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17 Abstract
18
19 Cell size varies between cell types but is tightly regulated by cell-intrinsic and extrinsic mechanisms.
20 Cell-size control is important for cell function and changes in cell size are frequently observed in
21 cancer cells. Here we uncover a non-canonical role of SETD2 in regulating cell size. SETD2 is a lysine
22 methyltransferase and a tumor suppressor protein involved in transcription regulation, RNA
23 processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA
24 polymerase Il through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36
25 (H3K36) during transcription. Although most of SETD2’s cellular functions have been linked to this
26 activity, several non-histone substrates of SETD2 have recently been identified — some of which have
27 been linked to novel functions of SETD2 beyond chromatin regulation. Using multiple, independent
28 perturbation strategies we identify SETD2 as a negative regulator of global protein synthesis rates and
29 cell size. We provide evidence that this function is dependent on the catalytic activity of SETD2 but
30 independent of H3K36 methylation. Paradoxically, ectopic overexpression of a decoy SRl domain also
31 increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain.
32 These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on
33 separating the different functions of SETD2 in cancer development.
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34 Introduction
35

36 SETD2 is a lysine methyltransferase that is best known for its activity toward lysine 36 on histone H3
37 (H3K36), which is a histone post-translational modification found on active gene bodies (Li et al. 2016;
38 McDaniel and Strahl 2017). H3K36 methylation by SETD2/Set2 is conserved from yeast to humans and
39 is involved in mRNA co-transcriptional processing, repression of cryptic transcription, and DNA
40 damage repair (Yoh et al. 2008; Luco et al. 2010; Carvalho et al. 2014; Mar et al. 2017; Huang et al.
41 2018). In addition, it has recently become clear that SETD2 also methylates non-histone substrates
42 indicating that SETD2 has functions beyond chromatin regulation (Park et al. 2016; Chen et al. 2017;
43 Seervai et al. 2020; Yuan et al. 2020). SETD2 is frequently mutated in cancer; 4.33% of all cancers carry
44 SETD2 mutations, with endometrial cancer, clear cell renal cell cancer, bladder cancer and colorectal
45 cancer being most frequently associated with SETD2 mutations (reviewed by Fahey and Davis 2017;
46 Lu et al. 2021). Fundamental insights into the functions of SETD2 are required to understand its
47 tumor-suppressor function.

48

49 SETD2 is capable of mono-, di- and trimethylating H3K36 in vitro through its catalytic SET domain.
50 However, in cells SETD2 is only required for maintaining bulk levels of H3K36me3 but not
51 H3K36me1/2 due to the presence of additional H3K36 mono- and dimethyltransferases in mammals
52 (Edmunds et al. 2008; Yuan et al. 2009; Wagner and Carpenter 2012; Hyun et al. 2017; Li et al. 2019;
53 Zaghi et al. 2020). In contrast, budding yeast only has one H3K36 methyltransferase, Set2, which is
54 responsible for all H3K36 methylation states (Strahl et al. 2002; McDaniel and Strahl 2017). In addition
55 to its catalytic SET domain, SETD2 contains a conserved Set2-Rbp1 interaction (SRI) domain that binds
56 to the C-terminal domain (CTD) repeats of the largest subunit of RNA polymerase Il (RNAPII) when the
57 CTD repeats are phosphorylated at serine-2 and -5 (Sun et al. 2005). This Set2/SETD2-RNAPII
58 interaction is essential for establishing H3K36 methylation on transcribed regions (Kizer et al. 2005;
59 Rebehmed et al. 2014). Based on studies on Set2 in budding yeast, the emerging model is that the
60 interaction between RNAPII and the SRI domain stimulates the activity of the catalytic SET domain
61 rather than that it controls the localization of Set2 to active gene bodies (Youdell et al. 2008; Wang et
62 al. 2015; Gopalakrishnan et al. 2019). Interestingly, a pathogenic point mutation observed in cancer
63 (R2510H) in the SRI domain of human SETD2 impairs SETD2’s ability to methylate alpha-tubulin at
64 lysine 40 during mitosis, while global methylation of H3K36 is unaffected (Park et al. 2016).
65 Furthermore, it was recently shown that the SRI domain directly interacts with the acidic C-terminal
66 tail of alpha-tubulin (Kearns et al. 2020). This indicates that the SRI domain not only controls the
67 activity of SETD2 toward H3K36 but to non-histone substrates as well. It also indicates that the role of
68 SETD2 in cancer may involve mechanisms other than defects in chromatin structure.

69

70 The lysine-specific demethylase KDM4A (also known as JMJD2A) counteracts SETD2’s function on
71 chromatin by converting H3K36me3 into H3K36me2. In addition, KDM4A demethylates the
72 heterochromatin mark H3K9me3. In line with the notion that many chromatin modifiers also act on
73 non-histone proteins, KDM4A has been reported to have functions outside of the nucleus. Specifically,
74 KDMA4A associates with the initiating form of the translation machinery and stimulates mRNA
75 translation through its catalytic activity (Van Rechem et al. 2015).

76

77 Methylation of H3K36 has two functions during transcription that are well-established in both
78 budding yeast and mammalian cells. First, H3K36me stimulates co-transcriptional mRNA splicing by
79 recruiting splicing factors that ‘read’ H3K36me2 or -me3 (Luco et al. 2010; Guo et al. 2014; Sorenson
80 et al. 2016; Leung et al. 2019). Second, H3K36me2/3 promotes either the recruitment or activity of
81 chromatin modifiers that repress (cryptic) transcription initiation from within actively transcribed
82 gene bodies (Carrozza et al. 2005; Keogh et al. 2005; Lickwar et al. 2009; Joshi and Struhl 2005;
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83 Baubec et al. 2015; Neri et al. 2017). Another potential function of H3K36 methylation is to promote
84 histone recycling during transcription elongation. Nucleosomes act as barriers for transcription and
85 are therefore transiently disrupted to allow passage of RNAPII (Bondarenko et al. 2006; Petesch and
86 Lis 2012; Studitsky et al. 2016; Chen et al. 2019). In the wake of transcription, histones can either be
87 recycled or replaced by newly synthesized histones, leading to histone turnover. In budding yeast,
88 Set2 represses histone turnover in active genes indicating that Set2 promotes histone recycling during
89 transcription (Venkatesh et al. 2012; Smolle et al. 2012; Radman-Livaja et al. 2012). It is currently
90 unclear if SETD2 has a similar function in mammalian cells. Interestingly, SETD2 promotes both the
91 localization of the conserved histone chaperone FACT (facilitates chromatin transcription) to
92 chromatin as well as the maintenance of proper nucleosome organization in active genes in human
93 cells (Carvalho et al. 2013; Simon et al. 2014). Given that FACT promotes histone recycling during
94 transcription in budding yeast (Jamai et al. 2009; Jeronimo et al. 2019) and in in vitro studies (Hsieh et
95 al. 2013; Farnung et al. 2021), an attractive model is that SETD2-mediated recruitment of elongation
96 factors such as FACT maintains chromatin integrity (i.e. nucleosome occupancy) during transcription.
97
98 Here, we set out to investigate SETD2’s role in maintaining histone levels. We found that depletion of
99 SETD2 alters the ratio between cellular protein content and histone proteins. This altered histone
100 over total protein ratio was not due to a loss of chromatin integrity leading to global loss of histones
101 from DNA but rather due to an increase in total cellular protein content and cell size. Protein content
102 is controlled by protein synthesis and degradation rates, and can be coordinated at the level of both
103 transcription as well as translation. Mechanistically, we demonstrate that SETD2 controls global
104 protein synthesis rates, and we provide evidence that this function is dependent on SETD2 catalytic
105 activity and the SRI domain but most likely independent of H3K36me3. Our results suggest that SETD2
106 acts opposite to the demethylase KDM4A (Van Rechem et al. 2015) to regulate protein synthesis and
107 cell size.

