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Abstract 17 

During motor learning, as well as during neuroprosthetic learning, animals learn to control motor cortex 18 

activity in order to generate behavior. Two different population of motor cortex neurons, intra-19 

telencephalic (IT) and pyramidal tract (PT) neurons, convey the resulting cortical signals within and 20 

outside the telencephalon. Although a large amount of evidence demonstrates contrasting functional 21 

organization among both populations, it is unclear whether the brain can equally learn to control the 22 

activity of either class of motor cortex neurons. To answer this question, we used a Calcium imaging 23 

based brain-machine interface (CaBMI) and trained different groups of mice to modulate the activity of 24 

either IT or PT neurons in order to receive a reward. We found that animals learn to control PT neuron 25 

activity faster and better than IT neuron activity. Moreover, our findings show that the advantage of PT 26 

neurons is the result of characteristics inherent to this population as well as their local circuitry and 27 

cortical depth location. Taken together, our results suggest that motor cortex is optimized to control the 28 

activity of pyramidal track neurons, embedded deep in cortex, and relaying motor commands outside of 29 

the telencephalon. 30 

 31 

 32 

  33 
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Introduction 34 

To execute a complex natural or neuroprosthetic behavior, animals learn to control the activity of neuronal 35 

circuits on motor cortex and the commands sent downstream. Dopamine dependent plasticity between 36 

output neurons of those neuronal circuits with its projecting regions seems to be critical for learning 37 

(Athalye et al., 2020; Koralek et al., 2012). However, it is still unclear whether there is any difference 38 

when learning to control different subpopulations of motor cortex neurons that may have different 39 

projecting regions. Understanding the impact that cell-classes have over learning and the different 40 

behaviors that they elicit will give insight on how learning may be implemented in the brain. 41 

Motor cortex output is mainly dominated by two cell-classes: intra-telencephalic neurons (IT) which 42 

project to the contralateral cortex and bilaterally to the striatum; and extra-telencephalic or pyramidal-tract 43 

neurons (PT) which project ipsilaterally to the striatum, to the brainstem and to the spinal cord. Aside from 44 

their different projection targets, they also differ in morphology (Wilson, 1987), connectivity (Harris and 45 

Shepherd, 2015) and activity (Beloozerova et al., 2003; Cowan and Wilson, 1994). However, there is little 46 

information about the extent to which these cell-classes are involved in the learning processes. PT 47 

neurons are exceptionally well positioned to generate a cortical output to downstream areas (Egger et al., 48 

2020; Takahashi et al., 2020). Nevertheless, being recruited for such important mission could constrain 49 

their flexibility to adapt and accommodate new neuronal patterns. On the contrary, IT neurons are more 50 

adaptable (Harris and Shepherd, 2015; Shepherd, 2013), which should be advantageous for efficient 51 

learning in neuronal circuits. It is also possible that this division, IT vs PT, could be less relevant to neural 52 

control and manipulation than other neuronal characteristics such as location, activity or circuit dynamics 53 

of neighboring neurons. Understanding what drives the adaptive mechanisms of control over cortical 54 

neurons is not only relevant for clarifying the role of IT and PT neurons during learning, but it can also 55 

enlighten the different roles of cortical cell-classes in disease (Shepherd, 2013) and motor function (Li et 56 

al., 2015; Reiner, 2010). 57 

To address these questions, we took advantage of an established calcium imaging brain-machine 58 

interface (CaBMI) paradigm (Clancy et al., 2014) while utilizing viral tracing to probe the functional 59 

properties of different cortical cell-classes across multiple cortical layers in behaving mice. A CaBMI 60 
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paradigm relies on an operant learning task where mice volitionally control their neuronal activity in order 61 

to obtain a reward. Specifically, mice learned to control either IT or PT neurons allowing us to address 62 

any difference in the ability of the brain to learn with either neuronal population. Finally, with machine 63 

learning and game theory approaches we dissected all possible influences on learning and showed the 64 

relevance of the inherent characteristics of each cell-class and their local circuitry and their positive 65 

influence on learning.  66 

 67 

Results 68 

To distinguish IT neurons from PT neurons, we engineered cell-class specific expression of a red 69 

fluorescence marker in two groups of tetO-GCaMP6s/-Camk2a-tTA transgenic mice. One group (n=9) 70 

was injected with AAVrg-CAG-tdTomato in the contralateral motor cortex to label IT neurons and the 71 

other group (n=8) in the ipsilateral pons to label PT neurons (Fig.1.A-E).  We trained both groups of mice 72 

to control a CaBMI (see methods) while simultaneously recording in four different planes the activity of 73 

both red-labeled and unlabeled neurons (Supp.Fig.1.A-C). Because the recordings span a large part of 74 

the cortical column (400µm, Supp.Fig.1.D), unlabeled neurons may contain excitatory neurons from both 75 

cell-classes and possibly inhibitory neurons (Nathanson et al., 2009; Watakabe et al., 2015). Each 76 

session, a different pair of red-labeled neurons were arbitrarily selected and assigned to neural 77 

ensembles. By using only PT or only IT neurons as the neurons directly controlling the CaBMI (direct 78 

neurons), we studied the differences in learning between these genetically different subpopulations of 79 

cortical neurons as well as the neural dynamics that surrounded them. 80 

Each session we changed the direct neurons to test learning capabilities in as many neurons as possible. 81 

