

Toward a CRISPR-based point-of-care test for tomato brown rugose fruit virus detection

Joan Miquel Bernabé-Orts¹, Yolanda Hernando¹ and Miguel A. Aranda^{2,*}

¹Abiopep S.L., Murcia, Spain

²Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain.

*Correspondence to m.aranda@cebas.csic.es

Keywords: tobamovirus, resistance breaking, tomato, diagnostic, Cas12a

Funding: partially supported by grant PTQ-2019-010500.

ABSTRACT

Implementing effective monitoring strategies is fundamental to protect crops from pathogens and to ensure the food supply as the world population continues to grow. This is especially important for emergent plant pathogens such as tomato brown rugose fruit virus (ToBRFV), which overcomes the genetic resistance resources used in tomato breeding against tobamoviruses and has become pandemic in less than a decade. Here we report the development of a CRISPR/Cas12a-based test to detect ToBRFV in the laboratory and potentially in a field setting. Using different tobamoviruses to assess specificity, our test showed a clear positive signal for ToBRFV-infected samples, while no cross-reactivity was observed for closely related viruses. Next, we compared the limit of detection of our CRISPR-based test with a reference real-time quantitative PCR test widely used, revealing similar sensitivities for both tests. Finally, to reduce complexity and achieve field-applicability, we used a fast nucleic acid purification step and compared its results side by side with those of a commonly used column-mediated protocol. The new protocol saved time and resources but at the expense of sensitivity. However, it still may be useful to confirm ToBRFV, detection in samples with incipient symptoms of infection. Although there is room for improvement, to our knowledge this is the first field-compatible CRISPR-based test to detect ToBRFV, which combines isothermal amplification with a simplified nucleic acid extraction protocol.

1 INTRODUCTION

2 Emergent plant viruses are responsible for disease outbreaks that reduce the yield and
3 the quality of many crops (Jones 2021). The occurrence and reach of these outbreaks are
4 accelerating along with globalization and climate change (Trebicki 2020), thus making
5 necessary to implement effective monitoring and eradication strategies.

6 Tomato brown rugose fruit virus (ToBRFV, genus *Tobamovirus*, family *Virgaviridae*) is an
7 example of an emergent virus that is presently having an important impact on
8 solanaceous crops such as tomato and pepper. ToBRFV has a ssRNA (+) genome
9 encompassing four open reading frames (ORFs) which encode the small subunit of the
10 replicase (RdRp, ORF1), the large subunit of the RdRp (ORF2), the movement protein
11 (MP, ORF3), and the coat protein (CP, ORF4). The genus *Tobamovirus* contains
12 examples of notorious plant viruses including tobacco mosaic virus (TMV) and tomato
13 mosaic virus (ToMV). To date, tomato breeding has taken advantage of the *Tm-1*, *Tm-2*/*Tm-2²* resistance genes to protect new varieties against TMV and ToMV (Pelham 1966,
14 Hall 1980). Nevertheless, ToBRFV overcomes tomato resistance genes (Luria et al.
15 2017). Furthermore, tobamoviruses are very stable and highly infectious through
16 mechanical transmission (Tomlinson 1987, Smith and Dombrovsky 2020). As a result,
17 ToBRFV has rapidly spread worldwide. Hence, since its first description in the Middle East
18 (Salem et al. 2016, Luria et al. 2017), ToBRFV has expanded to Europe, Asia, and
19 America (Fidan et al. 2019, Ling et al. 2019, Menzel et al. 2019, Skelton et al. 2019, Yan
20 et al. 2019, Alfaro-Fernández et al. 2020, Panno et al. 2020), evidencing the necessity of
21 implementing new measures to prevent its further spread.

22 Specific testing methods that can be used to detect ToBRFV can critically contribute to
23 the success of intervention and eradication strategies. The most commonly-used method
24 for RNA detection is the reverse transcription real-time quantitative polymerase chain
25 reaction (RT-qPCR). Several protocols have been developed using the RT-qPCR
26 technique to detect ToBRFV, including the International Seed Federation (ISF)-ISHI-Veg
27 protocol (ISF 2020) and others like the set of primers and probe described by Panno et
28 al. 2019. However, RT-qPCR needs to be performed by qualified operators in a laboratory
29 environment, employing equipment that is not always available, and thus limiting its

31 availability especially in low-resource settings. In contrast, isothermal nucleic acid
32 amplification methods such as loop-mediated amplification (LAMP) (Notomi et al. 2000)
33 can be performed over crude plant extracts at a constant temperature by using a water
34 bath or a thermoblock. Some colorimetric LAMP methods have also been developed to
35 easily detect ToBRFV by the naked eye (Sarkes et al. 2020, Rizzo et al. 2021), but these
36 rely on a type of amplification that can be nonspecific. On the other hand, the clustered
37 regularly interspaced short palindromic repeats and its associated proteins
38 (CRISPR/Cas) systems are trespassing the genome editing frontiers and revolutionizing
39 diagnostics. Certain RNA-guided endonucleases such as LbCas12a (former Cpf1)
40 (Zetsche et al. 2015), after recognizing its target DNA, exhibit an unspecific DNase
41 collateral activity *in vitro* that can be exploited to degrade a reporter molecule, thereby
42 adding an extra layer of specificity to the LAMP reaction (Chen et al. 2018) (Figure 1).

43 Typically, a nucleic acid extract is used as a template for the amplification of the targeted
44 sequence by using LAMP (DNA template) or reverse transcription LAMP (RT-LAMP; RNA
45 template). Next, the LAMP product is recognized by the RNA-guided endonuclease
46 LbCas12 through the specific base pairing of the 20-bp target sequence (purple in Figure
47 1) and the guide RNA (gRNA; black in Figure 1). Target recognition triggers the collateral
48 activity of LbCas12a, producing the unspecific *trans*-cleavage of an ssDNA reporter
49 oligonucleotide. The molecule conjugated to the 3' end of the ssDNA marks the read-out
50 of the assay. When using a fluorophore, the endonuclease activity dissociates the
51 fluorochrome from the quencher at the 5' end of the probe, allowing it to be detected.
52 Conversely, the use of a biotin ligand allows the detection of the LbCas12a activity by the
53 naked eye with the aid of a lateral flow assay (LFA) strip (Figure 1). This system has
54 already been employed in the diagnosis of human viruses such severe acute respiratory
55 syndrome coronavirus-2 (SARS-CoV-2) (Broughton et al. 2020, Curti et al. 2021),
56 Influenza A and B (Park et al. 2021), or human papilloma virus (HPV) (Tsou et al. 2019),
57 among others. In plants, isothermal amplification coupled to LbCas12a-mediated
58 detection has also been employed in a handful of studies, mainly for pathogen diagnosis
59 (Aman et al. 2020, Jiao et al. 2021, Mahas et al. 2021) but also for transgenic trait
60 detection (Zhang et al. 2020). Although these works have been carried out to develop
61 field-operative testing methods for pathogen diagnosis (Aman et al. 2020, Jiao et al. 2021,

62 Mahas et al. 2021), only Jiao et al. 2021 actually used nucleic acid isolation protocols that
63 were compatible with field settings. However, this work was carried out using symptomatic
64 samples with a likely elevated titer of the target pathogen, which was perhaps well above
65 the limit of the analytical sensitivity of the detection method. Therefore, the effect of the
66 rapid nucleic acid extraction method on the detection limit of the CRISPR-based tests has
67 not been accounted for and still needs to be evaluated.

68 Here, we report the design and validation of a CRISPR-based test for the detection of
69 ToBRFV in the laboratory and potentially in a field setting. This test is based on coupling
70 the isothermal amplification of two viral sequences from the ToBRFV movement protein
71 open reading frame, with subsequent detection by using the RNA-guided endonuclease
72 LbCas12a and a specific gRNA. The performance of the CRISPR-based test was
73 compared with a standard RT-qPCR test recommended by the European Plant Protection
74 Organization (EPPO), after which the protocol was adapted for field application.

75 MATERIAL AND METHODS

76 Virus isolates and plant inoculation

77 The Spanish ToBRFV isolate from Vicar (Almeria, Spain) (Alfaro-Fernández et al. 2020)
78 was provided by the “Laboratorio de Producción y Sanidad Vegetal” (La Mojonería,
79 Almería, Spain). Isolates of the other tobamoviruses used in this study were acquired from
80 the DSMZ collection: tobacco mosaic virus (TMV, PV-1252), tomato mosaic virus (ToMV,
81 PV-0141), pepper mottle mosaic virus (PMMoV, PV-0093), and tobacco mild green
82 mosaic virus (TMGMV, PV-0124). Approximately 50 mg of dried plant tissue were
83 homogenized from each isolate in 2 mL of 30 mM phosphate buffer pH = 8 using a mortar
84 and pestle. Homogenates were used to mechanically inoculate 25-26 days old leaves (4-
85 5-true leaves) of *N. benthamiana* plants and the first pair of true leaves of 7-10 days-old
86 tomato plants (cultivar M82). For this, the leaves to be inoculated were first dusted with
87 carborundum powder (600 mesh) and then rubbed with the homogenate manually. The
88 plants inoculated were kept separately in a confined greenhouse under controlled
89 conditions set at 16/8 hours photoperiod and 26/22 °C in a day/night cycle. After 10 to 15
90 days, the leaves that showed obvious symptoms of infection were collected, cut, mixed,

91 and divided into samples of approximately 100 mg. The samples were frozen in liquid
92 nitrogen, ground with a Retsch Mixer Mill MM400 for 1 minute at 30 Hz, and stored at -80
93 ° C for later analyses.