108

109

110 Results

111

112 SETD2 controls total protein content

113

114 In metazoans, compromised chromatin integrity leads to the deposition of the replication-
115 independent histone variant H3.3. H3.3 acts as a ‘gap-filler’ histone and prevents the accumulation of

116 naked DNA when histone deposition (e.g. during DNA replication) is compromised (Ray-Gallet et al.
117 2002; Tagami et al. 2004; Maze et al. 2015; Tvardovskiy et al. 2017). Our initial aim in this study was to
118 determine if SETD2 represses the deposition of the H3.3 gap filler histone, given that (1) Set2
119 represses replication-independent histone turnover in active genes in budding yeast (Venkatesh et al.
120 2012) and (2) SETD2 maintains nucleosome occupancy in active gene bodies (Carvalho et al. 2013;
121 Simon et al. 2014). We therefore depleted SETD2 in human retinal pigment epithelial cells transduced
122 with the telomerase gene (RPE1-hTERT), which is a non-transformed near diploid human cell line
123 (designated RPE1 from here on). To monitor H3.3 (which differs five amino acids from H3.1 and four
124 amino acids from H3.2), we used RPE1 cells carrying a endogenously V5 epitope-tagged copy of the
125 H3.3 gene H3F3B (Molenaar et al. 2020). Despite being frequently inactivated in cancer, SETD2 is an
126 essential gene in several human cell lines (Blomen et al. 2015; Wang et al. 2015; Bertomeu et al.
127 2018). Therefore, to prevent looking at potential secondary effects of long term SETD2 loss, we
128 employed an inducible SETD2 knockdown system using doxycycline (dox) inducible miRNAs against
129 SETD2 based on the miR-E optimized backbone (Fellmann et al. 2013).

130
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131 Treating RPE1-H3F3B-V5 cells transduced with inducible miRNAs targeting SETD2 with dox for 72h led
132 to a reduction in SETD2 mRNA expression (Supplementary Figure 1A) and H3K36me3 levels (Figure
133 1A, B), as expected. We first assessed global H3.3-V5 levels in protein-normalized whole-cell lysates
134 from SETD2 depleted RPE1 cells. Unexpectedly, H3.3 levels were significantly reduced in SETD2
135 depleted cells (Figure 1A, B). This was unexpected for two reasons. First, we predicted that SETD2
136 represses H3.3 deposition in active gene bodies. Second, only a small percentage of the human
137 genome constitutes active gene bodies (i.e. only 1-5% of nucleosomes is marked by H3K36me3; LeRoy
138 et al. 2013) and we therefore did not expect global changes in H3.3 levels upon SETD2 depletion.
139 Strikingly, in addition to H3.3, we also observed that protein-normalized whole-cell lysates from
140 SETD2 depleted cells had reduced histone H3 and H4 levels compared to untreated cells or cells
141 expressing a scrambled miRNA (Figure 1A). Does SETD2 maintain global histone levels (i.e. chromatin
142 integrity) or does SETD2 maintain a normal DNA to total protein ratio? To answer this, we measured
143 genomic DNA levels by qPCR in protein-normalized cell lysates and found that SETD2 depleted lysates
144 had lower DNA levels (Figure 1A lower panel). This suggests that the DNA:protein ratio is lowered by
145 SETD2 loss, and that histones appropriately scale with DNA levels in SETD2 knockdown cells. Indeed,
146 when normalizing protein lysates for genomic DNA levels (which equals normalizing for cell numbers),
147 SETD2 depleted cells showed similar histone levels and increased levels of non-histone proteins such
148 as a-tubulin and B-actin (Figure 1C). This suggests that SETD2-depleted cells have an increased total
149 cellular protein content.

150
151 To confirm that this phenotype was indeed caused by loss of SETD2 expression, we determined if the
152 increased protein content in SETD2-depleted cells could be rescued by overexpressing miRNA-

153 resistant SETD2. We used a catalytically active but truncated version of SETD2 (tSETD2) that lacks the
154 first 504 amino acids of the unstructured N-terminal domain to facilitate expression (Carvalho et al.
155 2013). Interestingly, tSETD2 overexpression increased the DNA / protein ratio, indicating that total
156 cellular protein content was reduced in these cells (Figure 1D, E). Combining tSETD2 overexpression
157 and endogenous SETD2 knockdown restored protein content to approximately wild-type levels.

158

159 In addition to miRNA-based knockdowns, we suppressed SETD2 expression using an independent
160 alternative approach, CasRx (Cas13d) mediated RNA cleavage. The CasRx system has been reported to
161 have a high knockdown efficiency with minimal off-target effects in human cells (Konermann et al.
162 2018). Indeed, we observed high mRNA cleavage efficiency using two SETD2 mRNA targeting guide
163 RNAs (gRNAs). Importantly, CasRx-mediated knockdown of SETD2 also led to an increase in total
164 protein content, confirming the miRNA-based SETD2 knockdown results (Supplementary Figure 1B).
165 Furthermore, to determine if increased protein content upon SETD2 depletion was restricted to RPE1
166 cells, we knocked down SETD2 in two other normal human cell lines: the human fetal lung fibroblast
167 cell line TIG3 and the foreskin fibroblast cell line BJET. We observed a decrease in histone H3 and H4
168 in protein-normalized lysates from SETD2 depleted TIG3 and BJET cells (Supplementary Figure 1C)
169 indicating that SETD2 controls total cellular protein levels in multiple human cell lines.

