

1 **SETD2 negatively regulates cell size through its catalytic activity and SRI domain**

2

3 Thom M. Molenaar¹, Eliza Mari Kwesi-Maliepaard¹, Joana Silva², Muddassir Malik¹, William J. Faller²,
4 and Fred van Leeuwen^{1,3,#}

5

6 ¹Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands

7 ²Division of Oncogenomics, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands

8 ³Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam,
9 The Netherlands

10

11 # corresponding author: Fred van Leeuwen, fred.v.leeuwen@nki.nl

12

13

14 **Key words:**

15 SETD2, histone methyltransferase, translation, cell size

16

17 **Abstract**

18

19 Cell size varies between cell types but is tightly regulated by cell-intrinsic and extrinsic mechanisms.
20 Cell-size control is important for cell function and changes in cell size are frequently observed in
21 cancer cells. Here we uncover a non-canonical role of SETD2 in regulating cell size. SETD2 is a lysine
22 methyltransferase and a tumor suppressor protein involved in transcription regulation, RNA
23 processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA
24 polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36
25 (H3K36) during transcription. Although most of SETD2's cellular functions have been linked to this
26 activity, several non-histone substrates of SETD2 have recently been identified – some of which have
27 been linked to novel functions of SETD2 beyond chromatin regulation. Using multiple, independent
28 perturbation strategies we identify SETD2 as a negative regulator of global protein synthesis rates and
29 cell size. We provide evidence that this function is dependent on the catalytic activity of SETD2 but
30 independent of H3K36 methylation. Paradoxically, ectopic overexpression of a decoy SRI domain also
31 increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain.
32 These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on
33 separating the different functions of SETD2 in cancer development.

34 **Introduction**

35

36 SETD2 is a lysine methyltransferase that is best known for its activity toward lysine 36 on histone H3
37 (H3K36), which is a histone post-translational modification found on active gene bodies (Li et al. 2016;
38 McDaniel and Strahl 2017). H3K36 methylation by SETD2/Set2 is conserved from yeast to humans and
39 is involved in mRNA co-transcriptional processing, repression of cryptic transcription, and DNA
40 damage repair (Yoh et al. 2008; Luco et al. 2010; Carvalho et al. 2014; Mar et al. 2017; Huang et al.
41 2018). In addition, it has recently become clear that SETD2 also methylates non-histone substrates
42 indicating that SETD2 has functions beyond chromatin regulation (Park et al. 2016; Chen et al. 2017;
43 Seervai et al. 2020; Yuan et al. 2020). SETD2 is frequently mutated in cancer; 4.33% of all cancers carry
44 *SETD2* mutations, with endometrial cancer, clear cell renal cell cancer, bladder cancer and colorectal
45 cancer being most frequently associated with *SETD2* mutations (reviewed by Fahey and Davis 2017;
46 Lu et al. 2021). Fundamental insights into the functions of SETD2 are required to understand its
47 tumor-suppressor function.

48

49 SETD2 is capable of mono-, di- and trimethylating H3K36 *in vitro* through its catalytic SET domain.
50 However, in cells SETD2 is only required for maintaining bulk levels of H3K36me3 but not
51 H3K36me1/2 due to the presence of additional H3K36 mono- and dimethyltransferases in mammals
52 (Edmunds et al. 2008; Yuan et al. 2009; Wagner and Carpenter 2012; Hyun et al. 2017; Li et al. 2019;
53 Zaghi et al. 2020). In contrast, budding yeast only has one H3K36 methyltransferase, Set2, which is
54 responsible for all H3K36 methylation states (Strahl et al. 2002; McDaniel and Strahl 2017). In addition
55 to its catalytic SET domain, SETD2 contains a conserved Set2-Rbp1 interaction (SRI) domain that binds
56 to the C-terminal domain (CTD) repeats of the largest subunit of RNA polymerase II (RNAPII) when the
57 CTD repeats are phosphorylated at serine-2 and -5 (Sun et al. 2005). This Set2/SETD2-RNAPII
58 interaction is essential for establishing H3K36 methylation on transcribed regions (Kizer et al. 2005;
59 Rebehmed et al. 2014). Based on studies on Set2 in budding yeast, the emerging model is that the
60 interaction between RNAPII and the SRI domain stimulates the activity of the catalytic SET domain
61 rather than that it controls the localization of Set2 to active gene bodies (Youdell et al. 2008; Wang et
62 al. 2015; Gopalakrishnan et al. 2019). Interestingly, a pathogenic point mutation observed in cancer
63 (R2510H) in the SRI domain of human SETD2 impairs SETD2's ability to methylate alpha-tubulin at
64 lysine 40 during mitosis, while global methylation of H3K36 is unaffected (Park et al. 2016).
65 Furthermore, it was recently shown that the SRI domain directly interacts with the acidic C-terminal
66 tail of alpha-tubulin (Kearns et al. 2020). This indicates that the SRI domain not only controls the
67 activity of SETD2 toward H3K36 but to non-histone substrates as well. It also indicates that the role of
68 SETD2 in cancer may involve mechanisms other than defects in chromatin structure.

69

70 The lysine-specific demethylase KDM4A (also known as JMJD2A) counteracts SETD2's function on
71 chromatin by converting H3K36me3 into H3K36me2. In addition, KDM4A demethylates the
72 heterochromatin mark H3K9me3. In line with the notion that many chromatin modifiers also act on
73 non-histone proteins, KDM4A has been reported to have functions outside of the nucleus. Specifically,
74 KDM4A associates with the initiating form of the translation machinery and stimulates mRNA
75 translation through its catalytic activity (Van Rechem et al. 2015).

76

77 Methylation of H3K36 has two functions during transcription that are well-established in both
78 budding yeast and mammalian cells. First, H3K36me stimulates co-transcriptional mRNA splicing by
79 recruiting splicing factors that 'read' H3K36me2 or -me3 (Luco et al. 2010; Guo et al. 2014; Sorenson
80 et al. 2016; Leung et al. 2019). Second, H3K36me2/3 promotes either the recruitment or activity of
81 chromatin modifiers that repress (cryptic) transcription initiation from within actively transcribed
82 gene bodies (Carrozza et al. 2005; Keogh et al. 2005; Lickwar et al. 2009; Joshi and Struhl 2005;

83 Baubec et al. 2015; Neri et al. 2017). Another potential function of H3K36 methylation is to promote
84 histone recycling during transcription elongation. Nucleosomes act as barriers for transcription and
85 are therefore transiently disrupted to allow passage of RNAPII (Bondarenko et al. 2006; Petesch and
86 Lis 2012; Studitsky et al. 2016; Chen et al. 2019). In the wake of transcription, histones can either be
87 recycled or replaced by newly synthesized histones, leading to histone turnover. In budding yeast,
88 Set2 represses histone turnover in active genes indicating that Set2 promotes histone recycling during
89 transcription (Venkatesh et al. 2012; Smolle et al. 2012; Radman-Livaja et al. 2012). It is currently
90 unclear if SETD2 has a similar function in mammalian cells. Interestingly, SETD2 promotes both the
91 localization of the conserved histone chaperone FACT (facilitates chromatin transcription) to
92 chromatin as well as the maintenance of proper nucleosome organization in active genes in human
93 cells (Carvalho et al. 2013; Simon et al. 2014). Given that FACT promotes histone recycling during
94 transcription in budding yeast (Jamai et al. 2009; Jeronimo et al. 2019) and in *in vitro* studies (Hsieh et
95 al. 2013; Farnung et al. 2021), an attractive model is that SETD2-mediated recruitment of elongation
96 factors such as FACT maintains chromatin integrity (i.e. nucleosome occupancy) during transcription.
97

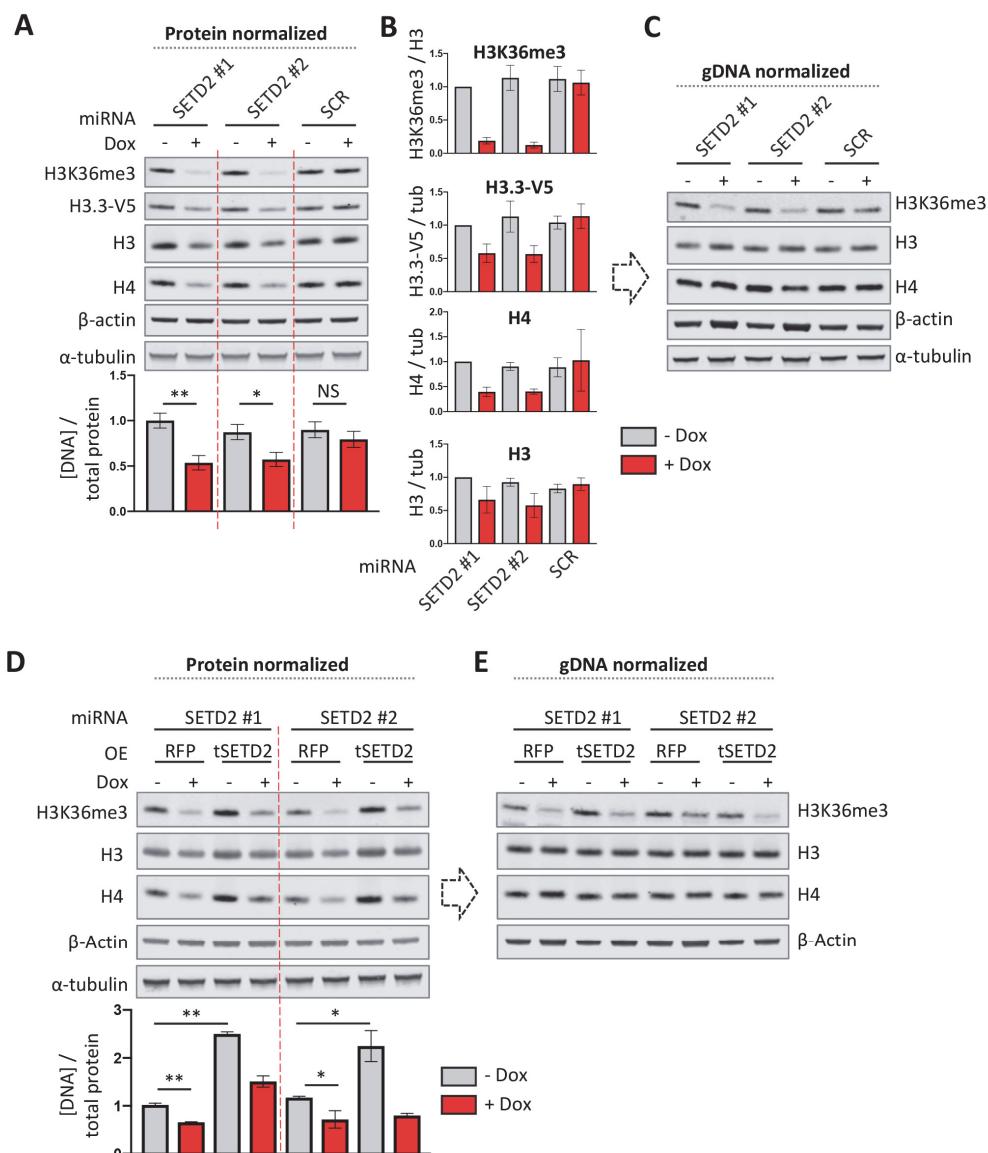
98 Here, we set out to investigate SETD2's role in maintaining histone levels. We found that depletion of
99 SETD2 alters the ratio between cellular protein content and histone proteins. This altered histone
100 over total protein ratio was not due to a loss of chromatin integrity leading to global loss of histones
101 from DNA but rather due to an increase in total cellular protein content and cell size. Protein content
102 is controlled by protein synthesis and degradation rates, and can be coordinated at the level of both
103 transcription as well as translation. Mechanistically, we demonstrate that SETD2 controls global
104 protein synthesis rates, and we provide evidence that this function is dependent on SETD2 catalytic
105 activity and the SRI domain but most likely independent of H3K36me3. Our results suggest that SETD2
106 acts opposite to the demethylase KDM4A (Van Rechem et al. 2015) to regulate protein synthesis and
107 cell size.

108

109

110 **Results**

111


112 **SETD2 controls total protein content**

113

114 In metazoans, compromised chromatin integrity leads to the deposition of the replication-
115 independent histone variant H3.3. H3.3 acts as a 'gap-filler' histone and prevents the accumulation of
116 naked DNA when histone deposition (e.g. during DNA replication) is compromised (Ray-Gallet et al.
117 2002; Tagami et al. 2004; Maze et al. 2015; Tvardovskiy et al. 2017). Our initial aim in this study was to
118 determine if SETD2 represses the deposition of the H3.3 gap filler histone, given that (1) Set2
119 represses replication-independent histone turnover in active genes in budding yeast (Venkatesh et al.
120 2012) and (2) SETD2 maintains nucleosome occupancy in active gene bodies (Carvalho et al. 2013;
121 Simon et al. 2014). We therefore depleted SETD2 in human retinal pigment epithelial cells transduced
122 with the telomerase gene (RPE1-hTERT), which is a non-transformed near diploid human cell line
123 (designated RPE1 from here on). To monitor H3.3 (which differs five amino acids from H3.1 and four
124 amino acids from H3.2), we used RPE1 cells carrying a endogenously V5 epitope-tagged copy of the
125 H3.3 gene *H3F3B* (Molenaar et al. 2020). Despite being frequently inactivated in cancer, SETD2 is an
126 essential gene in several human cell lines (Blomen et al. 2015; Wang et al. 2015; Bertomeu et al.
127 2018). Therefore, to prevent looking at potential secondary effects of long term SETD2 loss, we
128 employed an inducible SETD2 knockdown system using doxycycline (dox) inducible miRNAs against
129 *SETD2* based on the miR-E optimized backbone (Fellmann et al. 2013).

