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Abstract

Gene transcription and protein translation are two key steps of the “central dogma”. It
is still a mgjor chalenge to quantitatively deconvolute factors contributing to the
coding ability of transcripts in mammals. Here, we propose Ribosome Calculator
(RiboCalc) for quantitatively modeling the coding ability of RNAs in human genome.
In addition to effectively predicting the experimentally confirmed coding abundance
via sequence and transcription features with high accuracy, RiboCalc provides
interpretable parameters with biological information. Large-scale analysis further
revealed a number of transcripts with a variety of coding ability for distinct types of
cells (i.e., context-dependent coding transcripts, CDCTSs), suggesting that, contrary to
conventional wisdom, atranscript’s coding ability should be modeled as a continuous

spectrum with a context-dependent nature.
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| ntroduction

Gene transcription and protein translation are two key steps of the “central dogma’”.
While protein abundance is generally believed to be regulated by both transcriptional
and translational control [1-3], it is still a major challenge to quantitatively factors
contributing to transcript’s coding ability (i.e., whether a particular transcript will

encode a protein and, if so, the corresponding abundance).

Benefitting from rapid development on high-throughput technology recently, several
quantitative models have been proposed for modeling coding ability in silico based on
various features in unicellular organisms [4-7]. While these models are rather accurate
(e.g. the correlation of with ribosomal density has achieved 0.68[7]), heterogeneity
across cells and species hinders their application in depicting translation control in

mammals [8].

Multiple translation-related signatures have been reported in human and other
mammal systems, revealing severa gene-encoded transcription and translation
regulatory features which substantialy contribute to the finah mMRNA and protein
expression levels [9-15]. Along this line, Volkova et al. have assessed these features
and build qualitative models to discriminate coding and noncoding RNAS, as well as
high- and low-translated MRNAs [16]. Trosemeier et al. have introduced a
codon-specific translation elongation model to simulate ribosome dynamics during
MRNA translation and integrate model’s parameters for protein expression prediction

[17].

Here we present an experiment-backed, data-oriented computational model (named
Ribosome Calculator, RiboCalc) for quantitatively predicting the coding ability

(Ribo-seq expression level) of a particular human transcript (Figure 1A). Features
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collected for RiboCalc model are biologically related to translation control. We build
the model using linear regression with Lasso penalty so that the feature parameters are
easily connected to their contribution to transcript coding process. Multiple
evauations show that RiboCalc not only makes quantitatively accurate predictions but
also offers insight for sequence and transcription features contributing to transcript
coding ability determination, shedding lights on bridging the gap between the
transcriptome and proteome. All scripts and data are available online at

https.//github.com/gao-lab/RiboCalc/.
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Materials and Methods

Ribosome profiling data collection

We retrieved human data published since 2012 from RPFdb[18] and the NCBI
BioProject database[19] by searching for the terms “ribosome profiling”, “ribosome
profile”, “Ribo-seq”, “ribosome footprint” and “RPF’. We then manually selected
Ribo-seq samples with paired RNA-seq data and without treatment interfering with
translation. As a result, 61 datasets were retained from 30 studies covering 22
different human tissues or cell lines (Supplementary Table 1). The pipelines of
transcriptome  analysis for RNA-seq and Ribo-seq data ae at
https://github.com/gao-lab/RiboCal ¢/blob/master/feature_cal culation/RNAandRibo-se

g processing.txt.

M ass spectrometry (M S) data analysis

To build a reliable coding ability prediction model, the first step is to identify bona
fide coding transcripts, especially given several recent reports that a lot of annotated
noncoding RNAs (ncRNAs) were found to encode peptides [20-22]. We selected a
Ribo-seq based coding gene identification method which covered more than 90% of
M S-based callings (Supplementary Figure 1, Supplementary Table 2 and 3).

To find the criteria for coding gene identification covering most M S observations, we
compared the ribosome profiling based results with the MS results. As reported, mass
spectrometry identifies proteins with high specificity but limited sensitivity[23].
Therefore, taken M S results as golden positive calls, we selected criteria to ensure that
Ribo-based results covered 90% MS calls while with less false positives. The MS
dataset for assessment was PXD002395 from the PRIDE database [24]. The
overlapping cell lines in this MS project and our ribosome profiling data were HEK
293, HelLa and U-2 OS cells, so only MS data from these 3 cell lines were analyzed

(Supplementary Table 2).
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We then compiled a human protein database by adding theoretically translated
peptides of transcript putative ORFs and protein-coding transcript translation
sequences annotated by GENCODE release 24. Redundant protein sequences with
identity higher than 90% were trimmed using CD-hit[25] in the database. We used
pFind3 as the search engine [26]. 286 common contaminant proteins were
automatically added into the original protein database by pFind. The reverse protein
sequences were used as a decoy database for false discovery rate (FDR) control. The
search parameters were as follows: 1) Trypsin/P digestion. 2) The precursor tolerance
and fragment tolerance were set to 20 ppm and 20 ppm, respectively. 3) The search
included variable modifications of methionine oxidation and N-terminal acetylation. 4)
Minimal peptide length was set to six amino acids and a maximum of two missed
cleavages was alowed. Peptides were filtered with a FDR threshold of 1%. We
identified a gene as coding in M'S when supported by at |east one protein with a pFind

Q-value less than 0.01 and more than 5 peptide fragments.

