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ABSTRACT

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder that spans over a
continuum with multiple phases including preclinical, mild cognitive impairment, and dementia.
Unlike most other chronic diseases there are limited number of human studies reporting on AD
gut microbiota in the literature. These published studies suggest that the gut microbiota of AD
continuum patients varies considerably throughout the disease stages, raising expectations for
existence of multiple microbiota community types. However, the community types of AD gut
microbiota were not systematically investigated before, leaving important research gap for diet-
based intervention studies and recently initiated precision nutrition approaches aiming at
stratifying patients into distinct dietary subgroups. Here, we comprehensively assessed the
community types of gut microbiota across the AD continuum. We analyze 16S rRNA amplicon
sequencing of stool samples from 27 mild cognitive patients, 47 AD, and 51 non-demented control
subjects using tools compatible with compositional nature of microbiota. To characterize gut
microbiota community types, we applied multiple machine learning techniques including
partitioning around the medoid clustering, fitting probabilistic Dirichlet mixture model, Latent
Dirichlet Allocation model, and performed topological data analysis for population scale
microbiome stratification based on Mapper algorithm. These four distinct techniques all converge
on Prevotella and Bacteroides partitioning of the gut microbiota across AD continuum while some
methods provided fine scale resolution in partitioning the community landscape. The Signature
taxa and neuropsychometric parameters together robustly classify the heterogenous groups
within the cohort. Our results provide a framework for precision nutrition approaches and diet-

based intervention studies targeting AD cohorts.
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76 IMPORTANCE

77

78  The prevalence of AD worldwide is estimated to reach 131 million by 2050. Most disease
79  modifying treatments and drug trials have failed due partly to the heterogeneous and complex
80  nature of the disease. Unlike other neurodegenerative diseases gut microbiota of AD patients is
81  poorly studied. Recently initiated ambitious precision nutrition initiative or other diet-based
82 interventions can potentially be more effective if the heterogeneous disease such as AD is
83  deconstructed into multiple strata allowing for better identification of biomarkers across narrower
84  patient population for improved results. Because gut microbiota is inherently integral part of the
85  nutritional interventions there is unmet need for microbiota-informed stratification of AD clinical
86  cohorts in nutritional studies. Our study fills in this gap and draws attention to the need for
87  microbiota stratification as one of the essential steps for precision nutrition interventions. We
88  demonstrate that while Prevotella and Bacteroides clusters are the consensus partitions the newly
89  developed probabilistic methods can provide fine scale resolution in partitioning the AD gut
90  microbiome landscape.

91

92 Key words: Alzheimer's Disease, Gut microbiota, Machine learning, Stratification, Dirichlet,
93  Topological data analysis

94

95 INTRODUCTION

96

97  Alzheimer’s Disease (AD) is the most common form of dementia worldwide and its prevalence is
98 estimated to reach 131 million by 2050 [1]. AD spans over a continuum starting with the non-
99  symptomatic pre-clinical stage and advancing through the spectrum of clinical stages. These
100 stages are dashed with distinct pathophysiological states [2], namely the amyloid-tau-

101  neuroinflammation axis. The clinical continuum entails mild memory loss and/or cognitive
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102 impairments (mild cognitive impairment, MCI due to AD) and trajectories for function leading to
103  memory problems besides cognitive impairment (dementia phase); and finally complete loss of
104  independent functioning towards the end stage [3]. Moreover, The Alzheimer's dementia phase
105 is further broken down into the stages of mild, moderate and severe, thereby making AD a
106  complex and highly heterogenous disease.

107

108  Traditionally, pathogenesis of AD is attributed to extracellular aggregation of amyloid-B-peptides
109  (AB) in senile plaques and intracellular depositions of hyperphosphorylated tau that forms
110 neurofibrillary tangles [4]. Although numerous clinical trials based on the amyloid postulates have
111  been attempted virtually all of them have failed [5]. The unsettlingly consistent failure of clinical
112 trials targeting single target amyloid pathways prompted researchers to refine the amyloid
113 hypothesis [6] and even extend it to periphery [7]. Recently, a group of AD researchers asserted
114  that infectious agents reach and remain dormant in the central nervous system (CNS) and
115  undergo reactivation during aging, sparking cascades of inflammation, induce AB, and ultimately
116  neuronal degeneration [8]. Chronic inflammation in CNS mediated by microglial toxicity as well
117  as systemic inflammation in the periphery is widely recognized in AD and linked to amyloid
118 cascade hypothesis in animal experiments [9, 10]. None of the drugs available today for
119  Alzheimer's dementia slow or stop the damage and destruction of neurons [11]. Intervention at
120  different points along the Alzheimer’s continuum should therefore be multimodal and involve
121  targeting neuropathology in brain, systemic inflammation in the body, and metabolic processes in
122 the periphery that escalate the disease in brain [12]. Non-pharmacologic, targeted, personalized,
123  and multimodal disease modifying interventions in AD, including diet and lifestyle changes to
124 optimize metabolic parameters has recently been under investigation [13-16].

125

126 A growing body of evidence suggest that human gut microbiota is strongly associated with human

127  metabolic processes in all organs including brain [17] and implicated in neuroinflammation via
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128  brain-gut axis [18]. Gut microbes across animal models influence CNS by modulation of
129  neuroimmune function, sensory neuronal signaling, and metabolic activity [19]. Several studies
130  using transgenic animal model of AD reported gut microbiota alterations (see [19]) but these
131  animal models poorly mirror human AD. Unexpectedly, only a few human clinical studies on AD
132 were reported in the literature [20-28]. Of these studies, gut microbiota associated metabolites
133 such elevated Trimethylamine N-oxide (TMAO) in CSF [26] and altered bile acids profile [28] were
134 directly implicated in AD dementia. Importantly, dietary pattern of AD patients is at the center of
135  the precision medicine approaches [29]. Also, diet is one of the most important factors modulating
136  gut microbiota-based active metabolites. Disease modifying approaches involving diet should
137  therefore consider microbiota in AD. Indeed, a recent study [23] tested the impact of a modified
138  Mediterranean ketogenic diet on gut microbiome composition and demonstrated that the diet can
139  modulate the gut microbiome and metabolites in association with improved AD biomarkers in
140  CSF. These published studies, however, did not comprehensively investigate AD microbiota
141  subclusters across the disease continuum, leaving important gap in our understanding of human
142 microbiota in a highly heterogenous disease. Recently initiated ambitious precision nutrition
143 approaches [30-33] cannot be applied on a highly heterogenous disease before deconstructing
144  the disease into multiple strata and tailoring therapies accordingly.

