

1

2

3 **Clamping of DNA shuts the condensin neck gate**

4 Byung-Gil Lee*, James Rhodes* and Jan Löwe¹

5 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom

6

7 *These authors contributed equally

8 ¹Corresponding author: Jan Löwe, email: jyl@mrc-lmb.cam.ac.uk, MRC Laboratory of Molecular
9 Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United
10 Kingdom, phone: +44 (0)1223 267064

11

12

13 Keywords: SMC complex, cryo-EM, loop extrusion, DNA motor, DNA entrapment

14 **ABSTRACT**

15 Condensin is a Structural Maintenance of Chromosomes (SMC) complex needed for the
16 compaction of DNA into chromatids during mitosis. Lengthwise DNA compaction by condensin is
17 facilitated by ATPase-driven loop extrusion, a process that is believed to be the fundamental
18 activity of most, if not all SMC complexes. In order to obtain molecular insights, we obtained cryo-
19 EM structures of yeast condensin in the presence of a slowly-hydrolysable ATP analogue and
20 linear, as well as circular DNAs. The DNAs were shown to be “clamped” between the engaged
21 heterodimeric SMC ATPase heads and the Ycs4 subunit, in a manner similar to previously
22 reported DNA-bound SMC complex structures. Ycg1, the other non-SMC subunit was only flexibly
23 bound to the complex, while also binding DNA tightly, and often remaining at a distance from the
24 head module. In the clamped state, the DNA is encircled, or topologically entrapped, by the kleisin
25 Brn1 and the two engaged head domains of Smc2 and Smc4, and this tripartite ring is closed at
26 all interfaces, including at the neck of Smc2. We show that the neck gate opens upon head
27 engagement in the absence of DNA, but it remains shut when DNA is present. Our work
28 demonstrates that condensin and other SMC complexes go through similar conformations of the
29 head modules during their ATPase cycle. In contrast, the behaviour of the Ycg1 subunit in the
30 condensin complex might indicate differences in the implementation of the extrusion reactions
31 and our findings will constrain further mechanistic models of loop extrusion by SMC complexes.

32

33 **SIGNIFICANCE STATEMENT**

34 DNA needs to be compacted dramatically to fit into nuclei and during cell division, when dense
35 chromatids are formed for their mechanical segregation, a process that depends on the protein
36 complex condensin. It forms and enlarges loops in DNA through loop extrusion. Our work
37 resolves the atomic structure of a DNA-bound state of condensin in which ATP has not been
38 hydrolysed. The DNA is clamped within a compartment that has been reported previously in
39 other SMC complexes, including Rad50, cohesin and MukBEF. With the caveat of important
40 differences that we also uncovered, it means that all SMC complexes cycle through at least some
41 similar states and undergo similar conformational changes in their head modules, while
42 hydrolysing ATP and translocating DNA.

43 INTRODUCTION

44 Structural maintenance of chromosomes (SMC) complexes are essential drivers of chromosome
45 dynamics in all domains of life. In eukaryotes, condensin organises DNA into rod-shaped
46 chromatids during mitosis, cohesin mediates sister chromatid cohesion and interphase
47 chromosomal organisation, and Smc5/6 is involved in DNA repair. In bacteria, SMC-ScpAB and
48 MukBEF promote chromosome segregation by individualising replicated chromosomes
49 (Yatskevich et al., 2019).

50 In spite of these divergent high-level functions, SMC complexes share a common architecture,
51 making it likely that they also function through common mechanisms. Several SMC complexes
52 have been shown to enlarge DNA loops by a process known as loop extrusion, which is powered
53 by their ATP Binding Cassette (ABC)-type ATPases (Fudenberg et al., 2017). While loop extrusion
54 by yeast condensin and human cohesin has been reconstituted in vitro (Davidson et al., 2019;
55 Ganji et al., 2018; Kim et al., 2019), how they convert the energy from ATP binding and hydrolysis
56 into movement along DNA is not yet clear.

57 The core SMC complex is a heterotrimeric ring consisting of two SMC proteins and a kleisin, and
58 in condensin these are Smc2, Smc4 and Brn1, respectively (Fig. 1A) (Hirano et al., 1997). SMC
59 proteins are highly elongated when fully extended, with a globular “hinge” domain at one apex
60 and an ABC-type ATPase “head” domain at the other, separated by 50 nm anti-parallel coiled coil
61 domains. The two SMC proteins, Smc2 and Smc4 come together stably via the hinge domains,
62 forming heterodimers. The Brn1 N-terminal domain binds to the head proximal coiled coil of
63 Smc2, the “neck”, and the C-terminal domain to the Smc4 head at a site called the “cap”, thereby
64 creating a closed tripartite ring. To complete condensin, two HEAT repeat-containing proteins
65 Associated With Kleisins (HAWKs), Ycs4 and Ycg1, stably bind to central regions of Brn1.

66 Previous electron cryomicroscopy (cryo-EM) structures of condensin showed that condensin
67 switches between at least two states (Lee et al., 2020). In the absence of ATP, Ycs4 bound to the
68 head domains of Smc2 and Smc4, while in contrast Ycg1 was mobile, presumably connected to
69 the complex by a flexible region within Brn1. In the ATP-engaged structure, Ycs4 unbound and
70 was mobile, whereas Ycg1 bound to the heads instead. Notably, the neck interface between Smc2
71 and Brn1, where the N-terminal portion of Brn1 binds to the coiled coil neck of Smc2 near the
72 ATPase head, is closed in the absence of ATP but was not resolved in the ATP bound structure.
73 Biochemical experiments demonstrated that opening of the neck interface between Smc2 and
74 Brn1 is driven by ATP binding (Hassler et al., 2019). A similar behaviour was reported for cohesin,
75 whose dissociation from DNA requires opening of the Smc3-kleisin (Scc1) neck interface, which
76 depends on an accessory protein called Wapl and also ATP binding (Chan et al., 2012; Murayama
77 and Uhlmann, 2015).

78 *In vivo* cysteine crosslinking analyses of cohesin (Collier et al., 2020; Haering et al., 2008), SMC-
79 ScpAB (Wilhelm et al., 2015) and MukBEF (Bürmann et al., 2021) have been used to reveal
80 topological compartments in SMC complexes in which circular DNA can be entrapped (Fig. S1A).
81 These include the SMC-Kleisin (S-K) compartment and, when the head domains are engaged, the
82 Engaged heads-Kleisin (E-K) and the Engaged heads-SMC (E-S) compartments. Sister chromatid
83 cohesion is mediated by the co-entrapment of sister chromatids within cohesin's S-K
84 compartment. In contrast, it is not currently clear in which compartment the DNAs reside during
85 loop extrusion, or if in any (Cuylen et al., 2011; Davidson et al., 2019).

86 Cryo-EM structures of cohesin in the ATP-bound engaged (E) state, and bound to one strand of
87 DNA, revealed that DNA is "clamped" on top of the dimerised SMC ATPase domains by Scc2 and
88 the closed neck of Smc3 (Collier et al., 2020; Higashi et al., 2020; Shi et al., 2020). Analysis of the
89 same cohesin-DNA interaction using cysteine crosslinking *in vitro* revealed that the DNA is not
90 entrapped within the S-K ring, but passes through both the E-S and E-K compartments (Collier et
91 al., 2020). This strongly suggests that in the clamped state of cohesin the kleisin runs over the top
92 of the DNA and that the DNA has not passed through one of the trimer interfaces to reach S-K.
93 Furthermore, a recent structure of MukBEF in the ATP and DNA-bound state conclusively shows
94 that the clamped DNA passes through the E-K and E-S compartments because the entire kleisin
95 MukF is resolved (Bürmann et al., 2021). Interestingly, in this structure, the v-SMC-kleisin neck
96 interface is open, however, the MatP DNA-unloading protein was also bound.

97 We aimed to investigate how condensin interacts with DNA in the ATP engaged state and how the
98 DNA interaction might regulate the state of the neck interface. To address this, we started by using
99 cryo-EM to solve the structure of condensin in the presence of DNA, ADP and BeF₃.

100 **RESULTS**

101 *Cryo-EM structure of a “clamped” condensin complex*

102 To reveal the structure of the condensin-DNA complex we purified a “tetrameric” budding yeast
103 condensin complex lacking the Ycg1 subunit (Fig. S1B, containing subunits Smc2, Scm4, Brn1 and
104 Ycs4). We mixed the condensin tetramer with 80 bp dsDNA, ADP and beryllium fluoride (BeF₃⁻),
105 applied the sample to cryo-EM grids and collected images (Fig. S2A). ABC-type ATPases bound to
106 ADP-BeF₃ often represent the enzyme-substrate complex (Oldham and Chen, 2011a). Due to the
107 apparent flexibility of the SMC coiled coil and hinge parts in our data, we were unable to perform
108 analysis of the entire complex (Fig. S2B), but instead focussed on the head module (Fig. 1B, Fig.
109 S3 left). Following the picking of particles with a focus on the SMC head domains, 702,764 good
110 particles showing densities of SMC heads, Ycs4 and DNA were selected with 2D classifications.
111 Through further processing we reconstructed two cryo-EM maps (Form I and II) at resolutions
112 of 2.95 and 3.05 Å, with 286,294 and 251,999 particles, respectively (Fig. 1C and S2C and D). The
113 maps enabled us to build and refine reliable atomic models from both (Table S1). A comparison
114 of the overall conformations resolved showed strong similarity between the two atomic models,
115 with a RMSD (root mean squared deviation) of 1.2 Å (Fig. 1D and S2E).

116 In both structures, Form I and II, the SMC head domains and proximal coiled coils, Ycs4 and Brn1
117 form a compact globular structure, the head module. The majority of the SMC coiled coils and
118 hinge are unresolved, most likely due to flexibility with respect to the resolved parts (Fig. 1B and
119 S2B). In both structures, the DNA is held between the upper surface of the dimerised SMC head
120 domains and a groove in Ycs4 (Fig. 1C). The map allowed us to trace a significant fraction of the
121 Brn1 kleisin subunit (279/754, 37% of residues in Brn1), which binds to the neck region of Smc2,
122 to Ycs4 via an extended interaction surface and the cap of the Smc4 head domain (Fig 1D). The
123 neck interface between Smc2 and the N-terminal domain of the kleisin is closed in our structure,
124 possibly indicating that the DNA-bound clamped conformation prevents ATP-dependent opening
125 of this interface, since it had been reported previously that the Smc2/kleisin neck gate opens
126 upon ATP binding in the absence of DNA (Hassler et al., 2019). Form I and II differ in the DNA
127 density where they are not clamped between Ycs4 and the SMC heads. While the DNA of Form I
128 traverses the entire surface of the SMC heads, Form II shows relatively poor DNA density in the
129 region distal to Ycs4 (Fig. S2C, D and E). Because Form I and II therefore differ only slightly, we
130 describe the structure based on Form I, unless otherwise noted (Fig. 1C and D).

131 *Structure of ATPase head domains and interaction with DNA*

132 Condensin contains two ATPase sites, with each SMC head domain possessing the Walker A and
133 Walker B motifs from one shared or “sandwiched” active site, and the “ABC signature motif” from

134 the other. In the structure, the head domains are dimerised, with two ADP.BeF₃ sandwiched in
135 the interface (Fig. 2A). Each active site contains a network of interactions between the ADP.BeF₃,
136 a Mg²⁺ ion and highly conserved residues in Smc2 and Smc4. Engagement of the SMC head
137 domains produces a pseudo-twofold symmetrical DNA-binding surface on their upper side, which
138 is bordered by the two coiled coils (Fig. 2B). Approximately 18 bp of the DNA traverse this surface,
139 interacting with a large number of mostly positively charged residues (Fig. S4A). Interestingly,
140 the DNA is not exactly centred on the pseudo-twofold axis of the ATPase heads (Fig. 2B), and
141 therefore additionally interacts with the coiled coil Smc2 neck and not with the coiled coil of Smc4
142 (Fig. 2B). The N-terminal domain of Brn1, bound to the neck of Smc2, is also close to the DNA in
143 our structure.

144 Ycs4 is a large hook-shaped protein consisting of 21 HEAT repeats and a protrusion called the
145 "proboscis" (Hassler et al., 2019) (Fig. S4C). In our cryo-EM map, we observed two clear protein
146 densities running along the inside and around the tip of the hook (Fig. S4C). The first density
147 clearly corresponds to a part of Brn1 that has been identified earlier in the cryo-EM structure of
148 apo condensin and also a Ycs4-Brn1 crystal structure (residues 184-223) (Hassler et al., 2019),
149 while we assigned the second density to a region of Brn1 that had been identified biochemically,
150 but had not been resolved earlier (residues 275-323).

151 The DNA is clamped onto the top of the dimerised heads by Ycs4. On Ycs4, the DNA binds to a
152 positively-charged surface formed by the edge of a series of HEAT repeats near the middle of the
153 protein, and the surface includes residues K211, K292, K300, K377, R416, K420, R556 (Fig. 2C
154 and S4B). At the other end of Ycs4, and at the other end of the DNA, the tip of the Ycs4 hook also
155 binds the backbone of the DNA through an arginine residue (R1122).

