bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466176; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Biology-inspired data-driven quality control for scientific discovery in single-cell

transcriptomics

Ayshwarya Subramanian’"t, Mikhail Alperovich'?*”, Yiming Yang'*, Bo Li"*®

'Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA

MIT PRIMES, Massachusetts Institute of Technology, Cambridge, MA

3Lexington High School, Lexington, MA

“Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts
General Hospital, Boston, MA 02114, USA

*Department of Medicine, Harvard Medical School, Boston, MA 02115, USA

*Equal contribution

T Correspondence to subraman@broadinstitute.org


https://doi.org/10.1101/2021.10.27.466176
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466176; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Quality control (QC) of cells, a critical step in single-cell RNA sequencing data analysis, has
largely relied on arbitrarily fixed data-agnostic thresholds on QC metrics such as gene
complexity and fraction of reads mapping to mitochondrial genes. The few existing data-driven
approaches perform QC at the level of samples or studies without accounting for biological
variation in the commonly used QC criteria. We demonstrate that the QC metrics vary both at
the tissue and cell state level across technologies, study conditions, and species. We propose
data-driven QC (ddqc), an unsupervised adaptive quality control framework that performs
flexible and data-driven quality control at the level of cell states while retaining critical biological
insights and improved power for downstream analysis. On applying ddqc to 6,228,212 cells and
835 mouse and human samples, we retain a median of 39.7% more cells when compared to
conventional data-agnostic QC filters. With ddqc, we recover biologically meaningful trends in
gene complexity and ribosomal expression among cell-types enabling exploration of cell states
with minimal transcriptional diversity or maximum ribosomal protein expression. Moreover, ddqc
allows us to retain cell-types often lost by conventional QC such as metabolically active
parenchymal cells, and specialized cells such as neutrophils or gastric chief cells. Taken
together, our work proposes a revised paradigm to quality filtering best practices - iterative QC,

providing a data-driven quality control framework compatible with observed biological diversity.
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Introduction

Single-cell RNA sequencing (scRNA-seq) offers unprecedented resolution into cell biology by
characterizing the individual cells within a biological sample of interest. Quality control (QC) of
the cells is a critical first step in any scRNA-seq data analysis, which typically takes place after
alignment of the sequencing reads to the reference genome (or transcriptome), and generation
of the cell-by-gene matrix of gene expression counts. The goal of such QC is to remove “poor
quality” cells, based on QC metrics such as the number of genes detected or (“gene complexity”
or “transcriptional diversity”), the number of unique molecular identifiers (UMIs) recovered
(typical for droplet based methods), and the fraction of mitochondrial and ribosomal protein
genes [1]. The guiding motivation is that tissue dissociation techniques stress the cells and as
cells die, transcription tapers off, cytoplasmic transcripts are degraded, and mitochondrial
transcripts dominate [2]. Thus, low complexity of genes and high mitochondrial read content
have been used as a proxy for identifying poor quality cells (or droplets with ambient RNA). As a
corollary, high gene complexity has been used as a proxy for doublets or multiplets in droplet
based sequencing [3]. While specialized computational strategies have been developed for
specific tasks such as doublet identification [4—6], ambient RNA correction [7-9] or empty
droplet removal [10], the standard practice in cell QC is to filter out cells by setting arbitrarily
defined thresholds on the QC metrics. Widely used pipelines [11,12] by default, set a flat filter on
the QC criteria for each sample or sets of samples analyzed, agnostic of the dataset and biology

under study.

Although widely used, data-agnostic QC filters do not account for the fact that variation in the

commonly used QC metrics may also be driven by biology (in addition to technical factors). For
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example, mitochondrial transcript abundance is dependent on cellular physiology [13], and
metabolically active tissues (e.g. muscle, kidney) have higher mitochondrial transcript content
[14,15]. Ribosomal protein gene expression has also been shown to vary by tissue [16] in
human adults and mice [17]. Although biological variability in ribosomal protein gene expression
has been reported [18], ribosomal protein gene expression is often conflated with technical
artifacts or housekeeping transcription activity during analysis. Within each tissue,
compartments and cell types may show further variability in these QC attributes. For example,
the total number of genes expressed (gene complexity) varies with both cell type and cell state
as seen during stages of mouse and human development [19]. Expression profiles also vary
with progression through the cell cycle [20] or changes in cell volume [21]. Further, specific
biological conditions or perturbations can lead to differences in these QC measures. For
example, naive poised T-cells are known to have higher ribosomal content [22,23], as are
malignant cells [24]. Activated lymphocytes such as Innate Lymphoid Cells (ILCs) [25] have
greater transcriptional diversity, in an activation and condition dependent manner. Thus, the
commonly used QC metrics can exhibit widespread biological variability bringing to the center

the biological context of the study.

