
Genomic diversity of hospital-acquired infections revealed through prospective whole 1 

genome sequencing-based surveillance 2 

 3 

Mustapha M. Mustapha1,2*, Vatsala R. Srinivasa1,2*, Marissa P. Griffith1,2, Shu-Ting Cho1, Daniel 4 

R. Evans1, Kady Waggle1,2, Chinelo Ezeonwuka1,2, Daniel J. Snyder3, Jane W. Marsh1,2, Lee H. 5 

Harrison1,2, Vaughn S. Cooper3, Daria Van Tyne1,^ 6 

 7 

1Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, 8 

Pennsylvania, USA 9 

2 Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of 10 

Pittsburgh, Pittsburgh, Pennsylvania, USA 11 

3 Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and 12 

Medicine, University of Pittsburgh School of Medicine, Pennsylvania, USA 13 

*These authors contributed equally 14 

^Correspondence to: vantyne@pitt.edu  15 

 16 

Keywords: Whole genome sequencing, pangenome, antimicrobial resistance, horizontal gene 17 

transfer, evolution  18 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466213doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466213
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract  19 

Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of healthcare 20 

resources. HAIs are also an important driver of antimicrobial resistance, which is increasing 21 

around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of 22 

HAI using prospective whole genome sequencing-based surveillance of bacterial pathogens 23 

collected from hospitalized patients. Here we describe the biodiversity of bacteria sampled from 24 

hospitalized patients at a single center, as revealed through systematic analysis of their 25 

genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients 26 

collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which 27 

were distributed among 14 species groups. Within these groups, isolates could be distinguished 28 

from one another by both average nucleotide identity (ANI) and principal component analysis of 29 

accessory genes (PCA-A). Genetic distances between isolates and rates of evolution varied 30 

between different species, which has implications for the selection of distance cut-offs for 31 

outbreak analysis. Antimicrobial resistance genes and the sharing of mobile genetic elements 32 

between different species were frequently observed. Overall, this study describes the population 33 

structure of pathogens circulating in a single healthcare setting, and shows how investigating 34 

microbial population dynamics can inform genomic epidemiology studies. 35 

 36 

Importance 37 

Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant 38 

organisms. We used whole-genome sequencing to survey and compare over 3,000 bacterial 39 

isolates collected from hospitalized patients at a large medical center over a two-year period. 40 

We identified nearly 100 different bacterial species, suggesting that patients can be infected 41 

with a wide variety of different organisms. When we examined how genetic relatedness differed 42 

between species, we found that different species are likely evolving at different rates within our 43 

hospital. This is significant because the identification of bacterial outbreaks in the hospital 44 
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currently relies on genetic similarity cut-offs, which are often applied uniformly across 45 

organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were 46 

abundant among the bacterial isolates we sampled. Overall, this study provides an in-depth 47 

view of the genomic diversity and evolution of bacteria sampled from hospitalized patients, as 48 

well as genetic similarity estimates that can inform hospital outbreak detection and prevention 49 

efforts. 50 

 51 

Background 52 

Healthcare-associated infections (HAIs) affect over half a million people in the United States 53 

each year, and annual direct hospital costs for treating HAIs are estimated at over $30 billion1-3. 54 

A relatively small number of bacterial species account for the majority of the burden of antibiotic-55 

resistant HAIs. Organisms belonging to the ESKAPE (Enterococcus faecium, Staphylococcus 56 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and 57 

Enterobacter spp.) group of pathogens are particularly problematic, due to their high burden of 58 

HAIs and frequent multidrug resistance2,4. In addition, while Clostridioides difficile is not highly 59 

antibiotic resistant, toxin-producing C. difficile lineages associated with significant patient 60 

morbidity and mortality have emerged in recent years, making this organism an urgent health 61 

threat5. 62 

Healthcare institutions such as hospitals and long-term care facilities constitute a unique 63 

ecological niche for the proliferation and spread of antibiotic-resistant pathogens. The hospital 64 

environment has a constant flow of vulnerable populations, and widespread use of antimicrobial 65 

medications and cleaning agents provide selective pressure for the emergence and expansion 66 

of drug-resistant bacterial strains6. Likewise, pathogens causing HAIs possess several common 67 

biological traits that facilitate their survival and spread in healthcare environments. These traits 68 

include frequent presence and acquisition of antimicrobial resistance, asymptomatic carriage, 69 

and the ability to survive for prolonged periods on environmental surfaces such as medical 70 
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equipment, or in water systems7-9. These factors make healthcare settings a key contributor to 71 

the increase of antibiotic-resistant bacterial infections worldwide. 72 

Epidemiologic surveillance of HAIs requires timely and accurate ascertainment of strain 73 

type to identify patients infected with genetically related strains of the same pathogen. 74 

Surveillance using whole genome sequencing (WGS) is the gold standard for the detection of 75 

outbreaks, and has provided significant insight into the population structure of hospital-76 

associated bacterial infections10,11. To improve the detection of hospital-associated transmission 77 

at our medical center, we began conducting prospective WGS surveillance of clinical bacterial 78 

isolates from hospitalized patients in November 2016, with the aim of identifying previously 79 

undetected outbreaks and characterizing pathogen transmission routes. Our approach, called 80 

Enhanced Detection of Hospital-Associated Transmission (EDS-HAT), combines prospective 81 

bacterial WGS surveillance with data mining of the electronic health record to identify outbreaks, 82 

including those that would otherwise go undetected, and their transmission routes12-15. In 83 

conducting this work, we have collected and sequenced the genomes of thousands of bacterial 84 

isolates. Systematic analysis of the genomes of these isolates can increase our understanding 85 

of the diversity of bacteria causing HAIs16.   86 

Here we describe the genomic diversity, evolutionary rates, antimicrobial resistance 87 

gene repertoires, and mobile genetic elements carried by over 3,000 bacterial isolates sampled 88 

from patients at an academic medical center over 25 months. We uncovered a large and 89 

diverse number of species causing HAIs at our center, and showed how different population 90 

structures and evolutionary rates among these species can impact epidemiologic studies. 91 

Systematic analyses of antimicrobial resistance genes and mobile genetic elements revealed 92 

both species-specific differences as well as broader trends, and uncovered new avenues for 93 

further investigation.  94 

 95 

Results 96 
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Pangenome analysis highlights the diversity of bacteria causing HAIs 97 

The objective of this study was to use WGS to examine the genetic diversity of HAIs at a single 98 

medical center over a multi-year period, and to understand how this diversity impacts genomic 99 

epidemiology and outbreak investigations. A total of 3,004 bacterial isolates collected from 100 

2,046 unique patients at the University of Pittsburgh Medical Center (UPMC) from November 101 

2016 through November 2018 were sequenced and analyzed. Isolates were distributed among 102 

14 species groups (Supplementary Tables 1 and 2, Fig. 1). The largest proportion of isolates 103 

were sampled from the respiratory tract (33.4%) followed by urinary tract (20.6%), tissue/wound 104 