94 **Column-mediated RNA extraction**

95 Column RNA extraction was performed using a NucleoSpin RNA plant kit (MACHEREY-
96 NAGEL, Germany) following the manufacturer's instructions. The RNA was checked by
97 running a 1% agarose gel, its concentration measured with a NanoDrop One
98 (ThermoScientific, USA), and adjusted to a working concentration of 10 ng/µL to be used
99 as a template for the RT-LAMP, RT-PCR, and RT-qPCR.

100 **RT-LAMP**

101 Loop-mediated isothermal amplification primers (Table S1) were designed using
102 PrimerExplorer v.5 (<https://primerexplorer.jp/e/>). RT-LAMP reactions were performed
103 using WarmStart LAMP Kit (NEB, USA) at a final volume of 10 µL. Two sets of primers
104 were designed for amplification of the ToBRFV *MP* ORF (MP1 and MP2), and an
105 additional set as a positive detection control (PDC) to amplify the 25S ribosomal RNA
106 from solanaceous species. Primers were added at a final concentration of 0.2 µM for F3
107 and B3, 1.6 µM for FIP and BIP primers, and 0.8 µM for LF and LB primers. The reactions
108 were performed independently for each set of primers (MP1, MP2, and 25S) using 2 µL
109 of input RNA. The amplification was performed at a constant temperature of 62 °C for 25-
110 45 minutes (50-90 cycles of 30 seconds each) in an Applied Biosystems StepOnePlus
111 Real-Time PCR System (USA) and tracked with a DNA-intercalant green fluorophore
112 provided with the WarmStart LAMP Kit (NEB, USA). The RT-LAMP amplification was set
113 to 45 minutes for experiments illustrated in Figures 2, 3A and 3B. This incubation was
114 reduced to 25 minutes for experiments in Figures 3C, 3D and 4.

115 **LbCas12a *trans*-cleavage assay**

116 LbCas12a *trans*-cleavage assays were performed using fluorescent and biotinylated
117 reporters, as described by Broughton et al. 2020 and Tsou et al. 2019. When using a
118 fluorescent reporter, 40 nM LbCas12a (EnGen Lba Cas12a, NEB, USA) was pre-
119 incubated with 40 nM of chemically-synthesized gRNA (Synthego, USA, Table S1), and

120 100 nM of an ssDNA fluorescent (Table S1) reporter for 10 minutes at 37 °C. Then, 2 μ L
121 of LAMP product was combined with 18 μ L of LbCas12a-gRNA complex and incubated
122 for 10 minutes at 37 °C (20 cycles of 30 seconds each) in an Applied Biosystems
123 StepOnePlus Real-Time PCR System (USA) to detect the resulting fluorescence. When
124 using a biotinylated reporter, the amount of LbCas12a was increased to 100 nM and the
125 gRNA to 125 nm maintaining the pre-incubation time and the 100 nM of the reporter
126 molecule (Table S1). Again, 2 μ L of LAMP product was mixed with 18 μ L of LbCas12a-
127 gRNA-reporter mixture and incubated for 10 minutes at 37 °C. Finally, 80 μ L of 1X
128 HybriDetect assay buffer was added to the reaction mixture, and the lateral flow strip
129 (Milenia HybriDetect - Universal Lateral Flow Assay Kit, Germany) immersed for 2
130 minutes. Images of the LFA strips were collected using an office scanner and quantified
131 with the ImageJ software.

132 RT-PCR

133 The cDNA was prepared using the Transcripter First Strand cDNA Synthesis Kit (Roche,
134 Switzerland) following the manufacturer's instructions, and AB-783 oligonucleotide
135 priming the 3'-UTR of ToBRFV. The resulting cDNA was diluted in 1/10 with water and
136 used as a template for PCR amplification of a fragment of the *MPORF*, by using Phusion
137 Hot Start II High-Fidelity DNA Polymerase (ThermoFisher, USA) and a final concentration
138 of 0.5 μ M AB-782 and AB-783 primers (Table S1). The PCR product was assessed by
139 1% agarose gel electrophoresis and cleaned using GeneClean Turbo Kit (MP
140 biomedicals, USA) silica gel columns.

141 LbCas12a-mediated restriction reaction and efficiency estimation

142 A restriction reaction was set containing 250 ng of the same PCR product obtained in the
143 previous section "RT-PCR", 1 μ L 1 μ M LbCas12a, 1 μ L 1 μ M gRNA of each target (MP1,
144 MP2 or 25S), 5 μ L 10X NEB2.1 and RNase-free water up to 30 μ L. The reaction mixture
145 was incubated for 1 hour at 37 °C, after which the restriction product was resolved in a
146 2% agarose gel for 45 minutes. The efficiency of each target was estimated using ImageJ
147 for the quantification of the digested and nondigested bands. The value of the digested
148 band was divided by the sum of the non-digested plus the digested and the resultant value
149 multiplied by 100 to obtain the %Efficiency shown in Figure S3.

150 ***In vitro* transcription**

151 RNA fragments of the ToBRFV *MP*ORF were synthesized from a PCR product (see “RT-
152 PCR” section) that included the T7pol promoter. One μ L of PCR product was employed
153 to produce the transcripts with the T7 RNA polymerase (Promega, USA), setting a 20 μ L-
154 reaction for 2 hours at 37 °C. Then, 3 μ L of DNase I (NEB, USA) were added, and the
155 mixture incubated for 15 minutes at 37 °C. The RNA was precipitated by adding water to
156 100 μ L, 10 μ L 3M sodium acetate, 250 μ L of ethanol, and incubated for 1 hour at -80°C.
157 The RNA was sedimented by centrifugation at 13,000 rpm for 30 minutes at 4 °C, the
158 supernatant was discarded, and finally, the pellet was air-dried and resuspended with 20
159 μ L of RNase-free water. The resulting RNA was checked as described in the “Column-
160 mediated RNA extraction” section.

161 **RT-qPCR**

162 Real-time quantitative PCR was performed using KAPA PROBE FAST Universal One-
163 Step qRT-PCR (Roche, Switzerland) and a specific pair of primers and a probe for
164 amplification and detection of ToBRFV (Table S1). Reactions of 10 μ L were carried out
165 using a final concentration of 100 mM oligonucleotides and up to 100 ng of RNA template.
166 A StepOnePlus Real-Time PCR System (Applied Biosystems, USA) thermal cycler was
167 employed following this program: reverse transcription at 42 °C for 5 minutes;
168 denaturation at 95 °C for 3 minutes; 40 cycles of amplification with a denaturation step at
169 95 °C for 3 seconds and annealing and elongation steps at 60 °C for 30 seconds.

170 **ToBRFV time-course experiment**

171 In total, twelve 5 weeks-old tomato plants cv. M82 (3-4 pairs of leaves approximately)
172 were mechanically inoculated (see above). Three plants per data point (1, 2, 3, 4 days
173 post-inoculation) were sampled, collecting the first pair of new leaves that has been
174 observed to accumulate more virus (van de Vossenberg et al. 2020). Then, the pair of
175 leaves were finely sliced and mixed, after which 100 mg of tissue were introduced into a
176 2 mL tube with a pair of metal beads for subsequent RNA extraction following the column
177 or the paper strip mediated protocols. These samples were frozen in liquid nitrogen and
178 stored at -80 °C for later analysis.

179 **Paper strip-mediated RNA isolation**

180 A rapid RNA extraction protocol was performed following the protocol reported by Zou et
181 al. 2017. Briefly, samples were lysed by shaking them manually in 500 µL of lysis buffer
182 (20 mM Tris pH = 8.0, 25 mM NaCl, 2.5 mM EDTA, 0.05% SDS). Next, a home-made
183 cellulose dipstick was introduced three times in the crude extract to retain the nucleic
184 acids and then washed three times in 1.75 mL of wash buffer (10 mM Tris, pH = 8.0, 0.1%
185 Tween-20). After this, the nucleic acids retained to the dipstick were directly eluted into
186 the LAMP mixture.

187

188 **RESULTS**

189 **Design and specificity of a CRISPR-based test for ToBRFV detection**

190 The *MP* ORF (ORF3 in Figure 2A) is the genetic determinant for overcoming the genetic
191 resistance conferred by the *Tm-2²* allele to other tobamoviruses such as TMV and ToMV
192 (Hak and Spiegelman 2021); based on this, we reasoned that *MP* may be an appropriate
193 target for our CRISPR-based testing method.

194 We first screened the ToBRFV *MP* ORF sequence to identify LbCas12a gRNAs
195 candidates (Kim et al. 2017). After filtering candidates considering specificity and
196 structural criteria (Bernabé-Orts et al. 2019), gRNA MP1 and gRNA MP2 were chosen
197 (Figure 2A, Figure S1 and Table S1). Next, we devised two sets of RT-LAMP primers
198 flanking each gRNA target (Figure 2A, Figure S1 and Table S1). From this point on, we
199 will refer to each set of gRNA and primers as MP1 and MP2, respectively. Importantly,
200 MP1 and MP2 overlap the ISF-ISHI-veg RT-qPCR CaTa28 test (ISF 2020), facilitating
201 comparisons. We also included a complementary PDC named 25S, which targets the 25S
202 subunit of the ribosomal RNA from solanaceous species. Using RNA extracts obtained
203 from plants infected with different tobamoviruses (PMMoV, TMGMV, ToMV, TMV and
204 ToBRFV) we demonstrated that our CRISPR-based test can detect ToBRFV without
205 cross-reactivity with closely related viruses (Figure 2B). While all of the samples were
206 positive for the 25S PDC, only the ToBRFV-infected sample gave rise to fluorescent
207 signals above the background levels for all the three targets, indicating that ToBRFV-
208 negative results were due to the absence of this virus rather than a testing failure of MP1
209 or MP2. This result was corroborated when using LFA strips with the TMV-, ToMV-,
210 TMGMV-, PMMoV- and the ToBRFV-infected samples (Figure 2C). The ToBRFV extract
211 showed intense test lines for MP1, MP2 and 25S, while the rest of samples were positive
212 only for the 25S target, aligning with the previous results obtained with the fluorescent
213 reporter. Interestingly, the test lines of the MP2 and the 25S targets were more intense
214 than that for the MP1. An evaluation of the efficiency of the three gRNAs showed that MP2
215 gRNA was the most efficient (62%), followed by the 25S (48%) and the MP1 (39%) (Figure
216 S2), thus revealing a correlation between the gRNA efficiency and the LFA output as
217 Zhang et al. (2020) previously showed. Altogether, these results confirmed that our

218 CRISPR-based testing method specifically detected ToBRFV while discarding false
219 negatives at the same time, thanks to the testing process with the 25S PDC. Importantly,
220 the test also allowed the adaptation of the visualization of the results by fluorescence
221 and/or by the naked eye.