The importance of calibrating QC for the mitochondrial read fraction based on the mouse or
human tissue of origin has been highlighted [26], however the proposed upper limit of 5 or 10%
was largely based on existing data at the time of the study. Newer technologies (e.g. 10x v3
chemistry) may need a variable cutoff for mitochondrial read fraction [27]. The scater package
[28] encourages the use of diagnostic plots and sample specific QC. More recently, probabilistic
mixture modeling has been favored for data-driven quality control at the level of samples or

sample sets, either in combination with other QC approaches [15] or standalone as in miQC
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[29]. However, no approach performs quality control explicitly taking into account the biological

variability of QC metrics at the cell type or cell state level.

Here, we survey the variability of QC metrics across diverse scRNA-seq datasets at the tissue
and cell state level, demonstrate the need for a data-driven quality control approach that
accounts for the biological variability of QC metrics at the level of cell states, and present a
framework for data-driven QC (ddqc), inspired by unsupervised approaches in single-cell
analysis, that performs adaptive quality control while retaining biological insights. Finally, we
demonstrate that ddqc retains cell types that are lost by conventional QC, expanding existing
cellular taxonomies for tissues, and offering an opportunity for further exploration and biological

discovery.

Results

Survey of QC practices suggests a need for data-driven QC

To study existing QC practices in cell filtering, we sampled 107 research papers (Methods) with
publication dates between 2017 and 2020, and focusing on analysis of scRNA-seq data
generated across a range of technologies (3’ 10x V2 and 3’ 10x V3, Smartseq2, Drop-seq,
mCEL-Seq2, Dronc-seq, MIRALCS, Microwell-seq) and in two species (mouse and human), and
summarized the QC practices adopted (Table S1). The most commonly-used QC metrics were
the number of genes detected, the number of UMIs counted, and the fraction of reads mapping
to mitochondrial or ribosomal protein genes. A greater number of the studies (Table 1) that

applied cell QC on specific metrics used data-agnostic QC filters, usually set at 5-10% for
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fraction of mitochondrial reads (86% or 73 papers), and 500 for gene complexity (86.5% or 77
papers). QC filter thresholds also varied with protocols (cells or nuclei) or technology (10x v3 vs
v2 chemistry)[27]. Some studies excluded ribosomal protein or mitochondrial genes altogether
or had a cutoff on the fraction of ribosomal genes [30]. Custom QC metrics were also adopted
such as transcriptome mappability rates to exon vs non gene bodies [31] or the fraction of reads
mapping to housekeeping [32] or select other genes such as KCNQ710OT1[33], actin [34] or
Hemoglobin [35]. Some studies had incorporated custom data-driven approaches including
probabilistic mixture models [15,36] or sample [36,37] and study specific filters [38], suggesting
the awareness and need for generalizable data-driven QC approaches. However, the majority of

papers continue to use data-agnostic filters.

Across species and technologies, QC metrics vary by tissue

To systematically investigate if scRNA-seq data generated by commonly used technologies
retains tissue and cell type specificity of the QC metrics, we profiled QC statistics by tissue and
cell type on large public datasets after minimal basic QC (Methods). We surveyed 5,261,652
cells from 498 samples and 47 human tissues across 34 studies, and 966,560 cells from 337
samples and 37 mouse tissues across 5 studies (Methods, Table S2). We examined 8 human
tumor types across protocols (fresh cells/scRNA-seq vs frozen nuclei/snRNA-seq) and droplet
chemistries (10x v2 vs 10x v3) [27]. A subset of the studies (Tabula muris 10X, Tabula muris
Smartseq2; Microwellseq mouse and human; Tabula senis) had both uniformly generated and
processed datasets, while others (PanglaoDB) were generated in independent studies but
uniformly processed. The mouse Tabula muris dataset was particularly convenient having data

generated from both 3’-end droplet based sequencing (10X, (Fig S1A,C,E)) and full-length RNA
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plate based Smartseq2 techniques (Fig S1B,D,F) from the same samples, and processed

uniformly using the same reference and computational pipelines.

We found a tissue specific (Fig 1) trend for the QC metrics across studies. In general, we found
variation by tissue for proportion of mitochondrial reads (Fig 1A,B) within the same study
regardless of the technology used (Tabula muris 10X, Tabula muris Smartseq2; Microwellseq
mouse and human) with some tissues emerging as having higher mitochondrial content (e.g.
kidney, colon, heart, liver etc). The tissue-specific ordering of mitochondrial reads seen in [13]
was most faithfully recapitulated by the Smartseq2 dataset (Fig S1B) with kidney, colon,
cerebellum and heart having the highest mitochondrial load. Differences in the gene complexity
(Fig 1C,D) and the percent of ribosomal protein genes (Fig 1E,F) were also observed among
tissues. Across both technologies, the tongue had the highest mean gene complexity (Fig
8$1C,D), with the mean percentage of ribosomal protein reads being higher in the 10X dataset
(Fig 1E). Trends were generally also maintained with age (Tabula senis 30m, Fig S2A,C,E).
When compared to frozen tumor nuclei, the gene complexity was higher for cells (Fig S2D).
Further, within each tissue, multiple density modes were evident (Fig 1) for the QC metric
studied. Finally, we note that the summary statistics of the QC metrics can vary by the

experimental condition (technology and study) even for the identical tissue.

