. & Mangan, N. M. A systems-
761 level model reveals that 1, 2-Propanediol utilization microcompartments enhance
762 pathway flux through intermediate sequestration. *PLoS computational biology* **13**,
763 e1005525 (2017).

764 32. Fan, C. & Bobik, T. A. The N-terminal region of the medium subunit (PduD)
765 packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu
766 microcompartment. *Journal of bacteriology* **193**, 5623–5628 (2011).

767 33. Kim, E. & Tullman-Ercek, D. A rapid flow cytometry assay for the relative
768 quantification of protein encapsulation into bacterial microcompartments.
769 *Biotechnology Journal* (2013).

770 34. Nichols, T. M., Kennedy, N. W. & Tullman-Ercek, D. Cargo encapsulation in
771 bacterial microcompartments: Methods and analysis. *Methods Enzymol* **617**, 155–
772 186 (2019).

773 35. Nichols, T. M., Kennedy, N. W. & Tullman-Ercek, D. A genomic integration platform
774 for heterologous cargo encapsulation in 1,2-propanediol utilization bacterial
775 microcompartments. *Biochemical Engineering Journal* **156**, 107496 (2020).

776 36. Uddin, I., Frank, S., Warren, M. J. & Pickersgill, R. W. A Generic Self-Assembly
777 Process in Microcompartments and Synthetic Protein Nanotubes. *Small* **14**,
778 1704020 (2018).

779 37. Greber, B. J., Sutter, M. & Kerfeld, C. A. The Plasticity of Molecular Interactions
780 Governs Bacterial Microcompartment Shell Assembly. *Structure* **27**, 749-763.e4
781 (2019).

782 38. Yang, M. *et al.* Decoding the stoichiometric composition and organisation of
783 bacterial metabolosomes. *Nature Communications* **11**, 1976 (2020).

784 39. Li, Y. *et al.* Computational and Experimental Approaches to Controlling Bacterial
785 Microcompartment Assembly. *ACS Cent. Sci.* **7**, 658–670 (2021).

786 40. Chen, P., Andersson, D. I. & Roth, J. R. The control region of the pdu/cob regulon in
787 *Salmonella typhimurium*. *J. Bacteriol.* **176**, 5474–5482 (1994).

788 41. Kim, E. Y., Jakobson, C. M. & Tullman-Ercek, D. Engineering Transcriptional
789 Regulation to Control Pdu Microcompartment Formation. *PLOS ONE* **9**, e113814
790 (2014).

791 42. Rondon, M. R. & Escalante-Semerena, J. The poc locus is required for 1, 2-
792 propanediol-dependent transcription of the cobalamin biosynthetic (cob) and
793 propanediol utilization (pdu) genes of *Salmonella typhimurium*. *Journal of*
794 *bacteriology* **174**, 2267–2272 (1992).

795 43. Chowdhury, C. *et al.* Selective molecular transport through the protein shell of a
796 bacterial microcompartment organelle. *PNAS* **112**, 2990–2995 (2015).

797 44. Slininger Lee, M. F., Jakobson, C. M. & Tullman-Ercek, D. Evidence for Improved
798 Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell
799 Protein Engineering. *ACS Synth. Biol.* **6**, 1880–1891 (2017).

800 45. Tsang, A. W., Horswill, A. R. & Escalante-Semerena, J. C. Studies of regulation of
801 expression of the propionate (prpBCDE) operon provide insights into how
802 *Salmonella typhimurium* LT2 integrates its 1,2-propanediol and propionate catabolic
803 pathways. *J Bacteriol* **180**, 6511–6518 (1998).

804 46. Huber, I. *et al.* Construction of Recombinant Pdu Metabolosome Shells for Small
805 Molecule Production in *Corynebacterium glutamicum*. *ACS Synthetic Biology* **6**,
806 2145–2156 (2017).

807 47. Jakobson, C. M., Lee, M. F. S. & Tullman-Ercek, D. De novo design of signal
808 sequences to localize cargo to the 1,2-propanediol utilization microcompartment.
809 *Protein Science* **26**, 1086–1092 (2017).

810 48. Hagen, A. R. *et al.* In Vitro Assembly of Diverse Bacterial Microcompartment Shell
811 Architectures. *Nano Lett.* **18**, 7030–7037 (2018).

812 49. Hagen, A., Sutter, M., Sloan, N. & Kerfeld, C. A. Programmed loading and rapid
813 purification of engineered bacterial microcompartment shells. *Nat Commun* **9**, 1–10
814 (2018).

815 50. Ferlez, B., Sutter, M. & Kerfeld, C. A. A designed bacterial microcompartment shell
816 with tunable composition and precision cargo loading. *Metabolic Engineering* **54**,
817 286–291 (2019).

818 51. Lee, M. J. *et al.* De novo targeting to the cytoplasmic and luminal side of bacterial
819 microcompartments. *Nat Commun* **9**, 1–11 (2018).

820 52. Sutter, M., McGuire, S., Ferlez, B. & Kerfeld, C. A. Structural Characterization of a
821 Synthetic Tandem-Domain Bacterial Microcompartment Shell Protein Capable of
822 Forming Icosahedral Shell Assemblies. *ACS Synth. Biol.* **8**, 668–674 (2019).