The approaches that we used for translated ORF scanning in ribosome profiling data
were RiboCode[27] and ribORF[28]. Genes with translated ORF were identified as
coding in Ribo-seq. We compared the MS and ribosome profiling results in
corresponding cell lines (Supplementary Table 3). M S-based coding genes were taken
as positive calls. Abbreviations in the equations below are as follows: FN, false
negative; FP, false positive; TN, true negative; and TP, true positive.

TN
TN + FP

TP
Sensitivity = P + N Specificity =

RiboCode showed a lack of consistency with M S analysis (Supplementary Table 3),
while ribORF, with a p-value cutoff of approximately 0.5, could achieve a sensitivity
of 90% (Supplementary Figure 1). Thus, we adopted ribORF with a p-value higher
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than 0.5 as an approach for translated ORF identification.

Transcript’s coding ability contributes to the protein abundance determination process
significantly. During the last two decades, the most common method for large-scale
experimental determination of transcripts' coding ability is to measure the abundance
of the corresponding proteins based on MS methods. Nevertheless, M S-based protein
identification is less sendtive to short peptides and peptides expressed at low
levels[29]. In addition, M S analyses often adopt a database-dependent search strategy
that ignores genomic mutations and RNA editing events, hampering identification of
the complete protein pool[30]. Meanwhile, by sequencing the RNA fragments
protected by ribosomes, Ribo-seq measures translational activity in a quantitative
manner with base resolution. Hence, Ribo-seq derived transcript density is an
appropriate measure for evaluation and estimation of coding ability. During ribosome
profiling data processing, we used M S results as the gold standard for determining the
threshold of Ribo-seq based methods. This strategy ensured reliable, sensitive and
precise identification of MS-supported protein-coding genes in the Ribo-seq data,

providing an accurate training set for model building.

I dentification of translated ORFs

After scanning translated ORF based on ribosome profiling data, we made pairwise
comparisons between overlapping ORFs to select a most likely translated one.
Translated ORFs were identified according to the following procedure
(Supplementary Figure 2): Scenario 1) overlapping translated ORFs with unique
regions covered by ribo-reads were both retained. Scenario 2) the ORFs without
unique ribo-reads covering region were filtered out when their overlapping ORFs had.
Scenario 3) if the unique regions of both overlapping ORFs were not covered by
ribo-reads, the shorter ORF was left. Thus, we compiled a non-redundant catalog of
translated ORFs. Since the translated ORFs defined by us were based on ribosome
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profiling data, they might differ from the main ORFs in canonical annotation
(Supplementary Figure 3). If there were no ribosome evidences (such as independent
testing without Ribo-seq data), the longest ORF was taken as the putative translated
ORF.

Calling transcript’s coding status

As we scanned translated ORFs in Ribo-seq, we identified coding transcripts (have
translated ORF) for each sample. Then, atranscript would be called as “noncoding” in
a particular sample only if 1) not covered by any ribo-reads, 2) its expression
abundance is higher than the lower bound of called “coding” ones in this sample. The
expression threshold was set to the 300th quantile of transcripts per million (TPM) for
al coding transcripts in the corresponding sample, so, at this abundance, translated
ORFs could be effectively detected. By using the 300th quantile as athreshold, alarge
number of expressed transcripts (96,968) were removed (Supplementary Figure 4),
indicating that the process is stringent enough for ncRNA identification. Another
circumstance is that atranscript is covered by Ribo-seq reads but no translated ORF is
identified. We also removed this kind of transcripts (1,031) because of lacking reliable

evidence for coding.

As described above, we identified coding and noncoding transcripts in each sample.
Transcripts with translated ORF in every expressed sample were classified as coding,
while the transcripts consistently without translation were classified as noncoding. In
addition, several transcripts showed coding in some samples but were noncoding in
other samples. We defined these transcripts as CDCTs (context-dependent coding
transcripts). In further model building, we retained genes with all isoforms as coding
and selected one representative isoform (expressed in the most samples) for the gene

into the training data (Supplementary Figure 5).
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Collection of classified features based on biological knowledge