130

131 Treating RPE1-*H3F3B*-V5 cells transduced with inducible miRNAs targeting *SETD2* with dox for 72h led
132 to a reduction in *SETD2* mRNA expression (**Supplementary Figure 1A**) and H3K36me3 levels (**Figure**
133 **1A, B**), as expected. We first assessed global H3.3-V5 levels in protein-normalized whole-cell lysates
134 from *SETD2* depleted RPE1 cells. Unexpectedly, H3.3 levels were significantly reduced in *SETD2*
135 depleted cells (**Figure 1A, B**). This was unexpected for two reasons. First, we predicted that *SETD2*
136 *represses* H3.3 deposition in active gene bodies. Second, only a small percentage of the human
137 genome constitutes active gene bodies (i.e. only 1-5% of nucleosomes is marked by H3K36me3; LeRoy
138 et al. 2013) and we therefore did not expect global changes in H3.3 levels upon *SETD2* depletion.
139 Strikingly, in addition to H3.3, we also observed that protein-normalized whole-cell lysates from
140 *SETD2* depleted cells had reduced histone H3 and H4 levels compared to untreated cells or cells
141 expressing a scrambled miRNA (**Figure 1A**). Does *SETD2* maintain global histone levels (i.e. chromatin
142 integrity) or does *SETD2* maintain a normal DNA to total protein ratio? To answer this, we measured
143 genomic DNA levels by qPCR in protein-normalized cell lysates and found that *SETD2* depleted lysates
144 had lower DNA levels (**Figure 1A** lower panel). This suggests that the DNA:protein ratio is lowered by
145 *SETD2* loss, and that histones appropriately scale with DNA levels in *SETD2* knockdown cells. Indeed,
146 when normalizing protein lysates for genomic DNA levels (which equals normalizing for cell numbers),
147 *SETD2* depleted cells showed similar histone levels and increased levels of non-histone proteins such
148 as α -tubulin and β -actin (**Figure 1C**). This suggests that *SETD2*-depleted cells have an increased total
149 cellular protein content.
150
151 To confirm that this phenotype was indeed caused by loss of *SETD2* expression, we determined if the
152 increased protein content in *SETD2*-depleted cells could be rescued by overexpressing miRNA-
153 resistant *SETD2*. We used a catalytically active but truncated version of *SETD2* (t*SETD2*) that lacks the
154 first 504 amino acids of the unstructured N-terminal domain to facilitate expression (Carvalho et al.
155 2013). Interestingly, t*SETD2* overexpression increased the DNA / protein ratio, indicating that total
156 cellular protein content was reduced in these cells (**Figure 1D, E**). Combining t*SETD2* overexpression
157 and endogenous *SETD2* knockdown restored protein content to approximately wild-type levels.
158
159 In addition to miRNA-based knockdowns, we suppressed *SETD2* expression using an independent
160 alternative approach, CasRx (Cas13d) mediated RNA cleavage. The CasRx system has been reported to
161 have a high knockdown efficiency with minimal off-target effects in human cells (Konermann et al.
162 2018). Indeed, we observed high mRNA cleavage efficiency using two *SETD2* mRNA targeting guide
163 RNAs (gRNAs). Importantly, CasRx-mediated knockdown of *SETD2* also led to an increase in total
164 protein content, confirming the miRNA-based *SETD2* knockdown results (**Supplementary Figure 1B**).
165 Furthermore, to determine if increased protein content upon *SETD2* depletion was restricted to RPE1
166 cells, we knocked down *SETD2* in two other normal human cell lines: the human fetal lung fibroblast
167 cell line TIG3 and the foreskin fibroblast cell line BJET. We observed a decrease in histone H3 and H4
168 in protein-normalized lysates from *SETD2* depleted TIG3 and BJET cells (**Supplementary Figure 1C**)
169 indicating that *SETD2* controls total cellular protein levels in multiple human cell lines.
170
171

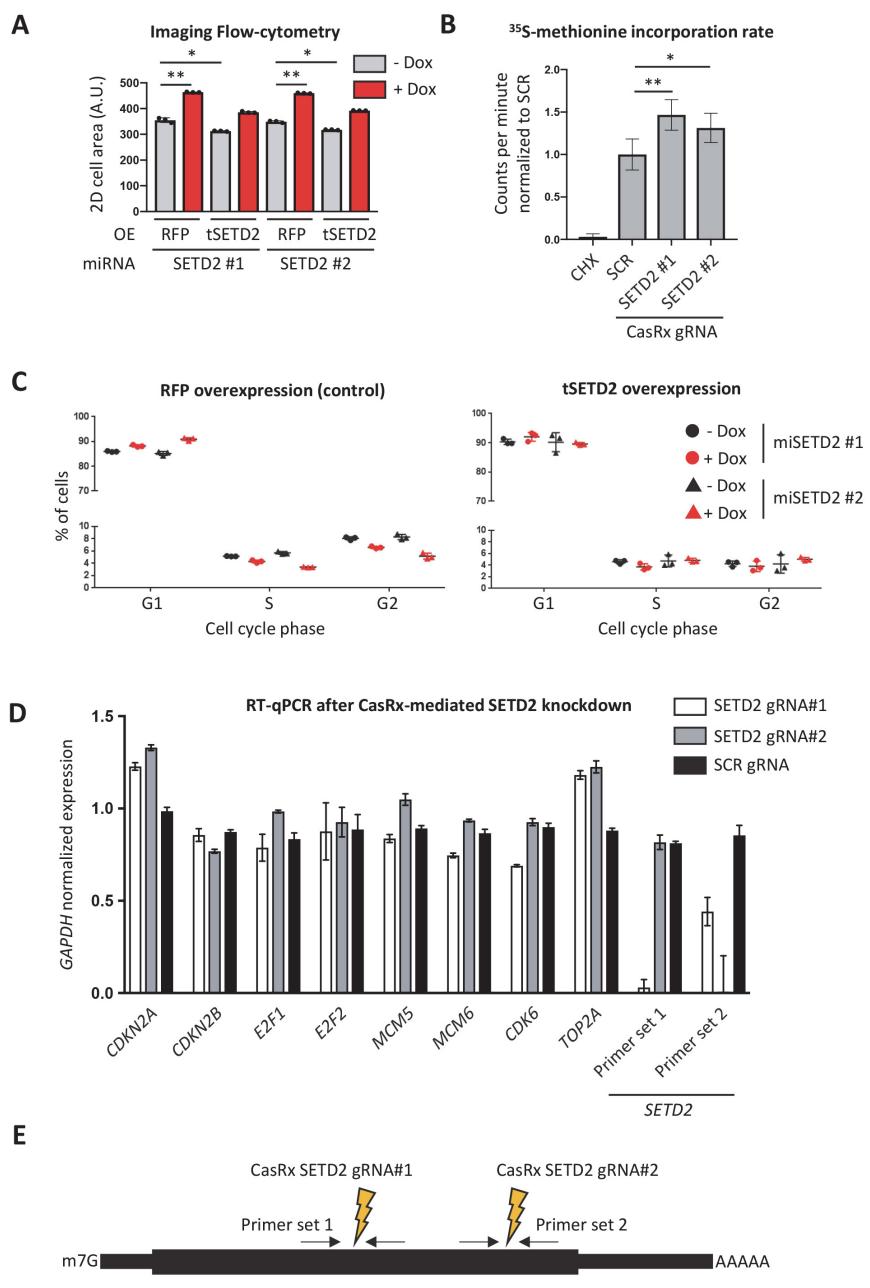
172
173

174 **Figure 1. SETD2 depletion increases the total protein content of human cells.** (A) Western blot of
175 RPE1 cells with doxycycline-inducible knockdown of *SETD2*. Cells were treated with doxycycline for
176 72h. Cell lysates were normalized for total protein (left panel) or genomic DNA content (right panel).
177 The bar plot below the left panel represents genomic DNA levels quantified by qPCR in protein
178 normalized lysates. (B) Western blot of RPE1 cells with doxycycline-inducible knockdown of *SETD2*
179 (72h induction) and constitutive overexpression of either RFP (control) or N-terminally truncated
180 *SETD2* (tSETD2). Cell lysates were normalized for total protein (left panel) or genomic DNA content
181 (right panel). The bar plot below the left panel represents genomic DNA levels quantified by qPCR in
182 protein normalized lysates. (C) 2D cell size as measured by image flow-cytometry of RPE1 cells with
183 inducible *SETD2* depletion and/or constitutive tSETD2 overexpression (RFP as control). Cells were
184 treated with doxycycline for 72h for inducible miRNA based *SETD2* knockdown. SCR, scramble miRNA;
185 OE, overexpression; Dox, doxycycline. Error bars represent SD of three biological replicates.
186
187
188

189 **SETD2 controls protein synthesis rates and cell size**

190

191 Global protein levels and cell size are closely correlated. Therefore, the observed protein content
192 regulation by SETD2 should presumably lead to an alteration in cell size as well. Indeed, we observed
193 by imaging flow-cytometry that SETD2 depletion increased cell size (measured as 2D cell surface of
194 cells in suspension) while tSETD2 overexpression decreased cell size (**Figure 2A**). Taken together,
195 these results suggest that SETD2 controls total protein content and consequently cell size.


196

197 An increased cell size can be accompanied by adaptations in protein synthesis and degradation, two
198 opposing but coupled processes. To directly measure protein synthesis rates in SETD2 depleted cells,
199 we used a radioactively labeled ^{35}S -methionine incorporation assay. SETD2 depletion using the CasRx
200 system led to a significant increase in the incorporation rate of ^{35}S -methionine normalized for total
201 protein content (**Figure 2B**). This indicates that SETD2 negatively regulates protein synthesis and
202 suggests that the increased protein content in SETD2 depleted cells is caused by an increase in protein
203 synthesis rate.

204

205 Mammalian cells that are arrested in G1 and exposed to growth factors generally continue to increase
206 in cell size and have an increased protein synthesis rate compared to proliferating cells (Conlon and
207 Raff 2003). We therefore used cell cycle profiling by flow-cytometry to determine if inducible SETD2
208 depletion led to a G1 arrest. SETD2 depletion led to a slight increase in the number of cells in G1 and a
209 decrease in the number of cells in S phase and G2 (**Figure 2C**). tSETD2 overexpression also led to a
210 small increase in the number of cells in G1 (compare between left and right plots). However,
211 knockdown of endogenous SETD2 did not rescue cell cycle distribution in tSETD2 expressing cells,
212 even though SETD2 knockdown did partially restore the size of tSETD2 expressing cells as measured
213 by imaging flow-cytometry (see **Figure 2A**). To look at cell cycle defects in SETD2 depleted cells in an
214 independent way, we measured the mRNA levels of several genes involved in cell cycle progression in
215 RPE1 cells in which SETD2 was depleted using the dox-inducible CasRx system (**as in Supplementary**
216 **Figure 1B**). Consistent with the cell cycle distribution analysis, SETD2 depletion resulted in a minor
217 decrease in the expression of genes involved in cell cycle progression such as *E2F1/2*, *MCM5/6* and
218 *CDK6* (**Figure 2D, E**). However, it seems unlikely that the small difference in cell cycle distribution is
219 the primary reason for the increased cell size in SETD2 depleted cells.

220

221

222

Figure 2. Inducible depletion of SETD2 increases protein synthesis rates accompanied with a minor accumulation of cells in G₁. (A) ^{35}S -methionine incorporation assay of RPE1 cells 72h following doxycycline-induced CasRx-based *SETD2* knockdown. CHX indicates a control experiment in which cells were treated with cycloheximide for 1h, which inhibits protein synthesis. (B) Cell cycle distribution as measured by flow-cytometry of propidium iodide stained *SETD2* depleted and tSETD2 overexpressing RPE1 cells. Cells were treated with doxycycline for 72h for inducible expression of *SETD2* targeting miRNAs, while RFP (control; left panel) and tSETD2 overexpression (right panel) was constitutive. (C) RT-qPCR for mRNA expression analysis of genes involved in cell cycle regulation in RPE1 cells, 72h following doxycycline-induced CasRx-based *SETD2* knockdown. (D) The two CasRx gRNAs used for targeting *SETD2* mRNA are each flanked by a RT-qPCR primer pair used for *SETD2* expression analysis in (C). Error bars represent SD of three biological replicates.

