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Abstract 

Gene transcription and protein translation are two key steps of the “central dogma”. It 

is still a major challenge to quantitatively deconvolute factors contributing to the 

coding ability of transcripts in mammals. Here, we propose Ribosome Calculator 

(RiboCalc) for quantitatively modeling the coding ability of RNAs in human genome. 

In addition to effectively predicting the experimentally confirmed coding abundance 

via sequence and transcription features with high accuracy, RiboCalc provides 

interpretable parameters with biological information. Large-scale analysis further 

revealed a number of transcripts with a variety of coding ability for distinct types of 

cells (i.e., context-dependent coding transcripts, CDCTs), suggesting that, contrary to 

conventional wisdom, a transcript’s coding ability should be modeled as a continuous 

spectrum with a context-dependent nature.
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Introduction 

Gene transcription and protein translation are two key steps of the “central dogma”. 

While protein abundance is generally believed to be regulated by both transcriptional 

and translational control [1-3], it is still a major challenge to quantitatively factors 

contributing to transcript’s coding ability (i.e., whether a particular transcript will 

encode a protein and, if so, the corresponding abundance). 

 

Benefitting from rapid development on high-throughput technology recently, several 

quantitative models have been proposed for modeling coding ability in silico based on 

various features in unicellular organisms [4-7]. While these models are rather accurate 

(e.g. the correlation of with ribosomal density has achieved 0.68[7]), heterogeneity 

across cells and species hinders their application in depicting translation control in 

mammals [8].  

 

Multiple translation-related signatures have been reported in human and other 

mammal systems, revealing several gene-encoded transcription and translation 

regulatory features which substantially contribute to the final mRNA and protein 

expression levels [9-15]. Along this line, Volkova et al. have assessed these features 

and build qualitative models to discriminate coding and noncoding RNAs, as well as 

high- and low-translated mRNAs [16]. Trösemeier et al. have introduced a 

codon-specific translation elongation model to simulate ribosome dynamics during 

mRNA translation and integrate model’s parameters for protein expression prediction 

[17]. 

 

Here we present an experiment-backed, data-oriented computational model (named 

Ribosome Calculator, RiboCalc) for quantitatively predicting the coding ability 

(Ribo-seq expression level) of a particular human transcript (Figure 1A). Features 
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collected for RiboCalc model are biologically related to translation control. We build 

the model using linear regression with Lasso penalty so that the feature parameters are 

easily connected to their contribution to transcript coding process. Multiple 

evaluations show that RiboCalc not only makes quantitatively accurate predictions but 

also offers insight for sequence and transcription features contributing to transcript 

coding ability determination, shedding lights on bridging the gap between the 

transcriptome and proteome. All scripts and data are available online at 

https://github.com/gao-lab/RiboCalc/.  
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Materials and Methods 

Ribosome profiling data collection 

We retrieved human data published since 2012 from RPFdb[18] and the NCBI 

BioProject database[19] by searching for the terms “ribosome profiling”, “ribosome 

profile”, “Ribo-seq”, “ribosome footprint” and “RPF”. We then manually selected 

Ribo-seq samples with paired RNA-seq data and without treatment interfering with 

translation. As a result, 61 datasets were retained from 30 studies covering 22 

different human tissues or cell lines (Supplementary Table 1). The pipelines of 

transcriptome analysis for RNA-seq and Ribo-seq data are at 

https://github.com/gao-lab/RiboCalc/blob/master/feature_calculation/RNAandRibo-se

q_processing.txt. 

 

Mass spectrometry (MS) data analysis 

To build a reliable coding ability prediction model, the first step is to identify bona 

fide coding transcripts, especially given several recent reports that a lot of annotated 

noncoding RNAs (ncRNAs) were found to encode peptides [20-22]. We selected a 

Ribo-seq based coding gene identification method which covered more than 90% of 

MS-based callings (Supplementary Figure 1, Supplementary Table 2 and 3). 

 

To find the criteria for coding gene identification covering most MS observations, we 

compared the ribosome profiling based results with the MS results. As reported, mass 

spectrometry identifies proteins with high specificity but limited sensitivity[23]. 

Therefore, taken MS results as golden positive calls, we selected criteria to ensure that 

Ribo-based results covered 90% MS calls while with less false positives. The MS 

dataset for assessment was PXD002395 from the PRIDE database [24]. The 

overlapping cell lines in this MS project and our ribosome profiling data were HEK 

293, HeLa and U-2 OS cells, so only MS data from these 3 cell lines were analyzed 

(Supplementary Table 2). 
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We then compiled a human protein database by adding theoretically translated 

peptides of transcript putative ORFs and protein-coding transcript translation 

sequences annotated by GENCODE release 24. Redundant protein sequences with 

identity higher than 90% were trimmed using CD-hit[25] in the database. We used 

pFind3 as the search engine [26]. 286 common contaminant proteins were 

automatically added into the original protein database by pFind. The reverse protein 

sequences were used as a decoy database for false discovery rate (FDR) control. The 

search parameters were as follows: 1) Trypsin/P digestion. 2) The precursor tolerance 

and fragment tolerance were set to 20 ppm and 20 ppm, respectively. 3) The search 

included variable modifications of methionine oxidation and N-terminal acetylation. 4) 

Minimal peptide length was set to six amino acids and a maximum of two missed 

cleavages was allowed. Peptides were filtered with a FDR threshold of 1%. We 

identified a gene as coding in MS when supported by at least one protein with a pFind 

Q-value less than 0.01 and more than 5 peptide fragments. 

 

The approaches that we used for translated ORF scanning in ribosome profiling data 

were RiboCode[27] and ribORF[28]. Genes with translated ORF were identified as 

coding in Ribo-seq. We compared the MS and ribosome profiling results in 

corresponding cell lines (Supplementary Table 3). MS-based coding genes were taken 

as positive calls. Abbreviations in the equations below are as follows: FN, false 

negative; FP, false positive; TN, true negative; and TP, true positive. 

Sensitivity 	
TP

TP � FN
;  Speci�icity 	

TN

TN � FP
 

 

RiboCode showed a lack of consistency with MS analysis (Supplementary Table 3), 

while ribORF, with a p-value cutoff of approximately 0.5, could achieve a sensitivity 

of 90% (Supplementary Figure 1). Thus, we adopted ribORF with a p-value higher 
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than 0.5 as an approach for translated ORF identification. 