823 53. Lassila, J. K., Bernstein, S. L., Kinney, J. N., Axen, S. D. & Kerfeld, C. A. Assembly
824 of Robust Bacterial Microcompartment Shells Using Building Blocks from an
825 Organelle of Unknown Function. *Journal of Molecular Biology* **426**, 2217–2228
826 (2014).

827 54. Gan, Q., Lehman, B. P., Bobik, T. A. & Fan, C. Expanding the genetic code of
828 Salmonella with non-canonical amino acids. *Sci Rep* **6**, 39920 (2016).

829 55. Chen, H., Wilson, J., Ottinger, S., Gan, Q. & Fan, C. Introducing noncanonical
830 amino acids for studying and engineering bacterial microcompartments. *Curr Opin*
831 *Microbiol* **61**, 67–72 (2021).

832 56. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden Gate Shuffling: A
833 One-Pot DNA Shuffling Method Based on Type IIIs Restriction Enzymes. *PLoS ONE*
834 **4**, e5553 (2009).

835 57. Hartman, E. C. *et al.* Quantitative characterization of all single amino acid variants of
836 a viral capsid-based drug delivery vehicle. *Nature Communications* **9**, 1385 (2018).

837 58. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness
838 landscape. *Proceedings of the National Academy of Sciences* **108**, 7896–7901
839 (2011).

840 59. Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for gram-
841 negative bacteria. *Gene* **379**, 109–115 (2006).

842 60. Sinha, S. & Bobik, T. A. The PduM protein is a structural component of the
843 microcompartments involved in coenzyme 3 B12-dependent 1,2-propanediol
844 degradation by *Salmonella*. (2012).

845 61. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
846 image analysis. *Nat Meth* **9**, 671–675 (2012).

847 62. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The
848 Phyre2 web portal for protein modeling, prediction and analysis. *Nat Protoc* **10**, 845–
849 858 (2015).

850 63. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory
851 research and analysis. *J Comput Chem* **25**, 1605–1612 (2004).

852 64. Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C. & Ferrin, T. E. Tools for
853 integrated sequence-structure analysis with UCSF Chimera. *BMC Bioinformatics* **7**,
854 339 (2006).

855 65. Abraham, M. J. *et al.* GROMACS: High performance molecular simulations through
856 multi-level parallelism from laptops to supercomputers. *SoftwareX* **1–2**, 19–25
857 (2015).

858 66. Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in
859 Python. *Nat Methods* **17**, 261–272 (2020).