223

224

225

226

227

228

229

230

231

232

233

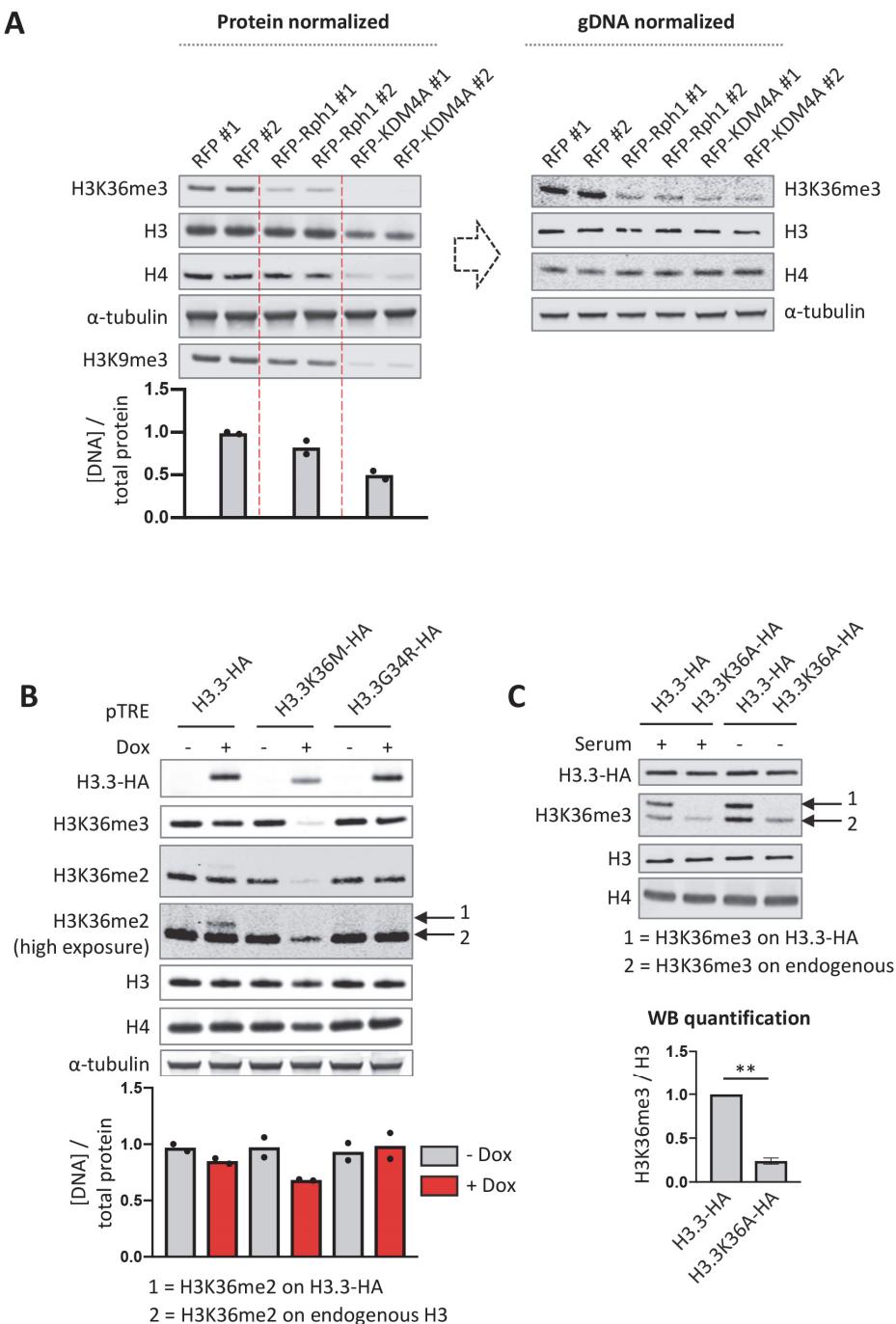
234 **SETD2 controls cell size through its catalytic activity**

235

236 How does SETD2 control cell size? We first wanted to determine if SETD2 controls cell size through its
237 catalytic activity. However, we were unable to establish RPE1 cell lines stably (over)expressing
238 catalytically inactive tSETD2 (tSETD2-Q1669A) suggesting that this is lethal in RPE1 cells. As an
239 alternative approach to determine the role of SETD2's catalytic activity in regulating cell size, we
240 stably overexpressed the demethylase KDM4A in RPE1 cells. KDM4A (also known as JMJD2A)
241 counteracts SETD2's function on chromatin by converting H3K36me3 into H3K36me2. In addition,
242 KDM4A demethylates the heterochromatin mark H3K9me3. Stable KDM4A overexpression decreased
243 global H3K36me3 and H3K9me3 levels in RPE1 cells, as expected (Figure 3A). Importantly, KDM4A
244 overexpression increased the total cellular protein content similar to SETD2 depletion (Figure 3A).
245 This result suggests that SETD2 controls protein content through its catalytic activity and opens up the
246 possibility that SETD2 and KDM4A act in the same pathway.

247

248 In line with the notion that many chromatin modifiers also act on non-histone proteins, KDM4A has
249 been reported to have functions outside of the nucleus. Specifically, KDM4A associates with the
250 initiating form of the translation machinery and stimulates protein synthesis rates through its catalytic
251 activity (Van Rechem et al. 2015). This suggests that KDM4A mediated demethylation of a component
252 of the translation machinery stimulates protein synthesis. However, the identity of this methylated
253 substrate and the methyltransferase involved are unknown. SETD2 is best known for its ability to
254 methylate H3K36. However, the list of non-histone substrates that are methylated by SETD2
255 continues to grow. In an attempt to determine if SETD2/KDM4A regulate protein synthesis via H3K36,
256 we also overexpressed the budding yeast homologue of KDM4A, Rph1 (Regulator of PHR1) which
257 demethylates both H3K36me2 and H3K36me3 in *Saccharomyces cerevisiae* (Kim and Buratowski
258 2007; Klose et al. 2007). Stable Rph1 overexpression in RPE1 cells decreased H3K36me3 levels and
259 had a small effect on H3K9me3 (which is absent in *S. cerevisiae*) but did not significantly alter total
260 cellular protein content (Figure 3A). One possible explanation for the differential effects between
261 Rph1 and KDM4A overexpression is the they both act on H3K36 but have likely evolved in conjunction
262 with the opposing methyltransferases (here Set2 and SETD2) to act on additional species-specific
263 substrates. Taken together, these results suggest that SETD2 regulates cell size through its
264 methylation activity but argue against direct involvement of its activity toward H3K36.


265

266 To further corroborate these findings, we inhibited SETD2 function by overexpressing the H3.3K36M
267 oncohistone. H3.3K36M, a mutant histone found in chondroblastoma (Behjati et al. 2013), inhibits
268 SETD2 as well as the H3K36 mono- and dimethyltransferase NSD2, in a dominant negative manner i.e.
269 *in cis* and *in trans* (Lewis et al. 2013; Lu et al. 2016; Zhang et al. 2017). As a control, we also
270 overexpressed H3.3G34R which is found in glioblastoma (Schwartzentruber et al. 2012) and
271 osteosarcoma (Behjati et al. 2013) and which inhibits SETD2 only locally *in cis* (Fang et al. 2018; Shi et
272 al. 2018). Inducible overexpression of HA-tagged H3.3K36M but not H3.3G34R reduced global
273 H3K36me2 and H3K36me3 levels, as expected (Figure 3B). Interestingly, H3.3K36M overexpression
274 lowered the genomic DNA:protein ratio but not to the same extent as SETD2 depletion or KDM4A
275 overexpression, despite H3K36me3 being almost completely absent. This shows that there is no direct
276 correlation between global H3K36me3 levels and cell size. However, it cannot be excluded that the
277 remaining H3K36me3 localized on a specific set of genes and indirectly regulates protein content.

278

279 To more directly investigate the involvement of H3K36 methylation in regulating cell size, we stably
280 overexpressed H3.3 or H3.3K36A in RPE1 cells with the aim to replace a substantial fraction of H3.3
281 (and canonical H3) with an H3.3K36A histone mutant that cannot be methylated on K36. Humans
282 have 15 genes encoding H3 and H3.3, making it difficult to assess the function of histone

283 modifications by mutating endogenous H3 amino acid residues, a strategy that has been successfully
284 employed in yeast and flies (Meers et al. 2017). Based on H3K36me3 immunoblotting, we found that
285 ectopic expression by the strong *EEF1A1* promoter led to high incorporation levels of ectopic HA-
286 tagged H3.3 (H3.3-HA). Note that the C-terminal HA tag interferes with the recognition of the anti-H3
287 antibody (Abcam 1791). Since H3.3 accumulates in non-dividing cells (Maze et al. 2015), we also
288 attempted to further increase the level of ectopic H3.3-HA incorporation by depriving RPE1 cells of
289 serum. However, we found that 7 days of serum deprivation did not lead to higher levels of H3.3-HA
290 in RPE1 cells. H3.3K36A has a minor *trans* inhibitory effect on SETD2 although not as strong as
291 H3.3K36M (Lu et al. 2016). Indeed, we observed that high expression of H3.3K36A-HA (which cannot
292 be methylated and is not recognized by the H3K36me antibodies) reduced the levels H3K36me3 on
293 endogenous histone H3 (**Figure 3C**). H3.3K36A overexpression did not affect cell size, despite total
294 H3K36me3 levels (i.e. on both ectopic and endogenous H3) being significantly reduced. This provides
295 further support for the model that SETD2 controls cell size independently of H3K36me3.
296

297

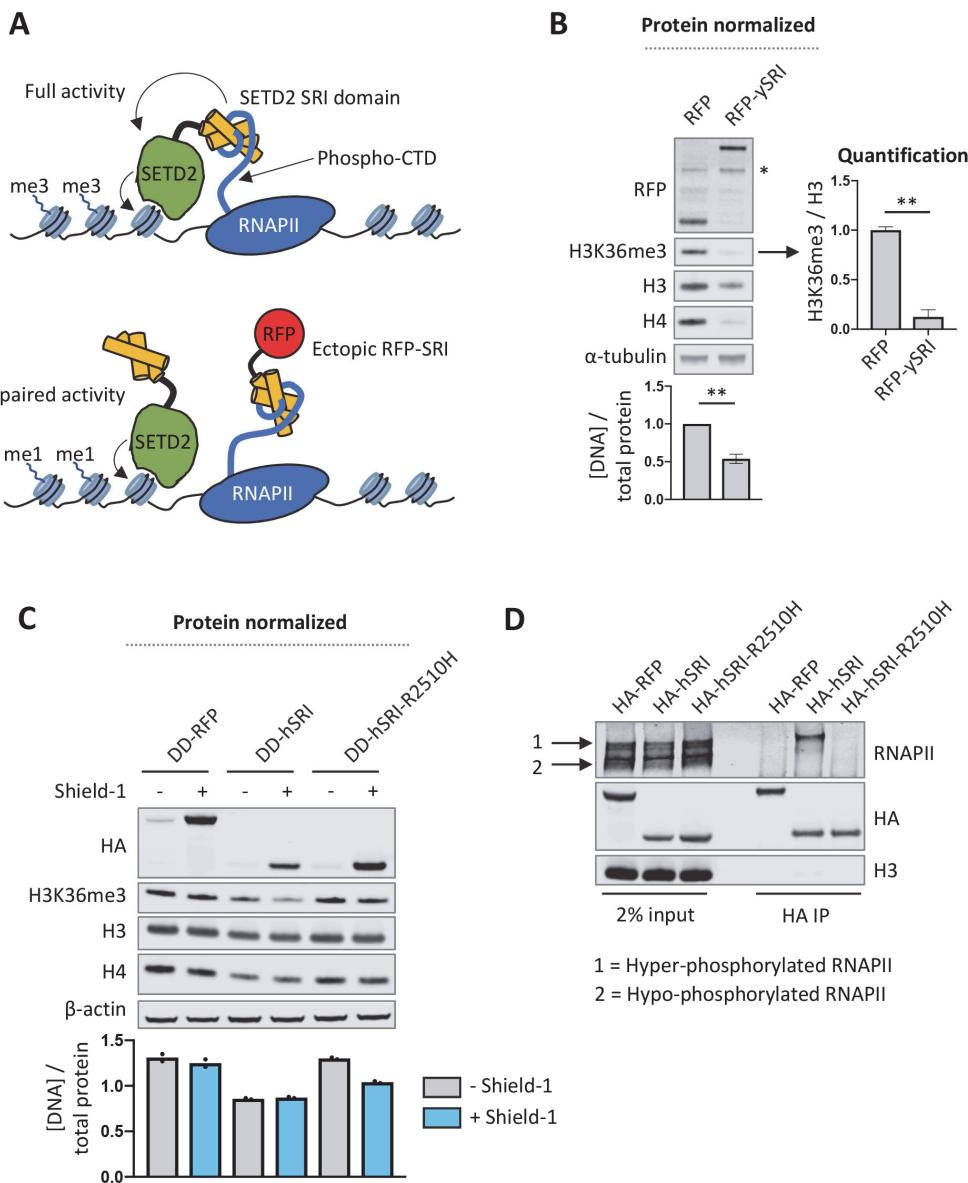
298 **Figure 3. SETD2 controls cellular protein content through its catalytic activity.** (A) Western blot of
299 RPE1 cells constitutively overexpressing the yeast demethylase Rph1 or human H3K36me3/H3K9me3
300 demethylase KDM4A. Cell lysates were normalized for total protein (left panel) or genomic DNA
301 content (right panel). The bar plot below the left panel represents genomic DNA levels quantified by
302 qPCR in protein normalized lysates. (B) Western blot of RPE1 cells with doxycycline inducible
303 overexpression of hemagglutinin (HA) epitope-tagged “onco” H3.3 histones. The bar plot represents
304 genomic DNA levels quantified by qPCR in protein normalized lysates. (C) Western blot of RPE1 cells
305 with stable overexpression of H3.3-HA and H3.3K36A-HA. Dots represent the individual values of two
306 biological replicates (in A and B). Error bars represent SD of three biological replicates (in C).

307

308 **SETD2 controls cell size through its SRI domain**

309

310 To gain further mechanistic insight into how SETD2 negatively regulates cell size, we targeted the
311 interaction between SETD2 and RNAPII. This interaction is mediated by the SRI domain, which is
312 conserved from yeast Set2 to human SETD2. The SRI domain interacts with the CTD of RNAPII when
313 phosphorylated at serine 2 and serine 5 in the heptapeptide repeat and this interaction is essential
314 for establishing H3K36me3 in both yeast and human cells (Kizer et al. 2005; Sun et al. 2005;
315 Rebehmed et al. 2014). Ectopic overexpression of the *S. cerevisiae* Set2 SRI domain (SRI_{Set2}) fused to a
316 nuclear localization signal (NLS) reduced global H3K36me3 levels in RPE1 cells, presumably because
317 the excess free SRI_{Set2} domain acts as a decoy for RNAPII (Figure 4A). Importantly, SRI_{Set2}
318 overexpression increased cell size (Figure 4B). This indicates that SETD2 regulates cell size through its
319 SRI domain. To determine if the nuclear localization of this decoy SRI_{Set2} domain was important for its
320 ability to disrupt cell size regulation, we also overexpressed a SRI_{Set2} domain fused to the HIV Rev
321 protein nuclear export signal (NES). However, we were unable to generate RPE1 cell lines stably
322 overexpressing NES-SRI_{Set2}, suggesting that this is toxic in RPE1 cells.