170

171


https://doi.org/10.1101/2021.10.31.465891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.31.465891; this version posted October 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Protein normalized B @ C
157 H3K36me3
3 v ) % gDNA normalized
«Q'\/ ,\0’\/ * OEJ 1.0 —
O e v
miRNA _ e S & os| /\Q'L’Q‘ /\Q'»“
Dox - + - + - + Pl lmml e & & ‘9&
H3K36me3 |[==  |=m= |
me3 | ! ! | o1 H3.3V5 L S .
H3.3-V5 [ e e e o = | 3 [ == == = == | H3K36me3
i i Sele WA
H3‘--\-—\-—| Q ‘——————‘H?’
I | T 054 IS
2202 llalallh
H4|_ - }- - }-—| %’nu—— | | || L_}'/ ~~--———|H4
B-actin |__}__‘,__| n:: H4 [ e e | B-2CHD
2 1,
a-tubulin I— —i— t—ri—— -—-I t“’ _ |_ — e — — —|(1-tubu[in
15 i I <t
e | el iNs EY
. E 1.0 ! ! 00
<2 } } 1.5 l:l - Dox
=8
g = os } | :'é H3 [ + Dox
—_ .gs } } \1.0- —
P " 1 1 2 i i—D—i—D—[
| |
M“—’\/ 42 o
miRNA Q,»% 0"’% Be
A A
& &
D Protein normalized E gDNA normalized
miRNA SETD2 #1 ’ SETD2 #2 SETD2 #1 SETD2 #2
OE RFP tSETDZi RFP_ tSETD2 RFP_ tSETD2 RFP_ tSETD2
DoXx - + - 4| - 4 - + -+ - 4+ -+ -4
HIK36me3 | = e - | [= = = = e | H3K36Me3
H3|_--—‘}——-—| |-——-----|H3
H4‘-"--i- — E-_I/\l‘ ——-—-—-—‘H4
¥

B—Actin|————i—————| |————————|[3—Actin

a-tubulin |—— ————— —I

3 *k *

N

[DNA]/
total protein

I + Dox

-

(=]

;
|
|
|
|
I
- P [ - Dox
|
|
|
|
|
|
I

172
173

174 Figure 1. SETD2 depletion increases the total protein content of human cells. (A) Western blot of
175 RPE1 cells with doxycycline-inducible knockdown of SETD2. Cells were treated with doxycycline for
176 72h. Cell lysates were normalized for total protein (left panel) or genomic DNA content (right panel).
177 The bar plot below the left panel represents genomic DNA levels quantified by qPCR in protein
178 normalized lysates. (B) Western blot of RPE1 cells with doxycycline-inducible knockdown of SETD2
179 (72h induction) and constitutive overexpression of either RFP (control) or N-terminally truncated
180 SETD2 (tSETD2). Cell lysates were normalized for total protein (left panel) or genomic DNA content
181 (right panel). The bar plot below the left panel represents genomic DNA levels quantified by gPCR in
182 protein normalized lysates. (C) 2D cell size as measured by image flow-cytometry of RPE1 cells with
183 inducible SETD2 depletion and/or constitutive tSETD2 overexpression (RFP as control). Cells were
184 treated with doxycycline for 72h for inducible miRNA based SETD2 knockdown. SCR, scramble miRNA;
185 OE, overexpression; Dox, doxycycline. Error bars represent SD of three biological replicates.

186
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189 SETD2 controls protein synthesis rates and cell size

190

191 Global protein levels and cell size are closely correlated. Therefore, the observed protein content
192 regulation by SETD2 should presumably lead to an alteration in cell size as well. Indeed, we observed
193 by imaging flow-cytometry that SETD2 depletion increased cell size (measured as 2D cell surface of
194 cells in suspension) while tSETD2 overexpression decreased cell size (Figure 2A). Taken together,
195 these results suggest that SETD2 controls total protein content and consequently cell size.

196

197 An increased cell size can be accompanied by adaptations in protein synthesis and degradation, two
198 opposing but coupled processes. To directly measure protein synthesis rates in SETD2 depleted cells,
199 we used a radioactively labeled **S-methionine incorporation assay. SETD2 depletion using the CasRx
200 system led to a significant increase in the incorporation rate of **S _methionine normalized for total
201 protein content (Figure 2B). This indicates that SETD2 negatively regulates protein synthesis and
202 suggests that the increased protein content in SETD2 depleted cells is caused by an increase in protein
203 synthesis rate.

204
205 Mammalian cells that are arrested in G1 and exposed to growth factors generally continue to increase
206 in cell size and have an increased protein synthesis rate compared to proliferating cells (Conlon and

207 Raff 2003). We therefore used cell cycle profiling by flow-cytometry to determine if inducible SETD2
208 depletion led to a G1 arrest. SETD2 depletion led to a slight increase in the number of cellsin G1 and a
209 decrease in the number of cells in S phase and G2 (Figure 2C). tSETD2 overexpression also led to a
210 small increase in the number of cells in G1 (compare between left and right plots). However,
211 knockdown of endogenous SETD2 did not rescue cell cycle distribution in tSETD2 expressing cells,
212 even though SETD2 knockdown did partially restore the size of tSETD2 expressing cells as measured
213 by imaging flow-cytometry (see Figure 2A). To look at cell cycle defects in SETD2 depleted cells in an
214 independent way, we measured the mRNA levels of several genes involved in cell cycle progression in
215 RPE1 cells in which SETD2 was depleted using the dox-inducible CasRx system (as in Supplementary
216 Figure 1B). Consistent with the cell cycle distribution analysis, SETD2 depletion resulted in a minor
217 decrease in the expression of genes involved in cell cycle progression such as E2F1/2, MCM5/6 and
218 CDKE6 (Figure 2D, E). However, it seems unlikely that the small difference in cell cycle distribution is
219 the primary reason for the increased cell size in SETD2 depleted cells.