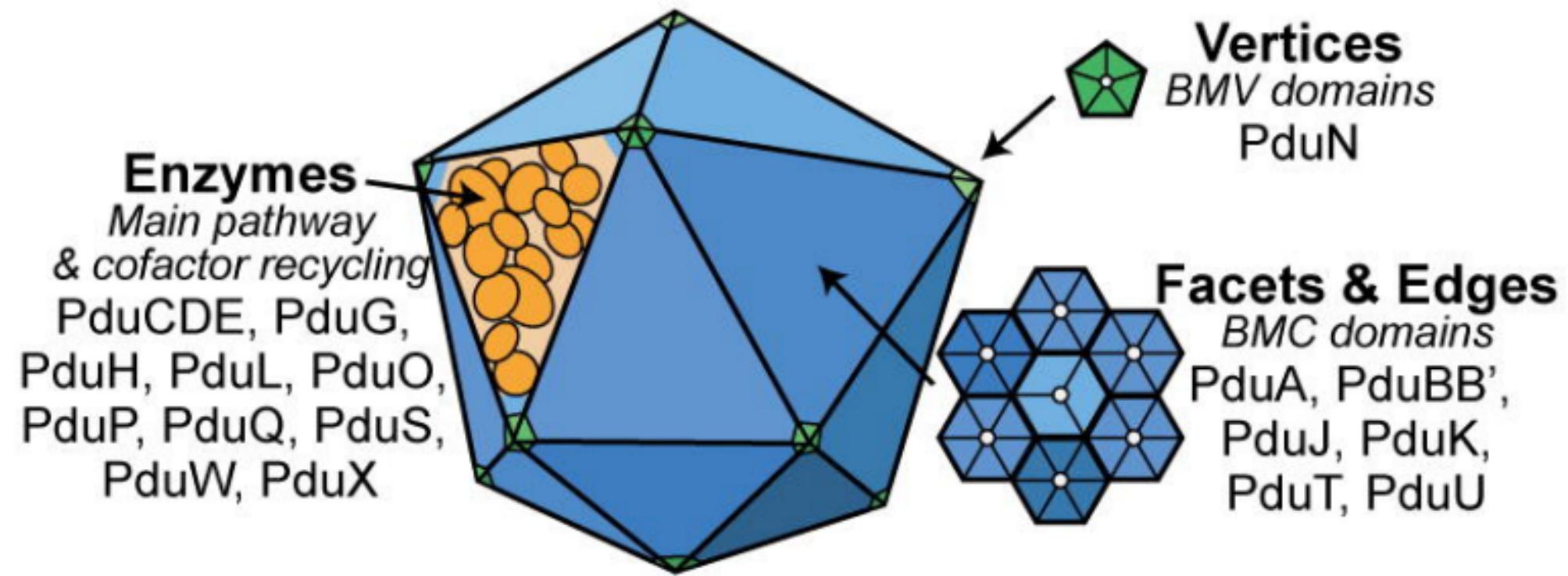
860

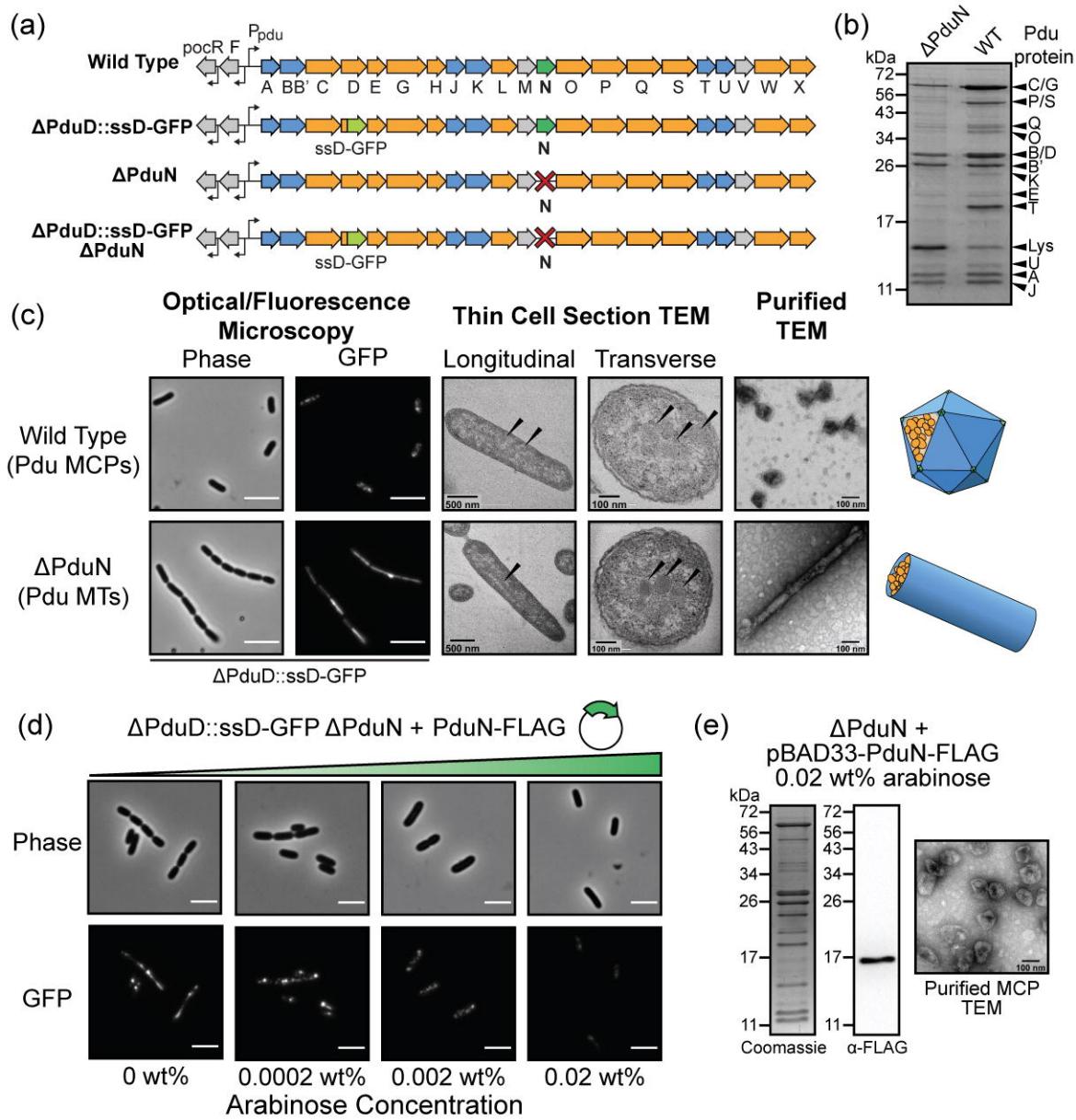
861 **Figure Captions**

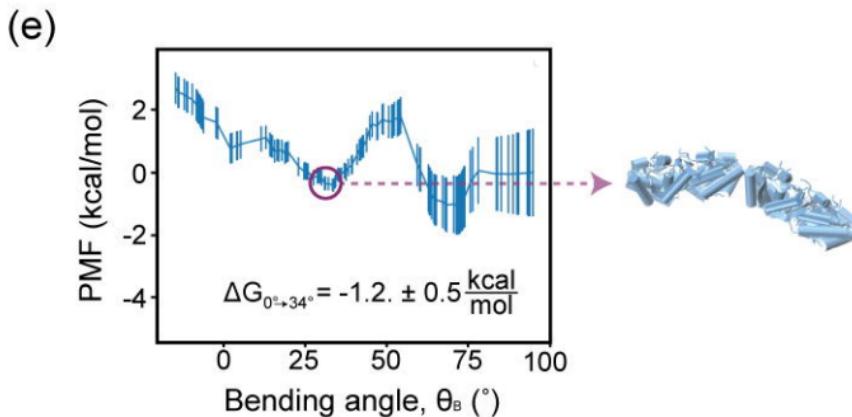
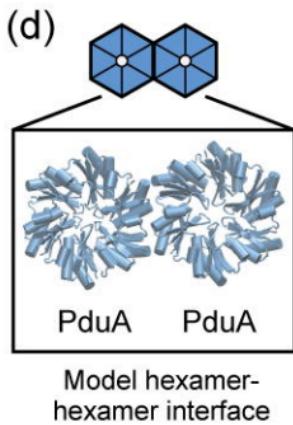
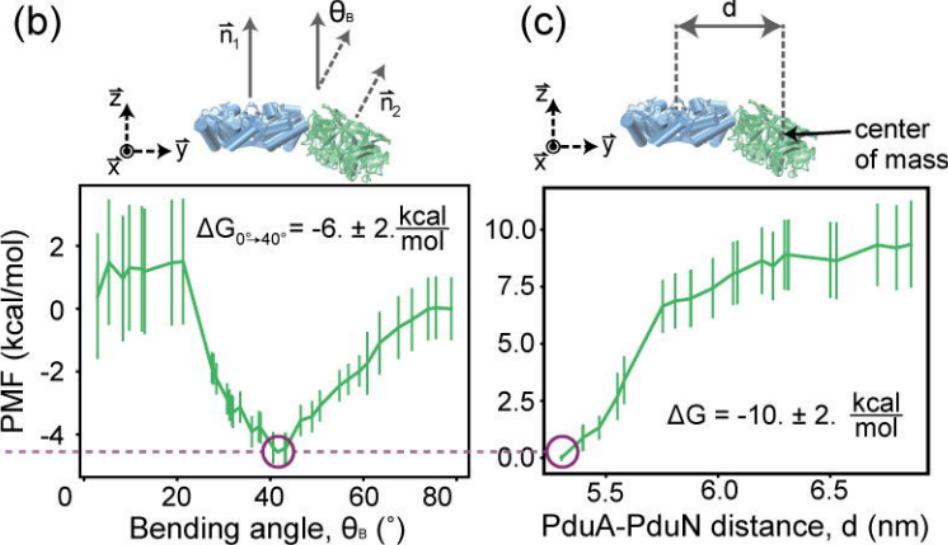
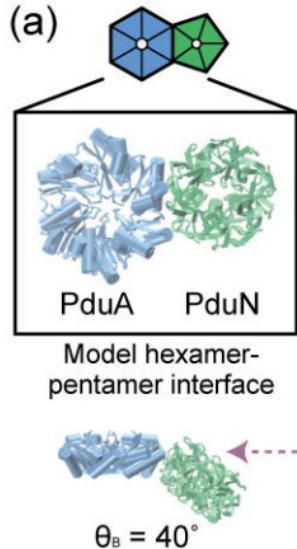
862 **Figure 1:** The *pdu* operon in *Salmonella enterica* serovar Typhimurium LT2 contains
863 the genes encoding proteins responsible for formation of the 1,2-propanediol utilization
864 microcompartment (Pdu MCP). These include enzymes that perform both key pathway
865 steps and cofactor recycling functions (orange) and shell proteins that encase these
866 enzymes (blue, green). Notably, only one shell protein in the *pdu* operon, PduN,
867 contains a bacterial microcompartment vertex (BMV) domain.

868 **Figure 2:** Characterization of structures formed in the absence of PduN. (a) Depiction of
869 different *pdu* operon genotypes used in this figure. (b) Coomassie-stained SDS-PAGE
870 of purified Pdu MTs (Δ PduN) and Pdu MCPs (WT) comparing the protein content in
871 these purified structures (c) Comparison of structures formed in Pdu MCP-forming
872 strains (WT) and Pdu MT-forming strains (Δ PduN). Scale bars in optical and
873 fluorescence micrographs are 5 μ m. (d) Phase contrast and GFP fluorescence
874 micrographs showing the impact of increased PduN-FLAG expression on the formation
875 of Pdu MT structures versus closed Pdu MCP structures, where increasing arabinose
876 concentration correlates with increasing expression of the PduN-FLAG protein off the
877 pBAD33 plasmid. (e) Coomassie-stained SDS-PAGE, anti-FLAG western blot, and
878 negatively stained TEM on Pdu MCPs purified from a *pduN* knockout strain
879 supplemented with PduN-FLAG off a plasmid.