 

Transcript’s coding ability contributes to the protein abundance determination process 

significantly. During the last two decades, the most common method for large-scale 

experimental determination of transcripts’ coding ability is to measure the abundance 

of the corresponding proteins based on MS methods. Nevertheless, MS-based protein 

identification is less sensitive to short peptides and peptides expressed at low 

levels[29]. In addition, MS analyses often adopt a database-dependent search strategy 

that ignores genomic mutations and RNA editing events, hampering identification of 

the complete protein pool[30]. Meanwhile, by sequencing the RNA fragments 

protected by ribosomes, Ribo-seq measures translational activity in a quantitative 

manner with base resolution. Hence, Ribo-seq derived transcript density is an 

appropriate measure for evaluation and estimation of coding ability. During ribosome 

profiling data processing, we used MS results as the gold standard for determining the 

threshold of Ribo-seq based methods. This strategy ensured reliable, sensitive and 

precise identification of MS-supported protein-coding genes in the Ribo-seq data, 

providing an accurate training set for model building. 

 

Identification of translated ORFs 

After scanning translated ORF based on ribosome profiling data, we made pairwise 

comparisons between overlapping ORFs to select a most likely translated one. 

Translated ORFs were identified according to the following procedure 

(Supplementary Figure 2): Scenario 1) overlapping translated ORFs with unique 

regions covered by ribo-reads were both retained. Scenario 2) the ORFs without 

unique ribo-reads covering region were filtered out when their overlapping ORFs had. 

Scenario 3) if the unique regions of both overlapping ORFs were not covered by 

ribo-reads, the shorter ORF was left. Thus, we compiled a non-redundant catalog of 

translated ORFs. Since the translated ORFs defined by us were based on ribosome 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

profiling data, they might differ from the main ORFs in canonical annotation 

(Supplementary Figure 3). If there were no ribosome evidences (such as independent 

testing without Ribo-seq data), the longest ORF was taken as the putative translated 

ORF. 

 

Calling transcript’s coding status 

As we scanned translated ORFs in Ribo-seq, we identified coding transcripts (have 

translated ORF) for each sample. Then, a transcript would be called as “noncoding” in 

a particular sample only if 1) not covered by any ribo-reads, 2) its expression 

abundance is higher than the lower bound of called “coding” ones in this sample. The 

expression threshold was set to the 300th quantile of transcripts per million (TPM) for 

all coding transcripts in the corresponding sample, so, at this abundance, translated 

ORFs could be effectively detected. By using the 300th quantile as a threshold, a large 

number of expressed transcripts (96,968) were removed (Supplementary Figure 4), 

indicating that the process is stringent enough for ncRNA identification. Another 

circumstance is that a transcript is covered by Ribo-seq reads but no translated ORF is 

identified. We also removed this kind of transcripts (1,031) because of lacking reliable 

evidence for coding. 

 

As described above, we identified coding and noncoding transcripts in each sample. 

Transcripts with translated ORF in every expressed sample were classified as coding, 

while the transcripts consistently without translation were classified as noncoding. In 

addition, several transcripts showed coding in some samples but were noncoding in 

other samples. We defined these transcripts as CDCTs (context-dependent coding 

transcripts). In further model building, we retained genes with all isoforms as coding 

and selected one representative isoform (expressed in the most samples) for the gene 

into the training data (Supplementary Figure 5). 
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Collection of classified features based on biological knowledge 

Based on biological knowledge, the candidate features were collected from manual 

literature survey. Our aim is to depict translation control in vivo, so the first criterion 

for feature collection is able to be explained by translation-related biological process. 

The second criterion is the feature value should be easily encoded by sequence and 

transcription information. As a result, we collected 221 features and grouped them 

into 5 translation-related processes. 1) Expression abundance: in addition to RNA-seq 

expression level, miRNA targeting also affect RNA abundance. Thus, we scanned 

miRNA target sites on 3’UTR and incorporated it into a feature. 2) Translation 

initiation: the RNA folding energy and sequence context around the translation 

initiation site are related to the transcripts’ coding ability, so we used these features in 

RiboCalc. 3) Translation elongation: the translation elongation rate is often altered by 

the adaption between codon usage and the corresponding tRNA abundance[10]. 

Therefore, the frequency of 64 codons, as well as some other indexes describing 

codon usage bias, were used in this class of features. 4) Translation regulators: the 

abundance of translation regulatory factors are related to translation level of 

RNAs[31], thus, expression level of translation-related genes annotated by GO were 

taken into account as features. 5) Transcript structure: other sequence features are also 

related to transcript coding ability, such as length and UTR GC content. The 

mechanism of these features might not be clearly validated with experiments but we 

added them into the list. 

 

Considering the genomic mutations and RNA editing, we modified transcript 

reference sequences with variations called by GATK[32] in RNA-seq, and calculated 

feature value based on modified sequences. The mutations causing start codon loss 

were ignored (see “Mutated transcript sequence identification with RNA-seq data” at 

https://github.com/gao-lab/RiboCalc/blob/master/feature_calculation/RNAandRibo-se

q_processing.txt). The ORFs that we used for feature calculation are described in 
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Supplementary Figure 3. All the features and the calculation method are shown in 

Supplementary Table 4. We provide feature calculation scripts at 

https://github.com/gao-lab/RiboCalc/tree/master/feature_calculation. 

 

Building cell-specific models 

We chose 5 cell lines for cell-specific model building. The 5 cell lines were the most 

common ones among our collected resources (Supplementary Table 1) and could 

represent 5 different tissues. We used Ribo-based coding transcripts for model 

building and removed redundant sequences with more than 90% identity using 

CD-hit[33]. We randomly selected 3,000 transcripts as training data and the rest as 

testing data for each model. The models with selected features were built through 

linear regression with the Lasso penalty. The feature data and model building script 

are at https://github.com/gao-lab/RiboCalc/tree/master/cell_specific_model. 

 

RiboCalc model building 

By adding trans- features of translation regulators, we built an “environment-aware” 

model for quantitative prediction of coding ability globally and named the model 

RiboCalc. The detailed methods of model building were as follows: 

 

We pooled coding transcripts from all cell lines together. If identical transcripts 

expressed in more than one ribosome profiling sample, we selected the one with 

median TPM in the corresponding RNA-seq data. The dataset consists of 8,193 

transcripts, and we randomly split them into 5,000 training cases and 3,193 testing 

cases. 