(20.6%), stool (16.7%, all C. difficile), and blood (8.7%) (Fig. 1). The distribution of isolated 105 

species was similar between blood and tissue/wound, while the urinary tract, respiratory tract, 106 

and stool samples had different species compositions. P. aeruginosa was the most prevalent 107 

species isolated, with 863 isolates (28.7% of all isolates) collected from 653 unique patients. 108 

Other prevalent species included toxin-producing C. difficile (16.7%), methicillin-resistant S. 109 

aureus (MRSA, 14%) and vancomycin-resistant E. faecalis and E. faecium (VRE, 8.2%). The 110 

remaining ten species groups contained less than 200 isolates each (Supplementary Table 1). 111 

Genome sizes were highly variable, and ranged from a median length of 2.9Mb for MRSA to 112 

7.6Mb for Burkholderia spp. (Fig. 2a). Pangenome collection curves constructed for genera 113 

containing multiple species showed that Citrobacter spp. and Acinetobacter spp. had the 114 

greatest pangenome diversity, perhaps due to the large number of different species sampled for 115 

these groups (Fig. 2b, Supplementary Table 2). Pangenome collection curves for individual 116 

species showed large differences in pangenome diversity between species (Fig. 2c), with MRSA 117 

and VRE faecium genomes having the lowest diversity, while P. aeruginosa, C. freundii, and S. 118 

marcescens had the greatest pangenome diversity of all species collected. The large and open 119 

pangenome of P. aeruginosa is well known17, however the pangenome diversity of C. freundii 120 

and S. marcescens are not well described. 121 
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Differences in bacterial population structures revealed by average nucleotide identity 122 

(ANI) and accessory gene content analysis 123 

Analysis of ANI and accessory genome contents are useful methods for assigning 124 

bacterial species, as well as understanding bacterial population structures18-20. Because the 125 

species of each isolate collected by the EDS-HAT project was initially assigned by the clinical 126 

microbiology laboratory, we first conducted pairwise comparisons of ANI for all isolate genomes, 127 

plus additional reference genomes downloaded from the NCBI database, and used a standard 128 

95% ANI cut-off to group genomes into the same or different species18. This method resulted in 129 

the identification of 97 different species among the collected isolates (Supplementary Table 2). 130 

An example of ANI-based classification of Citrobacter spp. is shown in Fig. 3a. As expected, 131 

several species groups were highly diverse and were composed of multiple different species, 132 

including Acinetobacter spp., Burkholderia spp., Citrobacter spp., Providencia spp., 133 

Pseudomonas spp., and Stenotrophomonas spp. (Fig. 3a, Supplementary Fig. 1). Several other 134 

species groups, such as ESBL-producing Klebsiella spp., Proteus spp. and Serratia spp., were 135 

composed of one dominant species (K. pneumoniae, P. mirabilis, and S. marcescens), and a 136 

small number of isolates belonging to other species (Supplementary Table 1). ANI analysis of P. 137 

aeruginosa identified 15 isolates (1.7% of all P. aeruginosa collected) that belonged to a 138 

different species and could be clearly separated from the rest of the P. aeruginosa population by 139 

ANI (Supplementary Fig. 2). These 15 isolates all had greater than 95% ANI with the Group 3 140 

PA7 genome21, indicating that they belonged to this divergent group of P. aeruginosa. Overall, 141 

these findings highlight the potential discordance between species assignment based on clinical 142 

laboratory testing versus genome sequence analysis.  143 

While ANI measures nucleotide identity in regions that are shared between two 144 

genomes, the accessory genes, which by definition are variably present in different genomes, 145 

can also be used to identify differences between bacterial species42,43. We constructed principal 146 

component analysis plots based on accessory gene content (PCA-A) for species groups 147 
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containing multiple species and with multiple isolates represented (Fig. 3b, Supplementary Fig. 148 

1). The PCA-A plot for Citrobacter spp. isolates was largely congruent with species clustering by 149 

ANI (Fig. 3b), and the same was true for Acinetobacter spp. and Stenotrophomonas spp. as well 150 

(Supplementary Fig. 1). The S. marcescens isolates we collected could be clearly separated 151 

into five different clades by both ANI and PCA-A; we arbitrarily named these clades A-E 152 

(Supplementary Table 1, Supplementary Fig. 3). We observed that the pairwise ANI distribution 153 

among all S. marcescens isolates included comparisons of isolates in different clades that fell 154 

below the 95% ANI threshold used to distinguish species from one another (Fig. 3c, 155 

Supplementary Fig. 2). Isolates within each S. marcescens clade always shared greater than 156 

95% ANI with isolates in at least one other clade, however comparisons of isolates in Clade A 157 

with isolates in either Clade C or Clade E fell below the 95% ANI threshold for same-species 158 

comparisons (Supplementary Fig. 3). PCA-A clearly separated these clades from one another 159 

(Fig. 3c), suggesting that each clade possessed a unique set of clade-specifying genes 160 

(Supplementary Table 3). These data suggest that the S. marcescens population we sampled 161 

may be in the process of diverging into distinct sub-species.  162 

We also explored whether PCA-A could be used to cluster isolates belonging to different 163 

genetic lineages within a single species (Fig. 3e-g). We analyzed isolates belonging to the 164 

dominant lineages of toxin-producing C. difficile (Fig. 3e), VRE faecium (Fig. 3f), and MRSA 165 

(Fig. 3g), and found in all cases that PCA-A could generally separate isolates belonging to 166 

different STs. C. difficile isolates belonging to ST1, ST2, ST8, and ST42 were clearly separated 167 

from one another (Fig. 3e). E. faecium isolates belonging to ST736 were clearly separated from 168 

isolates belonging to ST17, ST18, and ST1471, which showed some overlap with one another 169 

(Fig. 3f). Finally, MRSA isolates belonging to ST8 were clearly separated from isolates 170 

belonging to ST5 and ST105, however the latter STs (which belong to the same clonal complex) 171 

were not distinguishable from one another (Fig. 3g). Analysis of gene enrichment among these 172 

different STs revealed ST-specific gene repertoires, which were largely composed of predicted 173 
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mobile element genes and hypothetical proteins (Supplementary Tables 4-6). These data 174 

suggest that analysis of variable gene content may be a useful complement to SNP-based 175 

methods in epidemiologic investigations. 176 

Genetic diversity and evolutionary rates vary by species 177 

The EDS-HAT project was designed to detect genetically and epidemiologically connected 178 

isolates sampled from different patients, and has successfully identified dozens of clusters 179 

containing isolates that share common exposures or transmission chains14,15,22. In addition, a 180 

significant number of patients in this study were repeatedly sampled. To understand how 181 

genetic diversity varied by species, we compared within-patient, within-cluster, and between-182 

patient diversity for six different species by calculating pairwise SNP distances for all isolate 183 

pairs belonging to the same ST (Fig. 4a).  In all cases, SNP differences for pairs of isolates 184 

collected from the same patient were on average lower than those for pairs of isolates collected 185 

from different patients, suggesting that patients were persistently colonized or infected with the 186 

same bacterial strain that was repeatedly sampled. Despite only comparing isolates belonging 187 

to the same ST, some same-patient comparisons for P. aeruginosa resulted in hundreds or 188 

thousands of SNPs, which could reflect reinfection with a different strain or the presence of 189 

hypermutator strains. Within-cluster comparisons were comparable to within-patient 190 

comparisons, demonstrating that clustered isolates were also highly genetically related to one 191 

another. We also found that there were substantial differences in median SNP distances 192 

between different species, with C. difficile isolates having the lowest median pairwise SNPs 193 

among isolates from the same patient (2 SNPs), and P. aeruginosa having the highest (15 194 

