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Abstract

During motor learning, as well as during neuroprosthetic learning, animals learn to control motor cortex
activity in order to generate behavior. Two different population of motor cortex neurons, intra-
telencephalic (IT) and pyramidal tract (PT) neurons, convey the resulting cortical signals within and
outside the telencephalon. Although a large amount of evidence demonstrates contrasting functional
organization among both populations, it is unclear whether the brain can equally learn to control the
activity of either class of motor cortex neurons. To answer this question, we used a Calcium imaging
based brain-machine interface (CaBMI) and trained different groups of mice to modulate the activity of
either IT or PT neurons in order to receive a reward. We found that animals learn to control PT neuron
activity faster and better than IT neuron activity. Moreover, our findings show that the advantage of PT
neurons is the result of characteristics inherent to this population as well as their local circuitry and
cortical depth location. Taken together, our results suggest that motor cortex is optimized to control the
activity of pyramidal track neurons, embedded deep in cortex, and relaying motor commands outside of

the telencephalon.
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Introduction

To execute a complex natural or neuroprosthetic behavior, animals learn to control the activity of neuronal
circuits on motor cortex and the commands sent downstream. Dopamine dependent plasticity between
output neurons of those neuronal circuits with its projecting regions seems to be critical for learning
(Athalye et al., 2020; Koralek et al., 2012). However, it is still unclear whether there is any difference
when learning to control different subpopulations of motor cortex neurons that may have different
projecting regions. Understanding the impact that cell-classes have over learning and the different

behaviors that they elicit will give insight on how learning may be implemented in the brain.

Motor cortex output is mainly dominated by two cell-classes: intra-telencephalic neurons (IT) which
project to the contralateral cortex and bilaterally to the striatum; and extra-telencephalic or pyramidal-tract
neurons (PT) which project ipsilaterally to the striatum, to the brainstem and to the spinal cord. Aside from
their different projection targets, they also differ in morphology (Wilson, 1987), connectivity (Harris and
Shepherd, 2015) and activity (Beloozerova et al., 2003; Cowan and Wilson, 1994). However, there is little
information about the extent to which these cell-classes are involved in the learning processes. PT
neurons are exceptionally well positioned to generate a cortical output to downstream areas (Egger et al.,
2020; Takahashi et al., 2020). Nevertheless, being recruited for such important mission could constrain
their flexibility to adapt and accommodate new neuronal patterns. On the contrary, IT neurons are more
adaptable (Harris and Shepherd, 2015; Shepherd, 2013), which should be advantageous for efficient
learning in neuronal circuits. It is also possible that this division, IT vs PT, could be less relevant to neural
control and manipulation than other neuronal characteristics such as location, activity or circuit dynamics
of neighboring neurons. Understanding what drives the adaptive mechanisms of control over cortical
neurons is not only relevant for clarifying the role of IT and PT neurons during learning, but it can also
enlighten the different roles of cortical cell-classes in disease (Shepherd, 2013) and motor function (Li et

al., 2015; Reiner, 2010).

To address these questions, we took advantage of an established calcium imaging brain-machine
interface (CaBMI) paradigm (Clancy et al., 2014) while utilizing viral tracing to probe the functional

properties of different cortical cell-classes across multiple cortical layers in behaving mice. A CaBMI
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paradigm relies on an operant learning task where mice volitionally control their neuronal activity in order
to obtain a reward. Specifically, mice learned to control either IT or PT neurons allowing us to address
any difference in the ability of the brain to learn with either neuronal population. Finally, with machine
learning and game theory approaches we dissected all possible influences on learning and showed the
relevance of the inherent characteristics of each cell-class and their local circuitry and their positive

influence on learning.

Results

To distinguish IT neurons from PT neurons, we engineered cell-class specific expression of a red
fluorescence marker in two groups of tetO-GCaMP6s/-Camk2a-tTA transgenic mice. One group (n=9)
was injected with AAVrg-CAG-tdTomato in the contralateral motor cortex to label IT neurons and the
other group (n=8) in the ipsilateral pons to label PT neurons (Fig.1.A-E). We trained both groups of mice
to control a CaBMI (see methods) while simultaneously recording in four different planes the activity of
both red-labeled and unlabeled neurons (Supp.Fig.1.A-C). Because the recordings span a large part of
the cortical column (400um, Supp.Fig.1.D), unlabeled neurons may contain excitatory neurons from both
cell-classes and possibly inhibitory neurons (Nathanson et al., 2009; Watakabe et al., 2015). Each
session, a different pair of red-labeled neurons were arbitrarily selected and assigned to neural
ensembles. By using only PT or only IT neurons as the neurons directly controlling the CaBMI (direct
neurons), we studied the differences in learning between these genetically different subpopulations of

cortical neurons as well as the neural dynamics that surrounded them.

Each session we changed the direct neurons to test learning capabilities in as many neurons as possible.
For that reason, our results can only be compared to initial sessions of other CaBMI experiments (Athalye
et al., 2018; Clancy et al., 2014; Hira et al., 2014; Mitani et al., 2018; Prsa et al., 2017). By using naive
neurons, we investigated the role of IT and PT neurons during the acquisition of a learned behavior which
may entail different processes and circuits than the refinement of that behavior (Athalye et al., 2020). The
role of different cortical neurons in later stages of learning including consolidation and refinement should

be addressed in further experiments.
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Animals learn to control pyramidal tract neurons better and faster than intra-telencephalic neurons during

CaBMI learning

We first investigated whether our choice of IT or PT neurons as direct neurons affected the animal’s
learning ability. We quantified learning through two measures: hits-per-minute (HPM) and percentage-
correct (PC). Hits-per-minute quantifies reward rate over time while percentage-correct is the reward rate
normalized by the number of trials. Both groups showed an increase from chance level (HPM: 0.46+0.04,
PC: 0.2510.02) in both hits-per-minute and percentage-correct throughout the experiment (Fig.1.F-G).
However, the PT group (n=125 sessions) achieved greater reward rates than the IT group (n=162

sessions) across equivalent time windows of a session (Fig.1.F-G) and across the whole session (Fig.1.