156 Ycs4 forms extensive contacts with Smc2 and Smc4 at four interfaces (Fig. 2D). The first is a
157 tripartite interaction between Ycs4's N-terminal HEAT repeats 3 and 4, the neck of Smc2 and the
158 upper end of Brn1's helix α 3 (Fig. 2E). This arrangement traps the Brn1 α 3 between Ycs4 and
159 Smc2, possibly preventing opening of the Smc2-Brn1 interface, which, as has been mentioned,
160 has been reported to occur during head engagement in the absence of DNA (Hassler et al., 2019).
161 The second interaction site of Ycs4 is with a loop emanating from the side of the Smc2 head
162 domain (residues 69-73) that also contacts an alpha helix from Brn1 (residues 189-196) (Fig.
163 2F). The third interaction is large and is between a region in Ycs4 towards the C-terminus
164 (residues ~1010-1094) and a beta sheet on the back of the Smc4 head domain (Fig. 2G). Finally,
165 an unstructured and not well-conserved region near the N-terminus of Smc4 (127-131) forms
166 the fourth Ycs4 interface, using the outside of the Ycs4 hook (Fig. 2H and S4F).

167 Having structures of condensin in multiple states (apo, apo-bridged, ATP-clamped) (Lee et al.,
168 2020) (PDB 6YVU, 6YVV and this study) allowed us to analyse the conformational changes that

169 accompany them. The structure of Ycs4 is similar in the apo and clamped structures, but with a
170 10 Å outward movement of the C-terminal HEAT repeats, which results in a slight widening of the
171 hook (Fig. S4E left). In the apo and apo-bridged conformations, the association between Smc4 and
172 Ycs4 is similar, but the distance between the SMC heads is enlarged in the apo-bridged state, and
173 Smc2 binds to the N terminal HEAT repeats of Ycs4 (Fig. S4E middle). The relative orientation of
174 Ycs4 and the SMC heads is similar. However, in the clamped state there is a 55° rotation of Ycs4
175 relative to the SMC heads when compared to both apo and apo-bridged (Fig. S4E right).

176 *In the clamped state, Ycg1 binds DNA, but is only loosely attached to the head module of condensin*
177 A previous cryo-EM structure of condensin “pentameric” holocomplex (subunits Smc2, Smc4,
178 Brn1, Ycs4 and Ycg1), showed that in the absence of DNA, Ycg1 binds to Smc2 in the ATP-engaged
179 state (Lee et al., 2020). To determine whether Ycg1 also interacts with the head module in the
180 DNA-bound, clamped state we mixed the condensin pentamer (Fig. S1C) with 80 bp DNA, ADP
181 and BeF₃ as before, and examined by cryo-EM (Fig. S5A). Using our tetramer structure to guide
182 the analysis, we were able to solve two separate structures after extensive classifications (Fig. S3
183 right and S5B).

184 First, we obtained a map of the larger sub-complex comprising the condensin head module, which
185 was almost indistinguishable from the one determined for the tetramer. This 3.7 Å resolution
186 map (processed as a single map due to particle number limitations: 45,112 particles, Fig. S3 right),
187 demonstrated clearly that Ycg1 does not associate rigidly with Smc2, or any other subunit within
188 the globular head module of the complex (Fig. S5B and C).

189 Second, from the same dataset, we solved the structure of Ycg1 bound to DNA (Fig. 3A and B) at
190 3.2 Å resolution. In this structure, the region of Brn1 that binds Ycg1 and makes up the “safety
191 belt” (residues 387-524) (Kschonsak et al., 2017) was mostly resolved, with the exception of a
192 disordered connecting loop (residues 411-458) (Fig. 3C). The DNA is somewhat bent as it passes
193 over the DNA-binding surface of Ycg1 and through the safety belt. The DNA covers most of Ycg1’s
194 positively charged surface, and we could identify more Ycg1-DNA interactions than the previous
195 study using X-ray crystallography, which used a shorter DNA (Fig. S5D and E). The fact that we
196 observed Ycg1 bound to Brn1, while not being bound to the head module of condensin strongly
197 suggests that in condensin’s clamped state, Ycg1 remains attached to the rest of the complex via
198 the flexible linkers provided by Brn1 either side of its interaction site with Ycg1 (Fig. 3A).

199 *The path of the Brn1 subunit relative to DNA*

200 The path of DNA through SMC complexes is important because it determines whether circular (or
201 very long) DNA is topologically entrapped. In previous clamped structures of cohesin, little of the
202 kleisin subunit Scc1 was resolved and the path was inferred and validated using cysteine

203 crosslinking experiments (Collier et al., 2020). In the present structure, substantially more of the
204 kleisin chain is visible, which helps to determine whether or not the DNA runs through, and is
205 entrapped by, the tripartite ring of Smc2-Smc4-Brn1 (S-K) (Fig. 3D). As described above, in our
206 structure the N-terminal domain of Brn1 (22-106) is bound to the neck of Smc2. Brn1 then snakes
207 along the concave surface of Ycs4 (Brn1: 163-223) and along the C-terminus of the protein (Brn1:
208 275-323). The next resolved Brn1 residues bind to Ycg1 and form the safety belt around DNA
209 (Brn1: 459-52), before Brn1's C-terminal winged-helix domain (WHD) binds to the cap of Smc4
210 (Brn1: 526-747). While several regions remain unresolved, the position of Brn1 residues 106 and
211 163 indicate that the Brn1 chain most likely passes above the DNA. This means that the DNA runs
212 at least through the E-K compartment (Fig. S1A).

213 *Interaction between condensin and circular DNA in the clamped state*

214 The condensin-DNA complexes investigated so far in this study were assembled using 80 bp
215 double-stranded linear DNA. Therefore, the clamped head module and Ycg1 were possibly bound
216 to separate DNA molecules and any topological constraints were overridden by the fact that linear
217 DNA was used. To examine the arrangement of the condensin holocomplex when all subunits
218 have the opportunity to bind to the same strand of DNA, we mixed the condensin pentamer,
219 nicked (relaxed) plasmid DNA (1.7 kb), ADP and BeF₃ and examined the sample using cryo-EM
220 with a Volta phase plate (VPP) to increase imaging contrast (Fig. 4A). In the individual cryo-EM
221 images, without averaging, we observed complexes of condensin where the main body and Ycg1
222 were most likely bound to the same plasmid. Even without averaging, the plasmid DNA could be
223 seen passing through the head module and also through Ycg1 in the same manner as revealed by
224 our higher resolution structures (Fig. 1C and 3B, respectively).

225 We then generated 2D class averages and 3D models of the clamped condensin head module and
226 Ycg1, each bound to circular DNA (Fig. 4B and C). While these structures are at lower resolutions
227 due to smaller particle numbers, they showed the same conformations and that the DNA is also
228 entrapped within the E-K chamber. Given that the DNA is circular, it is not possible that the DNA
229 slid into the E-K chamber and therefore there are two possibilities for how the DNA enters. i) One
230 of the three interfaces in the SMC-kleisin ring opens and the DNA is topologically entrapped
231 within this tripartite ring (E-K and S-K) ii) The DNA passes between the disengaged heads before
232 they engage ATP (E-K and E-S). In this second model, the DNA becomes entrapped within both
233 the E-S and E-K chambers simultaneously but never enters the S-K ring. It is important to point
234 out that since the position of the coiled coils and hinge domains could not be resolved in the
235 clamped state, E-S and S-K entrapment cannot be deduced from our head module structure alone
236 (Fig. 4D) and additional topological interactions with either E-S (as deduced for cohesin) (Collier
237 et al., 2020), or with S-K are conceivable. S-K entrapment could be indicated by the opening of the

238 coiled coils in our clamped structure, but it requires gate opening as has been proposed before
239 (Higashi et al., 2020).

240 *The Smc2-Brn1 neck interface remains shut in the clamped state*

241 It has been reported previously that ATP binding, in the absence of DNA results in opening of the
242 Brn1 (N-terminal domain) and Smc2 neck interface (Hassler et al., 2019), and also the equivalent
243 interface between N-Scc1 and the Smc3 neck in cohesin (Chan et al., 2012; Murayama and
244 Uhlmann, 2015). In support of this, in nucleotide-bound and SMC head-engaged structures of
245 cohesin (Muir et al., 2020) and condensin (Lee et al., 2020), both in the absence of DNA, the N-
246 terminal domain of the kleisin is not present, whereas in nucleotide-free and non-engaged
247 structures the kleisin's NTD is bound (Gligoris et al., 2014; Lee et al., 2020).

248 Furthermore, a biochemical experiment with recombinant condensin, known as the N-terminal
249 kleisin release assay, has been used to demonstrate that ATP binding opens this interface (Hassler
250 et al., 2019). Recognition sequences for TEV protease were inserted into an unstructured region
251 of Brn1 (after residue 141). After cleavage of Brn1 with TEV protease, in the absence of ATP, the
252 Brn1 N-terminal fragment co-immunoprecipitated (IP) with the rest of the complex, reporting a
253 closed interface. However, when ATP was included during the wash steps, the N-terminal
254 fragment did not co-IP with the complex, indicating that ATP stimulates the disengagement of the
255 interface. Furthermore, the N-terminal fragment was released in a mutant that can bind but not
256 hydrolyse ATP, but was abolished in a mutant that cannot bind ATP. This showed that ATP
257 binding, but not its subsequent hydrolysis, stimulates opening of the Smc2-Brn1 neck interface.
258 Similar experiments have demonstrated that this mechanism is conserved in cohesin at the Smc3-
259 Scc1 neck interface (Murayama and Uhlmann, 2015).

260 Surprisingly, in our clamped structure the Smc2-Brn1 interface is closed despite engagement of
261 the ATPase heads and nucleotide binding (Fig. 4E left). Two possibilities could explain this
262 finding. i) Unlike ATP, binding of ADP.BeF₃ does not stimulate release, or, ii) binding of DNA and
263 being in the clamped conformation inhibits release. To test these hypotheses, we used the same
264 N terminal Brn1 release assay (Fig. 4E right). We found that, as previously described, in the
265 absence of nucleotide the N terminal fragment of Brn1 is efficiently co-immunoprecipitated.
266 When ATP was included during the immunoprecipitation wash steps, the N terminal fragment no
267 longer co-immunoprecipitated, confirming that ATP stimulated release. Likewise, when we
268 washed the beads with buffer containing ADP.BeF₃ the N-terminal fragment did not co-
269 precipitate effectively. This demonstrates that as with ATP, head engagement stimulated by
270 ADP.BeF₃ results in the disengagement of the Smc2-Brn1 neck interface. In contrast, when the
271 beads were washed in buffer containing both 80 bp dsDNA and ADP.BeF₃, the N terminal
272 fragment was efficiently co-precipitated. Together, these experiments showed that condensin can

273 adopt two conformations during nucleotide-driven head engagement: in one the Smc2-Brn1
274 interface is open, as shown in the cryo-EM structure of condensin bound only to ATP or AMP-PNP
275 (Lee et al., 2020), and in the other, reported here, it is firmly shut (Fig. S6A and B). It seems
276 reasonable to state that the only determinant of which conformation it adopts appears to be the
277 presence or absence of DNA.

278 **DISCUSSION**

279 A mechanism by which condensin transforms interphase chromosomes into mitotic chromatids
280 has recently been proposed: condensin extrudes chromosomal fibres, while hydrolysing ATP, to
281 create an array of DNA loops spanning the entire chromosome (Ganji et al., 2018). However, the
282 molecular basis for this extraordinary motor activity remains enigmatic, despite a significant
283 number of experiments and models (Davidson and Peters, 2021). In this paper we present the
284 structure of condensin in complex with DNA and ADP.BeF₃. This has revealed several important
285 behaviours of condensin during the ATPase cycle. First, condensin adopts a “clamped”
286 conformation in which DNA is bound between the engaged SMC head domains, the Ycs4 subunit
287 and the Smc2 neck domain. Second, the DNA passes through the E-K chamber between the kleisin
288 and the head domains. Third, the interface between Smc2 and Brn1 is closed. The latter is
289 surprising because head engagement was thought to open this interface (Hassler et al., 2019). We
290 also present biochemical evidence that this ATP-stimulated interface opening is inhibited by the
291 presence of DNA.