220
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222 Figure 2. Inducible depletion of SETD2 increases protein synthesis rates accompanied with a minor
223 accumulation of cells in G;. (A) 3S-methionine incorporation assay of RPE1 cells 72h following
224 doxycycline-induced CasRx-based SETD2 knockdown. CHX indicates a control experiment in which
225 cells were treated with cycloheximide for 1h, which inhibits protein synthesis. (B) Cell cycle
226 distribution as measured by flow-cytometry of propidium iodide stained SETD2 depleted and tSETD2
227 overexpressing RPEL cells. Cells were treated with doxycycline for 72h for inducible expression of
228 SETD2 targeting miRNAs, while RFP (control; left panel) and tSETD2 overexpression (right panel) was
229 constitutive. (C) RT-gPCR for mRNA expression analysis of genes involved in cell cycle regulation in
230 RPE1 cells, 72h following doxycycline-induced CasRx-based SETD2 knockdown. (D) The two CasRx
231 gRNAs used for targeting SETD2 mRNA are each flanked by a RT-qPCR primer pair used for SETD2
232 expression analysis in (C). Error bars represent SD of three biological replicates.
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234 SETD2 controls cell size through its catalytic activity

235

236 How does SETD2 control cell size? We first wanted to determine if SETD2 controls cell size through its
237 catalytic activity. However, we were unable to establish RPE1 cell lines stably (over)expressing
238 catalytically inactive tSETD2 (tSETD2-Q1669A) suggesting that this is lethal in RPE1 cells. As an
239 alternative approach to determine the role of SETD2’s catalytic activity in regulating cell size, we
240 stably overexpressed the demethylase KDM4A in RPE1 cells. KDM4A (also known as JMID2A)
241 counteracts SETD2’s function on chromatin by converting H3K36me3 into H3K36me2. In addition,
242 KDMA4A demethylates the heterochromatin mark H3K9me3. Stable KDM4A overexpression decreased
243 global H3K36me3 and H3K9me3 levels in RPE1 cells, as expected (Figure 3A). Importantly, KDM4A
244 overexpression increased the total cellular protein content similar to SETD2 depletion (Figure 3A).
245 This result suggests that SETD2 controls protein content through its catalytic activity and opens up the
246 possibility that SETD2 and KDM4A act in the same pathway.

247

248 In line with the notion that many chromatin modifiers also act on non-histone proteins, KDM4A has
249 been reported to have functions outside of the nucleus. Specifically, KDM4A associates with the
250 initiating form of the translation machinery and stimulates protein synthesis rates through its catalytic

251 activity (Van Rechem et al. 2015). This suggests that KDM4A mediated demethylation of a component
252 of the translation machinery stimulates protein synthesis. However, the identity of this methylated
253 substrate and the methyltransferase involved are unknown. SETD2 is best known for its ability to
254 methylate H3K36. However, the list of non-histone substrates that are methylated by SETD2
255 continues to grow. In an attempt to determine if SETD2/KDMA4A regulate protein synthesis via H3K36,
256 we also overexpressed the budding yeast homologue of KDM4A, Rphl (Regulator of PHR1) which
257 demethylates both H3K36me2 and H3K36me3 in Saccharomyces cerevisiae (Kim and Buratowski
258 2007; Klose et al. 2007). Stable Rph1 overexpression in RPE1 cells decreased H3K36me3 levels and
259 had a small effect on H3K9me3 (which is absent in S. cerevisiae) but did not significantly alter total
260 cellular protein content (Figure 3A). One possible explanation for the differential effects between
261 Rph1 and KDMA4A overexpression is the they both act on H3K36 but have likely evolved in conjunction
262 with the opposing methyltransferases (here Set2 and SETD2) to act on additional species-specific
263 substrates. Taken together, these results suggest that SETD2 regulates cell size through its
264 methylation activity but argue against direct involvement of its activity toward H3K36.

265

266 To further corroborate these findings, we inhibited SETD2 function by overexpressing the H3.3K36M
267 oncohistone. H3.3K36M, a mutant histone found in chondroblastoma (Behjati et al. 2013), inhibits
268 SETD2 as well as the H3K36 mono- and dimethyltransferase NSD2, in a dominant negative manner i.e.
269 in cis and in trans (Lewis et al. 2013; Lu et al. 2016; Zhang et al. 2017). As a control, we also
270 overexpressed H3.3G34R which is found in glioblastoma (Schwartzentruber et al. 2012) and
271 osteosarcoma (Behjati et al. 2013) and which inhibits SETD2 only locally in cis (Fang et al. 2018; Shi et
272 al. 2018). Inducible overexpression of HA-tagged H3.3K36M but not H3.3G34R reduced global
273 H3K36me2 and H3K36me3 levels, as expected (Figure 3B). Interestingly, H3.3K36M overexpression
274 lowered the genomic DNA:protein ratio but not to the same extent as SETD2 depletion or KDM4A
275 overexpression, despite H3K36me3 being almost completely absent. This shows that there is no direct
276 correlation between global H3K36me3 levels and cell size. However, it cannot be excluded that the
277 remaining H3K36me3 localized on a specific set of genes and indirectly regulates protein content.

278

279 To more directly investigate the involvement of H3K36 methylation in regulating cell size, we stably
280 overexpressed H3.3 or H3.3K36A in RPE1 cells with the aim to replace a substantial fraction of H3.3
281 (and canonical H3) with an H3.3K36A histone mutant that cannot be methylated on K36. Humans
282 have 15 genes encoding H3 and H3.3, making it difficult to assess the function of histone
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283 modifications by mutating endogenous H3 amino acid residues, a strategy that has been successfully
284 employed in yeast and flies (Meers et al. 2017). Based on H3K36me3 immunoblotting, we found that
285 ectopic expression by the strong EEF1A1 promoter led to high incorporation levels of ectopic HA-
286 tagged H3.3 (H3.3-HA). Note that the C-terminal HA tag interferes with the recognition of the anti-H3
287 antibody (Abcam 1791). Since H3.3 accumulates in non-dividing cells (Maze et al. 2015), we also
288 attempted to further increase the level of ectopic H3.3-HA incorporation by depriving RPE1 cells of
289 serum. However, we found that 7 days of serum deprivation did not lead to higher levels of H3.3-HA
290 in RPE1 cells. H3.3K36A has a minor trans inhibitory effect on SETD2 although not as strong as
291 H3.3K36M (Lu et al. 2016). Indeed, we observed that high expression of H3.3K36A-HA (which cannot
292 be methylated and is not recognized by the H3K36me antibodies) reduced the levels H3K36me3 on
293 endogenous histone H3 (Figure 3C). H3.3K36A overexpression did not affect cell size, despite total
294 H3K36me3 levels (i.e. on both ectopic and endogenous H3) being significantly reduced. This provides
295 further support for the model that SETD2 controls cell size independently of H3K36me3.