Across species and technologies, QC metrics vary by cell-type within a tissue

We next assessed cell state or cell subset-specific QC attribute differences within tissues by
uniformly processing all datasets (starting with the gene expression count matrices) to derive

clusters within each tissue without applying standard QC cutoffs (Methods). However, many
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publicly available datasets did not come with assigned cell-type annotations. To uniformly
predict biological annotations to the cell clusters, we devised a heuristic score function
leveraging the top differentially expressed genes in a cluster, and the PanglaoDB [39] database
of marker genes to assign the most probable cell type annotation. We tested the annotation
strategy on 4 mouse (Tabula muris Smartseq2, Tabula muris 10X, Tabula senis 24 months,
Tabula senis 30 months) and 1 human (Human Tissue Atlas) datasets which had partial
annotations provided by the authors. On these data, our heuristic approach had an accuracy of
80.2% and 92.1% for cluster annotations in human and mouse data respectively (Table S3,
Methods). We applied our heuristic approach to all test datasets and then examined trends of
the QC metrics among cell states within tissues. As case studies, we manually verified

annotations, and describe examples for murine (Fig $2) and human tissues (Fig 2).

Across all tissues, we observed variability by cell state, in the per cell QC metrics (fraction of
mitochondrial and ribosomal reads mapped, and gene complexity per cell). To illustrate the
impact of standard QC thresholds, we applied QC thresholds of 10% for the maximum
mitochondrial read fraction and 500 genes detected for minimum gene complexity. A fixed cutoff
of 10% mitochondrial read fraction leads to loss of parenchymal cell subsets in human kidney
and testis (Fig 2A,B), and mouse cerebellum, and colon (Fig S2A,B). More broadly,
mitochondrial-read-rich clusters ranged from muscle cells to tissue-parenchymal cells such as
enterocytes (gut), proximal tubular cells (kidney), or sertoli cells (testis), all cell types known to
have high metabolic activity and energy needs such as active transport in the kidney proximal
tubule, and oxidative phosphorylation in cardiomyocytes of the heart. Even a conservative fixed
cutoff of 200 genes led to loss of diverse cell subsets including immune cells such as

neutrophils (Fig S2C,D) and neurons (Fig 2D). Cell cluster specific trends in percent ribosomal
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protein genes were also evident (Fig 2E,F, Fig S2E,F). Thus we demonstrate that data agnostic
thresholds remove biologically relevant cells, and that QC based on these metrics must not only

adapt to different tissues or samples but also to cell states and cell types.

ddqc: A cell state adaptive quality control framework

To account for biological variability among QC metrics and also adapt to differences due to
experimental conditions (study design, technology etc), we propose data-driven QC (ddqc, Fig
3A), an unsupervised, data driven, and adaptive thresholding framework for optimal capture of
biological diversity. Heavily inspired by and adapting existing unsupervised approaches in
scRNA-seq analysis [40], ddgc identifies neighborhoods of cells by graph-based clustering and
performs QC on these clusters using an adaptive thresholding approach. The basic idea is that
data must be partitioned by biology, and that QC must be performed on these independent
partitions. Briefly, cells that pass empty droplet filters (having more than 100 genes detected and
fewer that 80% of reads mapping to mitochondrial genes) are subjected to dimensionality
reduction by principal component analysis, followed by nearest-neighbor graph construction and
clustering to identify cell clusters with similar transcriptional states (details in Methods). Our
approach does not rely on annotation and is driven by the density of the data. Within each such
cluster, we identify “outliers” based on one- or two-sided thresholds on the QC metric of interest,
defined as those cells that lie beyond a chosen number of median absolute deviations (MAD)
from the cluster QC metric distribution median. Cells that pass these thresholds then enter

downstream analysis.
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The specific downstream analysis depends on the study and biological questions of interest. For
example, the next step may be integration with other data modalities (e.g. spatial data), batch
effect correction or classification. If the next step is indeed conventional analysis involving
clustering-based cell type identification, followed by differential gene expression, analysts may
choose to start with the clustering labels that ddgc generates during QC (and returns as an
output) to merge, re-cluster or subcluster based on their research question. ddqc is available as
a package on Github and can be readily plugged into standard scRNA-seq analysis pipelines
such as Pegasus [41] or Seurat [12]. Flexible options and exploratory plots are provided to the

user for more control.

We evaluated the performance of ddqc on all test datasets (Table S2) applying adaptive QC on
three QC metrics: fraction of UMIs mapped to mitochondrial genes, gene complexity and
number of UMIs. For comparisons, we ran conventional QC (“standard cutoff’) on our test
datasets using a fixed threshold of 10% as the maximum fraction of mitochondrial reads, and
200 as the minimum gene complexity. We then evaluated the cells that passed QC by either
approach in a number of ways: ability to (1) improve power, (2) expand existing cellular
taxonomies, (3) recover biologically meaningful states, and (4) discover broadly useful insights

of transcriptional activity.