H-1).
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98 Figure 1: Cell-class specific CaBMI shows differences on learning.

99 A) AAVrg-CAG-tdTomato retroviruses injection regions for IT (left), contralateral motor cortex, and PT
100 (right), ipsilateral pons. (B-C) Coronal sections for the IT (B) and PT (C) animals. Neurons with viral
101 expressions were located in L2/3 and L5-6 of motor cortex (M1-M2) for IT group and in L5-6 across cortex
102  for PT. D) Typical depth planes for calcium recordings. Marked neurons were randomly picked as direct
103 neurons. E) Schematics for the calcium decoding algorithm. Neural cursor is calculated as the difference
104 between sum dF/Fs of two groups. Red dashed line denotes one instantiation of the reward threshold
105 simulated from baseline. F) HPM, the number of hits within a one-minute window, calculated for each
106 session across IT experiments (orange) and PT experiments (blue). Values are binned in five-minute
107  windows. G) As in (F), but for PC, the percentage of correct trials within the same one-minute window.
108 Because trial lengths can be variable, PC represents the reward rate normalized by the number of trials in
109 each time window. H) HPM values across all time windows of a session (*: p < 0.05 with Mann-Whitney U
110  test). HPM chance level = 0.46 +£0.04. I) As in (H), but for PC. PC chance level 0.25+0.02 J) The relative
111  gainin HPM during the first 10 minutes of a session from the beginning of the session. Specifically, we
112 calculated the difference in HPM from the first minute of the experiment, then normalized this measure for
113 each session by dividing by the mean HPM. This normalization allowed us to compare performance
114 increases across sessions with different starting reward rates. K) As in (J), but for PC. L) Distribution of
115 maximum HPM obtained per session. This measure of performance is less affected by periods of low
116 motivation or attention, which can modulate learning curves. (**: p < 0.005 with one-way Anova)

117

118  To address if differences in starting reward rate explained the learning differences between the IT and PT
119  group, we obtained the gain of each learning measure over the first 10 minutes. We found that the PT
120  group reached a higher performance than the IT group and did so faster (Fig.1.J-K). Similarly, we

121 compared the best performance of each group to address possible effects of motivation loss. We

122  observed that the PT group tended to have significantly higher maximum performance (p<0.005, Fig.1.L).

123 Taken together, our results demonstrate that, although both groups can learn the task, the PT group

124  consistently outperforms the IT group across a variety of learning measures. Strikingly, the PT group

125 achieves a higher reward rate than the IT group in less time. Much of this performance difference occurs
126 in the first few minutes of an experiment (Fig.1.J-K). A possible explanation is that the network involved in
127  this task learns to modulate the activity of PT neurons and/or re-enter the neuronal patterns that granted
128 reward, more effectively and quickly. If so, known characteristic differences between IT and PT neurons,
129  such as connectivity or cortical depth (Reiner, 2010), may be relevant. However, other factors besides
130 neuron properties can also contribute to these observed differences. Experimental confounds, such as
131  imaging quality, may explain these differences. In the rest of the paper, we tackle the extent to which a

132 diverse range of factors could explain the higher learning performance of the PT group.
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133 Evaluating experimental and neural features that influence learning

134  To control for possible experimental confounds and understand the impact of cell-class and other neural
135 features on learning, we implemented a feature attribution framework. We used a gradient-boosted

136  decision tree, XGBoost (Chen and Guestrin, 2016), as a model to predict the percentage of correct trials
137  (henceforth percentage-correct), our measure of learning. Then, we used SHapley Additive exPlanations
138 (SHAP) to explain how each feature contributed to the model’s prediction each session (Supp.Fig.2).

139  Thus, positive SHAP values represent that a feature pushed the predicted value of percentage-correct
140 higher, suggesting a positive influence on learning. On the contrary, negative SHAP values represent that
141 a feature reduced the predicted value of percentage-correct, suggesting a negative influence on learning

142 (Fig.2.A).

143 Untangling the true effect each feature had on the animal’s learning each session is a complicated
144  endeavor. For example, depth, signal quality and cell identity are highly correlated but may have opposite
145 effects on learning. By using a highly accurate model and a reliable explainer we offer a reasonable

146 approximation to the immeasurable independent contributions of each feature to learning.

147 Experimental-dependent features and cell-class activity variability do not explain learning differences

148  We first investigated if experimental-dependent features (features that were solely affected by

149 experimental limitations or experimenter bias) affected learning. These features captured signal quality
150 and distance between direct neurons (excluding cortical depth which is dependent on cell-class). SHAP
151 values were highly correlated with signal-to-noise ratio (SNR), indicating that cleaner signals resulted in
152 better animal performance (Fig.2.B). Thus the generally lower signal-to-noise ratio of PT neurons (due to
153 brain-scatter imaging limitations in deep tissue) hindered the predicted percentage-correct (Supp.Fig.3.A-
154  B). Additionally, the distances between direct IT or PT neurons (Fig.2.C-E) affected the value of the

155 predicted percentage-correct similarly in both groups. These results indicate that none of the

156  experimental features that were independent of cell-class were responsible for the improved performance

157  of the PT group.

158
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160  Figure 2: Dissecting the influence of features on learning outcome.

161 A) SHAP values for all the features used in the XGBoost models (see Supp.Fig.2). Positive SHAP values
162 indicate a positive effect on the PC measure and a better learning outcome. Negative SHAP values

163 indicate a negative effect on learning. Features are divided into 6 groups: Quality, Position, Variation,
164  Connectivity, Engagement and Cell Identity for clarity. Quality features are comprised of the signal-to-
165 noise ratio. Position features include depth (Depth) of direct neurons, the distance between direct

166  neurons on a plane (Diff. XY), their difference in depth (Diff. Depth), and the distance between neurons of
167 the ensemble E1 and the ensemble E2 (Dist. E1-E2). Variation features include STD of the cursor

168 (Cursor) based on neuronal activity E2-E1, STD of the online calcium signals that operated the CaBMI
169 (Online), and also the post-processed calcium signals of direct neurons during baseline (Base) or during
170  the whole experiment (Exp). Measures that were calculated for each direct neuron were included as

171  features with their minimum (min), mean, or maximum (max) value. Color (red-to-blue) represent the
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172 value of the feature. Each dot represents 1 session. Sessions from IT and PT groups were included. B-l)
173 Linear regression between SHAP values and the value of mean SNR (B); minimum distance (C) and
174 maximum distance (D) in the XY plane between 2 direct neurons; maximum distance between neurons
175 belonging to different ensembles (E). Activity of direct neurons during baseline (F) or whole experiment
176 (G). H) Mean of the STD of the neural cursor. Each dot is a session. Shaded area is the confidence

177 interval. Orange dots are sessions from the IT group whereas blue dots are sessions of the PT group.

