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Abstract In almost every natural environment, sounds are reflected by nearby objects,
producing many delayed and distorted copies of the original sound, known as reverberation. Our
brains usually cope well with reverberation, allowing us to recognize sound sources regardless of
their environments. In contrast, reverberation can cause severe difficulties for speech recognition
algorithms and hearing-impaired people. The present study examines how the auditory system
copes with reverberation. We trained a linear model to recover a rich set of natural, anechoic
sounds from their simulated reverberant counterparts. The model neurons achieved this by
extending the inhibitory component of their receptive filters for more reverberant spaces, and
did so in a frequency-dependent manner. These predicted effects were observed in the
responses of auditory cortical neurons of ferrets in the same simulated reverberant
environments. Together, these results suggest that auditory cortical neurons adapt to
reverberation by adjusting their filtering properties in a manner consistent with dereverberation.

Introduction

Reverberations accompany almost all natural sounds that we encounter and are the reflections
of sound off objects in the environment such as walls, furniture, trees, and the ground (Huisman
and Attenborough, 1991; Sakai et al., 1998). Compared to the original sound, these reflections
are attenuated and distorted due to frequency-selective absorption and delayed due to increased
path length (Kuttruff, 2017).

Reverberation can be useful, helping us judge room size, sound-source distance, and realism
(Shinn-Cunningham, 2000; Trivedi et al., 2009; Kolarik et al., 2021). However, strong reverberation
can impair sound-source localization (Hartmann, 1982; Shinn-Cunningham and Kawakyu, 2003;
Rakerd and Hartmann, 2005; Shinn-Cunningham et al., 2005) and segregation (Culling et al., 1994,
Darwin and Hukin, 2000), pitch discrimination (Sayles and Winter, 2008) and speech recognition
(Knudsen, 1929; Ndbélek et al., 1989; Guediche et al., 2014; Houtgast and Steeneken, 1985). No-
tably, reverberation can be detrimental for people with hearing impairments, increasing tone de-
tection thresholds and reducing intelligibility of consonants (Humes et al., 1986; Helfer and Wilber,
1990). It can also impede the effectiveness of auditory prostheses such as hearing aids (Schweitzer,
2003; Qin and Oxenham, 2005; Poissant et al., 2006) and substantially reduces the performance of
automatic speech recognition devices (Yoshioka et al., 2012; Kinoshita et al., 2016).

The auditory system has mechanisms to help us cope with reverberation, to the extent that
healthy listeners often only directly notice it when it is strong (in environments such as cathe-
drals). In the presence of mild-to-moderate reverberation, healthy listeners can continue to per-
form sound localization (Hartmann, 1982; Rakerd and Hartmann, 2005) and speech and auditory
object recognition tasks (Houtgast and Steeneken, 1985; Bradley, 1986; Darwin and Hukin, 2000;
Culling et al., 2003; Nielsen and Dau, 2010). Since it is such a ubiquitous property of natural sounds,
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these findings highlight the importance, for both normal and impaired hearing, of understanding
how the brain copes with reverberation (Xia et al., 2018).

What are the neurophysiological mechanisms that support listening in reverberant environ-
ments? Previous studies have examined subcortical processes that facilitate localization of rever-
berant sounds (Yin, 1994; Litovsky and Yin, 1998; Fitzpatrick et al., 1999; Spitzer et al., 2004; Tollin
et al., 2004; Pecka et al., 2007; Devore et al., 2009; Kuwada et al., 2012; Kim et al., 2015; Brughera
et al., 2020), and how subcortical processing of synthetic periodic sounds is disrupted by reverber-
ation (Sayles and Winter, 2008) and partially restored by compensatory mechanisms (Slama and
Delgutte, 2015). Much less is known about the neural processing of speech and other complex
natural sounds in the presence of reverberation. However, converging evidence from electrophys-
iological recordings in animals (Rabinowitz et al., 2013; Moore et al., 2013; Mesgarani et al., 2014)
and from human EEG (Khalighinejad et al., 2019) and fMRI (Kell and McDermott, 2019) studies
suggests that representations of sounds that are invariant to non-reverberant background noise
emerge at the level of auditory cortex via neuronal adaptation to stimulus statistics (but see also
Lohse et al., 2020). Auditory cortex may play a similar role in adaptation to reverberation. Indeed,
speech and vocalization stimuli reconstructed from auditory cortical responses in awake ferrets
more closely resemble their anechoic versions than the reverberant ones, even if the sounds were
presented in reverberant environments (Mesgarani et al., 20714). Similar results have been found
in humans using sound reconstructions from EEG measurements (Fuglsang et al., 2017). It re-
mains unclear, however, whether the observed cortical invariance to reverberation can occur in
the absence of top-down attention, and through what neural mechanisms this is achieved.

Here, we addressed these questions by using a model to predict what neural tuning properties
would be useful for effective attenuation of reverberation (a normative “dereverberation model”).
We then test these predictions using neural recordings in the auditory cortex of anesthetized fer-
rets. More specifically, we made reverberant versions of natural sounds in simulated rooms of
different sizes. Next, we trained a linear model to retrieve the clean anechoic sounds from their re-
verberant versions. Our trained model provided specific predictions for how the brain may achieve
this task: with increased reverberation, neurons should adapt so that they are inhibited by sound
energy further into the past, and this should occur in a sound frequency-dependent manner. We
observed these predicted effects in the responses of auditory cortical neurons to natural sounds
presented in simulated reverberant rooms, and show that they arise from an adaptive process.
These results suggest that auditory cortical neurons may support hearing performance in reverber-
ant spaces by temporally extending the inhibitory component of their spectrotemporal receptive
fields.

Results

Dereverberation model kernels show reverberation-dependent inhibitory fields
We trained a dereverberation model to estimate the spectrotemporal structure of anechoic sounds
from reverberant versions of those sounds. The anechoic sounds comprised a rich 10-minute-long
set of anechoic recordings of natural sound sources, including speech, textures (e.g. running water)
and other environmental sounds (e.g. footsteps) (see Sound stimuli and virtual acoustic space).
Reverberation in small (3.0 x 0.3 x 0.3m) and large (15 x 1.5 x 1.5m) tunnel-shaped rooms was
simulated using the virtual acoustic space simulator Roomsim (Campbell et al., 2005) (Figure 1A).
The simulation also modelled the acoustic properties of the head and outer ear by using a ferret
head-related transfer function (HRTF, Schnupp et al. , 2007). The dimensions of the smaller room
made it less reverberant (reverberation time, RT,, = 130ms) than the larger room (RT;, = 430ms).
After the reverberant sounds were generated, they were converted to cochleagrams (Figure 1B).
These spectrotemporal representations of the sound estimate the filtering and resulting represen-
tation of the sound by the auditory nerve (Brown and Cooke, 1994; Rahman et al., 2020). Cochlea-
grams of an example sound clip presented in the anechoic, small and large room conditions are
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Figure 1. Dereverberation model.

A, Virtual acoustic space was used to simulate the sounds received by a ferret from a sound source in a reverberant room for diverse natural
sounds. Schematic shows the simulated small room (length (L) = 3m, width (W) = 0.3m, height (H) = 0.3m) used in this study, and the position of
the virtual ferret's head and the sound source (1.5m from the ferret head) within the room. We also used a medium (x2.5 size) and large room
(x5). The acoustic filtering by a ferret's head and ears was simulated by a head-related transfer function (HRTF). B, Schematic of the
dereverberation model. The waveform (top left panel) shows a 4s clip of our anechoic recordings of natural sounds. For a given room, simulated
room reverberation and ferret HRTF filtering were applied to the anechoic sound using Roomsim (Campbell et al., 2005), and the resulting
sound was then filtered using a model cochlea to produce a reverberant cochleagram (top right panel). A cochleagram of the anechoic sound
was also produced (bottom left panel). For each room, a linear model was fitted to estimate the anechoic cochleagram from the reverberant
cochleagram for diverse natural sounds. Each of the 30 kernels in the model was used to estimate one frequency band of the anechoic sound.
One such model kernel is shown (middle right panel). Generating the estimated anechoic cochleagram (bottom right panel) involved convolving
each model kernel with the reverberant cochleagram, and the mean squared error (MSE) between this estimate and the anechoic cochleagram
was minimized with respect to the weights composing the kernels. C, Sample cochleagrams of a 4s sound clip for the anechoic (left panel), small
room (middle panel), and large room (right panel) reverberant conditions.
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shown in Figure 1C.

We trained a dereverberation model to recover the anechoic cochleagram, using either the
small or large room cochleagrams as an input (Figure 1B). The dereverberation model was com-
prised of a set of “dereverberation” kernels, one for each frequency in the anechoic cochleagram
(see Model kernels). Each model kernel used the full reverberant cochleagram (up to 200ms in the
past) to estimate the current power in the anechoic cochleagram within a single frequency band.
This resulted in a set of positive and negative weights in each model kernel. Obtaining the esti-
mated anechoic sounds involved convolution over time between the model kernels and the rever-
berant cochleagrams, and the model was trained to minimize the difference between this estimate
and the original anechoic sound (Figure 1B). The model was trained separately to dereverberate
the small and large room cochleagrams. For each room, on a held-out test set, the dereverberation
model reduced the difference between the incoming reverberant cochleagram and the anechoic
cochleagram (small room mean squared error reduction 26%; large room reduction 20%).