For that reason, our results can only be compared to initial sessions of other CaBMI experiments (Athalye 82 

et al., 2018; Clancy et al., 2014; Hira et al., 2014; Mitani et al., 2018; Prsa et al., 2017). By using naive 83 

neurons, we investigated the role of IT and PT neurons during the acquisition of a learned behavior which 84 

may entail different processes and circuits than the refinement of that behavior (Athalye et al., 2020). The 85 

role of different cortical neurons in later stages of learning including consolidation and refinement should 86 

be addressed in further experiments. 87 
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Animals learn to control pyramidal tract neurons better and faster than intra-telencephalic neurons during 88 

CaBMI learning 89 

We first investigated whether our choice of IT or PT neurons as direct neurons affected the animal’s 90 

learning ability. We quantified learning through two measures: hits-per-minute (HPM) and percentage-91 

correct (PC). Hits-per-minute quantifies reward rate over time while percentage-correct is the reward rate 92 

normalized by the number of trials. Both groups showed an increase from chance level (HPM: 0.46±0.04, 93 

PC: 0.25±0.02) in both hits-per-minute and percentage-correct throughout the experiment (Fig.1.F-G). 94 

However, the PT group (n=125 sessions) achieved greater reward rates than the IT group (n=162 95 

sessions) across equivalent time windows of a session (Fig.1.F-G) and across the whole session (Fig.1. 96 

H-I).  97 
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Figure 1: Cell-class specific CaBMI shows differences on learning. 98 

A) AAVrg-CAG-tdTomato retroviruses injection regions for IT (left), contralateral motor cortex, and PT 99 
(right), ipsilateral pons. (B-C) Coronal sections for the IT (B) and PT (C) animals. Neurons with viral 100 
expressions were located in L2/3 and L5-6 of motor cortex (M1-M2) for IT group and in L5-6 across cortex 101 
for PT. D) Typical depth planes for calcium recordings. Marked neurons were randomly picked as direct 102 
neurons. E) Schematics for the calcium decoding algorithm. Neural cursor is calculated as the difference 103 
between sum dF/Fs of two groups. Red dashed line denotes one instantiation of the reward threshold 104 
simulated from baseline. F) HPM, the number of hits within a one-minute window, calculated for each 105 
session across IT experiments (orange) and PT experiments (blue). Values are binned in five-minute 106 
windows. G) As in (F), but for PC, the percentage of correct trials within the same one-minute window. 107 
Because trial lengths can be variable, PC represents the reward rate normalized by the number of trials in 108 
each time window. H) HPM values across all time windows of a session (*: p < 0.05 with Mann-Whitney U 109 
test). HPM chance level = 0.46 ±0.04. I) As in (H), but for PC. PC chance level 0.25±0.02 J) The relative 110 
gain in HPM during the first 10 minutes of a session from the beginning of the session. Specifically, we 111 
calculated the difference in HPM from the first minute of the experiment, then normalized this measure for 112 
each session by dividing by the mean HPM. This normalization allowed us to compare performance 113 
increases across sessions with different starting reward rates. K) As in (J), but for PC. L) Distribution of 114 
maximum HPM obtained per session. This measure of performance is less affected by periods of low 115 
motivation or attention, which can modulate learning curves. (**: p < 0.005 with one-way Anova) 116 

 117 

To address if differences in starting reward rate explained the learning differences between the IT and PT 118 

group, we obtained the gain of each learning measure over the first 10 minutes. We found that the PT 119 

group reached a higher performance than the IT group and did so faster (Fig.1.J-K). Similarly, we 120 

compared the best performance of each group to address possible effects of motivation loss. We 121 

observed that the PT group tended to have significantly higher maximum performance (p<0.005, Fig.1.L).    122 

Taken together, our results demonstrate that, although both groups can learn the task, the PT group 123 

consistently outperforms the IT group across a variety of learning measures. Strikingly, the PT group 124 

achieves a higher reward rate than the IT group in less time. Much of this performance difference occurs 125 

in the first few minutes of an experiment (Fig.1.J-K). A possible explanation is that the network involved in 126 

this task learns to modulate the activity of PT neurons and/or re-enter the neuronal patterns that granted 127 

reward, more effectively and quickly. If so, known characteristic differences between IT and PT neurons, 128 

such as connectivity or cortical depth (Reiner, 2010), may be relevant. However, other factors besides 129 

neuron properties can also contribute to these observed differences. Experimental confounds, such as 130 

imaging quality, may explain these differences. In the rest of the paper, we tackle the extent to which a 131 

diverse range of factors could explain the higher learning performance of the PT group. 132 
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Evaluating experimental and neural features that influence learning 133 

To control for possible experimental confounds and understand the impact of cell-class and other neural 134 

features on learning, we implemented a feature attribution framework. We used a gradient-boosted 135 

decision tree, XGBoost (Chen and Guestrin, 2016), as a model to predict the percentage of correct trials 136 

(henceforth percentage-correct), our measure of learning. Then, we used SHapley Additive exPlanations 137 

(SHAP) to explain how each feature contributed to the model’s prediction each session (Supp.Fig.2). 138 

Thus, positive SHAP values represent that a feature pushed the predicted value of percentage-correct 139 

higher, suggesting a positive influence on learning. On the contrary, negative SHAP values represent that 140 

a feature reduced the predicted value of percentage-correct, suggesting a negative influence on learning 141 