178

179 Distinct activity characteristics have been identified in IT and PT neurons (Dembrow et al., 2010). To

180 investigate if these differences could influence learning, we added features based on the standard

181 deviation (STD) of neuronal activity to the model. Highly active direct neurons during baseline negatively
182 affected the value of predicted percentage correct (Fig.2.F). Contrarily, highly active direct neurons during
183 the experiment increased the predicted percentage correct (Fig.2.G). These apparently contradicting

184 results are consistent with CaBMI benefiting from silent neurons during baseline becoming more active
185 during the task. The generally tonic firing characteristics of PT neurons (Dembrow et al., 2010) resulted in
186  reduced changes of fluorescence in calcium imaging and therefore low variability (Supp.Fig.3.C-E).

187  These had contradicting effects on the predicted percentage-correct (Supp.Fig.3.D-F). In addition, there
188  was no cell-class difference due to the variability of the CaBMI cursor (Fig.2.H). These findings indicate

189 inconclusive effects of the different activity characteristics of PT and IT neurons over learning.

190 Local connectivity and position of PT neurons accounts for the differences in learning

191 Learning modulates the activity of indirect neurons (Ganguly et al., 2011; Zippi et al., 2021), neurons of
192 the local circuitry recorded during the experiments but not in direct control of the CaBMI. However, the
193 influence that local circuitry may pose on learning has not yet been investigated. To address this, we
194 studied how two different measures, connectivity to/from direct neurons and task engagement of indirect

195 neurons, would influence learning.

196  To begin, we used Granger causality as a measure of effective connectivity. We determined the

197 percentage of neurons that were connected as well as the strength of those connections, during the
198 baseline period (see methods). It is important to note that this method cannot capture the effects of
199 neurons not recorded and/or fast recurrent networks due to our recording framerate (10Hz). Higher

200 effective connectivity (both in the number of pairs and the strength of those connections) from direct


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

201 neurons to indirect neurons, regardless of cell-class, lowered the predicted percentage-correct. On the
202 contrary, higher connectivity (also in the number of pairs and strength) from unlabeled indirect neurons to
203 both IT and PT direct neurons increased the predicted percentage-correct (Fig.2.A), suggesting better
204 performance for neurons receiving higher, in both number of connections and strength of those

205 connections, indirect input.

206 Lastly, to evaluate how engaged were the indirect neurons with the task, we calculated how well these
207 indirect neurons could predict the neural cursor controlling the CaBMI (see methods). Besides some
208 fluctuations, better cursor prediction by indirect neurons was tightly linked with higher predicted

209 percentage-correct (Fig.2.A), indicating a positive influence in learning.

210 These findings suggest that generally, a strong support from local circuitry positively impacts learning.
211 However, our results are limited to the acquisition of a learned behavior. Previous research have shown
212 that during late learning, task modulation of indirect neurons decreases (Ganguly et al., 2011; Zippi et al.,
213 2021) and there is less functional connectivity from indirect neurons to direct neurons than vice versa (So
214  etal., 2012). Itis possible that local circuitry may be more relevant during early learning facilitating the re-
215 entrance of the neuronal patterns that grant reward. On the contrary, the effects of refinement may entail

216  different neural processes, including the pruning of indirect neurons deemed impractical.

217 Interestingly, both measures quantifying the involvement of indirect neurons (effective connectivity and
218  task engagement) increased the predicted percentage-correct for the PT group but decreased it for the IT
219  group (Fig.3.A-B). This may imply that deep local circuitry surrounding PT neurons more effectively

220  supports learning than circuitry in the upper cortical layers. Is this also true for IT neurons? To investigate
221 this, we examined if choosing IT direct neurons from deeper planes affected learning outcomes. We

222  found that sessions with IT direct neurons in deeper cortical layers increased the predicted percentage-
223 correct (Fig.3.C). Additionally, depth was highly correlated with indirect-to-direct connectivity (Fig.3.D,
224 Supp.Fig.3.1) which our results indicate facilitates learning. Taken together, these findings suggest that
225 direct IT neurons located in the vicinity of PT neurons learned more effectively than their counterparts in
226 upper layers. However, it is possible that this learning difference arises not from a supportive deep local

227 circuitry but from the postsynaptic circuit. IT neurons projecting into striatum are oftentimes found in

10
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228 deeper layers than IT neurons that only project into other cortical regions (Shepherd, 2013). Thus, the
229 behavioral outcome may be largely influenced by synaptic proximity to the next stop of the cortico-basal-

230  thalamo-cortical loop that governs learning.
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232 Figure 3: Inherent characteristics, connectivity and location of PT neurons lead to better

233 performance.

234  SHAP values for circuit-related features: (A) engagement of indirect neurons and (B) effective

235  connectivity from indirect to direct neurons in sessions of the IT (orange) or PT (blue) groups. C) SHAP
236  values depending on the minimum depth of all direct neurons. D) Linear regression between the minimum
237 depth of all direct neurons and the effective connectivity from indirect to direct neurons. Each dotis a
238 session of the IT (orange) or the PT (blue) groups. Line is the linear regression and shaded area its

239 confidence interval. E) SHAP values for the cell-identity feature and their distribution (F) with IT group
240 sessions in orange and PT group sessions in blue. Black lines in bar graphs represent SEM. (** :

241 p<0.005, ***: p<0.0005 with independent t-Test).