SNPs). These data likely reflect the different genome sizes, as well as the different biology of 195 

the organisms studied here, and have broader implications for the selection of SNP cut-offs for 196 

the purposes of epidemiologic investigation. 197 

 We next compared the evolutionary rates of the C. difficile, VRE, MRSA, and P. 198 

aeruginosa populations that we sampled. We used TreeTime23 to estimate the nucleotide 199 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466213doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466213
http://creativecommons.org/licenses/by-nc-nd/4.0/


substitution rates for the most frequently observed STs for each species (Fig. 4b, 200 

Supplementary Table 7). Consistent with our observations of pairwise SNP differences (Fig. 4a), 201 

we found that C. difficile had the lowest evolutionary rate, VRE and MRSA had intermediate 202 

rates, and P. aeruginosa had the highest rate. Within each species group, however, we 203 

observed a range of nucleotide substitution rates between the different STs that were sampled. 204 

Rates overall varied nearly 100-fold among the species and STs we examined, from a minimum 205 

of 0.40 SNPs/genome/year for C. difficile ST42, to 28.80 SNPs/genome/year for P. aeruginosa 206 

ST179 (Fig. 4b, Supplementary Table 7). To understand how recombination might influence 207 

these calculations, we used ClonalFrameML24 to quantify the number of recombination events 208 

per point mutation (R/Theta) for each ST across all species for which at least 10 different 209 

isolates belonging to the same ST were sampled (Fig. 4c). MRSA genomes were found to have 210 

the lowest rates of recombination, while K. pneumoniae, E. coli, and A. baumannii appeared to 211 

have the highest rates. These data show that rates of nucleotide substitution and recombination 212 

are variable across STs as well as across species; this variability should be considered when 213 

assessing genomic similarity between isolates during epidemiologic investigations. 214 

Systematic analysis of antimicrobial resistance (AMR) genes uncovers broad and 215 

species-specific trends 216 

AMR threatens the effective treatment and prevention of bacterial infections. To understand the 217 

diversity and distribution of AMR genes among the 3,004 isolates we sampled, we identified 218 

resistance genes within each genome by querying the ResFinder database with BLASTn25 219 

(Supplementary Figure 4, Supplementary Table 8). The total number of AMR genes identified 220 

per genome ranged from 0-19, with an average of 4.6 AMR genes per genome. The species 221 

groups carrying the most AMR genes were Klebsiella spp. (average 13.1 AMR genes per 222 

genome), E. coli (7.7 AMR genes per genome), and VRE (average 7.4 AMR genes per 223 

genome) (Supplementary Table 8). We also classified each AMR gene by drug class, and 224 

examined the distribution of AMR genes found in more than one species group (Fig. 5a). 225 
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Several genes encoding aminoglycoside and sulfonamide resistance were observed in the 226 

majority of different species groups, suggesting that AMR genes for these antibiotic classes are 227 

relatively widespread among bacterial pathogens within our hospital. The Gram-positive species 228 

we collected (C. difficile, VRE, and MRSA) carried different AMR genes compared to the 229 

sampled Gram-negative species, and all Gram-positive species were found to carry the 230 

aminoglycoside resistance genes aac(6’)-aph(2’) and aph(3’)-III and the tetracycline resistance 231 

gene tet(M), albeit at varying frequencies (Fig. 5a). 232 

 We next examined the co-occurrence of pairs of AMR genes across different species 233 

groups (Fig. 5b). We found that the aminoglycoside resistance genes aph(3”)-Ib and aph(6)-Id 234 

were almost always found together, and co-occurred in eight different species groups (all Gram-235 

negative species groups except for Burkholderia spp., Providencia spp., and Stenotrophomonas 236 

spp.). Both of these genes also frequently co-occurred with the sulfonamide resistance gene 237 

sul2 (Fig. 5b). A separate aminoglycoside resistance gene, aac(6’)-Ib-cr, was found to 238 

frequently co-occur with the narrow-spectrum beta-lactamase blaOXA-1 as well as with the 239 

extended-spectrum beta-lactamase (ESBL) blaCTX-M-15. Finally, we examined the distribution of 240 

ESBL and carbapenemase enzymes among the ESBL-producing E. coli and Klebsiella spp. 241 

isolates that we sampled (Fig. 5c). The most frequently observed ESBL enzyme was CTX-M-15, 242 

which was found in roughly half of all E. coli and Klebsiella spp. genomes (Fig. 5c). The other 243 

half of isolates within each species group carried largely different enzymes from one another, 244 

with most E. coli isolates carrying other CTX-M-type and a small number of TEM-type ESBLs, 245 

while Klebsiella spp. isolates carried CTX-M-14 and SHV-type ESBLs. The carbapenemases 246 

KPC-2, KPC-3, KPC-8, and KPC-31 were found almost entirely among Klebsiella spp. genomes 247 

(Fig. 5c). These data highlight the abundant diversity of AMR genes carried by the bacteria in 248 

our hospital, and can be useful for developing tailored treatment and prevention approaches for 249 

different bacterial pathogens. 250 

Mobile genetic element (MGE) distribution and cargo 251 
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MGEs are frequently found within the genomes of bacteria residing in the hospital environment, 252 

and they often encode useful functions like AMR and virulence factors26. To assess the 253 

presence of MGEs in our dataset in a systematic and unbiased manner, we used a previously 254 

developed approach to identify nucleotide sequences with high homology (>99.9% identity over 255 

at least 10Kb) that were present in genomes of different genomospecies27 (Fig. 6a). This 256 

approach resulted in the identification of 186 clusters of shared sequences, which were present 257 

in 805 (26.8%) of the genomes in our dataset (Fig. 6b). While each of the 14 different species 258 

groups we sampled contained at least one genome encoding a shared sequence, species 259 

groups that were particularly enriched for shared sequences included Klebsiella spp., P. 260 

aeruginosa, and Stenotrophomonas spp. (Fig. 6b). We next used comparisons with available 261 

MGE databases and manual curation to assign an MGE type to each of the 186 clustered 262 

sequences based on sequence homology to previously described MGEs (Fig. 6c). We identified 263 

similar numbers of sequences that resembled insertion sequences (ISs) or transposons and that 264 

resembled prophages or integrative conjugative elements (ICEs). Slightly more sequences 265 

showed homology to plasmid sequences, and a large number of sequences resembled multiple 266 