(Fig.2.A).  142 

Untangling the true effect each feature had on the animal’s learning each session is a complicated 143 

endeavor. For example, depth, signal quality and cell identity are highly correlated but may have opposite 144 

effects on learning. By using a highly accurate model and a reliable explainer we offer a reasonable 145 

approximation to the immeasurable independent contributions of each feature to learning. 146 

Experimental-dependent features and cell-class activity variability do not explain learning differences  147 

We first investigated if experimental-dependent features (features that were solely affected by 148 

experimental limitations or experimenter bias) affected learning. These features captured signal quality 149 

and distance between direct neurons (excluding cortical depth which is dependent on cell-class). SHAP 150 

values were highly correlated with signal-to-noise ratio (SNR), indicating that cleaner signals resulted in 151 

better animal performance (Fig.2.B). Thus the generally lower signal-to-noise ratio of PT neurons (due to 152 

brain-scatter imaging limitations in deep tissue) hindered the predicted percentage-correct (Supp.Fig.3.A-153 

B). Additionally, the distances between direct IT or PT neurons (Fig.2.C-E) affected the value of the 154 

predicted percentage-correct similarly in both groups. These results indicate that none of the 155 

experimental features that were independent of cell-class were responsible for the improved performance 156 

of the PT group. 157 

 158 
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Figure 2: Dissecting the influence of features on learning outcome. 160 

A) SHAP values for all the features used in the XGBoost models (see Supp.Fig.2). Positive SHAP values 161 
indicate a positive effect on the PC measure and a better learning outcome. Negative SHAP values 162 
indicate a negative effect on learning. Features are divided into 6 groups: Quality, Position, Variation, 163 
Connectivity, Engagement and Cell Identity for clarity. Quality features are comprised of the signal-to-164 
noise ratio. Position features include depth (Depth) of direct neurons, the distance between direct 165 
neurons on a plane (Diff. XY), their difference in depth (Diff. Depth), and the distance between neurons of 166 
the ensemble E1 and the ensemble E2 (Dist. E1-E2). Variation features include STD of the cursor 167 
(Cursor) based on neuronal activity E2-E1, STD of the online calcium signals that operated the CaBMI 168 
(Online), and also the post-processed calcium signals of direct neurons during baseline (Base) or during 169 
the whole experiment (Exp). Measures that were calculated for each direct neuron were included as 170 
features with their minimum (min), mean, or maximum (max) value. Color (red-to-blue) represent the 171 
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value of the feature. Each dot represents 1 session. Sessions from IT and PT groups were included. B-I) 172 
Linear regression between SHAP values and the value of mean SNR (B); minimum distance (C) and 173 
maximum distance (D) in the XY plane between 2 direct neurons; maximum distance between neurons 174 
belonging to different ensembles (E). Activity of direct neurons during baseline (F) or whole experiment 175 
(G).  H) Mean of the STD of the neural cursor. Each dot is a session. Shaded area is the confidence 176 
interval. Orange dots are sessions from the IT group whereas blue dots are sessions of the PT group. 177 

 178 

Distinct activity characteristics have been identified in IT and PT neurons (Dembrow et al., 2010). To 179 

investigate if these differences could influence learning, we added features based on the standard 180 

deviation (STD) of neuronal activity to the model. Highly active direct neurons during baseline negatively 181 

affected the value of predicted percentage correct (Fig.2.F). Contrarily, highly active direct neurons during 182 

the experiment increased the predicted percentage correct (Fig.2.G). These apparently contradicting 183 

results are consistent with CaBMI benefiting from silent neurons during baseline becoming more active 184 

during the task. The generally tonic firing characteristics of PT neurons (Dembrow et al., 2010) resulted in 185 

reduced changes of fluorescence in calcium imaging and therefore low variability (Supp.Fig.3.C-E). 186 

These had contradicting effects on the predicted percentage-correct (Supp.Fig.3.D-F). In addition, there 187 

was no cell-class difference due to the variability of the CaBMI cursor (Fig.2.H). These findings indicate 188 

inconclusive effects of the different activity characteristics of PT and IT neurons over learning. 189 

Local connectivity and position of PT neurons accounts for the differences in learning  190 

Learning modulates the activity of indirect neurons (Ganguly et al., 2011; Zippi et al., 2021), neurons of 191 

the local circuitry recorded during the experiments but not in direct control of the CaBMI. However, the 192 

influence that local circuitry may pose on learning has not yet been investigated. To address this, we 193 

studied how two different measures, connectivity to/from direct neurons and task engagement of indirect 194 

neurons, would influence learning.  195 

To begin, we used Granger causality as a measure of effective connectivity. We determined the 196 

percentage of neurons that were connected as well as the strength of those connections, during the 197 

baseline period (see methods). It is important to note that this method cannot capture the effects of 198 

neurons not recorded and/or fast recurrent networks due to our recording framerate (10Hz). Higher 199 

effective connectivity (both in the number of pairs and the strength of those connections) from direct 200 
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neurons to indirect neurons, regardless of cell-class, lowered the predicted percentage-correct. On the 201 

contrary, higher connectivity (also in the number of pairs and strength) from unlabeled indirect neurons to 202 

both IT and PT direct neurons increased the predicted percentage-correct (Fig.2.A), suggesting better 203 

performance for neurons receiving higher, in both number of connections and strength of those 204 

connections, indirect input.  205 

Lastly, to evaluate how engaged were the indirect neurons with the task, we calculated how well these 206 

indirect neurons could predict the neural cursor controlling the CaBMI (see methods). Besides some 207 

fluctuations, better cursor prediction by indirect neurons was tightly linked with higher predicted 208 

percentage-correct (Fig.2.A), indicating a positive influence in learning.  209 

These findings suggest that generally, a strong support from local circuitry positively impacts learning. 210 