145

146  In the present study, we postulated that gut microbiota dysbiosis along the AD continuum should
147  reflect an overlapping yet distinct community types. We show that AD gut microbiota includes
148  distinct community types and the cognitive impairments in AD continuum is associated with
149  unique gut microbiota signatures. Elucidating the diversity and community types of gut microbiota
150  would facilitate identification of stratification biomarkers thereby contributing to precision nutrition
151 approaches in AD.

152

153
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154 RESULTS

155

156  Study Design and Participant Characteristics.

157

158  The study cohort consisted of 47 AD, 27 MCI (all amnestic), and 51 subjects non-demented
159  controls (N=125). To minimize dietary confounding effect on the microbiome, we included healthy
160  co-habiting spouses of the patients sharing the same diet as controls. The control group therefore
161  largely (n=27) comprised partners of the patients. Participants were recruited in two health centers
162  located in different cities. The cohort groups were statistically not different in terms of sex, but age
163  and education factors were significantly different (Table 1), therefore statistically adjusted in
164  analyses. Expectedly, the groups were also different in cognitive tests including the Mini-Mental
165  State Exam (MMSE), and the Clinical Dementia rating (CDR). Most AD participants had very mild
166  or mild dementia, with clinical dementia rating (CDR) scores ranging from 0.5-3 (median CDR 1
167  for AD; 0.5 for MCI and O for the control group). The median MMSE scores were significantly
168  higher in control (MMSE=27) and MCI (MMSE=26) groups than AD (MMSE=16). A subset of AD
169  patients (n=12) was clinically asked to undergo lumbar puncture to ascertain diagnosis using CSF
170  biomarkers including AB42/ABR40 ratio, phosphorylated tau (p-tau), and the p-tau/AB42 ratio
171  (Supplementary Table S1). We collected medication information from the patient’s registry.

172

173  Microbiome composition is associated with disease status along the AD continuum

174

175  The gut microbiota was profiled using the V3-V4 hypervariable region of the 16S rRNA gene; The
176  Nephele automatic pipeline denoised the paired-end sequences and assigned amplicon
177  sequence variants (ASVs) according to DADA2 [34]. The Nephele produced both unrarefied and
178  the rarefied ASV tables. The rarefied table included a total of 3486 ASVs in the table (10769

179  sequences/sample) for downstream analyses.
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180  The phylum level taxonomic analysis showed typical human gut microbiota profile in terms of
181  over-abundance of Firmicutes, Bacteroidetes, and Proteobacteria (Figure 1a). Together with
182  Verrucomicrobia, and Actinobacteria the five phyla comprised 99% of all reads but Proteobacteria
183 was overrepresented in AD patient samples. Notably, the genus level relative abundance
184  distributions across samples showed Prevotella_9 and Bacteroides were the most abundant of
185 top30 genera across the samples (Figure 1b). To perform differential abundance analysis
186  between samples we sought concordance analysis among multiple tools. ANCOM-BC or
187  ALDEx2, when used covariates in their models, both agreed that only Ruminoccus_unclassified
188 s significantly differentially abundant among the groups (data not shown). Nevertheless, when
189 we employed limma-voom R package (age and sex adjusted, FDR<0.05) we found that
190  Prevotella_9, Bacteroides and members of Ruminococcaceae family were among the top most
191  significant differentially abundant taxa (ASV) between the cohort groups (Supplementary Tables
192  S2-5). A comprehensive comparative statistical assessment of multivariate and compositional
193  methods [35] demonstrated ALDEX2 or alike tools suffer from low power while limma-voom and
194  songbird in their own class were the best performers.

195

196  Alpha diversity indices (Shannon, Inverse Simpson) did not show significant differences after
197  multiple testing corrections (Kruskal-Wallis, Supplementary Figure S1 (a-d), FDR>0.05) but
198  richness index, Chao1, showed significant difference between MCI and the control group
199  (pairwise Wilcoxon rank sum test, p=0.008074).

200

201  We employed both relative abundances based and recently developed compositionally aware
202  tools, namely DEICODE [36] and Songbird [37] to compare the composition and structure of
203  bacterial communities in samples using multiple beta diversity indices (Bray-Curtis, Jaccard, and
204  Aitchison). The principal coordinates analysis showed separation of the three groups by both