292 The clamped state of condensin is closely related to the clamped state of cohesin (Fig. S6C and D)
293 (Collier et al., 2020; Higashi et al., 2020; Shi et al., 2020), highlighting potential deep mechanistic
294 similarities between the two proteins. In cohesin, the Scc2 cohesin “loader” subunit takes the
295 position of Ycs4 in clamped condensin and both complexes show very similar arrangements
296 around the neck gates (Smc2-Brn1; Smc3-Scc1), with the kleisins’ N-terminal domains wedged in
297 between the SMC neck, the DNA and the clamping subunit. It is therefore not surprising that neck
298 gate opening seems to depend on the absence of DNA and the presence of ATP in both complexes
299 (Hassler et al., 2019; Muir et al., 2020). Because the clamped state of MukBEF is analogous to the
300 clamped state of cohesin (Fig. S6E) (Bürmann et al., 2021), it is also related to condensin and
301 together with the finding that SbcCD (Mre11-Rad50), an SMC-like protein involved in DNA repair
302 also binds DNA in this way, (PDB 6S85) (Käshammer et al., 2019), it seems that DNA clamping is
303 a conserved state of these complexes and is likely involved in their most fundamental functions.

304 Taken together with published structures (Lee et al., 2020), our data demonstrate that condensin
305 can adopt at least four stable conformations; two very different conformations in the presence of
306 nucleotide (ATP-engaged [Fig. S6A right] and DNA-clamped), depending on the presence of DNA,
307 and the two nucleotide-free apo conformations (apo and apo-bridged [Fig. S4E left and middle])
308 (Lee et al., 2020). In the apo conformation, Ycs4 is bound to the SMC heads, which are juxtaposed
309 with their ATPase active sites facing away from each other. In the apo-bridged conformation, the
310 heads are forced apart by Ycs4 which sits between them. In both states Ycg1 is bound to the
311 complex only via the flexible Brn1 linkers. In the ATP-bound structure without DNA (ATP-
312 engaged), the heads are engaged but now Ycs4 is no longer bound to the main body whereas Ycg1

313 tightly binds to the Smc2 head and the Smc2-Brn1 neck interface is open (Fig. S6A right). Finally,
314 in the ATP- and DNA-bound clamped structure, the head domains are engaged around
315 nucleotides, however Ycs4 is associated with the main body rather than Ycg1 - and the Smc2-
316 Brn1 neck interface is closed (this study).

317 It is conceivable that the different conformations between the ADP.BeF₃ + DNA and the ATP or
318 AMP-PNP structures (Smc2-Brn1 interface opening and Ycg1/Ycs4 binding to SMC heads) are a
319 result of the different nucleotides that were used to engage the head domains rather than the
320 presence of DNA. This is unlikely for three reasons. Firstly, in previous structural studies of ABC-
321 type ATPases, heads engaged with different nucleotide analogues result in almost identical
322 conformations of these domains (Oldham and Chen, 2011b). Second, in the equivalent clamped
323 structure of cohesin, ATP was used in combination with mutations (EQ Walker B) that result in
324 defective ATP hydrolysis but not binding (Collier et al., 2020). Despite using ATP rather than
325 ADP.BeF₃, the proteins adopted the same clamped conformation and the Smc3-Scc1 interface was
326 closed. And third, our Brn1 release assay showed no obvious difference between the effects of
327 ATP or ADP.BeF₃ on neck gate opening.

328 Our structure raises an interesting question about the significance of the previous ATP bound
329 structure of condensin without DNA. Does condensin adopt two distinct ATP-bound
330 conformations as part of the loop extrusion process? If not, what is the relevance of ATP binding
331 when not in the clamped state? One possible explanation is indicated by the state of the Smc2-
332 Brn1 neck interface in each structure. In the clamped state this interface is shut, whereas in the
333 DNA free structure the Brn1 N-terminal domain cannot be resolved, likely indicating that it is
334 open. This finding is further supported by biochemical evidence showing that ATP binding
335 releases the Brn1 N-terminal domain, unless DNA is included in the reaction. Because opening of
336 this interface compromises the integrity of the tripartite condensin ring, it is possible that the
337 ATP bound state represents a hypothetical unloading reaction. Condensin needs to be able to
338 dissociate from chromatin in a regulated manner and opening of the Smc2-Brn1 interface is one
339 likely mechanism for that release, should loop extrusion or other cellular activities of condensin
340 involve topological entrapment (Cuylen et al., 2011). Indeed, opening of the Smc3-Scc1 interface
341 in cohesin, whose topological entrapment in cells is firmly established (Haering et al., 2008), is
342 similarly driven by ATP binding (Muir et al., 2020; Murayama and Uhlmann, 2015). Finally, a
343 recent structure of MukBEF, in complex with the MatP unloader, which is believed to show the
344 complex poised for topological unloading of DNA shows the analogous N-kleisin neck gate (MukF-
345 MukB) in an open state (Fig. S6B) (Bürmann et al., 2021).

346 Our cryo-EM data provide clear evidence that condensin can bind to DNA via Ycg1 and the
347 clamped head module simultaneously. Based on our structures and published single molecule

348 experiments (Ganji et al., 2018) we propose that this is an intermediate step in the loop extrusion
349 process and the variable distance of Ycg1 with respect to the head module might determine, or
350 allow condensin to make steps on DNA that are needed to extrude loops and to enlarge them. It
351 seems also worth pointing out that the two binding sites, in the clamped head module and on
352 Ycg1 enable the trapping of pre-formed DNA loops as shown directly in Fig. 4A, and this would be
353 a convenient initial reaction to start loop extrusion.

354 But it is clear that a precise understanding of the order of the conformations during the loop
355 extrusion cycle will be required to be able to describe the molecular mechanism for DNA
356 translocation and extrusion. This may be achieved using single molecule approaches such as
357 FRET, especially for the presumably very flexible SMC arms (Bauer et al., 2021), but we envisage
358 that resolving these structures of SMC complexes during the loop extrusion process by cryo-EM
359 may ultimately be needed to understand the mechanisms involved at the same level of detail that
360 has been achieved for cytoskeletal or other nucleic acid motor proteins, as long as the important
361 and relevant parts of the complex retain enough rigidity for this to be achievable.

362 **MATERIALS AND METHODS**

363 **Plasmids and protein expression**

364 Wild type condensin holocomplex (pentamer) was overexpressed in budding yeast from two 2
365 micron high copy number plasmids (pGAL7 SMC4-3xStrepII pGAL10-SMC2 pGAL1 BRN1-HA3-
366 His₁₂ URA3 and pGAL1 YCG1 pGAL10 YCS4 TRP1) (Terakawa et al., 2017). Condensin
367 holocomplex containing TEV cleavable Brn1 was overexpressed from pGAL7 SMC4-3xStrepII
368 pGAL10-SMC2 pGAL1 BRN1(ybbR tag replacing residues 13-23, 3 x TEV site inserted at residue
369 141)-HA3-His₁₂ URA3 and pGAL1 YCG1 pGAL10 YCS4 TRP1.

370 For expression of the condensin tetramer, YCG1 was deleted by Gibson Assembly to produce
371 pGAL1 YCG1 TRP1. Cultures were grown in -URA -TRP dropout medium + 2% raffinose until
372 OD₆₀₀ of 0.8-1. Protein expression was induced by adding 2% galactose to the medium and
373 incubating overnight at 30°C.

374 **Protein purification**

375 Recombinant condensin complexes were purified as previously described, with minor
376 modifications (St-Pierre et al., 2009; Terakawa et al., 2017). Induced yeast cultures were
377 centrifuged, washed once in PBS and centrifuged again. The cell pellet was resuspended in 1x
378 pellet volume of Buffer A (50 mM Tris-HCl pH 8.0, 200 mM NaCl, 5% glycerol, 5 mM 2-
379 mercaptoethanol) with protease inhibitors (Roche) and 300 U/L benzonase (Sigma). The cell
380 suspension was then lysed in a Spex Freezer Mill (5 cycles of 3 min at 12 cpm, with 3 min cooling
381 between cycles). The lysate was clarified by centrifugation for 30 min at 20,000 rpm in JA 25.50
382 rotor and filtered through Whatman paper. The lysate was then adjusted to pH 8.0 by addition of
383 NaOH. The filtered and clarified lysate was loaded onto two 5 mL His-Trap columns (Cytiva)
384 assembled in series at a flow rate of 1 mL/min. The column was washed with 100 ml of Buffer A
385 + 500 mM NaCl, 50 mL of Buffer A + 40 mM imidazole at 5 mL/min and 50 mL of Buffer A + 60
386 mM imidazole at 5 mL/min. The protein was then eluted in Buffer A + 200 mM imidazole. Peak
387 fractions were pooled and diluted 2-fold in Buffer SB (50 mM Tris-HCl pH 8, 200 mM NaCl, 5%
388 glycerol, 1 mM DTT) and loaded onto a 5 mL Strep-Trap column (Cytiva) at a flow rate of 1
389 mL/min. The column was washed with 50 mL Buffer SB, 20 mL Buffer SB with 50 mM KCl, 10 mM
390 MgCl₂ and 1 mM ATP (Sigma) followed by 50 mL Buffer SB. The protein was then eluted in buffer
391 SB containing 5 mM desthobiotin (IBA). The peak fractions were pooled and concentrated with a
392 Vivaspin 20 100,000 Da centrifugal concentrator (Sartorius).

393 For fluorescent labelling of TEV cleavable condensin, at this stage CoA-LD555 (Lumidyne) was
394 conjugated to Brn1-ybbR with recombinant SFP synthase (Addgene Plasmid #75015) as
395 previously described (Yin et al., 2006). All proteins were further purified by size exclusion

396 chromatography on a Superose 6 Increase 10/300 GL column (Cytiva), pre-equilibrated with
397 Buffer SB containing 1 mM MgCl₂. The peak fractions were concentrated using a Vivaspin 20
398 100,000 Da centrifugal concentrator and frozen.

399 **Assembling clamped condensin and Cryo-EM grid preparation**

400 Purified condensin samples were buffer-exchanged using Zeba Micro Spin 7K MWCO columns
401 (Thermo Fisher Scientific) in TNT buffer (30 mM Tris/HCl, 60 mM NaCl, 1 mM TCEP, and 2 mM
402 MgCl₂ pH 7.5). Then, 0.5 ~ 1 mg/ml samples were incubated with 1 ~ 2 μ M 80 bp dsDNA (5'-
403 GAATTGGTGCATAATGTATAATAAGATAAAAGCTTAAGTTCTTCCGATGCATAATAACATAA
404 TACGTGACTTAC-3', and 5'-
405 GTAAAGTCACGTATTATGTTATTATGCATCGGAAGAACTTAAGCTTATTATCTTATTATACATTATG
406 CGCACCGAATTTC-3', IDT) or 100 nM relaxed circular DNA (1789 bp, derived from pUC19) (Collier
407 et al., 2020) in the presence of 5 mM ADP, 1 mM BeSO₄ and 10 mM NaF for 30 min at room
408 temperature. The incubated samples were supplemented with 0.1 % (w/v) β -octyl glucoside
409 (Anatrace) and applied onto freshly glow-discharged 200 square mesh Ultrafoil R2/2 gold grids
410 (Quantifoil). The samples were plunge-frozen with a FEI Vitrobot Mark IV (Thermo Fisher
411 Scientific) at 4 °C and 100 % humidity (blotting force -10 to -15, blotting time 1.5 ~ 2 s) and a
412 liquid-ethane cryostat set to 93 K (Russo et al., 2016).

413 **Cryo-EM image acquisition**

414 All cryo-EM datasets were acquired at 300 kV on a FEI Titan Krios electron microscope (Thermo
415 Fisher Scientific). EPU was used for automatic data collection, and for non-VPP datasets AFIS
416 (aberration-free image shift) was used to increase throughput. For the condensin tetramer:80 bp
417 DNA dataset, images were acquired using a GIF Quantum energy filter with 20 eV slit width and
418 a 100 μ m objective aperture. 8,784 movies were recorded using a Gatan K3 summit direct
419 electron detector in super-resolution mode, with a nominal magnification of 81,000x,
420 corresponding to a pixel size of 1.07 Å/pixel (0.535 Å/pixel in super-resolution), and a nominal
421 defocus range of 1.5 ~ 3.3 μ m. Each movie was dose-fractionated into 55 frames, with a total dose
422 of 55 e⁻/Å². For the pentamer:80 bp DNA dataset, 4,302 images were collected using a Falcon 4
423 detector, with a nominal magnification of 75,000x (calibrated pixel size 1.08 Å) and without any
424 objective aperture. The nominal defocus range was set to 1.5 ~ 3.0 μ m. Each image was recorded
425 in EER (electron event representation) format with a total dose of 40 e⁻/Å². For the
426 pentamer:circular DNA dataset, 3,179 images were acquired with a Volta phase plate (VPP)
427 (defocus range: 0.6 ~ 1.1) using a Falcon 4 detector, with a nominal magnification of 75,000x
428 (pixel size = 1.08 Å). Since the number of condensin particles in this VPP dataset was not sufficient
429 to obtain good 3D classes, an additional 1,016 non-VPP images were acquired with a 100 μ m
430 objective aperture (defocus range: 1.5 ~ 3.0 μ m), using a grid obtained under the same conditions

431 but with a more concentrated sample. Both datasets were recorded in EER format with a total
432 dose of $32 \text{ e-}/\text{\AA}^2$.