242

243 We aimed to investigate if location is the only relevant feature to determine learning. However, we could
244 not measure all possible different characteristics of IT and PT neurons (such as input from other cortical
245 areas, thalamic input, spike burstiness, etc.). Instead, we added one more feature that encoded the

246  identity of the neurons chosen for CaBMI, hence accounting for the remainder of other inherent cell-class
247 characteristics. Strikingly, the difference between both groups was very consistent. Selecting PT neurons
248  for CaBMI generally increased the predicted percentage correct, indicating a positive influence on task

249 performance whereas selecting IT neurons had an entirely negative effect on the predicted percentage-

11
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250 correct (Fig.3.E-F). This effect indicates that inherent characteristics of PT neurons were consistently

251 advantageous for successful learning.

252 In summary, by using a method that measures the impact of different cell-type features on the learning of
253 an operant CaBMI task, our work provides insights into the understanding of the factors that contributed
254  to operant control of cortical activity. Our results demonstrate that animals learned to control PT neurons
255 faster and more effectively than IT neurons and that this effect cannot be attributed to any experimental
256  confounds. Instead, our results suggest that the brain is more effective at manipulating and controlling
257 output neurons that project from cortex to regions outside the telencephalon, and that this results from

258 connectivity and position in the cortex.
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274 Methods:

275 Animals & Surgery:

276 All experiments were performed in compliance with the regulations of the Animal Care and Use
277 Committees at the University of California, Berkeley and according to NIH guidelines. Mice were housed
278  with a 12-h dark, 12-h light cycle. Two groups of tetO-GCaMP6s/-Camk2a-tTA mice (original strains from

279 The Jackson Laboratory, Bar Harbor, Maine: jax-024742, jax-007004) were injected with a retrograde

280  virus in the contralateral motor cortex (n=9) or in the ipsilateral pons (n=8) in order to label

281 intratelencephalic (IT) neurons and pyramidal tract (PT) neurons, respectively. Although cortico-thalamic
282 neurons would also be relevant to this study, their location deep in the brain, made them impossible to
283 study under the current state of the art of two-photon microscopy.

284 Prior to surgery, tools and materials were sterilized by autoclaving or gas sterilization. Mice were initially
285 anesthetized by placing them briefly (2-3 mins) in a box containing 3 - 4% isoflurane and were then kept
286 at 1-2% isoflurane in a nose cone respirator connected to a precision vaporizer. The animal was secured
287  into a stereotaxic frame (Kopf instruments, Tujunga, CA) and kept warm (37.5 £ 1 °C). A single incision
288  was made along the midline of the skull in the rostro-caudal direction and the skull was cleaned. Using a
289 rotary micromotor drill (Foredom, Bethel, CT) equipped with a 0.5mm carbon burr (Fine Science Tools,
290 Foster City, CA), a small burr hole was made over the contralateral motor cortex (1.4 mm rostral, 1.3 mm
291 lateral to Bregma) or the ipsilateral pons (4.26 mm posterior, -0.6 mm lateral to Bregma), and 400 nl of
292  AAVrg-CAG-tdTomato (Addgene Watertown, MA, viral prep # 59462-AAVrg) was injected 300um (for IT)
293  or 4.6mm (for PT) below the pia. The tracer was delivered using a pulled glass pipette (tip diameter = 40—
294 60 um) at a rate of 50 nl min with a Nanojet 3 (Drummond Scientific Company, Broomall, PA). The pipette
295  was left in the brain for 15 min after completion of the injection to prevent backflow. After removal of the
296 pipette, the burr hole was covered with Metabond dental cement (Parkell Edgewood, NY, S396-S398-
297 S371). A 3-mm craniotomy was opened over motor cortex (coordinates of the center relative to Bregma
298 ML-1.5, AP 1.3). Two sterile glass coverslips (3-5mm, #1 thickness) were glued concentrically to each
299  other (Norland Optical Adhesive, Cranbury, NJ, NOA71) and positioned over the skull so the 3mm

300 coverslip would fit in the craniotomy. Metabond was applied to create a thin seal between the skull and
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301 the sides of the cranial window, and a steel headplate was affixed posterior to the coverslips. We allowed
302 3-4 weeks for recovery and for the expression of tdTomato, before starting the behavioral experiments.
303  Animals with injections in the contralateral motor cortex had IT neurons labeled with tdTomato (IT group),
304  whereas animals injected in the pons had PT neurons labeled with tdTomato (PT group).

305

306 Two-photon imaging.

307 Recordings of calcium imaging were performed with a Bruker Ultima Investigator (Bruker, Millerica, MA)
308 using a Chameleon Ultra Il Ti:Sapphire mode-locked laser (Coherent, Santa Clara, CA) tuned to 920 nm.
309 Photons were collected with two GaAsP PMTs for different channels using an Olympus objective

310 (XLUMPLFLN 20XW). Animals were head-fixed over a styrofoam ball (JetBall, PhenoSys, Berlin,

311 Germany) that allowed them to run freely under the two-photon microscope. A piezo controller (400um
312 travel, nPoint, Middleton, WI ) allowed the sawtooth recording of 4 different planes with 100um separation
313 for a full sweep of the cortical column. The power of the laser was set so that high quality images of the
314 planes with direct neurons could be achieved without damaging shallow planes. Different imaging fields
315 were used every day. In a given session, the imaged planes spanned 400 microns in depth. These planes
316  were centered ~350-550 microns below pia depending on the session. Frames of 256 x 256 pixels (~290
317 x 290 uym) were collected at 9.7 Hz using Scanlmage software (Vidriotech, Ashburn, VA). Motion drifts (if
318  any) were corrected online by the software and/or manual control. Motion artifacts resulted in poor task
319 performance (since both ensembles moved accordingly) and the mice seemed to remain more still during
320 late learning sessions. Additionally, we added the quality of the recorded calcium signals of the direct
321 neurons (measured as SNR) as features of the XGBoost-SHAP models. SNR was positively correlated
322  with SHAP values, indicating that animals performed better in sessions with higher signal quality.