222 **Performance of the CRISPR-based test for ToBRFV detection**

223 Next, we sought to assess the performance of our CRISPR-based detection platform and
224 compare it with the CaTa28 RT-qPCR test described in the ISF-ISHI-Veg protocol (ISF
225 2020), supported by the EPPO (Figure 3). This RT-qPCR test is directed to the *MP* ORF
226 of ToBRFV, near our MP1 and MP2 target sites, thus ruling out a possible bias in the
227 efficiency due to positional effects. First, the limit of detection of both methods was
228 assessed using serial dilutions of a synthetic transcript encoding a fragment of the *MP*, to
229 accurately evaluate the number of viral copies per reaction (rxn) that each method was
230 able to detect (Figure 3A and 3B). These experiments revealed that under our particular
231 conditions of equipment, material and reagents, the CaTa28 RT-qPCR test reliably
232 detected up to 100 copies of transcript/rxn, although one technical replicate
233 corresponding to the 10 copies/rxn dilution was also positive (Figure 3A). Similarly, our
234 CRISPR-based method detected up to 100 copies/rxn dilution, although with some
235 difficulties for the MP2 target, which failed to detect the synthetic transcript in one
236 technical replicate (Figure 3B). The sensitivity of both techniques was also compared
237 using serial dilutions of an RNA extract obtained from a tomato plant infected with
238 ToBRFV (Figure 3C and 3D). In this case, the CaTa28 RT-qPCR test (Figure 3C)
239 outperformed the CRISPR-based tests (Figure 3D) by detecting the viral RNA in a dilution
240 one order of magnitude higher (10^{-5} ng/rxn) than the CRISPR method (10^{-4} ng/rxn).
241 Although some technical replicates were positive beyond this 10^{-4} ng/rxn dilution, this was
242 the last point consistently detected, suggesting that this is the limit of detection of our
243 CRISPR-based method. In summary, these results showed that our CRISPR detection
244 method possesses a similar sensitivity to the CaTa28 RT-qPCR, at least when a synthetic
245 transcript is used as a template. When using dilutions of an RNA extract, the CRISPR test
246 showed one order of magnitude less sensitivity than the RT-qPCR test.

247 **Development of a rapid protocol for CRISPR testing**

248 RNA isolation is a critical step, which consumes most of the time and resources of the
249 testing process, influencing at the same time the output of the subsequent detection
250 method. For this reason, we sought to couple a rapid RNA extraction protocol, which
251 requires a paper strip to retain the nucleic acids (Zouet al. 2017), with our CRISPR-
252 mediated testing protocol and compare it with the standard column-mediated RNA
253 extraction protocol that we had been using in our previous experiments (Figure 2 and 3).
254 To this end, we generated a set of samples by mechanically inoculating twelve tomato
255 plants (P1-P12) and sampling them at different days post-inoculation (dpi) in subsets of
256 three biological replicates. Our purpose was to obtain a collection of samples with a
257 variable range of viral load, use them to extract the genetic material of the virus with both
258 protocols and compare the performance of our test after that.

259 Figure 4A shows the data obtained when using the column-mediated RNA extraction
260 protocol. These results revealed that ToBRFV could be detected in systemically-infected
261 tissue as soon as 1 dpi, at least for plant 1 (P1) which was positive to both MP1 and MP2
262 targets. P2 and P3 were positive only for some replicates and only for one target. On the
263 following time points, only P6 was negative, detecting one replicate of the MP2 target.
264 ToBRFV negative plants were positive for the 25S PDC, indicating that the absence of
265 signal for MP1 and/or MP2 targets reflected a low titer or absence of the virus in these
266 samples, rather than test failure. Overall, the signal intensity of the MP1 and MP2 targets
267 increased as the infection progressed, indicating an increase in the viral load. For
268 example, at 1 dpi, the signal of P1 for the MP1 and MP2 targets was 3-4 times higher,
269 respectively, as compared to the WT sample, whereas this difference was 10-14 times
270 higher at 4 dpi. In contrast, the signal intensity of the 25S target remained steady through
271 all the data points, indicating the stability of the RNA extraction for all the time points.
272 When using the paper strip-mediated RNA extraction protocol (Figure 4B), clear positives
273 were only detected at 4 dpi (P10-P12). Before this time point, some biological replicates
274 were inconsistently positive (e.g. P1 or P8), not allowing for a clear diagnosis of these
275 samples with this protocol. Furthermore, in general, the signal intensities were lower than
276 for column-mediated RNA extractions (compare Figures 4B and 4A). Finally, to check the
277 visual output using the LFA strips, we selected the replicates that were positive in the
278 previous experiments (Figure 4A and 4B) and used them to perform the LbCas12a-

279 mediated detection, this time with a biotinylated reporter. The signal intensities of the LFA
280 strips test lines shown in Figure S3 were quantified, and the resulting values plotted in the
281 heat-maps shown in Figure 4C (column-mediated extraction) and 4D (paper strip
282 extraction). As expected, the results aligned perfectly well with those obtained with the
283 fluorescent reporter. Even the replicates that displayed low fluorescent signals close to
284 the detection limit (e.g. MP2 target on P1 Figure 4A; or MP1 target on P1 in Figure 4B)
285 were easily detected with the LFA approach, confirming that fluorescent results can be
286 extrapolated to naked eye visualization. In sum, despite the considerable reduction in
287 time, labor, reagents, and equipment associated with the paper strip-extraction
288 procedure, the column-mediated protocol was the most efficient, allowing detection of
289 ToBRFV systemic infection 3 days earlier than the paper strip protocol.

290 **DISCUSSION**

291 One important step in disease control is the unambiguous identification of the pathogen
292 to limit or prevent its spreading. RT-qPCR tests have become the gold standard due to
293 their versatility and ability to detect a few molecules of nucleic acid from the disease agent.
294 However, the technical complexity of RT-qPCR restricts its application to laboratory
295 settings.

296 CRISPR-based diagnostics promises to transfer the versatility, sensibility, and specificity
297 of genetic testing methods from the laboratory to field settings, accelerating the decision-
298 making process while reducing costs. In the past few years, the natural diversity of
299 CRISPR/Cas systems has been harnessed to develop many testing methods with
300 different chemistry and analyte specificity. For a sensitive detection, all of these methods
301 require a pre-amplification step of the targeted sequence from the pathogen genome. The
302 difference among these methods stems on the molecule that the Cas enzyme can
303 recognize. Thereby, the endoribonuclease Cas13a recognizes a ssRNA analyte
304 (Gootenberg et al. 2017), the endonuclease Cas12a a dsDNA (Chen et al. 2018), and the
305 Cas14 a ssDNA (Harrington et al. 2018). This directly influences the chemistry of the
306 detecting process, imposing some limitations. For example, when using the Cas13a
307 system, an RNA polymerase is needed to transcribe the amplified dsDNA target
308 sequence to a ssRNA moiety which can be recognized by the endoribonuclease.

309 Similarly, Cas14a requires a T7 exonuclease to obtain a ssDNA sequence from the
310 amplified target. Conversely, the LbCas12a can detect the dsDNA amplification product
311 directly, saving steps that require additional enzymatic activities. Therefore, to our
312 understanding, we selected the most straightforward approach, using the LbCas12a
313 endonuclease to develop our CRISPR-based testing method for ToBRFV.

314 A pre-amplification step needs to be carried out to improve the sensitivity of CRISPR-
315 mediated detection method. Usually, to circumvent the utilization of sophisticated thermal-
316 cyclers, isothermal amplification methods such as recombinase polymerase amplification
317 (RPA) (Piepenburg et al. 2006) or LAMP (Notomi et al. 2000), are the best choice for
318 point-of-care applications. Both isothermal amplification systems are comparable in terms
319 of sensitivity, rate of amplification, and tolerance to inhibitors (Zou et al. 2020). The main
320 differences are found in the enzymatic activities involved in the process, which determines
321 the molecular mechanism underlying the amplification and the temperature of incubation.
322 Thus, similar to PCR, RPA only requires two oligonucleotides and can work at 37-42 °C.
323 In contrast, the LAMP reaction involves six oligonucleotides and higher incubation
324 temperatures of 60-65 °C. Apparently, as RPA and LbCas12a share the same incubation
325 temperature of 37 °C, this may be the best match for a single-tube amplification plus
326 detection reaction. However, the different chemistry of both processes complicates their
327 combination into a single-tube reaction, or at least reduces the sensitivity of the detection
328 as described by Kellner et al. 2020 when using Cas13a. Mahfouz's group used this
329 approximation for plant virus detection, although no direct comparison with other testing
330 methods was carried out (Aman et al. 2020). In addition, the simplicity of the RPA is a
331 double-edged sword, as this technique is more tolerant to mismatches and thus to
332 spurious amplifications (Li et al. 2020). Altogether, we decided to use LAMP and
333 LbCas12a in a two-tube reaction and eventually upgrade our protocol to a single-tube
334 reaction. To this end, the amplification and detection reactions can be physically
335 separated with an inorganic phase, as previously done by Wang et al. 2021, or combined
336 by using a thermostable Cas enzyme such as AapCas12b endonuclease (Joung et al.
337 2020). In this latter work, an extensive screening of chemical adjuvants was conducted to
338 enhance the simultaneous amplification and detection reactions, evidencing the
339 incompatibility of both processes, and reinforcing our strategy.