ddqc improves power for downstream analysis when compared with conventional

QC methods

We computed the number of cells retained by either ddqc or conventional qc and determined

the breakdown by QC attributes. ddqc preserved more cells in comparison to conventional QC
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varying across datasets and biological conditions (Table S4). Overall, ddqc retained up to a
median of 95.4% of input cells versus 69.4% cells using the standard cutoff approach. The
higher number of cells retained by ddqc held across tissues (Fig 3B) and technologies (Fig 3C).
Stratified by QC attributes, on average 83.19% of cells lost due to ddqc are due to percent mito
thresholds while 6.2% are lost due to gene complexity (Table S4) thresholds. Thus, the higher

number of cells preserved by ddqc provides more statistical power for downstream analysis.

ddqc retains biological cell state information lost using default cutoff or

data-driven approaches that do not consider biology

As ddqgc applies QC per cluster, it helps retain several cell states of biological relevance. We
illustrate the biological relevance of ddqc in two ways. First, using the Tabula muris lung dataset
as a case study, we compare changes in lung cell taxonomies using ddqc and author-defined
cutoffs. In the paper, the authors used fixed cutoffs of 500 genes for minimum gene complexity
and 1000 UMis for the minimum number of UMIs. After QC by ddqc, we overlaid barcode
annotations (Fig 3D) provided by the authors [42] to define clusters with cells retained both in
the paper and ddqc, and those exclusively retained by ddqc (i.e. all cells in the cluster were
filtered out in the paper but retained by ddqgc). Examining clusters exclusively retained by ddqc,
we find various cell types of interest such as muscle cells, neutrophils, Natural Killer (NK) cells
and T cells, which we validate using their known canonical signatures (Fig 3E, Table S5). These
cell states when filtered out are not analyzed downstream. When these data are lost, we also
lose the biology or insights we might learn from analyzing them. Thus, using ddqc, we are able
to expand tissue cellular taxonomies by retaining tissue-native cell types missed by arbitrary

cutoff based QC.
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Next, to demonstrate that ddqc recovers biologically meaningful states, we proceeded to
annotate the cells that passed QC using our heuristic annotation strategy. Since our annotation
strategy labels cell clusters and not individual cells, we jointly clustered the cells retained by
both ddgc and the standard cutoff QC, and then applied our heuristic clustering strategy to
assign biologically relevant labels. To evaluate differences in the QC-ed cells by both
approaches, we defined “uniquely retained” clusters as those that had at least 30 cell members,

and 85% of cluster membership consisted of cells uniquely retained by either QC method.

No cluster was unique to the standard cutoff approach by the above definitions whereas several
biologically meaningful clusters were uniquely retained by ddqgc (Table S6). We describe three
examples: Tabula muris Heart and Aorta (Fig 3F,G, S4A,B), human Olfactory Epithelial cells
(Fig S4C-F), the human lung (Fig S4G,H). Compared to the standard cutoff method, ddqc
retained cell subsets with low gene complexity including olfactory epithelial cells, dendritic cells,
erythroid precursor cells and platelets which were filtered out by the conventional QC approach.
Cardiomyocytes (Fig S3A) and lung muscle (Fig 3G) cells were mito-rich and retained in ddgqc.
The majority of cells with high mitochondrial content are diverse epithelial cells in both mouse
and human. We provide a table of cell states lost when conventional methods are used across

all our surveyed datasets (Table S6).

Finally, to compare with a data-driven approach, we ran miQC using standard settings
(Methods) on the human olfactory epithelium and the mouse heart datasets. For the human
Olfactory Epithelium, both ddqc and miQC retain all clusters (miQC retaining upto 95% of cells

as ddqc) with ddgc retaining more of mito-rich olfactory epithelial cells. However, in the Tabula

11
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muris mouse heart example (Fig S3A), miQC retained only 90.5% of cells as ddqc, completely
removing the cardiomyocyte cluster. The cardiomyocyte cluster had a median of 15.178% reads
mapping to mitochondrial genes, and 2427.67 as the median gene complexity, which ddqc
retains. Cardiomyocytes are essential parenchymal cells of the heart. In both examples, miQC
retained fewer cells exclusively (that ddgc did not), however they did not map to a missing
biologically relevant cell type. Thus ddqc retains biologically relevant cell types that miQC filters

out.

Which cells have the least and most number of transcripts?

We next turned to other insights focusing on patterns of cell-type specific gene usage that a
more biology driven QC approach preserves. Following ddgc, we examined trends in QC
metrics (Table S7), to answer questions such as “which cell subsets transcribe the fewest
number of genes?”. We defined cell states with low gene complexity as those with both low
median number of genes detected (< 200) as well as low median %mitochondrial reads (<10%).
Across 20 human studies and 163 clusters, 44 of the clusters (27%) were diverse immune cells
including dendritic cells, plasma cells, T cells, Natural Killer and mast cells. Other subsets
included endothelial subsets, platelets, and RBCs. Specific parenchymal cells with low gene
complexity were specialized cells such as gastric chief cells (PGA5*, PGC*, CHIA*, PGA3",
LIPF*) of the stomach, cardiomyocytes (NPPA*, NACA*, NACA2*, MYL2"), neuronal subsets
(schwann, astrocytes, neurons) of the substantia nigra, and olfactory epithelial cells. Across 4
large mouse studies and 466 clusters, 131 (28%) were immune cell clusters including 28

neutrophil (Elane*, Prtn3*, Mpo®) subsets, 27 B cells and 46 macrophage/Kupffer subsets.