Three examples of model kernels are shown in Figure 2A for the large room and the small
room, with the anechoic frequency band they estimate indicated at the top. For each model ker-
nel, the excitatory (red) and inhibitory (blue) weights represent spectrotemporal features in the
reverberant cochleagrams that are associated with increased or decreased power in the specified
frequency band of the anechoic cochleagram, respectively. The majority of the excitatory and in-
hibitory weights appear localized around a particular frequency, resembling the frequency tuning
seen in auditory cortical neurons (Bizley et al., 2005). This is expected in our dereverberation
model since each kernel aims to estimate the power in a given frequency band of the anechoic
cochleagram.

The model kernels had temporally asymmetric structure, where strongest excitatory weights
tended to occur first (Figure 2A), followed soon after by a longer inhibitory field. These excitatory
and inhibitory timings are readily apparent when we plot the frequency-averaged positive and
negative kernel weights (Figure 2B), and are a common feature across all kernels in the model (Fig-
ure 2-Figure supplement 1A, and Figure 2-Figure supplement 2A). This pattern has been commonly
observed in the spectrotemporal receptive fields (STRFs) of auditory cortical neurons (deCharms
et al., 1998; Linden et al., 2003; Harper et al., 2016; Rahman et al., 2019), so our model qualitatively
reproduces the basic frequency tuning and temporal characteristics of these auditory cortical neu-
rons.

Importantly, we can compare the model kernels for the large room with those for small room.
The inhibitory components of the large-room kernels tended to be delayed and longer in duration,
relative to the small-room kernels (Figure 2B). In contrast, the temporal profile of the excitatory
components was similar for the small and large rooms. We predicted that a comparable shift in
inhibitory filtering could play a role in reverberation adaptation in auditory cortical neurons.

Auditory cortical neurons have reverberation-dependent inhibitory fields

To test the predictions of our dereverberation model in vivo, we presented to anesthetized ferrets
an 80 sec subset of the natural sounds in the simulated small and large reverberant rooms (see
Sound stimuliand virtual acoustic space). We did this while recording the spiking activity of neurons
in the auditory cortex using Neuropixels high-density extracellular microelectrodes (Jun et al., 2017)
(see Surgical procedure). Stimuli were presented as 40 sec blocks, in which all sounds were in the
same reverberant room condition. This allowed neurons to adapt to the reverberation acoustics of
the room. We recorded the responses of 2,244 auditory cortical units. Of these, the 696 units (160
single units, 23%) which were responsive to the stimuli were used for further analysis (see Spike
sorting).

We estimated the filtering properties of each unit by fitting a separate STRFs to the neuronal
responses for each reverberant condition. Neuronal STRFs are linear kernels mapping the cochlea-
gram of the sound stimulus to the time-varying firing rate of the neuron (Theunissen et al., 2001).
The positive regions of an STRF represent sound features whose level is positively correlated with
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the the neuron'’s spike rate, providing the “excitatory” part of the receptive field. Similarly, nega-
tive regions of the STRF indicate features whose level is negatively correlated with the neural unit's
spike rate, providing the “inhibitory” receptive field.

Examples of typical neuronal STRFs are shown in Figure 2C, and these can be compared to the
model kernel properties of our dereverberation model above (Figure 2A). As mentioned above, the
model kernels show some similarity to the STRFs typically reported for auditory cortical neurons
(deCharms et al., 1998; Linden et al., 2003; Harper et al., 2016; Rahman et al., 2019). Likewise, the
model kernels show similarity to the STRFs we present here, including having frequency tuning,
early excitatory receptive fields and delayed inhibitory receptive fields (Figure 2D). These consis-
tencies between the general features of our model and neurophysiological responses validated
our use of this normative approach to capture neural response properties. We next examined if
the model could predict neural adaptation to different reverberant conditions.

The important prediction we observed in the model was that the inhibitory fields tended to
be more delayed and of longer duration in the large-room kernels versus the small-room kernels,
whereas the excitatory field remained unchanged. Strikingly, we observed the same pattern in
the neuronal STRFs in Figure 2D. This observation also held across different frequency channels in
both the model and the data. (Figure 2-Figure supplement 1, Figure 2-Figure supplement 2).

Similar effects of reverberation on the inhibitory fields of model kernels and audi-
tory cortical neurons

Since both the dereverberation model and the neuronal STRFs had structure which varied accord-
ing to the reverberation condition, we sought to investigate these effects quantitatively. We used
two metrics to estimate the temporal dynamics of the inhibitory (and excitatory) components of
the model kernels and neuronal STRFs: Center of mass (COM) and peak time (PT) (see Quan-
tification of the temporal effects in model kernels and neuronal STRFs). The COM measured the
average temporal delay of the inhibitory (COM~) or excitatory (COM*) components of the model
kernels/neuronal STRFs (Figure 2B,D). The PT is the time at which the maximal inhibition (PT~) or
excitation (PT*) occurred.

For each anechoic frequency channel in the dereverberation model, we calculated the differ-
ence between the COM ~for the kernels in the large room and small room conditions, providing 30
CoM-differences (1 for each channel), and did the same for the COM*. We plotted the distribution
of these differences as histograms in Figure 3A. Similarly, a histogram of the CO M difference be-
tween the neuronal STRFs in the large and small room conditions is plotted for 696 cortical units in
Figure 3B. We found that the COM*did not differ significantly between the small and large rooms,
either for model kernels (median CO M *difference = 0.97ms, Wilcoxon signed-rank test, p = 0.066)
or neuronal STRFs (median COM*difference = 0.32ms, p = 0.39). In contrast, the COM~showed
clear dependence on room size. The inhibitory centers of mass were higher in the larger room
for both the model kernels (median COM ~difference = 7.9ms, p = 1.9x107°), and neuronal STRFs
(median coM~difference = 9.3ms, p = 1.5x107%),

The results of our analysis of PTwere largely consistent with our COMfindings (Figure 3C,D).
The peak time of the excitatory component (PT*) of model kernels did not differ between the small
and large room (median PT*difference = 0.0ms, p = 1.0), while PT*in the neural data showed a
small but statistically significant increase in the large room (median PT*difference = 0.0ms, p =
0.014). The peak time of the inhibitory component, on the other hand, occurred much later in the
large room, in both the model kernels (median PT-difference = 10ms, p = 3.7x1073) and neuronal
STRFs (median PT-difference =10ms, p = 1.5x107%). In general, there was more spread in the COM
and PT in the neuronal data comparing to the dereverberation model. This is likely because, unlike
in the model, which was focused purely on dereverberation, the auditory cortex subserves multiple
functions and a diversity of STRF spans is useful for other purposes (e.g. prediction, Singer et al. ,
2018). Despite this, it is notable that the median COMand PTdifferences of the dereverberation
model were of similar magnitude to those of the real data.
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Figure 2. Comparison of dereverberation model kernels and neuronal receptive fields from auditory cortex.

A, Example model kernels resulting from the dereverberation model. Three example model kernels are shown, after training on the large (top
row) or small (bottom row) room reverberation. The frequency channel which the model kernel is trained to estimate is indicated above each
kernel. The color scale represents the weights for each frequency (y-axis) and time (x-axis). Red indicates positive weights (i.e. excitation), and
blue indicates negative weights (i.e. inhibition; color bar right). B, Each plot in the top row shows the temporal profile of the excitatory kernel
weights for the corresponding example model kernels shown in A. Excitatory temporal profiles were calculated by positively rectifying the kernel
and averaging over frequency (the y-axis), and were calculated separately for the small (pink) and large (red) rooms. The center of mass of the
excitation, COM™, is indicated by the vertical arrows, which follow the same color scheme. The bottom row plots the inhibitory temporal profiles
for the small (cyan) and large (blue) rooms. Inhibitory temporal profiles were calculated by negatively rectifying the kernel and averaging over
frequency. The COM ™ is indicated by the colored arrows. C, Spectrotemporal receptive fields (STRFs) of three example units recorded in ferret
auditory cortex, measured for responses to natural sounds in the large room (top row) or small room (bottom row), plotted as for model kernels
in A. D Temporal profiles of the STRFs for the three example units shown in C, plotted as for the model kernels in B.

Figure 2-Figure supplement 1. Model kernels and neuronal STRFs across frequency channels.
Figure 2-Figure supplement 2. Model and neuronal temporal profiles across frequency channels.
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Figure 3. Differences in the temporal profiles for large and small rooms.