340 Hence, we targeted two different positions of the *MP* ORF (MP1 and MP2) and added a
341 PDC (25S), thus facilitating the interpretation of the results. Our ToBRFV CRISPR-based
342 assay was considered positive if there was detection in MP1 and MP2, or presumptive
343 positive if there was detection in either MP1 or MP2. A negative test would be when only
344 25S was detected. Examples of these outputs can be found in Figure 4. First, we
345 confirmed the specificity of our test using plants infected with different tobamoviruses,
346 showing that only ToBRFV-infected samples gave rise to a strong signal for both MP1
347 and MP2, whereas the 25S PDC was detected in all the samples except NTC. Next, we
348 assessed the detection limit of our CRISPR-based test by comparing it with the CaTa28
349 RT-qPCR test standard. Note that to capture all the amplification events, including
350 samples with a low number of copies, the amplification time was set to 45 minutes in a
351 first instance (Figure 3A and 3B). However, being aware that a long amplification time
352 might reduce the field-applicability of our CRISPR-based method, this incubation was
353 reduced to 25 minutes in the following experiments, illustrated in Figures 3C, 3D and
354 Figure 4. Using a synthetic RNA extract as a template, the CaTa28 test and our CRISPR-
355 based test showed equivalent detection limits. Conversely, when using dilutions of an
356 RNA extract obtained from a ToBRFV-infected tomato plant, the CaTa28 RT-qPCR test
357 showed a detection limit one order of magnitude higher than our CRISPR-based test.
358 Furthermore, the signal from the CRISPR test decreased with the magnitude of the RNA
359 dilutions, which may reflect a decrease in the LAMP product due to the reduction in the
360 amplification time. Altogether, these results showed that our CRISPR detecting method
361 possesses a similar sensitivity than the CaTa28 RT-qPCR test, at least when the LAMP
362 amplification time was extended, and a synthetic transcript used as a template.
363 Decreasing to half the amplification time reduced the limit of detection one order of
364 magnitude, but shortened the detection process considerably. Finally, to adapt our test to
365 a field setting, we shifted from a conventional column-mediated RNA extraction protocol
366 to a rapid RNA extraction protocol which only involves a strip of paper to adsorb the
367 nucleic acids present in a crude plant extract (Zou et al. 2017), as previously used by
368 Zhang et al. 2020 to detect the *Bt* transgene in rice. The results revealed that the RNA
369 extraction protocol critically influenced the output of the test. The column-mediated
370 protocol outperformed the rapid one, which was only able to detect ToBRFV at 4 dpi,

371 when the plants presented slight symptoms of infection such as subtle blistering and/or
372 mottling. Therefore, in practice, this rapid protocol could be reserved for plants which
373 present clear symptoms of virus infection. In the future, more rapid extraction procedures
374 such as that described by Silva et al. 2018 need to be tested in order to assess its
375 compatibility and influence on the performance of our assay.

376 While writing this manuscript, Ziv Spiegelman's group reported on the use of
377 CRISPR/Cas12a to detect ToBRFV (Alon et al. 2021). Notably, the authors designed and
378 screened efficient gRNAs for the differential detection of ToMV and ToBRFV, and
379 evaluated their ability to detect serial dilutions of an end point PCR product using a
380 fluorescent reporter. In spite of the significance of the work, important aspects for virus
381 detection such as an extensive validation of the assay specificity by using several
382 tobamoviruses, or the estimation of the detection limit, were not addressed in this study.
383 Our work was aimed at developing a CRISPR-based test to detect ToBRFV, which may
384 potentially be deployed to the field. To this end, we contemplated all the steps involved in
385 the testing process, including the amplification of the RNA template, and not only the
386 CRISPR/Cas12a-mediated detection. We chose an isothermal amplification method such
387 as RT-LAMP which is compatible with a field setting, in comparison with the RT-PCR used
388 by Alon et al. 2021. Importantly, the isothermal amplification imposes some design
389 constraints (e.g., primers, amplicon size) that drastically reduces the target selection, so
390 a good gRNA may not necessarily match with a good primer set for amplification.
391 Therefore, the selection of a proper primer set in conjunction with the gRNA design is
392 crucial for achieving good sensitivity levels, as Joung et al. 2020 demonstrated. In addition
393 to a field-compatible amplification method, we also checked the sensitivity of our CRISPR-
394 based test coupled to a paper strip-mediated RNA isolation protocol, which is also
395 applicable outside of the laboratory. Finally, aside from the fluorescent reporter, we also
396 used LFA strips which are usable in the field. Altogether, we believe that our test is closer
397 to field deployment for the following reasons: (i) it can be coupled to rapid nucleic acid
398 extraction, (ii) it is based on isothermal amplification, (iii) its results can be read by the
399 naked eye using LFA. To our knowledge, this is the first report of a CRISPR-based test to
400 detect ToBRFV developed to be as close as possible to field deployment. Although its
401 applicability under field conditions is still debatable, this work paves the way for further

402 improvements which may soon lead to simple and effective tests for the detection of
403 ToBRFV in the field.

404 **ACKNOWLEDGMENTS**

405 We thank Mario Fon for editing the manuscript and Mari Carmen Montesinos and Julia
406 Muñoz for technical support.

407 **AUTHOR CONTRIBUTIONS STATEMENT**

408 J.M.B.O., Y.H. and M.A.A. conceived the research. J.M.B.O. and M.A.A. designed
409 experiments. All the experiments were done by J.M.B.O., who also wrote the manuscript
410 under the supervision of Y.H. and M.A.A. All authors read and approved the final
411 manuscript.

412 **COMPETING INTERESTS**

413 J.M.B.O. and Y.H. are employed by Abiopep S.L. M.A.A. declares no competing interests.

414 **ADDITIONAL STATEMENTS**

415 1. No plant or seed specimens have been collected for this work.
416 2. No voucher specimens have been used. Virus isolates are deposited and are publicly
417 available from the Leibniz Institute-German Collection of Microorganisms and Cell
418 Cultures GmbH (<https://www.dsmz.de/dsmz>).

419

420 **REFERENCES**

421 Alfaro-Fernández, A., P. Castillo, E. Sanahuja, M. D. C. Rodríguez-Salido and M. I. Font (2020).
422 "First report of in tomato in Spain." Plant Dis.
423 Alon, D. M., H. Hak, M. Bornstein, G. Pines and Z. Spiegelman (2021). "Differential Detection of
424 the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus
425 (ToBRFV) Using CRISPR-Cas12a." Plants **10**(6): 1256.
426 Aman, R., A. Mahas, T. Marsic, N. Hassan and M. M. Mahfouz (2020). "Efficient, Rapid, and
427 Sensitive Detection of Plant RNA Viruses With One-Pot RT-RPA–CRISPR/Cas12a Assay."
428 Frontiers in Microbiology **11**.
429 Bernabé-Orts, J. M., I. Casas-Rodrigo, E. G. Minguet, V. Landolfi, V. Garcia-Carpintero, S.
430 Gianoglio, M. Vázquez-Vilar, A. Granell and D. Orzaez (2019). "Assessment of Cas12a-
431 mediated gene editing efficiency in plants." Plant biotechnology journal **17**(10): 1971-1984.
432 Broughton, J. P., X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A.
433 Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gopez, E. Hsu, W. Gu, S. Miller,
434 C.-Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen and C. Y. Chiu (2020). "CRISPR-Cas12-
435 based detection of SARS-CoV-2." Nat. Biotechnol. **38**(7): 870-874.
436 Curti, L. A., I. Primost, S. Valla, D. Ibañez Alegre, C. Olguin Perglione, G. D. Repizo, J. Lara, I.
437 Parcerisa, A. Palacios, M. E. Llases, A. Rinflerch, M. Barrios, F. Pereyra Bonnet, C. A. Gimenez
438 and D. N. Marcone (2021). "Evaluation of a Lyophilized CRISPR-Cas12 Assay for a Sensitive,
439 Specific, and Rapid Detection of SARS-CoV-2." Viruses **13**(3).
440 Chen, J. S., E. Ma, L. B. Harrington, M. Da Costa, X. Tian, J. M. Palefsky and J. A. Doudna
441 (2018). "CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase
442 activity." Science **360**(6387): 436-439.
443 Fidan, H., P. Sarikaya and O. Calis (2019). "First report of Tomato brown rugose fruit virus on
444 tomato in Turkey." New Disease Reports **39**: 18.
445 Gootenberg, J. S., O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V.
446 Verdine, N. Donghia, N. M. Daringer, C. A. Freije, C. Myhrvold, R. P. Bhattacharyya, J. Livny, A.
447 Regev, E. V. Koonin, D. T. Hung, P. C. Sabeti, J. J. Collins and F. Zhang (2017). "Nucleic acid
448 detection with CRISPR-Cas13a/C2c2." Science **356**(6336): 438-442.
449 Hak, H. and Z. Spiegelman (2021). "The movement protein overcomes resistance in tomato
450 while attenuating viral transport." Mol. Plant. Microbe. Interact.
451 Hall, T. J. (1980). "Resistance at the TM-2 locus in the tomato to tomato mosaic virus."
452 Euphytica **29**(1): 189-197.

453 Harrington, L. B., D. Burstein, J. S. Chen, D. Paez-Espino, E. Ma, I. P. Witte, J. C. Cofsky, N. C.
454 Kyrpides, J. F. Banfield and J. A. Doudna (2018). "Programmed DNA destruction by miniature
455 CRISPR-Cas14 enzymes." Science **362**(6416): 839-842.