296
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298 Figure 3. SETD2 controls cellular protein content through its catalytic activity. (A) Western blot of

299 RPE1 cells constitutively overexpressing the yeast demethylase Rphl or human H3K36me3/H3K9me3
300 demethylase KDM4A. Cell lysates were normalized for total protein (left panel) or genomic DNA
301 content (right panel). The bar plot below the left panel represents genomic DNA levels quantified by
302 gPCR in protein normalized lysates. (B) Western blot of RPE1 cells with doxycycline inducible
303 overexpression of hemagglutinin (HA) epitope-tagged “onco” H3.3 histones. The bar plot represents
304 genomic DNA levels quantified by gqPCR in protein normalized lysates. (C) Western blot of RPE1 cells
305 with stable overexpression of H3.3-HA and H3.3K36A-HA. Dots represent the individual values of two
306 biological replicates (in A and B). Error bars represent SD of three biological replicates (in C).
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307

308 SETD2 controls cell size through its SRI domain

309

310 To gain further mechanistic insight into how SETD2 negatively regulates cell size, we targeted the
311 interaction between SETD2 and RNAPII. This interaction is mediated by the SRI domain, which is
312 conserved from yeast Set2 to human SETD2. The SRl domain interacts with the CTD of RNAPII when
313 phosphorylated at serine 2 and serine 5 in the heptapeptide repeat and this interaction is essential
314 for establishing H3K36me3 in both yeast and human cells (Kizer et al. 2005; Sun et al. 2005;
315 Rebehmed et al. 2014). Ectopic overexpression of the S. cerevisiae Set2 SRI domain (SRlse,;) fused to a
316 nuclear localization signal (NLS) reduced global H3K36me3 levels in RPE1 cells, presumably because
317 the excess free SRlse; domain acts as a decoy for RNAPII (Figure 4A). Importantly, SRlse
318 overexpression increased cell size (Figure 4B). This indicates that SETD2 regulates cell size through its
319 SRI domain. To determine if the nuclear localization of this decoy SRlse;; domain was important for its
320 ability to disrupt cell size regulation, we also overexpressed a SRlse;; domain fused to the HIV Rev
321 protein nuclear export signal (NES). However, we were unable to generate RPE1 cell lines stably
322 overexpressing NES-SRls.r,, suggesting that this is toxic in RPE1 cells.

323

324 Although the SRI domain is best known for its ability to interact with the RNAPII phospho-CTD, the SRI
325 domain also contributes to the ability of SETD2 to methylate non-histone substrates. For example, a
326 pathogenic point mutation in the SRI domain of SETD2 (R2510H) disrupts alpha-tubulin K40
327 methylation by SETD2 (Park et al. 2016). In line with this, the SETD2 SRI domain was recently shown to
328 directly interact with the C-terminal tail of alpha-tubulin (Kearns et al. 2020). Interestingly, while
329 mutating the R2510 residue in the SETD2 SRI domain to an alanine (R2510A) disrupts the interaction
330 between the SRI domain and RNAPII (Li et al. 2005), the R2510H mutation disrupts alpha-tubulin K40
331 methylation but not H3K36 methylation (Park et al. 2016). Therefore, SRlsgrp,-R2510H can be used to
332 functionally separate SETD2-mediated alpha-tubulin methylation from RNAPII-mediated H3K36
333 methylation.

334

335 To strengthen the finding that SRls., overexpression disrupts SETD2-mediated cell size regulation, we
336 established RPE1 cells stably expressing human SRlsgrp, tagged with an NLS and a destabilizing domain
337 (DD) that allows for Shield-1 inducible protein expression (Banaszynski et al. 2006). Similar to SRlse,
338 overexpression, SRIsgrp, reduced H3K36me3 levels when expressed at high levels (i.e. stabilized by
339 Shield-1) and increased cellular protein content (Figure 4C). Interestingly, at lower expression levels
340 (i.e. without Shield-1) SRIsgrp; did not strongly affect global H3K36me3 levels while it still increased
341 protein content compared to RFP expressing control cells. This provides further evidence that
342 H3K36me3 and protein content regulation by SETD2 are decoupled from each other. We also
343 established RPE1 cells stably expressing SRlsgrp,-R2510H. Surprisingly, SRlsgrp,-R2510H overexpression
344 did not affect H3K36me3 levels and only slightly increased protein content when stabilized by Shield-
345 1, despite being expressed at somewhat higher levels than SRlsgrp,. Although the interaction between
346 SETD2 and RNAPII is required for H3K36me3 and SETD2-R2510H can still establish H3K36me3 (Hacker
347 et al. 2016; Park et al. 2016) our findings suggest that when overexpressed the R2510H mutation
348 abolishes the function of SRlsp, as a decoy for RNAPIL. To test this assumption, we
349 immunoprecipitated the ectopic SRI domains from transiently transfected HEK293T cells and found
350 that SRlsgrp; but not SRlsgrp,-R2510H interacted with RNAPII (Figure 4D). This lack of interaction
351 between SRlserp,-R2510H and RNAPII explains why SRlserp,-R2510H does not reduce H3K36me3 levels
352 upon overexpression, as it likely does not outcompete endogenous SETD2 for RNAPII binding.
353 Collectively, these results demonstrate that SETD2 regulates protein content by engaging a substrate
354 through its SRl domain, and that the R2510 residue in SRl is essential for this interaction.

355
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357 Figure 4. Ectopic overexpression of the Set2/SETD2 SRI domain inhibits H3K36me3 and increases
358 cellular protein content. (A) Cartoon to illustrate how overexpression of a “decoy” SRI domain might
359 specifically interrupt SETD2 activity toward H3K36 (as well as other SRI-dependent SETD2 substrates).
360 (B) Western blot of RPE1 cells stably overexpressing the yeast Set2 SRI domain N-terminally fused to
361 tagRFP and an SV40 nuclear localization signal (NLS). The bar plot represents genomic DNA levels
362 quantified by gPCR in protein normalized lysates. (C) Western blot of RPE1 cells stably overexpressing
363 the human SETD2 SRI domain N-terminally tagged with a destabilizing domain (DD; stabilized by
364 Shield-1), HA-tag and SV40 NLS. DD-RFP is tagRFP N-terminally fused to DD-HA-SV40 NLS. The bar plot
365 represents genomic DNA levels quantified by gPCR in protein normalized lysates. (D) Western blot of
366 the ectopically overexpressed SETD2 SRI domains immunoprecipitated from HEK293T cells. HEK293T
367 cells were transiently transfected with DD-HA-NLS-tagRFP (control), DD-HA-NLS-SRI or DD-HA-NLS-
368 SRI-R2510H encoding plasmids and treated with Shield-1. Cells were lysed 48h after transfection, and
369 RFP or SRI domains were immunoprecipitated with anti-HA antibody. Dots represent the individual
370 values of two biological replicates (in C). Error bars represent SD of three biological replicates (in B).
371
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372 Discussion