 

All the values of each feature were scaled to the interval of [0, 1] for training data as 

following equation (min-max normalization). 

�� 	
� � min ���

max��� � min ���
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Since gene-level expression abundance estimation was reported to be more accurate 

than isoform level [34-36], we took gene TPM for calculation. Since different studies 

had a various distribution of expression level in RNA-seq and Ribo-seq, to pool all 

the data together, we adopted cross-sample normalization for RNA-TPM and 

Ribo-TPM. The RNA-TPM and Ribo-TPM were normalized with TPM of the 

housekeeping gene HPRT1 using the following equation. HPRT1 was selected based 

on the work of Valente et al.[37]. 

RiboTPM�,�
� 	  RiboTPM�,�  �  

median�RiboTPM����	�

RiboTPM����	,�

 

The Ribo-TPM of transcript i in sample j was scaled by the ratio of the HPRT1 

Ribo-TPM in sample j with the median HPRT1 Ribo-TPM among all the samples. 

The same normalization strategy was also applied to RNA-TPM. 

 

We first removed highly correlated features (Pearson’s r above 0.9) with 

“findCorrelation” in the R caret package[38]. Then, feature selection was 

implemented through a linear model with Lasso regularization. We searched the 

parameter λ with the minimum mean squared error (MSE) in 5-fold cross validation. 

The Lasso regression was implemented by the glmnet package[39] in R. We provide 

raw data and script at https://github.com/gao-lab/RiboCalc/tree/master/RiboCalc. 

 

Human model comparison 

OCTOPOS [17]. We download the raw data OCTOPOS used for HEK 293. The 

RNA-seq data was from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38356. Protein abundance 

data was downloaded from https://pax-db.org/dataset/9606/329/. Since correlation 

calculation would be affected by data size, we randomly selected same amount of 

transcripts (461) with OCTOPOS as testing set. We provide the script of feature 

calculation and model testing from OCTOPOS data at 
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https://github.com/gao-lab/RiboCalc/blob/master/feature_calculation/script/test_OCT

OPOS.sh. Users could follow the script to apply RiboCalc on their own data. 

 

Li’s human model [40]. We downloaded their data “Additional file 2” at 

https://doi.org/10.1186/s13059-019-1761-9. The UTR and CDS sequences were 

obtained from Ensembl Genes 104 with the transcript IDs. Since Li’s human model 

used RPKM as expression level which was hardly transformed into TPM without 

knowing the full transcriptome[41], we retrained RiboCalc with their data. We 

randomly selected 2,000 transcripts as testing data and the rest as training data. The 

generated feature data and testing script are at 

https://github.com/gao-lab/RiboCalc/tree/master/human_model_comparison/LiJJ. 

 

Sample’s model [42]. We downloaded the model from 

https://github.com/pjsample/human_5utr_modeling/tree/master/modeling/saved_mod

els/main_MRL_model.hdf5. Given that Sample et al.’s model requires the input 

sequence length to be 50, we generated 50nt fragments (window size = 50, step size = 

1) of 5’UTRs of RiboCalc testing data. The 5’UTR sequences were downloaded from 

Ensembl Genes 104 and the transcripts without 5’UTR annotation were removed in 

the testing set. We used the average predicted value of all 50nt windows from 5’UTR 

sequences as the final predicted value of the transcripts. See 

https://github.com/gao-lab/RiboCalc/tree/master/human_model_comparison/SampleP

J. 

 

Comparison with Li’s model in yeast 

Li et al. used transcript sequence features to predict translation rate (TR) in yeast [6]. 

In their definition, TR is defined as the number of protein molecules translated per 

mRNA molecule, which is the ratio of ribosome density (also abbreviated to 

Ribo-TPM for uniformity with RiboCalc) to RNA expression abundance in Ribo-seq. 
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Thus, RiboCalc could predict TR by dividing RNA abundance into the output as the 

equation below. 

RiboTPM 	  RNA �  TR 

 

The yeast transcript sequences, ORFs, expression abundance and ribosome density 

were obtained from the “nar-00812-a-2017-File019.csv” file in the supplementary 

data downloaded from https://doi.org/10.1093/nar/gkx898. Since the RiboCalc 

prediction depends on the 3’UTR sequence which is not provided in Li’s data, we 

fetched the 3’UTR sequences from the Saccharomyces Genome Database (SGD) [43] 

and removed 909 transcripts without 3’UTR annotation. 

 

To build the RiboCalc yeast model, we randomly split the remaining 1,541 transcripts 

into 1,000 training cases and 541 testing cases. After considering the systematic 

differences between yeast and human models, we removed several human-specific 

features from the yeast model (Supplementary Table 5). The yeast model training 

approach was identical to the RiboCalc human model. To make a fair comparison, we 

retrained Li’s yeast model using the new training set by strictly following their 

description. The performance of Li’s retrained model was similar to their original 

report (R2 of TR are both 0.80). The correlations in Table 3 were calculated from the 

testing set. See https://github.com/gao-lab/RiboCalc/tree/master/RiboCalc_yeast for 

raw data and script. 

 

Ribo-lncRNA analysis 

Long noncoding RNAs (lncRNAs) associated with ribosomes are abbreviated to 

ribo-lncRNAs here. The ribo-lncRNAs from Ruiz-Orera et al. were identified from 

the GSE22004 dataset in the NCBI GEO database [20]. Thus, we used GSM546926 

as the Ribo-seq sample and GSM546927 as the RNA-seq sample in GSE22004 for 

RiboCalc analysis. The “top coding score lncRNAs”, “lncRNAs with homologies” 
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and “young codRNAs” were identified by Ruiz-Orera et al. and downloaded from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359382/bin/elife03523s002.xls. The 

“non-ribo-lincRNAs” and “ribo-lincRNAs” and “other codRNAs” were from our 

analysis of the data. “Non-ribo-lincRNAs” refers to long intergenic noncoding RNAs 

(lincRNAs) without ribo-reads, while “Ribo-lincRNAs” are the lincRNAs covered by 

ribo-reads. The “other codRNAs” are protein-coding transcripts with translated ORFs 

in ribosome profiling excluding the young codRNAs from the original report. In this 

study, transcripts with FPKM lower than 0.2 were excluded. 