A, Histograms of the difference in center of mass of the temporal profiles (for the inhibitory field, COM~, blue; excitatory field, COM™, red) of
dereverberation model kernels between the two different reverberant conditions (large - small room). The COM ™~ increased in the larger room
with a median difference = 7.9ms; COM™* did not differ significantly between the rooms, median difference = 1.0ms. B, Center of mass
differences, plotted as in A, but for the auditory cortical units. The COM~ increased in the larger room, median difference = 9.3ms; COM™* was
not significantly different, median difference = 0.3ms. C, Histograms of the large - small room difference in peak time for the temporal profiles
of the model kernels (inhibitory, PT~, blue; excitatory, PT*, red). The PT~ values were larger in the larger room, median difference = 10ms,
whereas PT* values were not significantly different, median difference = 0.0ms. D, Peak time differences for neuronal data, plotted as in C. The
PT~ values increased in the larger room, median difference = 10ms, and PT+ showed a weakly significant change, but the median difference
was 0ms. Asterisks indicate the significance of Wilcoxon signed-rank tests: ****p < 0.0001, **p < 0.01, *p < 0.05.

Figure 3-Figure supplement 1. A medium room condition shows intermediate center of mass and peak time values compared to the small and
large room conditions.

Figure 3-Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical dereverberation.
Figure 3-Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical dereverberation
(caption).

Figure 3-Figure supplement 3. Neural response to noise probe shows slower adaptation in the more
reverberant condition.

Figure 3-Figure supplement 4. Adaptation to reverberation is confirmed using stimuli that switch between
the small and large room.
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As our stimulus set described above included only 2 reverberant rooms, it was not clear if the
neurons treated these simulated rooms as two points along an ordered reverberation scale. To
further examine whether the timing of the neuronal STRF inhibitory component scales with the
amount of reverberation in our simulated room, we added a third “medium” sized room with the
same relative proportions and absorption properties as the small and large rooms. We measured
auditory cortical responses to this extended stimulus set in 2 ferrets (266 neural units).

The COM and PT measures of neuronal STRF dynamics were compared across the small,
medium and large room conditions, and are shown in Figure 3-Figure supplement 1. As expected,
there was little effect of room size on the timing of the excitatory STRF components (Figure 3-
Figure supplement 1A,C). The COM* showed a weak but significant overall increase with room
size (Kruskal-Wallis test; y*(2) = 6.4, p = 0.042), but there was no effect of room size on the peak
time of excitation, PT* (y2(2) = 1.4, p = 0.50). In post-hoc pairwise comparisons, COM* only dif-
fered between the small and medium rooms (Fisher's least significant differences; large-small: p =
0.21; large-medium: p = 0.21; medium-small: p = 0.012).

In contrast, as predicted, we found that the delay of the inhibitory STRF components increased
with greater room reverberation. The COM~ was generally larger for larger rooms (Kruskal-Wallis
test; y%(2) = 37, p = 7.6x107°) (Figure 3-Figure supplement 1B). Post-hoc pairwise tests confirmed
that COM - differed between all three reverberant conditions (Fisher’s least significant differences;
large-small: p = 1.3x107°; large-medium: p = 2.0x10~*; medium-small: p = 0.019). The peak time
of STRF inhibition, PT-, also increased with room size across all 3 rooms (x2(2) = 27, p = 1.6x1075;
large-small: p = 2.7x1077; large-medium: p = 0.0024; medium-small: p = 0.036) (Figure 3-Figure
supplement 1D).

Thus, as room size, and hence reverberation time, was increased, we observed an increase
in the delay of inhibition in the tuning properties of auditory cortical neurons. This increase is
consistent with a normative model of dereverberation, suggesting that the tuning properties of
auditory cortical neurons may adapt in order to dereverberate incoming sounds.

Reverberation effects result from an adaptive neural process

In principle, there could be other reasons, unrelated to adaptation, why the temporal profile of
the inhibitory field is delayed and broader in the more reverberant room. An important possibility
is that differences in sound statistics between the reverberation conditions could result in differ-
ent STRFs, even if the underlying neuronal tuning is unchanged. For example, the cochleagrams
of more reverberant sounds are more temporally blurred (Figure 1C). This could lead to slower
features in the neuronal STRFs for the larger room, purely due to systematic model fitting arte-
facts (Christianson et al., 2008). In combination with changing sound statistics, a non-adaptive
static non-linearity in the neural system could produce apparent differences in neuronal tuning
between the reverberation conditions (Christianson et al., 2008). Here, we perform several addi-
tional experiments and analyses to test whether the reverberation-dependent effects observed
above are likely to result from a genuine adaptive process.

As a first test, for each recorded unit, we fitted a simulated linear-nonlinear-Poisson model
neuron (Schwartz et al., 2006), composed of a single STRF (fitted to the combined small and large
room stimuli) feeding into a non-linear output function (see subsection Simulated neuron), which,
in turn, fed into a non-homogeneous Poisson process. Since this model did not have an adaptive
component, we used it to assess whether our reverberation-dependent results could arise from fit-
ting artefacts in a non-adaptive neuron. To do this, we presented the same stimuli to the simulated
non-adaptive neurons as we did to the real neural responses and performed the same analyses.
Hence, we fitted STRFs to the simulated neural responses separately for the large and small room
conditions. We then extracted COMand PTparameters from the excitatory and inhibitory tem-
poral profiles of these STRFs, and compared them to those of the measured cortical units. The
simulated results are shown alongside the neural results in Figure 3-Figure supplement 2.

We asked whether the shift in inhibition observed in the dereverberation model and neural
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data was also present in this adaptation-free simulation. In the simulation, although the inhibitory
COM - was slightly larger for the more reverberant condition (Figure 3-Figure supplement 2B), the
effect size for the simulated neurons (median COM~ difference = 0.90ms, p = 1.5x1073) was very
small compared to that observed in the real neuronal data (median COM - difference =9.3ms, p =
1.5x107%, Figure 3-Figure supplement 2C). We directly compared the COM - room differences be-
tween cortical units and their simulated counterparts (Figure 3-Figure supplement 2D), and found
that the reverberation effects on COM~ were consistently larger in the neuronal data (median
difference = 9.3ms, p = 3.9x107%). An analysis of the peak time of inhibitory STRF components
for neural and simulated units was in agreement with the center of mass results (Figure 3-Figure
supplement 2E-G). The simulation predicted a near zero shift in the peak inhibitory component be-
tween rooms (median PT- difference = 0ms, p = 3.5x10~°), and was unable to account for the 10ms
large room delay observed in the neuronal responses (median difference = 10ms, p =4.7x1073!). For
the simulation, differencesin COM*and PT*between the two reverberation conditions were small
(Figure 3-Figure supplement 2B,E, median COM* difference = 1.7ms, p = 3.4x10~%; median PT* dif-
ference = 0.0ms, p = 2.3x107%°), with a slight difference from the real responses for PT+*difference
(median difference = 0.0ms, p = 7.7x107°) but not COM*difference (median difference = 0.0ms, p
= 0.72). In summary, differences in stimulus properties alone were not able to account for the
~10ms delay in inhibitory COMtiming in the large reverberant room, and these are likely to arise
instead from neural adaptation to room reverberation.

To further confirm that the shift in inhibitory receptive fields arises from neuronal adaptation
to reverberation and not to differences in stimulus statistics between the room conditions, we
compared how all neurons in our dataset respond to a probe stimulus (a non-reverberated noise
burst) interspersed within the small and large room reverberation stimuli (see Noise burst analy-
sis). Ifthe neurons adapt to the current reverberation condition, we should expect them to respond
differently to the noise probe when it occurs within the small room and large room stimuli, reflect-
ing the different adaptation states of the neurons. The neuronal responses to the noise probe
showed a similar initial onset excitation (0-20ms) in both conditions, but the return to baseline
firing was slower in the large room condition (Figure 3-Figure supplement 3A). This is consistent
with the previous STRF analysis, wherein the excitatory temporal profile was similar between the
small and large rooms (Figure 3B,D), while the inhibitory components were delayed in time in the
large room (Figure 3B,D). For each cortical unit, we compared the center of mass of the noise burst
response between the small and large rooms (Figure 3-Figure supplement 3B). The COM of the
noise response increased slightly in the large room (median COM difference = 1.0ms, p = 0.0063).
Therefore, responses to an anechoic probe noise show further evidence for reverberation adap-
tation in auditory cortical neurons, and are consistent with the predicted delayed inhibition in the
presence of increased reverberation.

To further confirm and explore the adaptive basis of our results, we presented our reverberant
sounds in blocks, which switched between the small and large room every 8s (see Figure 3-Figure
supplement 4A and Switching stimuli analysis). This switching stimulus was tested in 310 neurons
across 4 ferrets. If the room adaptation accumulates throughout the 8s following a room switch, we
would expect the inhibitory component of neuronal STRFs to be increasingly delayed throughout
this period. To test this prediction, we fitted STRFs to neuronal responses separately from the first
and last half of each 8s room block, for the small (S1 early and S2 late halves) and large room (L1
early and L2 late halves). The switching stimulus was designed to ensure that the stimulus set of
L1 and L2 (or S1 and S2) was the same, but the order of stimuli was shuffled differently for these
two time periods. Specifically, we predicted that the neuronal STRFs would have a larger COM~
during the L2 than the L1 period, while COM™* should remain unchanged. By the same reasoning,
in a large-to-small room switch, we expected the COM ™ to be smaller in S2 than in S1, while COM*
should remain similar.

