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Abstract  17 

 18 

Cell size varies between cell types but  is tightly regulated by cell‐intrinsic and extrinsic mechanisms. 19 

Cell‐size  control  is  important  for  cell  function  and  changes  in  cell  size  are  frequently  observed  in 20 

cancer cells. Here we uncover a non‐canonical role of SETD2  in regulating cell size. SETD2  is a  lysine 21 

methyltransferase  and  a  tumor  suppressor  protein  involved  in  transcription  regulation,  RNA 22 

processing  and DNA  repair. At  the molecular  level,  SETD2  is  best  known  for  associating with RNA 23 

polymerase II through its Set2‐Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 24 

(H3K36) during  transcription. Although most of  SETD2’s  cellular  functions have been  linked  to  this 25 

activity, several non‐histone substrates of SETD2 have recently been identified – some of which have 26 

been  linked  to novel  functions of SETD2 beyond chromatin  regulation. Using multiple,  independent 27 

perturbation strategies we identify SETD2 as a negative regulator of global protein synthesis rates and 28 

cell size. We provide evidence that this  function  is dependent on the catalytic activity of SETD2 but 29 

independent of H3K36 methylation. Paradoxically, ectopic overexpression of a decoy SRI domain also 30 

increased  cell  size,  suggesting  that  the  relevant  substrate  is  engaged by  SETD2  via  its  SRI domain. 31 

These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on 32 

separating the different functions of SETD2 in cancer development.    33 
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Introduction 34 
 35 

SETD2 is a lysine methyltransferase that is best known for its activity toward lysine 36 on histone H3 36 

(H3K36), which is a histone post‐translational modification found on active gene bodies (Li et al. 2016; 37 

McDaniel and Strahl 2017). H3K36 methylation by SETD2/Set2 is conserved from yeast to humans and 38 

is  involved  in  mRNA  co‐transcriptional  processing,  repression  of  cryptic  transcription,  and  DNA 39 

damage repair (Yoh et al. 2008; Luco et al. 2010; Carvalho et al. 2014; Mar et al. 2017; Huang et al. 40 

2018).  In addition,  it has  recently become clear  that SETD2 also methylates non‐histone  substrates 41 

indicating that SETD2 has functions beyond chromatin regulation (Park et al. 2016; Chen et al. 2017; 42 

Seervai et al. 2020; Yuan et al. 2020). SETD2 is frequently mutated in cancer; 4.33% of all cancers carry 43 

SETD2 mutations, with endometrial cancer, clear cell renal cell cancer, bladder cancer and colorectal 44 

cancer being most  frequently associated with SETD2 mutations  (reviewed by Fahey and Davis 2017; 45 

Lu  et  al.  2021).  Fundamental  insights  into  the  functions  of  SETD2  are  required  to  understand  its 46 

tumor‐suppressor function.  47 

 48 

SETD2  is  capable of mono‐, di‐ and  trimethylating H3K36  in  vitro  through  its  catalytic SET domain. 49 

However,  in  cells  SETD2  is  only  required  for  maintaining  bulk  levels  of  H3K36me3  but  not 50 

H3K36me1/2 due to the presence of additional H3K36 mono‐ and dimethyltransferases  in mammals 51 

(Edmunds et al. 2008; Yuan et al. 2009; Wagner and Carpenter 2012; Hyun et al. 2017; Li et al. 2019; 52 

Zaghi et al. 2020).  In contrast, budding yeast only has one H3K36 methyltransferase, Set2, which  is 53 

responsible for all H3K36 methylation states (Strahl et al. 2002; McDaniel and Strahl 2017). In addition 54 

to its catalytic SET domain, SETD2 contains a conserved Set2‐Rbp1 interaction (SRI) domain that binds 55 

to the C‐terminal domain (CTD) repeats of the largest subunit of RNA polymerase II (RNAPII) when the 56 

CTD  repeats  are  phosphorylated  at  serine‐2  and  ‐5  (Sun  et  al.  2005).  This  Set2/SETD2‐RNAPII 57 

interaction  is essential  for establishing H3K36 methylation on  transcribed  regions  (Kizer et al. 2005; 58 

Rebehmed et al. 2014). Based on studies on Set2  in budding yeast,  the emerging model  is  that  the 59 

interaction between RNAPII and  the SRI domain  stimulates  the activity of  the catalytic SET domain 60 

rather than that it controls the localization of Set2 to active gene bodies (Youdell et al. 2008; Wang et 61 

al. 2015; Gopalakrishnan et al. 2019).  Interestingly, a pathogenic point mutation observed  in cancer 62 

(R2510H)  in  the SRI domain of human  SETD2  impairs  SETD2’s ability  to methylate alpha‐tubulin  at 63 

lysine  40  during  mitosis,  while  global  methylation  of  H3K36  is  unaffected  (Park  et  al.  2016). 64 

Furthermore,  it was recently shown that the SRI domain directly  interacts with the acidic C‐terminal 65 

tail of  alpha‐tubulin  (Kearns  et  al. 2020).  This  indicates  that  the  SRI domain not only  controls  the 66 

activity of SETD2 toward H3K36 but to non‐histone substrates as well. It also indicates that the role of 67 

SETD2 in cancer may involve mechanisms other than defects in chromatin structure. 68 

 69 

The  lysine‐specific  demethylase  KDM4A  (also  known  as  JMJD2A)  counteracts  SETD2’s  function  on 70 

chromatin  by  converting  H3K36me3  into  H3K36me2.  In  addition,  KDM4A  demethylates  the 71 

heterochromatin mark H3K9me3.  In  line with the notion that many chromatin modifiers also act on 72 

non‐histone proteins, KDM4A has been reported to have functions outside of the nucleus. Specifically, 73 

KDM4A  associates  with  the  initiating  form  of  the  translation  machinery  and  stimulates  mRNA 74 

translation through its catalytic activity (Van Rechem et al. 2015).  75 

 76 

Methylation  of  H3K36  has  two  functions  during  transcription  that  are  well‐established  in  both 77 

budding yeast and mammalian cells. First, H3K36me stimulates co‐transcriptional mRNA splicing by 78 

recruiting splicing factors that ‘read’ H3K36me2 or ‐me3 (Luco et al. 2010; Guo et al. 2014; Sorenson 79 

et al. 2016; Leung et al. 2019). Second, H3K36me2/3 promotes either the recruitment or activity of 80 

chromatin modifiers  that  repress  (cryptic)  transcription  initiation  from within  actively  transcribed 81 

gene  bodies  (Carrozza  et  al.  2005;  Keogh  et  al.  2005;  Lickwar  et  al.  2009;  Joshi  and  Struhl  2005; 82 
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Baubec et al. 2015; Neri et al. 2017). Another potential function of H3K36 methylation is to promote 83 

histone  recycling during  transcription elongation. Nucleosomes act as barriers  for  transcription and 84 

are therefore transiently disrupted to allow passage of RNAPII (Bondarenko et al. 2006; Petesch and 85 

Lis 2012; Studitsky et al. 2016; Chen et al. 2019). In the wake of transcription, histones can either be 86 

recycled or  replaced by newly  synthesized histones,  leading  to histone  turnover.  In budding  yeast, 87 