323

324 Although the SRI domain is best known for its ability to interact with the RNAPII phospho-CTD, the SRI
325 domain also contributes to the ability of SETD2 to methylate non-histone substrates. For example, a
326 pathogenic point mutation in the SRI domain of SETD2 (R2510H) disrupts alpha-tubulin K40
327 methylation by SETD2 (Park et al. 2016). In line with this, the SETD2 SRI domain was recently shown to
328 directly interact with the C-terminal tail of alpha-tubulin (Kearns et al. 2020). Interestingly, while
329 mutating the R2510 residue in the SETD2 SRI domain to an alanine (R2510A) disrupts the interaction
330 between the SRI domain and RNAPII (Li et al. 2005), the R2510H mutation disrupts alpha-tubulin K40
331 methylation but not H3K36 methylation (Park et al. 2016). Therefore, SRI_{SETD2}-R2510H can be used to
332 functionally separate SETD2-mediated alpha-tubulin methylation from RNAPII-mediated H3K36
333 methylation.

334

335 To strengthen the finding that SRI_{Set2} overexpression disrupts SETD2-mediated cell size regulation, we
336 established RPE1 cells stably expressing human SRI_{SETD2} tagged with an NLS and a destabilizing domain
337 (DD) that allows for Shield-1 inducible protein expression (Banaszynski et al. 2006). Similar to SRI_{Set2}
338 overexpression, SRI_{SETD2} reduced H3K36me3 levels when expressed at high levels (i.e. stabilized by
339 Shield-1) and increased cellular protein content (Figure 4C). Interestingly, at lower expression levels
340 (i.e. without Shield-1) SRI_{SETD2} did not strongly affect global H3K36me3 levels while it still increased
341 protein content compared to RFP expressing control cells. This provides further evidence that
342 H3K36me3 and protein content regulation by SETD2 are decoupled from each other. We also
343 established RPE1 cells stably expressing SRI_{SETD2}-R2510H. Surprisingly, SRI_{SETD2}-R2510H overexpression
344 did not affect H3K36me3 levels and only slightly increased protein content when stabilized by Shield-
345 1, despite being expressed at somewhat higher levels than SRI_{SETD2}. Although the interaction between
346 SETD2 and RNAPII is required for H3K36me3 and SETD2-R2510H can still establish H3K36me3 (Hacker
347 et al. 2016; Park et al. 2016) our findings suggest that when overexpressed the R2510H mutation
348 abolishes the function of SRI_{SETD2} as a decoy for RNAPII. To test this assumption, we
349 immunoprecipitated the ectopic SRI domains from transiently transfected HEK293T cells and found
350 that SRI_{SETD2} but not SRI_{SETD2}-R2510H interacted with RNAPII (Figure 4D). This lack of interaction
351 between SRI_{SETD2}-R2510H and RNAPII explains why SRI_{SETD2}-R2510H does not reduce H3K36me3 levels
352 upon overexpression, as it likely does not outcompete endogenous SETD2 for RNAPII binding.
353 Collectively, these results demonstrate that SETD2 regulates protein content by engaging a substrate
354 through its SRI domain, and that the R2510 residue in SRI is essential for this interaction.

355

356

357 **Figure 4. Ectopic overexpression of the Set2/SETD2 SRI domain inhibits H3K36me3 and increases**

358 **cellular protein content.** (A) Cartoon to illustrate how overexpression of a “decoy” SRI domain might

359 specifically interrupt SETD2 activity toward H3K36 (as well as other SRI-dependent SETD2 substrates).

360 (B) Western blot of RPE1 cells stably overexpressing the yeast Set2 SRI domain N-terminally fused to

361 tagRFP and an SV40 nuclear localization signal (NLS). The bar plot represents genomic DNA levels

362 quantified by qPCR in protein normalized lysates. (C) Western blot of RPE1 cells stably overexpressing

363 the human SETD2 SRI domain N-terminally tagged with a destabilizing domain (DD; stabilized by

364 Shield-1), HA-tag and SV40 NLS. DD-RFP is tagRFP N-terminally fused to DD-HA-SV40 NLS. The bar plot

365 represents genomic DNA levels quantified by qPCR in protein normalized lysates. (D) Western blot of

366 the ectopically overexpressed SETD2 SRI domains immunoprecipitated from HEK293T cells. HEK293T

367 cells were transiently transfected with DD-HA-NLS-tagRFP (control), DD-HA-NLS-SRI or DD-HA-NLS-

368 SRI-R2510H encoding plasmids and treated with Shield-1. Cells were lysed 48h after transfection, and

369 RFP or SRI domains were immunoprecipitated with anti-HA antibody. Dots represent the individual

370 values of two biological replicates (in C). Error bars represent SD of three biological replicates (in B).

371

372 **Discussion**

373

374 SETD2 has multiple cellular functions including RNA processing, the repression of cryptic transcription,
375 and DNA repair (Yoh et al. 2008; Luco et al. 2010; Carvalho et al. 2014; Mar et al. 2017; Huang et al.
376 2018). Mechanistically, most of these processes have been shown to involve the classic molecular
377 function of SETD2, i.e. H3K36 methylation. However, as additional non-histone SETD2 substrates
378 continue to be identified it is becoming clear that SETD2's function extends beyond chromatin and
379 transcription regulation (Park et al. 2016; Chen et al. 2017; Seervai et al. 2020; Yuan et al. 2020). Here,
380 we report a novel cellular function of SETD2, namely the regulation of protein synthesis rate and cell
381 size. We showed that SETD2 exerts this function through its catalytic activity as overexpression of the
382 demethylase KDM4A has a similar phenotype as SETD2 depletion. Our results are consistent with the
383 previously reported findings that KDM4A stimulates protein synthesis (Van Rechem et al. 2015).
384 However, we cannot exclude at this point that SETD2 inhibits mRNA translation through a pathway
385 that is independent of KDM4A. Protein synthesis takes up a large proportion of the energy available
386 to a cell and is therefore tightly regulated by a wealth of mechanisms. It remains to be determined if
387 the increased translation rates in SETD2 depleted cells are an indirect consequence of for example
388 deregulated signaling pathways or cell cycle control, or if SETD2 controls translation in a more direct
389 way, perhaps in concert with KDM4A.

390

391 An important step to determine the mechanism through which SETD2 regulates cell size will be to
392 identify the relevant substrate methylated by SETD2. H3K36me3 is the classical SETD2 substrate and
393 could conceivably regulate the expression of genes involved in translation for example by regulating
394 mRNA splicing (Luco et al. 2010; Simon et al. 2014; Leung et al. 2019). However, several lines of
395 evidence suggest that SETD2 regulates translation independently of H3K36me3. First, unlike SETD2
396 depletion, overexpression of the yeast demethylase Rph1 did not affect total cellular protein content.
397 However, because H3K36me3 was not completely abolished in these cells it is possible that local
398 H3K36me3 on certain genes is sufficient to maintain normal protein content. A similar argument
399 could be made for H3.3K36A overexpression, which did not affect protein content but also did not
400 completely remove H3K36me3 on endogenous H3. Second, overexpression of the H3.3K36M
401 oncohistone almost completely removed H3K36me3 but did not affect protein content as strongly as
402 SETD2 knockdown. This suggests that there is no direct correlation between SETD2 activity toward
403 H3K36 and protein content. H3.3K36M acts by inhibiting SETD2 activity *in cis and in trans* but it is not
404 completely understood if H3.3K36M inhibits all SETD2 protein or only the SETD2 protein that has been
405 directed toward H3K36 through its association with RNAPII. In the latter situation, it is conceivable
406 that all activity toward H3K36 can be inhibited by H3.3K36M while there is still SETD2 activity toward
407 substrates other than H3K36 remaining, albeit that there is less total SETD2 activity available. This
408 could explain why H3.3K36M does not affect protein content as strongly as SETD2 depletion despite a
409 similar decrease in H3K36me3 levels.

410

411 If KDM4A and SETD2 regulate protein synthesis through a common pathway, it is plausible that SETD2
412 directly methylates a component of the ribosome, and that this methylation depends on an
413 interaction between SETD2's SRI domain and a component of the translation machinery. The SRI
414 domain is positively charged at cellular pH (isoelectric point 8.97 for the SRI domain of human SETD2).
415 Critical positively charged residues in the SRI domain (such as R2510) mediate the interaction with
416 both the negatively charged RNAPII phosho-CTD (Li et al. 2005) as well as with the acidic C-terminal
417 tail of alpha-tubulin (Kearns et al. 2020). Interestingly, a recent study on SETD2 interacting proteins
418 identified the mRNA splicing regulating heterogeneous nuclear ribonucleoproteins (hnRNPs) as
419 common SETD2 interactors (Bhattacharya et al. 2021). Among the other proteins identified as SETD2
420 interactors were also many ribosomal subunits. Although ribosomal proteins are common

421 contaminants in co-IP experiments (Pardo and Choudhary 2012), it might be interesting to determine
422 if SETD2 interacts with specific component of the ribosome via the SRI domain, and whether this
423 interaction is relevant for the regulation of protein synthesis by SETD2.

424
425 In confirmation of our findings, a recent preprint study also found a negative role for SETD2 in
426 translation regulation in clear cell renal cell carcinoma (ccRCC; Hapke et al. 2020). SETD2 inactivating
427 mutations are frequently found in multiple types of cancer, including ccRCC (Dalglish et al. 2010;
428 Duns et al. 2010; Gerlinger et al. 2012; Sato et al. 2013; Bihl et al. 2019), high-grade gliomas
429 (Fontebasso et al. 2013), and leukemias (Zhang et al. 2012; Zhu et al. 2014; Mar et al. 2014). In
430 addition, SETD2 is mutated at low frequency in many other types of cancers such as melanoma, and
431 lung and colon adenocarcinoma (for review see Li et al. 2016; Fahey and Davis 2017; Chen et al.
432 2020). Perturbation of translation regulation is a common theme in cancer. Many tumor cells
433 upregulate ribosome production and protein synthesis by overexpressing MYC, which promotes the
434 expression of ribosome biogenesis genes (Muhar et al. 2018), and/or deregulating the RAS and PI3K
435 signaling pathways (reviewed by Silvera et al. 2010; Robichaud et al. 2019). It is therefore tempting to
436 speculate that SETD2 inactivation is another way for tumor cells to increase protein production. The
437 tumor-suppressor function of SETD2 has so far been attributed to its role in DNA damage repair
438 (Daugaard et al. 2012; Li et al. 2013; Carvalho et al. 2014; Pfister et al. 2014), transcription and mRNA
439 processing (Simon et al. 2014; Grosso et al. 2015), and in genome stability (Park et al. 2016; Chiang et
440 al. 2018). Our study warrants further investigation into the molecular mechanism of translation
441 regulation by SETD2 as well as studies to determine if this function contributes to tumor development
442 in SETD2 mutant or KDM4A overexpressing cancers.

443

444

445 **Materials and Methods**

446

447 Cell culture, knockdowns and overexpression

448 Human non-transformed retinal pigment epithelial cells transduced with the human telomerase gene
449 (*hTERT*-RPE1; ATCC CRL-4000) were grown in DMEM/F12 (Gibco) supplemented with 10% fetal calf
450 serum (FCS). TIG-3 cells (human diploid embryonic lung fibroblasts; Research Resource Identifier:
451 CVCL_E939) and BJ cells (human diploid foreskin fibroblasts; ATCC CRL-2522) were previously
452 transduced with *hTERT* and the murine ecotropic retrovirus receptor (Michaloglou et al. 2005).
453 HEK293T, TIG-3 and BJ cells were grown in DMEM (Gibco) with 10% FCS. Cells were maintained at
454 37°C, 5% CO₂ in a humidified incubator.

455

456 For microRNA (miRNA) based knockdown of SETD2, cells were lentivirally transduced with doxycycline
457 (dox)-inducible artificial miRNAs in the miR-E backbone (Fellmann et al. 2013). *SETD2* targeting miRNA
458 sequences were CCAGGACAGAAAGAAAGTTAGA (#1) and ACCGGAAGTTGTTGAGCAAGA (#2). Non-
459 targeting miRNA sequence was CAATGTACTGCGCGTGGAGACT. Knockdown was induced by treating
460 cells with 1 µg/mL dox for 72h.

461

462 For CasRx based knockdown of SETD2, RPE1 cells were first transduced with a dox-inducible human
463 codon-optimized CasRx construct (synthesized by Integrated DNA Technologies [IDT]) containing a
464 blasticidin resistance gene. The CasRx protein sequence, including nuclear localization signal and
465 hemagglutinin (HA) epitope tag, was identical as described in Konermann et al. (2018). After selection
466 with 10 µg/mL blasticidin (Invivogen), a monoclonal cell line showing high CasRx expression after dox
467 treatment was further transduced with *SETD2* gRNA#1 (AGATCCACAACAAAGACAGCCCA), *SETD2*
468 gRNA#2 (TTCACATTCTCATGCACTCCAG) or a scrambled gRNA (TCACCAGAAGCGTACCATACTC) in a
469 construct containing an enhanced green fluorescent protein (EGFP) marker. The *SETD2* CasRx gRNAs

470 were designed using the Cas13 guide design resource (Wessels et al. 2020). CasRx expression was
471 induced by treating cells with 1 µg/mL dox for 72h.