205  Bray-Curtis and Jaccard indices (Figure 2a-b). We used adonis2 function in giime2 plugin (q2-
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206  diversity) to perform PERMONAVA analysis with 999 permutations and included interaction terms
207  (Supplementary Table S6) and seperation of the groups were highly significant (P=0.0001). Age
208 and Sex also significantly contributed to the total variance (P<0.001) but the interaction terms
209  were not significant. Furthermore, dispersion between groups tests (PERMDISP) indicated only
210  the dispersion MCI group is significantly heteregenous (pairwise comparisons p=0.033 for AD-
211 MCI; p=0.024 for C-MCl; p=0.672 for AD-C), which may be attributed to unbalanced design. We
212 added further support for the seperation of the three groups from other ordinations. The Canonical
213 Analysis of Principal Coordinates (CAP) analysis unambigiously showed the three groups are
214  distinct (Figure 2c, trace statistic = 0.86855, p=0.001, 999 permutations). The final support in beta
215  diversity was provided by the DEICODE analysis (robust Aitchison PCA) (Figure 2d,
216 PERMANOVA p=0.02), which indicated that the three groups are distinct, and the community
217  clusters are largely driven by a subset of ASVs with taxonomic assignment Prevotella_9,
218  Bacteroides, a unclassified genus within Ruminococcaceae family
219  (Ruminococcaceae_unclassified), and Escherichia/Shigella. Moreover, the co-occurrence
220  analysis using SparCC showed that Prevotella_9 and Bacteroides were negatively correlated
221  (Correlation=-0.4445, FDR =0.09355). Moreover, the genus level PCoAs showed partially
222 overlapping clusters of these two taxa while the groups overall were also significantly separated
223  (PERMANOVA, p <0.0001, Supplementary Figures S2 (a-c)). We therefore placed particular
224  attention to these two taxa in the rest of the downstream analyses.

225

226  Enrichment analysis by multinomial regression embedded in the songbird tool with regard to
227  covariates (formula: Age+Sex+Edu+MMSE+CDR+Groups(levels=(“C”, “MCI”,”AD”)) indicated
228  that the natural log ratio of Prevotella_9 to Bacteroides and Prevotella_9 to Escherichia/Shigella
229  significantly separated AD group from the control group (Welch’s t-test, FDR adjusted p=0.04)
230  but not from the MCI group (Figure 3a-d). Importantly, the songbird excluded 25 samples from

231  this analysis due to zero-rich abundances that do not allow for center-log ratio calculations. We
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232 therefore tested the natural log ratio of top 25% allowing to include all samples in the analysis
233 (“Set1” in Supplementary Table S7) to the bottom 25% (“Set2”, Supplementary Table S8) of the
234 ranked ASVs associated with the AD relative to the control group; also, same ratios for MCI
235  relative to the control group (“Set3” and “Set4”, Supplementary Table S8 ) and the ASVs
236  enriched in each group were visualized with Qurro [38]. Both sets of ranked log ratios revealed
237  significant differences (Graph Pad Prism) between the log ratios of features differentiating groups
238  (Welch’s t-test, FDR adjusted p= 0.0002).

239

240  Discrete multiple subsets of gut microbiota exist along the AD continuum

241

242 Considering the preceding results, we postulated that gut microbiota profile along the AD
243 continuum does not represent a single state, rather, distinct yet overlapping community types. We
244 addressed this hypothesis using four unique methods: 1- Partitioning around medoid (PAM)-
245  based clustering [39], 2- Fitting Dirichlet multinomial mixture (DMM) models to partition microbial
246  community profiles into a finite number of clusters [40] using the Laplace approximation, 3- Fitting
247  Latent Dirichlet Allocation (LDA) [41, 42] using perplexity measure, and 4- Analyzing topological
248  futures of data density [43] based on the Mapper algorithm to capture subtle and non-linear
249  patterns of high-dimensional datasets and population level stratification.

250

251 The PAM-based clustering identified three (k=3) distinct clusters based on Gap statistics
252 (Supplementary Figure S3a). PCoA analysis of the sample abundances in the three clusters
253  indicated significant separation of the clusters (Figure 4a, PERMANOVA, p=0.001) . We
254 confirmed optimum number of clusters using both Jensen-Shannon and Bray-Curtis distance
255  metrices (data not shown). The relative abundance of the genus Prevotella_9 dominated cluster-
256 1 while the genus Bacteroides showed the highest relative abundances in the other two clusters

257  (Figure 4b).
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258

259  Next, we employed the Dirichlet multinomial mixtures probabilistic community modeling using the
260  DirichletMultinomial R package [40] and fitting genus level absolute abundances. Based on
261 Laplace approximation three clusters (cluster 1, 2, and 3) represented the best model fit
262  (Supplementary Figure 3b), which was congruent with the PAM-based clustering. The PCoA
263  analysis of these clusters and PERMANOVA pairwise tests further supported existence of three
264  distinct clusters within the microbial community (Figure 4c, PERMANOVA, p=0.01). The genus
265  Bacteroides was the most abundant taxa in the first two clusters and the third cluster was
266  dominated by Prevotella_9 (Figure 4d). Notably, cluster2 included significantly higher abundance
267  of Bacteroides (26.3%) than cluster1 (9.9%) and cluster3 (4.7%). In addition to highly enriched
268  Bacteroides in cluster2 the decreasing trend of Faecalibacterium abundance and elevated
269 abundance of inflammation associated Escherchia/Shigella suggested that cluster2 can be
270  named “Bacteroides2 (Bact2) enterotype” as recently described [44, 45]. Reportedly, abundance
271  of Bacteroides in Bact2 enterotype can reach as high as 78% in patients with inflammatory bowel
272  disease and is associated with systemic inflammation. These results suggest that cluster2
273  includes patients with aggravated systemic inflammation.

274

275  We also performed SIMPER analysis based on Bray-Curtis distance to identify taxa contributing
276  most to dissimilarities between clusters (data not shown). Bacteroides, Prevotella_9,
277  Faecalibacterium, and taxa within Ruminococcaceae family ranked among the top ten taxa
278  contributing most to differences between the three DMM clusters. To examine which factors were
279  associated with the DMM clusters we analyzed distribution of clinical metadata and diversity
280  metrics within the clusters. Alpha diversity indices (Chao1, Shannon, and Inverse Simpson) were
281  statistically different between all three clusters after Benjamini-Hochberg FDR adjustment.