We observed these predicted trends in our data, as show in Figure 3-Figure supplement 4B,C.
The COM~ decreased from S1 to S2 (median difference = -0.9ms, Wilcoxon signed-rank test, p =
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0.019), while COM™ did not change across these two periods (median difference = 0.52ms, p =
0.85). In the switch to a large room, COM - increased from the first (L1) to second (L2) half of the
block (median difference = 1.5ms, p = 0.0088), while COM™* did not change (median difference =
0.8ms, p = 0.35). These results further suggest that auditory cortical receptive fields are genuinely
adapting dynamically to the changing reverberant conditions.

Frequency dependence of the temporal profile of adaptation

Reverberation is a frequency-dependent effect, as higher frequencies are usually attenuated by air
and surfaces faster than lower ones in natural conditions (Traer and McDermott, 2016; Kuttruff,
2017). Therefore, we explored whether our dereverberation model and auditory cortical neurons
also show frequency-dependent reverberation effects.

Figures 2-Figure supplement 1 and Figure 2-Figure supplement 2 plot the reverberation model
kernels and neuronal STRFs as a function of their frequency tuning. A visual inspection of these
plots reveals that in both the model and the neuronal data, while the temporal spread of the ex-
citatory components stays relatively constant across the preferred frequency, the inhibitory com-
ponents tend to extend less far back in time as the preferred frequency increases. This tempo-
ral narrowing of the inhibitory fields is observed for both the large and the small reverberant
rooms. Therefore, the frequency-dependent effects predicted by our dereverberation model are
confirmed in our cortical recordings.

To further examine these frequency-tuning effects, we plotted the excitatory and inhibitory
center of mass values (COM*, COM~) as a function of the anechoic frequency estimated by the
model kernels (Figure 4A) or the best frequency of the neuronal STRFs, i.e. the sound frequency of
the highest weight (Figure 4B). The inhibitory components occurred systematically later in model
kernels that were tuned to lower frequencies, in both the small (Pearson’s correlation: r =-0.57, p
=0.0037) and large room (r = -0.80, p = 2.6x107°) simulations. The same correlation between best
frequency and COM~ was present in the neuronal STRFs (small room: r =-0.80, p = 3.0x107; large
room: r =-0.85, p = 1.6x1077). In contrast, the dereverberation model showed a smaller magnitude
but significant increase of the excitatory COM* with best frequency (small room: r = 0.52, p =
0.0087; large room: r = 0.55, p = 0.0049), while there was no relationship between COM™* and best
frequency in the neuronal data (small room: r =-0.34, p = 0.1; large room: r =-0.25, p = 0.24).

Figure 4A,B also show that the inhibitory components were later in time in the large room than
in the small room across the entire best frequency range, for both the dereverberation model and
neuronal data. The COM™ values, on the other hand, were largely overlapping between the two
rooms across this frequency range. This is in agreement with our observations that the inhibitory
components of the receptive fields shift reliably with room size, while the excitatory components
do not.

The frequency dependence of the inhibitory shift may reflect a frequency dependence in the
reverberation acoustics themselves. The decay rate of the power in the impulse response of a
reverberant environment depends on sound frequency, and this dependence can change across
different environments. However, many man-made and natural environments show a gradual
decrease in decay rate above about ~0.5kHz (Traer and McDermott, 2016). The early decay rate
can be measured as the reverberation time RT,,, which is the time necessary for the sound level to
decay by 10dB relative to an initial sound impulse. The frequency-dependent RT,, values for our
small and large rooms are plotted in Figure 4C. The impulse responses of both rooms exhibited a
decrease in RT), values as a function of frequency (Pearson’s correlation; small room: r =-0.82, p
= 1.1x1071%; large room: Pearson’s correlation: r = -0.91, p = 8.0x107'9). Therefore, the frequency-
dependent delay in the inhibitory components of our dereverberation model and cortical STRFs
paralleled the RT,, frequency profile of the virtual rooms in which the sounds were presented.

10 of 27


https://doi.org/10.1101/2021.10.28.466271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.28.466271; this version posted October 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Dereverberation model
=055" r 0.80
90 rIarge_ ok large ok
0.52 . 0.57
v
S5
=
@)
O
09 13 20 29 44 6.5 9.8 146
B Neuronal data
r = -0.25 r =.0.85"""
130 9= 034 [ ggo™
110
(2]
£ o
3
S 70

50
30

09 13 20 29 44 65 9.8 146

Room reverberation

09 13 20 29 4465 98 146
Frequency (kHz)

Figure 4. The inhibitory field latencies are frequency dependent, consistent with the reverberation.
A, Center of mass values (COM) are plotted against the anechoic frequency channel being estimated, for the excitatory and inhibitory fields of
each model kernel for the large room and for the small room. These are color coded as follows: excitatory COM (large room, COM} | red;

large
small room, COM? ., pink) and their inhibitory counterparts (COM; _, blue; COM_ , cyan). The dashed lines show a linear regression fit for
small large

each room, and the Pearson’s r value for each fit is given in the top right corner oftﬁ'gaglot. B, COM values are plotted against the best
frequency for the neuronal data (sound frequency of highest STRF weight). Each neuron was assigned a best frequency and the COM values
measured. The solid lines represent the mean COM value for each best frequency, the shaded areas show + SEM; color scheme and other
aspects as in A. C, RTj, values are plotted as a function of cochlear frequency bands, for the large (dark green) and small (light green) rooms.

Linear regression fit (dotted line) was used as in A and B to calculate r. Significance of Pearson'’s correlation: ****p < 0.0001, **p < 0.01.

11 of 27


https://doi.org/10.1101/2021.10.28.466271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.28.466271; this version posted October 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

340

341

342

available under aCC-BY-NC-ND 4.0 International license.

Discussion

In this study, we applied a normative modelling approach to ask the question: If a function of the
auditory system is to remove reverberation from natural sounds, how might the filtering prop-
erties of neurons adapt to achieve this goal? To answer this question we used a rich dataset of
anechoic speech and natural environmental sounds, adding different amounts of reverberation
to them. We then trained a linear dereverberation model to remove this reverberation. We con-
structed our model in such a way that the selectivity (kernels) of the model units after training can
be compared to the filtering properties (STRFs) of real auditory cortex neurons in the ferret (Fig-
ure 1). We confirmed the validity of our dereverberation model by showing that it recapitulated
known properties of auditory cortical neurons, such as frequency tuning and temporally asymmet-
ric STRFs with excitation followed by inhibition (Figure 2). Interestingly, our dereverberation model
also makes two novel predictions: (1) the inhibitory components of neuronal STRFs should be more
delayed in more reverberant conditions (Figure 3); and (2) the inhibition should occur earlier for
higher sound frequencies (Figure 2-Figure supplement 1, 2, Figure 4).

We verified both of these predictions using electrophysiological recordings from ferret auditory
cortex neurons, fitting STRFs to neuronal responses to sounds from the same rich dataset, and
comparing them to the model kernels. Finally, we used three additional methods - non-adaptive
simulated neurons, probe stimuli and switching stimuli - to confirm that the observed changes in
the neuronal STRFs are consistent with a truly adaptive dynamic process (Figure 3-Figure supple-
ment 2, 3, 4). Thus, our results suggest that the population of auditory cortex neurons adapt to
reverberation by extending their inhibitory field in time in a frequency-dependent manner. This
proposed auditory cortical adaptation is summarized in Figure 5. In the following, we explore these
findings in the broader context of previous studies and possible mechanisms for adaptation to re-
verberation.

Auditory cortical neurons adapt their responses to reverberation

Previous studies have shown that human hearing is remarkably robust to reverberation when lis-
teners discriminate speech and naturalistic sounds (Houtgast and Steeneken, 1985; Bradley, 1986;
Darwin and Hukin, 2000; Culling et al., 2003; Nielsen and Dau, 2010). Our neurophysiological re-
sults in the ferret auditory cortex are consistent with such robust representation. We find that
neurons recorded in the auditory cortex tend to adapt their responses in a way that is consistent
with the computational goal of removing reverberation from natural sounds (Figures 2, 3), even
in anesthetized animals. Our results are also in good agreement with a previous study in awake
passive listening ferrets, which showed that anechoic speech and vocalizations were more read-
ily decodable from the responses of auditory cortex neurons to echoic sounds, than the echoic
sounds themselves (Mesgarani et al., 2014). A similar study in humans using EEG corroborated
these findings, showing better decoding accuracy of anechoic speech envelope compared to dis-
torted reverberant speech, but only when listeners attended to the sound sources (Fuglsang et al.,
2017).