 

For ribo-lncRNAs identified by Zeng et al. [44], their resources were included in the 

Ribo-seq samples collected by us, except for the data associated with drug treatment. 

Therefore, we directly retrieved the features of those ribo-lncRNAs in our data. The 

four classes of ribo-lncRNAs in Figure 3C were downloaded from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975437/bin/12864_2018_4765_MO

ESM10_ESM.xlsx. See 

https://github.com/gao-lab/RiboCalc/tree/master/ribo-lncRNA for raw data and script. 
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Results 

Transcripts’ coding status identification in ribosome profiling data 

To accurately quantify the coding ability of transcripts in various cells, we retrieved 

61 pairs of reliable Ribo-seq data coupled with RNA-seq data from the NCBI GEO 

database [19], covering 1 tissue and 21 cell lines (Supplementary Table 1). The 

expression abundance in the corresponding Ribo-seq data (abbreviated to Ribo-TPM) 

were employed as the quantitative metric for the coding ability. For accurate 

prediction of coding ability, the first step is to obtain protein-coding transcripts for 

model building. Thus, by applying rigorous filtering criteria, we called translation 

status for 101,170 out of 199,169 GENCODE gene models (the rest were filtered out 

due to either a lack of expression signals in the chosen samples (96,968) or a failure 

of calling translated ORF reliably (1,031), see Supplementary Figure 5 for detailed 

procedure). Among the 101,170 transcripts, the translation status of 46% were found 

to be “coding” while 43% were “noncoding” in all samples (Figure 1B). Interestingly, 

we also found that 11% of the transcripts exhibited diverse coding ability among cell 

lines (i.e., coding in some cell lines but noncoding in others), and we named them 

context-dependent coding transcripts (CDCTs). 

 

[Insert Figure 1 here] 

Figure 1 Transcript coding status classification in ribosome profiling data. A) 

Workflow of RiboCalc model building B) The percentage of transcripts with a particular coding 

ability classification. The blue fraction shows noncoding transcripts, the yellow fraction shows 

coding transcripts, and the green fraction shows CDCTs. C) Comparison between coding ability 

classification based on ribosome profiling with the biotypes annotated by GENCODE. The left bar 

shows the transcripts annotated as coding transcripts by GENCODE, while the right bar shows 

noncoding transcripts. The fractions of each bar correspond to the Ribo-seq based coding status 

calling in our analysis, and the colors of particular types are the same as those in Figure 1B. 
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RiboCalc: predicting transcript coding ability in human 

To identify features contributing to coding ability determination, we first compiled a 

candidate list of intrinsic (“cis-”) and contextual (“trans-”) features after systematic 

literature survey (Supplementary Table 4, also see “Collection of classified features 

based on biological knowledge” in “Materials and Methods”). The intrinsic 

features represent transcript sequence characteristics. And we grouped them into three 

categories: “translation initiation”[11], “translation elongation”[45] and “transcript 

structure” [6, 13] based on the underlying biological process. The contextual features 

were collected to depict the environment for translation in the cell and all belong to 

the category “expression abundance” [46]). We then incorporated these features 

together to build cell-specific models for five representative cell lines with a Lasso 

regression based feature selection. All models works well (Table 1 and Supplementary 

Figure 6), highlighting the effectiveness of these selected features (Supplementary 

Table 4). 

 

[Insert Table 1 here] 

Table 1 Ribo-seq resources and transcript dataset size for cell-specific model 
building 

The 5 cell-specific models showed a significant correlation between the predicted values and 

observed Ribo-TPM on the testing set. These cell lines selected were the five that covered most 

studies in all of our collected samples (Supplementary Table 1). The data size were the number of 

coding transcripts identified following the stringent criteria (see “Identification of translated 

ORFs” and “Calling transcript’s coding status” in “Materials and Methods”). As reported in 

Table 1, the lowest r of the 5 models was 0.78. The remaining 4 models all had a correlation above 

0.8, among which the HeLa model had the highest correlation of approximately 0.89. 

 

We further tried to incorporate the effect of cell “environment” by introducing 

expression level of trans-factors (i.e., translation regulators) in the corresponding 

sample (“Translation regulators” in Supplementary Table 4). The “environment-aware” 
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model (RiboCalc) accurately predicts coding ability (Ribo-TPM) globally, with r = 

0.81 in in testing data from all 22 cell lines (Figure 2A). The performance of 

RiboCalc is comparable with 5 cell-specific models (Supplementary Figure 6), 

suggesting its prediction efficiency across cells by adding “environment” features. 

 

We compared RiboCalc’s performance with Sample et al.’s model [42] and Li et al.’s 

model [40] in human. Li’s human model predicted TR (translation rate) which could 

be calculated as the ratio between Ribo-seq and RNA-seq abundance. RiboCalc 

predicted TR with Pearson’s r = 0.66, which is higher than Li’s human model (r = 

0.64, Supplementary Table 6). Sample et al. built a deep learning model to predict 

ribosome loading. Since Sample et al. only provided model data of 50nt 5’UTR 

sequences which are not sufficient for RiboCalc prediction, we applied Sample’s 

model directly on RiboCalc testing data. It showed a much lower correlation (r = 0.18, 

Supplementary Figure 7) than RiboCalc (r = 0.81, Figure 2A). Therefore, RiboCalc 

accurately predicts ribosome density with intrinsic (“cis-”) and contextual (“trans-”) 

features. 

 

Parameters of RiboCalc are interpretable by biological impact on translation 

As RiboCalc is a linear model fitted by normalized feature values, features’ 

coefficients quantify their contribution (e.g. positive coefficients suggest facilitation 

of coding ability, while negative coefficients suggest an adverse effect). A manually 

checking in literatures effectively connects model parameters with prior biological 

knowledge (Table 2). For instance, the feature with the highest positive coefficient is 

the RNA abundance (i.e. TPM), confirming existing reports on the dominant influence 

of transcript expression level on protein translation [46, 47]. Similarly, being 

consistent with the observation that longer transcripts reduced the number of dropped 

ribosomes diffusing to the translation initiation site as well as mRNA 

circularization[13], the model also demonstrates significant adverse effect for the 
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length of transcript. 

 

[Insert Table 2 here] 

Table 2 Feature coefficient with greatest contribution in RiboCalc and the effect 
on translation in the literature 

The table shows features with the most positive or negative coefficient in RiboCalc model. Since 

all features were scaled into the interval of [0, 1], the absolute value and sign symbol of their 

coefficients could be interpreted as the impact on coding ability. 