282  However, CDR, MMSE, Age, Sex, and Education were not significant between the clusters

10
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283  (Kruskal Wallis test followed by Dunn’s posthoc test, FDR<0.05 and Fisher’s Exact test was used
284  for Sex parameter). (Figure 5 a-h)

285

286 We next tested LDA potential to stratify gut microbiota of the cohort participants. This
287  unsupervised machine learning technique is increasingly finding acceptance in the field of
288  microbiome [46-48] for its unique ability to reveal latent or hidden groups within the data cloud.
289  Supplementary Figure S4 shows LDA model’s perplexity parameter and log-likelihood values to
290  find optimal number of clusters. Both parameters continued to partition the community without
291  reaching a clear optimum. This finding is unexpectedly consistent with recent publications using
292 LDA in microbial ecology [46-48]. Bacteria probability distributions (ranked by probability = 1% in
293  descending order) across the subgroups are displayed in Figure 6a. Interstingly, of the ten
294 subgroups two subgroups were dominated by Bacteroides (topic1 and topic5) and a subgroup
295  (topic2) dominated by Prevotella_9 with 97% probability. These subgroups therefore resemble
296  subgroups detected by PAM and DMM in terms of prevalence of Bacteroides and Prevotella_9.
297  Unlike DMM and PAM, however, LDA detected a distinct subgroup (topic10) with top ranking
298  genus was Escherichia/Shigella, which also included putatively opportunistic bacteria such as
299  Entercoccus and Klebsiella. Subgroups 4, 6, and 9 were conspicious with the genera known to
300 produce butyrate and acetate or is mucinphilic. Even though we present first ten subgroups
301  (topics) here we also examined higher order subgroups and observe that the ten subgroups are
302  further partitioned into additional subgroups such as subgroups with topranking probability of
303  Lactobacillus and Akkermansia emerge. Finally, we plotted Quetelet index by subgroups to infer
304  associations between subgroups and the cohort groups (Figure 6b). Quetelet index estimates the
305 relative change of the occurence frequency of a latent subgroup among all the samples compared
306 to that among the samples of the cohort groups. The index showed subgroups 1, 8,9, 10 are
307  positively associated with AD group. The subgroup 9 is enriched by the members of

308  Ruminococcaceae family. The top ranking Ruminococcaceae_UCG_002 and Akkermansia are

11


https://doi.org/10.1101/2021.10.28.466378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.28.466378; this version posted October 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

309 more abundant in AD group than the control group according to limma-voom analysis.
310  Akkermansia overabundance in AD gut microbiota is counterintutive but was previously reported
311 by others [25] and this genus is more abundant in the gut microbiota of Parkinson’s patients, also
312 [49]. The subgroup 10, where Escherichia/Shigella is the top ranking genus, is strongly associated
313  with AD group but negatively associated with other groups. Conversely, subgroups 2,4, and 7,
314 which are enriched by short chain fatty acid producers, are positively associated with the control
315 and MCI groups but negatively associated with AD.

316

317  Another and last method we employed to stratify gut microbiota was topological data analysis
318 (TDA), based on the Mapper algorithm [50] embedded in recently developed tmap tool [43]. The
319 tmap tool was developed for network representation for stratification and association study of
320  high-dimensional microbiome data. After constructing TDA microbiome network using Mapper
321  algorithm (ordination, covering, and DBSCAN clustering) the workflow in the second step includes
322  computation of a modified version of the spatial analysis of functional enrichment (SAFE) scores
323  to map both the metadata and microbiome features into the TDA network to generate their vectors
324  of SAFE scores. Vectors of SAFE scores are then used to perform ranking and ordination, and
325  co-enrichment relations to delineate relationship between metadata and microbiome features. To
326  construct TDA network we first applied dimension reduction (filtering) in PCoA using Bray-Curtis
327 distance, followed the above algorithm and also repeated the entire analysis using Jensen-
328  Shannon distance to reveal effect of distance metric, if any. To understand how driver taxa relate
329  to each other and with the clinical metadata we performed Principal Component Analysis (PCA)
330 of SAFE scores. Figure (7a) shows the TDA network and PCA (Bray-Curtis distance) of taxa-
331 metadata based on SAFE scores (Supplementary Table S9), respectively. We obtained similar
332 TDA network profile using Jensen-Shannon distance (Figures 7b) and SAFE scores
333  Supplementary Table S10). Size of each marker is scaled according to the SAFE score and only

334  top30 bacteria species are shown in PCA figures for clarity. A node in the network represents a

12
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335 group of samples sharing similar bacteria genus profiles. Two given nodes are linked when
336 common samples are shared between the two nodes. The TDA analysis using both distance
337 indices resulted in very similar stratification profile with the top ten SAFE scoring genera included
338  Prevotella_9, Bacteroides, Rumunococaceae _unclassified, species of Lachnospiraceae, and
339  GCA90006675. Unsurprisingly, a few taxa ranking differed between the two profiles such as
340  Caprococcus_2, Mollicutes  RF39 unclassified.

341

342 Furthermore, Figures (8a and 8b) show taxa and host covariates based on Bray-Curtis and
343 Jensen-Shannon distances, respectively. Regardless of the distance metric, all three groups were
344  clearly separated. The drivers of microbiome stratification (Prevotella_9, Bacteroides,
345  Ruminococcus_unclassified) are placed near the control, AD and MCI groups, respectively in both
346  PCA figures. Of the clinical metadata, MMSE, sex, and education were grouped with the control
347  group and co-enriched with Prevotella_9 but also with Prevotella_2, and Haemophilus, and
348  Lachnospiraceae_NK4B4 _group. Conversely, CDR, age, and AD group were clustered together
349  and co-enriched with taxa such as Subdoligranulum, Odoribacter, Bilophila, Alistipes. The MCI
350 group was co-enriched with Ruminocoaceae_unclassified, Mollicutes RF39 _unclassified,
351 Ruminocoaceae_UCG 005, Lachnospiraceae unclassified. However, some taxa such as
352 Odoribacter was placed near the control group in Jensen-Shannon distance PCA Figure (8b),
353  suggesting co-enrichment of certain taxa can be somewhat influenced by the preferred distance
354  metric.