Set2 represses histone turnover in active genes indicating that Set2 promotes histone recycling during 88 

transcription  (Venkatesh  et  al. 2012;  Smolle  et  al. 2012; Radman‐Livaja  et  al. 2012).  It  is  currently 89 

unclear  if SETD2 has a  similar  function  in mammalian cells.  Interestingly, SETD2 promotes both  the 90 

localization  of  the  conserved  histone  chaperone  FACT  (facilitates  chromatin  transcription)  to 91 

chromatin as well as the maintenance of proper nucleosome organization  in active genes  in human 92 

cells  (Carvalho  et  al. 2013;  Simon  et  al. 2014). Given  that  FACT promotes histone  recycling during 93 

transcription in budding yeast (Jamai et al. 2009; Jeronimo et al. 2019) and in in vitro studies (Hsieh et 94 

al. 2013; Farnung et al. 2021), an attractive model is that SETD2‐mediated recruitment of elongation 95 

factors such as FACT maintains chromatin integrity (i.e. nucleosome occupancy) during transcription.  96 

 97 

Here, we set out to investigate SETD2’s role in maintaining histone levels. We found that depletion of 98 

SETD2  alters  the  ratio between  cellular protein  content  and histone proteins.  This  altered histone 99 

over total protein ratio was not due to a loss of chromatin integrity leading to global loss of histones 100 

from DNA but rather due to an increase in total cellular protein content and cell size. Protein content 101 

is controlled by protein synthesis and degradation rates, and can be coordinated at the level of both 102 

transcription  as  well  as  translation.  Mechanistically,  we  demonstrate  that  SETD2  controls  global 103 

protein synthesis rates, and we provide evidence that this  function  is dependent on SETD2 catalytic 104 

activity and the SRI domain but most likely independent of H3K36me3. Our results suggest that SETD2 105 

acts opposite to the demethylase KDM4A (Van Rechem et al. 2015) to regulate protein synthesis and 106 

cell size.  107 

 108 

 109 

Results 110 

 111 

SETD2 controls total protein content  112 

 113 

In  metazoans,  compromised  chromatin  integrity  leads  to  the  deposition  of  the  replication‐114 

independent histone variant H3.3. H3.3 acts as a ‘gap‐filler’ histone and prevents the accumulation of 115 

naked DNA when histone deposition  (e.g. during DNA  replication)  is compromised  (Ray‐Gallet et al. 116 

2002; Tagami et al. 2004; Maze et al. 2015; Tvardovskiy et al. 2017). Our initial aim in this study was to 117 

determine  if  SETD2  represses  the  deposition  of  the  H3.3  gap  filler  histone,  given  that  (1)  Set2 118 

represses replication‐independent histone turnover in active genes in budding yeast (Venkatesh et al. 119 

2012) and  (2) SETD2 maintains nucleosome occupancy  in active gene bodies  (Carvalho et al. 2013; 120 

Simon et al. 2014). We therefore depleted SETD2 in human retinal pigment epithelial cells transduced 121 

with  the  telomerase  gene  (RPE1‐hTERT), which  is  a  non‐transformed  near  diploid  human  cell  line 122 

(designated RPE1 from here on). To monitor H3.3 (which differs five amino acids from H3.1 and four 123 

amino acids from H3.2), we used RPE1 cells carrying a endogenously V5 epitope‐tagged copy of the 124 

H3.3 gene H3F3B (Molenaar et al. 2020). Despite being frequently  inactivated  in cancer, SETD2  is an 125 

essential  gene  in  several human  cell  lines  (Blomen  et  al. 2015; Wang et  al. 2015; Bertomeu  et  al. 126 

2018).  Therefore,  to  prevent  looking  at  potential  secondary  effects  of  long  term  SETD2  loss, we 127 

employed an  inducible SETD2  knockdown  system using doxycycline  (dox)  inducible miRNAs against 128 

SETD2 based on the miR‐E optimized backbone (Fellmann et al. 2013).  129 

 130 
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Treating RPE1‐H3F3B‐V5 cells transduced with inducible miRNAs targeting SETD2 with dox for 72h led 131 

to a reduction  in SETD2 mRNA expression  (Supplementary Figure 1A) and H3K36me3  levels  (Figure 132 

1A, B), as expected. We first assessed global H3.3‐V5  levels  in protein‐normalized whole‐cell  lysates 133 

from  SETD2  depleted  RPE1  cells.  Unexpectedly,  H3.3  levels  were  significantly  reduced  in  SETD2 134 

depleted cells  (Figure 1A, B). This was unexpected  for  two  reasons. First, we predicted  that SETD2 135 

represses  H3.3  deposition  in  active  gene  bodies.  Second,  only  a  small  percentage  of  the  human 136 

genome constitutes active gene bodies (i.e. only 1‐5% of nucleosomes is marked by H3K36me3; LeRoy 137 

et  al. 2013)  and we  therefore did not expect  global  changes  in H3.3  levels upon  SETD2 depletion. 138 

Strikingly,  in  addition  to  H3.3,  we  also  observed  that  protein‐normalized  whole‐cell  lysates  from 139 

SETD2  depleted  cells  had  reduced  histone H3  and H4  levels  compared  to  untreated  cells  or  cells 140 

expressing a scrambled miRNA (Figure 1A). Does SETD2 maintain global histone levels (i.e. chromatin 141 

integrity) or does SETD2 maintain a normal DNA to total protein ratio? To answer this, we measured 142 

genomic DNA levels by qPCR in protein‐normalized cell lysates and found that SETD2 depleted lysates 143 

had lower DNA levels (Figure 1A lower panel). This suggests that the DNA:protein ratio is lowered by 144 

SETD2 loss, and that histones appropriately scale with DNA levels in SETD2 knockdown cells. Indeed, 145 

when normalizing protein lysates for genomic DNA levels (which equals normalizing for cell numbers), 146 

SETD2 depleted cells showed similar histone levels and increased levels of non‐histone proteins such 147 

as α‐tubulin and β‐actin (Figure 1C). This suggests that SETD2‐depleted cells have an  increased total 148 

cellular protein content.  149 

 150 

To confirm that this phenotype was indeed caused by loss of SETD2 expression, we determined if the 151 

increased  protein  content  in  SETD2‐depleted  cells  could  be  rescued  by  overexpressing  miRNA‐152 

resistant SETD2. We used a catalytically active but truncated version of SETD2 (tSETD2) that lacks the 153 

first 504 amino acids of the unstructured N‐terminal domain to  facilitate expression  (Carvalho et al. 154 

2013).  Interestingly,  tSETD2 overexpression  increased  the DNA  / protein  ratio,  indicating  that  total 155 

cellular protein content was reduced  in these cells (Figure 1D, E). Combining tSETD2 overexpression 156 

and endogenous SETD2 knockdown restored protein content to approximately wild‐type levels.  157 

 158 

In  addition  to miRNA‐based  knockdowns, we  suppressed  SETD2  expression  using  an  independent 159 

alternative approach, CasRx (Cas13d) mediated RNA cleavage. The CasRx system has been reported to 160 

have a high knockdown efficiency with minimal off‐target effects  in human cells  (Konermann et al. 161 

2018).  Indeed, we observed high mRNA cleavage efficiency using  two SETD2 mRNA  targeting guide 162 