373

374 SETD2 has multiple cellular functions including RNA processing, the repression of cryptic transcription,
375 and DNA repair (Yoh et al. 2008; Luco et al. 2010; Carvalho et al. 2014; Mar et al. 2017; Huang et al.
376 2018). Mechanistically, most of these processes have been shown to involve the classic molecular
377 function of SETD2, i.e. H3K36 methylation. However, as additional non-histone SETD2 substrates
378 continue to be identified it is becoming clear that SETD2’s function extends beyond chromatin and
379 transcription regulation (Park et al. 2016; Chen et al. 2017; Seervai et al. 2020; Yuan et al. 2020). Here,
380 we report a novel cellular function of SETD2, namely the regulation of protein synthesis rate and cell
381 size. We showed that SETD2 exerts this function through its catalytic activity as overexpression of the
382 demethylase KDM4A has a similar phenotype as SETD2 depletion. Our results are consistent with the
383 previously reported findings that KDM4A stimulates protein synthesis (Van Rechem et al. 2015).
384 However, we cannot exclude at this point that SETD2 inhibits mRNA translation through a pathway
385 that is independent of KDM4A. Protein synthesis takes up a large proportion of the energy available
386 to a cell and is therefore tightly regulated by a wealth of mechanisms. It remains to be determined if
387 the increased translation rates in SETD2 depleted cells are an indirect consequence of for example
388 deregulated signaling pathways or cell cycle control, or if SETD2 controls translation in a more direct
389 way, perhaps in concert with KDMA4A.

390

391 An important step to determine the mechanism through which SETD2 regulates cell size will be to
392 identify the relevant substrate methylated by SETD2. H3K36me3 is the classical SETD2 substrate and
393 could conceivably regulate the expression of genes involved in translation for example by regulating
394 mMRNA splicing (Luco et al. 2010; Simon et al. 2014; Leung et al. 2019). However, several lines of
395 evidence suggest that SETD2 regulates translation independently of H3K36me3. First, unlike SETD2
396 depletion, overexpression of the yeast demethylase Rph1 did not affect total cellular protein content.
397 However, because H3K36me3 was not completely abolished in these cells it is possible that local
398 H3K36me3 on certain genes is sufficient to maintain normal protein content. A similar argument
399 could be made for H3.3K36A overexpression, which did not affect protein content but also did not
400 completely remove H3K36me3 on endogenous H3. Second, overexpression of the H3.3K36M
401 oncohistone almost completely removed H3K36me3 but did not affect protein content as strongly as
402 SETD2 knockdown. This suggests that there is no direct correlation between SETD2 activity toward
403 H3K36 and protein content. H3.3K36M acts by inhibiting SETD2 activity in cis and in trans but it is not
404 completely understood if H3.3K36M inhibits all SETD2 protein or only the SETD2 protein that has been
405 directed toward H3K36 through its association with RNAPII. In the latter situation, it is conceivable
406 that all activity toward H3K36 can be inhibited by H3.3K36M while there is still SETD2 activity toward
407 substrates other than H3K36 remaining, albeit that there is less total SETD2 activity available. This
408 could explain why H3.3K36M does not affect protein content as strongly as SETD2 depletion despite a
409 similar decrease in H3K36me3 levels.

410

411 If KDM4A and SETD2 regulate protein synthesis through a common pathway, it is plausible that SETD2
412 directly methylates a component of the ribosome, and that this methylation depends on an
413 interaction between SETD2’s SRl domain and a component of the translation machinery. The SRI
414 domain is positively charged at cellular pH (isoelectric point 8.97 for the SRI domain of human SETD2).
415 Critical positively charged residues in the SRI domain (such as R2510) mediate the interaction with
416 both the negatively charged RNAPII phosho-CTD (Li et al. 2005) as well as with the acidic C-terminal
417 tail of alpha-tubulin (Kearns et al. 2020). Interestingly, a recent study on SETD2 interacting proteins

418 identified the mRNA splicing regulating heterogeneous nuclear ribonucleoproteins (hnRNPs) as
419 common SETD2 interactors (Bhattacharya et al. 2021). Among the other proteins identified as SETD2
420 interactors were also many ribosomal subunits. Although ribosomal proteins are common

13


https://doi.org/10.1101/2021.10.31.465891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.31.465891; this version posted October 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

421 contaminants in co-IP experiments (Pardo and Choudhary 2012), it might be interesting to determine

422 if SETD2 interacts with specific component of the ribosome via the SRI domain, and whether this
423 interaction is relevant for the regulation of protein synthesis by SETD2.

424

425 In confirmation of our findings, a recent preprint study also found a negative role for SETD2 in

426 translation regulation in clear cell renal cell carcinoma (ccRCC; Hapke et al. 2020). SETD2 inactivating
427 mutations are frequently found in multiple types of cancer, including ccRCC (Dalgliesh et al. 2010;
428 Duns et al. 2010; Gerlinger et al. 2012; Sato et al. 2013; Bihr et al. 2019), high-grade gliomas
429 (Fontebasso et al. 2013), and leukemias (Zhang et al. 2012; Zhu et al. 2014; Mar et al. 2014). In
430 addition, SETD2 is mutated at low frequency in many other types of cancers such as melanoma, and
431 lung and colon adenocarcinoma (for review see Li et al. 2016; Fahey and Davis 2017; Chen et al.
432 2020). Perturbation of translation regulation is a common theme in cancer. Many tumor cells
433 upregulate ribosome production and protein synthesis by overexpressing MYC, which promotes the
434 expression of ribosome biogenesis genes (Muhar et al. 2018), and/or deregulating the RAS and PI3K
435 signaling pathways (reviewed by Silvera et al. 2010; Robichaud et al. 2019). It is therefore tempting to
436 speculate that SETD2 inactivation is another way for tumor cells to increase protein production. The
437 tumor-suppressor function of SETD2 has so far been attributed to its role in DNA damage repair
438 (Daugaard et al. 2012; Li et al. 2013; Carvalho et al. 2014; Pfister et al. 2014), transcription and mRNA
439 processing (Simon et al. 2014; Grosso et al. 2015), and in genome stability (Park et al. 2016; Chiang et
440 al. 2018). Our study warrants further investigation into the molecular mechanism of translation
441 regulation by SETD2 as well as studies to determine if this function contributes to tumor development
442 in SETD2 mutant or KDMA4A overexpressing cancers.

443
444

445 Materials and Methods

446

447 Cell culture, knockdowns and overexpression

448 Human non-transformed retinal pigment epithelial cells transduced with the human telomerase gene
449 (hTERT-RPE1; ATCC CRL-4000) were grown in DMEM/F12 (Gibco) supplemented with 10% fetal calf
450 serum (FCS). TIG-3 cells (human diploid embryonic lung fibroblasts; Research Resource Identifier:
451 CVCL_E939) and BJ cells (human diploid foreskin fibroblasts; ATCC CRL-2522) were previously
452 transduced with hTERT and the murine ecotropic retrovirus receptor (Michaloglou et al. 2005).
453 HEK293T, TIG-3 and BJ cells were grown in DMEM (Gibco) with 10% FCS. Cells were maintained at
454 37°C, 5% CO2 in a humidified incubator.