However, our results are limited to the acquisition of a learned behavior. Previous research have shown 211 

that during late learning, task modulation of indirect neurons decreases (Ganguly et al., 2011; Zippi et al., 212 

2021) and there is less functional connectivity from indirect neurons to direct neurons than vice versa (So 213 

et al., 2012). It is possible that local circuitry may be more relevant during early learning facilitating the re-214 

entrance of the neuronal patterns that grant reward. On the contrary, the effects of refinement may entail 215 

different neural processes, including the pruning of indirect neurons deemed impractical.  216 

Interestingly, both measures quantifying the involvement of indirect neurons (effective connectivity and 217 

task engagement) increased the predicted percentage-correct for the PT group but decreased it for the IT 218 

group (Fig.3.A-B). This may imply that deep local circuitry surrounding PT neurons more effectively 219 

supports learning than circuitry in the upper cortical layers. Is this also true for IT neurons? To investigate 220 

this, we examined if choosing IT direct neurons from deeper planes affected learning outcomes. We 221 

found that sessions with IT direct neurons in deeper cortical layers increased the predicted percentage-222 

correct (Fig.3.C).  Additionally, depth was highly correlated with indirect-to-direct connectivity (Fig.3.D, 223 

Supp.Fig.3.I) which our results indicate facilitates learning. Taken together, these findings suggest that 224 

direct IT neurons located in the vicinity of PT neurons learned more effectively than their counterparts in 225 

upper layers. However, it is possible that this learning difference arises not from a supportive deep local 226 

circuitry but from the postsynaptic circuit. IT neurons projecting into striatum are oftentimes found in 227 
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deeper layers than IT neurons that only project into other cortical regions (Shepherd, 2013). Thus, the 228 

behavioral outcome may be largely influenced by synaptic proximity to the next stop of the cortico-basal-229 

thalamo-cortical loop that governs learning. 230 

Figure 3: Inherent characteristics, connectivity and location of PT neurons lead to better 232 

performance. 233 

SHAP values for circuit-related features: (A) engagement of indirect neurons and (B) effective 234 
connectivity from indirect to direct neurons in sessions of the IT (orange) or PT (blue) groups. C) SHAP 235 
values depending on the minimum depth of all direct neurons. D) Linear regression between the minimum 236 
depth of all direct neurons and the effective connectivity from indirect to direct neurons.  Each dot is a 237 
session of the IT (orange) or the PT (blue) groups. Line is the linear regression and shaded area its 238 
confidence interval. E) SHAP values for the cell-identity feature and their distribution (F) with IT group 239 
sessions in orange and PT group sessions in blue. Black lines in bar graphs represent SEM. (** : 240 
p<0.005, ***: p<0.0005 with independent t-Test).  241 

 242 

We aimed to investigate if location is the only relevant feature to determine learning. However, we could 243 

not measure all possible different characteristics of IT and PT neurons (such as input from other cortical 244 

areas, thalamic input, spike burstiness, etc.). Instead, we added one more feature that encoded the 245 

identity of the neurons chosen for CaBMI, hence accounting for the remainder of other inherent cell-class 246 

characteristics. Strikingly, the difference between both groups was very consistent. Selecting PT neurons 247 

for CaBMI generally increased the predicted percentage correct, indicating a positive influence on task 248 

performance whereas selecting IT neurons had an entirely negative effect on the predicted percentage-249 
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correct (Fig.3.E-F). This effect indicates that inherent characteristics of PT neurons were consistently 250 

advantageous for successful learning. 251 

In summary, by using a method that measures the impact of different cell-type features on the learning of 252 

an operant CaBMI task, our work provides insights into the understanding of the factors that contributed 253 

to operant control of cortical activity. Our results demonstrate that animals learned to control PT neurons 254 

faster and more effectively than IT neurons and that this effect cannot be attributed to any experimental 255 

confounds. Instead, our results suggest that the brain is more effective at manipulating and controlling 256 

output neurons that project from cortex to regions outside the telencephalon, and that this results from 257 

connectivity and position in the cortex.  258 

 259 

Acknowledgments 260 

This work was supported by the NIH U19 grant to RMC and JMC, and the Army Research Office Award 261 

W911NF-16-1-0453 to JMC.  262 

 263 

Author contributions: 264 

NVL, RMC, and JMC designed the study. NVL and CF performed the experiments. NVL, CF, and AJQ 265 

analyzed the data. JMC and RMC lead the study. NVL, CF, and AJQ wrote the manuscript with significant 266 

contributions from RMC and JMC. 267 

 268 

Competing interests 269 

There were no financial or non-financial competing interests for any of the authors.  270 

 271 

 272 

 273 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.29.466535doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

Methods: 274 

Animals & Surgery: 275 

All experiments were performed in compliance with the regulations of the Animal Care and Use 276 

Committees at the University of California, Berkeley and according to NIH guidelines. Mice were housed 277 

with a 12-h dark, 12-h light cycle. Two groups of tetO-GCaMP6s/-Camk2a-tTA mice (original strains from 278 