Interestingly, a human MEG study suggests that auditory cortex may contain both reverberant
and dereverberated representations of speech in reverberant conditions (Puvvada et al., 2017).
In addition, Traer and McDermott (2016) found that humans were able to discriminate different
reverberant conditions well with both familiar and unfamiliar sounds. In line with this, a minority
of neurons in our study did not change the timing of their inhibitory responses in different rever-
berant conditions or showed the opposite effect from our model prediction (i.e. their COM~ and
PT- decreased in the more reverberant room) (Figure 3B,D). Thus, although most cortical neu-
rons adapted to reverberation, it is possible that some of them might carry information about the
reverberant environment or even represent it more explicitly.
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Figure 5. Schematic of dereverberation by auditory cortex.
Natural environments contain different levels of reverberation (illustrated by the left cochleagrams). Neurons in auditory cortex adjust their

inhibitory receptive fields to ameliorate the effects of reverberation, with increased latency of inhibition for more reverberant environments
(center). The consequence of this adaptive process is to arrive at a representation of the sound in which reverberation is reduced (right

cochleagram).
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Temporal shifts in inhibition underlie adaptation to reverberation

Our findings build on and provide an explanation for those of Mesgarani et al. (2074). These au-
thors approximated a reverberant stimulus by convolving speech and vocalizations with decaying
white noise. In contrast, we used a more diverse stimulus set, which included many environmen-
tal sounds that can have very different acoustical statistics (Attias and Schreiner, 1996; Turner,
2010), and a model of reverberation that included early reflections and their frequency depen-
dence, which are known to have important perceptual effects (Traer and McDermott, 2016). Mes-
garani et al. (2014) proposed a combination of subtractive synaptic depression and multiplicative
gain change as a potential mechanism for the observed adaptation in their study. However, they
acknowledged that other functionally equivalent mechanisms might also be feasible. Notably, their
study did not test different echoic conditions with varying amounts of reverberation. Therefore,
the time constants of the synaptic depression and gain components in their model were fixed.
Mesgarani et al. (2074) speculated that these time constants might have an important impact in
conditions with different amounts of reverberation. This is indeed one of our main novel findings:
more reverberant environments require more temporally delayed inhibitory responses within the
STRFs of auditory cortical neurons.

Adaptation to reverberation is frequency dependent

Another novel finding of the present study was that the temporal lag of the inhibition was frequency
dependent in both the model kernels and neuronal STRFs (Figure 2-Figure supplement 1, 2). For
both the small and large rooms, the temporal lag of the inhibition, but not the excitation, approx-
imately tracked the reverberant profile over sound frequency of the acoustic spaces (measured
by the reverberation time (RT,,, Figure 4). Natural and man-made environments exhibit certain
regularities, and the decline in reverberation over this frequency range is one of them (Traer and
McDermott, 2016). Future studies could examine whether neurons adapt their responses accord-
ingly to room impulse responses with more unusual RT,, frequency profiles.

The frequency-dependence of the delay in inhibition likely relates to some degree to the time
constants of mean-sound-level adaptation (Dean et al., 2008), which also decrease with frequency
in inferior colliculus neurons responding to non-reverberant noise stimuli (Dean et al., 2008). A
study by Willmore et al. (2016) found that this frequency dependence of mean-sound-level adapta-
tion may impact cortical responses and is consistent with removing a running average from natural
sounds with undefined reverberation levels. Hence, the frequency dependence we observe in the
present study may to some extent reflect general mechanisms for removing both reverberation
and the mean sound level, and may be at least partially inherited from subcortical areas.

Possible biological implementations of the adaptation to reverberation
What might be the basis for the cortical adaptation to reverberation that we have observed? Some
plausible mechanisms for altering the inhibitory field include synaptic depression (David et al.,
2009), intrinsic dynamics of membrane channels (Abolafia et al., 2011), hyperpolarizing inputs from
inhibitory neurons (Li et al., 2015; Natan et al., 2015; Gwak and Kwag, 2020), or adaptation inher-
ited from subcortical regions such as the inferior colliculus or auditory thalamus (medial geniculate
body) (Dean et al., 2008; Devore et al., 2009; Willmore et al., 2016; Lohse et al., 2020). The physio-
logical data obtained in this study do not allow us to discriminate among these mechanisms.
Hence, it would be important to investigate whether the adaptive phenomenon we have found
occurs at subcortical levels too, namely the inferior colliculus and the medial geniculate body. Pre-
vious research in the inferior colliculus of rabbits has shown that neural responses to amplitude-
modulated noise partially compensate for background noise and, for some neurons, particularly
when that noise comes from reverberation (S/lama and Delgutte, 2015). However, this study only
examined one room size, so it did not investigate the temporal phenomenon we observed. Rabi-
nowitz et al. (2013) found that neurons in the inferior colliculus in ferrets generally adapt less to
the addition of non-reverberant background noise than those recorded in auditory cortex. This
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and other studies indicate that an increase in adaptation to sound statistics from auditory nerve
to midbrain to cortex helps to construct noise-invariant sound representations in the higher au-
ditory brain (Dean et al., 2005, 2008; Watkins and Barbour, 2008; Wen et al., 2009; Lohse et al.,
2020). However, subcortical adaptation phenomena may be influenced by cortical activity through
descending connections (Robinson et al., 2016), making it challenging to dissect the neuroanatomi-
cal origin of these effects. Similarly, it is possible that reverberation adaptation also becomes more
complete as we progress along the auditory pathway.

Considerations and future work

We undertook our electrophysiological recordings in the present study under general anesthesia
in order to control for the effects of attention on reverberation adaptation and to facilitate stable
recording of neural responses during our large stimulus set. Cortical adaptation to reverberation
has been previously observed in awake listeners ((Mesgarani et al., 2014; Fuglsang et al., 2017)),
and we observed adaptive inhibitory plasticity in the anesthetized animal that is also consistent
with dereverberation. This indicates that this form of adaptation is at least in part driven by stim-
ulus statistics and can occur independently of activity and feedback from higher auditory areas
(Krom et al., 2020).

Previous work has shown no effect of anaesthesia on another kind of adaptation, contrast gain
control, in either the ferret auditory cortex (Rabinowitz et al., 2011) or the mouse inferior colliculus
(Lohse et al., 2020). There is therefore no a priori reason to expect that cortical adaptation to rever-
beration would be substantially different in awake ferrets. Nevertheless, the effects of attention
and behavior on auditory cortical STRFs in the ferret are well documented (David, 20718). These
can manifest, for example, as gain changes and tuning shifts. Considering the importance of rever-
beration to perception, it would be interesting to explore the effects described here in behaving
animals.

Another point for future research to consider is how our normative model could be further
developed. For simplicity and interpretability, we used an elementary linear model. However, there
are many more complex and powerful models for dereverberation in acoustical engineering, some
of which may provide insight into the biology (Naylor and Gaubitch, 2010). Also, in our modelling
we were focused on assessing what characteristics of dereverberation model kernels might change
under different conditions, not on how the brain learns to make these changes. Hence, we gave
our dereverberation model access to the true anechoic sound, something the brain would not have
access to. However, there are blind dereverberation models that aim to dereverberate sounds
from just one or two microphones, without access to the original anechoic sounds or room impulse
response (Li et al., 2018; Jeub et al., 2010). These blind dereverberation models will be particular
useful to compare to biology if we want to explore how the brain learns to perform dereverberation
with just two ears. It is also worth considering that the auditory system will be performing other
functions in addition to dereverberation and these may be useful to add into a model.

Summary

We have observed in auditory cortical neurons a form of adaptation where the inhibitory compo-
nent of the receptive fields is delayed in time as the room impulse response increases in a larger
room. This is consistent with the cortex adapting to dereverberate its representation of incoming
soundsin a given acoustic space. Dereverberated representations of sound sources would likely be
more invariant under different acoustic conditions and thus easier to consistently identify and pro-
cess, something valuable for any animal's survival. Reverberation is a ubiquitous phenomenon in
the natural world and provides a substantial challenge to the hearing impaired and speech recogni-
tion technologies. Understanding the adaptive phenomena of the brain that allow us to effortlessly
filter out reverberation may help us to overcome these challenges.
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Methods and Materials

Animals

All animal procedures were approved by the local ethical review committee of the University of
Oxford and performed under license from the UK Home Office. Three adult female and four adult
male ferrets (Mustela putorius furo; Marshall BioResources, UK) were used in the electrophysiology
experiments (mean age = 8.4 months; standard deviation = 4.2 months).

Surgical procedure

Terminal electrophysiological recordings were performed on each ferret under general anesthe-
sia. Anesthesia was induced with an intramuscular injection of ketamine (Vetalar; 5 mg/kg) and
medetomidine (Domitor; 0.02 mg/kg), and was maintained with a continuous intravenous infusion
of these two drugs in Hartmann's solution with 3.5% glucose and dexamethasone (0.5 mg/mi/hr).
The animal was intubated and artificially ventilated with medical O,. Respiratory rate, end-tidal CO,,
electrocardiogram and blood oxygenation were continuously monitored throughout the recording
session. Eye ointment (Maxitrol; Alcon, UK) was applied throughout and body temperature was
maintained at 36-38°C. Atropine (Atrocare; 0.06 mg/kg i.m.) was administered every 6 hours, or
when bradycardia or arrhythmia was observed.