Based on biological knowledge, the candidate features were collected from manual
literature survey. Our aim is to depict tranglation control in vivo, so the first criterion
for feature collection is able to be explained by translation-related biological process.
The second criterion is the feature value should be easily encoded by sequence and
transcription information. As a result, we collected 221 features and grouped them
into 5 translation-related processes. 1) Expression abundance: in addition to RNA-seq
expression level, miRNA targeting also affect RNA abundance. Thus, we scanned
MiRNA target sites on 3 UTR and incorporated it into a feature. 2) Translation
initiation: the RNA folding energy and sequence context around the translation
initiation site are related to the transcripts’ coding ability, so we used these features in
RiboCalc. 3) Translation elongation: the translation elongation rate is often altered by
the adaption between codon usage and the corresponding tRNA abundance[10].
Therefore, the frequency of 64 codons, as well as some other indexes describing
codon usage bias, were used in this class of features. 4) Translation regulators: the
abundance of trandation regulatory factors are related to translation level of
RNAg[31], thus, expression level of translation-related genes annotated by GO were
taken into account as features. 5) Transcript structure: other sequence features are also
related to transcript coding ability, such as length and UTR GC content. The
mechanism of these features might not be clearly validated with experiments but we

added them into the list.

Considering the genomic mutations and RNA editing, we modified transcript
reference sequences with variations called by GATK[32] in RNA-seq, and calculated
feature value based on modified sequences. The mutations causing start codon loss
were ignored (see “Mutated transcript sequence identification with RNA-seq data” at
https://github.com/gao-lab/RiboCal ¢/blob/master/feature_cal culation/RNAandRibo-se

g processing.txt). The ORFs that we used for feature calculation are described in
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Supplementary Figure 3. All the features and the calculation method are shown in
Supplementary Table 4. We provide feature calculation scripts at

https://github.com/gao-lab/RiboCal c/tree/master/feature calculation.

Building cell-specific models

We chose 5 cell lines for cell-specific model building. The 5 cell lines were the most
common ones among our collected resources (Supplementary Table 1) and could
represent 5 different tissues. We used Ribo-based coding transcripts for model
building and removed redundant sequences with more than 90% identity using
CD-hit[33]. We randomly selected 3,000 transcripts as training data and the rest as
testing data for each model. The models with selected features were built through
linear regression with the Lasso penalty. The feature data and model building script

are at https://qgithub.com/gao-lab/RiboCal c/tree/master/cell specific model.

RiboCalc model building

By adding trans- features of translation regulators, we built an “environment-aware”
model for quantitative prediction of coding ability globally and named the model
RiboCalc. The detailed methods of model building were as follows:

We pooled coding transcripts from all cell lines together. If identical transcripts
expressed in more than one ribosome profiling sample, we selected the one with
median TPM in the corresponding RNA-seq data. The dataset consists of 8,193
transcripts, and we randomly split them into 5,000 training cases and 3,193 testing

cases.

All the values of each feature were scaled to the interval of [0, 1] for training data as

following eguation (min-max normalization).

X — min (x)

[

x = max(x) — min (x)
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Since gene-level expression abundance estimation was reported to be more accurate
than isoform level [34-36], we took gene TPM for calculation. Since different studies
had a various distribution of expression level in RNA-seq and Ribo-seq, to pool all
the data together, we adopted cross-sample normalization for RNA-TPM and
Ribo-TPM. The RNA-TPM and Ribo-TPM were normalized with TPM of the
housekeeping gene HPRT1 using the following equation. HPRT1 was selected based

on thework of Valente et al.[37].
median(RiboTPMypgr1)

The Ribo-TPM of transcript i in sample j was scaled by the ratio of the HPRT1

RiboTPMg’j = RiboTPM; ; *

Ribo-TPM in sample j with the median HPRT1 Ribo-TPM among all the samples.

The same normalization strategy was also applied to RNA-TPM.

We first removed highly correlated features (Pearson’s r above 0.9) with
“findCorrelation” in the R caret package[38]. Then, feature selection was
implemented through a linear model with Lasso regularization. We searched the
parameter A with the minimum mean squared error (M SE) in 5-fold cross validation.
The Lasso regression was implemented by the gimnet package[39] in R. We provide

raw dataand script at https.//github.com/gao-lab/RiboCal c/tree/master/RiboCalc.

Human model comparison
OCTOPOS [17]. We download the raw data OCTOPOS used for HEK 293. The
RNA-seq data was from

https://www.ncbi.nlm.nih.gov/geo/query/acc.cai ?acc=GSE38356. Protein abundance

data was downloaded from https://pax-db.org/dataset/9606/329/. Since correlation

calculation would be affected by data size, we randomly selected same amount of
transcripts (461) with OCTOPOS as testing set. We provide the script of feature
calculation and model testing from OCTOPOS data a

11
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https://qithub.com/gao-lab/RiboCal c/blob/master/feature cal cul ation/script/test OCT

OPOS.sh. Users could follow the script to apply RiboCalc on their own data.