323

324 Behavioral task and online processing:

325 This behavioral task has been described previously in electrophysiology (Koralek et al., 2013, 2012;
326 Neely et al., 2018) and calcium imaging(Clancy et al., 2014).. Activities of two pairs of M1 neurons were
327  summed within ensemble (3 E1 — Y E2) and entered into a decoder that mapped neuronal activity to an

328 auditory signal (range 2-18kHz). Head-fixed mice could increase the frequency of the auditory cursor by
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329 increasing the activity in the first ensemble (E1) and decreasing the activity in the other ensemble (E2).
330 Mice could instead decrease the frequency of the auditory cursor by decreasing the activity of E1 and
331 increasing the activity of E2. Mice received reward (20% sucrose) if they decreased the cursor frequency
332 under a predefined target. To set the target cursor frequency, neuronal activity was recorded during a
333 baseline period of 15 minutes. Each day the target was set such that mice would have received reward in
334  30% of trials in a hypothetical simulation with the recording from the baseline period. The auditory signal
335  was proved to the animals as feedback of their performance.

336 In each group of animals (IT or PT), only tdTomato labeled neurons were used to control the auditory

337 cursor. To study within-session learning, different IT or PT neurons (respectively) were selected each day.
338 The animals had 30 seconds to reach the target and achieving a “hit”. Otherwise, the trial would be

339 considered a “miss”. With a successful trial, sucrose reward was given to the animal. After a 3 second
340  pause, the auditory cursor was required to return to a baseline value in order to start the next trial. If the
341 animal did not hit the target in the allowed time, white noise was indicative of fail and the mice were given
342 a 10 second timeout before a new trial started.

343

344 Neuron segmentation for online processing was obtained by a template matching function(Ohki et al.,
345 2005). Fluorescence change of each of the identified neurons, defined as (F+-Fo)/Fo or dF/F was obtained
346  online as a measure of neuronal activity. Fo was calculated dynamically to avoid bleaching effects without
347  compromising processing time as Fo = (n-1) * Fo /n + Ft1 where n was the number of frames acquired. For
348  online processing, the Ft value of each M1 neuron was averaged over the last second before calculating
349  dF/F, to provide robustness against motion artifacts.

350

351 Image preprocessing

352 Each of the 4 imaging planes was separated into a block and independently analyzed with CalmAn
353 (Giovannucci et al., 2019) to obtain the activity of each neuron during the recording. Direct neurons
354  selected during the online experiment were matched with CalmAn-identified neurons by activity and
355 space correlation. If a direct neuron could not be matched to a CalmAn-identified neuron (i.e., the activity

356  or position was too different from online ensemble), the neuron was assumed to have had a low SNR and
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357  would be removed from the ensemble, reducing the post-hoc ensemble to one neuron. If both neurons
358  were discarded from an experimental session, the session was not used for analysis. Because the

359 positions given by CalmAn are dependent on the whole spatial filter of the neuron and not the soma, new
360 positions were obtained by filtering the image to locate the center of each neuron soma. To identify which
361 CalmAn-identified neurons corresponded with tdTomato labeled neurons, the positions obtained by the
362 template matching function(Ohki et al., 2005) (over the red channel image) were matched to the positions
363 of CalmAn-identified neurons if the Euclidean distance between both centers were less than 4 pixels.
364

365 Data analysis:

366 Analysis programs were custom-written in Python using a variety of packages. The analysis pipeline was
367 consistent across all animals. Code will be made available upon request.

368

369  Signal to noise ratio

370 Online recordings of direct neurons saved by Scanlmage during experiments were used to calculate the

371  online signal to noise ratio (SNR), where SNR = %22) Since Scanlmage may drop frames of data during
n

372 online collection to achieve the desired image rate, we filled the missing frames using linear interpolation
373 and nearest neighbor extrapolation for post-processing. To disentangle noise power from signal power,
374  we averaged over the high frequency ranges (f/4, f /2 with f as frame rate) of the raw trace’s power
375 spectral density (Pnevmatikakis et al., 2016). To validate the method’s efficacy, we simulated noisy

376 calcium traces with different noise and bleaching conditions and found that this method, compared to
377 other SNR estimations, better minimizes the L2 norm of the error from predicting ground-truth SNRs.
378

379 Cursor engagement analysis:

380 The cursor engagement value for an experiment is a measure of how well the activity of indirect neurons
381 can predict the auditory cursor. We used L1-regularized linear regression to predict the cursor with the
382  fluorescence of indirect neurons at each frame. Specifically, for each experiment, we collect the AF/F
383 values of the N indirect neurons over the T frames of the experiment into a matrix X(N X T). The auditory

384 cursor over the T frames is collected into a T-length vector ¢. Thus, for each experiment we obtained T

16


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

385 samples of data with N features. For some frame te{1, ..., T}, the goal was then to predict ¢, with X1e-13-

386  We first split the T samples 80/20 into a training set and a testing set. The training set was used to train
387 the model and select hyperparameters with 5-fold cross validation.

388 The model’s performance was then evaluated on the testing set. The quality of the testing set prediction
389 was quantified by the R? coefficient of determination value. The best possible R? value is 1. A constant
390 model that always predicts the expected value of the cursor would have R? = 0. A model that does worse
391 than this constant model would have R? < 0. Since the r*2 value can become arbitrarily negative and
392 since models with R? < 0 were ineffective in predicting the cursor, the cursor engagement for an

393 experiment was calculated as max{0, R2}. This allowed the cursor engagement value to lie in a predefined
394 range.

395

396 Granger Causality

397  We used Granger causality to estimate the bi-directional effective connectivity between each pair of

398 tdTomato-labeled neurons and between each direct neuron and indirect neurons. Granger causality

399 models time series as autoregressive series. A trace x is said to be “Granger causal” to y if, given the

400 following two formulations:

14
401 Ve = Z a7Ye-r +&f
=1
p
402 Vo= ) (@ec+ Bixeg) + e

=1
2
403  the Granger causality value G,_,, = In C—i’e’) > 0 (with equality achieved when x;.; L1 y;.;).

404  We selected an autoregressive model of order p = 2 based an average case of order selection by

405 minimizing Bayesian information criterion.