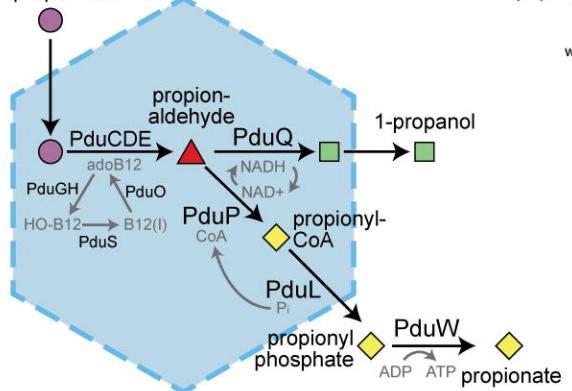
880 **Figure 3:** Analysis of the molecular interactions responsible for PduN incorporation into
881 the shell using all-atom molecular dynamics (AAMD) simulations. (a) Schematic of the
882 PduA-PduN interface used for these simulations, where PduA is shown in blue and
883 PduN is shown in green. (b) Potential of mean force (PMF) calculated from AAMD
884 simulations as a function of bending angle, Θ_B , between PduA and PduN. (c) PMF
885 calculated from AAMD simulations as a function of the distance between PduA and
886 PduN, used to calculate the total interaction energy between these two oligomers. (d)
887 Schematic of the PduA-PduA interface used for these simulations. (e) PMF calculated
888 from AAMD simulations as a function of bending angle, Θ_B , between two PduA
889 hexamers.

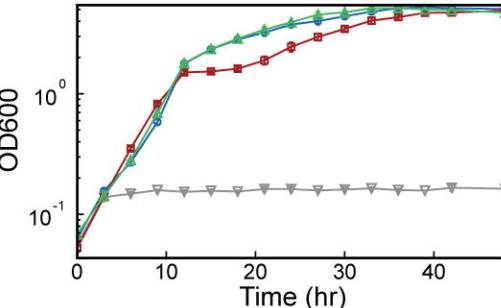
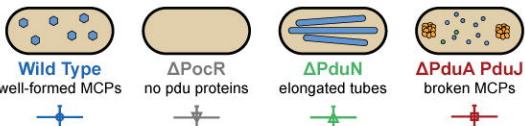


890 **Figure 4:** Impact of compartment geometry on 1,2-propanediol utilization pathway
891 performance. (a) Schematic of the 1,2-propanediol utilization pathway encapsulated in
892 Pdu microcompartments. (b) Strains containing different compartment geometries
893 (MCPs in Wild Type, MTs in Δ PduN), without compartment expression (Δ PocR), and
894 with broken compartments (Δ PduA PduJ) grown in minimal media (NCE) with 1,2-
895 propanediol as the sole carbon source. (c) Concentration of key pathway metabolites
896 over the course of the growth described in (b).

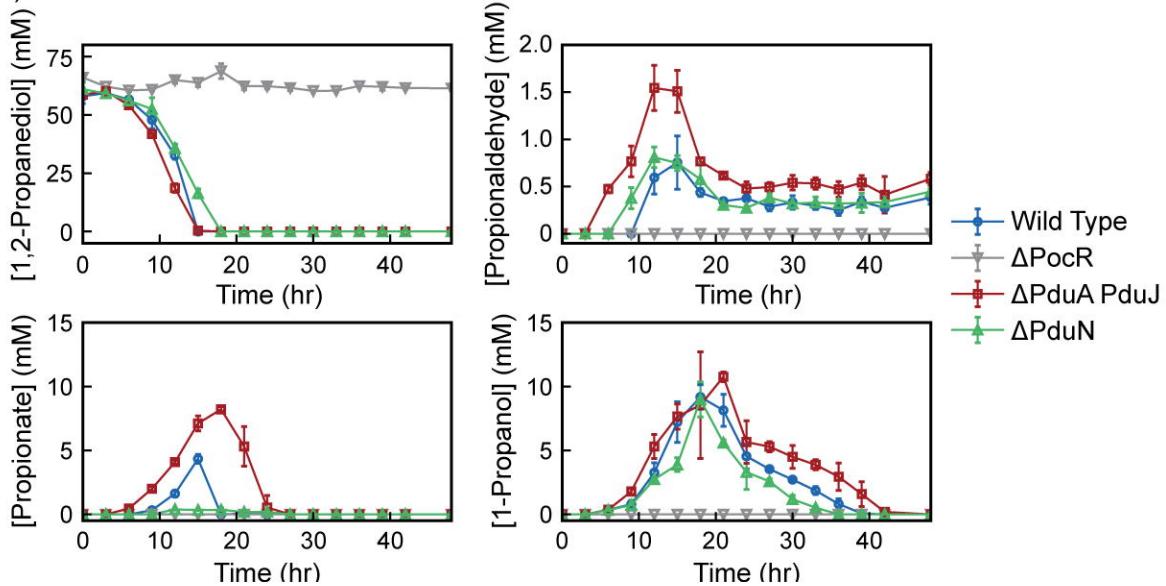

897 **Figure 5:** Systems-level kinetic model of the 1,2-propanediol pathway to explore the
898 impact of compartment geometry on pathway performance. (a) Spherical MCP model,
899 where R refers to a reaction by a given enzyme, and k refers to diffusion across a
900 barrier (the compartment shell or cell membrane) with a given permeability. (b)
901 Cylindrical Pdu MT model. (c) Representative metabolite profiles in external media
902 produced by the model for the spherical MCP base case, and limiting cylindrical MT
903 cases.