Li's human model [40]. We downloaded their data “Additional file 2" at
https://doi.org/10.1186/s13059-019-1761-9. The UTR and CDS sequences were

obtained from Ensembl Genes 104 with the transcript IDs. Since Li’s human model
used RPKM as expression level which was hardly transformed into TPM without
knowing the full transcriptome[41], we retrained RiboCalc with their data We
randomly selected 2,000 transcripts as testing data and the rest as training data. The
generated feature data and testing script are at

https://github.com/gao-lab/RiboCal c/tree/master/human _model comparison/LiJJ.

Sampl€e's model [42]. We downloaded the model from

https://qgithub.com/pjsample/human 5utr modeling/tree/master/modeling/saved mod

elssmain_ MRL_model.hdf5. Given that Sample et al.’s model requires the input

sequence length to be 50, we generated 50nt fragments (window size = 50, step size =
1) of 5’ UTRs of RiboCalc testing data. The 5’ UTR sequences were downloaded from
Ensembl Genes 104 and the transcripts without 5’UTR annotation were removed in
the testing set. We used the average predicted value of al 50nt windows from 5’ UTR
sequences as the final predicted value of the transcripts. See

https://github.com/gao-lab/RiboCal ¢/tree/master/human_model comparison/SampleP

J.

Comparison with Li’'s model in yeast

Li et al. used transcript sequence features to predict translation rate (TR) in yeast [6].
In their definition, TR is defined as the number of protein molecules translated per
MRNA molecule, which is the ratio of ribosome density (also abbreviated to

Ribo-TPM for uniformity with RiboCalc) to RNA expression abundance in Ribo-seq.

12
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Thus, RiboCalc could predict TR by dividing RNA abundance into the output as the
equation below.

RiboTPM = RNA * TR

The yeast transcript sequences, ORFs, expression abundance and ribosome density
were obtained from the “nar-00812-a-2017-File019.csv” file in the supplementary
data downloaded from https://doi.org/10.1093/nar/gkx898. Since the RiboCalc

prediction depends on the 3'UTR sequence which is not provided in Li's data, we
fetched the 3 UTR sequences from the Saccharomyces Genome Database (SGD) [43]

and removed 909 transcripts without 3' UTR annotation.

To build the RiboCalc yeast model, we randomly split the remaining 1,541 transcripts
into 1,000 training cases and 541 testing cases. After considering the systematic
differences between yeast and human models, we removed several human-specific
features from the yeast model (Supplementary Table 5). The yeast model training
approach was identical to the RiboCalc human model. To make afair comparison, we
retrained Li's yeast model using the new training set by strictly following their
description. The performance of Li’s retrained model was similar to their original
report (R? of TR are both 0.80). The correlations in Table 3 were calculated from the

testing set. See https://github.com/gao-lab/RiboCalc/tree/master/RiboCalc_yeast for

raw data and script.

Ribo-IncRNA analysis

Long noncoding RNAs (IncRNASs) associated with ribosomes are abbreviated to
ribo-INcCRNAS here. The ribo-IncRNASs from Ruiz-Orera et al. were identified from
the GSE22004 dataset in the NCBI GEO database [20]. Thus, we used GSM 546926
as the Ribo-seq sample and GSM 546927 as the RNA-seq sample in GSE22004 for

RiboCalc analysis. The “top coding score INcCRNAS’, “IncRNAs with homologies”
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and “young codRNAS’ were identified by Ruiz-Orera et al. and downloaded from
https://www.ncbi.nlm.nih.gov/pmc/arti cles/PM C4359382/bin/elife03523s002.xIs. The

“non-ribo-lincRNAs” and “ribo-lincRNAs’ and “other codRNAS’ were from our
analysis of the data. “Non-ribo-lincRNAS" refers to long intergenic noncoding RNAS
(lincRNAs) without ribo-reads, while “Ribo-lincRNAS" are the lincRNAs covered by
ribo-reads. The “other codRNAS’ are protein-coding transcripts with translated ORFs
in ribosome profiling excluding the young codRNAs from the original report. In this

study, transcripts with FPKM lower than 0.2 were excluded.

For ribo-IncRNAs identified by Zeng et al. [44], their resources were included in the
Ribo-seq samples collected by us, except for the data associated with drug treatment.
Therefore, we directly retrieved the features of those ribo-IncRNASs in our data. The
four classes of ribo-IncRNAs in Figure 3C were downloaded from

https://www.ncbi.nlm.nih.gov/pmc/articles/PM C5975437/bin/12864 2018 4765 MO

ESM10 ESM .xlsx. See

https://github.com/gao-lab/RiboCal ¢/tree/master/ribo-IncRNA for raw data and script.