406  Then, for each directed pair, we used chi-squared tests on sum of squared residuals (SSR) to determine
407  the statistical significance of the directed influence. Only estimated effective connectivity values for

408 neuron pairs with p-value less than 0.05 were kept as raw features.
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409 To determine the effectiveness of Granger causality inference algorithm in reconstructing effective

410 connectivity for calcium data, we performed the following two validations. First, we simulated a series of
411 excitatory neural networks with Integrate-And-Fire neurons with connectivity determined by an Erdos-
412 Renyi graph G(n, p) with different n, p parameters. We converted the simulated spike data into calcium
413 data with the Leogang model (Stetter et al., 2012). We then processed the simulated data with the

414  granger causality and obtained the Area-Under-Curve for the Receiver Operating Characteristics graph
415 over chance level. Second, we validated Granger causality’s efficacy on calcium data by comparing the
416 connectivity values among neuron pairs to values among shuffled pairs, To generate realistic random
417 activities with comparable statistics, we obtained shuffled calcium data by re-convolving shuffled

418  deconvolved spikes. As a control for artifacts introduced by deconvolution, we also re-convolved all

419 unshuffled spike data and calculated their inferred connectivity to compare against the shuffled version.
420

421  XGboost/SHAP

422 SHAP values(Lundberg and Lee, 2017), were obtained for XGBoost (eXtreme Gradient Boosting) models
423 (Chen and Guestrin, 2016) with a TreeSHAP (Lundberg et al., 2020) for each of the features and

424  experimental sessions in the following manner. 10000 models were trained on 80% of the experimental
425 sessions and tested on the remaining 20% with XGBoost using random sampling with replacement.

426  XGBoost models regressing percentage-correct values (average mean square error = 0.026, representing
427  less than 7% of the average percentage-correct) outperformed XGBoost models regressing hits-per-

428 minute values (average mean square error =0.27 ~ 35%). Thus, we selected percentage-correct as the
429 learning measure to regress and all following analysis was done only for percentage-correct models. Only
430 models with high accuracy and low variance were chosen for further analysis (see below). Parameters for
431 the XGBoost models were chosen to maximize the accuracy of the model although varying them only
432 affected accuracy slightly (learning _rate=0.1, repetitions=100, Bootstrap repetitions=1000).

433

434  SHAP values were obtained with TreeSHAP for the test data only. We used “tree_path_dependent” as
435  feature perturbation to remain true to data (Chen et al., 2020). Because we obtained 10000 different

436 models within specifications, each experimental session was part of the test data more than once,
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437  resulting in multiple SHAP values for each experimental session and feature. Each session was used in a
438  model an average of 2010 times. However, 3 sessions with high performance (PC = 0.9151, 0.9202 and
439  0.8519) had way less occurrences than average (25% less than average). All the distributions of SHAP
440  values (for each session and feature) were normal (Kolmogorov-Smirnov test with pval<ie-8). As a

441 result, SHAP values of the same experimental session resulting from evaluating different models were
442 averaged to obtain a single value per experimental session and feature.

443  To evaluate the variability of the models we first trained an XGBoost model and used the train dataset to
444  obtain the SHAP values for each feature and each experiment (of the training dataset). To check if the
445 SHAP values were stable, we retrained the model with bootstrap resamples of the training dataset and
446  obtained new SHAP values for the original training dataset. We used the correlation of the original SHAP
447  values with the SHAP values resulting of bootstrapping the training data to estimate the stability of the
448 feature. Only models which had a minimum correlation of 0.5 were used for analysis. Similarly, only

449 models with a minimum error calculated with the .632 estimator (Efron and Tibshirani, 1997) or the mean
450  squared error regression loss (Pedregosa et al., 2011; Virtanen et al., 2020) of 7% were used.

451

452 For features representing a measure of various direct neurons, we calculated the mean (mean),

453 maximum (max) and minimum (min) of those measures and they were introduced in the model as

454 different features. For features representing many neurons (as in connectivity) we only obtained the mean
455 of those measures. 43 features were used on the models. Those features were grouped in categories (in
456  order from Fig.2.A): for quality SNR (mean, max, min); for position: depth (mean, max, min), the

457 Euclidean distance (without depth) between neurons (mean, max, min), the difference on depth (mean,
458  max, min) and the distance between neurons of the ensemble E1 and E2 (mean, max, min); for variation:
459  STD of the neuronal cursor, STD of the direct neurons recoded online (mean, max, min), STD of the

460 direct neurons calculated offline after applying CalmAn during the whole experiment (mean, max, min) or
461  the baseline (mean, max, min); for connectivity: the average result of Granger causality between direct
462 neurons, same for ensemble E2 to/from ensemble E1, the percentage of those pairs that Granger

463 causality considered possible connections (also for all direct and for ensemble E1 to/from ensemble E2),

464  the average result of granger causality from indirect neurons to direct neurons, the percentage of those
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465 pairs that were connections and the same from direct to indirect neurons. Two other features were

466 introduced in the model that did not belong to any category: engagement of indirect neurons to the

467 neuronal cursor and finally a feature labelling if the session was from the IT group or the PT group. Fig.2
468  shows 55 features (instead of 43) after separating connectivity results for different cell-classes. Features
469  were not separated by cell-class when introduced in the model, they were separated during analysis in
470  measures of connectivity.

471

472 It is important to note that some features may be somehow dependent on or correlated with others. As a
473 result, their SHAP values might get arbitrarily distributed amongst each other. However, this does not
474  affect our analysis as our goal is not to determine the best feature for learning (a final numerical value),
475 but to discover positive or negative contributions to learning and differences for IT and PT groups.

476

477 Final note on selection of neurons for CaBMI control

478  The XGBoost/Shap approach helped us understand how to better select neurons for successful CaBMI
479  experiments. Signal quality (SNR) was highly correlated with SHAP values (Fig.2.A). In addition, SHAP
480  values were higher, the higher the distance among all direct neurons (Fig.2.C). However, if any 2 direct
481 neurons were too far apart (Fig.2.D), even for neurons belonging to different ensembles (Fig.2.E), SHAP
482 values were negative. In terms of neuronal activity, positive SHAP values arose when selecting direct
483 neurons that were silent during the baseline acquisition but highly active during CaBMI (Fig.2.F-H). We
484  suggest experimenters attempting CaBMI to choose direct neurons that are 50 to 100um apart from each

485 other with high SNR and the capacity of increasing greatly their baseline activity.