Once anesthetized, each ferret was placed in a custom-built stereotaxic frame and secured with
ear bars and a mouthpiece. After shaving the scalp and injecting bupivacaine (Marcain, <1mg/kg
s.c.), the skin was incised and the left temporal muscle removed. A steel holding bar was secured to
the skull using dental cement (SuperBond; C&B, UK) and a stainless steel bone screw (Veterinary
Instrumentation, UK). A circular craniotomy (10 mm diameter) was drilled over the left auditory
cortex, and the dura was removed in this region. The brain surface was covered with a solution of
1.25% agarose in 0.9% NaCl, and silicone oil was applied to the craniotomy regularly throughout
recording.

With the ferret secured in the frame, the ear bars were removed, and the ferret and frame were
placed in an electrically isolated anechoic chamber for recording. Recordings were then carried out
in the left auditory cortex. An Ag/AgCl external reference wire was inserted between the dura and
the skull on the edge of craniotomy. A Neuropixels Phase 3a microelectrode probe (Jun et al.,
2017) was inserted orthogonally to the brain surface through the entire depth of auditory cortex.
The cortical area of each penetration was determined based on its anatomical location in the ferret
ectosylvian gyrus, the local field potential response latency, and the frequency response area (FRA)
shapes of neurons. Based on these citeria, 95% of the recorded neurons were either within or on
the ventral border of the primary auditory areas (primary auditory cortex, A1 and anterior auditory
field, AAF), while the remaining neurons were located in secondary fields on the posterior ectosyl-
vian gyrus. Following each presentation of the complete stimulus set, the probe was moved to a
new location within auditory cortex. Data were acquired at a 30 kHz sampling rate using SpikeGLX
software (https://github.com/billkarsh /SpikeGLX) and custom Matlab scripts (Mathworks).

Spike sorting

The recorded signal was processed offline by first digitally highpass filtering at 150Hz. Common av-
erage referencing was performed to remove noise across electrode channels (Ludwig et al., 2009).
Spiking activity was then detected and clustered using Kilosort2 software (Pachitariu et al., 2016)
(https://github.com/MouselLand /Kilosort2). Responses from single neurons were manually curated
using Phy (https://github.com/cortex-lab/phy) if they had stereotypical spike shapes with low vari-
ance and their autocorrelation spike histogram showed a clear refractory period. Spikes from a
given cluster were often measurable on 4-6 neighboring electrode channels, facilitating the isola-
tion of single units. Only well isolated single units and multiunit clusters that were responsive to
the stimuli (noise ratio <40, (Sahani and Linden, 2003; Rabinowitz et al., 2011)) were included in
subsequent analyses.
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Sound presentation

Stimuli were presented binaurally via Panasonic RP-HV094E-K earphone drivers, coupled to oto-
scope speculae inserted into each ear canal. The speculae were sealed in place with Otoform
(Dreve Otoplastik). The earphones were driven by a System 3 RP2.1 multiprocessor and headphone
amplifier (Tucker-Davis Technologies). Sounds were presented at a sampling rate of 48828Hz. The
output response of the earphones was measured using a BriUel & Kjzer calibration system with
a GRAS 40DP microphone coupled to the end of the otoscope speculae with a silicone tube. An
inverse filter was applied to the speaker output to produce a flat spectral response (+3dB) over
the stimulus frequency range (200Hz-22kHz). Sound intensity was calibrated with an Iso-Tech TES-
1356-G sound level calibrator.

Sound stimuli and virtual acoustic space

There are two stimulus sets, the set used to train the dereverberation model, and the set played to
the ferrets, which was prepared from a subset the sounds used to make the first set. The stimuli
used to train the dereverberation model were constructed from a dataset consisting of clips of
anechoic sounds containing human speech and other natural sounds, such as cracking branches,
footsteps, and running water. Most of the sound clips were recorded in an anechoic chamber using
a Zoom H2 or Zoom H4 sound recorder, apart from some that came from the RWCP Sound Scene
Database in Real Acoustic Environments (Nakamura et al., 1999). The clips varied in duration from
3s to 10s. A portion of the clips from the dataset was concatenated together to make a single
stimulus of 600s duration. A 0.25s cosine ramp was applied to the onset and offset of each snippet
to avoid clipping artifacts in concatenation. The 600s stimulus was then band-pass filtered from
200Hz-20kHz using an 8th-order Butterworth filter. We also constructed a held-out test set of
100s duration in the same manner using different examples of the same types of sounds from the
dataset.

Finally, this stimulus was played in a virtual acoustic space (VAS), providing it with reverberation
and head-related filtering. We used the “Roomsim” software (Campbell et al., 2005) to generate
the virtual acoustic space. This software creates a cuboidal room of arbitrary x, y and z dimensions
and simulates its acoustic properties for a listener at a particular position and orientation in space,
for a sound source at a particular position. The simulations are based on the room-image method
(Allen and Berkley, 1979; Heinz, 1993; Shinn-Cunningham et al., 2001). One difference between the
standard room-image method and Roomsim is that the latter incorporates the absorption prop-
erties of different materials, which can be summarized by their frequency-dependent absorption
coefficients. In principle, the amount of reverberation in a room will depend on its size, shape and
the material from which the walls are made. For our room simuluations the walls, ceiling and floor
use the frequency-dependent absorption coefficients of stone (Alvarez Morales et al., 2014). We
decided to vary the amount of reverberation by changing the room size whilst keeping the other
parameters fixed. Four different corridor-shaped rooms were created:

1. Anechoic room

2. Small room (length x width x height, 3mx0.3mx0.3m, RT,, = 130ms)
3. Medium room (7.5mx0.75mx0.75m, RT,, = 250ms)

4. Large room (15mx1.5mx1.5m, RT;, = 430ms)

Thus processing the 600s stimulus for each room provided four 600s stimuli. Note that the ane-
choic room does not have a clearly defined “shape”, having no reflecting walls, ceiling or floor, with
the acoustic filtering determined only by the relative orientation and distances of the sound source
and receiver. Roomsim simulates the orientation-specific acoustic properties of the receiver’s head
and outer ear, represented by the head-related transfer function (HRTF). In all simulations, we used
the same ferret HRTF provided from measurements previously made in the lab on a real ferret
(from Schnupp et al. , 20017). The joint filtering properties of the ferret's HRTF and the room were
simulated together by Roomsim to produce a binaural room impulse response (BRIR). The ferret
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head position and orientation were simulated in the VAS, positioning it 0.15m from the floor, at
the midpoint of the room’s width (0.15m for the small, 0.375m for the medium and 0.75m for the
large) and 1/4 of the room’s length from one end (0.75m for the small, 1.875m for the medium and
3.75m for the large) and directly facing the opposite end. In all four room conditions, the sound
source was positioned at the same height as the ferret's head (0.15m) and at a distance of 1.5m
straight ahead in the direction faced by the ferret (0° azimuth and 0° elevation relative to the fer-
ret's head). The reverberation time RT), is the time necessary for the sound level to decay by 10dB
relative to an initial sound impulse. We measured this using a cochlear model, as explained in the
next section Cochlear model.

The stimuli presented to the ferrets were constructed from a representative subset of the ane-
choic natural stimuli used to train the dereverberation model. We cut 40 different snippets of
natural sounds, each 2s in duration, from the clips in the datatset. These 2s snippets were con-
catenated together into two 40s long stimuli. A 0.25s cosine ramp was applied to the onset and
offset of each snippet to avoid clipping artifacts in concatenation. The two 40s stimulus blocks
were then processed in VAS in exactly the same way as with the modelling stimulus set, for the
same small, medium and large rooms. This provided two 40s blocks for each reverberant condi-
tion (a small, medium or large room, see subsection Sound stimuli and virtual acoustic space). We
played the small and large room conditions in 7 animals and the small, medium and large room
conditions in 2 out of those 7. The 40s blocks were presented in pseudo random order, with ~5s
of silence between blocks. This presentation was repeated ten times, with a different order each
time.

Cochlear model

We used a power-spectrogram based model of cochlear processing as described in Rahman et al.
(2020). Briefly, a spectrogram was produced from the sound waveform by taking the power spec-
trum through a short-time Fourier transform (STFT) using 10-ms Hanning windows, overlapping by
5 ms. The power of adjacent frequency channels was summed using overlapping triangular win-
dows (using code adapted from melbank.m, http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.
html) to produce 30 log-spaced frequency channels ranging from 400Hz to 19kHz center frequen-
cies. The resulting power in each channel at each time point was converted to log values and any
value below a low threshold was set to that threshold.

We used the cochleagram to measure the frequency-band-specific reverberation times (RT,,)
shown in Figure 4C. Our method is similar to that of Traer and McDermott (2016), but for consis-
tency we used our cochlear model rather than theirs. First, we produce an impulse response, the
sound induced at the right ear of the ferret in the virtual room, by a simple click at the standard
source position. Then, we put this impulse response through our cochlear model to generate a
cochleagram. Next, for each frequency band in this cochleagram, we fitted a straight line to the
plot of the decaying log power output (dB) of the cochleagram over time. Using the slope of this line
of best fit, we found the amount of time it took for this output to decay by 10dB. This provided the
RT,, for each frequency band. We measured the overall RT), of each room by taking the median
RT,, over all 30 frequency bands.