14
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Results

Transcripts' coding status identification in ribosome profiling data

To accurately quantify the coding ability of transcripts in various cells, we retrieved
61 pairs of reliable Ribo-seq data coupled with RNA-seq data from the NCBI GEO
database [19], covering 1 tissue and 21 cell lines (Supplementary Table 1). The
expression abundance in the corresponding Ribo-seq data (abbreviated to Ribo-TPM)
were employed as the quantitative metric for the coding ability. For accurate
prediction of coding ability, the first step is to obtain protein-coding transcripts for
model building. Thus, by applying rigorous filtering criteria, we called translation
status for 101,170 out of 199,169 GENCODE gene models (the rest were filtered out
due to either a lack of expression signals in the chosen samples (96,968) or a failure
of calling translated ORF reliably (1,031), see Supplementary Figure 5 for detailed
procedure). Among the 101,170 transcripts, the translation status of 46% were found
to be “coding” while 43% were “noncoding” in all samples (Figure 1B). Interestingly,
we also found that 11% of the transcripts exhibited diverse coding ability among cell
lines (i.e., coding in some cell lines but noncoding in others), and we named them

context-dependent coding transcripts (CDCTS).

[Insert Figure 1 here]

Figure 1 Transcript coding status classification in ribosome profiling data. A)
Workflow of RiboCalc model building B) The percentage of transcripts with a particular coding
ability classification. The blue fraction shows noncoding transcripts, the yellow fraction shows
coding transcripts, and the green fraction shows CDCTs. C) Comparison between coding ability
classification based on ribosome profiling with the biotypes annotated by GENCODE. The left bar
shows the transcripts annotated as coding transcripts by GENCODE, while the right bar shows
noncoding transcripts. The fractions of each bar correspond to the Ribo-seq based coding status

calling in our analysis, and the colors of particul ar types are the same asthose in Figure 1B.
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RiboCalc: predicting transcript coding ability in human
To identify features contributing to coding ability determination, we first compiled a

candidate list of intrinsic (“cis-”) and contextual (“trans-") features after systematic
literature survey (Supplementary Table 4, also see “Coallection of classified features
based on biological knowledge’ in “Materials and Methods’). The intrinsic
features represent transcript sequence characteristics. And we grouped them into three
categories: “tranglation initiation”[11], “translation elongation”[45] and *transcript
structure” [6, 13] based on the underlying biological process. The contextual features
were collected to depict the environment for translation in the cell and all belong to
the category “expression abundance” [46]). We then incorporated these features
together to build cell-specific models for five representative cell lines with a Lasso
regression based feature selection. All models works well (Table 1 and Supplementary
Figure 6), highlighting the effectiveness of these selected features (Supplementary
Table 4).

[Insert Table 1 here]

Table 1 Ribo-seq resources and transcript dataset size for cell-specific model
building
The 5 cell-specific models showed a significant correlation between the predicted values and

observed Ribo-TPM on the testing set. These cell lines selected were the five that covered most
studiesin al of our collected samples (Supplementary Table 1). The data size were the number of
coding transcripts identified following the stringent criteria (see “ldentification of trandated
ORFs’ and “Calling transcript’s coding status’ in “Materials and Methods’). As reported in
Table 1, the lowest r of the 5 models was 0.78. The remaining 4 models al had a correlation above

0.8, among which the HeLa model had the highest correlation of gpproximately 0.89.

We further tried to incorporate the effect of cell “environment” by introducing
expression level of trans-factors (i.e., translation regulators) in the corresponding

sample (“Translation regulators” in Supplementary Table 4). The “environment-aware”
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model (RiboCalc) accurately predicts coding ability (Ribo-TPM) globally, with r =
0.81 in in testing data from all 22 cell lines (Figure 2A). The performance of
RiboCalc is comparable with 5 cell-specific models (Supplementary Figure 6),

suggesting its prediction efficiency across cells by adding “environment” features.

We compared RiboCalc’s performance with Sample et al.’s model [42] and Li et al.’s
model [40] in human. Li’s human model predicted TR (translation rate) which could
be calculated as the ratio between Ribo-seq and RNA-seq abundance. RiboCalc
predicted TR with Pearson’s r = 0.66, which is higher than Li’s human model (r =
0.64, Supplementary Table 6). Sample et al. built a deep learning model to predict
ribosome loading. Since Sample et al. only provided model data of 50nt 5’UTR
sequences which are not sufficient for RiboCalc prediction, we applied Sample’'s
model directly on RiboCalc testing data. It showed a much lower correlation (r = 0.18,
Supplementary Figure 7) than RiboCalc (r = 0.81, Figure 2A). Therefore, RiboCalc
accurately predicts ribosome density with intrinsic (“cis-”) and contextual (“trans-")

features.