RNAs  (gRNAs).  Importantly,  CasRx‐mediated  knockdown  of  SETD2  also  led  to  an  increase  in  total 163 

protein content, confirming the miRNA‐based SETD2 knockdown results (Supplementary Figure 1B). 164 

Furthermore, to determine if increased protein content upon SETD2 depletion was restricted to RPE1 165 

cells, we knocked down SETD2 in two other normal human cell lines: the human fetal lung fibroblast 166 

cell line TIG3 and the foreskin fibroblast cell line BJET. We observed a decrease in histone H3 and H4 167 

in protein‐normalized  lysates  from SETD2 depleted TIG3 and BJET  cells  (Supplementary  Figure  1C) 168 

indicating that SETD2 controls total cellular protein levels in multiple human cell lines. 169 

 170 

 171 
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 172 
 173 

Figure 1. SETD2 depletion  increases  the  total protein content of human cells.  (A) Western blot of 174 

RPE1  cells with doxycycline‐inducible  knockdown of SETD2. Cells were  treated with doxycycline  for 175 

72h. Cell lysates were normalized for total protein (left panel) or genomic DNA content (right panel). 176 

The  bar  plot  below  the  left  panel  represents  genomic  DNA  levels  quantified  by  qPCR  in  protein 177 

normalized  lysates.  (B) Western blot of RPE1  cells with doxycycline‐inducible  knockdown of  SETD2 178 

(72h  induction)  and  constitutive  overexpression  of  either  RFP  (control)  or  N‐terminally  truncated 179 

SETD2  (tSETD2). Cell  lysates were normalized  for  total protein  (left panel) or genomic DNA content 180 

(right panel). The bar plot below the left panel represents genomic DNA levels quantified by qPCR in 181 

protein normalized  lysates.  (C) 2D cell size as measured by  image flow‐cytometry of RPE1 cells with 182 

inducible  SETD2  depletion  and/or  constitutive  tSETD2  overexpression  (RFP  as  control).  Cells were 183 

treated with doxycycline for 72h for inducible miRNA based SETD2 knockdown. SCR, scramble miRNA; 184 

OE, overexpression; Dox, doxycycline. Error bars represent SD of three biological replicates.  185 

 186 

 187 

 188 
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SETD2 controls protein synthesis rates and cell size 189 

 190 

Global  protein  levels  and  cell  size  are  closely  correlated.  Therefore,  the  observed  protein  content 191 

regulation by SETD2 should presumably lead to an alteration in cell size as well. Indeed, we observed 192 

by  imaging  flow‐cytometry  that SETD2 depletion  increased cell size  (measured as 2D cell surface of 193 

cells  in  suspension) while  tSETD2  overexpression  decreased  cell  size  (Figure  2A).  Taken  together, 194 

these results suggest that SETD2 controls total protein content and consequently cell size. 195 

 196 

An  increased cell size can be accompanied by adaptations  in protein synthesis and degradation, two 197 

opposing but coupled processes. To directly measure protein synthesis rates in SETD2 depleted cells, 198 

we used a radioactively labeled 35S‐methionine incorporation assay. SETD2 depletion using the CasRx 199 

system  led to a significant  increase  in the  incorporation rate of 35S  ‐methionine normalized for total 200 

protein  content  (Figure  2B).  This  indicates  that  SETD2  negatively  regulates  protein  synthesis  and 201 

suggests that the increased protein content in SETD2 depleted cells is caused by an increase in protein 202 

synthesis rate.  203 

 204 

Mammalian cells that are arrested in G1 and exposed to growth factors generally continue to increase 205 

in cell size and have an  increased protein synthesis rate compared to proliferating cells (Conlon and 206 

Raff 2003). We therefore used cell cycle profiling by flow‐cytometry to determine  if  inducible SETD2 207 

depletion led to a G1 arrest. SETD2 depletion led to a slight increase in the number of cells in G1 and a 208 

decrease  in the number of cells  in S phase and G2  (Figure 2C).  tSETD2 overexpression also  led  to a 209 

small  increase  in  the  number  of  cells  in  G1  (compare  between  left  and  right  plots).  However, 210 

knockdown  of  endogenous  SETD2  did  not  rescue  cell  cycle  distribution  in  tSETD2  expressing  cells, 211 

even though SETD2 knockdown did partially restore the size of tSETD2 expressing cells as measured 212 

by imaging flow‐cytometry (see Figure 2A). To look at cell cycle defects in SETD2 depleted cells in an 213 

independent way, we measured the mRNA levels of several genes involved in cell cycle progression in 214 

RPE1 cells  in which SETD2 was depleted using the dox‐inducible CasRx system (as  in Supplementary 215 

Figure 1B). Consistent with  the cell cycle distribution analysis, SETD2 depletion  resulted  in a minor 216 

decrease  in the expression of genes  involved  in cell cycle progression such as E2F1/2, MCM5/6 and 217 

CDK6  (Figure 2D, E). However,  it seems unlikely that the small difference  in cell cycle distribution  is 218 

the primary reason for the increased cell size in SETD2 depleted cells. 219 

 220 
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 221 
Figure 2. Inducible depletion of SETD2 increases protein synthesis rates accompanied with a minor 222 

accumulation  of  cells  in  G1.  (A) 
35S‐methionine  incorporation  assay  of  RPE1  cells  72h  following 223 

doxycycline‐induced  CasRx‐based  SETD2  knockdown.  CHX  indicates  a  control  experiment  in which 224 

cells  were  treated  with  cycloheximide  for  1h,  which  inhibits  protein  synthesis.  (B)  Cell  cycle 225 

distribution as measured by flow‐cytometry of propidium iodide stained SETD2 depleted and tSETD2 226 

overexpressing RPE1  cells.  Cells were  treated with  doxycycline  for  72h  for  inducible  expression  of 227 

SETD2 targeting miRNAs, while RFP (control; left panel) and tSETD2 overexpression (right panel) was 228 

constitutive.  (C) RT‐qPCR  for mRNA expression analysis of genes  involved  in cell cycle  regulation  in 229 

RPE1  cells,  72h  following  doxycycline‐induced  CasRx‐based  SETD2  knockdown.  (D)  The  two  CasRx 230 

gRNAs used  for  targeting  SETD2 mRNA are each  flanked by a RT‐qPCR primer pair used  for  SETD2 231 

expression analysis in (C). Error bars represent SD of three biological replicates. 232 

 233 
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SETD2 controls cell size through its catalytic activity 234 

 235 

How does SETD2 control cell size? We first wanted to determine if SETD2 controls cell size through its 236 

catalytic  activity.  However,  we  were  unable  to  establish  RPE1  cell  lines  stably  (over)expressing 237 

catalytically  inactive  tSETD2  (tSETD2‐Q1669A)  suggesting  that  this  is  lethal  in  RPE1  cells.  As  an 238 

alternative  approach  to  determine  the  role  of  SETD2’s  catalytic  activity  in  regulating  cell  size, we 239 

stably  overexpressed  the  demethylase  KDM4A  in  RPE1  cells.  KDM4A  (also  known  as  JMJD2A) 240 

counteracts  SETD2’s  function  on  chromatin  by  converting H3K36me3  into H3K36me2.  In  addition, 241 