455

456 For microRNA (miRNA) based knockdown of SETD2, cells were lentivirally transduced with doxycycline
457 (dox)-inducible artificial miRNAs in the miR-E backbone (Fellmann et al. 2013). SETD2 targeting miRNA
458 sequences were CCAGGACAGAAAGAAAGTTAGA (#1) and ACCGGAAGTTGTTTGAGCAAGA (#2). Non-
459 targeting miRNA sequence was CAATGTACTGCGCGTGGAGACT. Knockdown was induced by treating
460 cells with 1 pg/mL dox for 72h.

461

462 For CasRx based knockdown of SETD2, RPE1 cells were first transduced with a dox-inducible human
463 codon-optimized CasRx construct (synthesized by Integrated DNA Technologies [IDT]) containing a

464 blasticidin resistance gene. The CasRx protein sequence, including nuclear localization signal and
465 hemagglutinin (HA) epitope tag, was identical as described in Konermann et al. (2018). After selection
466 with 10 pg/mL blasticidin (Invivogen), a monoclonal cell line showing high CasRx expression after dox
467 treatment was further transduced with SEDT2 gRNA#1 (AGATCCACAACAAAGACAGCCCA), SETD2
468 gRNA#2 (TTCACATTCTCATTGCACTCCAG) or a scrambled gRNA (TCACCAGAAGCGTACCATACTC) in a
469 construct containing an enhanced green fluorescent protein (EGFP) marker. The SETD2 CasRx gRNAs
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470 were designed using the Cas13 guide design resource (Wessels et al. 2020). CasRx expression was
471 induced by treating cells with 1 ug/mL dox for 72h.

472

473 For constitutive overexpression of SETD2, KDM4A, Rphl, and the yeast Set2 SRl domain, coding
474 sequences were cloned into a lentiviral vector in which proteins are N-terminally tagged with tagRFP
475 (Merzlyak et al. 2007) and expression is driven by the human core EEFIA1 promoter. Coding
476 sequences were followed by an internal ribosome entry site (IRES) sequence and a bleomycin/zeocin
477 resistance gene. The coding sequence for truncated SETD2 (amino acids 504-2564) lacking part of the
478 N-terminal unstructured domain was amplified from human RPE1-hTERT cDNA and made resistant to
479 SETD2 miRNA#1 and #2 by silent mutation of miRNA binding sites. Full-length KDM4A was amplified
480 from human RPE1-hTERT cDNA. Full-length RPH1 was amplified from genomic DNA from
481 Saccharomyces cerevisiae strain BY4741. The SRI domain from S. cerevisiae Set2 (amino acids 619-
482 733) was N-terminally tagged with an SV40 nuclear localization signal (NLS) or HIV Rev protein nuclear
483 export signal (LPPLERLTL; NES) and codon optimized for expression in humans (synthesized by IDT).
484 For expression of the human SETD2 SRI domain, cDNA derived sequences were N-terminally tagged
485 with a destabilizing domain (DD; Banaszynski et al. 2006) that replaced the tagRFP followed by an HA
486 tag and an SV40 NLS. To induce stabilization of DD tagged proteins, cells were treated with 0.5 ug/mL
487 Shield-1 (Aobious) for 72h. For constitutive overexpression of H3.3 and H3.3K36A, codon optimized
488 sequences with C-terminal HA epitope tags (synthesized by IDT) were cloned into the same lentiviral
489 vector but without N-terminal tagRFP. Following transduction, cells were selected and maintained in
490 medium with 100 pug/mL zeocin (Invivogen).

491

492 For dox inducible overexpression of H3.3, H3.3K36M and H3.3G34R, codon optimized coding
493 sequences with a C-terminal HA epitope tag were synthesized by IDT and cloned into a pCW57.1
494 (Addgene plasmid #41393) derived lentiviral vector with a blasticidin resistance gene (replacing the
495 original puromycin resistance gene). Following transduction, cells were selected with 10 pg/mL
496 blasticidin (Invivogen) for 7 days. Overexpression was induced by treating cells with 1 pg/mL dox for
497 96h.

498

499 Lentivirus production

500 Lentiviral transfer plasmids were co-transfected with pMD2G, pRSV-VSV and pMDL packaging

501 plasmids in HEK293T cells using polyethyleminine (PEl) at a 1:3 DNA:PEI ratio. Supernatant was
502 collected 48h and 72h post-transfection, passed through a 0.45 um filter and concentrated using an
503 Amicon Ultra-15 centrifugal filter unit (UFC910024, Merck/Millipore), Ultracel-100 regenerated
504 cellulose membrane.

505

506 RNA isolation and RT-gPCR

507 RNA was isolated using the RNeasy Mini kit (Qiagen) with on-column DNAse | digestion. cDNA was
508 synthesized using Superscript || Reverse Transcriptase (ThermoFisher) and random hexamers. For
509 determining SETD2 knockdown efficiency using the CasRx system, gPCR primers were designed
510 around the gRNA target site. Primers for gPCR are listed in Table 1.

511

512 Table 1. Primers used in this study.

513
For RT-gPCR
CDKN2A_gFwd1 ACTTCAGGGGTGCCACATTC
CDKN2A_gRev1 CGACCCTGTCCCTCAAATCC
CDKN2B_qgFwd1 TTTACGGCCAACGGTGGATT
CDKN2B_gRev1l CATCATCATGACCTGGATCGC
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MCM5_gFwd1 ATGCAGCGCAAGGTTCTCTA
MCMS5_gRevl GCCAAAAGCACACTTCCCAG
MCM6_gFwd1 GCTCCTGTGAACGGGATCAA
MCM6_qgRevl TACTCAGAGAAGCCCAGCCT
E2F1_qgFwdl CACTTTCGGCCCTTTTGCTC
E2F1_qgRevl GATTCCCCAGGCTCACCAAA
E2F2_qFwd1l CAAGGAAGTCGGTGCAGTCG
E2F2_qgRevl TAGAGATCGCCGCTTGGAGA
CDK6_qgFwd1 CCGACTGACACTCGCAGC
CDK6_qRevl TCCTCGAAGCGAAGTCCTCA
TOP2A_gFwd1 GGCTACATGGTGGCAAGGAT
TOP2A_gRevl CACGCACATCAAAGTTGGGG
GAPDH_gFwd1 TCAGTGGTGGACCTGACCTG
GAPDH_gRev1 TGCTGTAGCCAAATTCGTTG
SETD2_Rx_gFwd1 TCAGCTTATCCCGGCTAATGG
SETD2_Rx_qRev1l TGGGCAAGTGTTCCAAAGTCT
SETD2_Rx_qFwd2 CCAGTGCCTGAACCCTTACC
SETD2_Rx_qRev2 GGGTTTGTAAACAGCCCCAA
For DNA quantification