MGE types (Fig. 6c). Importantly, 53 (28.5%) shared sequence clusters could not be assigned 267 

to an MGE type. Some of these sequences are likely fragments of larger MGEs that lacked 268 

genetic features that would enable their classification. Alternately, some of these may constitute 269 

novel MGEs.  270 

 To understand more about the cargo encoded by the putative MGEs we identified, we 271 

first assessed the distribution of AMR genes among the 186 shared sequence clusters we 272 

studied (Fig. 6d and Supplementary Table 9). Only 10/186 shared sequence clusters (5.4%) 273 

carried AMR genes, however these clusters were found among 116/805 isolates (14.4%). The 274 

most frequently observed AMR gene classes (which were each only present in four shared 275 

sequence clusters) were sulfonamide and trimethoprim resistance, while aminoglycoside 276 

resistance genes, tetracycline resistance genes, and beta-lactamases were each found in three 277 
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shared sequence clusters (Fig. 6d). We next examined the distribution of clusters of orthologous 278 

groups of proteins (COG) categories among all genes present in all shared sequence clusters in 279 

our dataset. A total of 938 genes (12.1% of all shared sequence cluster genes) had COG 280 

categories assigned, and among these genes the two COG categories observed most 281 

frequently were genes involved in replication, recombination and repair, and genes involved in 282 

inorganic ion transport and metabolism (Fig. 6e). These data suggest that prominent cargo 283 

among the shared sequences we identified included genes for MGE maintenance and 284 

transmission, as well as genes required for the utilization of and resistance to heavy metals, 285 

which pathogens frequently encounter in the hospital environment28. 286 

 287 

Discussion 288 

HAIs place a large burden on healthcare systems by increasing patient morbidity, mortality, and 289 

the cost of medical care. The broader aim of the EDS-HAT project is to improve the detection of 290 

bacterial outbreaks in hospitals, and the project has been successful in this regard14,15,22. The 291 

EDS-HAT project has also provided a large dataset of microbial genomes sampled from 292 

thousands of patients within a single medical center over time. Here we highlight the genetic 293 

diversity among bacterial pathogens causing HAIs; understanding this diversity can better 294 

inform genomic epidemiology and outbreak investigations. As bacterial WGS becomes 295 

increasingly routine in healthcare settings, this study also provides a baseline for future 296 

comparisons, both at our center and elsewhere.  297 

 Using comparative genomics methods, we revealed the vast diversity among bacterial 298 

pathogens within our hospital. We identified bacteria belonging to 97 different species, which 299 

spanned 14 different species groups. We also identified 23 species which have not been 300 

previously described, including potentially novel species of Acinetobacter, Citrobacter, Proteus, 301 

Providencia, Pseudomonas, Serratia and Stenotrophomonas. A total of 41 isolates (1.4% of 302 

sampled isolates) belonged to these novel species, which was a lower proportion than that 303 
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observed in a prior study of HAIs among ICU patients conducted in 201516. This could be due to 304 

additional species having been described in recent years, as well as different inclusion criteria 305 

and study populations between the prior study and our own. Further investigation into these new 306 

species can aid in the clinical diagnosis of bacteria causing infections.  307 

 Our finding that both ANI and PCA-A are effective at distinguishing between different 308 

groups at both the species and sub-species levels is consistent with prior studies29,30.  The 15 P. 309 

aeruginosa isolates we identified as having 93-94% ANI with the remaining P. aeruginosa 310 

population is also consistent with prior reports of the P. aeruginosa population31. Conversely, S. 311 

marcescens is known to have a population structure comprised of multiple clades32,33, however 312 

we found that pairwise comparisons between some of these clades had less than 95% ANI, 313 

suggesting a large degree of divergence and possible ongoing sub-speciation. We were also 314 

able to use accessory gene content differences to distinguish between the dominant genetic 315 

lineages of C. difficile, VRE faecium, and MRSA. Further investigation of these accessory genes 316 

would likely enhance our understanding of how different genetic lineages are able to co-exist in 317 

the same hospital, and could provide useful biomarkers for tracking lineages of interest. 318 

 Comparing within-patient versus between-patient genetic diversity can provide important 319 

guidance in defining SNP cut-offs for outbreak investigations. We found that the number of 320 

SNPs among genomes isolated from the same patient at different time points varied by species, 321 

with within-patient SNPs being lowest for C. difficile, moderate for MRSA and VRE, and greatest 322 

for P. aeruginosa. Differences between species likely reflect both genome size as well as the 323 

biology of these organisms; for example, C. difficile can spend long periods of time in a non-324 

replicative spore state, while P. aeruginosa genomes are more than double the size of MRSA 325 

and VRE genomes. The SNP distances among same-patient isolates we observed are 326 

comparable to those used in outbreak investigations in our setting and elsewhere14,34,35. These 327 

data demonstrate that same-patient genome pairs can be used to empirically determine genetic 328 

similarity thresholds for genomic epidemiology purposes. Evolutionary rates assessed for the 329 
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four most common species in our hospital were also consistent with previous studies36,37. The 330 

large variability in evolutionary rates between different species, however, further suggests that 331 

different SNP cut-offs should be considered for different bacterial species for the purposes of 332 

hospital outbreak investigations. 333 

This study establishes the diversity of antimicrobial resistance genes among pathogenic 334 

bacteria circulating at our hospital, and provides a point of comparison with other studies of 335 

antibiotic resistance spread in the hospital environment22,27,38,39. We found that aminoglycoside 336 

and sulfonamide resistance genes were highly abundant, and were found in the majority of 337 

species that we sampled. Although the presence of aminoglycoside resistance is well 338 

documented among both Gram-positive and Gram-negative bacteria—and more specifically 339 

among the ESKAPE pathogens—less attention has been focused on sulfonamide resistance40-340 

42. The co-occurrence of aph(3”)-Ib, aph(6)-Id, and sul2 has been previously observed in a 341 

variety of different genetic contexts, including in plasmids, integrative conjugative elements, and 342 

chromosomal genomic islands41,43. Additionally, we found that the ESBL enzyme blaCTX-M-15 was 343 

widely distributed among both E. coli and Klebsiella spp. isolates, which is consistent with prior 344 

reports44. Among the other ESBL-producing E. coli and Klebsiella spp. isolates collected, ESBL 345 

enzymes were largely restricted to one species group or the other. Finally, while we did not 346 

explicitly collect carbapenemase-producing organisms during this study period, a subset of the 347 

ESBL-producing E. coli and Klebsiella spp. isolates collected also carried carbapenemase 348 

enzymes. Co-occurrence of ESBL enzymes and carbapenemases was more frequent among 349 

Klebsiella spp., especially ST258 K. pneumoniae22.  350 

This study also offers an overview of highly similar sequences (which we suspect largely 351 

belong to MGEs) shared among the genomes of distantly related bacteria sampled from 352 

patients residing in the same hospital environment. We found that Enterobacteriaceae such as 353 