355 Identification of signature taxa for AD continuum and association with metadata

356

357 We constructed Random Forest (RF) model on selected features of gut microbiota and
358  psychometric test scores (MMSE and CDR) that are typically used as proxy in clinical diagnosis.
359  Using songbird, we selected 300 ASV (Top 25%) that differentiates between the healthy (control)

360 and the disease groups (MCI and AD). We then plotted the ASVs with the first 20 highest mean
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361  decrease Gini values (Figure 9a) and included ASVs with mean decrease Gini values above the
362  breakpoint curve in the RF analysis. We identified the following 9 ASVs above the breakpoint:
363  Faecalibacterium (ASV45), Sutterella(ASV607), Coprobacter(ASV531), Bacteroides (ASV81),
364  Anaerostipes(ASV364), Ruminoccocaceae_unclassified(ASV203), Lactobacillus (ASV65),
365  Clostridium_sensu_stricto_1 (ASV118), Ruminococcus_1 (ASV59). Notably, ASVs beyond the
366  breakpoint line are largely the bacterial species responsible for the stratification of gut microbiota
367 inthe samples such as Faecalibacterium, Bacteroides, and Ruminococcus_unclassified. We next
368 calculated diagnostic accuracy of the RF model by plotting receiver operating characteristics
369 curve (ROC) for the above 9 taxa, MMSE, and CDR separately and in combination for each cohort
370  group (Figure 9b). The ROC value for these selected nine taxa were moderately accurate (AUC
371  63%, Flg 8a) but when we included MMSE and/or CDR, we found that the RF model robustly
372  classify all three groups (groupwise AUC range 0.74-1.0, Figures 9b).

373

374  Taxa association with clinical parameters

375

376  We used multivariate association with linear models (MaAsLin2) to assess association between
377 individual taxa and clinical metadata including patients drugs (q < 0.25). This analysis showed
378 that Roseburia, Lactobacillus, Fusicatenibacter were negatively associated with AD
379  (Supplementary Figure S5). Of the medication categories there are several taxa found to be
380  positively associated with anti-depression and statin. Blautia, Caprococcus, Butyricoccus, Dorea,
381  Lachnospiraceae family members, some Ruminoclostridium and Ruminococaceae, known to be
382  butyrate producers are all positively associated with antidepression drugs. Unexpectedly, we
383 found that several taxa were significantly associated with Statin medication and, of these taxa,
384  Streptococcus and unclassified member of Erysipelotrichaceae were highly significantly
385  associated with statin medication. We also observed the following taxa positively associated with

386 statin medication; unclassified members of Ruminococaceae and Lachnospiraceae,
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387  Phascolarctobacterium, Desulfovibrio, Caprobacter, Bifidobacterium, Butyricoccus, Blautia,
388  Barnesiella.

389 DISCUSSION

390

391 In this study, we demonstrate that gut microbiota across AD continuum not only differentiates
392  between cognitive states but also comprise subgroups delineated by locally dominant co-
393  occurring bacteria. Stratification of the gut microbiota along the AD continuum is major unmet
394  need for diet-based and precision nutrition interventions in AD cohorts and here we present proof-
395  of-concept data that can be insighful for the emerging dietary and precision medicine/nutrition
396 initiatives involving AD patients. A key finding in this study is that these approaches all converge
397  on Prevotella and Bacteroides stratification, which are also robustly supported by enrichment and
398 ordination analyses that these two species are the drivers of community diversity and
399  composition. Rather than focusing on a single gut microbiota stratification method we have
400 exercised the best practice of implementing multiple methods to compare, contrast, and sought
401  support from alternative analyses. Also, all methods ranked the following taxa among the Top10
402  bacteria contributing to seperation of the groups; Escherchia/Shigella, Faecalibacterium, Blautia,
403  Ruminococcaceae_unclassified, Ruminococcaceae_UCG-002, Lachnospiraceae_unclassified,
404  Parabacteroides, suggesting these taxa play significant role in the observed community structure
405  of the gut microbiota of the patients in this study.

406

407  PAM clustering and DMM concordantly showed three distinct clusters, one of which is consistent
408  with the recently described Bact2 group [44]. The subjects in this group are likely to have
409 aggravated dysbiosis as manifested from increased abundance of opportunistic pathogens
410  Escherichia/Shigella and some species of Bacteroides species and lower abundance of

411  Faecalibacterium and other SCFA producers. Notably, LDA analysis shuffles similar set of taxa
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412  as the number of subgroups increase but Bacteroides and Prevotella_9 are predominantly the
413  most abundant taxa in many of these clusters. Strikingly, Escherichia/Shigella dominates one of
414  the subgroups in LDA analysis together with opportunistic Klebsiella and Enterococcus,
415  suggesting dysbiotic community type may be enriched in this subgroup.

416

417  Topological data analysis (TDA) we used to stratify gut microbiota in this study deserves a
418  particular attention among others. TDA, based on the Mapper algorithm [50], represents the
419  underlying distribution of data in a metric space by dividing the data into overlapping similar
420  subsets according to a filter function, local clustering on each subset and representing the results
421 in an undirected network. A node in the network represents a group of samples with similar
422  microbiome profiles, and if common samples between nodes are shared then the nodes are
423  linked. Next, a modified special analysis of functional enrichment (SAFE) algorithm maps the
424  metadata and taxa into the network. Finally, vectors of SAFE scores can be used in ordination to
425  rank the driver taxa and their relationship with the metadata, all these algorithms are integrated
426  into tmap [43]. The SAFE scores we obtain following these algorithms allowed us to identify the
427  driver species that are responsible for community structure and showed their relationship with the
428 metadata. We employed Bray-Curtis and Jensen-Shannon to check the variation resulting from
429  distance metric. Prevotella_9, Bacteroides, and Ruminoccus_unclassified were ranked among
430 the top10 taxa with high SAFE scores, albeit in different order, suggesting TDA is robust and
431 consistent even with different distance metrics. In addition to these three taxa unclassified
432  members of again other taxa within Ruminoccus family and Lachnospiraceae were congruent
433 with other three methods we tested. Interestingly, this analysis identified GCA-900066575 taxa
434  (Uncultured human intestinal bacterium) as one of the subclusters in contrast with other methods
435  we used. This genus is taxonomically in the family of Lachnospiraceae, which includes members
436  of SCFA producers [51], still some other members were associated with metabolic diseases such