472

473 For constitutive overexpression of SETD2, KDM4A, Rph1, and the yeast Set2 SRI domain, coding
474 sequences were cloned into a lentiviral vector in which proteins are N-terminally tagged with tagRFP
475 (Merzlyak et al. 2007) and expression is driven by the human core *EEF1A1* promoter. Coding
476 sequences were followed by an internal ribosome entry site (IRES) sequence and a bleomycin/zeocin
477 resistance gene. The coding sequence for truncated SETD2 (amino acids 504-2564) lacking part of the
478 N-terminal unstructured domain was amplified from human RPE1-hTERT cDNA and made resistant to
479 *SETD2* miRNA#1 and #2 by silent mutation of miRNA binding sites. Full-length *KDM4A* was amplified
480 from human RPE1-hTERT cDNA. Full-length *RPH1* was amplified from genomic DNA from
481 *Saccharomyces cerevisiae* strain BY4741. The SRI domain from *S. cerevisiae* Set2 (amino acids 619-
482 733) was N-terminally tagged with an SV40 nuclear localization signal (NLS) or HIV Rev protein nuclear
483 export signal (LPPLERLTL; NES) and codon optimized for expression in humans (synthesized by IDT).
484 For expression of the human SETD2 SRI domain, cDNA derived sequences were N-terminally tagged
485 with a destabilizing domain (DD; Banaszynski et al. 2006) that replaced the tagRFP followed by an HA
486 tag and an SV40 NLS. To induce stabilization of DD tagged proteins, cells were treated with 0.5 µg/mL
487 Shield-1 (Aobious) for 72h. For constitutive overexpression of H3.3 and H3.3K36A, codon optimized
488 sequences with C-terminal HA epitope tags (synthesized by IDT) were cloned into the same lentiviral
489 vector but without N-terminal tagRFP. Following transduction, cells were selected and maintained in
490 medium with 100 µg/mL zeocin (Invivogen).

491

492 For dox inducible overexpression of H3.3, H3.3K36M and H3.3G34R, codon optimized coding
493 sequences with a C-terminal HA epitope tag were synthesized by IDT and cloned into a pCW57.1
494 (Addgene plasmid #41393) derived lentiviral vector with a blasticidin resistance gene (replacing the
495 original puromycin resistance gene). Following transduction, cells were selected with 10 µg/mL
496 blasticidin (Invivogen) for 7 days. Overexpression was induced by treating cells with 1 µg/mL dox for
497 96h.

498

499 Lentivirus production

500 Lentiviral transfer plasmids were co-transfected with pMD2G, pRSV-VSV and pMDL packaging
501 plasmids in HEK293T cells using polyethyleminine (PEI) at a 1:3 DNA:PEI ratio. Supernatant was
502 collected 48h and 72h post-transfection, passed through a 0.45 um filter and concentrated using an
503 Amicon Ultra-15 centrifugal filter unit (UFC910024, Merck/Millipore), Ultracel-100 regenerated
504 cellulose membrane.

505

506 RNA isolation and RT-qPCR

507 RNA was isolated using the RNeasy Mini kit (Qiagen) with on-column DNase I digestion. cDNA was
508 synthesized using Superscript II Reverse Transcriptase (ThermoFisher) and random hexamers. For
509 determining *SETD2* knockdown efficiency using the CasRx system, qPCR primers were designed
510 around the gRNA target site. Primers for qPCR are listed in Table 1.

511

512 **Table 1. Primers used in this study.**

513

<i>For RT-qPCR</i>	
CDKN2A_qFwd1	ACTTCAGGGGTGCCACATTC
CDKN2A_qRev1	CGACCCTGTCCCTCAAATCC
CDKN2B_qFwd1	TTTACGGCCAACGGTGGATT
CDKN2B_qRev1	CATCATCATGACCTGGATCGC

MCM5_qFwd1	ATGCAGCGCAAGGTTCTCA
MCM5_qRev1	GCCAAAAGCACACTTCCCAG
MCM6_qFwd1	GCTCCTGTGAACGGGATCAA
MCM6_qRev1	TACTCAGAGAAGGCCAGCCT
E2F1_qFwd1	CACTTCCGGCCCTTTCGTC
E2F1_qRev1	GATTCCCCAGGCTACCAAA
E2F2_qFwd1	CAAGGAAGTCGGTGCAGTCG
E2F2_qRev1	TAGAGATCGCCGCTTGGAGA
CDK6_qFwd1	CCGACTGACACTCGCAGC
CDK6_qRev1	TCCTCGAAGCGAAGTCCTCA
TOP2A_qFwd1	GGCTACATGGTGGCAAGGAT
TOP2A_qRev1	CACGCACATCAAAGTTGGGG
GAPDH_qFwd1	TCAGTGGTGGACCTGACCTG
GAPDH_qRev1	TGCTGTAGCCAATTCTGTTG
SETD2_Rx_qFwd1	TCAGCTTATCCCGGCTAATGG
SETD2_Rx_qRev1	TGGGCAAGTGTCCAAAGTCT
SETD2_Rx_qFwd2	CCAGTGCCTGAACCTTACC
SETD2_Rx_qRev2	GGGTTGTAAACAGCCCCAA
<i>For DNA quantification</i>	
GAPDH_Promoter_Fw	CTGAGCAGTCCGGTGTAC
GAPDH_Promoter_Rv	GAGGACTTGGGAACGACTGA

514

515

516 Co-immunoprecipitation

517 Plasmids encoding tagRFP or SRI_{SETD2} with N-terminal DD-HA-SV40 NLS fusions were transfected into
518 HEK293T cells using Fugene HD at a 1:4 plasmid:FugeneHD ratio in OptiMEM. Cells were immediately
519 treated with 0.5 µg/mL Shield-1 and harvested in IP lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl,
520 5 mM EDTA, 0.5% IGEPAL, 1% Triton X-100) 48h after transfection. Cells were sonicated for 30 cycles
521 at high setting (30s on, 30s off) using a Bioruptor Pico sonicator (Diagenode) and centrifuged at 13000
522 rpm for 10 min. Supernatant was used for immunoprecipitation with 5 µg anti-HA antibody overnight
523 at 4°C. Next, immunocomplexes were precipitated with Protein G Dynabeads (ThermoFisher) for 4h at
524 4°C, washed three times with IP lysis buffer, and eluted with SDS loading buffer (50 mM Tris-HCl pH
525 6.8, 2% SDS, 10% glycerol, 0.1M dithiothreitol (DTT), 0.02% bromophenol blue). Samples were boiled,
526 centrifuged and immunoprecipitated proteins were detected by Western blot.

527

528 Western blot

529 Approximately 1x10⁷ cells were washed twice with phosphate-buffered saline (PBS). Proteins were
530 isolated by adding SDS lysis buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol) supplemented with
531 protease inhibitor cocktail (PIC; Roche). DNA was sheared by sonication for 10 min at high settings (30
532 s on, 30 s off) using a Bioruptor Pico sonicator (Diagenode) to reduce sample viscosity. Protein
533 concentration was determined with the DC protein assay (Bio-Rad) according to manufacturers
534 manual. Samples were supplemented with DTT (final 0.1M) and bromophenol blue (final 0.02%).
535 Samples were boiled, centrifuged and 10 µg protein was separated on a NuPAGE 12% Bis-Tris protein
536 gel (ThermoFisher) for histones and on a NuPAGE 4-12% Bis-Tris protein gel for non-histone proteins.
537 Next, proteins were blotted on 0.2 µm (for histones) and 0.45 µm (for non-histone proteins)
538 nitrocellulose membranes at 1 ampere for 90 min. Afterwards membranes were blocked for 30 min
539 with 5% Nutrilon (Nutricia) in PBS and incubated overnight at 4°C with primary antibodies H3 (Abcam

540 1791), H4 (Merck Millipore 04-858), H4ac (Merck Millipore 06-866), H3K36me3 (Abcam 9050),
541 H3K36me2 (gift from Dirk Schübeler), H3K9me3 (Abcam 8898), beta-actin (Abcam 6276), beta-actin
542 (Santa Cruz sc-1616), alpha-tubulin (Sigma-Aldrich T5168), V5 (Invitrogen R960-25) and HA (Abcam
543 18181) in 2% Nutrilon in Tris-buffered saline-Tween (TBST). The next day membranes were washed
544 four times with TBST before incubating the membrane with the appropriate Odyssey IRDye secondary
545 antibody (LI-COR Biosciences) at 1:10000 dilution in 2% Nutrilon in TBST for 1h. Membranes were
546 washed four times with TBST before scanning on a LI-COR Odyssey IR Imager (LI-COR Biosciences).
547 Signals were quantified using Image Studio software (LI-COR).

548
549 To normalize protein lysates for genomic DNA concentration, aliquots of protein lysates with equal
550 protein concentration were treated with proteinase K (ProtK) and RNase A at 55°C for 30 min,
551 followed by Proteinase K inactivation at 95°C for 10 min. DNA was ethanol precipitated, washed, dried
552 and resuspended in 50 mM Tris-HCl pH 8. Relative genomic DNA concentrations were determined by
553 qPCR using primers for the *GAPDH* promoter.

554
555 ³⁵S-methionine incorporation assay
556 Protein synthesis rates were measured as described previously (Faller et al. 2015). hTERT-RPE1 cells
557 were incubated with DMEM methionine-free media (ThermoFisher Scientific #21013024) for 20 min,
558 after which 30 µCi/ml ³⁵S-methionine label (Hartmann Analytic) was added for 1 hour. After washing
559 the samples with PBS, proteins were extracted with lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl,
560 1% Tween-20, 0.5% NP-40, 1x protease inhibitor cocktail (Roche) and 1x phosphatase inhibitor
561 cocktail (Sigma Aldrich) and precipitated onto filter paper (Whatmann) with 25% trichloroacetic acid
562 and washed twice with 70% ethanol and twice with acetone. A liquid scintillation counter (Perkin
563 Elmer) was used to measure scintillation and the activity was normalized by total protein content.

564
565 Flow-cytometry
566 For cell cycle distribution analysis, hTERT-RPE1 cells were fixed for with 70% ethanol at 4°C for 30 min.
567 Cells were treated with RNase A and stained with propidium iodide (50 µg/ml). For image flow-
568 cytometry, hTERT-RPE1 cells were detached from culture plates with accutase (Stemcell Technologies)
569 and stained with CellTrace CFSE Cell Proliferation Kit C34554 (ThermoFisher) according to
570 manufacturers' protocol. 2D cell size was measured imaging flow-cytometry (ImageStream X Mark II).

571
572 Statistical analysis
573 Statistical significance was calculated using a two-tailed, unpaired Student's t-test.

575

576 **Declarations**

577

578 **Funding:** This work was supported by funding from The Dutch Research Council (NWO-VICI-
579 016.130.627 to FvL), Dutch Cancer Society (KWF-NKI2018-1/11490 to FvL) and EMBO (long-term
580 fellowship ALTF 210-2018 to JS). The funders had no role in study design, data collection and
581 interpretation, or the decision to submit the work for publication.

582

583 **Conflicts of interest/Competing interests:** The authors declare no conflict of interest

584

585 **Availability of data and material:** All processed data are within the paper and the Supplemental
586 Material.

587

588 **Statistics:** Statistical analyses were performed using GraphPad Prism 8. Data are presented as mean ±
589 SD. Unless stated otherwise, the unpaired Student's t-test with two-tailed distributions was used to
590 calculate the p-value. A p-value < 0.05 was considered statistically significant.

591

592 **Author contributions**

593 Conception and design: TMM and FvL

594 Acquisition of data: TMM, EMKM, JS, MM

595 Analysis and interpretation of data: TMM, EMKM, JS, MM, WJF, FvL

596 Supervision of experiments and analyses: WJF, FvL

597 Writing of the manuscript, TMM, EMKM, JS, MM, WJF, FvL

598

599 **Acknowledgements.** We thank Marlize van Breugel for carefully reading the manuscript and for
600 valuable suggestions, Dirk Schübeler (FMI) for providing the H3K36me2 antibody, Martijn van Baalen
601 (NKI) for flow cytometry advice, and Erik Mul (Sanquin) for help with image flow-cytometry.

602

603 **References**

604

605 Banaszynski, Laura A., Ling-chun Chen, Lystranne A. Maynard-Smith, A. G. Lisa Ooi, and Thomas J.
606 Wandless. 2006. "A Rapid, Reversible, and Tunable Method to Regulate Protein Function in
607 Living Cells Using Synthetic Small Molecules." *Cell* 126 (5): 995–1004.
608 <https://doi.org/10.1016/j.cell.2006.07.025>.

609 Baubec, Tuncay, Daniele F. Colombo, Christiane Wirbelauer, Juliane Schmidt, Lukas Burger, Arnaud R.
610 Krebs, Altuna Akalin, and Dirk Schübeler. 2015. "Genomic Profiling of DNA Methyltransferases
611 Reveals a Role for DNMT3B in Genic Methylation." *Nature* 520 (7546): 243–47.
612 <https://doi.org/10.1038/nature14176>.

613 Behjati, Sam, Patrick S. Tarpey, Nadège Presneau, Susanne Scheipl, Nischalan Pillay, Peter Van Loo,
614 David C. Wedge, et al. 2013. "Distinct H3F3A and H3F3B Driver Variants Define
615 Chondroblastoma and Giant Cell Tumour of Bone." *Nature Genetics* 45 (12).
616 <https://doi.org/10.1038/ng.2814>.

617 Bertomeu, Thierry, Jasmin Coulombe-Huntington, Andrew Chatr-aryamontri, Karine G. Bourdages,
618 Etienne Coyaud, Brian Raught, Yu Xia, and Mike Tyers. 2018. "A High-Resolution Genome-Wide
619 CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human
620 Cell-Essential Proteome." *Molecular and Cellular Biology* 38 (1).
621 <https://doi.org/10.1128/MCB.00302-17>.

622 Bhattacharya, Saikat, Michaella J. Levy, Ning Zhang, Hua Li, Laurence Florens, Michael P. Washburn,
623 and Jerry L. Workman. 2021. "The Methyltransferase SETD2 Couples Transcription and Splicing
624 by Engaging mRNA Processing Factors through Its SH1 Domain." *Nature Communications* 12 (1):
625 1443. <https://doi.org/10.1038/s41467-021-21663-w>.

626 Bihl, Svenja, Riuko Ohashi, Ariane L. Moore, Jan H. Rüschoff, Christian Beisel, Thomas Hermanns, Axel
627 Mischo, et al. 2019. "Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror

628 Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma." *Neoplasia (New York, N.Y.)* 21
629 (2): 247–56. <https://doi.org/10.1016/j.neo.2018.12.006>.