The Jackson Laboratory, Bar Harbor, Maine: jax-024742, jax-007004) were injected with a retrograde 279 

virus in the contralateral motor cortex (n=9) or in the ipsilateral pons (n=8) in order to label 280 

intratelencephalic (IT) neurons and pyramidal tract (PT) neurons, respectively. Although cortico-thalamic 281 

neurons would also be relevant to this study, their location deep in the brain, made them impossible to 282 

study under the current state of the art of two-photon microscopy.  283 

Prior to surgery, tools and materials were sterilized by autoclaving or gas sterilization. Mice were initially 284 

anesthetized by placing them briefly (2-3 mins) in a box containing 3 - 4% isoflurane and were then kept 285 

at 1-2% isoflurane in a nose cone respirator connected to a precision vaporizer. The animal was secured 286 

into a stereotaxic frame (Kopf instruments, Tujunga, CA) and kept warm (37.5 ± 1 °C). A single incision 287 

was made along the midline of the skull in the rostro-caudal direction and the skull was cleaned. Using a 288 

rotary micromotor drill (Foredom, Bethel, CT) equipped with a 0.5mm carbon burr (Fine Science Tools, 289 

Foster City, CA), a small burr hole was made over the contralateral motor cortex (1.4 mm rostral, 1.3 mm 290 

lateral to Bregma) or the ipsilateral pons (4.26 mm posterior, -0.6 mm lateral to Bregma), and 400 nl of 291 

AAVrg-CAG-tdTomato (Addgene Watertown, MA, viral prep # 59462-AAVrg) was injected 300um (for IT) 292 

or 4.6mm (for PT) below the pia. The tracer was delivered using a pulled glass pipette (tip diameter = 40–293 

60 μm) at a rate of 50 nl min with a Nanojet 3 (Drummond Scientific Company, Broomall, PA). The pipette 294 

was left in the brain for 15 min after completion of the injection to prevent backflow. After removal of the 295 

pipette, the burr hole was covered with Metabond dental cement (Parkell Edgewood, NY, S396-S398-296 

S371). A 3-mm craniotomy was opened over motor cortex (coordinates of the center relative to Bregma 297 

ML-1.5, AP 1.3). Two sterile glass coverslips (3-5mm, #1 thickness) were glued concentrically to each 298 

other (Norland Optical Adhesive, Cranbury, NJ, NOA71) and positioned over the skull so the 3mm 299 

coverslip would fit in the craniotomy. Metabond was applied to create a thin seal between the skull and 300 
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the sides of the cranial window, and a steel headplate was affixed posterior to the coverslips. We allowed 301 

3-4 weeks for recovery and for the expression of tdTomato, before starting the behavioral experiments. 302 

Animals with injections in the contralateral motor cortex had IT neurons labeled with tdTomato (IT group), 303 

whereas animals injected in the pons had PT neurons labeled with tdTomato (PT group). 304 

 305 

Two-photon imaging. 306 

Recordings of calcium imaging were performed with a Bruker Ultima Investigator (Bruker, Millerica, MA) 307 

using a Chameleon Ultra II Ti:Sapphire mode-locked laser (Coherent, Santa Clara, CA) tuned to 920 nm. 308 

Photons were collected with two GaAsP PMTs for different channels using an Olympus objective 309 

(XLUMPLFLN 20XW). Animals were head-fixed over a styrofoam ball (JetBall, PhenoSys, Berlin, 310 

Germany) that allowed them to run freely under the two-photon microscope. A piezo controller (400um 311 

travel, nPoint, Middleton, WI ) allowed the sawtooth recording of 4 different planes with 100um separation 312 

for a full sweep of the cortical column. The power of the laser was set so that high quality images of the 313 

planes with direct neurons could be achieved without damaging shallow planes. Different imaging fields 314 

were used every day. In a given session, the imaged planes spanned 400 microns in depth. These planes 315 

were centered ~350-550 microns below pia depending on the session. Frames of 256 × 256 pixels (∼290 316 

× 290 μm) were collected at 9.7 Hz using ScanImage software (Vidriotech, Ashburn, VA). Motion drifts (if 317 

any) were corrected online by the software and/or manual control. Motion artifacts resulted in poor task 318 

performance (since both ensembles moved accordingly) and the mice seemed to remain more still during 319 

late learning sessions. Additionally, we added the quality of the recorded calcium signals of the direct 320 

neurons (measured as SNR) as features of the XGBoost-SHAP models. SNR was positively correlated 321 

with SHAP values, indicating that animals performed better in sessions with higher signal quality. 322 

 323 

Behavioral task and online processing: 324 

This behavioral task has been described previously in electrophysiology (Koralek et al., 2013, 2012; 325 

Neely et al., 2018) and calcium imaging(Clancy et al., 2014).. Activities of two pairs of M1 neurons were 326 

summed within ensemble (∑E1 – ∑E2) and entered into a decoder that mapped neuronal activity to an 327 

auditory signal (range 2-18kHz). Head-fixed mice could increase the frequency of the auditory cursor by 328 
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increasing the activity in the first ensemble (E1) and decreasing the activity in the other ensemble (E2). 329 

Mice could instead decrease the frequency of the auditory cursor by decreasing the activity of E1 and 330 

increasing the activity of E2. Mice received reward (20% sucrose) if they decreased the cursor frequency 331 

under a predefined target. To set the target cursor frequency, neuronal activity was recorded during a 332 

baseline period of 15 minutes. Each day the target was set such that mice would have received reward in 333 