486
487

488

20


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

489 Bibliography

490  Athalye VR, Carmena JM, Costa RM. 2020. Neural reinforcement: re-entering and refining neural
491 dynamics leading to desirable outcomes. Curr Opin Neurobiol 60:145-154.

492 doi:10.1016/J.CONB.2019.11.023

493 Athalye VR, Santos FJ, Carmena JM, Costa RM. 2018. Evidence for a neural law of effect. Science

494 359:1024-1029. doi:10.1126/science.aao6058

495 Beloozerova IN, Sirota MG, Swadlow HA. 2003. Activity of different classes of neurons of the motor

496 cortex during locomotion. J Neurosci 23:1087-1097. doi:10.1523/jneurosci.23-03-01087.2003

497 Chen H, Janizek JD, Lundberg S, Lee S-1. 2020. True to the Model or True to the Data?

498 Chen T, Guestrin C. 2016. XGBoostProceedings of the 22nd ACM SIGKDD International Conference on
499 Knowledge Discovery and Data Mining - KDD '16. New York, New York, USA: ACM Press. pp. 785—

500 794. doi:10.1145/2939672.2939785

501 Clancy KB, Koralek AC, Costa RM, Feldman DE, Carmena JM. 2014. Volitional modulation of optically
502 recorded calcium signals during neuroprosthetic learning. Nat Neurosci 17:807—-809.

503 doi:10.1038/nn.3712

504  Cowan RL, Wilson CJ. 1994. Spontaneous firing patterns and axonal projections of single corticostriatal

505 neurons in the rat medial agranular cortex. J Neurophysiol 71:17-32. doi:10.1152/jn.1994.71.1.17

506 Dembrow NC, Chitwood RA, Johnston D. 2010. Projection-specific neuromodulation of medial prefrontal

507 cortex neurons. J Neurosci 30:16922-16937. doi:10.1523/INEUROSCI.3644-10.2010

508 Efron B, Tibshirani R. 1997. Improvements on cross-validation: The .632+ bootstrap method. J Am Stat

509 Assoc 92:548-560. doi:10.1080/01621459.1997.10474007

21


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

510 Egger R, Narayanan RT, Guest JM, Bast A, Udvary D, Messore LF, Das S, de Kock CPJ, Oberlaender M.
511 2020. Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers. Neuron

512 105:122-137.e8. doi:10.1016/j.neuron.2019.10.011

513 Ganguly K, Dimitrov DF, Wallis JD, Carmena JM. 2011. Reversible large-scale modification of cortical

514 networks during neuroprosthetic control. Nat Neurosci 14:662—669. doi:10.1038/nn.2797

515 Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, Taxidis J, Najafi F, Gauthier JL, Zhou P,
516 Khakh BS, Tank DW, Chklovskii DB, Pnevmatikakis EA. 2019. CalmAn an open source tool for

517 scalable calcium imaging data analysis. Elife 8. doi:10.7554/eLife.38173

518 Harris KD, Shepherd GMG. 2015. The neocortical circuit: Themes and variations. Nat Neurosci.

519 doi:10.1038/nn.3917

520 Hira R, Ohkubo F, Masamizu Y, Ohkura M, Nakai J, Okada T, Matsuzaki M. 2014. Reward-timing-
521 dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant

522 conditioning. Nat Commun 5:5551. doi:10.1038/ncomms6551

523 Koralek AC, Costa RM, Carmena JM. 2013. Temporally Precise Cell-Specific Coherence Develops in

524 Corticostriatal Networks during Learning. Neuron 79:865-872. doi:10.1016/j.neuron.2013.06.047

525 Koralek AC, Jin X, Long JD, Costa RM, Carmena JM. 2012. Corticostriatal plasticity is necessary for

526 learning intentional neuroprosthetic skills. Nature 483:331-335. doi:10.1038/nature10845

527 Li N, Chen TW, Guo Z V., Gerfen CR, Svoboda K. 2015. A motor cortex circuit for motor planning and

528 movement. Nature 519:51-56. doi:10.1038/nature14178

529 Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I.
530 2020. From local explanations to global understanding with explainable Al for trees. Nat Mach

531 Intell 2:56—67. doi:10.1038/s42256-019-0138-9

22


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

532 Lundberg SM, Lee S-I. 2017. A Unified Approach to Interpreting Model Predictions.

533 Mitani A, Dong M, Komiyama T. 2018. Brain-Computer Interface with Inhibitory Neurons Reveals

534 Subtype-Specific Strategies. Curr Biol 28:77-83.e4. doi:10.1016/J.CUB.2017.11.035

535 Nathanson JL, Yanagawa Y, Obata K, Callaway EM. 2009. Preferential labeling of inhibitory and excitatory
536 cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors.

537 Neuroscience 161:441-450. doi:10.1016/j.neuroscience.2009.03.032

538 Neely RM, Koralek AC, Athalye VR, Costa RM, Carmena JM. 2018. Volitional Modulation of Primary
539 Visual Cortex Activity Requires the Basal Ganglia. Neuron 97:1356-1368.e4.

540 doi:10.1016/j.neuron.2018.01.051

541 Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC. 2005. Functional imaging with cellular resolution reveals

542 precise microarchitecture in visual cortex. Nature. doi:10.1038/nature03274

543 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
544 R, Dubourg V, others. 2011. Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825—

545 2830.

546 Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C, Yang W,

547 Ahrens M, Bruno R, Jessell TM, Peterka DS, Yuste R, Paninski L. 2016. Simultaneous Denoising,
548 Deconvolution, and Demixing of Calcium Imaging Data. Neuron 89:285.
549 doi:10.1016/j.neuron.2015.11.037

550 Prsa M, Galifianes GL, Huber D. 2017. Rapid Integration of Artificial Sensory Feedback during Operant
551 Conditioning of Motor Cortex Neurons. Neuron 93:929-939.e6.