433 **Cryo-EM image processing**

434 The cryo-EM data processing workflow is summarised in Fig. S3. Processing was performed with
435 RELION 3.1, CtfFind4, crYOLO, and cryoSPARC v3.2 (Punjani et al., 2017; Rohou and Grigorieff,
436 2015; Scheres, 2012; Wagner et al., 2019), and RELION was used, unless otherwise specified.
437 Overall resolutions were determined based on Fourier shell correlation (FSC) gold-standard
438 criteria (0.143) (Rosenthal and Henderson, 2003). All images were subjected to beam-induced
439 motion correction as implemented in RELION 3.1. Movie frames were aligned and combined with
440 dose weighting using 7 x 5 patches (for K3 datasets) or 5 x 5 patches (for Falcon 4 datasets). The
441 Falcon 4 movies in EER format were dose fractionated into groups of 40 frames, corresponding
442 to a dose of $1 \text{ e-}/\text{\AA}^2$ or $0.8 \text{ e-}/\text{\AA}^2$ per fractions for the pentamer:80bp DNA or pentamer:circular
443 DNA datasets, respectively. CTF parameters were estimated with CtfFind4.

444 For the condensin tetramer:80 bp DNA dataset, $\sim 3 \text{ M}$ particles were picked with a Laplacian-of-
445 Gaussian blob as template, and subjected to 2D classification. An initial 3D model of the head
446 complex was generated using particles from selected 2D class images showing different
447 orientations. Then, to obtain more particles accurately using crYOLO, a model was trained with
448 the coordinates from the images that formed the selected 2D classes. The resulting $\sim 2 \text{ M}$ particles
449 were extracted using a box size of 300^2 pixels (pixel size= 1.07 \AA), followed by 2D classification.
450 702,764 accepted particles were subjected to further 3D classification, and resulted in two 3D
451 classes showing secondary structure features. Further processing was performed separately for
452 each class, but in the same way. First, 3D auto-refinement was performed and resulted in maps
453 of 3.27 \AA (Form I) and 3.24 \AA (Form II), followed by CTF-refinement for magnification anisotropy,
454 per-particle defocus, per-micrograph astigmatism and beam tilt. For beam tilt and CTF-
455 refinement, the particles were divided into optics groups according to their hole positions
456 (because of AFIS data collection). Then, Bayesian polishing was performed, followed by another
457 round of 3D refinement to generate final maps with 2.95 and 3.05 \AA resolutions, for Forms I and
458 II, respectively.

459 For the condensin pentamer:80 bp DNA dataset, particles were initially picked using crYOLO with
460 a general model. Approximately 600 k particles were picked and a subset of 50 k particles was
461 subjected to a five-class ab initio initial model reconstruction in cryoSPARC v3.2. Using the
462 resulting 5 models, heterogeneous refinement was performed for all picked particles in
463 cryoSPARC. The classes showing features of "clamped" head modules, or Ycg1-DNA complexes
464 were selected, and the corresponding particles for each class were subjected to crYOLO model
465 training separately, followed by automated particle picking. By crYOLO picking with each model,

466 476,997 particles for the head module and 640,437 particles for Ycg1-DNA were obtained,
467 respectively. The particles for each model were first cleaned-up by cryoSPARC heterogeneous
468 refinement using five models from the first ab initio reconstruction. Additional 2D and 3D
469 classifications without alignment in RELION resulted in 45,112 particles for the head module and
470 91,024 for Ycg1-DNA. The particles for each were re-extracted with box sizes of 320² and 300²
471 pixels (pixel size=1.08 Å), respectively. 3D auto-refinement performed for each particle followed
472 by CTF-refinement (magnification anisotropy, per-particle defocus, per-micrograph astigmatism
473 and beam tilt) and Bayesian polishing. After 3D refinement, maps at 3.68 Å and 3.20 Å resolutions
474 were obtained for the head complex and Ycg1-DNA, respectively.

475 For condensin pentamer:circular DNA, particle picking was separately done for the two datasets,
476 VPP and non-VPP, using crYOLO with a general model, follow by extraction with a box size of 360²
477 pixels with 2x binning (180²-pixel size, pixel size=2.16 Å). The particles from the two datasets
478 were then merged, an ab initio reconstruction was obtained, followed by multiple rounds of
479 heterogeneous refinement in cryoSPARC. 36,588 and 27,040 particles corresponding to the head
480 module and Ycg1-DNA, respectively were selected, and subjected to 3D homogeneous refinement
481 in cryoSPARC to generate 8.75 and 8.95 Å maps for the head complex and Ycg1-DNA, respectively.
482 During processing of the dataset, we also discovered 2D classes presumed to be SMC coiled coil
483 arms or the hinge (see Fig. S2B), however, we were not able to obtain reliable 3D maps of these
484 parts, presumably due to their flexibility.

485 **Model building and refinement**

486 For atomic model building, the maps of the two Forms I & II of the head module from the tetramer
487 dataset, and the Ycg1-DNA complex from the pentamer dataset were further improved using
488 DeepEMhancer (Sanchez-Garcia et al., 2021). Model building was carried out in COOT (Emsley et
489 al., 2010)e and ISOLDE (Croll, 2018). Coordinates were refined using phenix.real_space_refine
490 (Afonine et al., 2018). Model validation was performed with MolProbity (Chen et al., 2010). The
491 atomic model for the head module was first built into the 2.95 Å cryo-EM density of Form I from
492 the tetramer:80 bp DNA dataset. The models of Smc2 head-Brn1₂₅₋₁₀₈, Smc4 head-Brn1_{643-668,685-}
493 747 and Ycs4-Brn1_{166-174,184-195,199-220} were taken from the apo-condensin cryo-EM structure from
494 *S. cerevisiae* (PDB: 6YVU) (Lee et al., 2020), and used as templates. The DNA model was initially
495 taken from the *S. cerevisiae* cohesin cryo-EM structure (PDB: 6ZZ6) (Collier et al., 2020). Each
496 atomic model was docked into the EM map using UCSF Chimera (Pettersen et al., 2004).
497 Coordinates were then manually adjusted and rebuilt in COOT. The DNA model was further
498 refined using the annealing function in ISOLDE. Clear map densities in the vicinity of HEAT
499 repeats 14 to 18 of Ycs4 were apparent after building using the templates, and were identified as
500 Smc4(126-144) and Brn1(275-323), using secondary structure predictions and cryoID (Ho et al.,

501 2020), and then built de novo in COOT. The N- and C-terminal low-resolution regions of Ycs4(26-
502 92 and 1159-1168) were built using ab initio models of *S. cerevisiae* Ycs4 generated by
503 AlphaFold2 (<https://alphafold.ebi.ac.uk/entry/Q06156>) as a template (Jumper et al., 2021). For
504 Form II of the head module from the tetramer dataset the refined model of Form I was docked
505 into the 3.05 Å map, and rigid-body refined in PHENIX, followed by manual adjustments in COOT.
506 For the Ycg1-DNA atomic model, the crystal structure of the Ycg1-Brn1 complex (PDB: 50QQ)
507 (Kschonsak et al., 2017) was docked into the Ycg1-DNA map from the pentamer dataset in
508 Chimera, and a DNA model was flexibly fitted using ISOLDE. The model was then manually
509 adjusted and rebuilt in COOT, followed by real-space refinement in PHENIX. Figures and movies
510 were generated with PyMOL 2.5 (Schrödinger), UCSF Chimera and ChimeraX (Pettersen et al.,
511 2021). Electrostatic potentials were calculated and displayed in PyMOL.

512 **Brn1 N-terminal release assay**

513 The N-terminal release assay was performed as previously described with modifications (Hassler
514 et al., 2019). 25 µg condensin holocomplex containing the Brn1 TEVs (after residue 141) and
515 labelled with LD555 (Lumidine) (1 µg/µl), 1 x acTEV buffer (Thermo), 20 U acTEV protease
516 (Thermo) was incubated at 4°C for 16 hours to cleave Brn1.

517 For each nucleotide condition, 20 µl of protein A magnetic dynabeads (Thermo) were washed
518 twice in 500 µl wash buffer (50 mM Tris-HCl pH 7.5, 125 mM NaCl, 50 mM KCl, 5 mM MgCl₂, 5%
519 glycerol, 1 mM DTT, 0.2 mM PMSF and 0.01% (v/v) Tween-20). The beads were resuspended in
520 300 µl wash buffer, 3 µg of ant-HA antibody (Roche) was added and mixed at 4°C for 1 h. The
521 antibody-bound beads were washed two times and resuspended in 300 µl wash buffer. 5 µg of
522 cleaved Brn1-condensin was added to the beads per condition and mixed for 1 h at 4°C. The beads
523 were washed three times in wash buffer followed by three washes in 300 µl in wash buffer, wash
524 buffer with 1 mM ATP, wash buffer with ADP.BeF₃ (0.5 mM ADP, 0.5 mM BeSO₄ and 10 mM NaF)
525 or wash buffer with 80 bp dsDNA and ADP.BeF₃ (10 µM DNA was added and mixed before addition
526 of 0.5 mM ADP, 0.5 mM BeSO₄ and 10 mM NaF). The beads were then resuspended in 50 µl 2xSDS
527 (100 mM TRIS-HCl pH 6.8, 4% (w/v) SDS, 20% glycerol (v/v) 0.2% (w/v) bromophenol blue, 0.2
528 M DTT) buffer and incubated at 65°C for 5 min to elute the proteins. The eluate was resolved by
529 SDS-PAGE, the retained Brn1 N-terminal fragment was visualised on a Typhoon Scanner
530 (Amersham) and immunoprecipitation of condensin and equal loading was confirmed by
531 Coomassie staining of the eluate.

532

533 **ACKNOWLEDGEMENTS AND FUNDING SOURCES**

534 We are grateful to Damien D'Amours (University of Ottawa, Canada), Luis Aragon (MRC London
535 Institute of Medical Sciences, London, UK) and Christian Haering (Universität Würzburg,
536 Germany) for sharing plasmids, yeast strains and technical advice. We would like to thank Nicolas
537 Jean (MRC Laboratory of Molecular Biology [LMB], Cambridge, UK) for a gift of the relaxed
538 plasmid and Yue Liu (MRC LMB) for help with model building. We would also like to thank Dima
539 Chirgadze and Steven W Hardwick (Cambridge University, UK) for assistance with EM data
540 collection and Jake Grimmett and Toby Darling (MRC LMB) for help with scientific computing.

541 This work was funded by the Wellcome Trust (218621/Z/19/Z to J.R.; 202754/Z/16/Z to J.L) and
542 the Medical Research Council (U105184326 to J.L).

543 **DATA AVAILABILITY**

544 The model coordinates and cryo-EM density maps were deposited in the Protein Data Bank (PDB)
545 and Electron Microscopy Data Bank (EMDB) with the following accession codes: clamped head
546 module from tetramer dataset, Form I (PDB ID 7Q2X and EMD-13783) and Form II (PDB ID 7Q2Y
547 and EMD-13784); clamped head module from pentamer dataset (EMD-13785) and Ycg1-DNA
548 (PDB ID 7Q2Z and EMD-13786); clamped head module from circular DNA dataset (EMD-13787)
549 and Ycg1-DNA (EMD-13788). See Table S1 for details.

550 **REFERENCES**

551 Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and Adams,
552 P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta Crystallogr*
553 *D Struct Biol* 74, 531–544.

554 Bauer, B.W., Davidson, I.F., Canena, D., Wutz, G., Tang, W., Litos, G., Horn, S., Hinterdorfer, P., and
555 Peters, J.-M. (2021). Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism.
556 *Cell* 184, 5448–5464.e22.

557 Bürmann, F., Funke, L.F.H., Chin, J.W., and Löwe, J. (2021). Cryo-EM structure of MukB/EIF reveals
558 DNA loop entrapment at chromosomal unloading sites.

559 Chan, K.-L., Roig, M.B., Hu, B., Beckouët, F., Metson, J., and Nasmyth, K. (2012). Cohesin’s DNA
560 exit gate is distinct from its entrance gate and is regulated by acetylation. *Cell* 150, 961–974.

561 Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W.,
562 Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for
563 macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* 66, 12–21.

564 Collier, J.E., Lee, B.-G., Roig, M.B., Yatskevich, S., Petela, N.J., Metson, J., Vouglaris, M., Gonzalez
565 Llamazares, A., Löwe, J., and Nasmyth, K.A. (2020). Transport of DNA within cohesin involves
566 clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3. *Elife* 9,
567 e59560.

568 Croll, T.I. (2018). ISOLDE: a physically realistic environment for model building into low-
569 resolution electron-density maps. *Acta Crystallogr D Struct Biol* 74, 519–530.

570 Cuylen, S., Metz, J., and Haering, C.H. (2011). Condensin structures chromosomal DNA through
571 topological links. *Nat Struct Mol Biol* 18, 894–901.