Klebsiella spp. and Citrobacter spp., as well as P. aeruginosa and Stenotrophomonas spp., 354 

were overrepresented among shared sequence clusters compared to their overall distribution in 355 
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the dataset. Most of the shared sequences identified in Enterobacteriaceae genomes resembled 356 

sequences carried on plasmids, consistent with the frequent plasmid exchange known to 357 

happen among species in this family45. On the other hand, many of the shared sequences 358 

identified among P. aeruginosa and Stenotrophomonas spp. resembled prophages and 359 

integrated conjugative elements, suggesting that these organisms may rely on different MGEs 360 

to exchange genetic material. Somewhat surprisingly, our analysis identified fewer shared 361 

sequences carrying AMR genes compared to a prior study we conducted within the same 362 

hospital27. This may be due to our use of a longer sequence length cut-off for shared sequence 363 

identification in this study, as AMR genes are known to be carried on smaller MGE units that 364 

can rapidly shuffle, interchange, and mutate46. Finally, we found it notable that genes encoding 365 

metal transport and resistance were frequently observed within the shared sequences we 366 

identified. Inorganic ions are required for catalysis of many bacterial enzymes47, and heavy 367 

metals such as silver, copper, and mercury have long been used as disinfectants in hospitals48. 368 

Further study of MGEs encoding metal-interacting genes will be a focus of our future work.  369 

This study had several limitations. The organisms we collected were pre-specified, and 370 

certain groups, such as Enterobacter spp. or carbapenemase-producing organisms without a 371 

noted ESBL phenotype, were not collected. Furthermore, our definition of “hospital-acquired 372 

infections” was quite broad; some of the collected isolates likely represent commensal 373 

organisms or pathogen colonization, rather than true infection. We also cannot say for sure 374 

whether the sampled bacteria were acquired from the healthcare setting or not, as we only 375 

considered bacterial isolates from clinical specimens and did not include environmental 376 

sampling. Additionally, our 25-month collection window was quite short, thus we were unable to 377 

draw conclusions regarding trends over time. Finally, the inclusion of both broad species groups 378 

as well as more defined sets of specific pathogens made it difficult to conduct systematic 379 

analyses or draw broader conclusions across the entire dataset. Nonetheless, the large number 380 

of isolates collected offers a high-resolution view of the genomic diversity and evolution of 381 
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important bacterial pathogens found within our hospital. Our future work will include following 382 

these bacterial populations over time, and comparing our results with similar studies conducted 383 

in other settings.  384 

In assessing the genomes of major infection-associated bacterial species isolated from 385 

patients at our hospital, we have provided a longitudinal survey of the genomic diversity of 386 

bacterial HAIs at a single clinical center. Our findings demonstrate that studying population 387 

dynamics and evolution of these pathogens can inform genomics-based outbreak 388 

investigations. In addition to forming a basis for future comparisons, this study also provides a 389 

deeper understanding of the breadth of different species that cause HAIs, and demonstrates the 390 

utility of systematic genome sequencing and comparative genomics analysis of clinical bacterial 391 

isolates from hospitalized patients. 392 

 393 

Methods 394 

Isolate collection 395 

Bacterial isolates were collected from the University of Pittsburgh Medical Center (UPMC) 396 

Presbyterian Hospital, an adult tertiary care hospital with over 750 beds, 150 critical care unit 397 

beds, more than 32,000 yearly inpatient admissions, and over 400 solid organ transplants per 398 

year. Isolates were collected from November 2016 through November 2018 from admitted 399 

patients as part of a prospective genomic epidemiology surveillance project called Enhanced 400 

Detection System for Healthcare-Associated Transmission (EDS-HAT). Inclusion criteria were 401 

hospital admission greater than two days before the culture date, and/or a recent inpatient or 402 

outpatient UPMC hospital encounter in the 30 days before the culture date. A total of 3,004 403 

isolates were included in this study (Table S1). The EDS-HAT project collected all organisms 404 

meeting the above inclusion criteria and belonging to the following genera: Acinetobacter spp., 405 

Burkholderia spp., Citrobacter spp., Proteus spp., Providencia spp., Pseudomonas spp. Serratia 406 

spp., and Stenotrophomonas spp. Isolate collection was limited to only toxin-producing strains 407 
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of Clostridioides difficile, vancomycin-resistant Enterococcus spp. (VRE), extended-spectrum 408 

beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp., and methicillin-resistant 409 

Staphylococcus aureus (MRSA). This study was approved by the University of Pittsburgh 410 

Institutional Review Board and was classified as being exempt from patient-informed consent. 411 

Whole genome sequencing and genome assembly 412 

Genomic DNA was extracted from pure overnight cultures of single bacterial colonies using a 413 

Qiagen DNeasy Tissue Kit according to the manufacturer’s instructions (Qiagen, Germantown, 414 

MD). Illumina library construction and sequencing were conducted using an Illumina Nextera 415 

DNA Sample Prep Kit with 150bp paired-end reads, and libraries were sequenced on the 416 

NextSeq 550 sequencing platform (Illumina, San Diego, CA). Selected isolates were re-417 

sequenced with long-read technology on a MinION device (Oxford Nanopore Technologies, 418 

Oxford, United Kingdom). Long-read sequencing libraries were prepared and multiplexed using 419 

a rapid multiplex barcoding kit (catalog SQK-RBK004) and were sequenced on R9.4.1 flow 420 

cells. Base-calling on raw reads was performed using Albacore v2.3.3 or Guppy v2.3.1 (Oxford 421 

Nanopore Technologies, Oxford, UK). 422 

Genome sequence analyses were performed on a BioLinux v8 server49 using publicly 423 

available genomic analysis tools wrapped together into a high-throughput genome analysis 424 

pipeline. Briefly, Illumina sequencing data were processed with Trim Galore v0.6.1 425 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove sequencing 426 

adaptors, low-quality bases, and poor-quality reads. Kraken v150 taxonomic sequence 427 

classification of raw reads was used to confirm species designation, and to rule out 428 

contamination. Illumina reads were assembled with SPAdes v3.1151. Long-read sequence data 429 

generated for other studies22,27,39 were combined with Illumina data for the same isolate, and 430 

hybrid assembly was conducted using unicycler v0.4.7 or v0.4.8-beta52. Assembled genomes 431 

were annotated using Prokka v1.14 and assembly quality was verified using QUAST53. 432 

Genomes were included in the study if they had at least 35-fold Illumina read coverage, had 433 
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assemblies with ≤ 350 contigs, and had total genome lengths ± 25% of the median of all isolates 434 

within each species group. Antimicrobial resistance and toxin genes were confirmed using 435 

BLASTn in line with EDS-HAT study phenotypic inclusion criteria. Specifically, all S. aureus 436 

genomes were confirmed to encode the mecA gene, all E. faecalis and E. faecium genomes 437 

were confirmed to encode a VanA or VanB operon, all E. coli and Klebsiella spp. genomes were 438 

confirmed to encode an identifiable extended-spectrum beta-lactamase (ESBL) enzyme, and all 439 