12
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Endothelial (46) and erythroid (23) lineages followed. Parenchymal cells included lactating and

involuting mammary gland cells, pancreatic acinar cells and diverse epithelial cells.

Next we looked at cell states with high gene complexity (> 2000 median genes, < 10% fraction
mitochondrial reads). Among 318 such clusters in humans, neurons (39), and fibroblast (29)
emerged as the higher ranked ones, along with epithelial cells (111). In mice, across 424
clusters, macrophages (58), fibroblasts (61), and diverse epithelial cells (104) were among the

most populous subsets with high gene complexity.

Immune cells have a high fraction of ribosomal protein content

Examining trends of ribosomal protein transcription, we defined high or low median ribosomal
protein gene complexity as that with greater than 20% reads or lower than 10% reads mapping
to ribosomal protein genes, and lower than 10% reads mapping to mitochondrial genes. Among
438 human clusters with high ribosomal protein gene complexity, 212 (48.4%) were immune cell
subsets including 85 T cells, and 50 dendritic cell subsets. Immune cell function often requires
rapid protein translation [23,43]. Other preponderant subsets were epithelial (110) and
fibroblasts (43). Among 450 such clusters in mice, 241(53.6%) were annotated as immune
including diverse subsets (B cell (78), macrophages (44), T cells (75)) suggesting that certain

immune states may have high translational activity and need for ribosomal protein genes.

Neurons (20.6%) were a large fraction of human cell states with lower ribosomal protein gene

complexity. In mouse, cell states with low ribosomal protein gene complexity included diverse

epithelial and immune cells, fibroblasts and endothelial cells. Thus a more context-focused QC
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approach such as ddgc can enable us to recapitulate and study fundamental patterns in

cell-type specific gene expression and associated function.

Discussion

Cell quality-control remains an essential step in scRNA-seq data analysis, however
conventional approaches apply arbitrary filters on defined QC metrics without accounting for the
biological context. The standard practice among published papers is largely a data-agnostic
arbitrary threshold-based QC. We have demonstrated (Fig 1-2) that not accounting for the
underlying biological heterogeneity at the level of cell states during QC can lead to loss of
relevant biological insights (including important cell types) as well as reduced statistical power
for downstream analysis. However, identifying cell types and cell states is a time-consuming
process requiring either well-annotated training sets or involves the manual and subjective task
of cell-state annotation. The field of single-cell biology is still in the early stages of building
experimentally validated and reproducible ontologies of cell states. To overcome these
challenges, we present an unsupervised approach ddqc that leverages clustering to identify
transcriptionally similar cellular neighborhoods (approximating broad cell types) and performs

adaptive QC on these clusters.

We observe limitations of our approach: (1) ddqc applies adaptive thresholds on each cluster,
and hence, we are likely to lose some good quality cells due to inherent spread of the cluster
data distribution. (2) While in most cases, ddqc retains clusters that are biologically meaningful,
in some cases, ddgc may retain cells (Table S4) with high percentages of mitochondrial genes

that may be a mix of biology and technical artifacts. These clusters when sub-clustered do not
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always represent bimodal distributions (Fig S3), rather a gradation and there is no perfect way
to assess the right cutoff. Such cells are usually subsets of larger neighborhoods of biologically
meaningful cells that reflect true metabolic stress due to the biological condition studied. In the
current version of ddqc, removal of such cells has been left to the analyst after examination via
Exploratory Data Analysis (EDA) in the context of the biology of the study, and during
downstream analysis. We believe QC should be iterative and to help empower the user, ddqc

provides detailed statistics for all cells that pass or fail adaptive QC.

ddqc provides several advantages relative to conventional cutoff or biology-agnostic data driven
approaches. First, it retains more cells than standard or data-driven QC approaches leading to
more power for downstream analysis. Second, the additional cells retained by ddgc are
biologically meaningful thus increasing the potential for further biological discovery. Such
biological insights include retaining a diversity of cell types with extreme value QCs and rare
cells, as well as uncovering study-specific metabolic and physiological programs that may
dictate changes in these common QC metrics. Further investigation of retained cell states may
provide insights into the underlying biological processes. Finally, we examine cells lost by
conventional QC to add insights into questions of fundamental interest in biology such as
parsimony in total gene usage or transcription. Our analysis has revealed interesting biological
observations in terms of overall transcriptional diversity of cell states, as well as ribosomal
protein gene expression. In summation, we propose a biology-centered and iterative approach
to cell quality control that retains cell states of critical biologically relevance often removed by

conventional QC.