437  as obesity [52]. Indeed, another related member of this family GCA-900066225 ranked among
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438  the top10 taxa when Bray-Curtis distance was used but enriched around AD. It is therefore
439  important to note that TDA, unlike clustering or probabilistic partitioning methods, provided fine
440  resolution in terms of stratification of the gut microbiota composition. Conversely, TDA did not
441  rank Escherchia/Shigella subnetwork among top ten taxa, neither the ordination showed clear
442  association with the disease. Together, bioinformatic tools developed in the field of microbiome
443  have all their strengths and drawbacks and therefore overlaps in bioinformatic analyses should
444  be pursued.

445

446  Several lines of evidence showed human cohorts in microbiome studies can be phenotypically
447  partitioned along Prevotella and Bacteroides stratification [53-58]. A recent comprehensive report
448  [59] provided evidence that Mediterranean diet-based intervention is associated with specific
449  functional and taxonomic components of the gut microbiome, and its effect is a function of
450  microbial composition. Notably, absence of Prevotella copriin the gut microbiomes of a subgroup
451  of participants was associated with the protective health benefits of the dietary intervention,
452  emphasizing the premise that microbiome-informed stratified dietary intervention would be quite
453  effective. Nevertheless, P. copri is ambivalently associated with both heath and diseases
454  depending on the strain and geography [60], which prompts us to further consider its role in AD.
455

456  Taxonomically, the genus Prevotella_9 is predicted to belong to Prevotella copri complex [61].
457  Comparative genome analysis of the strains of P.copri complex, however, show that some strains
458  qualify to be assigned to even a separate species of Prevotella due to low genomic similarities
459 [62, 63]. Some P. copri strains are associated with disease states such as rheumatoid arthritis
460 [64], while some other strains are associated with habitual diet and life style [54] and
461 underrepresented in Westernized populations. Thus, strain level resolution of Prevotella_9 is
462  needed to draw inferences. Expectedly, multiple strains of P. copri are likely to be part of the

463  bacterial community in the samples. Even though we found Prevotella_9 to be associated with
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464  the control group the enrichment analysis using songbird ranked some ASVs belong to
465  Prevotella_9 (species level) at the top and few other ASVs at the bottom of the log ratio
466  differentials, suggesting analysis beyond species taxonomic hierarchy would provide better
467  resolution in terms of their associations with human phenotypes. Oligotypes of these two genera
468 in an earlier work were found to be differentially associated with plant based or some others were
469  associated with animal-based diet [55]. A recent report provided evidence that Bacteroides
470  cellulosilyticus predicted weight gain more precisely than the ratio of Prevotella and Bacteroides
471  genus. Together, our differential enrichment analysis results are in line with these reports that
472  species or even strain level resolution of these two genera could provide better predictive
473  biomarker power for diet-based intervention studies.

474

475  One limitation of our study was that although we were able control drug induced confounding, we
476  did not control other potential confounders such as diet, BMI, stool consistency. We largely
477  recruited cohabiting spouses as non-demented controls sharing the same diet patterns with the
478  patients and carnivory is rare due to the high cost of meat in the country. We therefore did not
479  predict diet can strongly impact our results.

480

481 In conclusion, we demonstrate in this study that gut microbiota along the Alzheimer’s Disease
482  continuum comprises stratified community structure dashed primarily by Prevotella and
483  Bacteroides but also subnetworks of other taxa exist in the community. The signature taxa when
484  used together with MMSE and CDR robustly classify heterogenous groups hence posing potential
485  biomarker value. The study adds to limited number of clinical studies profiling gut microbiota of
486  AD continuum patients.

487

488

489
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490 MATERIALS AND METHODS

491

492  Subject Recruitment and Study Design: The Istanbul Medipol University and Erciyes University
493  Ethical Review Boards approved this study (Approval numbers: 186/16.4.2015 and 85/
494  20.02.2015, respectively). All participants were informed of the objectives of this study and signed
495  a written consent form prior to their participation. The diagnosis of dementia and MCI due to AD
496  were based on the criteria of the National Institute on Aging-Alzheimer's Association workgroups
497  on diagnostic guidelines for Alzheimer's disease [65, 66]. Exclusion criteria for this study included
498  history of substance abuse, any significant neurologic disease, major psychiatric disorders
499 including major depression. Also, individuals who used commercial probiotics or antibiotics during
500  the study period or within 1-month prior to providing stool sample, or who major Gl tract surgery
501 in past 5 years. Both health centers followed the same protocols in recruiting cohorts and used
502  kits from the same manufacturers to minimize the variations in wet lab procedures.

503

504  Lumbar puncture, CSF biomarkers assays: Cerebro Spinal Fluid (CSF) samples were included
505 in the analyses from a subset of AD patients if the patient was requested to donate CSF sample
506  as part of the clinically mendated diagnostic protocol. CSF samples were collected in the morning
507  after overnight fasting using spinal needles (22 gauge) and syringes at the L3/4 or L4/5 interspace.
508  CSF was then aliquoted into 0.5 mL non-adsorbing polypropylene tubes and stored at -80 °C
509  until assay. Biomarker molecules in CSF (AB42, phosphorylated tau (p-tau), and the p-tau/AB42
510 ratio) were measured consistent with the Alzheimer’s Association flowchart for lumbar puncture
511 and CSF sample processing and the biomarker levels were determined as previously described
512 [67]. Single 96-well ELISA kits (Innogenetics, Ghent, Belgium) were used in quantitation.