C. difficile genomes were confirmed to encode either toxin A and/or toxin B genes. 440 

Classification of genomospecies and lineages 441 

Within each species group, genome assemblies from this study and reference genome 442 

assemblies downloaded from the NCBI RefSeq database underwent pairwise average 443 

nucleotide identity (ANI) analysis using FastANI v1.318. Genomes with ANI values >95% then 444 

underwent single-linkage hierarchical clustering using the hclust function from the R package 445 

stats v3.6. Each ANI cluster was manually assessed and assigned to a species based on the 446 

predominant nomenclature of genomes of type/reference strains within each cluster. Clusters 447 

that did not contain reference genomes, or where reference genomes were only named at the 448 

genus level, were named “genomospecies.” Sequential numbers were appended to each 449 

uncharacterized genomospecies within a species group. Species identified using ANI and 450 

having greater than 100 isolates were further sub-divided into clades and lineages based on 451 

multi-locus sequence typing (ST), or phylogenetic analysis. STs were determined from 452 

assembled contigs using mlst v2 (https://github.com/tseemann/mlst). Species without a defined 453 

ST scheme (P. mirabilis and S. marcescens) were classified into clades or lineages by grouping 454 

isolates that shared <1000 core genome single nucleotide polymorphism (SNP) differences into 455 

the same lineage, with SNPs identified using snippy (https://github.com/tseemann/snippy). 456 

Stenotrophomonas genomospecies were named according to Gröschel et al.54. 457 

Gene content and pangenome analyses 458 
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Gene content matrices were obtained for all species groups with more than 50 isolates using 459 

the pangenome analysis program roary v3.1155. Roary was run using a protein identity cut-off of 460 

80% for genera containing multiple species, and a cut-off of 95% for individual species. 461 

Pangenome collector’s curves were generated for each species group by calculating the 462 

number of unique genes present at increasing numbers of sampled genomes, with 1000 463 

iterations of each sample size up to 250. Genetic clustering of genomes within species groups 464 

based on variable gene content was calculated and visualized using principal component 465 

analysis of accessory genes (PCA-A) using the R packages prcomp, vegan, and ggbiplot, with 466 

matrices of gene presence/absence used as input. Genes that were present in all isolates, 467 

present in only one isolate, or absent in only one isolate, were removed from analysis. PCA-A 468 

coordinate plots were visualized using GraphPad Prism version 7.0c.  469 

Core genome SNP comparisons, phylogenetic trees, evolutionary rate and recombination 470 

analyses 471 

Within each genus, species, ST, or clade, SNPs were identified using snippy 472 

(https://github.com/tseemann/snippy). The most complete genome assembly (i.e. highest N50) 473 

was used as a reference genome for SNP analysis. Core genome SNPs, defined as SNPs at 474 

nucleotide positions shared across all genomes in the sample group being compared, were 475 

used to calculate pairwise SNP distances and to generate maximum likelihood phylogenetic 476 

trees. Trees were generated with RAxML v8.2 using the general time reversible model of 477 

evolution (GTRCAT), Lewis correction for ascertainment bias, and 100 bootstrap replicates56. 478 

Unless otherwise specified, reported SNP distances refer to core genome SNPs for all isolates 479 

belonging to the same ST. Pairwise SNP distances were visualized using the R package 480 

ggplot2. Recombination and evolutionary rates were calculated for STs in four species groups 481 

(P. aeruginosa, Clostridioides difficile, VRE and MRSA), and for STs within each group with 482 

more than 25 isolates. Estimates of relative recombination rates (R/Theta) and average size of 483 

recombinant sequences (delta) were assessed from core genome alignments using 484 
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ClonalFrameML v1.1224 with default settings. The relative rate of recombination, which reflects 485 

the number of nucleotide changes introduced by recombination relative to each point mutation 486 

(r/m) was calculated as r/m = (R/Theta) × delta × ν24, where ν is the average distance between 487 

recombined sequences. A core genome alignment and recombination-corrected phylogenetic 488 

tree were used to estimate evolutionary rates using TreeTime23. Isolates that were found to be 489 

highly divergent from other isolates of the same ST (as revealed by an excess number of SNPs 490 

separating them from other isolates) were removed from the analysis.  491 

Antibiotic resistance gene detection and analysis  492 

Acquired antimicrobial resistance genes were detected by querying genome assemblies against 493 

the ResFinder database using BLASTn25. A gene was considered present if the BLASTn 494 

percent identity multiplied by the sequence coverage was >80%. Resistance gene presence 495 

was mapped to a global phylogenetic tree constructed from amino acid sequences of 120 496 

ubiquitous protein coding genes from the Genome Taxonomy Database Tool Kit57. Resistance 497 

gene co-occurrence was calculated using the %*% operator in R. This operator works by 498 

identifying the cross-products between any two genes found in a matrix of resistance genes 499 

identified in all isolates. The results were used to construct a relative frequency plot using the 500 

ggplot2 package in R. To include only the most frequently co-occurring gene pairs in the plot, a 501 

relative frequency of 80% and a combined frequency of 50% were used as cut-off thresholds. 502 

Additionally, genes found in >250 isolates were excluded as they were suspected of not being 503 

acquired resistance genes. ESBL and carbapenemase enzyme distributions were determined 504 

by assigning enzyme types based on protein sequence, and only 100% protein sequence 505 

matches are reported. 506 

Shared sequence detection and analysis 507 

Putative mobile genetic elements were identified by searching for sequences >10kb that were 508 

present at high identity (>99.9%) in the genomes of isolates belonging to different species 509 

(<95% ANI) using nucmer58. Sequences were organized into clusters using all-by-all BLASTn 510 
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v2.7.159, and clusters were visualized with Cytoscape v3.8.260. Clustered shared sequences 511 

were determined as resembling plasmids, insertion sequences (ISs), transposons, prophages, 512 

or integrative conjugative elements by BLAST against complete plasmids from NCBI 513 

databases61, MobileElementFinder62, PHASTER63, ProphET64 and ICEberg65, as well as 514 

comparison to the NCBI nr database and manual curation. Antimicrobial resistance genes in 515 

clustered sequences were identified by BLASTn against the ResFinder database25. Clusters of 516 

orthologous groups of proteins (COG) categories were assigned to genes present in one or 517 

more clustered sequences, and the distribution of genes in each COG category was visualized 518 

with the pie function in R. 519 

 520 

Data availability 521 

Raw sequencing reads and genome assemblies were submitted to the NCBI Sequence Read 522 

Archive (SRA) and GenBank, with accession numbers listed in Table S1. 523 

 524 
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 708 

Figure Legends 709 

Figure 1. Species and body site distribution of 3,004 clinical bacterial isolates from 710 

hospitalized patients. Isolates were collected from a single hospital over 25 months as part of 711 

the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) project. 712 

Pie charts show the distribution of isolates belonging to 14 different species groups collected 713 

from different types of clinical specimens. 714 

Figure 2. Genome length and pangenome size among sampled species. (A) Distribution of 715 

genome lengths of isolates belonging to each species group, ordered from shortest to longest 716 

median genome length. Vertical lines show median values. (B) Pangenome collection curves for 717 

up to 250 genomes from genera containing multiple species and with at least 50 genomes 718 

collected. Pangenomes were generated by Roary with an 80% protein identity cut-off. (C) 719 