630 Blomen, Vincent A., Peter Májek, Lucas T. Jae, Johannes W. Bigenzahn, Joppe Nieuwenhuis,
631 Jacqueline Staring, Roberto Sacco, et al. 2015. "Gene Essentiality and Synthetic Lethality in
632 Haploid Human Cells." *Science* 350 (6264): 1092–96. <https://doi.org/10.1126/science.aac7557>.

633 Bondarenko, Vladimir A., Louise M. Steele, Andrea Újvári, Daria A. Gaykalova, Olga I. Kulaeva, Yury S.
634 Polikanov, Donal S. Luse, and Vasily M. Studitsky. 2006. "Nucleosomes Can Form a Polar Barrier
635 to Transcript Elongation by RNA Polymerase II." *Molecular Cell* 24 (3): 469–79.
636 <https://doi.org/10.1016/j.molcel.2006.09.009>.

637 Carrozza, Michael J., Bing Li, Laurence Florens, Tamaki Suganuma, Selene K. Swanson, Kenneth K. Lee,
638 Wei-Jong Shia, et al. 2005. "Histone H3 Methylation by Set2 Directs Deacetylation of Coding
639 Regions by Rpd3S to Suppress Spurious Intragenic Transcription." *Cell* 123 (4): 581–92.
640 <https://doi.org/10.1016/j.cell.2005.10.023>.

641 Carvalho, Sílvia, Ana Cláudia Raposo, Filipa Batalha Martins, Ana Rita Gross, Sreerama Chaitanya
642 Sridhara, José Rino, Maria Carmo-Fonseca, and Sérgio Fernandes de Almeida. 2013. "Histone
643 Methyltransferase SETD2 Coordinates FACT Recruitment with Nucleosome Dynamics during
644 Transcription." *Nucleic Acids Research* 41 (5): 2881–93. <https://doi.org/10.1093/nar/gks1472>.

645 Carvalho, Sílvia, Alexandra C. Vítor, Sreerama C. Sridhara, Filipa B. Martins, Ana C. Raposo, Joana MP
646 Desterro, João Ferreira, and Sérgio F. de Almeida. 2014. "SETD2 Is Required for DNA Double-
647 Strand Break Repair and Activation of the P53-Mediated Checkpoint." *eLife* 3.
648 <https://doi.org/10.7554/eLife.02482>.

649 Chen, Kun, Juan Liu, Shuxun Liu, Meng Xia, Xiaomin Zhang, Dan Han, Yingming Jiang, Chunmei Wang,
650 and Xuetao Cao. 2017. "Methyltransferase SETD2-Mediated Methylation of STAT1 Is Critical for
651 Interferon Antiviral Activity." *Cell* 170 (3): 492–506.e14.
652 <https://doi.org/10.1016/j.cell.2017.06.042>.

653 Chen, Rui, Wei-qing Zhao, Cheng Fang, Xin Yang, and Mei Ji. 2020. "Histone Methyltransferase SETD2:
654 A Potential Tumor Suppressor in Solid Cancers." *Journal of Cancer* 11 (11): 3349–56.
655 <https://doi.org/10.7150/jca.38391>.

656 Chen, Zhijie, Ronen Gabizon, Aidan I Brown, Antony Lee, Aixin Song, César Díaz-Celis, Craig D Kaplan,
657 Elena F Koslover, Tingting Yao, and Carlos Bustamante. 2019. "High-Resolution and High-
658 Accuracy Topographic and Transcriptional Maps of the Nucleosome Barrier." Edited by Taekjip
659 Ha and Jessica K Tyler. *eLife* 8 (July): e48281. <https://doi.org/10.7554/eLife.48281>.

660 Chiang, Yun-Chen, In-Young Park, Esteban A. Terzo, Durga Nand Tripathi, Frank M. Mason, Catherine
661 C. Fahey, Menuka Karki, et al. 2018. "SETD2 Haploinsufficiency for Microtubule Methylation Is
662 an Early Driver of Genomic Instability in Renal Cell Carcinoma." *Cancer Research* 78 (12): 3135–
663 46. <https://doi.org/10.1158/0008-5472.CAN-17-3460>.

664 Conlon, Ian, and Martin Raff. 2003. "Differences in the Way a Mammalian Cell and Yeast Cells
665 Coordinate Cell Growth and Cell-Cycle Progression." *Journal of Biology* 2 (1): 7.
666 <https://doi.org/10.1186/1475-4924-2-7>.

667 Dalglish, Gillian L., Kyle Furge, Chris Greenman, Lina Chen, Graham Bignell, Adam Butler, Helen
668 Davies, et al. 2010. "Systematic Sequencing of Renal Carcinoma Reveals Inactivation of Histone
669 Modifying Genes." *Nature* 463 (7279): 360–63. <https://doi.org/10.1038/nature08672>.

670 Daugaard, Mads, Annika Baude, Kasper Fugger, Lou Klitgaard Povlsen, Halfdan Beck, Claus Storgaard
671 Sørensen, Nikolaj H. T. Petersen, et al. 2012. "LEDGF (P75) Promotes DNA-End Resection and
672 Homologous Recombination." *Nature Structural & Molecular Biology* 19 (8): 803–10.
673 <https://doi.org/10.1038/nsmb.2314>.

674 Duns, Gerben, Eva van den Berg, Inge van Duivenbode, Jan Osinga, Harry Hollema, Robert M. W.
675 Hofstra, and Klaas Kok. 2010. "Histone Methyltransferase Gene SETD2 Is a Novel Tumor
676 Suppressor Gene in Clear Cell Renal Cell Carcinoma." *Cancer Research* 70 (11): 4287–91.
677 <https://doi.org/10.1158/0008-5472.CAN-10-0120>.

678 Edmunds, John W., Louis C. Mahadevan, and Alison L. Clayton. 2008. "Dynamic Histone H3
679 Methylation during Gene Induction: HYPB/Setd2 Mediates All H3K36 Trimethylation." *The
680 EMBO Journal* 27 (2): 406–20. <https://doi.org/10.1038/sj.emboj.7601967>.

681 Fahey, Catherine C., and Ian J. Davis. 2017. "SETting the Stage for Cancer Development: SETD2 and the
682 Consequences of Lost Methylation." *Cold Spring Harbor Perspectives in Medicine* 7 (5): a026468.
683 <https://doi.org/10.1101/cshperspect.a026468>.

684 Faller, William J., Thomas J. Jackson, John Rp Knight, Rachel A. Ridgway, Thomas Jamieson, Saadia A.
685 Karim, Carolyn Jones, et al. 2015. "MTORC1-Mediated Translational Elongation Limits Intestinal
686 Tumour Initiation and Growth." *Nature* 517 (7535): 497–500.
687 <https://doi.org/10.1038/nature13896>.

688 Fang, Dong, Haiyun Gan, Jeong-Heon Lee, Jing Han, Zhiqian Wang, Scott M. Riester, Long Jin, et al.
689 2016. "The Histone H3.3K36M Mutation Reprograms the Epigenome of Chondroblastomas." *Science*
690 (New York, N.Y.) 352 (6291): 1344. <https://doi.org/10.1126/science.aae0065>.

691 Fang, Jun, Yaping Huang, Guogen Mao, Shuang Yang, Gadi Rennert, Liya Gu, Haitao Li, and Guo-Min Li.
692 2018. "Cancer-Driving H3G34V/R/D Mutations Block H3K36 Methylation and H3K36me3–MutSα
693 Interaction." *Proceedings of the National Academy of Sciences of the United States of America*
694 115 (38): 9598. <https://doi.org/10.1073/pnas.1806355115>.

695 Farnung, Lucas, Moritz Ochmann, Maik Engeholm, and Patrick Cramer. 2021. "Structural Basis of
696 Nucleosome Transcription Mediated by Chd1 and FACT." *Nature Structural & Molecular Biology*
697 28 (4): 382–87. <https://doi.org/10.1038/s41594-021-00578-6>.

698 Fellmann, Christof, Thomas Hoffmann, Vaishali Sridhar, Barbara Hopfgartner, Matthias Muhar,
699 Mareike Roth, Dan Yu Lai, et al. 2013. "An Optimized MicroRNA Backbone for Effective Single-
700 Copy RNAi." *Cell Reports* 5 (6): 1704–13. <https://doi.org/10.1016/j.celrep.2013.11.020>.

701 Fontebasso, Adam M., Jeremy Schwartzentruber, Dong-Anh Khuong-Quang, Xiao-Yang Liu, Dominik
702 Sturm, Andrey Korshunov, David T. W. Jones, et al. 2013. "Mutations in SETD2 and Genes
703 Affecting Histone H3K36 Methylation Target Hemispheric High-Grade Gliomas." *Acta
704 Neuropathologica* 125 (5): 659–69. <https://doi.org/10.1007/s00401-013-1095-8>.

705 Gerlinger, Marco, Andrew J. Rowan, Stuart Horswell, James Larkin, David Endesfelder, Eva Gronroos,
706 Pierre Martinez, et al. 2012. "Intratumor Heterogeneity and Branched Evolution Revealed by
707 Multiregion Sequencing." *New England Journal of Medicine* 366 (10): 883–92.
708 <https://doi.org/10.1056/NEJMoa1113205>.

709 Gopalakrishnan, Rajaraman, Sharon K Marr, Robert E Kingston, and Fred Winston. 2019. "A Conserved
710 Genetic Interaction between Spt6 and Set2 Regulates H3K36 Methylation." *Nucleic Acids
711 Research* 47 (8): 3888–3903. <https://doi.org/10.1093/nar/gkz119>.

712 Goranov, Alexi I., Michael Cook, Marketa Ricicova, Giora Ben-Ari, Christian Gonzalez, Carl Hansen,
713 Mike Tyers, and Angelika Amon. 2009. "The Rate of Cell Growth Is Governed by Cell Cycle
714 Stage." *Genes & Development* 23 (12): 1408–22. <https://doi.org/10.1101/gad.1777309>.

715 Grossó, Ana R., Ana P. Leite, Sílvia Carvalho, Mafalda R. Matos, Filipa B. Martins, Alexandra C. Vítor,
716 Joana M. P. Desterro, Maria Carmo-Fonseca, and Sérgio F. de Almeida. 2015. "Pervasive
717 Transcription Read-through Promotes Aberrant Expression of Oncogenes and RNA Chimeras in
718 Renal Carcinoma." *eLife* 4 (November). <https://doi.org/10.7554/elife.09214>.

719 Guo, Rui, Lijuan Zheng, Juw Won Park, Ruitu Lv, Hao Chen, Fangfang Jiao, Wenqi Xu, et al. 2014.
720 "BS69/ZMYND11 Reads and Connects Histone H3.3 Lysine 36 Trimethylation Decorated
721 Chromatin to Regulated Pre-MRNA Processing." *Molecular Cell* 56 (2): 298–310.
722 <https://doi.org/10.1016/j.molcel.2014.08.022>.

723 Hacker, Kathryn E., Catherine C. Fahey, Stephen A. Shinsky, Yun-Chen J. Chiang, Julia V. DiFiore,
724 Deepak Kumar Jha, Andy H. Vo, et al. 2016. "Structure/Function Analysis of Recurrent Mutations
725 in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining
726 Protein Stability and Histone H3 Lys-36 Trimethylation." *The Journal of Biological Chemistry* 291
727 (40): 21283–95. <https://doi.org/10.1074/jbc.M116.739375>.

728 Hapke, Robert, Lindsay Venton, Kristie Lindsay Rose, Quanhu Sheng, Anupama Reddy, Angela Jones,
729 W. Kimryn Rathmell, and Scott Haake. 2020. "SETD2 Regulates the Methylation of Translation
730 Elongation Factor EEF1A1 in Clear Cell Renal Cell Carcinoma." Preprint. Cancer Biology.
731 <https://doi.org/10.1101/2020.10.26.354902>.

732 Hsieh, Fu-Kai, Olga I. Kulaeva, Smita S. Patel, Pamela N. Dyer, Karolin Luger, Danny Reinberg, and
733 Vasily M. Studitsky. 2013. "Histone Chaperone FACT Action during Transcription through
734 Chromatin by RNA Polymerase II." *Proceedings of the National Academy of Sciences* 110 (19):
735 7654–59. <https://doi.org/10.1073/pnas.1222198110>.

736 Huang, Yaping, Liya Gu, and Guo-Min Li. 2018. "H3K36me3-Mediated Mismatch Repair Preferentially
737 Protects Actively Transcribed Genes from Mutation." *Journal of Biological Chemistry* 293 (20):
738 7811–23. <https://doi.org/10.1074/jbc.RA118.002839>.

739 Hyun, Kwangbeom, Jongcheol Jeon, Kihyun Park, and Jaehoon Kim. 2017. "Writing, Erasing and
740 Reading Histone Lysine Methylation." *Experimental & Molecular Medicine* 49 (4): e324–e324.
741 <https://doi.org/10.1038/emm.2017.11>.

742 Jamai, Adil, Andrea Puglisi, and Michel Strubin. 2009. "Histone Chaperone Spt16 Promotes
743 Redeposition of the Original H3-H4 Histones Evicted by Elongating RNA Polymerase." *Molecular
744 Cell* 35 (3): 377–83. <https://doi.org/10.1016/j.molcel.2009.07.001>.

745 Jeronimo, Célia, Christian Poitras, and François Robert. 2019. "Histone Recycling by FACT and Spt6
746 during Transcription Prevents the Scrambling of Histone Modifications." *Cell Reports* 28 (5):
747 1206–1218.e8. <https://doi.org/10.1016/j.celrep.2019.06.097>.

748 Joshi, Amita A., and Kevin Struhl. 2005. "Eaf3 Chromodomain Interaction with Methylated H3-K36
749 Links Histone Deacetylation to Pol II Elongation." *Molecular Cell* 20 (6): 971–78.
750 <https://doi.org/10.1016/j.molcel.2005.11.021>.

751 Kearns, Sarah, Frank M. Mason, W. Kimryn Rathmell, In Young Park, Cheryl Walker, Kristen Verhey,
752 and Michael A. Cianfrocco. 2020. "Molecular Determinants for α -Tubulin Methylation by
753 SETD2." Preprint. *Biochemistry*. <https://doi.org/10.1101/2020.10.21.349365>.