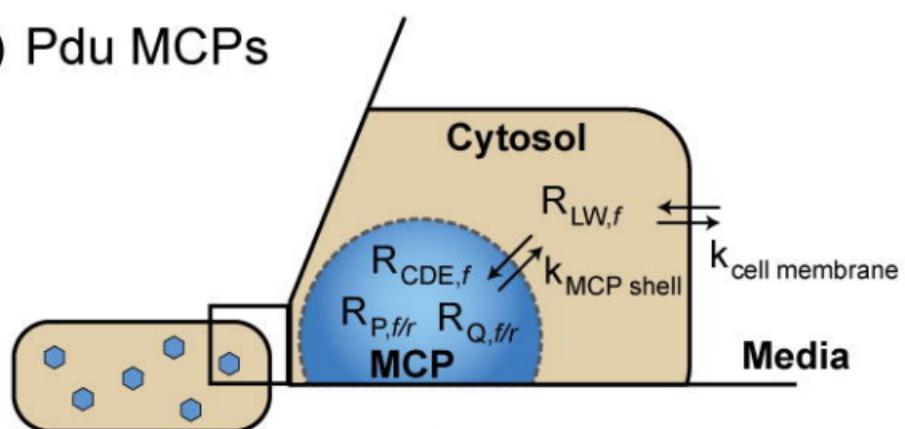




904 **Figure 6:** The formation of Pdu MTs leads to a linked cell phenotype that allows
905 distinction between cells expressing Pdu MCPs versus Pdu MTs. (a) Schematic of
906 phenotypes associated with Pdu MCP and Pdu MT formation. (b) Box and whisker plot
907 of length of cells expressing properly formed MCPs (WT) and cells expressing MTs
908 (Δ PduN). (c) Percentage of cells that contained 3 or more linkages (defined as cell
909 bodies split by a clear cleavage furrow) in MCP-forming (WT) and MT-forming (Δ PduN)
910 strains. Error bars represent standard deviation over three biological replicates.

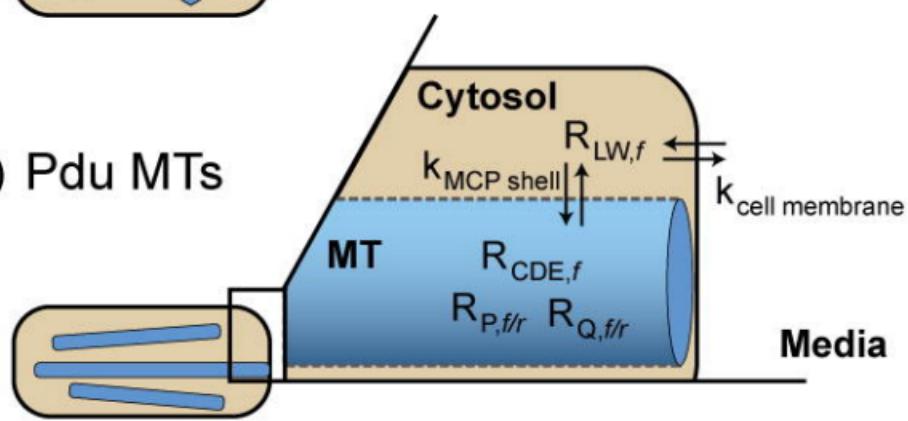
911 **Figure 7:** Interrogating the mutability of two PduN residues using the linked cell
912 phenotype readout. (a) Ribbon structure of the PduA-PduN interface (taken from the 40°
913 bending angle simulations shown in Figure 3), highlighting the two residues mutated in
914 this work--glycine 52 (G52) in purple, which is buried in the interface, and threonine 88
915 (T88) in yellow, which sits at the top of the PduA-PduN interface. (b) Percent linked cell
916 populations (defined as in Figure 6) for strains expressing the *pdu* operon with all
917 possible point mutations at position 52 in PduN (top) and position 88 in PduN (bottom).
918 Error bars indicate standard deviation in percent linked cells over three biological
919 replicates. Green highlights indicate point mutants that were selected for more detailed