456 ISF (2020). Detection of infectious Tomato brown rugose fruit virus (ToBRFV) in Tomato and
457 Pepper Seeds. https://www.worldseed.org/wp-content/uploads/2020/11/Tomato-ToBRFV_2020v1.5.pdf.

458 Jiao, J., K. Kong, J. Han, S. Song, T. Bai, C. Song, M. Wang, Z. Yan, H. Zhang, R. Zhang, J.
459 Feng and X. Zheng (2021). "Field detection of multiple RNA viruses/viroids in apple using a
460 CRISPR/Cas12a-based visual assay." Plant Biotechnol. J. **19**(2): 394-405.

461 Jones, R. A. C. (2021). "Global Plant Virus Disease Pandemics and Epidemics." Plants **10**(2).

462 Joung, J., A. Ladha, M. Saito, N.-G. Kim, A. E. Woolley, M. Segel, R. P. J. Barretto, A. Ranu, R.
463 K. Macrae, G. Faure, E. I. Ioannidi, R. N. Krajeski, R. Bruneau, M.-L. W. Huang, X. G. Yu, J. Z.
464 Li, B. D. Walker, D. T. Hung, A. L. Greninger, K. R. Jerome, J. S. Gootenberg, O. O. Abudayyeh
465 and F. Zhang (2020). "Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing." N. Engl. J.
466 Med. **383**(15): 1492-1494.

467 Kellner, M. J., J. G. Koob, J. S. Gootenberg, O. O. Abudayyeh and F. Zhang (2020). "Author
468 Correction: SHERLOCK: nucleic acid detection with CRISPR nucleases." Nat. Protoc. **15**(3):
469 1311.

470 Kim, H. K., M. Song, J. Lee, A. V. Menon, S. Jung, Y.-M. Kang, J. W. Choi, E. Woo, H. C. Koh
471 and J.-W. Nam (2017). "In vivo high-throughput profiling of CRISPR–Cpf1 activity." Nature
472 methods **14**(2): 153-159.

473 Li, J., J. Macdonald and F. von Stetten (2020). "Correction: Review: a comprehensive summary
474 of a decade development of the recombinase polymerase amplification." Analyst **145**(5): 1950-
475 1960.

476 Ling, K. S., T. Tian, S. Gurung, R. Salati and A. Gilliard (2019). "First Report of Tomato Brown
477 Rugose Fruit Virus Infecting Greenhouse Tomato in the United States." Plant Disease **103**(6):
478 1439.

479 Luria, N., E. Smith, V. Reingold, I. Bekelman, M. Lapidot, I. Levin, N. Elad, Y. Tam, N. Sela, A.
480 Abu-Ras, N. Ezra, A. Haberman, L. Yitzhak, O. Lachman and A. Dombrovsky (2017). "A New
481 Israeli Tobamovirus Isolate Infects Tomato Plants Harboring Tm-22 Resistance Genes." PLoS
482 One **12**(1): e0170429.

483 Mahas, A., N. Hassan, R. Aman, T. Marsic, Q. Wang, Z. Ali and M. M. Mahfouz (2021). "LAMP-
484 Coupled CRISPR–Cas12a Module for Rapid and Sensitive Detection of Plant DNA Viruses."
485 Viruses **13**(3): 466.

487 Menzel, W., D. Knierim, S. Winter, J. Hamacher and M. Heupel (2019). "First report of Tomato
488 brown rugose fruit virus infecting tomato in Germany." New Disease Reports **39**: 1.

489 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T.
490 (2000). "Loop-mediated isothermal amplification of DNA." Nucleic Acids Research **28**(12): 63e-
491 63.

492 Panno, S., A. G. Caruso, G. Blanco and S. Davino (2020). "First report of Tomato brown rugose
493 fruit virus infecting sweet pepper in Italy." New Disease Reports **41**: 20.

494 Panno, S., S. Ruiz-Ruiz, A. G. Caruso, A. Alfaro-Fernandez, M. I. F. Ambrosio and S. Davino
495 (2019). "Real-time reverse transcription polymerase chain reaction development for rapid
496 detection of Tomato brown rugose fruit virus and comparison with other techniques." PeerJ **7**:
497 e7928.

498 Park, B. J., M. S. Park, J. M. Lee and Y. J. Song (2021). "Specific Detection of Influenza A and
499 B Viruses by CRISPR-Cas12a-Based Assay." Biosensors **11**(3): 88.

500 Pelham, J. (1966). "Resistance in tomato to tobacco mosaic virus." Euphytica **15**(2): 258-267.

501 Piepenburg, O., C. H. Williams, D. L. Stemple and N. A. Armes (2006). "DNA Detection Using
502 Recombination Proteins." PLoS Biology **4**(7): e204.

503 Rizzo, D., D. Da Lio, A. Panattoni, C. Salemi, G. Cappellini, L. Bartolini and G. Parrella (2021).
504 "Rapid and Sensitive Detection of Tomato Brown Rugose Fruit Virus in Tomato and Pepper
505 Seeds by Reverse Transcription Loop-Mediated Isothermal Amplification Assays (Real Time
506 and Visual) and Comparison With RT-PCR End-Point and RT-qPCR Methods." Front. Microbiol.
507 **12**: 640932.

508 Salem, N., A. Mansour, M. Ciuffo, B. W. Falk and M. Turina (2016). "A new tobamovirus
509 infecting tomato crops in Jordan." Arch. Virol. **161**(2): 503-506.

510 Sarkes, A., H. Fu, D. Feindel, M. Harding and J. Feng (2020). "Development and evaluation of a
511 loop-mediated isothermal amplification (LAMP) assay for the detection of Tomato brown rugose
512 fruit virus (ToBRFV)." PLoS One **15**(6): e0230403.

513 Silva, G., J. Oyekanmi, C. K. Nkere, M. Bömer, P. L. Kumar and S. E. Seal (2018). "Rapid
514 detection of potyviruses from crude plant extracts." Anal. Biochem. **546**: 17-22.

515 Skelton, A., A. Buxton-Kirk, R. Ward, V. Harju, L. Frew, A. Fowkes, M. Long, A. Negus, S.
516 Forde, I. P. Adams, H. Pufal, S. McGreig, R. Weekes and A. Fox (2019). "First report of Tomato
517 brown rugose fruit virus in tomato in the United Kingdom." New Disease Reports **40**: 12.

518 Smith, E. and A. Dombrovsky (2020). "Aspects in Tobamovirus Management in Intensive
519 Agriculture." Plant Diseases - Current Threats and Management Trends.

520 Tomlinson, J. A. (1987). "Epidemiology and control of virus diseases of vegetables." Annals of
521 Applied Biology **110**(3): 661-681.

522 Trebicki, P. (2020). "Climate change and plant virus epidemiology." Virus Res. **286**: 198059.

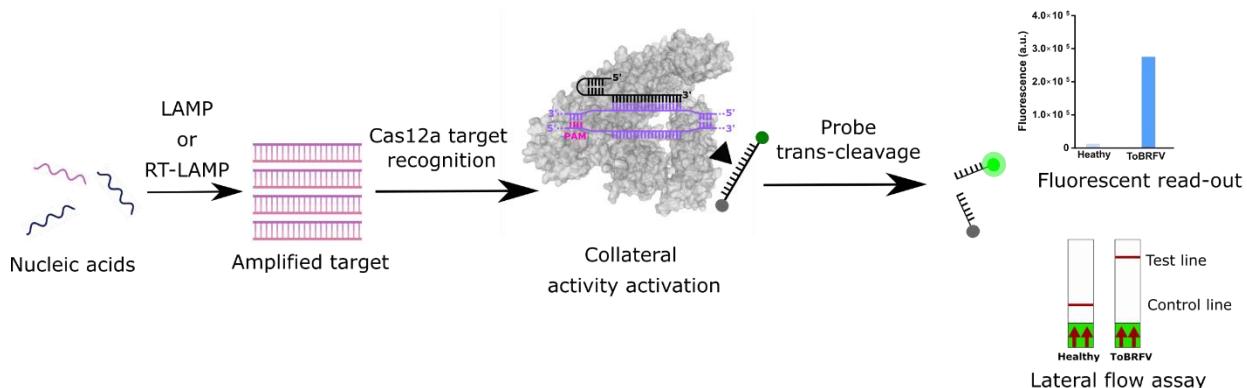
523 Tsou, J.-H., Q. Leng and F. Jiang (2019). "A CRISPR Test for Detection of Circulating Nuclei
524 Acids." Transl. Oncol. **12**(12): 1566-1573.

525 van de Vossenberg, B. T. L. H., M. Visser, M. Bruinsma, H. M. S. Koenraadt, M. Westenberg
526 and M. Botermans (2020). "Real-time tracking of Tomato brown rugose fruit virus (ToBRFV)
527 outbreaks in the Netherlands using Nextstrain." PLoS One **15**(10): e0234671.

528 Wang, R., C. Qian, Y. Pang, M. Li, Y. Yang, H. Ma, M. Zhao, F. Qian, H. Yu, Z. Liu, T. Ni, Y.
529 Zheng and Y. Wang (2021). "opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for
530 SARS-cov-2 detection." Biosens. Bioelectron. **172**: 112766.