754 Keogh, Michael-Christopher, Siavash K. Kurdistani, Stephanie A. Morris, Seong Hoon Ahn, Vladimir
755 Podolny, Sean R. Collins, Maya Schuldtner, et al. 2005. "Cotranscriptional Set2 Methylation of
756 Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex." *Cell* 123 (4): 593–605.
757 <https://doi.org/10.1016/j.cell.2005.10.025>.

758 Kim, TaeSoo, and Stephen Buratowski. 2007. "Two *Saccharomyces cerevisiae* JmjC Domain Proteins
759 Demethylate Histone H3 Lys36 in Transcribed Regions to Promote Elongation." *Journal of
760 Biological Chemistry* 282 (29): 20827–35. <https://doi.org/10.1074/jbc.M703034200>.

761 Kizer, Kelby O., Hemali P. Phatnani, Yoichiro Shibata, Hana Hall, Arno L. Greenleaf, and Brian D. Strahl.
762 2005. "A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3
763 K36 Methylation with Transcript Elongation." *Molecular and Cellular Biology* 25 (8): 3305–16.
764 <https://doi.org/10.1128/MCB.25.8.3305-3316.2005>.

765 Klose, Robert J., Kathryn E. Gardner, Gaoyang Liang, Hediye Erdjument-Bromage, Paul Tempst, and Yi
766 Zhang. 2007. "Demethylation of Histone H3K36 and H3K9 by Rph1: A Vestige of an H3K9
767 Methylation System in *Saccharomyces cerevisiae*?" *Molecular and Cellular Biology* 27 (11):
768 3951–61. <https://doi.org/10.1128/MCB.02180-06>.

769 Konermann, Silvana, Peter Lotfy, Nicholas J. Brideau, Jennifer Oki, Maxim N. Shokhirev, and Patrick D.
770 Hsu. 2018. "Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors." *Cell*
771 173 (3): 665–676.e14. <https://doi.org/10.1016/j.cell.2018.02.033>.

772 LeRoy, Gary, Peter A. DiMaggio, Eric Y. Chan, Barry M. Zee, M. Andres Blanco, Barbara Bryant, Ian Z.
773 Flaniken, et al. 2013. "A Quantitative Atlas of Histone Modification Signatures from Human
774 Cancer Cells." *Epigenetics & Chromatin* 6 (1): 20. <https://doi.org/10.1186/1756-8935-6-20>.

775 Leung, Calvin S., Stephen M. Douglass, Marco Morselli, Matthew B. Obusan, Marat S. Pavlyukov,
776 Matteo Pellegrini, and Tracy L. Johnson. 2019. "H3K36 Methylation and the Chromodomain
777 Protein Eaf3 Are Required for Proper Cotranscriptional Spliceosome Assembly." *Cell Reports* 27
778 (13): 3760–3769.e4. <https://doi.org/10.1016/j.celrep.2019.05.100>.

779 Lewis, Peter W., Manuel M. Müller, Matthew S. Koletsky, Francisco Cordero, Shu Lin, Laura A.
780 Banaszynski, Benjamin A. Garcia, Tom W. Muir, Oren J. Becher, and C. David Allis. 2013.
781 "Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric
782 Glioblastoma." *Science* 340 (6134): 857–61. <https://doi.org/10.1126/science.1232245>.

783 Li, Feng, Guogen Mao, Dan Tong, Jian Huang, Liya Gu, Wei Yang, and Guo-Min Li. 2013. "The Histone
784 Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutS α ."
785 *Cell* 153 (3): 590–600. <https://doi.org/10.1016/j.cell.2013.03.025>.

786 Li, Jie, Jeong Hyun Ahn, and Gang Greg Wang. 2019. "Understanding Histone H3 Lysine 36
787 Methylation and Its Dereulation in Disease." *Cellular and Molecular Life Sciences* 76 (15):
788 2899–2916. <https://doi.org/10.1007/s00018-019-03144-y>.

789 Li, Jun, Gerben Duns, Helga Westers, Rolf Sijmons, Anke van den Berg, and Klaas Kok. 2016. "SETD2:
790 An Epigenetic Modifier with Tumor Suppressor Functionality." *Oncotarget* 7 (31): 50719–34.
791 <https://doi.org/10.18632/oncotarget.9368>.

792 Li, Ming, Hemali P. Phatnani, Ziqiang Guan, Harvey Sage, Arno L. Greenleaf, and Pei Zhou. 2005.
793 "Solution Structure of the Set2–Rpb1 Interacting Domain of Human Set2 and Its Interaction with
794 the Hyperphosphorylated C-Terminal Domain of Rpb1." *Proceedings of the National Academy of
795 Sciences* 102 (49): 17636–41. <https://doi.org/10.1073/pnas.0506350102>.

796 Lickwar, Colin R., Bhargavi Rao, Andrey A. Shabalina, Andrew B. Nobel, Brian D. Strahl, and Jason D.
797 Lieb. 2009. "The Set2/Rpd3S Pathway Suppresses Cryptic Transcription without Regard to Gene
798 Length or Transcription Frequency." *PLOS ONE* 4 (3): e4886.
799 <https://doi.org/10.1371/journal.pone.0004886>.

800 Lu, Chao, Siddhant U. Jain, Dominik Hoelper, Denise Bechet, Rosalynn C. Molden, Leili Ran, Devan
801 Murphy, et al. 2016. "Histone H3K36 Mutations Promote Sarcomagenesis through Altered
802 Histone Methylation Landscape." *Science (New York, N.Y.)* 352 (6287): 844–49.
803 <https://doi.org/10.1126/science.aac7272>.

804 Lu, Mingdong, Bin Zhao, Mengshan Liu, Le Wu, Yingying Li, Yingna Zhai, and Xian Shen. 2021. "Pan-
805 Cancer Analysis of SETD2 Mutation and Its Association with the Efficacy of Immunotherapy." *Npj
806 Precision Oncology* 5 (1): 1–6. <https://doi.org/10.1038/s41698-021-00193-0>.

807 Luco, Reini F., Qun Pan, Kaoru Tominaga, Benjamin J. Blencowe, Olivia M. Pereira-Smith, and Tom
808 Misteli. 2010. "Regulation of Alternative Splicing by Histone Modifications." *Science (New York,
809 N.Y.)* 327 (5968): 996–1000. <https://doi.org/10.1126/science.1184208>.

810 Mar, Brenton G., Lars B. Bullinger, Kathleen M. McLean, Peter V. Grauman, Marian H. Harris, Kristen
811 Stevenson, Donna S. Neuberg, et al. 2014. "Mutations in Epigenetic Regulators Including SETD2
812 Are Gained during Relapse in Paediatric Acute Lymphoblastic Leukaemia." *Nature
813 Communications* 5 (March): 3469. <https://doi.org/10.1038/ncomms4469>.

814 Mar, Brenton G., S. Haihua Chu, Josephine D. Kahn, Andrei V. Krivtsov, Richard Koche, Cecilia A.
815 Castellano, Jacob L. Kotlier, et al. 2017. "SETD2 Alterations Impair DNA Damage Recognition and
816 Lead to Resistance to Chemotherapy in Leukemia." *Blood* 130 (24): 2631.
817 <https://doi.org/10.1182/blood-2017-03-775569>.

818 Maze, Ian, Wendy Wenderski, Kyung-Min Noh, Rosemary C. Bagot, Nikos Tzavaras, Immanuel
819 Purushothaman, Simon J. Elsässer, et al. 2015. "Critical Role of Histone Turnover in Neuronal
820 Transcription and Plasticity." *Neuron* 87 (1): 77–94.
821 <https://doi.org/10.1016/j.neuron.2015.06.014>.

822 McDaniel, Stephen L., and Brian D. Strahl. 2017. "Shaping the Cellular Landscape with Set2/SETD2
823 Methylation." *Cellular and Molecular Life Sciences* 74 (18): 3317–34.
824 <https://doi.org/10.1007/s00018-017-2517-x>.

825 Meers, Michael P, Telmo Henriques, Christopher A Lavender, Daniel J McKay, Brian D Strahl, Robert J
826 Duronio, Karen Adelman, and A Gregory Matera. 2017. "Histone Gene Replacement Reveals a
827 Post-Transcriptional Role for H3K36 in Maintaining Metazoan Transcriptome Fidelity." Edited by
828 Elisa Izaurrealde. *eLife* 6 (March): e23249. <https://doi.org/10.7554/eLife.23249>.

829 Michaloglou, Chryssi, Liesbeth C. W. Vredeveld, Maria S. Soengas, Christophe Denoyelle, Thomas
830 Kuilman, Chantal M. A. M. van der Horst, Donné M. Majoor, Jerry W. Shay, Wolter J. Mooi, and
831 Daniel S. Peeker. 2005. "BRAFE600-Associated Senescence-like Cell Cycle Arrest of Human
832 Naevi." *Nature* 436 (7051): 720–24. <https://doi.org/10.1038/nature03890>.

833 Molenaar, Thom M., Marc Pagès-Gallego, Vanessa Meyn, and Fred van Leeuwen. 2020. "Application
834 of Recombination -Induced Tag Exchange (RITE) to Study Histone Dynamics in Human Cells."
835 *Epigenetics* 15 (9): 901–13. <https://doi.org/10.1080/15592294.2020.1741777>.

836 Muhar, Matthias, Anja Ebert, Tobias Neumann, Christian Umkehrer, Julian Jude, Corinna Wieshofer,
837 Philipp Rescheneder, et al. 2018. "SLAM-Seq Defines Direct Gene-Regulatory Functions of the
838 BRD4-MYC Axis." *Science (New York, N.Y.)* 360 (6390): 800–805.
839 <https://doi.org/10.1126/science.aoa2793>.

840 Neri, Francesco, Stefania Rapelli, Anna Krepelova, Danny Incarnato, Caterina Parlato, Giulia Basile,
841 Mara Maldotti, Francesca Anselmi, and Salvatore Oliviero. 2017. "Intragenic DNA Methylation
842 Prevents Spurious Transcription Initiation." *Nature* 543 (7643): 72–77.
843 <https://doi.org/10.1038/nature21373>.

844 Pardo, Mercedes, and Jyoti S. Choudhary. 2012. "Assignment of Protein Interactions from Affinity
845 Purification/Mass Spectrometry Data." *Journal of Proteome Research* 11 (3): 1462–74.
846 <https://doi.org/10.1021/pr2011632>.

847 Park, Young, Reid T. Powell, Durga Nand Tripathi, Ruhee Dere, Thai H. Ho, T. Lynne Blasius, Yun-Chen
848 Chiang, et al. 2016. "Dual Chromatin and Cytoskeletal Remodeling by SETD2." *Cell* 166 (4): 950.
849 <https://doi.org/10.1016/j.cell.2016.07.005>.

850 Petesch, Steven J., and John T. Lis. 2012. "Overcoming the Nucleosome Barrier During Transcript
851 Elongation." *Trends in Genetics : TIG* 28 (6): 285–94. <https://doi.org/10.1016/j.tig.2012.02.005>.

852 Pfister, Sophia X., Sara Ahrabi, Lykourgos-Panagiotis Zalmas, Sovan Sarkar, François Aymard, Csanád Z.
853 Bachrati, Thomas Helleday, et al. 2014. "SETD2-Dependent Histone H3K36 Trimethylation Is
854 Required for Homologous Recombination Repair and Genome Stability." *Cell Reports* 7 (6):
855 2006–18. <https://doi.org/10.1016/j.celrep.2014.05.026>.

856 Ponnaluri, V. K. Chaithanya, Divya Teja Vavilala, Sandeep Putty, William G. Gutheil, and Mridul
857 Mukherji. 2009. "Identification of Non-Histone Substrates for JMJD2A-C Histone Demethylases."
858 *Biochemical and Biophysical Research Communications* 390 (2): 280–84.
859 <https://doi.org/10.1016/j.bbrc.2009.09.107>.

860 Radman-Livaja, Marta, Tiffani K. Quan, Lourdes Valenzuela, Jennifer A. Armstrong, Tibor van Welsem,
861 TaeSoo Kim, Laura J. Lee, et al. 2012. "A Key Role for Chd1 in Histone H3 Dynamics at the 3' Ends
862 of Long Genes in Yeast." *PLOS Genetics* 8 (7): e1002811.
863 <https://doi.org/10.1371/journal.pgen.1002811>.

864 Ray-Gallet, Dominique, Jean-Pierre Quivy, Christine Scamps, Emmanuelle M. -D Martini, Marc Lipinski,
865 and Geneviève Almouzni. 2002. "HIRA Is Critical for a Nucleosome Assembly Pathway
866 Independent of DNA Synthesis." *Molecular Cell* 9 (5): 1091–1100.
867 [https://doi.org/10.1016/S1097-2765\(02\)00526-9](https://doi.org/10.1016/S1097-2765(02)00526-9).

868 Rebehmed, Joseph, Patrick Revy, Guilhem Faure, Jean-Pierre de Villartay, and Isabelle Callebaut.
869 2014. "Expanding the SRI Domain Family: A Common Scaffold for Binding the Phosphorylated C-
870 Terminal Domain of RNA Polymerase II." *FEBS Letters* 588 (23): 4431–37.
871 <https://doi.org/10.1016/j.febslet.2014.10.014>.

872 Robichaud, Nathaniel, Nahum Sonenberg, Davide Ruggero, and Robert J. Schneider. 2019.
873 "Translational Control in Cancer." *Cold Spring Harbor Perspectives in Biology* 11 (7): a032896.
874 <https://doi.org/10.1101/cshperspect.a032896>.

875 Sankaran, Saumya M., and Or Gozani. 2017. "Characterization of H3.3K36M as a Tool to Study H3K36
876 Methylation in Cancer Cells." *Epigenetics* 12 (11): 917.
877 <https://doi.org/10.1080/15592294.2017.1377870>.