KDM4A demethylates the heterochromatin mark H3K9me3. Stable KDM4A overexpression decreased 242 

global H3K36me3 and H3K9me3  levels  in RPE1  cells, as expected  (Figure 3A).  Importantly, KDM4A 243 

overexpression  increased  the  total  cellular protein  content  similar  to  SETD2 depletion  (Figure  3A). 244 

This result suggests that SETD2 controls protein content through its catalytic activity and opens up the 245 

possibility that SETD2 and KDM4A act in the same pathway. 246 

 247 

In  line with the notion that many chromatin modifiers also act on non‐histone proteins, KDM4A has 248 

been  reported  to  have  functions  outside  of  the  nucleus.  Specifically,  KDM4A  associates with  the 249 

initiating form of the translation machinery and stimulates protein synthesis rates through its catalytic 250 

activity (Van Rechem et al. 2015). This suggests that KDM4A mediated demethylation of a component 251 

of  the  translation machinery  stimulates protein  synthesis. However,  the  identity of  this methylated 252 

substrate  and  the methyltransferase  involved  are  unknown.  SETD2  is  best  known  for  its  ability  to 253 

methylate  H3K36.  However,  the  list  of  non‐histone  substrates  that  are  methylated  by  SETD2 254 

continues to grow. In an attempt to determine if SETD2/KDM4A regulate protein synthesis via H3K36, 255 

we  also  overexpressed  the  budding  yeast  homologue  of  KDM4A, Rph1  (Regulator  of  PHR1) which 256 

demethylates  both  H3K36me2  and  H3K36me3  in  Saccharomyces  cerevisiae  (Kim  and  Buratowski 257 

2007; Klose et al. 2007). Stable Rph1 overexpression  in RPE1 cells decreased H3K36me3  levels and 258 

had a small effect on H3K9me3  (which  is absent  in S. cerevisiae) but did not significantly alter total 259 

cellular  protein  content  (Figure  3A). One  possible  explanation  for  the  differential  effects  between 260 

Rph1 and KDM4A overexpression is the they both act on H3K36 but have likely evolved in conjunction 261 

with  the  opposing methyltransferases  (here  Set2  and  SETD2)  to  act  on  additional  species‐specific 262 

substrates.  Taken  together,  these  results  suggest  that  SETD2  regulates  cell  size  through  its 263 

methylation activity but argue against direct involvement of its activity toward H3K36. 264 

 265 

To further corroborate these findings, we inhibited SETD2 function by overexpressing the H3.3K36M 266 

oncohistone. H3.3K36M,   a mutant histone  found  in chondroblastoma  (Behjati et al. 2013),  inhibits 267 

SETD2 as well as the H3K36 mono‐ and dimethyltransferase NSD2, in a dominant negative manner i.e. 268 

in  cis  and  in  trans  (Lewis  et  al.  2013;  Lu  et  al.  2016;  Zhang  et  al.  2017).  As  a  control,  we  also 269 

overexpressed  H3.3G34R  which  is  found  in  glioblastoma  (Schwartzentruber  et  al.  2012)  and 270 

osteosarcoma (Behjati et al. 2013) and which inhibits SETD2 only locally in cis (Fang et al. 2018; Shi et 271 

al.  2018).  Inducible  overexpression  of  HA‐tagged  H3.3K36M  but  not  H3.3G34R  reduced  global 272 

H3K36me2 and H3K36me3  levels, as expected  (Figure 3B).  Interestingly, H3.3K36M overexpression 273 

lowered  the genomic DNA:protein  ratio but not  to  the  same extent as SETD2 depletion or KDM4A 274 

overexpression, despite H3K36me3 being almost completely absent. This shows that there is no direct 275 

correlation between global H3K36me3  levels and cell size. However,  it cannot be excluded  that  the 276 

remaining H3K36me3 localized on a specific set of genes and indirectly regulates protein content. 277 

 278 

To more directly  investigate the  involvement of H3K36 methylation  in regulating cell size, we stably 279 

overexpressed H3.3 or H3.3K36A  in RPE1 cells with the aim to replace a substantial fraction of H3.3 280 

(and  canonical H3) with  an H3.3K36A histone mutant  that  cannot be methylated on K36. Humans 281 

have  15  genes  encoding  H3  and  H3.3,  making  it  difficult  to  assess  the  function  of  histone 282 
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modifications by mutating endogenous H3 amino acid residues, a strategy that has been successfully 283 

employed in yeast and flies (Meers et al. 2017). Based on H3K36me3 immunoblotting, we found that 284 

ectopic  expression  by  the  strong  EEF1A1 promoter  led  to high  incorporation  levels of  ectopic HA‐285 

tagged H3.3 (H3.3‐HA). Note that the C‐terminal HA tag interferes with the recognition of the anti‐H3 286 

antibody  (Abcam  1791).  Since H3.3  accumulates  in  non‐dividing  cells  (Maze  et  al.  2015), we  also 287 

attempted  to  further  increase  the  level of ectopic H3.3‐HA  incorporation by depriving RPE1 cells of 288 

serum. However, we found that 7 days of serum deprivation did not lead to higher levels of H3.3‐HA 289 

in  RPE1  cells.  H3.3K36A  has  a minor  trans  inhibitory  effect  on  SETD2  although  not  as  strong  as 290 

H3.3K36M (Lu et al. 2016). Indeed, we observed that high expression of H3.3K36A‐HA (which cannot 291 

be methylated and  is not recognized by the H3K36me antibodies) reduced the  levels H3K36me3 on 292 

endogenous histone H3  (Figure 3C). H3.3K36A overexpression did not affect  cell  size, despite  total 293 

H3K36me3 levels (i.e. on both ectopic and endogenous H3) being significantly reduced. This provides 294 

further support for the model that SETD2 controls cell size independently of H3K36me3. 295 

 296 
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 297 
Figure 3. SETD2 controls cellular protein content  through  its catalytic activity.  (A) Western blot of 298 

RPE1 cells constitutively overexpressing the yeast demethylase Rph1 or human H3K36me3/H3K9me3 299 

demethylase  KDM4A.  Cell  lysates were  normalized  for  total  protein  (left  panel)  or  genomic  DNA 300 

content (right panel). The bar plot below the left panel represents genomic DNA levels quantified by 301 

qPCR  in  protein  normalized  lysates.  (B)  Western  blot  of  RPE1  cells  with  doxycycline  inducible 302 

overexpression of hemagglutinin (HA) epitope‐tagged “onco” H3.3 histones. The bar plot represents 303 

genomic DNA  levels quantified by qPCR  in protein normalized  lysates. (C) Western blot of RPE1 cells 304 

with stable overexpression of H3.3‐HA and H3.3K36A‐HA. Dots represent the individual values of two 305 

biological replicates (in A and B). Error bars represent SD of three biological replicates (in C).  306 
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 307 

SETD2 controls cell size through its SRI domain 308 

 309 

To  gain  further mechanistic  insight  into how  SETD2 negatively  regulates  cell  size, we  targeted  the 310 

interaction  between  SETD2  and  RNAPII.  This  interaction  is mediated  by  the  SRI  domain, which  is 311 

conserved from yeast Set2 to human SETD2. The SRI domain  interacts with the CTD of RNAPII when 312 

phosphorylated at serine 2 and serine 5  in the heptapeptide repeat   and this  interaction  is essential 313 

for  establishing  H3K36me3  in  both  yeast    and  human  cells  (Kizer  et  al.  2005;  Sun  et  al.  2005; 314 