Code Availability:
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ddqc is available as a GitHub package along with a tutorial: https://github.com/ayshwaryas/ddgc

For R users, a compatible package is available here: https://github.com/ayshwaryas/ddgc_R

Data availability:

All datasets used in this manuscript are publicly available. Supplementary tables 1 and 2

provide the information for accessing the datasets.
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Table 1

Quality control (QC) is typically performed for the following metrics: nUMI, nGenes, %mito
(sometimes % ribo), and the minimum number of cells in which a gene is present. Additionally,
empty droplets or multiplets may be detected and removed, and ambient RNA accounted for.
We categorized studies into 4 groups:
(1) Data-agnostic fixed threshold: The majority of the studies use a single threshold - for
example <10% mitochondrial transcripts.

(2) Many fixed thresholds: Sometimes, different fixed cutoffs are used for different samples
within one study.

(3) Sometimes studies regress out or remove mitochondrial and ribosomal genes.

(4) Study-level threshold: There are also “data-driven” cutoffs (Data-Driven study-level

threshold)

- for example within 2 SDs from the median performed on a per-sample

basis. Also, custom cut-offs are cutoffs that are very specific to the research in which

they are used.

TOTAL: 107
Metric\QC | Some | Data-agnostic | Many Removed | Data-Driven | Custom | No
type QcC fixed threshold | fixed study-level Filterin
(% of filtered) | threshold threshold g
nCounts [ 65 48 (73.8%) 5(7.7%) |0 (0%) 11 (16.9%) |1(1.5%) |42
nGenes 89 72 (80.8%) 5(5.6%) |0 (0%) 12 (13.5%) |0 (0%) 18
nCells 41 35 (85.4%) 3(7.3%) |0 (0%) 2 (4.9%) 1(2.4%) | 65
%Mito 85 69 (81.2%) 5(5.9%) |4(4.7%) |6 (7.1%) 1(1.2%) | 22
%Ribo 7 2 (28.6%) 0 (0%) 3(42.8%) |2 (28.6%) 0 (0%) 100
Empty Droplets Doublets/Multiplets Ambient RNA
4 17 6
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Figure legends:

Figure 1: QC metrics vary by tissue: Fraction of mitochondrial reads (A,B), gene complexity
(C,D) and percentage of ribosomal protein genes (E,F) per cell across human tissues and
technologies. Various human tissue scRNAseq datasets generated by 10X droplet-based
(A,C,E) and Microwellseq(B,D,F) technologies. Each row in a panel is a density curve with the
mean represented by a blue diamond. Red lines indicate conventional threshold values set at

10% for percentage of mitochondrial reads, and 200 for gene complexity.

Figure 2: QC metrics vary by cell-type: Fraction of mitochondrial reads (A,B), gene complexity
(C,D) and percentage of ribosomal protein genes (E,F) per cell across cell types of various
human tissues: kidney (A), testis (B), adipose (C), Substantia Nigra (D), Bone Marrow (E) and
Lung (F). All scRNA-seq data was generated using the 10X droplet-based technology. Each row
in a panel is a density curve with the mean represented by a blue diamond. Red lines indicate
conventional threshold values set at 10% for percentage of mitochondrial reads, and 200 for

gene complexity.

Figure 3: ddqc retains biologically meaningful cells that conventional QC filters out (A) Overview
of the ddqgc approach. (B-C) ddqgc retains more cells when compared to the standard cutoff
approach across (B) tissues in the Tabula muris dataset and (C) scRNA-seq data generating
technologies. (D) UMAP visualization of Tabula muris lung cells. Colors represent whether the
cells are included in the paper or uniquely retained by ddqc. (E) Violin plot visualization of cell
type specific signature scores in average log(TPX+1). From top to bottom: muscle, neutrophil,

NK cells and Gamma-delta T cells (F) UMAP visualization of joint clustering of cells retained by
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both ddqc and the standard cutoff in the mouse heart and aorta tissues. (G) Proportion of cells

retained by ddgc, standard cutoff or both in the mouse heart and aorta tissues.

Supp Fig 1: QC metrics vary by tissue: Fraction of mitochondrial reads (A,B), gene complexity
(C,D) and percentage of ribosomal protein genes (E,F) per cell across mouse tissues and
technologies. Various mouse tissue scRNAseq datasets generated in the Tabula muris project
by 10X droplet-based (A,C,E) and Smart-seq2 (SS2; B,D,F) plate-based technologies. Each row
in a panel is a density curve with the mean represented by a blue diamond. Red lines indicate
conventional threshold values set at 10% for percentage of mitochondrial reads, and 200 for

gene complexity.

Supp Fig 2: QC metrics vary by tissue: Fraction of mitochondrial reads (A,B), gene complexity
(C,D) and percentage of ribosomal protein genes (E,F) per cell across mouse tissues and
cancers. Various mouse tissue scRNAseq datasets generated in the Tabula senis project (30
months) (A,C,E) and the human tumor atlas pilot project (HTAPP; B,D,F) by 10X droplet-based.
Each row in a panel is a density curve with the mean represented by a blue diamond. Red lines
indicate conventional threshold values set at 10% for percentage of mitochondrial reads, and

200 for gene complexity.