 

Based on biological knowledge, we grouped all features into 5 translation-related 

processes, as translation initiation, translation elongation and transcript structure for 

intrinsic features from sequence, and expression abundance and translation regulators 

as contextual features for environment. By calculating Ribo-TPM through a single 

class of features with RiboCalc, we compared their performance with the correlation 

between predicted and observed value. The predicted results of both intrinsic and 

contextual features showed a significant correlation with the observed Ribo-TPM 

(Figure 2B). And consistent with previous studies [46], expression abundance showed 

the greatest importance for coding ability in RiboCalc (Figure 2C). 

 

To further validate the model’s effectiveness, we applied it to unicellular organism 

yeast based on published dataset[6], and found that the original RiboCalc model 

accurately predicted both coding ability and translation rate, with comparable 

performance to the state-of-arts model in yeast (Table 3, see “Comparison with Li’s 

model in yeast” section in “Materials and Methods” for details). Given the 

systematic differences between human and yeast, we also retrained a RiboCalc yeast 

model, with yeast data as input but adopting exactly the same feature set and fitting 

procedure as in the human model. As expected, the RiboCalc yeast model further 

improved performance overall (Table 3). 
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[Insert Table 3 here] 

Table 3 Correlation between predicted and observed values in RiboCalc human, 
RiboCalc yeast and Li’s model 

 

Intriguingly, we found that, through the same set of model features adopted, multiple 

coefficients of the RiboCalc yeast model differ from those of the human model. The 

feature coefficient with the largest difference is the length of 3’UTR (Figure 2D). 

Recently, Fu et al. demonstrated that a longer 3’UTR increased the possibility of 

miRNA targeting in mammalian cells, resulting in a reduction in protein 

translation[12], whereas no clear evidence for the pervasive existence of miRNAs in 

yeast. Consistently, the coefficient for the 3’UTR length in the human model is a large 

negative value and close to zero in yeast (Supplementary Table 7, also see Figure 2D 

and 2E for another case on codon usage). We believe that divergent pattern reflected 

by RiboCalc models could facilitate investigating the inter-species discrepancy of 

translation regulatory mechanisms. 

 

[Insert Figure 2 here] 

Figure 2 Model performance and feature contribution of RiboCalc. A) Scatter plot 

of RiboCalc predicted and observed values. The x axis shows the observed Ribo-TPM of coding 

transcripts in the testing set, while the y axis shows the corresponding Ribo-TPM predicted by 

RiboCalc. Pearson’s r and the significance level were calculated between x and y scores. B) 

Effectiveness of intrinsic and contextual features in RiboCalc. The bars show Pearson’s r between 

the Ribo-TPM predicted by each single class of features and the observed value. The p-value 

above the bars indicates the significance of the correlation. C) Feature importance of 5 processes 

in RiboCalc. The boxes show the feature coefficient distributions of the 5 translation-related 

processes. Since all the feature values were scaled to [0, 1], the feature coefficients could be taken 

as contributions to coding ability prediction in this plot. The numbers above the boxes are the 

corresponding feature numbers of each class. D) Scatter plot of feature coefficients in RiboCalc 

human and yeast models. The x axis shows the feature coefficients in the RiboCalc human model. 
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The y axis shows the corresponding feature coefficients in the RiboCalc yeast model. The colors 

of the points represent the four quadrants. The black text labels the feature points of transcript 

length, 3’UTR length and RNA TPM. E) The feature names and coefficient values of RiboCalc 

human and yeast models in each quadrant. The text on the labels stand for the feature names 

(Supplementary Table 4). The codon name stands for codon usage frequency, “init_fold” means 

translation initiation sequences’ minimum free energy (MFE) predicted by RNAfold. The points of 

transcript length and RNA TPM are not shown in this plot due to the limitations of the axes. The x 

axis, y axis and colors are the same as those in Figure 2D.  
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Discussion 

To model transcript coding ability quantitatively, we proposed and implemented 

RiboCalc. RiboCalc not only effectively predicts coding ability but also reveals 

several intriguing novel hints for deconvoluting the translation control mechanism. 

For example, according to the model, the GC content at 3’ UTR presents a positive 

contribution to the coding ability. Coupling with recent report on AU-rich 3’UTRs 

leads to decreased stability of RNAs[48], we could reasonably infer that the 3’UTR 

with higher GC content would promote translation efficiency by slowing RNA decay. 

Meanwhile, we also notice a few inconsistencies between model-estimated 

coefficients and existing literature. For example, a reported translation-suppressing 

gene, PAIP2B, showed a positive contribution to coding ability in our model, with 

statistically significant positive correlation detected for its abundance and the median 

Ribo-TPM of translatable genes in the corresponding sample (Supplementary Figure 8, 

also see Supplementary Figure 9). All these observations shed lights on further 

mechanism study and validation. 

 

These insights could lead to several potential applications like improving existing 

codon optimization tool [17, 49]. A direct comparison with OCTOPOS, a recent 

published mechanism-oriented codon optimization tool [17], found that the RiboCalc 

model could effectively predict protein abundance (r = 0.63, HEK293 human dataset, 

vs. r = 0.61 reported in the original paper, Supplementary Figure 10A), even given the 

fact that the RiboCalc model was trained to predict Ribo-seq level, instead of protein 

abundance measured in MS as what the OCTOPOS did. Of interest, when being 

retrained with OCTOPOS HEK293 dataset, the RiboCalc model showed improved 

prediction accuracy (r = 0.73, Supplementary Figure 10B, also see “Human model 

comparison” in “Materials and Methods”), highlighting RiboCalc’s potential to 

pinpoint novel translation-regulation-related features. 
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The RiboCalc model suggests that both intrinsic (“cis-”, like the transcript sequence) 

and contextual (“trans-”, like expression level of transcript and translation regulators) 

features contribute to the transcript coding ability decision in cells. Intriguingly, we 

found a number of transcripts exhibited diverse coding ability among cell lines 

(CDCTs, Supplementary Figure 11, also see detailed list at 

https://github.com/gao-lab/RiboCalc/blob/master/CDCT/CDCT_transcript_list.tab). 