513

514  Sample collection and DNA extraction: Stool samples from all participants were collected in

515  the neurology clinics of the university training hospitals. The participants were given a collection
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516 kit included a sterile tube and provided a brief instruction for collection. Self-collected samples
517  were placed within approximately 30 mins of collection in -80 freezers and kept frozen until DNA
518  extraction.

519

520  16S rRNA gene sequencing and PCR were performed as previously described [68] with minor
521  modifications. Briefly, genomic DNA was extracted from 220 mg fecal samples using QiaAmp
522 DNA Stool Mini Kit (Qiagen, Germany) per manufacturer's instructions with the addition of bead
523  beating (0.1 mm zirconium-beads) and lysozyme and RNAse A incubation steps.

524

525  PCR and amplicon sequencing: To amplify the variable V3-V4 regions of the 16S rRNA gene,
526 the primers 341 F  (5-CCTACGGGNGGCWGCAG-3) and 805 R (5-
527 GACTACHVGGGTATCTAATCC-3') were used. MiSeq sequencing adaptor sequences were
528 added to the 5’ ends of forward and reverse primers. Approximately 12.5 ng of purified DNA from
529  each sample was used as a template for PCR amplification in 25 ul reaction mixture by using 2 x
530 KAPA HiFi Hot Start Ready Mix (Kapa Biosystems, MA, USA). For PCR amplification, the
531  following conditions were followed: denaturation at 95 °C for 3 min., followed by 25 cycles of
532  denaturation at 95 °C for 30 sec., annealing at 55 °C for 30 sec. and extension at 72 °C for 30
533  sec., with a final extension at 72 °C for 5 min. Amplified PCR products were purified with
534  Agencourt AMPure XP purification system (Beckman Coulter) and Nextera PCR was performed
535 by using sample-specific barcodes. The constructed Nextera libraries were then sequenced by
536  lllumina MiSeq platform using MiSeq Reagent Kit v2 chemistry.

537

538  Sequence processing and taxonomic assignment: The pair-end 16S rRNA reads were first
539  used cutadapt v1.9 program [69] for the process of quality filtering, trimming and uploaded on the

540 DADAZ2 pipeline [34] integrated into the Nephele platform [70] (v.2.0, http://nephele.niaid.nih.gov).

541  Chimeric sequences are automatically removed by this pipeline, which generates both rarefied
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542 and unrarefied ASV abundance tables. We used Rarefied (10769 reads/sample) ASV table in
543  most downstream analysis due to large differences between some total sample reads except for
544  the scale invariant DEICODE and songbird. We removed any sequences that were classified as
545  either being originated from eukarya, archaea, mitochondria, chloroplasts or unknown kingdoms.
546

547  Quality control: We included no sample DNA extractions and no template negative control
548  samples in every sequencing library prepared. Using reads in the negative control samples as
549  reference we identified and removed probable contaminant reads of 13 ASVs from the ASV table,
550 as predicted by Decontam R package [71] using the ‘prevalence’ method. In this method, the
551  binary coded features across samples are compared to the prevalence in negative controls to
552  identify contaminants. Also, we sequenced the same amplicon of an AD sample three times to
553  check the sequencing variation. Although both centers used same protocols and kits from the
554  same manufacturer in sequencing, we sequenced amplicons amplified from two same genomic
555 DNA templates again from AD samples at both centers to check the center-to-center sequencing
556  concordance. No differences could be identified between the taxonomic compositions of the
557  samples seuquenced at both centers nor between the technical replicates (PCoA, PERMANOVA
558  p=0.1).

559

560  Numerical Ecology and Statistical Analysis: Most numerical downstream analysis of ASV
561 abundances were performed in R environment [72]. All P values, where appropriate, were
562  adjusted for multiple testing using Benjamini-Hochberg (False Discovery Rate; FDR) method. We
563  measured within samples microbial diversity (alpha diversity) using Observed richness, Chao1,
564  Shannon, and Inverse Simpson in phyloseq [73] and tested using Kruskal Wallis. To identify
565  differentially abundant bacterial species we employed animalculus [58] and limma [74] R
566 packages. We assessed microbial diversity between samples (beta diversity) using multiple

567  distance metrics including Bray-Curtis, Jaccard, Canonical Analysis of Principal Components
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568 (CAP). CAP analysis and the similarity percentages breakdown (SIMPER) procedure were
569  performed using PRIMER.v7 [75] . Additionally, due to the compositional nature of the data, we
570  also included robust Aitchison PCA, using the Qiime2 DEICODE plugin [36] to calculate beta
571  diversity with feature loadings. The resulting ordination was visualized using Emperor [76]. We
572  tested significance of beta diversity among groups using again Qiime diversity plugin
573  PERMANOVA.

574

575  Next, we used Songbird [37] for multinomial regression to rank species association with disease
576  status with the following parameters: (formula: "MMSE+CDR+Sex+Edu+C(Group, Diff,
577  levels=('C''MCI'/AD'"), —p-epochs 10000 --p-differential-prior 0.5 --p-summary-interval 1 --p-
578  random-seed 3 —min-sample-count 1000 —min-feature-count 0) . Of note, the formula structure

579  follows Patsy formatting (https://patsy.readthedocs.io/en/latest/ ) such that Groups (C, MCI, AD)

” ”

580 represent levels=[“healthy”, “mild”, “severe”] states, respectively. A null model was generated
581  using the same parameters. The fitted model demonstrated better fit compared to the null model
582 (pseudo Q? = 0.874027). Taxa ranks were visualized using Qurro [38]. Significance was
583  determined using a Welch’s t-test between groups, performed by Graph Pad Prism.