Parameters of RiboCalc are inter pretable by biological impact on translation

As RiboCalc is a linear model fitted by normalized feature values, features
coefficients quantify their contribution (e.g. positive coefficients suggest facilitation
of coding ability, while negative coefficients suggest an adverse effect). A manually
checking in literatures effectively connects model parameters with prior biological
knowledge (Table 2). For instance, the feature with the highest positive coefficient is
the RNA abundance (i.e. TPM), confirming existing reports on the dominant influence
of transcript expression level on protein translation [46, 47]. Smilarly, being
consistent with the observation that longer transcripts reduced the number of dropped
ribosomes diffusing to the trandlation initiation site as well as mMRNA

circularization[13], the model also demonstrates significant adverse effect for the
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length of transcript.

[Insert Table 2 here]

Table 2 Feature coefficient with greatest contribution in RiboCalc and the effect
on translation in theliterature

The table shows features with the most positive or negative coefficient in RiboCalc model. Since
al features were scaled into the interval of [0, 1], the absolute value and sign symbol of their

coefficients could be interpreted as the impact on coding ability.

Based on biological knowledge, we grouped al features into 5 trandation-related
processes, as translation initiation, translation elongation and transcript structure for
intrinsic features from sequence, and expression abundance and translation regulators
as contextual features for environment. By calculating Ribo-TPM through a single
class of features with RiboCalc, we compared their performance with the correlation
between predicted and observed value. The predicted results of both intrinsic and
contextual features showed a significant correlation with the observed Ribo-TPM
(Figure 2B). And consistent with previous studies [46], expression abundance showed

the greatest importance for coding ability in RiboCalc (Figure 2C).

To further validate the model’s effectiveness, we applied it to unicellular organism
yeast based on published dataset[6], and found that the original RiboCalc model
accurately predicted both coding ability and trandlation rate, with comparable
performance to the state-of-arts model in yeast (Table 3, see “Comparison with Li’s
model in yeast” section in “Materials and Methods’ for details). Given the
systematic differences between human and yeast, we also retrained a RiboCalc yeast
model, with yeast data as input but adopting exactly the same feature set and fitting
procedure as in the human model. As expected, the RiboCalc yeast model further

improved performance overall (Table 3).
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[Insert Table 3 here]

Table 3 Correation between predicted and observed values in RiboCalc human,
RiboCalc yeast and Li’s model

Intriguingly, we found that, through the same set of model features adopted, multiple
coefficients of the RiboCalc yeast model differ from those of the human model. The
feature coefficient with the largest difference is the length of 3'UTR (Figure 2D).
Recently, Fu et al. demonstrated that a longer 3'UTR increased the possibility of
MiRNA targeting in mammalian cells, resulting in a reduction in protein
translation[12], whereas no clear evidence for the pervasive existence of miRNAs in
yeast. Consistently, the coefficient for the 3'UTR length in the human model is alarge
negative value and close to zero in yeast (Supplementary Table 7, also see Figure 2D
and 2E for another case on codon usage). We believe that divergent pattern reflected
by RiboCalc models could facilitate investigating the inter-species discrepancy of

translation regulatory mechanisms.

[Insert Figure 2 here]

Figure 2 Model performance and feature contribution of RiboCalc. A) Scatter plot
of RiboCalc predicted and observed values. The x axis shows the observed Ribo-TPM of coding
transcripts in the testing set, while the y axis shows the corresponding Ribo-TPM predicted by
RiboCalc. Pearson’s r and the significance level were calculated between x and y scores. B)
Effectiveness of intrinsic and contextual features in RiboCalc. The bars show Pearson’s r between
the Ribo-TPM predicted by each single class of features and the observed value. The p-value
above the bars indicates the significance of the correlation. C) Feature importance of 5 processes
in RiboCalc. The boxes show the feature coefficient distributions of the 5 trandation-related
processes. Since all the feature values were scaled to [0, 1], the feature coefficients could be taken
as contributions to coding ability prediction in this plot. The numbers above the boxes are the
corresponding feature numbers of each class. D) Scatter plot of feature coefficients in RiboCalc

human and yeast models. The x axis shows the feature coefficients in the RiboCalc human model.
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The y axis shows the corresponding feature coefficients in the RiboCalc yeast model. The colors
of the points represent the four quadrants. The black text labels the feature points of transcript
length, 3'UTR length and RNA TPM. E) The feature names and coefficient values of RiboCalc
human and yeast models in each quadrant. The text on the labels stand for the feature names
(Supplementary Table 4). The codon name stands for codon usage frequency, “init_fold” means
trandation initiation sequences’ minimum free energy (MFE) predicted by RNAfold. The points of
transcript length and RNA TPM are not shown in this plot due to the limitations of the axes. The x

axis, y axisand colors are the same as those in Figure 2D.
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Discussion

To model transcript coding ability quantitatively, we proposed and implemented
RiboCalc. RiboCalc not only effectively predicts coding ability but also reveals
severa intriguing novel hints for deconvoluting the translation control mechanism.
For example, according to the model, the GC content at 3' UTR presents a positive
contribution to the coding ability. Coupling with recent report on AU-rich 3 UTRs
leads to decreased stability of RNAg[48], we could reasonably infer that the 3'UTR
with higher GC content would promote translation efficiency by slowing RNA decay.
Meanwhile, we also notice a few inconsistencies between model-estimated
coefficients and existing literature. For example, a reported translation-suppressing
gene, PAIP2B, showed a positive contribution to coding ability in our model, with
statistically significant positive correlation detected for its abundance and the median
Ribo-TPM of translatable genes in the corresponding sample (Supplementary Figure 8,
also see Supplementary Figure 9). All these observations shed lights on further

mechanism study and validation.