552 doi:10.1016/J.NEURON.2017.01.023

553 Reiner A. 2010. Organization of Corticostriatal Projection Neuron Types. Handb Behav Neurosci 20:323—

23


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

554 339. d0i:10.1016/B978-0-12-374767-9.00018-4

555 Shepherd GMG. 2013. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14:278-291.

556 doi:10.1038/nrn3469

557 So K, Koralek AC, Ganguly K, Gastpar MC, Carmena JM. 2012. Assessing functional connectivity of neural

558 ensembles using directed information. J Neural Eng 9. doi:10.1088/1741-2560/9/2/026004

559 Stetter O, Battaglia D, Soriano J, Geisel T. 2012. Model-Free Reconstruction of Excitatory Neuronal
560 Connectivity from Calcium Imaging Signals. PLoS Comput Biol 8:¢1002653.

561 doi:10.1371/journal.pcbi.1002653

562 Takahashi N, Ebner C, Sigl-Glockner J, Moberg S, Nierwetberg S, Larkum ME. 2020. Active dendritic
563 currents gate descending cortical outputs in perception. Nat Neurosci 23:1277-1285.

564 doi:10.1038/s41593-020-0677-8

565 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,

566 Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ,
567 Jones E, Kern R, Larson E, Carey CJ, Polat i, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J,
568 Cimrman R, Henriksen |, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van

569 Mulbregt P, Vijaykumar A, Bardelli A Pietro, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A,
570 Rokem A, Woods CN, Fulton C, Masson C, Haggstrom C, Fitzgerald C, Nicholson DA, Hagen DR,

571 Pasechnik D V., Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA,

572 Ingold GL, Allen GE, Lee GR, Audren H, Probst |, Dietrich JP, Silterra J, Webber JT, Slavic¢ J, Nothman
573 J, Buchner J, Kulick J, Schénberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodriguez JLC,
574 Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kiimmerer M, Bolingbroke M, Tartre
575 M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT,

576 Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ,

24


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

577 Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO,
578 Vazquez-Baeza Y. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat
579 Methods 17:261-272. doi:10.1038/s41592-019-0686-2

580 Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T. 2015.
581 Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset,

582 mouse and macaque cerebral cortex. Neurosci Res 93:144—157. doi:10.1016/j.neures.2014.09.002

583 Wilson CJ. 1987. Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J

584 Comp Neurol 263:567-580. doi:10.1002/cne.902630408

585 Zippi EL, You AK, Ganguly K, Carmena JM. 2021. Selective modulation of population dynamics during

586 neuroprosthetic skill learning 1 2. bioRxiv 2021.01.08.425917. d0i:10.1101/2021.01.08.425917

587

588

589

25


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

590 SUPPLEMENTARY FIGURES
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592 Supplementary Figure 1: Labeling of IT and PT neurons.

593 A) GCaMP&6 expression under promoter Camk2a. B) tdTomato expressing neurons of the same plane as
594  A. C) Merge of A and B. D) Boxplot of the depth of all the recorded neurons across all planes for the IT
595 and PT group. Unlabeled neurons may belong to either cell-class in both groups.
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598  Supplementary Figure 2: Strategy for XGBoost models and SHAP values.

599  To obtain robust SHAP values for each session and feature, we trained XGBoost models to predict the
600 learning readout percentage-correct for each animal and session. We only selected models (N=10000)
601 with high accuracy and stability. Because the number of learning sessions was small relative to the

602 number of models (286 sessions with a minimum of 15 days per animal), we trained the models with

603 different splits of training and testing sets using random sampling with replacement. After obtaining the
604 models, we used SHAP on each session of the testing dataset. Each of those sessions was part of a

605 model an average of 2010 times. Thus, we averaged across all occurrences of the same session, to

606 obtain the best approximated single SHAP value for the same session and feature. XGBoost models

607 were calculated over all sessions jointly. SHAP values were computed on those models and separated on
608 IT and PT sessions for some analysis a posteriori. Top right: Distribution of the zscore values for different
609 occurrences of the same SHAP value across all models and sessions (grey) or all the models that

610 included an individual example session (purple).

27


https://doi.org/10.1101/2021.10.29.466535
http://creativecommons.org/licenses/by-nc/4.0/

612

613
614
615
616
617
618
619

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466535; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

N
(=]

mean(SNR)
3

o

mean(STD base)
o

o©
=)

o
=

mean(STD Exp)
o
o

Connectivity (%)
Indirect —> Direct

SHAP values

-0.01

available under aCC-BY-NC 4.0 International license.

—9 —
% S 0.002
@
c o 0.000
"E’ T -0.002
T PT D n IT PT
838
a = 0.001
]
®4 0.000
S <
® T -0.001
T PT gP T PT
I = ek
X $ 0002, —
Lo
®
= >
®g 0000
§%
o) -
IT PT g? 0002 IT PT
0.3 o
5
0.2
502
0.1 2
<
i 0.0
005t IT PT
positive
Tinfluence
Y
&5
o W
%
.;. negative
influence
200 400 600
min(Depth)

Tposmve
influence

negative
tmfluence

positive
influence

negative
*mfluence

Tposmve
influence

negative
lmfluence

0.4
0.3

0.2

0.1

Connectivity (%)
Indirect — Direct

Supplementary Figure 3: Raw value and mean SHAP values for different features.

Raw value of features fed to the XGBoost model (A, C, E, G-H) and the mean SHAP values (B,D,F) of
those features separated in sessions of the IT or PT groups for SNR (A-B); STD of the baseline (C-D) or
the whole experiment (E-F). Raw value of the effective connectivity from indirect to direct neurons (G) and
engagement of indirect neurons (H). IT group in orange and PT group in blue. 1) Dependence plot
between SHAP values, depth and connectivity. Colors show the value of connectivity. Each dot
represents a session. Black lines in bar graphs represent SEM.(*: p<0.05, , ** : p<0.005, ***: p<0.0005
with independent t-Test).
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