Rebehmed et al. 2014). Ectopic overexpression of the S. cerevisiae Set2 SRI domain (SRISet2) fused to a 315 

nuclear  localization signal  (NLS)  reduced global H3K36me3  levels  in RPE1 cells, presumably because 316 

the  excess  free  SRISet2  domain  acts  as  a  decoy  for  RNAPII  (Figure  4A).  Importantly,  SRISet2 317 

overexpression increased cell size (Figure 4B). This indicates that SETD2 regulates cell size through its 318 

SRI domain. To determine if the nuclear localization of this decoy SRISet2 domain was important for its 319 

ability  to disrupt  cell  size  regulation, we  also overexpressed  a  SRISet2 domain  fused  to  the HIV Rev 320 

protein  nuclear  export  signal  (NES).  However, we were  unable  to  generate  RPE1  cell  lines  stably 321 

overexpressing NES‐SRISet2, suggesting that this is toxic in RPE1 cells.  322 

 323 

Although the SRI domain is best known for its ability to interact with the RNAPII phospho‐CTD, the SRI 324 

domain also contributes to the ability of SETD2 to methylate non‐histone substrates. For example, a 325 

pathogenic  point  mutation  in  the  SRI  domain  of  SETD2  (R2510H)  disrupts  alpha‐tubulin  K40 326 

methylation by SETD2 (Park et al. 2016). In line with this, the SETD2 SRI domain was recently shown to 327 

directly  interact with  the  C‐terminal  tail  of  alpha‐tubulin  (Kearns  et  al.  2020).  Interestingly, while 328 

mutating the R2510 residue in the SETD2 SRI domain to an alanine (R2510A) disrupts the interaction 329 

between the SRI domain and RNAPII (Li et al. 2005), the R2510H mutation disrupts alpha‐tubulin K40 330 

methylation but not H3K36 methylation (Park et al. 2016). Therefore, SRISETD2‐R2510H can be used to 331 

functionally  separate  SETD2‐mediated  alpha‐tubulin  methylation  from  RNAPII‐mediated  H3K36 332 

methylation. 333 

 334 

To strengthen the finding that SRISet2 overexpression disrupts SETD2‐mediated cell size regulation, we 335 

established RPE1 cells stably expressing human SRISETD2 tagged with an NLS and a destabilizing domain 336 

(DD) that allows for Shield‐1  inducible protein expression (Banaszynski et al. 2006). Similar to SRISet2 337 

overexpression,  SRISETD2  reduced H3K36me3  levels when  expressed  at high  levels  (i.e.  stabilized by 338 

Shield‐1) and  increased cellular protein content  (Figure 4C).  Interestingly, at  lower expression  levels 339 

(i.e. without Shield‐1) SRISETD2 did not strongly affect global H3K36me3  levels while  it still  increased 340 

protein  content  compared  to  RFP  expressing  control  cells.  This  provides  further  evidence  that 341 

H3K36me3  and  protein  content  regulation  by  SETD2  are  decoupled  from  each  other.  We  also 342 

established RPE1 cells stably expressing SRISETD2‐R2510H. Surprisingly, SRISETD2‐R2510H overexpression 343 

did not affect H3K36me3 levels and only slightly increased protein content when stabilized by Shield‐344 

1, despite being expressed at somewhat higher levels than SRISETD2. Although the interaction between 345 

SETD2 and RNAPII is required for H3K36me3 and SETD2‐R2510H can still establish H3K36me3 (Hacker 346 

et  al.  2016;  Park  et  al.  2016) our  findings  suggest  that when overexpressed  the R2510H mutation 347 

abolishes  the  function  of  SRISETD2  as  a  decoy  for  RNAPII.  To  test  this  assumption,  we 348 

immunoprecipitated  the ectopic SRI domains  from  transiently  transfected HEK293T cells and  found 349 

that  SRISETD2 but  not  SRISETD2‐R2510H  interacted  with  RNAPII  (Figure  4D).  This  lack  of  interaction 350 

between SRISETD2‐R2510H and RNAPII explains why SRISETD2‐R2510H does not reduce H3K36me3 levels 351 

upon  overexpression,  as  it  likely  does  not  outcompete  endogenous  SETD2  for  RNAPII  binding. 352 

Collectively, these results demonstrate that SETD2 regulates protein content by engaging a substrate 353 

through its SRI domain, and that the R2510 residue in SRI is essential for this interaction. 354 

 355 
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 356 
Figure 4. Ectopic overexpression of  the Set2/SETD2 SRI domain  inhibits H3K36me3 and  increases 357 

cellular protein content. (A) Cartoon to illustrate how overexpression of a “decoy” SRI domain might 358 

specifically interrupt SETD2 activity toward H3K36 (as well as other SRI‐dependent SETD2 substrates). 359 

(B) Western blot of RPE1 cells stably overexpressing the yeast Set2 SRI domain N‐terminally fused to 360 

tagRFP  and  an  SV40 nuclear  localization  signal  (NLS).  The bar plot  represents  genomic DNA  levels 361 

quantified by qPCR in protein normalized lysates. (C) Western blot of RPE1 cells stably overexpressing 362 

the  human  SETD2  SRI  domain  N‐terminally  tagged with  a  destabilizing  domain  (DD;  stabilized  by 363 

Shield‐1), HA‐tag and SV40 NLS. DD‐RFP is tagRFP N‐terminally fused to DD‐HA‐SV40 NLS. The bar plot 364 

represents genomic DNA levels quantified by qPCR in protein normalized lysates. (D) Western blot of 365 

the ectopically overexpressed SETD2 SRI domains  immunoprecipitated from HEK293T cells. HEK293T 366 

cells were  transiently  transfected with DD‐HA‐NLS‐tagRFP  (control), DD‐HA‐NLS‐SRI  or DD‐HA‐NLS‐367 

SRI‐R2510H encoding plasmids and treated with Shield‐1. Cells were lysed 48h after transfection, and 368 

RFP or SRI domains were  immunoprecipitated with anti‐HA antibody. Dots  represent  the  individual 369 

values of two biological replicates (in C). Error bars represent SD of three biological replicates (in B). 370 

 371 
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Discussion 372 

 373 

SETD2 has multiple cellular functions including RNA processing, the repression of cryptic transcription, 374 

and DNA repair (Yoh et al. 2008; Luco et al. 2010; Carvalho et al. 2014; Mar et al. 2017; Huang et al. 375 

2018). Mechanistically, most of  these processes have been  shown  to  involve  the  classic molecular 376 

function  of  SETD2,  i.e.  H3K36 methylation.  However,  as  additional  non‐histone  SETD2  substrates 377 

continue  to be  identified  it  is becoming clear  that SETD2’s  function extends beyond chromatin and 378 

transcription regulation (Park et al. 2016; Chen et al. 2017; Seervai et al. 2020; Yuan et al. 2020). Here, 379 

we report a novel cellular function of SETD2, namely the regulation of protein synthesis rate and cell 380 

size. We showed that SETD2 exerts this function through its catalytic activity as overexpression of the 381 

demethylase KDM4A has a similar phenotype as SETD2 depletion. Our results are consistent with the 382 

previously  reported  findings  that  KDM4A  stimulates  protein  synthesis  (Van  Rechem  et  al.  2015). 383 