These insights could lead to several potential applications like improving existing
codon optimization tool [17, 49]. A direct comparison with OCTOPOS, a recent
published mechanism-oriented codon optimization tool [17], found that the RiboCalc
model could effectively predict protein abundance (r = 0.63, HEK293 human dataset,
vs. r = 0.61 reported in the original paper, Supplementary Figure 10A), even given the
fact that the RiboCalc model was trained to predict Ribo-seq level, instead of protein
abundance measured in MS as what the OCTOPOS did. Of interest, when being
retrained with OCTOPOS HEK293 dataset, the RiboCalc model showed improved
prediction accuracy (r = 0.73, Supplementary Figure 10B, also see “Human model
comparison” in “Materials and Methods’), highlighting RiboCalc’s potential to

pinpoint novel translation-regulation-related features.
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The RiboCalc model suggests that both intrinsic (“cis-", like the transcript sequence)
and contextual (“trans-", like expression level of transcript and translation regulators)
features contribute to the transcript coding ability decision in cells. Intriguingly, we
found a number of transcripts exhibited diverse coding ability among cell lines
(CDCTs, Supplementary  Figure 11, aso see dealed list at
https://github.com/gao-lab/RiboCal c/blob/master/ CDCT/CDCT _transcript_list.tab).

Among the protein-coding transcripts annotated by GENCODE, 15% were classified
as noncoding and 17% as CDCTs; meanwhile, one-third of GENCODE-annotated
NcRNAs were classified as coding, and 7% as CDCTs (Figure 1C, aso see the list at
https://github.com/gao-lab/RiboCal ¢/blob/master/CDCT/CDCT _lincRNA_TransL.nc

evidence _number.tab). The model shows that CDCTs under coding context get higher
RiboCalc scores than these under noncoding context (Figure 3A). Consistently,
canonical protein coding genes have been validated experimentally that protein
expression ability could be varied or even silenced without altering mRNA
transcribing [50-52] and several annotated INcRNAs were found to be associated with
ribosomes (abbreviated to ribo-IncRNAS) [20, 44, 53] and encode functional peptides
[54-56]. RiboCalc model confirms that reported ribo-IncRNAs as well as INcRNAs
with high homologies and top coding score[20, 44] have coding ability significantly
higher than that of non-ribo-IncRNAS, and close to those of young experimentally
validated coding RNAs (Figure 3B and 3C, also see Supplementary Figure 12 for
more analysis on GENCODE transcripts). Collectively, these results suggest that
transcript’s coding ability should be modeled as a context-dependent continuous value,

rather than a certain binary class.

[Insert Figure 3 here]
Figure 3 Biological interpretation of transcripts with ambiguous coding ability

from the RiboCalc modd. A) RiboCalc prediction of transcripts with a particular coding
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ability classification. “Noncoding” refers to the noncoding transcripts identified in Ribo-seq,
“coding” is the testing data of RiboCalc. The “coding CDCTSs’ are CDCTs present under coding
context (observed as coding in particular samples), and “noncoding CDCTS’ are under noncoding
context. B) Prediction of ribo-IncRNAs from Ruiz-Orera et al. in RiboCalc. The boxes show the
predicted Ribo-TPM digtribution of a particular class of RNAs. The “non-ribo-IncRNA” are
lincRNAs without ribosome coverage, while “ribo-IncRNA” are covered by ribo-reads. The “top
coding score IncRNA” are IncRNAs with the highest sequence similarity with protein-coding
transcripts. The “IncRNA with homologies’ are INcRNAs conserved among species. “Young
codRNA" are validated coding RNAs with a short evolutionary history, while “other codRNA”
are the rest coding RNAs. C) Prediction of ribo-IncRNAsfrom Zeng et al. in RiboCalc. The boxes
show the predicted Ribo-TPM distribution of a particular class of RNAs. The “trans-IncRNA” are
trandated INCRNAS, “ribo-IncRNA” are IncRNASs only covered by ribo-reads, “non-ribo-IncRNA”
are IncRNAs without ribo-reads, and “other” refer to unexpressed IncRNAs. All significance

levelsin Figure 3A, B and C are based on Wilcox test.
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Data Availability