Pangenome collection curves for up to 250 genomes from species with at least 40 genomes 720 

collected. Pangenomes were generated by Roary with an 95% protein identity cut-off. Curves 721 

show the mean pan-genome size and shading shows the standard deviation. 722 
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Figure 3. Average nucleotide identity (ANI) and principal component analysis of 723 

accessory genes (PCA-A) distinguish between and within species. (A) Phylogeny and 724 

pairwise ANI values for Citrobacter spp. sampled by EDS-HAT. Grey shading indicates ANI 725 

values >95%, with darker shading showing higher identity. (B) PCA-A plot for Citrobacter 726 

species with >2 isolates. (C) Pairwise ANI distribution of S. marcescens isolate genomes, 727 

showing pairwise ANI comparisons between isolates in different clades that fall below the 728 

species cut-off (95% ANI, vertical dashed line). (D) PCA-A plot for S. marcescens isolates, 729 

showing clear separation of five distinct clades. (E-G) PCA-A plots for dominant sequence types 730 

(STs) of C. difficile (E), E. faecium (F), and S. aureus (G). 731 

Figure 4. Pairwise SNP distances and genome evolution vary between species. (A) 732 

Comparison of within-patient, within-cluster, and between-patient single nucleotide 733 

polymorphisms (SNPs) for select species. Pairwise comparisons are shown for all isolate pairs 734 

belonging to the same sequence type (ST) within each species. (B) Genome evolution rates for 735 

the dominant STs within C. difficile (CD), vancomycin-resistant E. faecium (VRE), methicillin-736 

resistant S. aureus (MRSA) and P. aeruginosa (PSA). Isolates belonging to the four largest STs 737 

(three largest for MRSA) of each species were considered, and nucleotide substitution rate 738 

(SNPs/genome/year) was calculated for each ST separately. Individual data points are labeled 739 

with the corresponding ST, and boxes show the median, 25th and 75th percentiles. (C) 740 

Recombination events per mutation (R/Theta) for select species. Each data point represents a 741 

distinct ST, and data are grouped by species. STs with at least 10 isolates are shown. Boxes 742 

show the median, 25th and 75th percentiles. PRO=P. mirabilis, SER=S. marcescens, KLP=K. 743 

pneumoniae, EC=E. coli, ACIN=A. baumannii. 744 

Figure 5. Antimicrobial resistance gene abundance and diversity. (A) Prevalence of 745 

resistance genes found in more than one species group. Genes are grouped by antibiotic class, 746 

and grey shading shows the prevalence of each gene within and across each group. Darker 747 

shading indicates higher prevalence. ACIN=Acinetobacter spp.; KL=Klebsiella spp.; 748 
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CB=Citrobacter spp.; EC=E. coli; PRV=Providencia spp.; PR=Proteus spp.; SER=Serratia spp.; 749 

PSA=P. aeruginosa; PSB=Pseudomonas spp.; STEN=Stenotrophomonas spp.; 750 

BC=Burkholderia spp.; VRE=vancomycin-resistant Enterococcus spp.; MRSA=methicillin-751 

resistant S. aureus; CD=C. difficile. (B) Resistance gene co-occurrence. Relative frequency 752 

versus number of genomes is plotted for pairs of resistance genes that co-occur at ≥50% 753 

relative frequency. Blue dots indicate AMR genes in the same drug class, while orange dots 754 

indicate genes in different classes. The size of each dot corresponds to the number of different 755 

species groups found to carry each pair. AMR gene pairs found in ≥4 different species groups 756 

are labeled. (C) Distribution of extended-spectrum beta-lactamase (ESBL) and carbapenemase 757 

enzymes among E. coli and Klebsiella spp. isolates. 758 

Figure 6. Mobile genetic element (MGE) distribution and cargo. (A) Clusters of putative 759 

MGEs identified in 3,004 study isolate genomes. Nodes within each cluster correspond to 760 

bacterial isolates, and are color coded by species group (color key provided in panel B). (B) 761 

Distribution of isolates in the entire dataset (left) versus isolates encoding one or more putative 762 

MGEs (right). (C) Distribution of putative MGEs resembling plasmid, IS/transposon, or 763 

prophage/ICE sequences, determined by nucleotide sequence comparisons and manual 764 

curation. (D) Distribution of antimicrobial resistance (AMR) genes detected among 186 putative 765 

MGEs. (E) Distribution of clusters of orthologous groups of proteins (COG) categories of MGE 766 

genes with COG categories assigned. 767 

Figure S1. Average nucleotide identity (ANI) and principal components analysis of 768 

accessory genes (PCA-A) among diverse species groups sampled by EDS-HAT. (A) 769 

Phylogenetic tree with pairwise ANI values and (B) PCA-A plot for Acinetobacter spp. (C) 770 

Phylogeny and ANI of Burkholderia spp., (D) Providencia spp., (E) Pseudomonas spp., and (F) 771 

Stenotrophomonas spp. (G) PCA-A plot for Stenotrophomonas spp. Grey shading indicates ANI 772 

values >95%, with darker shading showing higher identity. PCA-A plots include species with >2 773 

isolates. 774 
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Figure S2. Average nucleotide identity (ANI) comparisons of P. aeruginosa isolates. 775 

Histogram of pairwise ANI values for 863 P. aeruginosa isolate genomes sampled by EDS-HAT. 776 

Dashed vertical line indicates 95% ANI. Comparisons in red are between isolates in P. 777 

aeruginosa Groups 1 or 2 versus isolates in the PA7-like Group 3, which appear to belong to a 778 

distinct genomospecies. 779 

Figure S3. Average nucleotide identity (ANI) comparisons of S. marcescens isolates. (A) 780 

Phylogeny and ANI of 177 S. marcescens isolates sampled by EDS-HAT. Grey shading 781 

indicates ANI values >95%, with darker shading showing higher identity. White indicates ANI 782 

values <95%. (B) Distribution of pairwise ANI values for S. marcescens isolates belonging to the 783 

same or different clades, broken down into pairwise clade comparisons. All comparisons 784 

between isolates in Clade A vs. Clade C and Clade A vs. Clade E fall below the standard 785 

species cutoff of 95%. 786 

Figure S4. Distribution of antimicrobial resistance (AMR) genes among 3,004 clinical 787 

bacterial isolates from hospitalized patients. Resistance genes were identified by BLASTn 788 

comparison to the ResFinder database. Isolates are ordered according to their phylogenetic 789 

placement using the amino acid sequences of 120 ubiquitous protein-coding genes from the 790 

Genome Taxonomy Database Tool Kit. “# Gene” shows the number of AMR genes per genome, 791 

with darker shading indicating more AMR genes. The matrix shows the presence or absence of 792 

202 AMR genes, grouped by antibiotic class. Heat maps at the top show the number of species 793 

groups and total number of genomes encoding each gene, with darker shading indicating higher 794 

numbers. Raw data used to make the matrix are available in Table S3. 795 
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Fig. 1. Species and body site distribution of 3,004 clinical bacterial isolates from hospitalized
patients. Isolates were collected from a single hospital over 25 months as part of the Enhanced Detection