584

585  To identify microbial species associated with the clinical metadata including patients’ medication
586  we performed multivariate association with linear models (MaAsLin2) [77]. The control group was
587  excluded from this analysis as they were not normally prescribed these medications. We
588  employed the R package MaAsLin 2.1.0 to perform per-feature tests. We log-transformed relative
589  abundances of microbial species and standardized continuous variables into Z-scores and binary
590 encoded medication information before including them in the MaAsLin models (q<0.25 for
591  significance).

592
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593  Stratification of gut microbiota: We employed clustering, probabilistic partitioning, and
594  topological data analysis approaches for the stratification of gut microbiota in the samples.
595  Partitioning around the medoid (PAM) approach [39] clusters samples by iteratively updating each
596  cluster's medoid. We assigned samples to community types using the function pam() in R
597  package cluster based on Bray Curtis and Jensen Shannon distances. The number of clusters
598  was determined by Gap statistic evaluation. Departing from the clustering approach, we next used
599  two distinct probabilistic methods to partition microbiota landscape, namely Dirichlet multinomial
600  mixture models (DMM) [40] and Latent Dirichlet Allocation (LDA) [41, 42]. Genus level
601  abundances were fitted to DMM models to partition microbial community profiles into a finite
602  number of clusters, using the Laplace approximation as previously described [40, 78].

603

604  As a second probabilistic partitioning we performed LDA, is a multi-level hierarchical Bayesian
605 model [41] otherwise used for collections of discrete data such as text corpus analysis in
606 linguistics. LDA is a generalization of Dirichlet multinomial mixture modeling where biological
607 samples are allowed to have fractional membership and distinct microbial communities have
608  different microbial signatures. Thus, for each taxon there is a vector of probabilities across all
609 clusters that it can be assigned to. Each cluster, therefore, has a different probability of containing
610 taxa, indicating chance of microbes in a particular subgroup (strata) co-occurring due to
611  community assembly dynamics. To fit the model we used Gibb’s sampling with the R package
612  MetaTopics (v.1.0) [79]. The relative abundances of genus collapsed table with abundances more
613  than 0.1% and 5% sample prevalence was input to the model. We plotted perplexity measure and
614  loglikelyhood values to estimate model performance and optimal number of topics (subgroups of
615 microbial assemblages) using 5-fold cross-validation. However, we observed that both
616  parameters continued to improve with increasing subgroup number without a clear optimum
617  except the first jump in perplexity was near 10 topics. We therefore picked first 10 topics for the

618  sake of interpretability.
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619

620  The final method we applied was topological data analysis (TDA) based on the Mapper algorithm
621  [50] and network representation for stratification and association of study of high dimensional
622  microbiome data, all integrated into tmap tool [43]. The framework enables to reveal association
623  of taxa or metadata within the entire network and to identify enrichment subnetworks of different
624  association patterns. Conceptually, the Mapper algorithm transforms a distance matrix and
625 represent the shape of the data cloud in an undirected network. Next, a modified version of special
626  analysis functional enrichment (SAFE) algorithm to map the value of the target feature into the
627  network was employed, followed by ordination of SAFE scores to show taxa-metadata association
628  [43].

629

630  Signature taxa: To identify microbial signature of severity of cognitive impairment in AD
631  continuum we implemented a machine learning procedure. We first took advantage of songbird
632  tool to select features including the covariates and healthy (control) and disease states (AD+MCI)
633  in the model formula. We subsequently fit the list of ASV selected this way into Random Forest
634  models. We plotted the area under the receiver operating characteristic curve (AUROC) to show
635  prediction performance of the models. To create the classifiers, a random forest constituted of
636 500 trees were computed using the default settings of the “randomForest” function implemented
637 in the randomForest R package (v4.6-7). Mean decrease Gini values were averaged for each
638  ASV among the 100 random forest replicates. The ASVs with the first 20 highest mean decrease
639  Gini values were plotted. ASVs with mean decrease Gini values above the breakpoint curve were
640  chosen to be part of the classifier. Breakpoints were estimated using the “breakpoints” function
641 included in the strucchange R package [52]. We subsequently fit the list of ASVs selected this
642  way with or without psychometric test values, i.e. MMSE and CDR, into Random Forest models,
643  and bootstrapped for 100 times. We plotted the area under the receiver operating characteristic

644  curve (AUROC) to show prediction performance of the models.
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Table 1. Demographic characteristics of the participants in the cohort

Cc MCI AD
n, (N=125) 51 27 47
Sex (Female, N%) 45% (23/51) 41% (11/27) 49% (23/47)
Age (years, mean = SDEV) 67 £5.3 69.2+6.4 714 +£5.1
Education (Years) 7.2+41 10.4+52 44+41
MMSE 27117 254 +27 16.9+5.7
CDR
0 100% 0% 0
0.5 0 100% (27/27) 29.8% (14/47)
1 0 0 31.9% (15/47)
2 0 0 29.8% (14/47)
3 0 0 8.5% (4/47)
AB1-42/P-Tau (pg/mL) NA NA 5.97 £ 3.7 (n=14)
AB1-42/T-Tau (pg/mL) NA NA 0.91 £ 0.6 (n=14)
Medications
AA NA 37% (10/27) 27.6% (13/47)
ADd NA 81% (22/27) 87% (41/47)
Adep NA 66.7% (18/27) 27.6% (13/47)
AE NA 18.5% (5/27) 8.5% (4/47)
Aht NA 48% (13/27) 29.8% (14/47)
Apsik NA 11.1% (3/27) 21.2% (10/47)
Adiab NA 29.6% (8/27) 19.1% (9/47)
PP NA 7.4% (2/27) 6.3% (3/47)

C: Control group, MCI: Mild Cognitive Impairment group; AD: Alzheimer’s Disease group; MMSE: Mini-Mental State
Exam (MMSE); CDR:Clinical Dementia Rating. AA:Antiaggregant; ADd:AD-treatment; Adep: Antidepressant;
AE:Antiepileptic; Aht:Antihypertansive; Apsik: Antipychotic; Adiab:Antidiabetic; PP: Proton-pump inhibitor
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