GAPDH_Promoter_Fw CTGAGCAGTCCGGTGTCAC
GAPDH_Promoter_Rv GAGGACTTTGGGAACGACTGA

514

515

516 Co-immunoprecipitation

517 Plasmids encoding tagRFP or SRlserp, with N-terminal DD-HA-SV40 NLS fusions were transfected into
518 HEK293T cells using Fugene HD at a 1:4 plasmid:FugeneHD ratio in OptiMEM. Cells were immediately
519 treated with 0.5 pg/mL Shield-1 and harvested in IP lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl,
520 5 mM EDTA, 0.5% IGEPAL, 1% Triton X-100) 48h after transfection. Cells were sonicated for 30 cycles
521 at high setting (30s on, 30s off) using a Bioruptor Pico sonicator (Diagenode) and centrifuged at 13000

522 rpm for 10 min. Supernatant was used for immunoprecipitation with 5 pg anti-HA antibody overnight
523 at 4°C. Next, immunocomplexes were precipitated with Protein G Dynabeads (ThermoFisher) for 4h at
524 4°C, washed three times with IP lysis buffer, and eluted with SDS loading buffer (50 mM Tris-HCI pH
525 6.8, 2% SDS, 10% glycerol, 0.1M dithiothreitol (DTT), 0.02% bromophenol blue). Samples were boiled,
526 centrifuged and immunoprecipitated proteins were detected by Western blot.

527

528 Western blot

529 Approximately 1x10’ cells were washed twice with phosphate-buffered saline (PBS). Proteins were
530 isolated by adding SDS lysis buffer (50 mM Tris-HCI pH 6.8, 2% SDS, 10% glycerol) supplemented with
531 protease inhibitor cocktail (PIC; Roche). DNA was sheared by sonication for 10 min at high settings (30
532 s on, 30 s off) using a Bioruptor Pico sonicator (Diagenode) to reduce sample viscosity. Protein
533 concentration was determined with the DC protein assay (Bio-Rad) according to manufactures
534 manual. Samples were supplemented with DTT (final 0.1M) and bromophenol blue (final 0.02%).
535 Samples were boiled, centrifuged and 10 ug protein was separated on a NUPAGE 12% Bis-Tris protein
536 gel (ThermoFisher) for histones and on a NUPAGE 4-12% Bis-Tris protein gel for non-histone proteins.
537 Next, proteins were blotted on 0.2 um (for histones) and 0.45 um (for non-histone proteins)
538 nitrocellulose membranes at 1 ampere for 90 min. Afterwards membranes were blocked for 30 min
539 with 5% Nutrilon (Nutricia) in PBS and incubated overnight at 4°C with primary antibodies H3 (Abcam
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540 1791), H4 (Merck Millipore 04-858), H4ac (Merck Millipore 06-866), H3K36me3 (Abcam 9050),
541 H3K36me2 (gift from Dirk Schiibeler), H3K9me3 (Abcam 8898), beta-actin (Abcam 6276), beta-actin
542 (Santa Cruz sc-1616), alpha-tubulin (Sigma-Aldrich T5168), V5 (Invitrogen R960-25) and HA (Abcam
543 18181) in 2% Nutrilon in Tris-buffered saline-Tween (TBST). The next day membranes were washed
544 four times with TBST before incubating the membrane with the appropriate Odyssey IRDye secondary
545 antibody (LI-COR Biosciences) at 1:10000 dilution in 2% Nutrilon in TBST for 1h. Membranes were
546 washed four times with TBST before scanning on a LI-COR Odyssey IR Imager (LI-COR Biosciences).
547 Signals were quantified using Image Studio software (LI-COR).

548

549 To normalize protein lysates for genomic DNA concentration, aliquots of protein lysates with equal
550 protein concentration were treated with proteinase K (ProtK) and RNAse A at 55°C for 30 min,
551 followed by Proteinase K inactivation at 95°C for 10 min. DNA was ethanol precipitated, washed, dried
552 and resuspended in 50 mM Tris-HCl pH 8. Relative genomic DNA concentrations were determined by
553 gPCR using primers for the GAPDH promoter.

554

555 **S-methionine incorporation assay

556 Protein synthesis rates were measured as described previously (Faller et al. 2015). hTERT-RPE1 cells
557 were incubated with DMEM methionine-free media (ThermoFisher Scientific #21013024) for 20 min,
558 after which 30 pCi/ml *3S-methionine label (Hartmann Analytic) was added for 1 hour. After washing
559 the samples with PBS, proteins were extracted with lysis buffer (50mM Tris-HC| pH 7.5, 150mM NaCl,
560 1% Tween-20, 0.5% NP-40, 1x protease inhibitor cocktail (Roche) and 1x phosphatase inhibitor
561 cocktail (Sigma Aldrich) and precipitated onto filter paper (Whatmann) with 25% trichloroacetic acid
562 and washed twice with 70% ethanol and twice with acetone. A liquid scintillation counter (Perkin

563 Elmer) was used to measure scintillation and the activity was normalized by total protein content.

564

565 Flow-cytometry

566 For cell cycle distribution analysis, hTERT-RPE1 cells were fixed for with 70% ethanol at 4°C for 30 min.
567 Cells were treated with RNAse A and stained with propidium iodide (50 pg/ml). For image flow-
568 cytometry, hTERT-RPE1 cells were detached from culture plates with accutase (Stemcell Technologies)
569 and stained with CellTrace CFSE Cell Proliferation Kit C34554 (ThermoFisher) according to
570 manufacturers’ protocol. 2D cell size was measured imaging flow-cytometry (ImageStream X Mark Il).
571

572 Statistical analysis

573 Statistical significance was calculated using a two-tailed, unpaired Student’s t-test.

574
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982 Supplementary Figure 1. SETD2 knockdown using CasRx increased protein content in RPE1 cells and
983 miRNA-based knockdown increases protein content in TIG3 and BJ cells. (A) RT-gPCR of SETD2
984 following miRNA-based knockdown in RPE1 cells. (B) Western blot of RPE1 cells with doxycycline
985 inducible expression of CasRx and stable expression of CasRx gRNAs targeting SETD2 or a scrambled
986 (SCR) gRNA. (C) Western blot of TIG3 and BJ cells with miRNA-based knockdown of SETD2.
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