572 Davidson, I.F., and Peters, J.-M. (2021). Genome folding through loop extrusion by SMC
573 complexes. *Nat Rev Mol Cell Biol* 22, 445–464.

574 Davidson, I.F., Bauer, B., Goetz, D., Tang, W., Wutz, G., and Peters, J.-M. (2019). DNA loop
575 extrusion by human cohesin. *Science* 366, 1338–1345.

576 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot.
577 *Acta Crystallogr D Biol Crystallogr* 66, 486–501.

578 Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A., and Mirny, L.A. (2017). Emerging
579 Evidence of Chromosome Folding by Loop Extrusion. *Cold Spring Harb Symp Quant Biol* 82, 45–
580 55.

581 Ganji, M., Shaltiel, I.A., Bisht, S., Kim, E., Kalichava, A., Haering, C.H., and Dekker, C. (2018). Real-
582 time imaging of DNA loop extrusion by condensin. *Science* 360, 102–105.

583 Gligoris, T.G., Scheinost, J.C., Bürmann, F., Petela, N., Chan, K.-L., Uluocak, P., Beckouët, F., Gruber,
584 S., Nasmyth, K., and Löwe, J. (2014). Closing the cohesin ring: structure and function of its Smc3-
585 kleisin interface. *Science* 346, 963–967.

586 Haering, C.H., Farcas, A.-M., Arumugam, P., Metson, J., and Nasmyth, K. (2008). The cohesin ring
587 concatenates sister DNA molecules. *Nature* 454, 297–301.

588 Hassler, M., Shaltiel, I.A., Kschonsak, M., Simon, B., Merkel, F., Thärichen, L., Bailey, H.J., Macošek,
589 J., Bravo, S., Metz, J., et al. (2019). Structural Basis of an Asymmetric Condensin ATPase Cycle.
590 *Mol. Cell* 74, 1175-1188.e9.

591 Higashi, T.L., Eickhoff, P., Sousa, J.S., Locke, J., Nans, A., Flynn, H.R., Snijders, A.P., Papageorgiou,
592 G., O'Reilly, N., Chen, Z.A., et al. (2020). A Structure-Based Mechanism for DNA Entry into the
593 Cohesin Ring. *Mol Cell* 79, 917-933.e9.

594 Hirano, T., Kobayashi, R., and Hirano, M. (1997). Condensins, chromosome condensation protein
595 complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren
596 protein. *Cell* 89, 511-521.

597 Ho, C.-M., Li, X., Lai, M., Terwilliger, T.C., Beck, J.R., Wohlschlegel, J., Goldberg, D.E., Fitzpatrick,
598 A.W.P., and Zhou, Z.H. (2020). Bottom-up structural proteomics: cryoEM of protein complexes
599 enriched from the cellular milieus. *Nat Methods* 17, 79-85.

600 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
601 Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction
602 with AlphaFold. *Nature* 596, 583-589.

603 Käshammer, L., Saathoff, J.-H., Lammens, K., Gut, F., Bartho, J., Alt, A., Kessler, B., and Hopfner, K.-
604 P. (2019). Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex. *Mol.*
605 *Cell* 76, 382-394.e6.

606 Kim, Y., Shi, Z., Zhang, H., Finkelstein, I.J., and Yu, H. (2019). Human cohesin compacts DNA by
607 loop extrusion. *Science* 366, 1345-1349.

608 Kschonsak, M., Merkel, F., Bisht, S., Metz, J., Rybin, V., Hassler, M., and Haering, C.H. (2017).
609 Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes. *Cell*
610 171, 588-600.e24.

611 Lee, B.-G., Merkel, F., Allegretti, M., Hassler, M., Cawood, C., Lecomte, L., O'Reilly, F.J., Sinn, L.R.,
612 Gutierrez-Escribano, P., Kschonsak, M., et al. (2020). Cryo-EM structures of holo condensin
613 reveal a subunit flip-flop mechanism. *Nat Struct Mol Biol* 27, 743-751.

614 Muir, K.W., Li, Y., Weis, F., and Panne, D. (2020). The structure of the cohesin ATPase elucidates
615 the mechanism of SMC-kleisin ring opening. *Nat Struct Mol Biol* 27, 233-239.

616 Murayama, Y., and Uhlmann, F. (2015). DNA Entry into and Exit out of the Cohesin Ring by an
617 Interlocking Gate Mechanism. *Cell* 163, 1628-1640.

618 Oldham, M.L., and Chen, J. (2011a). Crystal structure of the maltose transporter in a
619 pretranslocation intermediate state. *Science* 332, 1202-1205.

620 Oldham, M.L., and Chen, J. (2011b). Snapshots of the maltose transporter during ATP hydrolysis.
621 *Proc Natl Acad Sci U S A* 108, 15152-15156.

622 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin,
623 T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. *J*
624 *Comput Chem* 25, 1605-1612.

625 Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and
626 Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and
627 developers. *Protein Sci* 30, 70-82.

628 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for
629 rapid unsupervised cryo-EM structure determination. *Nat. Methods* *14*, 290–296.

630 Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from
631 electron micrographs. *J Struct Biol* *192*, 216–221.

632 Rosenthal, P.B., and Henderson, R. (2003). Optimal determination of particle orientation,
633 absolute hand, and contrast loss in single-particle electron cryomicroscopy. *J. Mol. Biol.* *333*,
634 721–745.

635 Russo, C.J., Scotcher, S., and Kyte, M. (2016). A precision cryostat design for manual and semi-
636 automated cryo-plunge instruments. *Rev Sci Instrum* *87*, 114302.

637 Sanchez-Garcia, R., Gomez-Blanco, J., Cuervo, A., Carazo, J.M., Sorzano, C.O.S., and Vargas, J.
638 (2021). DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. *Commun
639 Biol* *4*, 874.

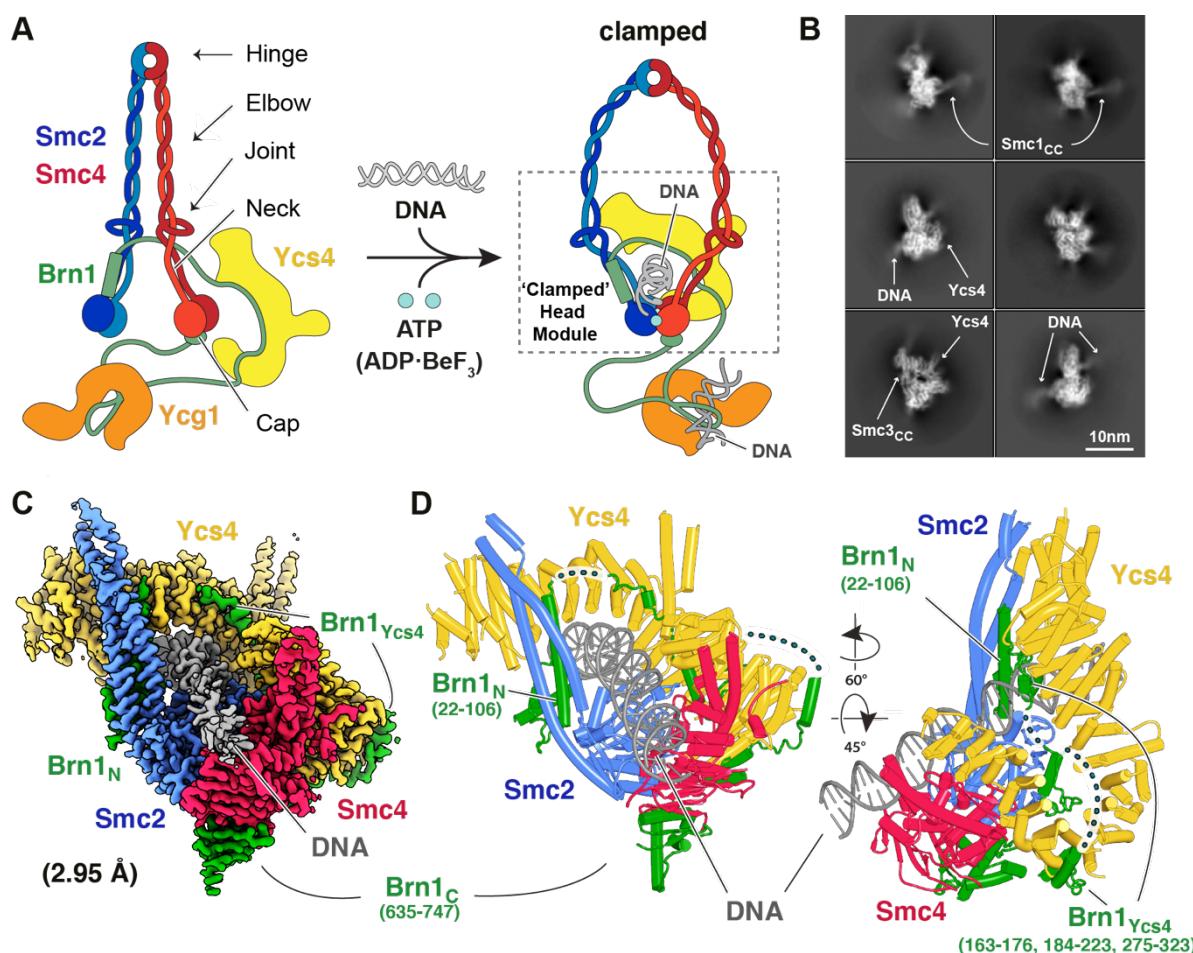
640 Scheres, S.H.W. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure
641 determination. *J. Struct. Biol.* *180*, 519–530.

642 Shi, Z., Gao, H., Bai, X.-C., and Yu, H. (2020). Cryo-EM structure of the human cohesin-NIPBL-DNA
643 complex. *Science* *368*, 1454–1459.

644 St-Pierre, J., Douziech, M., Bazile, F., Pascariu, M., Bonneil, E., Sauvé, V., Ratsima, H., and
645 D'Amours, D. (2009). Polo kinase regulates mitotic chromosome condensation by
646 hyperactivation of condensin DNA supercoiling activity. *Mol. Cell* *34*, 416–426.

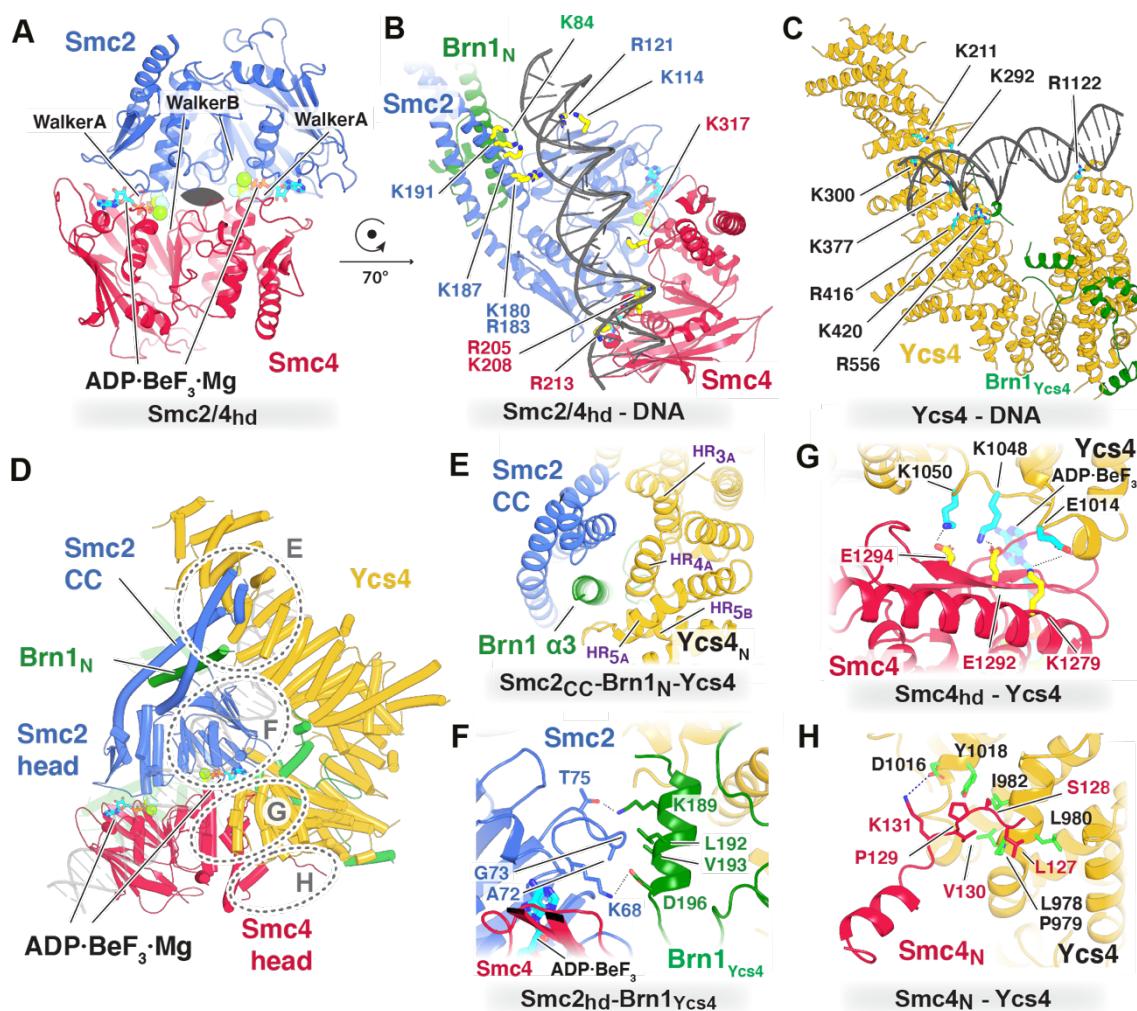
647 Terakawa, T., Bisht, S., Eeftens, J.M., Dekker, C., Haering, C.H., and Greene, E.C. (2017). The
648 condensin complex is a mechanochemical motor that translocates along DNA. *Science* *358*, 672–
649 676.