30% of trials in a hypothetical simulation with the recording from the baseline period. The auditory signal 334 

was proved to the animals as feedback of their performance.  335 

In each group of animals (IT or PT), only tdTomato labeled neurons were used to control the auditory 336 

cursor. To study within-session learning, different IT or PT neurons (respectively) were selected each day. 337 

The animals had 30 seconds to reach the target and achieving a “hit”. Otherwise, the trial would be 338 

considered a “miss”. With a successful trial, sucrose reward was given to the animal. After a 3 second 339 

pause, the auditory cursor was required to return to a baseline value in order to start the next trial. If the 340 

animal did not hit the target in the allowed time, white noise was indicative of fail and the mice were given 341 

a 10 second timeout before a new trial started.  342 

 343 

Neuron segmentation for online processing was obtained by a template matching function(Ohki et al., 344 

2005). Fluorescence change of each of the identified neurons, defined as (Ft-F0)/F0 or dF/F was obtained 345 

online as a measure of neuronal activity. F0 was calculated dynamically to avoid bleaching effects without 346 

compromising processing time as F0 = (n-1) * F0 /n + Ft-1 where n was the number of frames acquired. For 347 

online processing, the Ft value of each M1 neuron was averaged over the last second before calculating 348 

dF/F, to provide robustness against motion artifacts.  349 

 350 

Image preprocessing  351 

Each of the 4 imaging planes was separated into a block and independently analyzed with CaImAn 352 

(Giovannucci et al., 2019) to obtain the activity of each neuron during the recording. Direct neurons 353 

selected during the online experiment were matched with CaImAn-identified neurons by activity and 354 

space correlation. If a direct neuron could not be matched to a CaImAn-identified neuron (i.e., the activity 355 

or position was too different from online ensemble), the neuron was assumed to have had a low SNR and 356 
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would be removed from the ensemble, reducing the post-hoc ensemble to one neuron. If both neurons 357 

were discarded from an experimental session, the session was not used for analysis. Because the 358 

positions given by CaImAn are dependent on the whole spatial filter of the neuron and not the soma, new 359 

positions were obtained by filtering the image to locate the center of each neuron soma. To identify which 360 

CaImAn-identified neurons corresponded with tdTomato labeled neurons, the positions obtained by the 361 

template matching function(Ohki et al., 2005) (over the red channel image) were matched to the positions 362 

of CaImAn-identified neurons if the Euclidean distance between both centers were less than 4 pixels. 363 

 364 

Data analysis: 365 

Analysis programs were custom-written in Python using a variety of packages. The analysis pipeline was 366 

consistent across all animals. Code will be made available upon request. 367 

 368 

Signal to noise ratio 369 

Online recordings of direct neurons saved by ScanImage during experiments were used to calculate the 370 

online signal to noise ratio (SNR), where 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸(𝑠𝑠2)
𝜎𝜎�𝑛𝑛2

.  Since ScanImage may drop frames of data during 371 

online collection to achieve the desired image rate, we filled the missing frames using linear interpolation 372 

and nearest neighbor extrapolation for post-processing. To disentangle noise power from signal power, 373 

we averaged over the high frequency ranges (𝑓𝑓/4, 𝑓𝑓/2 with 𝑓𝑓 as frame rate) of the raw trace’s power 374 

spectral density (Pnevmatikakis et al., 2016). To validate the method’s efficacy, we simulated noisy 375 

calcium traces with different noise and bleaching conditions and found that this method, compared to 376 

other SNR estimations, better minimizes the L2 norm of the error from predicting ground-truth SNRs. 377 

 378 

Cursor engagement analysis: 379 

The cursor engagement value for an experiment is a measure of how well the activity of indirect neurons 380 

can predict the auditory cursor. We used L1-regularized linear regression to predict the cursor with the 381 

fluorescence of indirect neurons at each frame. Specifically, for each experiment, we collect the ∆F/F 382 

values of the 𝑁𝑁 indirect neurons over the 𝑇𝑇 frames of the experiment into a matrix 𝑋𝑋(𝑁𝑁 × 𝑇𝑇). The auditory 383 

cursor over the 𝑇𝑇 frames is collected into a 𝑇𝑇-length vector 𝑐𝑐. Thus, for each experiment we obtained 𝑇𝑇 384 
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samples of data with 𝑁𝑁 features. For some frame 𝑡𝑡𝑡𝑡{1, … ,𝑇𝑇}, the goal was then to predict 𝑐𝑐𝑡𝑡 with  𝑋𝑋∙{1:𝑡𝑡−1}.  385 