However, we cannot exclude at  this point  that SETD2  inhibits mRNA  translation  through a pathway 384 

that  is  independent of KDM4A. Protein synthesis takes up a  large proportion of the energy available 385 

to a cell and is therefore tightly regulated by a wealth of mechanisms. It remains to be determined if 386 

the  increased  translation  rates  in SETD2 depleted cells are an  indirect consequence of  for example 387 

deregulated signaling pathways or cell cycle control, or if SETD2 controls translation in a more direct 388 

way, perhaps in concert with KDM4A.     389 

 390 

An  important  step  to determine  the mechanism  through which SETD2  regulates cell  size will be  to 391 

identify the relevant substrate methylated by SETD2. H3K36me3 is the classical SETD2 substrate and 392 

could conceivably regulate the expression of genes  involved  in translation for example by regulating 393 

mRNA  splicing  (Luco  et  al.  2010;  Simon  et  al.  2014;  Leung  et  al.  2019). However,  several  lines  of 394 

evidence  suggest  that SETD2  regulates  translation  independently of H3K36me3. First, unlike SETD2 395 

depletion, overexpression of the yeast demethylase Rph1 did not affect total cellular protein content. 396 

However,  because H3K36me3 was  not  completely  abolished  in  these  cells  it  is  possible  that  local 397 

H3K36me3  on  certain  genes  is  sufficient  to maintain  normal  protein  content.  A  similar  argument 398 

could be made  for H3.3K36A overexpression, which did not affect protein content but also did not 399 

completely  remove  H3K36me3  on  endogenous  H3.  Second,  overexpression  of  the  H3.3K36M 400 

oncohistone almost completely removed H3K36me3 but did not affect protein content as strongly as 401 

SETD2 knockdown. This  suggests  that  there  is no direct  correlation between SETD2 activity  toward 402 

H3K36 and protein content. H3.3K36M acts by inhibiting SETD2 activity in cis and in trans but it is not 403 

completely understood if H3.3K36M inhibits all SETD2 protein or only the SETD2 protein that has been 404 

directed  toward H3K36  through  its association with RNAPII.  In  the  latter  situation,  it  is conceivable 405 

that all activity toward H3K36 can be inhibited by H3.3K36M while there is still SETD2 activity toward 406 

substrates other  than H3K36  remaining, albeit  that  there  is  less  total SETD2 activity available. This 407 

could explain why H3.3K36M does not affect protein content as strongly as SETD2 depletion despite a 408 

similar decrease in H3K36me3 levels.  409 

 410 

If KDM4A and SETD2 regulate protein synthesis through a common pathway, it is plausible that SETD2 411 

directly  methylates  a  component  of  the  ribosome,  and  that  this  methylation  depends  on  an 412 

interaction  between  SETD2’s  SRI  domain  and  a  component  of  the  translation machinery.  The  SRI 413 

domain is positively charged at cellular pH (isoelectric point 8.97 for the SRI domain of human SETD2). 414 

Critical positively charged  residues  in  the SRI domain  (such as R2510) mediate  the  interaction with 415 

both the negatively charged RNAPII phosho‐CTD (Li et al. 2005) as well as with the acidic C‐terminal 416 

tail of alpha‐tubulin  (Kearns et al. 2020).  Interestingly, a recent study on SETD2  interacting proteins 417 

identified  the  mRNA  splicing  regulating  heterogeneous  nuclear  ribonucleoproteins  (hnRNPs)  as 418 

common SETD2 interactors (Bhattacharya et al. 2021). Among the other proteins identified as SETD2 419 

interactors  were  also  many  ribosomal  subunits.  Although  ribosomal  proteins  are  common 420 
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contaminants in co‐IP experiments (Pardo and Choudhary 2012), it might be interesting to determine 421 

if  SETD2  interacts with  specific  component  of  the  ribosome  via  the  SRI  domain,  and whether  this 422 

interaction is relevant for the regulation of protein synthesis by SETD2. 423 

 424 

In  confirmation  of  our  findings,  a  recent  preprint  study  also  found  a  negative  role  for  SETD2  in 425 

translation regulation in clear cell renal cell carcinoma (ccRCC; Hapke et al. 2020). SETD2 inactivating 426 

mutations are  frequently  found  in multiple  types of  cancer,  including  ccRCC  (Dalgliesh et al. 2010; 427 

Duns  et  al.  2010;  Gerlinger  et  al.  2012;  Sato  et  al.  2013;  Bihr  et  al.  2019),  high‐grade  gliomas 428 

(Fontebasso  et  al.  2013),  and  leukemias  (Zhang  et  al.  2012;  Zhu  et  al.  2014; Mar  et  al.  2014).  In 429 

addition, SETD2 is mutated at low frequency in many other types of cancers such as melanoma, and 430 

lung  and  colon  adenocarcinoma  (for  review  see  Li  et  al.  2016;  Fahey  and Davis  2017;  Chen  et  al. 431 

2020).  Perturbation  of  translation  regulation  is  a  common  theme  in  cancer.  Many  tumor  cells 432 

upregulate ribosome production and protein synthesis by overexpressing MYC, which promotes the 433 

expression of ribosome biogenesis genes (Muhar et al. 2018), and/or deregulating the RAS and PI3K 434 

signaling pathways (reviewed by Silvera et al. 2010; Robichaud et al. 2019). It is therefore tempting to 435 

speculate that SETD2  inactivation  is another way for tumor cells to  increase protein production. The 436 

tumor‐suppressor  function  of  SETD2  has  so  far  been  attributed  to  its  role  in  DNA  damage  repair 437 

(Daugaard et al. 2012; Li et al. 2013; Carvalho et al. 2014; Pfister et al. 2014), transcription and mRNA 438 

processing (Simon et al. 2014; Grosso et al. 2015), and in genome stability (Park et al. 2016; Chiang et 439 

al.  2018).  Our  study  warrants  further  investigation  into  the molecular mechanism  of  translation 440 

regulation by SETD2 as well as studies to determine if this function contributes to tumor development 441 

in SETD2 mutant or KDM4A overexpressing cancers. 442 

 443 
 444 

Materials and Methods 445 

 446 

Cell culture, knockdowns and overexpression 447 

Human non‐transformed retinal pigment epithelial cells transduced with the human telomerase gene 448 

(hTERT‐RPE1; ATCC CRL‐4000) were grown  in DMEM/F12  (Gibco)  supplemented with 10%  fetal calf 449 

serum  (FCS).  TIG‐3  cells  (human  diploid  embryonic  lung  fibroblasts;  Research  Resource  Identifier: 450 

CVCL_E939)  and  BJ  cells  (human  diploid  foreskin  fibroblasts;  ATCC  CRL‐2522)  were  previously 451 

transduced  with  hTERT  and  the  murine  ecotropic  retrovirus  receptor  (Michaloglou  et  al.  2005). 452 

HEK293T, TIG‐3 and BJ cells were grown  in DMEM  (Gibco) with 10% FCS. Cells were maintained at 453 