650 Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitsel, O., Raisch,
651 T., Prumbaum, D., et al. (2019). SPHIRE-crYOLO is a fast and accurate fully automated particle
652 picker for cryo-EM. *Commun Biol* *2*, 218.

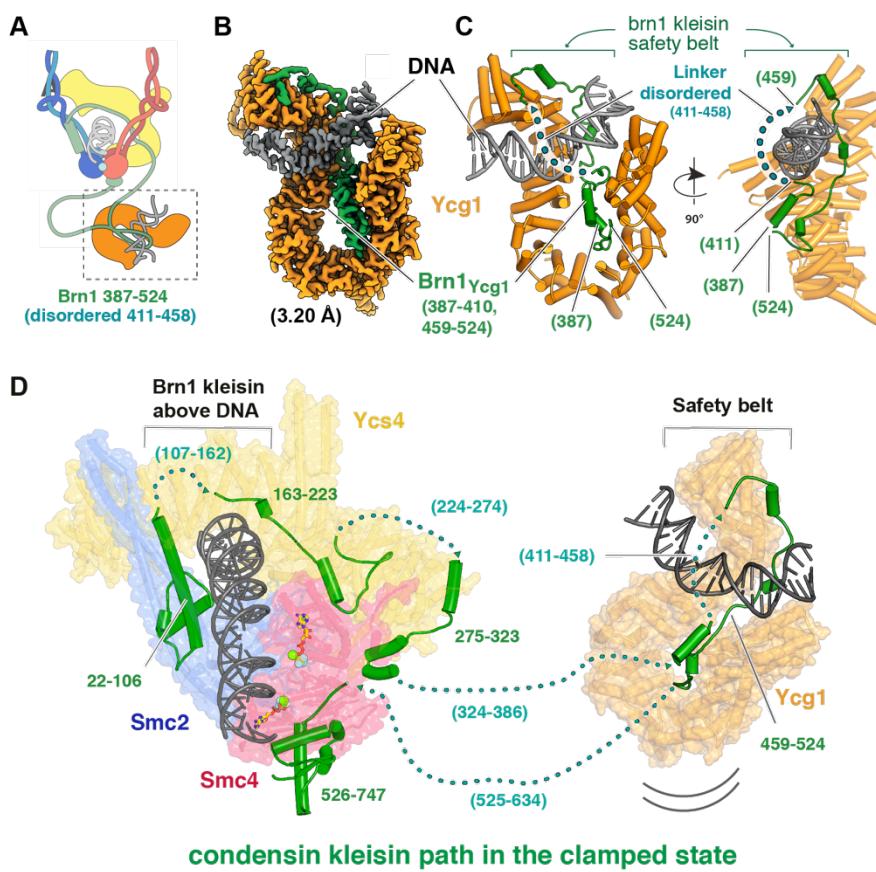

653 Wilhelm, L., Bürmann, F., Minnen, A., Shin, H.-C., Toseland, C.P., Oh, B.-H., and Gruber, S. (2015).
654 SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism
655 in *Bacillus subtilis*. *Elife* *4*.

656 Yatskevich, S., Rhodes, J., and Nasmyth, K. (2019). Organization of Chromosomal DNA by SMC
657 Complexes. *Annu Rev Genet* *53*, 445–482.

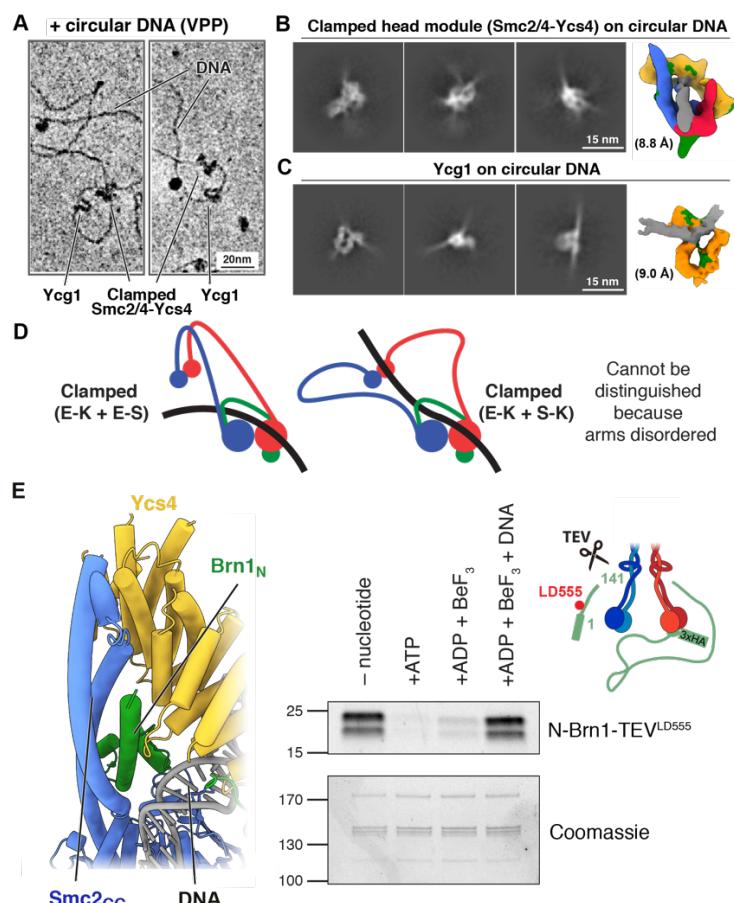
658 Yin, J., Lin, A.J., Golan, D.E., and Walsh, C.T. (2006). Site-specific protein labeling by Sfp
659 phosphopantetheinyl transferase. *Nat Protoc* *1*, 280–285.


660

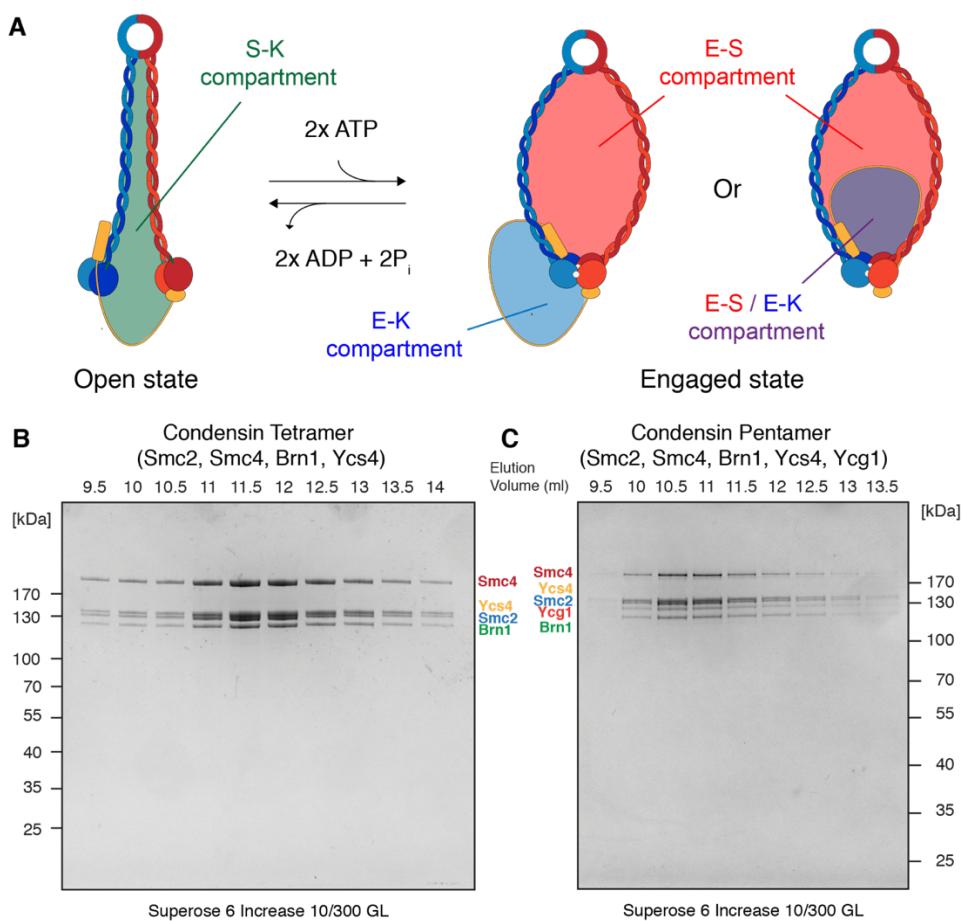
661 **FIGURES**


662

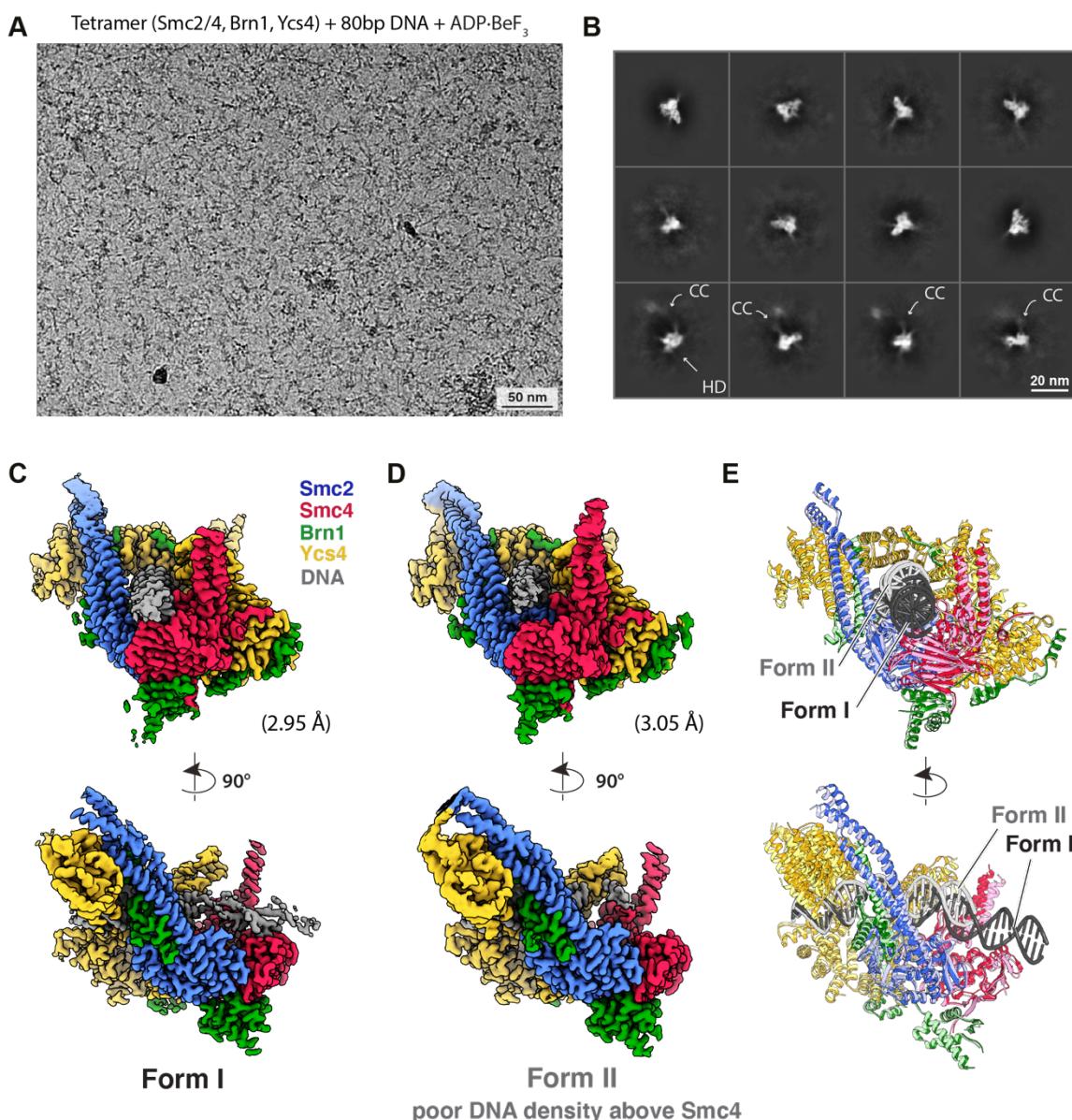
663 **Figure 1.** A) Architecture of the yeast condensin SMC complex. Adding DNA and an ATP analogue
 664 leads to the formation of the clamped state, which is the subject of this study. The dotted rectangle
 665 marks the portion of the head module in the clamped state, of which the cryo-EM structures were
 666 solved. B) 2D class averages of cryo-EM images of the condensin tetramer, containing subunits
 667 Smc2, Smc4, kleisin Brn1 and Ycs4. The dsDNA is clearly visible, whereas the coiled coil arms of
 668 Smc2 and Smc4 and the hinge domains are highly flexible with respect to the well-resolved head
 669 module. C) 2.95 Å resolution cryo-EM map of the clamped condensin head module bound to DNA
 670 (form I). D) Cartoon representation of the atomic model built into, and refined against the map
 671 shown in C. Various parts of the kleisin Brn1 are disordered.