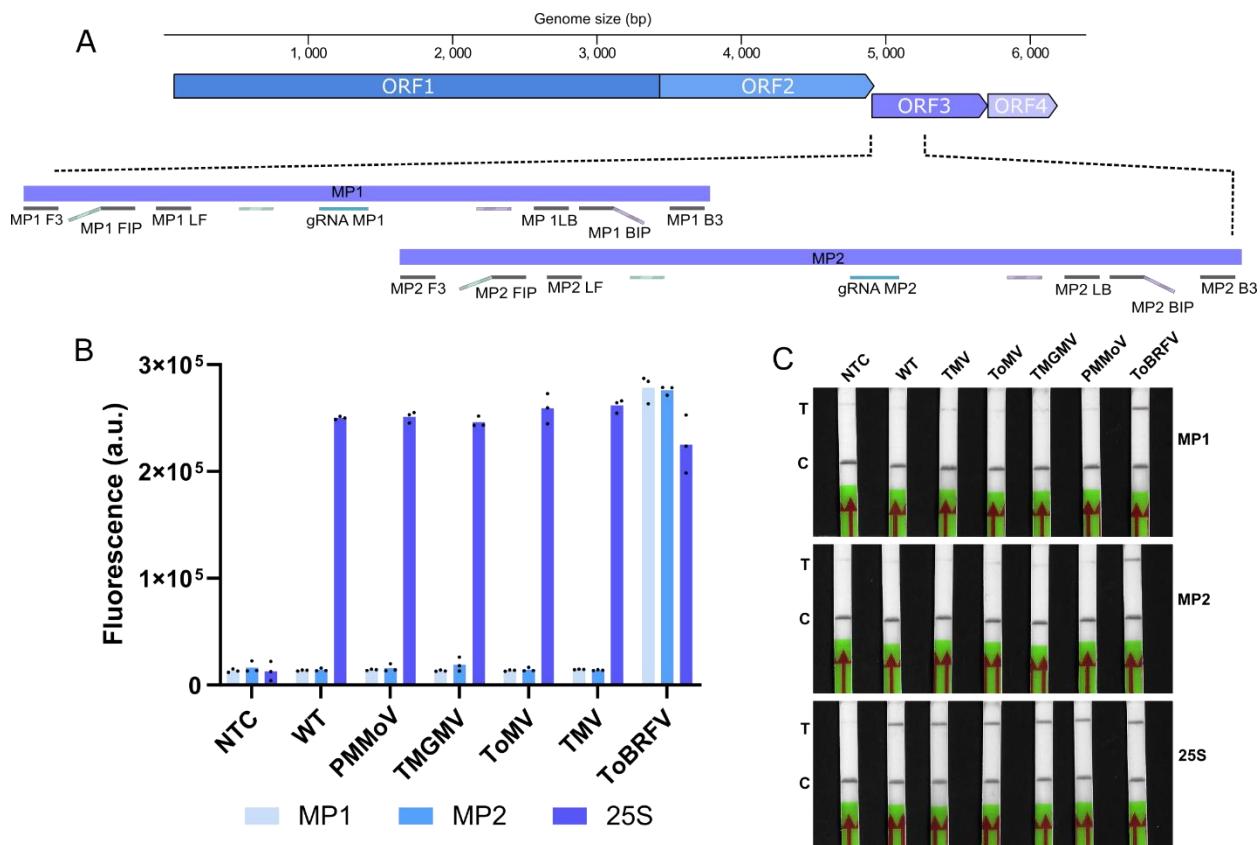
531 Yan, Z. Y., H. Y. Ma, S. L. Han, C. Geng, Y. P. Tian and X. D. Li (2019). "First Report of Tomato
532 brown rugose fruit virus Infecting Tomato in China." Plant Disease **103**(11): 2973-2973.

533 Zetsche, B., J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova, P.
534 Essletzbichler, S. E. Volz, J. Joung, J. van der Oost, A. Regev, E. V. Koonin and F. Zhang
535 (2015). "Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system." Cell
536 **163**(3): 759-771.


537 Zhang, Y.-M., Y. Zhang and K. Xie (2020). "Evaluation of CRISPR/Cas12a-based DNA
538 detection for fast pathogen diagnosis and GMO test in rice." Molecular Breeding **40**(1).

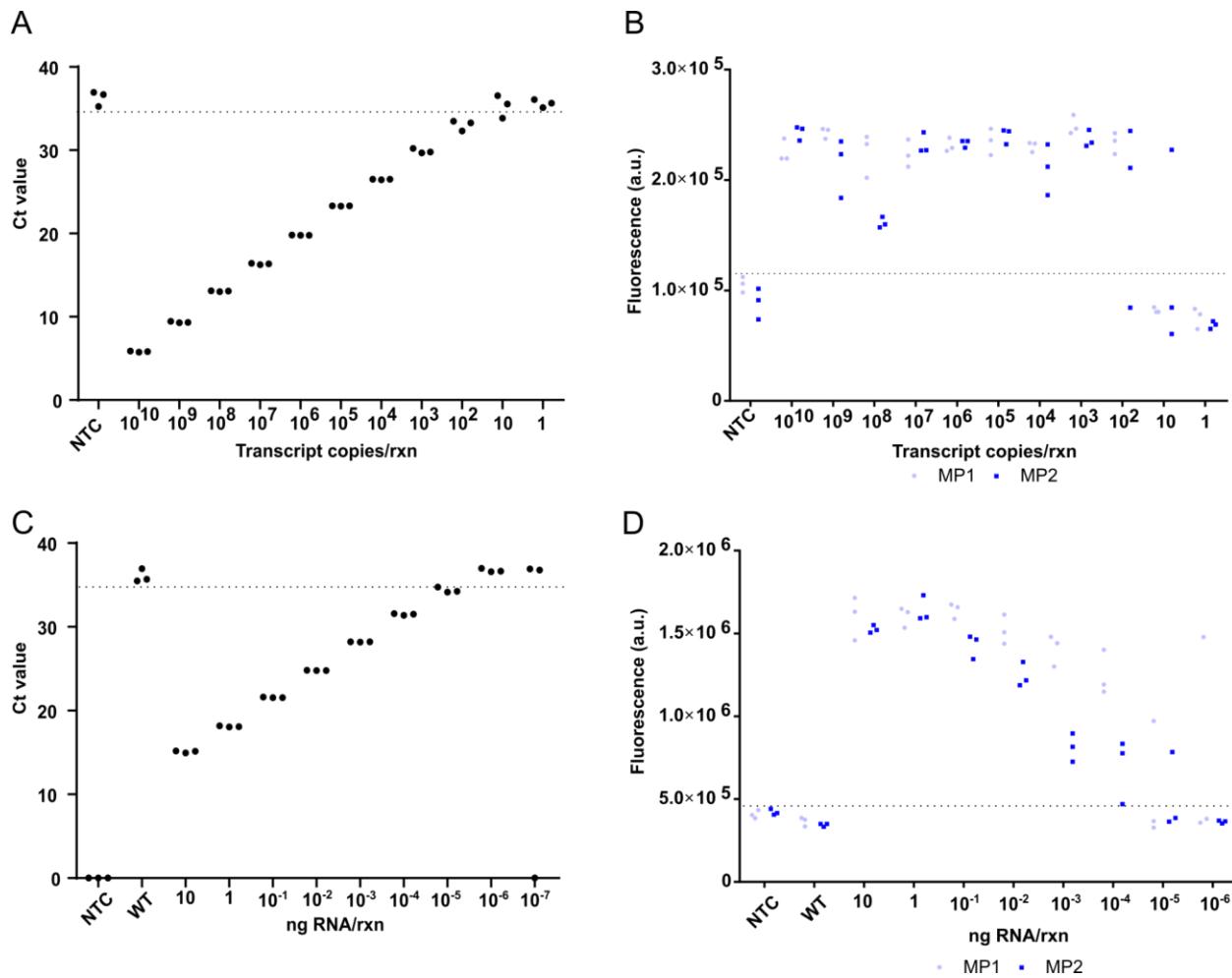
539 Zou, Y., M. G. Mason and J. R. Botella (2020). "Evaluation and improvement of isothermal
540 amplification methods for point-of-need plant disease diagnostics." PLoS One **15**(6): e0235216.

541 Zou, Y., M. G. Mason, Y. Wang, E. Wee, C. Turni, P. J. Blackall, M. Trau and J. R. Botella
542 (2017). "Nucleic acid purification from plants, animals and microbes in under 30 seconds." PLoS
543 Biol. **15**(11): e2003916.