Among the protein-coding transcripts annotated by GENCODE, 15% were classified 

as noncoding and 17% as CDCTs; meanwhile, one-third of GENCODE-annotated 

ncRNAs were classified as coding, and 7% as CDCTs (Figure 1C, also see the list at 

https://github.com/gao-lab/RiboCalc/blob/master/CDCT/CDCT_lincRNA_TransLnc_

evidence_number.tab). The model shows that CDCTs under coding context get higher 

RiboCalc scores than these under noncoding context (Figure 3A). Consistently, 

canonical protein coding genes have been validated experimentally that protein 

expression ability could be varied or even silenced without altering mRNA 

transcribing [50-52] and several annotated lncRNAs were found to be associated with 

ribosomes (abbreviated to ribo-lncRNAs) [20, 44, 53] and encode functional peptides 

[54-56]. RiboCalc model confirms that reported ribo-lncRNAs as well as lncRNAs 

with high homologies and top coding score[20, 44] have coding ability significantly 

higher than that of non-ribo-lncRNAs, and close to those of young experimentally 

validated coding RNAs (Figure 3B and 3C, also see Supplementary Figure 12 for 

more analysis on GENCODE transcripts). Collectively, these results suggest that 

transcript’s coding ability should be modeled as a context-dependent continuous value, 

rather than a certain binary class. 

 

[Insert Figure 3 here] 

Figure 3 Biological interpretation of transcripts with ambiguous coding ability 

from the RiboCalc model. A) RiboCalc prediction of transcripts with a particular coding 
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ability classification. “Noncoding” refers to the noncoding transcripts identified in Ribo-seq, 

“coding” is the testing data of RiboCalc. The “coding CDCTs” are CDCTs present under coding 

context (observed as coding in particular samples), and “noncoding CDCTs” are under noncoding 

context. B) Prediction of ribo-lncRNAs from Ruiz-Orera et al. in RiboCalc. The boxes show the 

predicted Ribo-TPM distribution of a particular class of RNAs. The “non-ribo-lncRNA” are 

lincRNAs without ribosome coverage, while “ribo-lncRNA” are covered by ribo-reads. The “top 

coding score lncRNA” are lncRNAs with the highest sequence similarity with protein-coding 

transcripts. The “lncRNA with homologies” are lncRNAs conserved among species. “Young 

codRNA” are validated coding RNAs with a short evolutionary history, while “other codRNA” 

are the rest coding RNAs. C) Prediction of ribo-lncRNAs from Zeng et al. in RiboCalc. The boxes 

show the predicted Ribo-TPM distribution of a particular class of RNAs. The “trans-lncRNA” are 

translated lncRNAs, “ribo-lncRNA” are lncRNAs only covered by ribo-reads, “non-ribo-lncRNA” 

are lncRNAs without ribo-reads, and “other” refer to unexpressed lncRNAs. All significance 

levels in Figure 3A, B and C are based on Wilcox test. 
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Data Availability 

All scripts and data are available online at https://github.com/gao-lab/RiboCalc/. 

 

Acknowledgments 

The authors thank Drs. Zemin Zhang, Cheng Li, Letian Tao, Jian Lu and Liping Wei 

at Peking University for their helpful comments and suggestions during the study. Part 

of the analysis was performed on the Computing Platform of the Center for Life 

Sciences of Peking University and supported by the High-performance Computing 

Platform of Peking University. 

 

Key Points 

� We built an in silico model for predicting transcripts' coding ability accurately in 

human. 

� We showed, quantitatively, that both intrinsic and contextual features contribute 

to coding ability determination. 

� We identified a great number of transcripts are with distinct coding abilities 

among different type of cells (i.e. context-dependent coding transcripts, CDCTs), 

suggesting the transcript’s coding ability should be modeled as a 

context-dependent continuous spectrum, rather than a static binary classification 

as “coding” or “noncoding”. 

 

Funding 

This work was supported by funds from the National Key Research and Development 

Program (2016YFC0901603), the China 863 Program (2015AA020108), as well as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

the State Key Laboratory of Protein and Plant Gene Research and the Beijing 

Advanced Innovation Center for Genomics (ICG) at Peking University. The research 

of G.G. was supported in part by the National Program for Support of Top-notch 

Young Professionals. 

 

Conflict of interest statement. None declared. 

 

References 

1. Ashe MP, De Long SK, Sachs AB. Glucose depletion rapidly inhibits translation 
initiation in yeast, Mol Biol Cell 2000;11:833-848. 
2. Bazin J, Baerenfaller K, Gosai SJ et al. Global analysis of ribosome-associated 
noncoding RNAs unveils new modes of translational regulation, Proc Natl Acad Sci U 
S A 2017;114:E10018-E10027. 
3. Liu S, Hausmann S, Carlson SM et al. METTL13 Methylation of eEF1A 
Increases Translational Output to Promote Tumorigenesis, Cell 2019;176:491-504 
e421. 
4. Huang T, Wan S, Xu Z et al. Analysis and prediction of translation rate based on 
sequence and functional features of the mRNA, PLoS One 2011;6:e16036. 
5. Dvir S, Velten L, Sharon E et al. Deciphering the rules by which 5'-UTR 
sequences affect protein expression in yeast, Proc Natl Acad Sci U S A 
2013;110:E2792-2801. 
6. Li JJ, Chew GL, Biggin MD. Quantitating translational control: mRNA 
abundance-dependent and independent contributions and the mRNA sequences that 
specify them, Nucleic Acids Res 2017;45:11821-11836. 
7. Zur H, Tuller T. Transcript features alone enable accurate prediction and 
understanding of gene expression in S. cerevisiae, BMC Bioinformatics 2013;14 
Suppl 15:S1. 
8. Andreev DE, Dmitriev SE, Loughran G et al. Translation control of mRNAs 
encoding mammalian translation initiation factors, Gene 2018;651:174-182. 
9. Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy, Mol 
Syst Biol 2011;7:481. 
10. Dana A, Tuller T. The effect of tRNA levels on decoding times of mRNA codons, 
Nucleic Acids Res 2014;42:9171-9181. 
11. Zhang S, Hu H, Jiang T et al. TITER: predicting translation initiation sites by 
deep learning, Bioinformatics 2017;33:i234-i242. 
12. Fu Y, Chen L, Chen C et al. Crosstalk between alternative polyadenylation and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