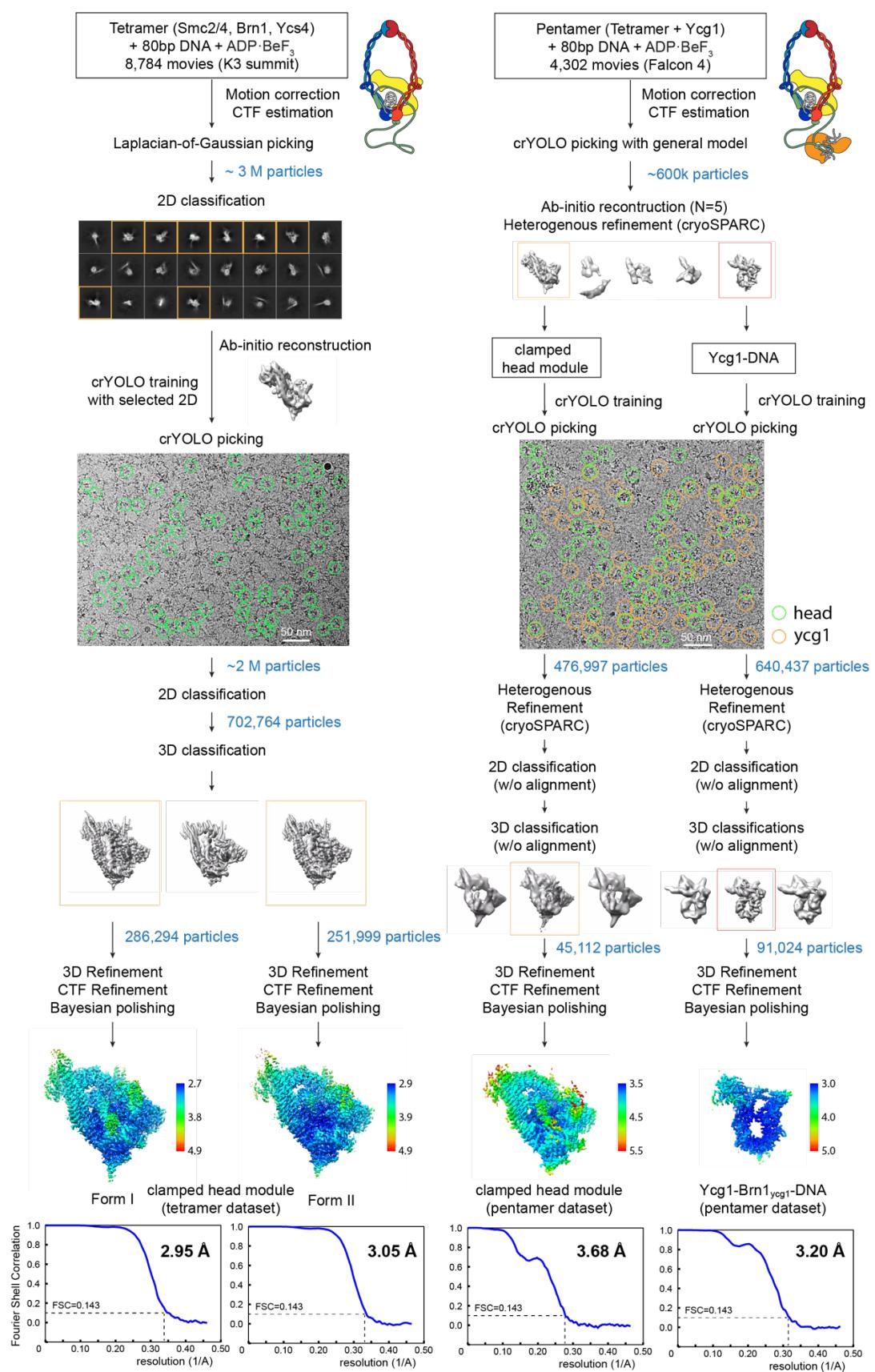

672

673 **Figure 2.** A) Top-view of the pseudo two-fold symmetric ATPase head domains of Smc2 and
674 Smc4. Two molecules of ADP.BeF₃ are sandwiched between them, leading to the engagement of
675 the SMC heads domains. B) The clamped DNA binds to the largely positively charged upper
676 surface of the ATPase head domains of Smc2/4, but is not perfectly aligned with the pseudo-
677 twofold axis. The DNA also makes contacts with the coiled coil neck of Smc2 and Brn1, but not
678 the neck of Smc4. C) In the clamped head module, Ycs4 makes extensive contacts with the DNA
679 via a positively charged groove towards the N-terminus and through a small contact near the C-
680 terminus. D) Ycs4 make four contacts with other subunits within the head module: E) With the
681 Smc2 neck and Brn1, F) with a loop emanating from the Smc2 head domain that also contacts
682 Brn1 as it binds to Ycs4, G) with a large patch on the back surface of Smc4 and H) with an
683 unstructured and poorly conserved part near the N-terminus of Smc4.

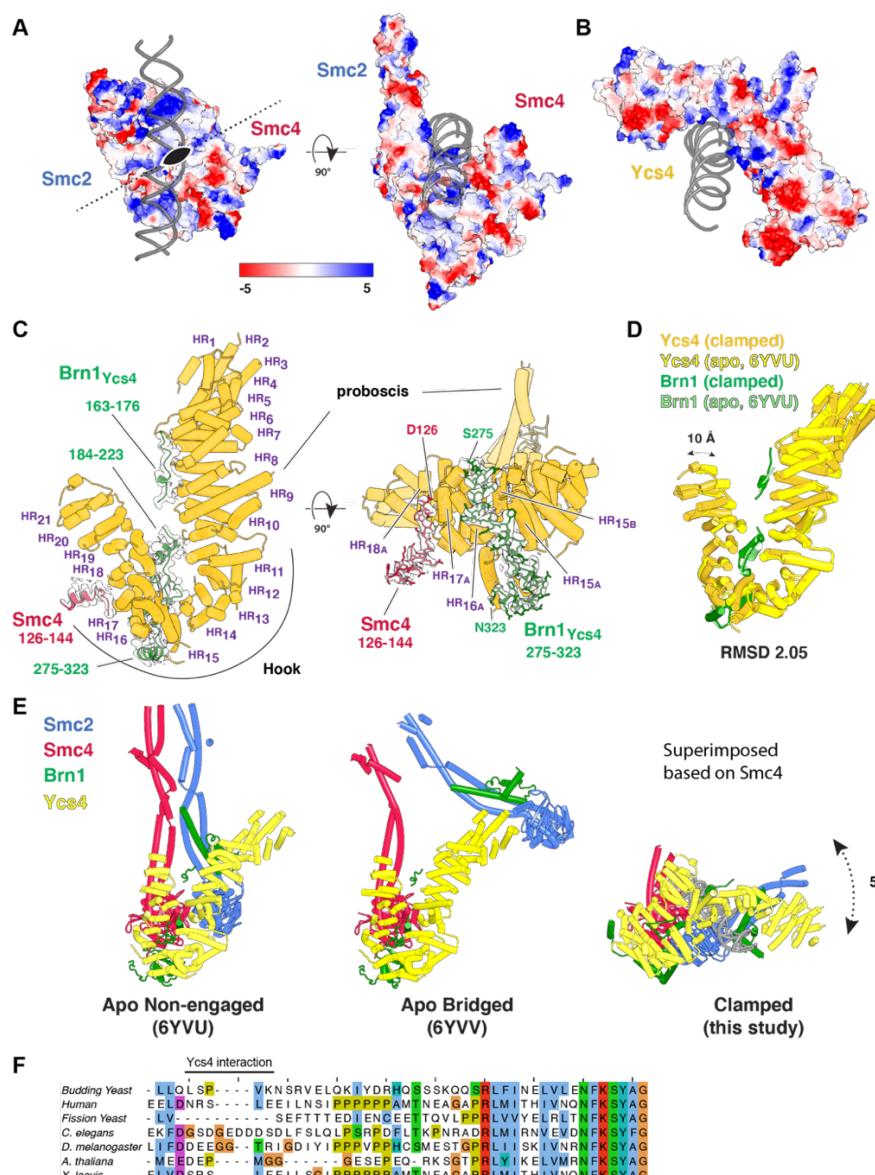

684

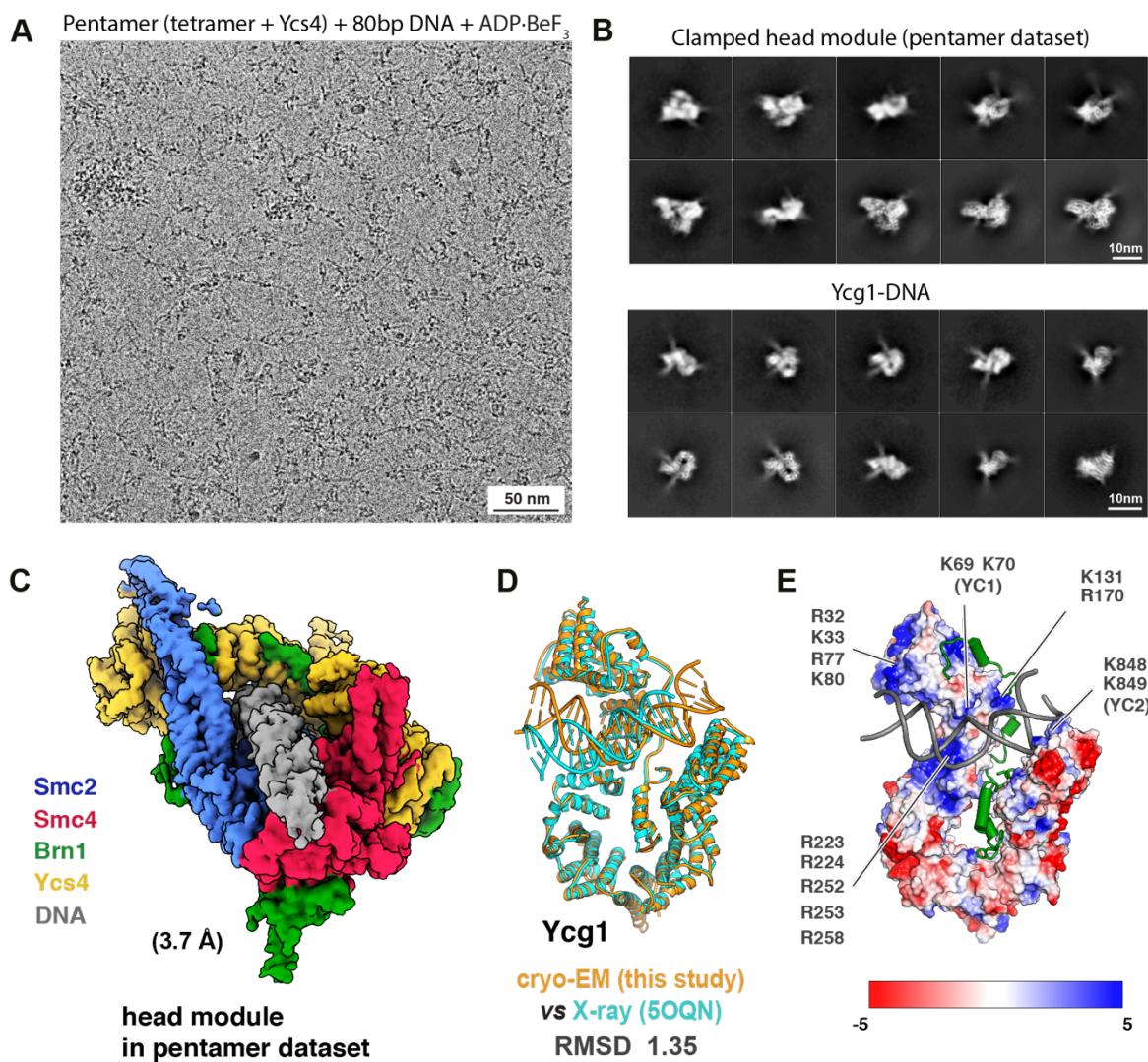
685 **Figure 3.** A) Architecture of the condensin pentamer in the clamped state, containing subunits
686 Smc2, Smc4, Brn1, Ycs4 and Ycg1. B) Cryo-EM map at 3.2 Å resolution of Ycg1 alone, bound to
687 DNA, obtained from a dataset collected on the pentamer, presumably because Ycg1 is not rigidly
688 attached to the complex or head module. C) Cartoon representation of the atomic model built into,
689 and refined against the map shown in B. The “safety belt” (Kschonsak et al., 2017) formed by Brn1
690 is well resolved, except for one disordered loop. D) Proposed path of the kleisin Brn1 through the
691 clamped state of yeast condensin. Several regions could not be resolved in our cryo-EM map (Fig.
692 1C), but the location of ordered sections suggests the kleisin to remain above the clamped DNA,
693 leading to E-K entrapment. Large Brn1 loops connect Ycg1 to the head module, which enables
694 Ycg1 to reside at quite a distance as shown in Fig. 4A.