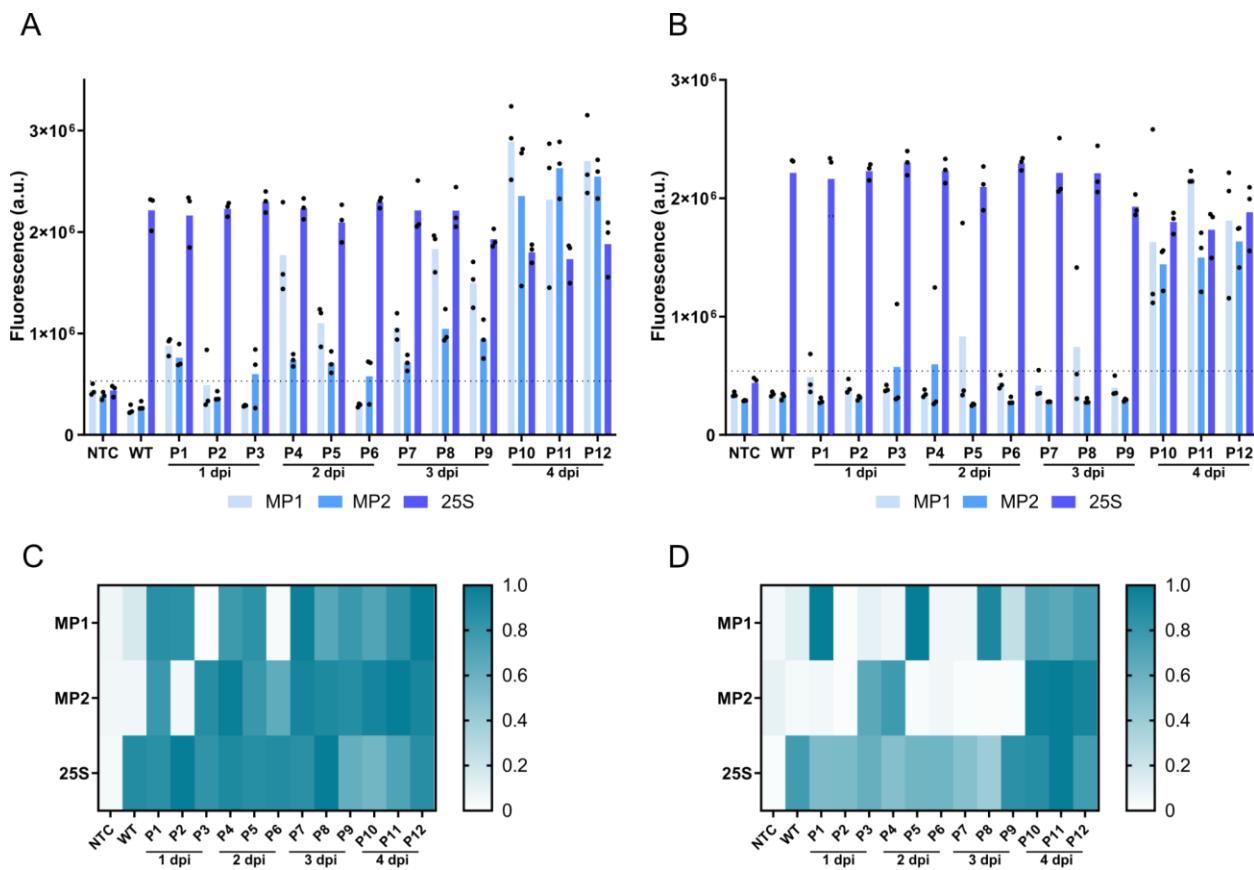

544

545

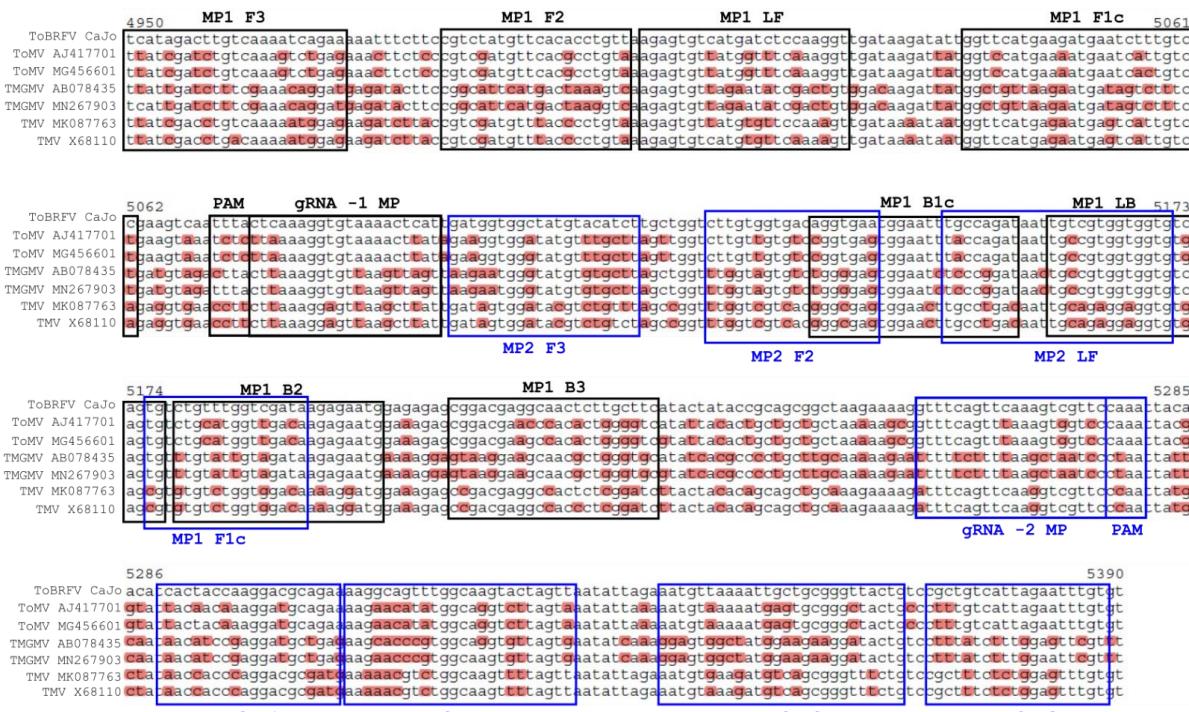
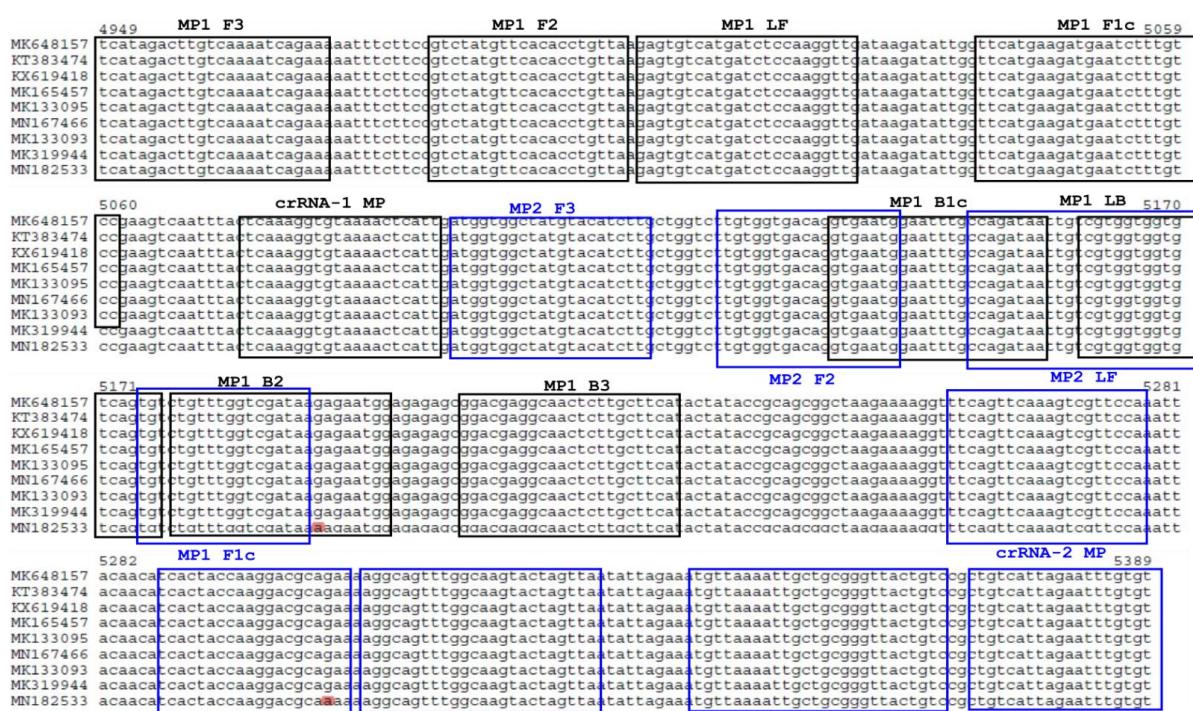
546 **FIGURES**


547

548 **Figure 1: Pipeline for CRISPR/Cas12a-mediated detection processes.** A nucleic acid
 549 extract is used as a template for the LAMP or RT-LAMP amplification of the target
 550 sequences. The amplification product is recognized by the RNA-guided endonuclease
 551 LbCas12a through base-pair complementarity of the gRNA and the target sequence, thus
 552 triggering the collateral activity of the LbCas12a which, in a non-specific manner,
 553 degrades the ssDNA probe revealing the presence of the target sequence. The reporter
 554 molecule attached to the probe defines the read-out of the assay, either by fluorescence
 555 or using a lateral flow strip.


556

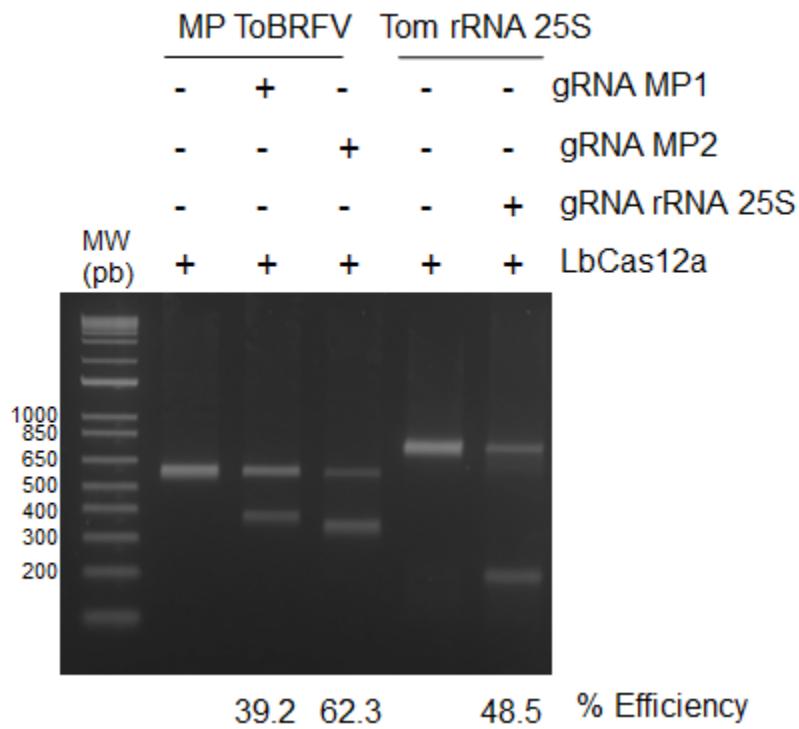
557 **Figure 2: Design and assessment of a CRISPR-based testing method for the detection of**
 558 **ToBRFV MP ORF. A)** Representation of the ToBRFV genome and the oligonucleotides
 559 used for the detection of the *MP* ORF sequence (MP1 and MP2). The position of the RT-
 560 LAMP primers is represented by the black rectangles (F3, B3, FIP, BIP, LF and LB). The
 561 stripped rectangles represent the binding position of the F1c and the B1c halves of the
 562 FIP and BIP primers. The blue rectangles represent the location of the gRNAs (gRNA
 563 MP1 and gRNA MP2). An additional set of primers was used to amplify the rRNA 25S as
 564 PDC (25S, not shown). **B)** Evaluation of the specificity of the CRISPR-based test MP1,
 565 MP2 and 25S targets using a no template control (NTC), a healthy-plant RNA extract (WT)
 566 and samples infected with different tobamoviruses (PMMoV, TMGMV, ToMV and TMV)
 567 related to ToBRFV, using a fluorescent reporter. Bars represent the average of 3 technical
 568 replicates (black dots). **C)** Evaluation of the specificity using a biotinylated reporter with
 569 lateral flow strips and TMV-, ToMV-, TMGMV, PMMoV- and ToBRFV-infected tomato
 570 plants (T is the test line, and C the control line).