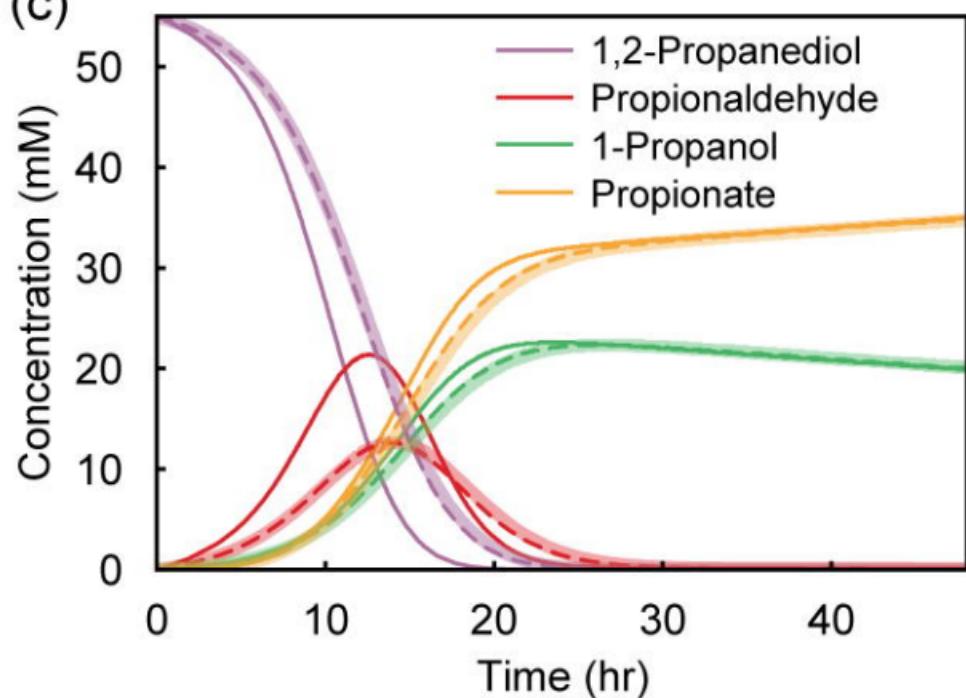

920 validation of Pdu MCP versus Pdu MT formation. (c) Detailed characterization of the
921 Pdu compartment or tube structures formed in the presence of different PduN point
922 mutants. Scale bars in optical and fluorescence micrographs are 2 μ m. Arrows in thin
923 cell section micrographs indicate protein-rich structures. Coomassie-stained SDS-PAGE
924 gel is labeled with the bands expected for various Pdu proteins or lysozyme (Lys).


(a) 1,2-propanediol


(b)


(c)

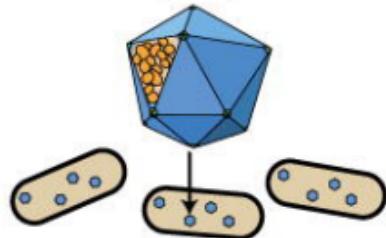

(a) Pdu MCPs

(b) Pdu MTs

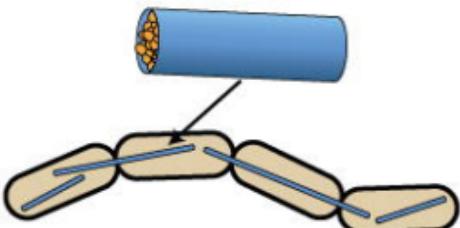
(c)

MCPs

base case
15 MCPs per cell
 $[\text{Enz}]_{\text{MCP}}$

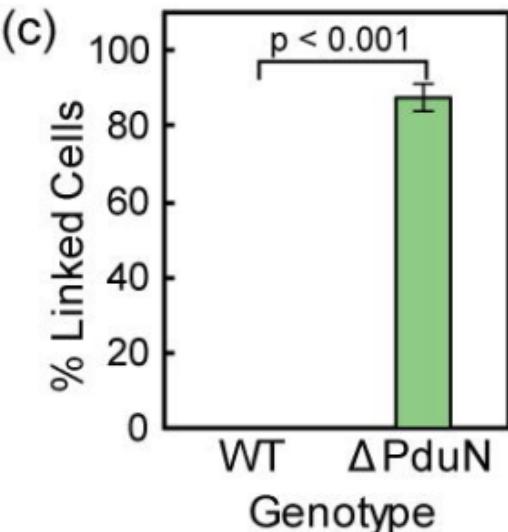
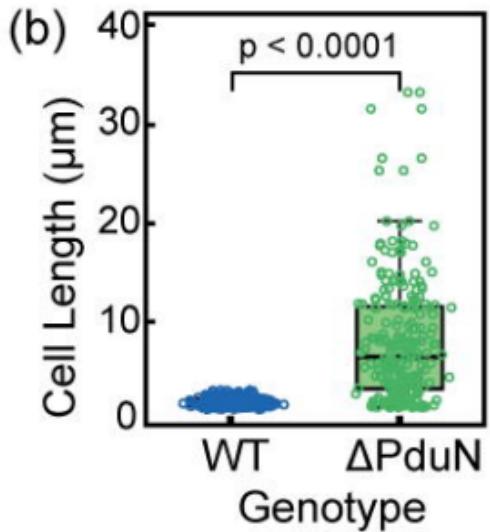