System for Healthcare-Associated Transmission (EDS-HAT) project. Pie charts show the distribution of

isolates belonging to 14 different species groups collected from different types of clinical specimens.
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Fig. 2. Genome length and pangenome size among sampled species. a, Distribution of genome lengths
of isolates belonging to each species group, ordered from shortest to longest median genome length. Vertical
lines show median values. b, Pangenome collection curves for up to 250 genomes from genera containing
multiple species and with at least 50 genomes collected. Pangenomes were generated by Roary with an 80%
protein identity cut-off. c, Pangenome collection curves for up to 250 genomes from species with at least 40
genomes collected. Pangenomes were generated by Roary with an 95% protein identity cut-off. Curves show
the mean pan-genome size and shading shows the standard deviation.
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Fig. 3. Average nucleotide identity (ANI) and principal component analysis of accessory genes (PCA-
A) distinguish between and within species. a, Phylogeny and pairwise ANI values for Citrobacter spp.
sampled by EDS-HAT. Grey shading indicates ANI values >95%, with darker shading showing higher identity.
b, PCA-A plot for Citrobacter species with >2 isolates. c, Pairwise ANI distribution of S. marcescens isolate
genomes, showing pairwise ANI comparisons between isolates in different clades that fall below the species
cut-off (95% ANI, vertical dashed line). d, PCA-A plot for S. marcescens isolates, showing clear separation of
five distinct clades. e-g, PCA-A plots for dominant sequence types (STs) of C. difficile (e), E. faecium (f), and
S. aureus (g).
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Fig. 4. Pairwise SNP distances and genome evolution vary between species. a, Comparison of within-
patient, within-cluster, and between-patient single nucleotide polymorphisms (SNPs) for select species.
Pairwise comparisons are shown for all isolate pairs belonging to the same sequence type (ST) within each
species. b, Genome evolution rates for the dominant STs within C. difficile (CD), vancomycin-resistant E.
faecium (VRE), methicillin-resistant S. aureus (MRSA) and P. aeruginosa (PSA). Isolates belonging to the four
largest STs (three largest for MRSA) of each species were considered, and nucleotide substitution rate
(SNPs/genome/year) was calculated for each ST separately. Individual data points are labeled with the
corresponding ST, and boxes show the median, 25th and 75th percentiles. c, Recombination events per
mutation (R/Theta) for select species. Each data point represents a distinct ST, and data are grouped by
species. STs with at least 10 isolates are shown. Boxes show the median, 25th and 75th percentiles. PRO=P.
mirabilis, SER=S. marcescens, KLP=K. pneumoniae, EC=E. coli, ACIN=A. baumannii.
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Fig. 5. Antimicrobial resistance gene abundance and diversity. a, Prevalence of resistance genes found
in more than one species group. Genes are grouped by antibiotic class, and grey shading shows the
prevalence of each gene within and across each group. Darker shading indicates higher prevalence.
ACIN=Acinetobacter spp.; KL=Klebsiella spp.; CB=Citrobacter spp.; EC=E. coli; PRV=Providencia spp.;
PR=Proteus spp.; SER=Serratia spp.; PSA=P. aeruginosa; PSB=Pseudomonas spp.;
STEN=Stenotrophomonas spp.; BC=Burkholderia spp.; VRE=vancomycin-resistant Enterococcus spp.;
MRSA=methicillin-resistant S. aureus; CD=C. difficile. b, Resistance gene co-occurrence. Relative frequency
versus number of genomes is plotted for pairs of resistance genes that co-occur at ≥50% relative frequency.
Blue dots indicate AMR genes in the same drug class, while orange dots indicate genes in different classes.
The size of each dot corresponds to the number of different species groups found to carry each pair. AMR
gene pairs found in ≥4 different species groups are labeled. c, Distribution of extended-spectrum beta-
lactamase (ESBL) and carbapenemase enzymes among E. coli and Klebsiella spp. isolates.
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Fig. 6. Mobile genetic element (MGE) distribution and cargo. a, Clusters of putative MGEs identified in
3,004 study isolate genomes. Nodes within each cluster correspond to bacterial isolates, and are color coded
by species group (color key provided in b). b, Distribution of isolates in the entire dataset (left) versus isolates
encoding one or more putative MGEs (right). c, Distribution of putative MGEs resembling plasmid,
IS/transposon, or prophage/ICE sequences, determined by nucleotide sequence comparisons and manual
curation. d, Distribution of antimicrobial resistance (AMR) genes detected among 186 putative MGEs. e,
Distribution of clusters of orthologous groups of proteins (COG) categories of MGE genes with COG
categories assigned.
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Supplementary Fig. 1. Average nucleotide identity (ANI) and principal components analysis of
accessory genes (PCA-A) among diverse species groups sampled by EDS-HAT. a, Phylogenetic tree
with pairwise ANI values and b, PCA-A plot for Acinetobacter spp. c, Phylogeny and ANI of Burkholderia spp.,
d, Providencia spp., e, Pseudomonas spp., and f, Stenotrophomonas spp. g, PCA-A plot for
Stenotrophomonas spp. Grey shading indicates ANI values >95%, with darker shading showing higher
identity. PCA-A plots include species with >2 isolates.
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Supplementary Fig. 2. Average nucleotide identity (ANI) comparisons of P. aeruginosa isolates.
Histogram of pairwise ANI values for 863 P. aeruginosa isolate genomes sampled by EDS-HAT. Dashed
vertical line indicates 95% ANI. Comparisons in red are between isolates in P. aeruginosa Groups 1 or 2
versus isolates in the PA7-like Group 3, which appear to belong to a distinct genomospecies.
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Supplementary Fig. 3. Average nucleotide identity (ANI) comparisons of S. marcescens isolates. a,
Phylogeny and ANI of 177 S. marcescens isolates sampled by EDS-HAT. Grey shading indicates ANI values
>95%, with darker shading showing higher identity. White indicates ANI values <95%. b, Distribution of
pairwise ANI values for S. marcescens isolates belonging to the same or different clades, broken down into
pairwise clade comparisons. All comparisons between isolates in Clade A vs. Clade C and Clade A vs. Clade
E fall below the standard species cutoff of 95%.
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Supplementary Fig. 4. Distribution of antimicrobial resistance (AMR) genes among 3,004 clinical
bacterial isolates from hospitalized patients. Resistance genes were identified by BLASTn comparison to
the ResFinder database. Isolates are ordered according to their phylogenetic placement using the amino acid
sequences of 120 ubiquitous protein-coding genes from the Genome Taxonomy Database Tool Kit. “# Gene”
shows the number of AMR genes per genome, with darker shading indicating more AMR genes. The matrix
shows the presence or absence of 202 AMR genes, grouped by antibiotic class. Heat maps at the top show
the number of species groups and total number of genomes encoding each gene, with darker shading
indicating higher numbers. Raw data used to make the matrix are available in Table S3.
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