Supp Fig 3: QC metrics vary by cell-type: Fraction of mitochondrial reads (A,B), gene
complexity (C,D) and percentage of ribosomal protein genes (E,F) per cell across cell types of
various mouse tissues: Cerebellum (A), colon (B), mammary gland (C), lung (D), tongue (E) and
Lung (F). All scRNA-seq data was generated using the 10X droplet-based technology. Each row

in a panel is a density curve with the mean represented by a blue diamond. Red lines indicate
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conventional threshold values set at 10% for percentage of mitochondrial reads, and 200 for

gene complexity.

Supp Fig 4: ddqc retains cell states of biological relevance. Boxplot visualization of the fraction

of reads mapping to the mitochondria, and the gene complexity across cell types in the (A,C)

mouse heart and aorta and (B,D) human olfactory epithelium. (E,G) UMAP visualization of joint

clustering of cells retained by both ddgc and the standard cutoff in (E) human olfactory

epithelium and (G) human lung. Proportion of cells retained by ddqc, standard cutoff or both in

(F) human olfactory epithelium and (H) human lung.

Tables

Table 1: Summary of QC survey

Supp Table 1: Table of papers included in the QC survey

Supp Table 2: Table of datasets with details of source tissue, samples, publications.

Supp Table 3: Details of annotations used in the evaluation of the automatic annotation strategy

Supp Table 4: QC Statistics returned by ddqc and standard cutoff

Supp Table 5: Tabula muris lung: comparisons with published annotations and signatures
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Supp Table 6: Table of clusters unique to either ddqc or standard cutoff

Supp Table 7: Trends in cell types with extreme QC metrics
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Methods

QC survey: We conducted a survey of 107 single-cell and single-nucleus RNA sequencing
papers published between 2017-2020. Papers included in the survey were collated either from
Twitter posts, searches on Google or from the scRNAseq database [44]. For each paper, we
recorded Quality Control (QC) strategy from the “Methods” section into Table S1. Additional
information was also recorded for each paper:

e Year published
Organism
Tissue of Origin
sequencing technology
Analysis Software
Preprocessing software

QC was classified into the following categories:

e QC to remove low-quality cells and genes by QC metric
o number of counts
o number of genes
o percent of mitochondrial transcripts
o percent of ribosomal transcripts
o number of cells in which gene is present

e QC to remove empty droplets

e QC to remove doublets/multiplets

e QC to account for Ambient/Background RNA

We categorized the papers based on which type of QC each paper used for a particular metric.
These categories were:
e Data-agnostic fixed threshold - QC removed all cells with a metric above/below a certain
number (for example keep all cells with <10% mitochondrial transcripts)
e Multiple fixed thresholds - several fixed thresholds thresholds for different samples
e Data-Driven study-level threshold - QC threshold was determined from the data (for
example, keep all cells with a number of genes within 2 SDs from the median)
e Custom - QC that was very specific for the particular paper
e No filtering - no filtering based on this metric was done
Summary of the QC survey and QC methods are documented in Table 1 and the Results
section.

Datasets: We downloaded publicly available mouse (n=5) and 32 human (n=32) (Table S2)
single-cell (scRNA-seq) or single-nucleus (snRNA-seq) RNA sequencing datasets. We
restricted our study to droplet- (10X Genomics), MicrowellSeq and plate-based (SmartSeq2)
technologies from various tissues.

We downloaded data at the level of gene counts after preprocessing (genomic reference
alignment and gene-level quantification) but prior to any quality control (QC). However, many
datasets in public repositories were already filtered using cutoffs, or were aligned to reference
genomes with missing genes. In some cases, we were able to contact study authors (Tabula
Muris) and get the unfiltered expression matrices. Links to the unfiltered datasets used can be
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found in Table S2. Our dataset search was agnostic to the computational preprocessing
methodology or genome reference version used.

Basic preprocessing: For all analyses, we start with loading the unfiltered or raw cell-by-gene
matrix stored either in the mtx, csy, txt, or h5ad format. Basic QC or initial filtering is conducted
to remove poor quality cells: cells with less than 100 genes or with more than 80% of
mitochondrial transcripts and genes present in less than 3 cells are removed. The basic QC
step is also important for computational efficiency as otherwise, we may have on the order of a
million or more barcodes incase of droplet based scRNA-seq.

ddqc: We propose an adaptive thresholding method to perform quality control at the level cell
types, thus taking into account differences between them. The first step of this method is to
cluster the cells using standard scRNAseq analysis preprocessing and clustering steps. We
assume that in each cluster cells are of the same or closely related cell types with shared
biological properties. In each cluster, we expect outliers - cells with the number of UMI counts,
number of genes, or percent of mitochondrial transcripts significantly different from the cluster
average. We assume that those differ in quality from other cells in their cluster, and remove
them by calculating a cutoff for each cluster based on median absolute deviation and a
predefined parameter. We chose the median absolute deviation (MAD) to be a more robust
statistic to define outlier thresholds instead of the zscore which assumes normality, or IQR which
is less permissive.If the cell has a value higher (percent.mito) or lower (n_counts, n_genes) than
2 MADs from the median in its cluster, this cell will be filtered out; all remaining cells will be sent
for downstream analysis. If the cluster ddqc threshold was bigger than 200 n_genes, or lower
than 10% mito, we would set it to 200 or 10 respectively.

ddgc uses preprocessing and clustering functions provided by the Pegasus
(https://pegasus.readthedocs.io/) for the Python package:
https://github.com/ayshwaryas/ddgc. An R package using functions in Seurat is also available:

https://github.com/ayshwaryas/ddgc_R.