We first split the 𝑇𝑇 samples 80/20 into a training set and a testing set. The training set was used to train 386 

the model and select hyperparameters with 5-fold cross validation. 387 

The model’s performance was then evaluated on the testing set. The quality of the testing set prediction 388 

was quantified by the 𝑅𝑅2 coefficient of determination value. The best possible 𝑅𝑅2 value is 1. A constant 389 

model that always predicts the expected value of the cursor would have 𝑅𝑅2 = 0. A model that does worse 390 

than this constant model would have 𝑅𝑅2 < 0. Since the r^2 value can become arbitrarily negative and 391 

since models with 𝑅𝑅2 ≤ 0 were ineffective in predicting the cursor, the cursor engagement for an 392 

experiment was calculated as max{0,𝑅𝑅2}. This allowed the cursor engagement value to lie in a predefined 393 

range. 394 

 395 

Granger Causality 396 

We used Granger causality to estimate the bi-directional effective connectivity between each pair of 397 

tdTomato-labeled neurons and between each direct neuron and indirect neurons. Granger causality 398 

models time series as autoregressive series. A trace x is said to be “Granger causal” to y if, given the 399 

following two formulations: 400 

𝑦𝑦𝑡𝑡 =  �𝛼𝛼𝜏𝜏𝑜𝑜𝑦𝑦𝑡𝑡−𝜏𝜏

𝑝𝑝

𝜏𝜏=1

+ 𝜀𝜀𝑡𝑡𝑜𝑜 401 

𝑦𝑦𝑡𝑡 =  �(𝛼𝛼𝜏𝜏𝑒𝑒𝑦𝑦𝑡𝑡−𝜏𝜏 + 𝛽𝛽𝜏𝜏2𝑥𝑥𝑡𝑡−𝜏𝜏)
𝑝𝑝

𝜏𝜏=1

+ 𝜀𝜀𝑡𝑡𝑒𝑒 402 

the Granger causality value 𝐺𝐺𝑥𝑥→𝑦𝑦 = ln �
𝜎𝜎𝜀𝜀𝑜𝑜
2

𝜎𝜎𝜀𝜀𝑒𝑒
2 � ≥ 0 (with equality achieved when 𝑥𝑥1:𝑡𝑡 ⊥⊥ 𝑦𝑦1:𝑡𝑡). 403 

We selected an autoregressive model of order 𝑝𝑝 = 2 based an average case of order selection by 404 

minimizing Bayesian information criterion. 405 

Then, for each directed pair, we used chi-squared tests on sum of squared residuals (SSR) to determine 406 

the statistical significance of the directed influence. Only estimated effective connectivity values for 407 

neuron pairs with p-value less than 0.05 were kept as raw features.  408 
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To determine the effectiveness of Granger causality inference algorithm in reconstructing effective 409 

connectivity for calcium data, we performed the following two validations. First, we simulated a series of 410 

excitatory neural networks with Integrate-And-Fire neurons with connectivity determined by an Erdos-411 

Renyi graph 𝒢𝒢(𝑛𝑛,𝑝𝑝) with different n, p parameters. We converted the simulated spike data into calcium 412 

data with the Leogang model (Stetter et al., 2012). We then processed the simulated data with the 413 

granger causality and obtained the Area-Under-Curve for the Receiver Operating Characteristics graph 414 

over chance level. Second, we validated Granger causality’s efficacy on calcium data by comparing the 415 

connectivity values among neuron pairs to values among shuffled pairs, To generate realistic random 416 

activities with comparable statistics, we obtained shuffled calcium data by re-convolving shuffled 417 

deconvolved spikes. As a control for artifacts introduced by deconvolution, we also re-convolved all 418 

unshuffled spike data and calculated their inferred connectivity to compare against the shuffled version.  419 

 420 

XGboost/SHAP 421 

SHAP values(Lundberg and Lee, 2017), were obtained for XGBoost (eXtreme Gradient Boosting) models 422 

(Chen and Guestrin, 2016) with a TreeSHAP (Lundberg et al., 2020) for each of the features and 423 

experimental sessions in the following manner. 10000 models were trained on 80% of the experimental 424 

sessions and tested on the remaining 20% with XGBoost using random sampling with replacement. 425 

XGBoost models regressing percentage-correct values (average mean square error = 0.026, representing 426 

less than 7% of the average percentage-correct) outperformed XGBoost models regressing hits-per-427 

minute values (average mean square error =0.27 ~ 35%). Thus, we selected percentage-correct as the 428 

learning measure to regress and all following analysis was done only for percentage-correct models. Only 429 

models with high accuracy and low variance were chosen for further analysis (see below). Parameters for 430 

the XGBoost models were chosen to maximize the accuracy of the model although varying them only 431 

affected accuracy slightly (learning _rate=0.1, repetitions=100, Bootstrap repetitions=1000).  432 

 433 

SHAP values were obtained with TreeSHAP for the test data only. We used “tree_path_dependent” as 434 

feature perturbation to remain true to data (Chen et al., 2020). Because we obtained 10000 different 435 

models within specifications, each experimental session was part of the test data more than once, 436 
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resulting in multiple SHAP values for each experimental session and feature. Each session was used in a 437 

model an average of 2010 times. However, 3 sessions with high performance (PC = 0.9151, 0.9202 and 438 

0.8519) had way less occurrences than average (25% less than average). All the distributions of SHAP 439 

values (for each session and feature) were normal (Kolmogorov-Smirnov test with pval<1e-8).  As a 440 

result, SHAP values of the same experimental session resulting from evaluating different models were 441 

averaged to obtain a single value per experimental session and feature.  442 

To evaluate the variability of the models we first trained an XGBoost model and used the train dataset to 443 

obtain the SHAP values for each feature and each experiment (of the training dataset). To check if the 444 