37°C, 5% CO2 in a humidified incubator. 454 

 455 

For microRNA (miRNA) based knockdown of SETD2, cells were lentivirally transduced with doxycycline 456 

(dox)‐inducible artificial miRNAs in the miR‐E backbone (Fellmann et al. 2013). SETD2 targeting miRNA 457 

sequences were  CCAGGACAGAAAGAAAGTTAGA  (#1)  and  ACCGGAAGTTGTTTGAGCAAGA  (#2).  Non‐458 

targeting miRNA  sequence was CAATGTACTGCGCGTGGAGACT. Knockdown was  induced by  treating 459 

cells with 1 μg/mL dox for 72h.  460 

 461 

For CasRx based knockdown of SETD2, RPE1 cells were  first transduced with a dox‐inducible human 462 

codon‐optimized  CasRx  construct  (synthesized  by  Integrated DNA  Technologies  [IDT])  containing  a 463 

blasticidin  resistance  gene.  The  CasRx  protein  sequence,  including  nuclear  localization  signal  and 464 

hemagglutinin (HA) epitope tag, was identical as described in Konermann et al. (2018). After selection 465 

with 10 µg/mL blasticidin (Invivogen), a monoclonal cell line showing high CasRx expression after dox 466 

treatment  was  further  transduced  with  SEDT2  gRNA#1  (AGATCCACAACAAAGACAGCCCA),  SETD2 467 

gRNA#2  (TTCACATTCTCATTGCACTCCAG)  or  a  scrambled  gRNA  (TCACCAGAAGCGTACCATACTC)  in  a 468 

construct containing an enhanced green fluorescent protein (EGFP) marker. The SETD2 CasRx gRNAs 469 
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were designed using  the Cas13 guide design  resource  (Wessels et al. 2020). CasRx expression was 470 

induced by treating cells with 1 μg/mL dox for 72h. 471 

 472 

For  constitutive  overexpression  of  SETD2,  KDM4A,  Rph1,  and  the  yeast  Set2  SRI  domain,  coding 473 

sequences were cloned into a lentiviral vector in which proteins are N‐terminally tagged with tagRFP 474 

(Merzlyak  et  al.  2007)  and  expression  is  driven  by  the  human  core  EEF1A1  promoter.  Coding 475 

sequences were followed by an internal ribosome entry site (IRES) sequence and a bleomycin/zeocin 476 

resistance gene. The coding sequence for truncated SETD2 (amino acids 504‐2564) lacking part of the 477 

N‐terminal unstructured domain was amplified from human RPE1‐hTERT cDNA and made resistant to 478 

SETD2 miRNA#1 and #2 by silent mutation of miRNA binding sites. Full‐length KDM4A was amplified 479 

from  human  RPE1‐hTERT  cDNA.  Full‐length  RPH1  was  amplified  from  genomic  DNA  from 480 

Saccharomyces  cerevisiae  strain BY4741. The SRI domain  from  S.  cerevisiae Set2  (amino acids 619‐481 

733) was N‐terminally tagged with an SV40 nuclear localization signal (NLS) or HIV Rev protein nuclear 482 

export signal  (LPPLERLTL; NES) and codon optimized  for expression  in humans  (synthesized by  IDT). 483 

For expression of the human SETD2 SRI domain, cDNA derived sequences were N‐terminally tagged 484 

with a destabilizing domain (DD; Banaszynski et al. 2006) that replaced the tagRFP followed by an HA 485 

tag and an SV40 NLS. To induce stabilization of DD tagged proteins, cells were treated with 0.5 μg/mL 486 

Shield‐1  (Aobious)  for 72h. For constitutive overexpression of H3.3 and H3.3K36A, codon optimized 487 

sequences with C‐terminal HA epitope tags (synthesized by IDT) were cloned into the same lentiviral 488 

vector but without N‐terminal tagRFP. Following transduction, cells were selected and maintained in 489 

medium with 100 μg/mL zeocin (Invivogen).  490 

 491 

For  dox  inducible  overexpression  of  H3.3,  H3.3K36M  and  H3.3G34R,  codon  optimized  coding 492 

sequences with  a  C‐terminal HA  epitope  tag were  synthesized  by  IDT  and  cloned  into  a  pCW57.1 493 

(Addgene plasmid #41393) derived  lentiviral vector with a blasticidin  resistance gene  (replacing  the 494 

original  puromycin  resistance  gene).  Following  transduction,  cells  were  selected  with  10  µg/mL 495 

blasticidin (Invivogen) for 7 days. Overexpression was  induced by treating cells with 1 μg/mL dox for 496 

96h.  497 

 498 

Lentivirus production 499 

Lentiviral  transfer  plasmids  were  co‐transfected  with  pMD2G,  pRSV‐VSV  and  pMDL  packaging 500 

plasmids  in  HEK293T  cells  using  polyethyleminine  (PEI)  at  a  1:3  DNA:PEI  ratio.  Supernatant  was 501 

collected 48h and 72h post‐transfection, passed through a 0.45 um filter and concentrated using an 502 

Amicon  Ultra‐15  centrifugal  filter  unit  (UFC910024,  Merck/Millipore),  Ultracel‐100  regenerated 503 

cellulose membrane.  504 

 505 

RNA isolation and RT‐qPCR 506 

RNA was  isolated using  the RNeasy Mini kit  (Qiagen) with on‐column DNAse  I digestion. cDNA was 507 

synthesized  using  Superscript  II  Reverse  Transcriptase  (ThermoFisher)  and  random  hexamers.  For 508 

determining  SETD2  knockdown  efficiency  using  the  CasRx  system,  qPCR  primers  were  designed 509 

around the gRNA target site. Primers for qPCR are listed in Table 1. 510 

 511 

Table 1. Primers used in this study. 512 

 513 

For RT‐qPCR 

CDKN2A_qFwd1  ACTTCAGGGGTGCCACATTC

CDKN2A_qRev1  CGACCCTGTCCCTCAAATCC

CDKN2B_qFwd1  TTTACGGCCAACGGTGGATT

CDKN2B_qRev1  CATCATCATGACCTGGATCGC
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MCM5_qFwd1  ATGCAGCGCAAGGTTCTCTA

MCM5_qRev1  GCCAAAAGCACACTTCCCAG

MCM6_qFwd1  GCTCCTGTGAACGGGATCAA

MCM6_qRev1  TACTCAGAGAAGCCCAGCCT

E2F1_qFwd1  CACTTTCGGCCCTTTTGCTC

E2F1_qRev1  GATTCCCCAGGCTCACCAAA

E2F2_qFwd1  CAAGGAAGTCGGTGCAGTCG

E2F2_qRev1  TAGAGATCGCCGCTTGGAGA

CDK6_qFwd1  CCGACTGACACTCGCAGC

CDK6_qRev1  TCCTCGAAGCGAAGTCCTCA

TOP2A_qFwd1  GGCTACATGGTGGCAAGGAT

TOP2A_qRev1  CACGCACATCAAAGTTGGGG

GAPDH_qFwd1  TCAGTGGTGGACCTGACCTG

GAPDH_qRev1  TGCTGTAGCCAAATTCGTTG

SETD2_Rx_qFwd1  TCAGCTTATCCCGGCTAATGG

SETD2_Rx_qRev1  TGGGCAAGTGTTCCAAAGTCT

SETD2_Rx_qFwd2  CCAGTGCCTGAACCCTTACC

SETD2_Rx_qRev2  GGGTTTGTAAACAGCCCCAA

For DNA quantification 

GAPDH_Promoter_Fw   CTGAGCAGTCCGGTGTCAC 

GAPDH_Promoter_Rv   GAGGACTTTGGGAACGACTGA 

 514 

 515 

Co‐immunoprecipitation 516 

Plasmids encoding tagRFP or SRISETD2 with N‐terminal DD‐HA‐SV40 NLS fusions were transfected  into 517 