Model kernels

The dereverberation model consisted of a set of linear kernels, one for each of the 30 frequency
channels in the anechoic cochleagram. The kernels were fitted separately for each reverberant
condition, thus providing 30 kernels for each room. The dereverberation model is summarized by
the following equation:

Fmax Pimax

sanech __ reverb
X = Z Z kg pnXsazneny T bpr M
f=1 h=1
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Here, fc‘}‘}jd‘ is the estimate of the anechoic cochleagram for frequency channel " and time bin
t. Obtaining azj,'}j‘"’ involved convolving the kernels k , with the reverberant cochleagram x'.
Here f is the frequency channel in the reverberant cochleagram and 4 indexes the time lag used
in the convolutions. The model weights k, ;,, are composed of 30 kernels, one for each frequency
channel f” in the anechoic cochleagram. Finally, the bias term for frequency channel f” is b .

For each anechoic frequency channel 7, the associated model kernel was separately fitted to
minimize the mean squared error between the kernel's estimate of that frequency channel of the
anechoic cochleagram fcf}’,'jf" and that actual channel of the anechoic cochleagram xj.'}jc", subject to
L, regularization (“ridge” regression) on k. ,,. The weights were fitted using the gimnet package
(GLM, J. Qian, T. Hastie, J. Friedman, R. Tibshirani, and N. Simon, Stanford University, Stanford, CA;
http://web.stanford.edu/~hastie/glmnet matlab/index.html). To select the regularization strength (the
hyperparameter 1), we performed 10-fold cross-validation, using 90% of the data for the training
set and 10% (an unbroken 60s segment) for the validation set. Our validation sets over folds were
non-overlapping. We found the A that gave the lowest mean-squared error averaged over the 10
folds. Using this 4, we then re-fitted the model kernels using the whole cross-validation set (training
+validation set). These resulting kernels are the ones shown and used in all analyses. These kernels
were also used to estimate the dereverberation capacity of the model on the held-out test set. Note
that here onward we typically refer to individual model kernels by k ,, for brevity, dropping the f’
index used for the full set of kernels k, .

Neuronal STRFs

For each cortical unit, for each reverberation condition, we separately estimated its spectro-temporal
receptive field (STRF) using its response to the natural stimuli under that condition (Theunissen
et al., 2007). We used the STRF, a linear model, as this enabled comparison to our linear derever-
beration model. The STRF model can be summarized by the following equation:

fmax hmﬂ«\'
reverb

Pu= 2 D WXy + b 2)
f=1 h=1

Here, $,, is the estimated spike counts of neuron » at time bin z. Also, x;:‘}vefb is the reverberant
cochleagram in frequency channel f and at time ¢. For each neuron », the weights in w, , over
frequency channel f and history (time lag) index A provide its STRF. Finally, b, is the bias term of
unit n.

Notice the similarity of Equation 2 to Equation 1 of the dereverberation model. In both cases,
we used the reverberant cochleagram as an input (from either the small, medium, or large room)
and fitted the best linear mapping to the output. In the case of neuronal STRFs, the output is
the neuronal spike count over time, whereas in the model kernel it is a frequency channel of the
anechoic cochleagram. For each neuron and room, we seperately fitted an STRF by minimizing the
mean squared error between the estimated spike counts j,, and the observed spike counts y,,. To
do this, for a given room, we used the first 36s of neural response to the two 40s-stimuli associated
with that room (as the last 4s contained a noise probe, see subsection Noise burst analysis). The
weights were fitted using the glmnet package (GLM, J. Qian, T. Hastie, J. Friedman, R. Tibshirani,
and N. Simon, Stanford University, Stanford, CA; http://web.stanford.edu/ hastie/glmnet matlab/
index.html). As for the model kernels (above), the fitting was subject to L, regularization. To select
the regularization strength (the hyperparameter 1), we performed 10-fold cross-validation, using
90% of the data for the training set and 10% (an unbroken 7.2s segment) for the validation set.
Our validation sets over folds were non-overlapping. We found the 4 that gave the lowest mean-
squared error averaged over the 10 folds. Using this 4, we then re-fitted the STRFs using the whole
cross-validation set (training + validation set). The resulting STRFs are the ones shown and used in
all analyses. As with the model kernels, from here onwards we typically refer to an individual STRF
for a given neuron by the form w,, for brevity, dropping the neuron index n used here in w, ;.
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«n Quantification of the temporal effects in model kernels and neuronal STRFs
e72 To quantify the temporal profiles of the model kernels and neuronal STRFs, we chose two different
673 Measures:

674 1. Center of mass (COM)
675 2. Peak time (PT)

676 To compute them, we first obtained the averaged excitatory and inhibitory temporal profiles
e77  Of the model kernels/neuronal STRFs as follows:

Smax

w;=f1 Y [y, 3)
max  f=1
1 Smax

w; = D ] (4)
fmax f=1

e7s  Where w,, is the neuronal STRF with f and & subscripts denoting frequency channel and history,
670 respectively. Equations 3 and 4 are the same for the dereverberation model kernels but with k
es0 instead of w, as with all subsequent equations in this section. f,,,. is the number of frequencies
es1  (30) in the model kernel/neuronal STRF w,,. The notation [w,], and [w,,]_ stand for the element-
es2  Wise operations max(w,,0) and min(w ,,0), that is:

.
w, ifw,;, >0
[wpl, =y 7" ®)
0 otherwise
we ifw, <0
[wfh]_ =93 . (6)
0 otherwise
683 Thus w; and w, are the frequency-averaged positive-only, [w,,],, and negative-only, [w,,]_,
ess parts of the kernel w,.
685 From this, the COM was defined as follows:
hmax
T
COM* = ——— D (h=hw} 7)
h=1 Wp h=1
hmax
— T _
COM™ = —— Z(h - Dw;, (8)
n=1 Wy h=l
686 The duration of a time bin is = = 10ms, hence time lag in the history of the neuronal STRF/model

ss7 Kernel ranges from z(h — 1) = Oms to z(h,,,, — 1) = 190ms. Thus COM™ is the temporal center of
ess Mass for the positive (excitatory) components of the neuronal STRF/model kernel and COM~ the
es0 temporal center of mass for the negative (inhibitory) components.

690 The peak time (PT) was defined as the time at which the excitation and inhibition in the fre-
s01 quency averaged neuronal STRFs/model kernels peaked:

PTt = (arghmax(w;) - Dr 9)

PT™ = (argmin(w;l) - Dz (10)
h
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Simulated neuron
In order to explore whether the changes that we observed are truly adaptive, we used simulated
neurons that lacked adaptive receptive fields to generate responses. We then applied the same
analyses to these simulated neuronal responses as we did to the actual responses. For each neu-
ron n, we constructed a corresponding simulated neuron in the following way. First, we fitted a
single STRF as described in section Neuronal STRFs. However, in this case we used the full dataset
from the “small” and “large” conditions together, rather than fitting separate STRFs to the two con-
ditions as we did previously.

Next, we fitted a sigmoid output non-linearity by first generating a spike count prediction 3, for
the full dataset according to equation 2 from section Neuronal STRFs, using this single STRF and
then finding the sigmoid that best fits the actual spike count y,, according to the following equation:

snonlin _ P1
T T G = p /) )

Here provin is the output of the point non-linearity at time bin 7, providing a new estimate of
the neuron’s spike count. As mentioned, #,, is the predicted spike count from the linear stage (see
Equation 2) at time bin 7, when fitted to the small and large room responses together. It is the four
parameters p,, p,, p; and p, that are optimized in the fit.

We then used the fitted simulated model to produce an approximation of the real neuronal
response to the reverberant stimulus sets for both the small and large conditions. In order to sim-
ulate realistic neuronal noise, we used the 92?"“" output, at each time bin ¢, as the mean of a Poisson
distribution from which we generated 10 “virtual” trials. Finally we performed the same analyses
on these simuluated neural responses as we did for the real data; we fitted STRFs for the two re-
verberation conditions separately using these simulated model responses in place of the actual
responses and then analyzed the resulting STRFs as outlined in the section above (Quantification
of the temporal effects in model kernels and neuronal STRFs).

Noise burst analysis

To further confirm the adaptive change in properties of neurons across the two reverberant condi-
tions, we presented a 500ms long unreverberated broadband noise burst embedded at a random
time in the last 4s of each 40s sound block (i.e., from 36-40s) for each condition (small and large).
Seven out of the ten repeats of any stimulus block contained a noise burst, with those seven ran-
domly shuffled within the ten. The random timing distribution of the noise bursts was uniform
and independent across repeats and conditions. For each neuron, responses to the noise bursts
were assessed using peristimulus time histogram (PSTHs) with 10ms time bins. For the majority
of neurons, the firing rate had returned to baseline by 100ms, so we decided to use the 0-100ms
time window for further analysis (Figure 3-Figure supplement 3A). Different neurons had different
response profiles, so in order to compare the adaptive properties in the two conditions we chose
the center of mass (COM) of the firing rate profile within this window as a robust measure. This
was defined similarly to the COM measure in subsection Quantification of the temporal effects in
model kernels and neuronal STRFs (see also Equations 7 and 8). The COM for the noise bursts
in the large and small conditions was calculated for each neuron individually and the difference
between the two conditions computed (Figure 3-Figure supplement 3B).