SHAP values were stable, we retrained the model with bootstrap resamples of the training dataset and 445 

obtained new SHAP values for the original training dataset. We used the correlation of the original SHAP 446 

values with the SHAP values resulting of bootstrapping the training data to estimate the stability of the 447 

feature. Only models which had a minimum correlation of 0.5 were used for analysis. Similarly, only 448 

models with a minimum error calculated with the .632 estimator (Efron and Tibshirani, 1997) or the mean 449 

squared error regression loss (Pedregosa et al., 2011; Virtanen et al., 2020) of 7% were used. 450 

 451 

For features representing a measure of various direct neurons, we calculated the mean (mean), 452 

maximum (max) and minimum (min) of those measures and they were introduced in the model as 453 

different features. For features representing many neurons (as in connectivity) we only obtained the mean 454 

of those measures. 43 features were used on the models. Those features were grouped in categories (in 455 

order from Fig.2.A): for quality SNR (mean, max, min); for position: depth (mean, max, min), the 456 

Euclidean distance (without depth) between neurons (mean, max, min), the difference on depth (mean, 457 

max, min) and the distance between neurons of the ensemble E1 and E2 (mean, max, min); for variation: 458 

STD of the neuronal cursor, STD of the direct neurons recoded online (mean, max, min), STD of the 459 

direct neurons calculated offline after applying CaImAn during the whole experiment (mean, max, min) or 460 

the baseline (mean, max, min); for connectivity: the average result of Granger causality between direct 461 

neurons, same for ensemble E2 to/from ensemble E1, the percentage of those pairs that Granger 462 

causality considered possible connections (also for all direct and for ensemble E1 to/from ensemble E2), 463 

the average result of granger causality from indirect neurons to direct neurons, the percentage of those 464 
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pairs that were connections and the same from direct to indirect neurons. Two other features were 465 

introduced in the model that did not belong to any category: engagement of indirect neurons to the 466 

neuronal cursor and finally a feature labelling if the session was from the IT group or the PT group.  Fig.2 467 

shows 55 features (instead of 43) after separating connectivity results for different cell-classes. Features 468 

were not separated by cell-class when introduced in the model, they were separated during analysis in 469 

measures of connectivity.  470 

 471 

It is important to note that some features may be somehow dependent on or correlated with others. As a 472 

result, their SHAP values might get arbitrarily distributed amongst each other. However, this does not 473 

affect our analysis as our goal is not to determine the best feature for learning (a final numerical value), 474 

but to discover positive or negative contributions to learning and differences for IT and PT groups. 475 

 476 

Final note on selection of neurons for CaBMI control 477 

The XGBoost/Shap approach helped us understand how to better select neurons for successful CaBMI 478 

experiments. Signal quality (SNR) was highly correlated with SHAP values (Fig.2.A). In addition, SHAP 479 

values were higher, the higher the distance among all direct neurons (Fig.2.C). However, if any 2 direct 480 

neurons were too far apart (Fig.2.D), even for neurons belonging to different ensembles (Fig.2.E), SHAP 481 

values were negative. In terms of neuronal activity, positive SHAP values arose when selecting direct 482 

neurons that were silent during the baseline acquisition but highly active during CaBMI (Fig.2.F-H). We 483 

suggest experimenters attempting CaBMI to choose direct neurons that are 50 to 100um apart from each 484 

other with high SNR and the capacity of increasing greatly their baseline activity. 485 

 486 

 487 

  488 
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SUPPLEMENTARY FIGURES 590 

Supplementary Figure 1: Labeling of IT and PT neurons. 592 

A)  GCaMP6 expression under promoter Camk2a. B) tdTomato expressing neurons of the same plane as 593 
A. C) Merge of A and B. D) Boxplot of the depth of all the recorded neurons across all planes for the IT 594 
and PT group. Unlabeled neurons may belong to either cell-class in both groups.    595 
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 596 

Supplementary Figure 2: Strategy for XGBoost models and SHAP values. 598 

To obtain robust SHAP values for each session and feature, we trained XGBoost models to predict the 599 
learning readout percentage-correct for each animal and session. We only selected models (N=10000) 600 
with high accuracy and stability. Because the number of learning sessions was small relative to the 601 
number of models (286 sessions with a minimum of 15 days per animal), we trained the models with 602 
different splits of training and testing sets using random sampling with replacement. After obtaining the 603 
models, we used SHAP on each session of the testing dataset. Each of those sessions was part of a 604 
model an average of 2010 times. Thus, we averaged across all occurrences of the same session, to 605 
obtain the best approximated single SHAP value for the same session and feature. XGBoost models 606 
were calculated over all sessions jointly. SHAP values were computed on those models and separated on 607 
IT and PT sessions for some analysis a posteriori. Top right: Distribution of the zscore values for different 608 
occurrences of the same SHAP value across all models and sessions (grey) or all the models that 609 
included an individual example session (purple).    610 
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Supplementary Figure 3: Raw value and mean SHAP values for different features. 612 

Raw value of features fed to the XGBoost model (A, C, E, G-H) and the mean SHAP values (B,D,F) of 613 
those features separated in sessions of the IT or PT groups for SNR (A-B); STD of the baseline (C-D) or 614 
the whole experiment (E-F). Raw value of the effective connectivity from indirect to direct neurons (G) and 615 
engagement of indirect neurons (H). IT group in orange and PT group in blue. I) Dependence plot 616 
between SHAP values, depth and connectivity. Colors show the value of connectivity. Each dot 617 
represents a session. Black lines in bar graphs represent SEM.(*: p<0.05, , ** : p<0.005, ***: p<0.0005 618 
with independent t-Test). 619 
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