695

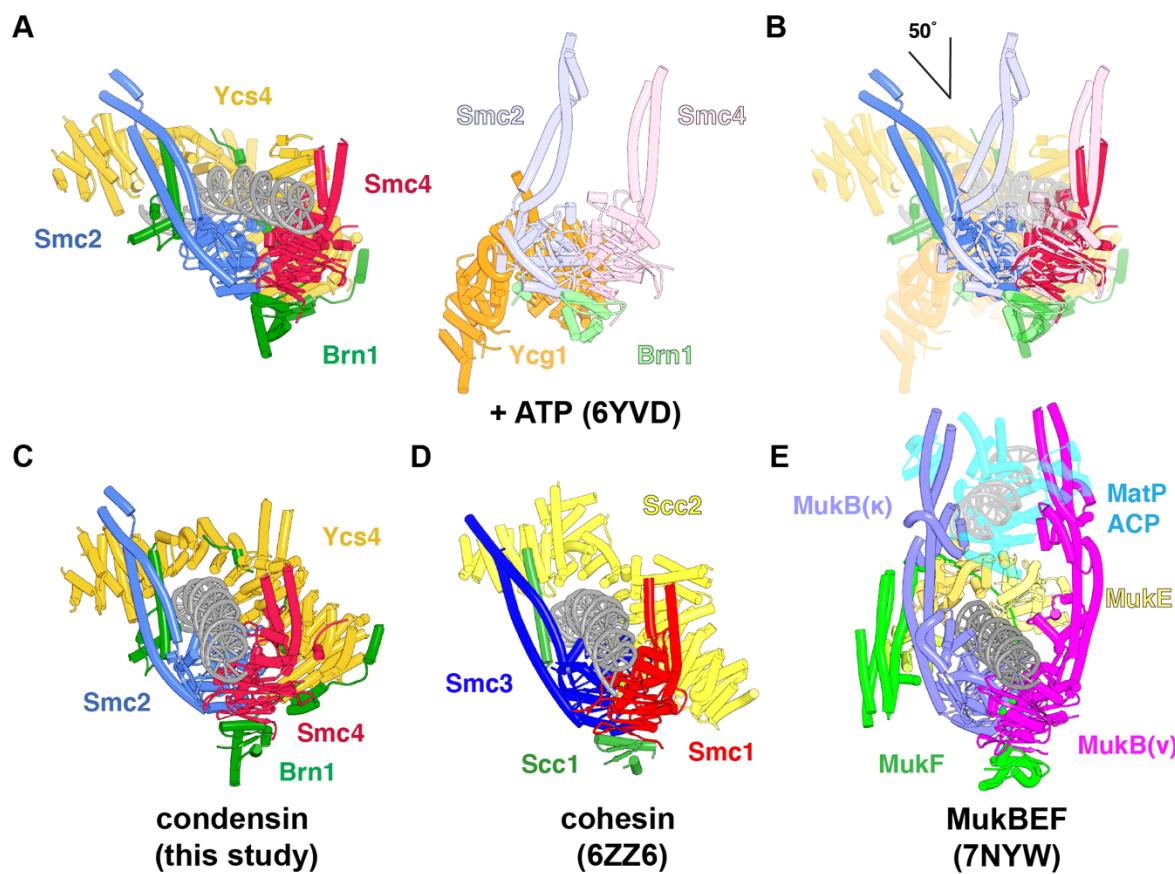

696 **Figure 4.** A) Condensin pentamer clamping circular plasmid DNA, as observed by cryo-EM with
697 Volta phase plate (VPP). Ycg1 can be seen at some distance from the head module, presumably
698 because Ycg1 is flexibly attached via Brn1. The SMC coiled coil arms are not resolved. B) The
699 condensin head module clamping circular DNA adopts the same conformation as on linear DNA
700 (compare with Fig. 1C). C) Equally, Ycg1 binds to circular DNA in a manner similar to linear DNA
701 (compare with Fig. 3B). D) The clamped structure of the head module is compatible with two
702 different paths of the DNA with respect to the SMC arms and hinge domains, which are not
703 resolved, leading to different loading paths for topological entrapment. E-K + E-S requires the
704 DNA to pass through the non-engaged heads, whereas E-K + S-K requires opening of a gate in the
705 tripartite S-K ring Smc2-Smc4-Brn1 (see also Fig. S1A). E) Left: the Smc2-Brn1 neck gate is closed
706 in the clamped state of condensin. The neck gate involves the N-terminal helical domain of Brn1
707 binding to the coiled coil neck of Smc2. An N-terminal portion of Ycs4 and also the clamped DNA
708 may be there to stabilise the neck gate that closes the tripartite S-K ring consisting of Smc2, Smc4
709 and Brn1. Right: Brn1 N-terminal release assay. Engineered TEV cleavage sites enable the N-
710 terminal Brn1 domain to be cleaved and washed away from beads as long as the neck gate is not
711 closed. In the absence of DNA, addition of ATP or ADP.BeF₃ open the gate, while the simultaneous
712 presence of DNA keeps the gate shut, presumably through the formation of the clamped state of
713 condensin as shown here.

714


715 **Supplementary Figure S1.** A) Topological compartments of SMC complexes. In condensin, the
 716 tripartite Smc2-Smc4-Brn1 ring creates the SMC-Kleisin compartment, S-K. Engagement of the
 717 ATPase head domains of Smc2/4 creates two further compartments, Engaged-Kleisin, E-K and
 718 Engaged-SMC, E-S. Depending on where the kleisin chain is located, the E-S and E-K
 719 compartments can be traversed by the same DNA (right), or not (middle). B) SDS-PAGE gel of the
 720 final size-exclusion chromatography of the condensin “tetramer” sample used in this study,
 721 comprising subunits Smc2, Smc4, kleisin Brn1 and Ycs4. Elution volumes are provided in mL. C)
 722 The same for the condensin “pentamer” sample, comprising Smc2, Smc4, Brn1, Ycs4 and Ycg1.


733

734 **Supplementary Figure S3.** Cryo-EM data analysis and classification workflow. RELION was used
735 unless otherwise specified.



736

737 **Supplementary Figure S4.** A) Electrostatic potential prediction as calculated in PyMOL, showing
738 positive patches on top of the Smc2/4 head domain heterodimer that coincide with DNA
739 backbone binding. B) The same for Ycs4 as part of the clamp. C) Overview of the HEAT repeat
740 architecture of Ycs4 and showing the cryo-EM map and model of Brn1 sections binding to it in
741 the context of the condensin tetramer clamp. An unstructured part near the N-terminus of Smc4
742 also interacts with Ycs4 (see also Fig. 2D and H). D) Superposition of the apo condensin Ycs4
743 structure (PDB 6YVU) (Lee et al., 2020) and Ycs4 as part of the DNA clamp (this study, Form I). A
744 region near the N-terminus moves by up to 10 Å. E) Comparison of condensin tetramer head
745 module structures in the apo (PDB 6YVU), apo-bridged (6YVV) (Lee et al., 2020) and DNA
746 clamped (this study, Form I) conformations. Superposition was done on the head domain of (red)
747 Smc4. Note the models are rotated by 180° around the y-axis relative to Fig. 1C and D (view from
748 the back). F) Multiple sequence alignment of a region of Smc4 (123-169) that includes the Ycs4-
749 interacting region.

750 **Supplementary Figure S5.** A) Representative micrograph of the cryo-EM dataset used to
 751 reconstruct the maps for condensin pentamer in the clamped state, after adding 80 bp DNA and
 752 ADP-BeF₃, and vitrification. B) Top: a selection of 2D class averages of particles picked from A,
 753 showing the condensin head module. Bottom: a selection of 2D class averages of particles also
 754 picked from A, showing Ycg1 bound to DNA. C) Colour-coded cryo-EM map of the condensin
 755 pentamer clamped head module, which closely resembles the tetramer structure (Fig. 1C and S2C
 756 and D). D) Superposition of a previous X-ray structure of Ycg1 bound to Brn1 and DNA (PDB
 757 50QN) (Kschonsak et al., 2017) and Ycg1-DNA as determined here from the condensin pentamer
 758 sample. Significant differences in the way the DNA is bound become apparent. E) Electrostatic
 759 potential as calculated in PyMOL, plotted onto the surface of Ycg1. Significant positively charged
 760 patches are revealed that coincide with DNA backbone binding, including in regions that the X-
 761 ray structure did not implicate in DNA binding (the positions YC1 and YC2, which were found in
 762 previous work are indicated).

781 **Table S1. Cryo-EM data collection, refinement and validation statistics**

782

	Condensin tetramer + 80 bp DNA		Condensin Pentamer + 80 bp DNA		Condensin Pentamer + circular DNA	
	Head Module (Form I)	Head Module (Form II)	Head Module	Ycg1-DNA	Head Module	Ycg1-DNA
	Data collection and processing					
Microscope and Camera	Titan Krios, K3 summit		Titan Krios, Falcon 4		Titan Krios, Falcon 4	
Magnification	81,000x		75,000x		75,000x	
Voltage (kV)	300		300		300	
No. of micrographs	8,784		4,302		1,016	
No. of micrographs (VPP)	---		---		3,179	
Electron exposure (e ⁻ /Å ²)	55		40		32	
Defocus range (μm)	1.5 ~ 3.3		1.5 ~ 3.0		1.5 ~ 3.0	
			0.5 ~ 0.9 (VPP)			
Physical pixel size (Å)	1.07		1.08		1.08	
Symmetry imposed	<i>C</i> 1	<i>C</i> 1	<i>C</i> 1	<i>C</i> 1	<i>C</i> 1	<i>C</i> 1
Initial particle images (no.)	2,130,610	2,130,610	476,997	694,129	105,614	105,614
Final particle images (no.)	286,794	251,999	45,112	91,024	36,588	27,040
Map resolution (Å)	2.97	3.03	3.68	3.2	8.75	9.0
FSC threshold	0.143	0.143	0.143	0.143	0.143	0.143
Map resolution range (Å)	2.6 – 50	2.6 – 50	3.7 – 50	3.0 – 50	8.75 – 50	9 – 50
Refinement						
Initial model used (PDB code)	Apo-condensin (6YVU)	Apo-condensin (6YVU)	---	Ycg1 crystal structure (5OQQ)	---	---
Model resolution (Å)	3.0	3.0		3.2		
FSC threshold	0.143	0.143		0.143		
Map sharpening <i>B</i> factor (Å ²)	-52	-57		-39.4		
Model composition						
Non-hydrogen atoms	18,240	17,755		8,258		
Protein residues	2,098	2,076		902		
Nucleotide residues	72	56		46		
Ligands	2 ADP	2 ADP		---		
	2 BeF ₃	2 BeF ₃				
	2 Mg	2 Mg				
<i>B</i> factors (Å ²)						
Protein	30.28	62.79		34.99		
Nucleotide	97.07	150.04		89.42		
Ligand	22.26	54.54		---		
R.m.s. deviations						
Bond lengths (Å)	0.002	0.002		0.002		
Bond angles (°)	0.526	0.592		0.482		
Validation						
MolProbity score	1.53	1.71		1.63		
Clashscore	7.66	8.57		4.20		
Poor rotamers (%)	0.00	0.00		0.00		
Ramachandran plot						
Favored (%)	97.42	96.31		93.36		
Allowed (%)	2.58	3.64		6.53		
Disallowed (%)	0.00	0.05		0.11		
PDB ID	7Q2X	7Q2Y	---	7Q2Z	---	---
EMDB ID	13783	13784	13785	13786	13787	13788

783