HEK293T cells using Fugene HD at a 1:4 plasmid:FugeneHD ratio in OptiMEM. Cells were immediately 518 

treated with 0.5 μg/mL Shield‐1 and harvested in IP lysis buffer (50 mM Tris‐HCl pH 7.5, 150 mM NaCl, 519 

5 mM EDTA, 0.5% IGEPAL, 1% Triton X‐100) 48h after transfection. Cells were sonicated for 30 cycles 520 

at high setting (30s on, 30s off) using a Bioruptor Pico sonicator (Diagenode) and centrifuged at 13000 521 

rpm for 10 min. Supernatant was used for immunoprecipitation with 5 μg anti‐HA antibody overnight 522 

at 4°C. Next, immunocomplexes were precipitated with Protein G Dynabeads (ThermoFisher) for 4h at 523 

4°C, washed three times with IP  lysis buffer, and eluted with SDS  loading buffer (50 mM Tris‐HCl pH 524 

6.8, 2% SDS, 10% glycerol, 0.1M dithiothreitol (DTT), 0.02% bromophenol blue). Samples were boiled, 525 

centrifuged and immunoprecipitated proteins were detected by Western blot. 526 

 527 

Western blot 528 

Approximately 1x107  cells were washed  twice with phosphate‐buffered  saline  (PBS). Proteins were 529 

isolated by adding SDS lysis buffer (50 mM Tris‐HCl pH 6.8, 2% SDS, 10% glycerol) supplemented with 530 

protease inhibitor cocktail (PIC; Roche). DNA was sheared by sonication for 10 min at high settings (30 531 

s  on,  30  s  off)  using  a  Bioruptor  Pico  sonicator  (Diagenode)  to  reduce  sample  viscosity.  Protein 532 

concentration  was  determined  with  the  DC  protein  assay  (Bio‐Rad)  according  to  manufactures 533 

manual.  Samples were  supplemented with  DTT  (final  0.1M)  and  bromophenol  blue  (final  0.02%). 534 

Samples were boiled, centrifuged and 10 μg protein was separated on a NuPAGE 12% Bis‐Tris protein 535 

gel (ThermoFisher) for histones and on a NuPAGE 4‐12% Bis‐Tris protein gel for non‐histone proteins. 536 

Next,  proteins  were  blotted  on  0.2  μm  (for  histones)  and  0.45  μm  (for  non‐histone  proteins) 537 

nitrocellulose membranes at 1 ampere for 90 min. Afterwards membranes were blocked for 30 min 538 

with 5% Nutrilon (Nutricia) in PBS and incubated overnight at 4°C with primary antibodies H3 (Abcam 539 
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1791),  H4  (Merck  Millipore  04‐858),  H4ac  (Merck  Millipore  06‐866),  H3K36me3  (Abcam  9050), 540 

H3K36me2  (gift  from Dirk Schübeler), H3K9me3  (Abcam 8898), beta‐actin  (Abcam 6276), beta‐actin 541 

(Santa Cruz  sc‐1616), alpha‐tubulin  (Sigma‐Aldrich T5168), V5  (Invitrogen R960‐25) and HA  (Abcam 542 

18181)  in 2% Nutrilon  in Tris‐buffered saline‐Tween  (TBST). The next day membranes were washed 543 

four times with TBST before incubating the membrane with the appropriate Odyssey IRDye secondary 544 

antibody  (LI‐COR Biosciences) at 1:10000 dilution  in 2% Nutrilon  in TBST  for 1h. Membranes were 545 

washed  four  times with TBST before  scanning on a LI‐COR Odyssey  IR  Imager  (LI‐COR Biosciences). 546 

Signals were quantified using Image Studio software (LI‐COR). 547 

 548 

To normalize protein  lysates  for genomic DNA concentration, aliquots of protein  lysates with equal 549 

protein  concentration  were  treated  with  proteinase  K  (ProtK)  and  RNAse  A  at  55°C  for  30 min, 550 

followed by Proteinase K inactivation at 95°C for 10 min. DNA was ethanol precipitated, washed, dried 551 

and resuspended in 50 mM Tris‐HCl pH 8. Relative genomic DNA concentrations were determined by 552 

qPCR using primers for the GAPDH promoter. 553 

 554 
35S‐methionine incorporation assay  555 

Protein synthesis rates were measured as described previously (Faller et al. 2015). hTERT‐RPE1 cells 556 

were incubated with DMEM methionine‐free media (ThermoFisher Scientific #21013024) for 20 min, 557 

after which 30 µCi/ml 35S‐methionine label (Hartmann Analytic) was added for 1 hour. After washing 558 

the samples with PBS, proteins were extracted with lysis buffer (50mM Tris‐HCl pH 7.5, 150mM NaCl, 559 

1%  Tween‐20,  0.5%  NP‐40,  1×  protease  inhibitor  cocktail  (Roche)  and  1x  phosphatase  inhibitor 560 

cocktail (Sigma Aldrich) and precipitated onto filter paper (Whatmann) with 25% trichloroacetic acid 561 

and washed  twice with  70%  ethanol  and  twice with  acetone. A  liquid  scintillation  counter  (Perkin 562 

Elmer) was used to measure scintillation and the activity was normalized by total protein content.  563 

 564 

Flow‐cytometry 565 

For cell cycle distribution analysis, hTERT‐RPE1 cells were fixed for with 70% ethanol at 4°C for 30 min. 566 

Cells were  treated with  RNAse  A  and  stained with  propidium  iodide  (50  µg/ml).  For  image  flow‐567 

cytometry, hTERT‐RPE1 cells were detached from culture plates with accutase (Stemcell Technologies) 568 

and  stained  with  CellTrace  CFSE  Cell  Proliferation  Kit  C34554  (ThermoFisher)  according  to 569 

manufacturers’ protocol. 2D cell size was measured imaging flow‐cytometry (ImageStream X Mark II). 570 

 571 

Statistical analysis 572 

Statistical significance was calculated using a two‐tailed, unpaired Student’s t‐test. 573 

   574 
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Supplementary Figure 1. SETD2 knockdown using CasRx increased protein content in RPE1 cells and 982 

miRNA‐based  knockdown  increases  protein  content  in  TIG3  and  BJ  cells.  (A)  RT‐qPCR  of  SETD2 983 

following miRNA‐based  knockdown  in  RPE1  cells.  (B) Western  blot  of  RPE1  cells with  doxycycline 984 

inducible expression of CasRx and stable expression of CasRx gRNAs targeting SETD2 or a scrambled 985 

(SCR) gRNA. (C) Western blot of TIG3 and BJ cells with miRNA‐based knockdown of SETD2.  986 
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