878 Sato, Yusuke, Tetsuichi Yoshizato, Yuichi Shiraishi, Shigekatsu Maekawa, Yusuke Okuno, Takumi
879 Kamura, Teppei Shimamura, et al. 2013. "Integrated Molecular Analysis of Clear-Cell Renal Cell
880 Carcinoma." *Nature Genetics* 45 (8): 860–67. <https://doi.org/10.1038/ng.2699>.

881 Schwartzenruber, Jeremy, Andrey Korshunov, Xiao-Yang Liu, David T. W. Jones, Elke Pfaff, Karine
882 Jacob, Dominik Sturm, et al. 2012. "Driver Mutations in Histone H3.3 and Chromatin
883 Remodelling Genes in Paediatric Glioblastoma." *Nature* 482 (7384): 226–31.
884 <https://doi.org/10.1038/nature10833>.

885 Seervai, Riyad N. H., Rahul K. Jangid, Menuka Karki, Durga Nand Tripathi, Sung Yun Jung, Sarah E.
886 Kearns, Kristen J. Verhey, et al. 2020. "The Huntingtin-Interacting Protein SETD2/HYPB Is an
887 Actin Lysine Methyltransferase." *Science Advances* 6 (40).
888 <https://doi.org/10.1126/sciadv.abb7854>.

889 Shi, Leilei, Jiejun Shi, Xiaobing Shi, Wei Li, and Hong Wen. 2018. "Histone H3.3 G34 Mutations Alter
890 Histone H3K36 and H3K27 Methylation In Cis." *Journal of Molecular Biology* 430 (11): 1562–65.
891 <https://doi.org/10.1016/j.jmb.2018.04.014>.

892 Silvera, Deborah, Silvia C. Formenti, and Robert J. Schneider. 2010. "Translational Control in Cancer."
893 *Nature Reviews Cancer* 10 (4): 254–66. <https://doi.org/10.1038/nrc2824>.

894 Simon, Jeremy M., Kathryn E. Hacker, Darshan Singh, A. Rose Brannon, Joel S. Parker, Matthew
895 Weiser, Thai H. Ho, et al. 2014. "Variation in Chromatin Accessibility in Human Kidney Cancer
896 Links H3K36 Methyltransferase Loss with Widespread RNA Processing Defects." *Genome
897 Research* 24 (2): 241–50. <https://doi.org/10.1101/gr.158253.113>.

898 Smolle, Michaela, Swaminathan Venkatesh, Madelaine M. Gogol, Hua Li, Ying Zhang, Laurence
899 Florens, Michael P. Washburn, and Jerry L. Workman. 2012. "Chromatin Remodelers Isw1 and
900 Chd1 Maintain Chromatin Structure during Transcription by Preventing Histone Exchange."
901 *Nature Structural & Molecular Biology* 19 (9): 884–92. <https://doi.org/10.1038/nsmb.2312>.

902 Sorenson, Matthew R., Deepak K. Jha, Stefanie A. Ucles, Danielle M. Flood, Brian D. Strahl, Scott W.
903 Stevens, and Tracy L. Kress. 2016. "Histone H3K36 Methylation Regulates Pre-mRNA Splicing in
904 *Saccharomyces cerevisiae*." *RNA Biology* 13 (4): 412–26.
905 <https://doi.org/10.1080/15476286.2016.1144009>.

906 Strahl, Brian D., Patrick A. Grant, Scott D. Briggs, Zu-Wen Sun, James R. Bone, Jennifer A. Caldwell,
907 Sahana Mollah, et al. 2002. "Set2 Is a Nucleosomal Histone H3-Selective Methyltransferase That

908 Mediates Transcriptional Repression." *Molecular and Cellular Biology* 22 (5): 1298–1306.
909 <https://doi.org/10.1128/mcb.22.5.1298-1306.2002>.

910 Studitsky, Vasily M., Ekaterina V. Nizovtseva, Alexey K. Shaytan, and Donal S. Luse. 2016.
911 "Nucleosomal Barrier to Transcription: Structural Determinants and Changes in Chromatin
912 Structure." *Biochemistry & Molecular Biology Journal* 2 (2): 8. <https://doi.org/10.21767/2471-8084.100017>.

913 Sun, Xiao-Jian, Ju Wei, Xin-Yan Wu, Ming Hu, Lan Wang, Hai-Hong Wang, Qing-Hua Zhang, Sai-Juan
914 Chen, Qiu-Hua Huang, and Zhu Chen. 2005. "Identification and Characterization of a Novel
915 Human Histone H3 Lysine 36-Specific Methyltransferase." *The Journal of Biological Chemistry*
916 280 (42): 35261–71. <https://doi.org/10.1074/jbc.M504012200>.

917 Tagami, Hideaki, Dominique Ray-Gallet, Geneviève Almouzni, and Yoshihiro Nakatani. 2004. "Histone
918 H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent
919 of DNA Synthesis." *Cell* 116 (1): 51–61. [https://doi.org/10.1016/S0092-8674\(03\)01064-X](https://doi.org/10.1016/S0092-8674(03)01064-X).

920 Tvardovskiy, Andrey, Veit Schwämmele, Stefan J. Kempf, Adelina Rogowska-Wrzesinska, and Ole N.
921 Jensen. 2017. "Accumulation of Histone Variant H3.3 with Age Is Associated with Profound
922 Changes in the Histone Methylation Landscape." *Nucleic Acids Research* 45 (16): 9272–89.
923 <https://doi.org/10.1093/nar/gkx696>.

924 Van Rechem, Capucine, Joshua C. Black, Myriam Boukhali, Martin J. Aryee, Susanne Gräslund,
925 Wilhelm Haas, Cyril H. Benes, and Johnathan R. Whetstone. 2015. "Lysine Demethylase KDM4A
926 Associates with Translation Machinery and Regulates Protein Synthesis." *Cancer Discovery* 5 (3):
927 255–63. <https://doi.org/10.1158/2159-8290.CD-14-1326>.

928 Venkatesh, Swaminathan, Michaela Smolle, Hua Li, Madelaine M. Gogol, Malika Saint, Shambhu
929 Kumar, Krishnamurthy Natarajan, and Jerry L. Workman. 2012. "Set2 Methylation of Histone H3
930 Lysine 36 Suppresses Histone Exchange on Transcribed Genes." *Nature* 489 (7416): 452–55.
931 <https://doi.org/10.1038/nature11326>.

932 Wagner, Eric J., and Phillip B. Carpenter. 2012. "Understanding the Language of Lys36 Methylation at
933 Histone H3." *Nature Reviews. Molecular Cell Biology* 13 (2): 115–26.
934 <https://doi.org/10.1038/nrm3274>.

935 Wang, Tim, Kivanç Birsoy, Nicholas W. Hughes, Kevin M. Krupczak, Yorick Post, Jenny J. Wei, Eric S.
936 Lander, and David M. Sabatini. 2015. "Identification and Characterization of Essential Genes in
937 the Human Genome." *Science (New York, N.Y.)* 350 (6264): 1096.
938 <https://doi.org/10.1126/science.aac7041>.

939 Wang, Yi, Yanling Niu, and Bing Li. 2015. "Balancing Acts of SRI and an Auto-Inhibitory Domain Specify
940 Set2 Function at Transcribed Chromatin." *Nucleic Acids Research* 43 (10): 4881–92.
941 <https://doi.org/10.1093/nar/gkv393>.

942 Wessels, Hans-Hermann, Alejandro Méndez-Mancilla, Xinyi Guo, Mateusz Legut, Zharko Daniloski, and
943 Neville E. Sanjana. 2020. "Massively Parallel Cas13 Screens Reveal Principles for Guide RNA
944 Design." *Nature Biotechnology* 38 (6): 722–27. <https://doi.org/10.1038/s41587-020-0456-9>.

945 Yoh, Sunnie M., Joseph S. Lucas, and Katherine A. Jones. 2008. "The Iws1:Spt6:CTD Complex Controls
946 Cotranscriptional mRNA Biosynthesis and HYPB/Setd2-Mediated Histone H3K36 Methylation."
947 <https://doi.org/10.1101/gad.1720008>.

948 Youdell, Michael L., Kelby O. Kizer, Elena Kisseleva-Romanova, Stephen M. Fuchs, Eris Duro, Brian D.
949 Strahl, and Jane Mellor. 2008. "Roles for Ctk1 and Spt6 in Regulating the Different Methylation
950 States of Histone H3 Lysine 36." *Molecular and Cellular Biology* 28 (16): 4915–26.
951 <https://doi.org/10.1128/MCB.00001-08>.

952 Yuan, Huairui, Ying Han, Xuege Wang, Ni Li, Qiuli Liu, Yuye Yin, Hanling Wang, et al. 2020. "SETD2
953 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways." *Cancer
954 Cell* 38 (3): 350–365.e7. <https://doi.org/10.1016/j.ccr.2020.05.022>.

955 Yuan, Wen, Jingwei Xie, Chengzu Long, Hediye Erdjument-Bromage, Xiaojun Ding, Yong Zheng, Paul
956 Tempst, She Chen, Bing Zhu, and Danny Reinberg. 2009. "Heterogeneous Nuclear
957 Ribonucleoprotein L Is a Subunit of Human KMT3a/Set2 Complex Required for H3 Lys-36
958 Trimethylation Activity in Vivo." *The Journal of Biological Chemistry* 284 (23): 15701–7.
959 <https://doi.org/10.1074/jbc.M808431200>.

960 Zaghi, Mattia, Vania Broccoli, and Alessandro Sessa. 2020. "H3K36 Methylation in Neural
961 Development and Associated Diseases." *Frontiers in Genetics* 10: 1291.
962 <https://doi.org/10.3389/fgene.2019.01291>.

963

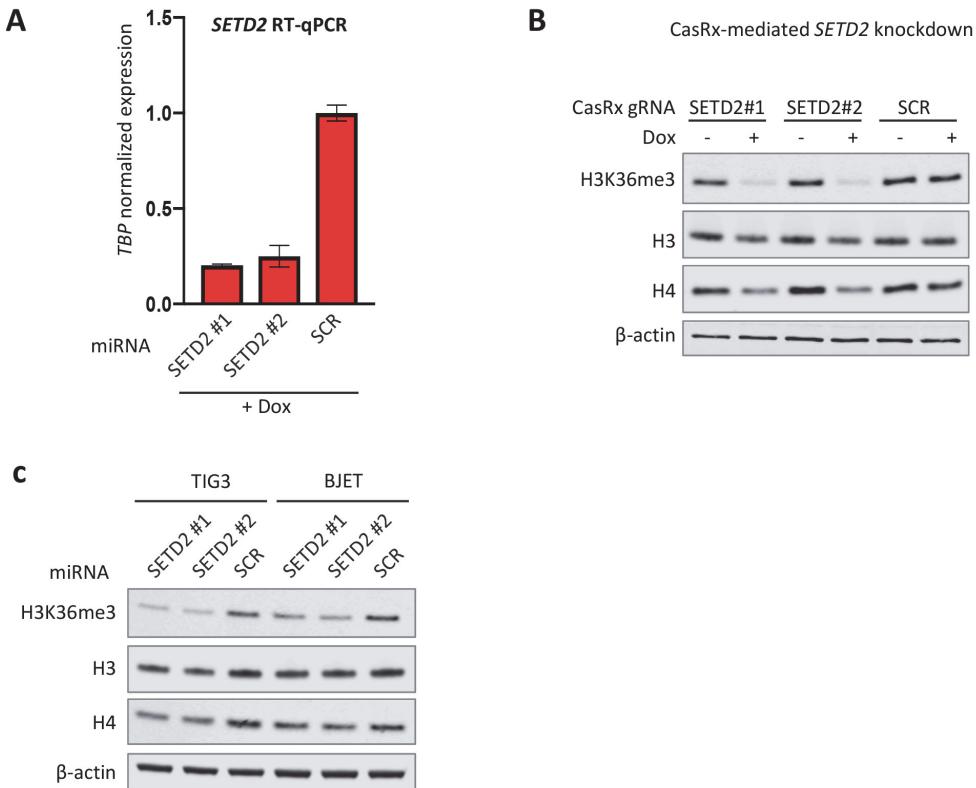
964 Zhang, Jinghui, Li Ding, Linda Holmfeldt, Gang Wu, Sue L. Heatley, Debbie Payne-Turner, John Easton,
965 et al. 2012. "The Genetic Basis of Early T-Cell Precursor Acute Lymphoblastic Leukaemia."
966 *Nature* 481 (7380): 157–63. <https://doi.org/10.1038/nature10725>.

967 Zhang, Yinglu, Chun-Min Shan, Jiyong Wang, Kehan Bao, Liang Tong, and Songtao Jia. 2017.
968 "Molecular Basis for the Role of Oncogenic Histone Mutations in Modulating H3K36
969 Methylation." *Scientific Reports* 7 (1): 43906. <https://doi.org/10.1038/srep43906>.

970 Zhu, Xiaofan, Fuhong He, Huimin Zeng, Shaoping Ling, Aili Chen, Yaqin Wang, Xiaomei Yan, et al. 2014.
971 "Identification of Functional Cooperative Mutations of SETD2 in Human Acute Leukemia."
972 *Nature Genetics* 46 (3): 287–93. <https://doi.org/10.1038/ng.2894>.

973

974


975

976

977

978 **Supplementary figures**

979

980

981

982 **Supplementary Figure 1. *SETD2* knockdown using CasRx increased protein content in RPE1 cells and**
983 **miRNA-based knockdown increases protein content in TIG3 and BJ cells. (A)** RT-qPCR of *SETD2*
984 following miRNA-based knockdown in RPE1 cells. **(B)** Western blot of RPE1 cells with doxycycline
985 inducible expression of CasRx and stable expression of CasRx gRNAs targeting *SETD2* or a scrambled
986 (SCR) gRNA. **(C)** Western blot of TIG3 and BJ cells with miRNA-based knockdown of *SETD2*.