Switching stimuli analysis

In order to confirm and explore the adaptive nature of the neuronal responses to reverberant
sounds, we presented “switching stimuli” (Figure 3-Figure supplement 4A). These stimuli switched
back and forth every 8 seconds between the large room and the small room and were created in the
following way. First, we took our original reverberant stimuli for both the small room (80s duration)
and large room (80s duration) conditions and divided them into consecutive 4s snippets, providing
20 snippets for each condition. We duplicated these two sets and shuffled each one independently,
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providing a total of four sets of 20 4s-long snippets. We then combined the snippets into eight 40s-
long switching stimuli. These switching stimuli comprised 5 epochs of 8s duration each, with 4
“switches” between the small and large epochs. Half of the stimuli started from the large room
condition and the other half from the small room condition. Within each 8s epoch, we defined two
periods (period 1: 0-4s and period 2: 4-8s). The large-room periods were denoted by L1 (0-4s) and
L2 (4-8s), and the small-room periods by S1 (0-4s) and S2 (4-8s) (Figure 3-Figure supplement 4A).
The snippets from the first small-room set of 20 snippets populated the 20 S1 periods in order,
while those from the second small-room set populated the S2 periods in a different order, due
to the shuffling. Likewise, snippets from the first large-room set of 20 snippets populated the 20
L1 periods, and those from the second large-room set populated the L2 periods. Thus, the same
set of stimuli were included in S1 and S2, and in L1 and L2, with the only differences being their
ordering, and between the small and large room stimuli the amount of reverberation. When the 4s
periods and 8s epochs were spliced together, they were cross-faded into each other with a 10ms
cosine ramp with 5ms overlap, such that the transition from one period to the next was smooth
with no detectable clicks between them. We played the eight 40s stimuli in random order to the
ferrets; this was repeated 10 times with the order different each time.

The cortical responses recorded with these stimuli were analyzed using the procedure outlined
in subsection Neuronal STRFs. For each neuron, we fitted four separate STRFs using the neural
responses to the S1, S2, L1 and L2 periods. We did not use the first 8s of each of the eight 40s
stimuli, since there was no prior sound (silence) and thus they would not be directly comparable
to the other 4 epochs. We also did not use the first 500 ms of any of the periods, to avoid potential
non-reverberation-related responses from the rapid transitions between them. From the resulting
four STRFs, we extracted the COM* and COM~ values for each and compared S1 to S2 (Figure 3-
Figure supplement 4B) and L1 to L2 (Figure 3-Figure supplement 4C).
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Figure 2-Figure supplement 1. Model kernels and neuronal STRFs across frequency chan-
nels.
A, Model kernels arranged by the anechoic frequency that they were trained to estimate. For each
anechoic frequency, the top row shows the kernel for the large room condition, and the bottom
row shows the kernel for the small room condition. In each plot, frequency is on the vertical axis
and history on the horizontal. B, Neuronal STRFs arranged by best frequency, the frequency in
the STRF with the largest weight. The STRFs of all neural units with the same best frequency were
averaged to produce these plots. Plots are arranged as in A.
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Figure 2-Figure supplement 2. Model and neuronal temporal profiles across frequency chan-
nels.

A, Temporal profiles of the excitatory (top rows) and inhibitory (bottom rows) weights of the model
kernels, plotted as in Figure 2B. The estimated anechoic frequency channel is indicated above each
pair of plots, as in Figure 2-Figure supplement 1A. The color code is as in Figure 2B: pink = small
room excitation; red = large room excitation; cyan = small room inhibition; blue = large room in-
hibition. The center of mass (COM) values for the excitation and the inhibition in each room are
indicated by the colored arrows. For each anechoic frequency, each temporal profile was normal-
ized by dividing by the maximum value for the excitatory temporal profile of the same room. B,
Temporal profiles of the excitatory and inhibitory components of the averaged neuronal STRFs
shown in Figure 2-Figure supplement 1B, plotted and normalized as for the model kernels in A.
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Figure 3-Figure supplement 1. Amedium room condition shows intermediate center of mass
and peak time values compared to the small and large room conditions.

A, Violin plots for the center of mass (COM ™) of the excitatory fields of the neuronal STRFs for the
small, medium and large room conditions computed. B, Same as A, but here the violin plots show
the center of mass (COM ™) of the inhibitory fields for the neuronal STRFs. C, Violin plots for the
peak time of the excitatory fields (PT*). D, The same data as C, but here the violin plots show the
peak time (PT~) of the inhibitory fields. In all violin plots, the white dot represents the median,
the horizontal thick line the mean, the thick gray lines the interquartile range, the thin gray lines
1.5x interquartile range, and the colored shaded area represents the distribution. The results of
Kruskal-Wallis tests followed by multiple comparisons using Fisher’s least significant difference
(LSD) procedure are indicated above the bars in A, B and D: *p < 0.05,** p < 0.01,"* p < 0.001,*** p <
0.0001.
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Figure 3-Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical
dereverberation.

To confirm that STRF differences between rooms were genuinely a result of adaptation, we simu-
lated the recorded neurons using a non-adaptive linear-nonlinear-Poisson model and compared
STRF measures of the simulated responses with those of the real neuronal STRFs in the different
room conditions. A, The simulated neurons were made in the following way: 1) We fitted a single
STRF for each neuron using the combined data from the small and large rooms; 2) We used this
STRF along with a fitted non-linearity and a Poisson noise model to generate the simulated firing
rate for the small and large rooms separately; 3) Using the small and large room cochleagrams and
simulated firing rates, we fitted separate STRFs for the two conditions; 4) We computed the center
of mass and peak time metrics as before. B, Difference in center of mass between the large and
small room conditions (large - small room) for the simulated model neurons. The COM~ values
(blue) were slightly larger in the large room, median difference = 0.90ms, and the COM™ values
(red) were slightly elevated too, median difference = 1.7ms. C, Reproduction of Figure 3B showing
the difference in center of mass of neuronal STRF components between the large and small room
conditions (large - small room). The COM - values increased in the larger room (median difference
= 9.3ms), whereas COM* did not differ significantly (median difference = 0.32ms). D, The center
of mass differences shown in B and C were subtracted for each unit and plotted as the resulting
difference of differences (real cortical unit - simulated model neuron). The COM~ differences be-
tween rooms were consistently larger in the neuronal data (median difference = 9.3ms), while the
coM+ differences did not differ significantly (median difference = -1.1ms). E, Difference in peak
time between the large and small rooms (large - small) for the simulated model neurons. The PT~
median difference = Oms and the PT* median difference = Oms. F, Reproduction of Figure 3D
showing the difference in peak time between the large and small rooms (large - small), calculated
from neuronal STRFs. The PT~ values were larger in the large room (median difference = 10ms).
PT* did differ significantly between the rooms, but with a median difference = Oms. G, Histogram
of the difference in peak time room differences between the neural units and corresponding simu-
lated model neurons (neural unit - simulated model neuron), plotted as in D above. The PT~ values
were consistently larger in the large room for the neuronal data vs the simulated model neurons
(median difference = 10ms). PT* did significantly differ, but the median difference = 0ms. Asterisks
indicate the significance of Wilcoxon signed-rank tests: ***p < 0.0001, ***p < 0.001, *p < 0.05.
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Figure 3-Figure supplement 3. Neural response to noise probe shows slower adaptation in
the more reverberant condition.

A, Average firing rate across all cortical units in response to a noise burst that was embedded within
the reverberant stimuli. Responses to the noise within the small (light green) and large (dark green)
rooms are plotted separately. Shaded areas show +SEM across units. The vertical line indicates
the noise onset. B, Histogram of the difference in center of mass of the neuronal response to
the noise probe (shown in A) between the two room conditions (large - small room). The center
of mass shifted to a later time in the larger room (median difference = 1.0ms). Asterisks indicate
significance of a Wilcoxon signed-rank test: **p < 0.01.
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Figure 3-Figure supplement 4. Adaptation to reverberation is confirmed using stimuli that
switch between the small and large room.

A, Schematic shows the structure of the stimulus, which switched between the large (dark green)
and small room (light green) conditions. Letters indicate the reverberant condition in each stimulus
block (S: small room, L: large room). Each 8s block within a given room condition was divided for
analysis into an early (S1,L1) and late (S2,L2) period. STRFs were fitted to the data from each of
the 4 periods independently (S1, S2, L1, L2). B, Difference in center of mass of inhibitory (COM™,
blue) and excitatory (COM™, red) STRF components between the late and early time period of
the small room stimuli (S2 - S1, see A). The COM~ decreased in S2 relative to S1 with a median
difference = -0.9ms; COM* did not differ significantly, median difference = 0.52ms. C, Center of
mass difference plotted as in B, but for the large room stimuli (L2 - L1). The COM~ values were
larger in L2 relative to L1, median difference = 1.5ms, while the COM* values were not significantly
different, median difference = 0.8ms. Asterisks indicate the significance of Wilcoxon signed-rank
tests: *p < 0.01,*p < 0.05.
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