MTs

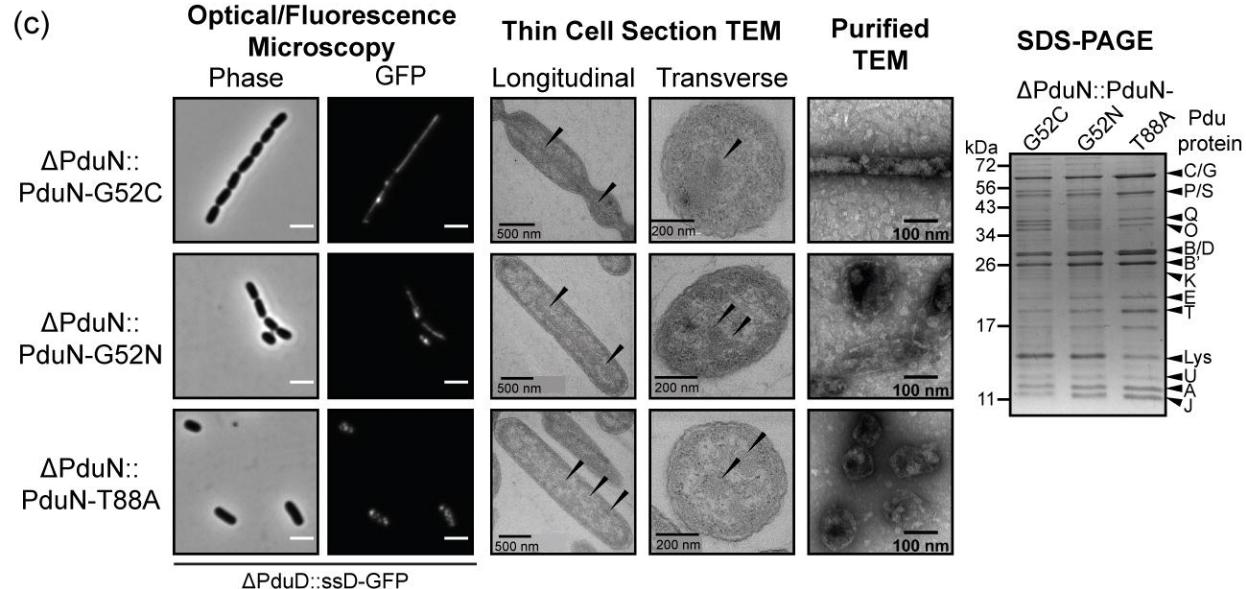
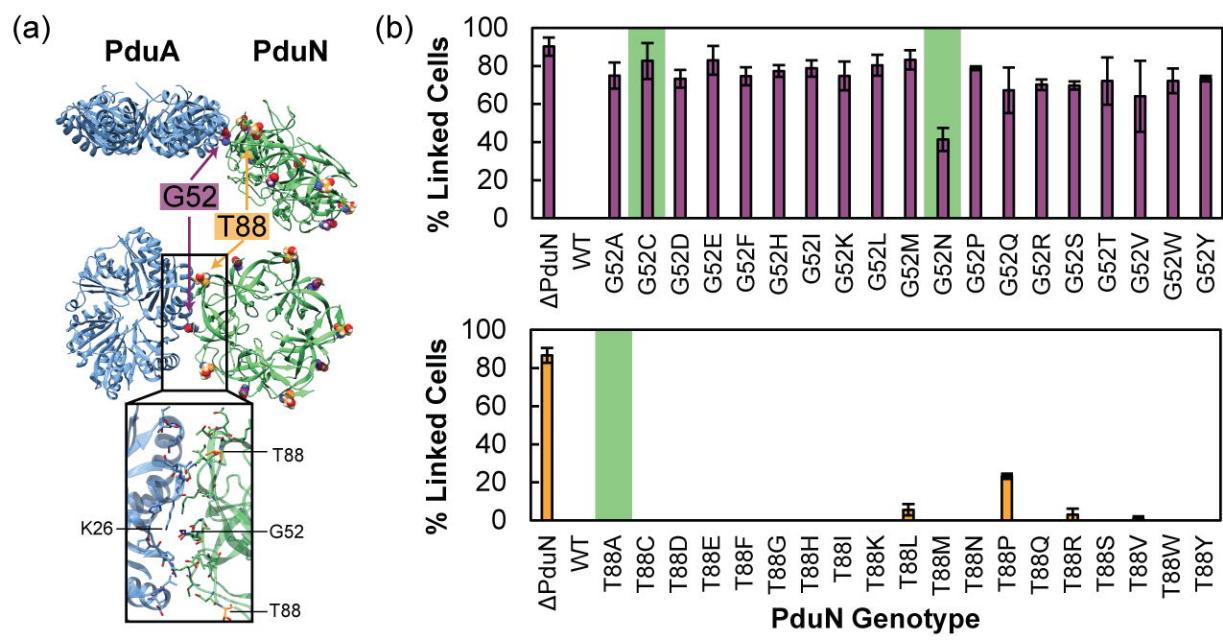
total MT volume =
total MCP volume
4.4 MTs per cell
 $[\text{Enz}]_{\text{MT}} = [\text{Enz}]_{\text{MCP}}$


MTs

total MT surface area =
total MCP surface area
2.4 MTs per cell
 $[\text{Enz}]_{\text{MT}} = 1.9 [\text{Enz}]_{\text{MCP}}$

(a) Properly formed
Pdu MCPs
(WT)



Elongated
Pdu MTs
(Δ PduN)

Unlinked *S. enterica* cells

Linked *S. enterica* cells