571

572 **Figure 3: Comparison of the detection limits of the CaTa28 RT-qPCR and the CRISPR-
 573 based tests for the detection of ToBRFV.** Limit of detection of RT-qPCR and CRISPR
 574 estimated with serial dilutions of a synthetic RNA transcript fragment of the *MP* ORF (A,
 575 B) or an RNA extract from ToBRFV-infected tomato leaves (C, D). Each RNA dilution was
 576 assessed by triplicate. As negative controls, no template control (NTC) and healthy
 577 tomato plant (wild type, WT) RNA extract were used. A healthy tomato plant RNA extract
 578 was used as diluent in all cases. The dotted lines show the cut-off value.

579 **Figure 4: Influence of the RNA extraction protocol on the CRISPR-based detection.**
 580 Twelve ToBRFV-inoculated tomato plants (P1-P12) were sampled at 1, 2, 3 and 4 days
 581 post-inoculation (dpi), three plants each time. The pair of nascent leaves were collected
 582 and the sampled tissue was finely sliced, mixed and split into two subsamples used for
 583 the conventional column-mediated RNA extraction protocol, or a rapid paper strip-
 584 mediated nucleic acid extraction protocol to capture the nucleic acids (Zou et al. 2017).
 585 **A, B)** Fluorescent read-out from the column-extracted samples (A) and the rapid-extracted
 586 samples (B). Bars represent the average of three replicates (black dots). **C, D)** Signal
 587 quantification from the LFA strips of the column-extracted samples (C) and the rapid-
 588 extracted samples (D). Each value was normalized to the highest value. As negative
 589 controls, no template control (NTC) and healthy tomato plant (wild type, WT) RNA extract
 590 were used. Quantification of the test line was performed using ImageJ. The dotted lines
 591 in A and B show the cut-off value.
 592

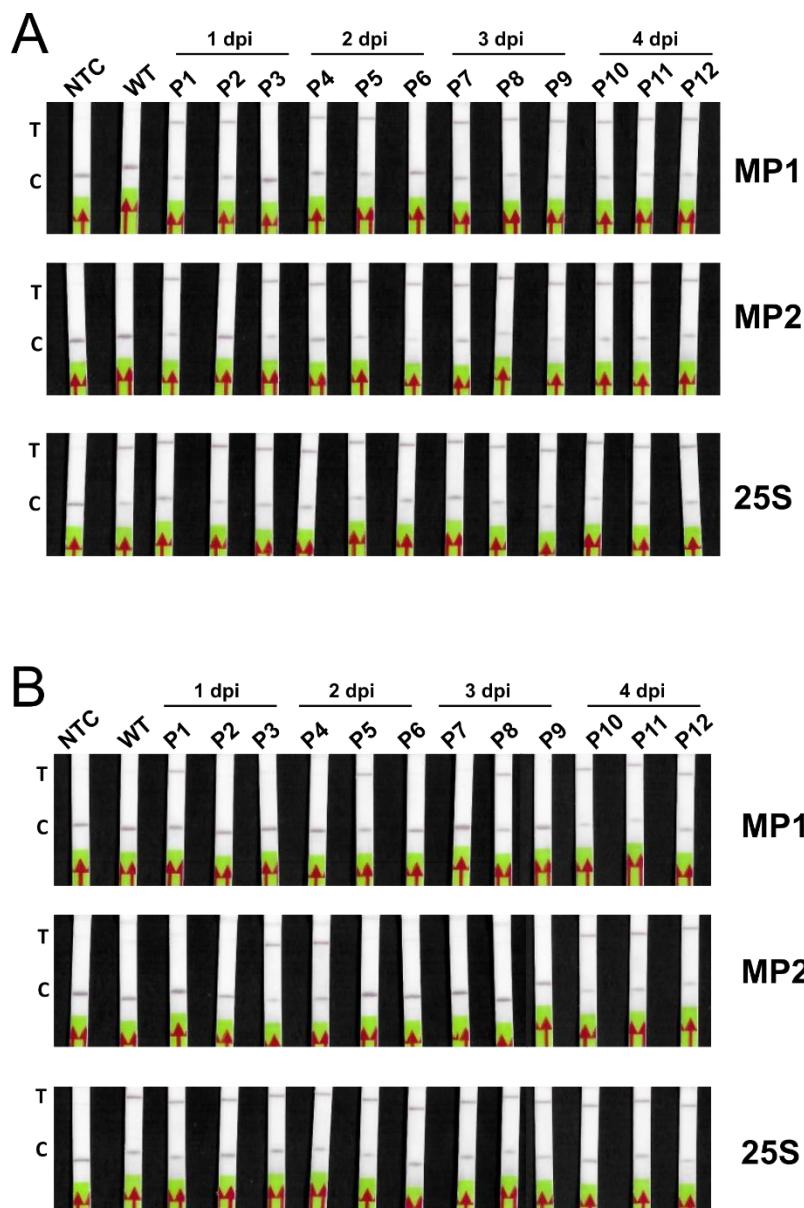
593


594 **SUPPLEMENTARY****FIGURES****A****B**

595

596 **Figure S1:** *In silico* evaluation of the exclusivity (A) and inclusivity (B) of the
 597 oligonucleotides designed for the CRISPR-mediated ToBRFV detection. Only ToBRFV

598 accessions are shown in (B). The oligonucleotides for the amplification and the detection
599 of the *MP*ORF are highlighted in black for MP1, or in blue for MP2. The sequences of the
600 viruses were retrieved from the NCBI nucleotide database. The accession number is
601 shown together with the acronym of the virus. Sequence alignments were performed
602 using ClustalW and Benchling webtool.


603

604

605 **Figure S2:** Assessment of MP1 and MP2 gRNAs efficiency through LbCas12a-mediated
606 restriction of PCR products containing the targeted sequence and subsequent
607 electrophoresis in a 2% agarose gel.

608

614

615 **SUPPLEMENTARY TABLE**

Oligonucleotide	Sequence (5'-3')	Notes
F3 MP1	TCATAGACTTGTCAAAATCAGAA	RT-LAMP MP1
B3 MP1	GAACCAAGACTTGCCTCG	
FIP MP1	GGACAAAGATTCATCTCATGAACCGCTATGTTACACCTGTT	
BIP MP1	AGGTGAATGGAATTGCGAGATCATTCTTATCGACCAACAG	
LF MP1	ACCTTGGAGATCATGACACTCT	
LB MP1	TGTCGTGGTGGTGTCACTG	
F3 MP2	GATGGTGGCTATGACATCT	
B3 MP2	ACACAAATTCTAATGACAGCG	
FIP MP2	TATCGACCAACAGACACTGACA	
BIP MP2	TCACTACCAAGGACGAGAACAGTAACCCGACGCAATT	
LF MP2	CACCAAGCACATTATCTGGCA	RT-LAMP MP2
LB MP2	AAGGCAGTTGGCAAGTACTAGTT	
F3 25S	AGCCAAGCGTTCATAGCG	
B3 25S	GCTCTAGCCCCGATTCTGA	
FIP 25S	CACGTCCATTGGGGTGAATCCTCGATGTCGGCTCT	
BIP 25S	CACRCAATTGGCCATCGGCCAGTCATAATCCAGCACACGG	
LF 25S	ACTTGGTGAATTCTGTTCA	
LB 25S	AAGCCAGTGGCGCGAAG	
gRNA MP1	UAAUUCUACUAAGUGUAGAUCAAAAGGUGUAAAUCAU	ISHI veg ToBRFV primers
gRNA MP2	UAAUUCUACUAAGUGUAGAUAGAACGACUUGAACUGAAAC	
CaTa28 Fwd.	GGTGGTGTCACTGTCAGTCTGTT	
CaTa28 Rev.	GCGTCCTTGGTAGTGTATGTT	
CaTa28 Pr.	/56-FAM/AGAGATGGAGAGCGGGACGAGG/BHQ1	
AB-782	TAATACGACTCACTATAGGGTAGAAGTTGTTATAGATGGCTC	
AB-783	TCTTCCATGAACATCAAC	
AB-784	/56-FAM/TTATTATT/3IABKFQ/	
AB-785	/56-FAM/TTATTATT/Bio/	

616

617 **Table S1:** oligonucleotides used in this study.