miRNAs in the regulation of protein translational efficiency, Genome Res 
2018;28:1656-1663. 
13. Fernandes LD, Moura APS, Ciandrini L. Gene length as a regulator for ribosome 
recruitment and protein synthesis: theoretical insights, Sci Rep 2017;7:17409. 
14. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the 
human genome, Nature 2001;409:860-921. 
15. Tamarkin-Ben-Harush A, Schechtman E, Dikstein R. Co-occurrence of 
transcription and translation gene regulatory features underlies coordinated mRNA 
and protein synthesis, BMC Genomics 2014;15:688. 
16. Volkova OA, Kondrakhin YV, Yevshin IS et al. Assessment of translational 
importance of mammalian mRNA sequence features based on Ribo-Seq and 
mRNA-Seq data, J Bioinform Comput Biol 2016;14:1641006. 
17. Trosemeier JH, Rudorf S, Loessner H et al. Optimizing the dynamics of protein 
expression, Sci Rep 2019;9:7511. 
18. Xie SQ, Nie P, Wang Y et al. RPFdb: a database for genome wide information of 
translated mRNA generated from ribosome profiling, Nucleic Acids Res 
2016;44:D254-258. 
19. Wheeler DL, Barrett T, Benson DA et al. Database resources of the National 
Center for Biotechnology Information, Nucleic Acids Res 2005;33:D39-45. 
20. Ruiz-Orera J, Messeguer X, Subirana JA et al. Long non-coding RNAs as a 
source of new peptides, Elife 2014;3:e03523. 
21. Pertea M, Shumate A, Pertea G et al. CHESS: a new human gene catalog curated 
from thousands of large-scale RNA sequencing experiments reveals extensive 
transcriptional noise, Genome Biol 2018;19:208. 
22. van Heesch S, Witte F, Schneider-Lunitz V et al. The Translational Landscape of 
the Human Heart, Cell 2019;178:242-260 e229. 
23. Erhard F, Halenius A, Zimmermann C et al. Improved Ribo-seq enables 
identification of cryptic translation events, Nat Methods 2018;15:363-366. 
24. Vizcaino JA, Csordas A, del-Toro N et al. 2016 update of the PRIDE database 
and its related tools, Nucleic Acids Res 2016;44:D447-456. 
25. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of 
protein or nucleotide sequences, Bioinformatics 2006;22:1658-1659. 
26. Chi H, Liu C, Yang H et al. Comprehensive identification of peptides in tandem 
mass spectra using an efficient open search engine, Nat Biotechnol 2018. 
27. Xiao Z, Huang R, Xing X et al. De novo annotation and characterization of the 
translatome with ribosome profiling data, Nucleic Acids Res 2018;46:e61. 
28. Ji Z. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using 
Ribosome Profiling, Curr Protoc Mol Biol 2018;124:e67. 
29. Baboo S, Cook PR. "Dark matter" worlds of unstable RNA and protein, Nucleus 
2014;5:281-286. 
30. Ning K, Fermin D, Nesvizhskii AI. Comparative analysis of different label-free 
mass spectrometry based protein abundance estimates and their correlation with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

RNA-Seq gene expression data, J Proteome Res 2012;11:2261-2271. 
31. Holcik M, Sonenberg N. Translational control in stress and apoptosis, Nat Rev 
Mol Cell Biol 2005;6:318-327. 
32. McKenna A, Hanna M, Banks E et al. The Genome Analysis Toolkit: a 
MapReduce framework for analyzing next-generation DNA sequencing data, Genome 
Res 2010;20:1297-1303. 
33. Fu L, Niu B, Zhu Z et al. CD-HIT: accelerated for clustering the next-generation 
sequencing data, Bioinformatics 2012;28:3150-3152. 
34. Kanitz A, Gypas F, Gruber AJ et al. Comparative assessment of methods for the 
computational inference of transcript isoform abundance from RNA-seq data, 
Genome Biol 2015;16:150. 
35. Sun J, Chang JW, Zhang T et al. Platform-integrated mRNA isoform 
quantification, Bioinformatics 2020;36:2466-2473. 
36. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: 
transcript-level estimates improve gene-level inferences, F1000Res 2015;4:1521. 
37. Valente V, Teixeira SA, Neder L et al. Selection of suitable housekeeping genes 
for expression analysis in glioblastoma using quantitative RT-PCR, BMC Mol Biol 
2009;10:17. 
38. Max K, Contributions from Jed W, Steve W et al. caret: Classification and 
Regression Training 2016. 
39. Tibshirani JFaTHaR. Regularization Paths for Generalized Linear Models via 
Coordinate Descent, JOURNAL OF STATISTICAL SOFTWARE 2010;33:1--22. 
40. Li JJ, Chew GL, Biggin MD. Quantitative principles of cis-translational control 
by general mRNA sequence features in eukaryotes, Genome Biol 2019;20:162. 
41. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using 
RNA-seq data: RPKM measure is inconsistent among samples, Theory Biosci 
2012;131:281-285. 
42. Sample PJ, Wang B, Reid DW et al. Human 5' UTR design and variant effect 
prediction from a massively parallel translation assay, Nat Biotechnol 
2019;37:803-809. 
43. Cherry JM, Hong EL, Amundsen C et al. Saccharomyces Genome Database: the 
genomics resource of budding yeast, Nucleic Acids Res 2012;40:D700-705. 
44. Zeng C, Fukunaga T, Hamada M. Identification and analysis of 
ribosome-associated lncRNAs using ribosome profiling data, BMC Genomics 
2018;19:414. 
45. Zur H, Tuller T. RFMapp: ribosome flow model application, Bioinformatics 
2012;28:1663-1664. 
46. Csardi G, Franks A, Choi DS et al. Accounting for experimental noise reveals that 
mRNA levels, amplified by post-transcriptional processes, largely determine 
steady-state protein levels in yeast, PLoS Genet 2015;11:e1005206. 
47. Franks A, Airoldi E, Slavov N. Post-transcriptional regulation across human 
tissues, PLoS Comput Biol 2017;13:e1005535. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

48. Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells, 
Gene 2001;265:11-23. 
49. Dana A, Tuller T. Mean of the typical decoding rates: a new translation efficiency 
index based on the analysis of ribosome profiling data, G3 (Bethesda) 2014;5:73-80. 
50. Pelletier J, Graff J, Ruggero D et al. Targeting the eIF4F translation initiation 
complex: a critical nexus for cancer development, Cancer Res 2015;75:250-263. 
51. Robert F, Pelletier J. Exploring the Impact of Single-Nucleotide Polymorphisms 
on Translation, Front Genet 2018;9:507. 
52. Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by 
translational repression followed by mRNA deadenylation and decay, Science 
2012;336:237-240. 
53. Wang H, Wang Y, Xie S et al. Global and cell-type specific properties of 
lincRNAs with ribosome occupancy, Nucleic Acids Res 2017;45:2786-2796. 
54. Matsumoto A, Pasut A, Matsumoto M et al. mTORC1 and muscle regeneration 
are regulated by the LINC00961-encoded SPAR polypeptide, Nature 
2017;541:228-232. 
55. Pauli A, Norris ML, Valen E et al. Toddler: an embryonic signal that promotes 
cell movement via Apelin receptors, Science 2014;343:1248636. 
56. Pang Y, Mao C, Liu S. Encoding activities of non-coding RNAs, Theranostics 
2018;8:2496-2507. 
57. Lee AS, Kranzusch PJ, Cate JH. eIF3 targets cell-proliferation messenger RNAs 
for translational activation or repression, Nature 2015;522:111-114. 
58. Tao X, Gao G. Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To 
Repress Translation of AU-Rich Element-Containing mRNAs, Molecular and Cellular 
Biology 2015;35:3921-3932. 
59. Fonseca BD, Zakaria C, Jia JJ et al. La-related Protein 1 (LARP1) Represses 
Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 
1 (mTORC1), J Biol Chem 2015;290:15996-16020. 
60. Fu YG, Chen LT, Chen CY et al. Crosstalk between alternative polyadenylation 
and miRNAs in the regulation of protein translational efficiency, Genome Research 
2018;28:1656-1663. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

Tables 

Table 1 Ribo-seq resources and transcript dataset size for cell-specific model 
building 

Sample ID Cell line Bioresources Data size Pearson’s r with 

Ribo-TPM 

SRR1803151 GM12891 B lymphocyte 4,781 0.785 

SRX870805 HEK 293 Embryonic kidney cell 6,057 0.836 

SRR970565 HeLa Cervical cancer cell 6,440 0.886 

SRR627625 BJ Foreskin fibroblast 5,746 0.830 

SRR3208870 hESC.2 Embryonic stem cell 6,260 0.862 

The 5 cell-specific models showed a significant correlation between the predicted values and 

observed Ribo-TPM on the testing set. These cell lines selected were the five that covered most 

studies in all of our collected samples (Supplementary Table 1). The data size were the number of 

coding transcripts identified following the stringent criteria (see “Identification of translated 

ORFs” and “Calling transcript’s coding status” in “Materials and Methods”). As reported in 

Table 1, the lowest r of the 5 models was 0.78. The remaining 4 models all had a correlation above 

0.8, among which the HeLa model had the highest correlation of approximately 0.89. 
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Table 2 Feature coefficient with greatest contribution in RiboCalc and the effect 
on translation in the literature 

Top 15 

positive 

feature 

Coefficient 

Supported 

by 

literature 

Evidence 

RNA_TPM 0.623 yes [46, 47] 

EIF3L 0.314 yes 
https://www.genecards.org/cgi-bin/carddisp.pl?

gene=EIF3L 

EIF2B3 0.146 yes 
https://www.genecards.org/cgi-bin/carddisp.pl?

gene=EIF2B3 

RPS9 0.117 yes https://www.uniprot.org/uniprot/P46781 

PAIP2B 0.117 no https://www.uniprot.org/uniprot/Q9ULR5 

AAG 0.097 yes 
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v

als.html 

ATG 0.096 ambivalent 
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v

als.html 

MTDR 0.096 yes [49] 

RARA 0.092 no https://www.uniprot.org/uniprot/P10276 

EEF1G 0.090 yes 
https://www.genecards.org/cgi-bin/carddisp.pl?

gene=EEF1G 

GAT 0.088 ambivalent 
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v

als.html 

C12orf65 0.078 yes https://ghr.nlm.nih.gov/gene/C12orf65 

RPS14 0.078 yes https://www.uniprot.org/uniprot/P62263 

3UTR_GC 0.077 yes [48] 

MTIF2 0.075 yes https://www.uniprot.org/uniprot/P46199 

Top 15 

negative 
Coefficient 

Supported 

by 
Evidence 
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feature literature 

EIF3G -0.315 ambivalent [57] 

Length -0.184 yes [13] 

MTRF1 -0.152 yes 
https://www.genecards.org/cgi-bin/carddisp.pl?

gene=MTRF1 

EIF2A -0.151 ambivalent https://www.uniprot.org/uniprot/P26641 

TYMS -0.116 yes https://www.uniprot.org/uniprot/P04818 

AGC -0.104 no 
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v

als.html 

EIF4E2 -0.098 yes 

https://string-db.org/network/9606.ENSP00000

258416 

[58] 

EIF4E -0.093 yes https://www.uniprot.org/uniprot/P06730 

LARP1 -0.092 yes 
https://www.uniprot.org/uniprot/Q6PKG0 

[59] 

EEF1D -0.092 ambivalent https://www.uniprot.org/uniprot/P29692 

EIF3E -0.088 ambivalent https://www.uniprot.org/uniprot/P60228 

3UTR_length -0.088 yes [60] 

MTRF1L -0.088 yes 
https://www.genecards.org/cgi-bin/carddisp.pl?

gene=MTRF1L 

CGG -0.084 no 
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v

als.html 

EIF2AK3 -0.081 yes https://www.uniprot.org/uniprot/Q9NZJ5 

The table shows features with the most positive or negative coefficient in RiboCalc model. Since 

all features were scaled into the interval of [0, 1], the absolute value and sign symbol of their 

coefficients could be interpreted as the impact on coding ability. 

Table 3 Correlation between predicted and observed values in RiboCalc human, 
RiboCalc yeast and Li’s model 
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Predicted value Model Pearson’s r Spearman’s r 

TR 

RiboCalc human 0.759 0.762 

RiboCalc yeast 0.886 0.898 

Li yeast 0.874 0.887 

Ribo-TPM 

RiboCalc human 0.974 0.969 

RiboCalc yeast 0.987 0.984 

Li yeast 0.986 0.982 
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