All scripts and data are available online at https:.//github.com/gao-lab/RiboCalc/.
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Tables
Table 1 Ribo-seq resources and transcript dataset size for cell-specific model
building
Sample D Cdl line Bioresources Datasize Pearson’s r with
Ribo-TPM
SRR1803151 GM12891 B lymphocyte 4,781 0.785
SRX 870805 HEK 293 Embryonic kidney cell 6,057 0.836
SRR970565 HelLa Cervical cancer cell 6,440 0.886
SRR627625 BJ Foreskin fibroblast 5,746 0.830
SRR3208870 hESC.2 Embryonic stem cell 6,260 0.862

The 5 cell-specific models showed a significant correlation between the predicted values and
observed Ribo-TPM on the testing set. These cell lines selected were the five that covered most
studiesin al of our collected samples (Supplementary Table 1). The data size were the number of
coding transcripts identified following the stringent criteria (see “ldentification of trandated
ORFs’ and “Calling transcript’s coding status’ in “Materials and Methods’). As reported in
Table 1, the lowest r of the 5 models was 0.78. The remaining 4 models al had a correlation above

0.8, among which the HeLa model had the highest correlation of approximately 0.89.
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Table 2 Feature coefficient with greatest contribution in RiboCalc and the effect
on translation in theliterature

Top 15 Supported
positive Coefficient by Evidence
feature literature
RNA_TPM 0.623 yes [46, 47
https.//www.genecards.org/cgi-bin/carddisp.pl?
EIF3L 0.314 yes
gene=EIF3L
https.//www.genecards.org/cgi-bin/carddisp.pl?
EIF2B3 0.146 yes
gene=EIF2B3
RPS9 0.117 yes https.//www.uniprot.org/uniprot/P46781
PAIP2B 0.117 no https.//www.uniprot.org/uniprot/ QOULR5
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v
AAG 0.097 yes
alshtml
https://www.cs.tau.ac.il/~tamirtul/MTDR/mu_v
ATG 0.096 ambivalent
alshtml
MTDR 0.096 yes [49]
RARA 0.092 no https.//www.uniprot.org/uniprot/P10276
https.//www.genecards.org/cgi-bin/carddisp.pl?
EEF1G 0.090 yes
gene=EEF1G
https.//www.cs.tau.ac.il/~tamirtul/MTDR/mu_v
GAT 0.088 ambivalent
als.html
C12orf65 0.078 yes https://ghr.nlm.nih.gov/gene/C120rf65
RPS14 0.078 yes https.//www.uniprot.org/uniprot/P62263
3UTR_GC 0.077 yes [48]
MTIF2 0.075 yes https.//www.uniprot.org/uniprot/P46199
Top 15 Supported
Coefficient Evidence
negative by
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feature literature
EIF3G -0.315 ambivalent  [57]
Length -0.184 yes [13]
https.//www.genecards.org/cgi-bin/carddisp.pl?
MTRF1 -0.152 yes
gene=MTRF1
EIF2A -0.151 ambivalent  https.//www.uniprot.org/uniprot/P26641
TYMS -0.116 yes https://www.uniprot.org/uniprot/P04818
https.//www.cs.tau.ac.il/~tamirtul/MTDR/mu_v
AGC -0.104 no
alshtml
https.//string-db.org/network/9606.ENSP0O0000
EIF4E2 -0.098 yes 258416
[58]
EIF4E -0.093 yes https://www.uniprot.org/uniprot/P06730
https://www.uniprot.org/uniprot/Q6PK GO
LARP1 -0.092 yes
[59]
EEF1D -0.092 ambivalent  https://www.uniprot.org/uniprot/P29692
EIF3E -0.088 ambivalent  https://www.uniprot.org/uniprot/P60228
3UTR length -0.088 yes [60]
https.//www.genecards.org/cgi-bin/carddisp.pl?
MTRF1L -0.088 yes
gene=MTRF1L
https.//www.cs.tau.ac.il/~tamirtul/MTDR/mu_v
CGG -0.084 no
als.html
EIF2AK3 -0.081 yes https://www.uniprot.org/uniprot/ QINZJ5

The table shows features with the most positive or negative coefficient in RiboCalc model. Since
all features were scaled into the interval of [0, 1], the absolute value and sign symbol of their

coefficients could be interpreted as the impact on coding ability.

Table 3 Correation between predicted and observed values in RiboCalc human,
RiboCalc yeast and Li’s model
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Predicted value Modd Pearson’sr Spearman’sr
RiboCalc human 0.759 0.762
TR RiboCalc yeast 0.886 0.898
Li yeast 0.874 0.887
RiboCalc human 0.974 0.969
Ribo-TPM RiboCalc yeast 0.987 0.984
Li yeast 0.986 0.982
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