Our pipeline starts with a loading of the unfiltered cell-by-gene matrix stored either in mtx, csv,
txt, or h5ad format.

e Basic QC was conducted to remove obvious bad quality cells: cells with less than 100
genes or with more than 80% of mitochondrial transcripts using the functions gc_metrics
and filter_data (subset in R).

e Normalization is performed using the function NormalizeData (NormalizeData in Seurat):
normalize the feature expression measurements for each cell by the total expression,
multiply by a scale factor (10,000), and log-transform the result to get log(TPX+1)
values.

e We find the top 2000 highly variable genes wusing the function call
highly variable_features (FindVariableFeatures in Seurat). We scale the expression
matrix of highly variable genes: shift the expression of each gene so that the mean
expression across cells is 0 and scale the expression of each gene so that the variance
across cells is 1, (In pegasus scaling is part of pca, in Seurat ScaleData)

e Next, dimensionality reduction is performed using principal component analysis (PCA)
using pca (RunPCA) with the number of principal components set at 50.

e Graph-based clustering of cells was performed by first building the k-nearest neighbor
graph setting K=20 [45] , and then the Louvain algorithm for clustering [46] or community
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detection with the resolution set at 1.4 using the functions neighbors (FindNeighbors)
and louvain (FindClusters) functions.
e Then we iterate through each of QC metrics to determine the cutoff values:
o First we create a truef/false numpy array (vector in R) that would represent
whether the cells have passed ddqc
o For each cluster we find lower (for n_counts and n_genes, otherwise set to
negative infinity) and upper (percent mito, otherwise set to positive infinity) cutoff
(median £ 2 * MAD)
m For number of genes: If lower cutoff is less than 200 genes, it would be
set to 200 (by default)
m For percent mito: if upper cutoff is more than 10 percent, it would be set to
10 (by default)
o Finally, f the cell is outside the bounds defined by cutoffs, it would be marked as
false in the ddqc array
e We do an AND operation between all ddqc metric-specific arrays. Cells that are marked
as true in this array have passed ddqc and are retained for downstream analysis

In the Pegasus and Seurat workflows, in addition to returning the filtered object, ddqc returns a
pandas dataframe with the following information for each cell:
e True/False value that indicates whether the cell passed the ddqc
e Cluster number that was assigned to this cell in the initial clustering
e For each QC metric:
o The metric itself
o Lower cutoff (cluster median - 2 cluster MAD) for this metric for the cell’s cluster.
If there is no cutoff, this field will be equal to None
o Upper cutoff (cluster median + 2 cluster MAD) for this metric for the cell’s cluster.
If there is no cutoff, this field will be equal to None
o True/False value that indicates whether the cell passed the ddqc for the given
metric

In addition, the ddqc workflow displays two box plots: one shows percent mito by cluster with
red line at 10 percent that indicates the standard fixed threshold for percent mito, and the other
shows log2 of n_genes by cluster with red line at 200 genes (7.64 in log2-scale) that indicates
the most common fixed threshold for number of genes.

Automatic cell-type annotation: We automated the task of mapping cell types to clusters
using the PanglaoDB cell type gene expression signatures as the reference dataset. Using the
PanglaoDB cell type: marker mappings, cell type labels were assigned for each cluster as
follows:

1. We computed cluster specific differentially expressed genes (DGE) by testing for genes
differentially expressed in the cluster of interest vs all else. For the testing, we used the
default differential expression test used in Seurat for the R version or Pegasus for the
Python version.

2. We filtered the DGE to retain those genes with at least a log fold change of > 0.25,
percent expressed in the cluster of interest > 25%, and p value < 0.05

3. We iterated through each cluster to assign cell type scores as follows:

a. First, we iterated through the filtered DGE of the current cluster to check for
matches in PanglaoDB.

28


https://doi.org/10.1101/2021.10.27.466176
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466176; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

i. If there was an entry that the gene indicates for a particular cell type, the
average log fold change of that gene was added to the score of the cell
type.

i. Only cell types annotations which included at least three such marker
genes were retained

b. The cluster was assigned the cell type annotation with the highest score.
Otherwise, the cell type would be stated as Unknown.
We note that the accuracy of our method is contingent on the accuracy of markers in the
PanglaoDB dataset which would get updated on a regular basis. The PanglaoDB markers
database doesn’'t have enough genes for certain cell types, which causes them to be wrongly
identified (For example Macrophages are often labeled as Dendritic cells). For examples in
Figures 2 & 3, annotations were manually verified.

Automatic cell-type annotation accuracy assessment: In order to assess the accuracy of our
cell type annotations method we have compared the results of automatic annotations with the
annotation provided by the publisher of the dataset, if such annotation was provided. Datasets
where the authors provided annotations included the Human Tissue Atlas; human adipose
(inhouse annotated), heart, and lung; Tabula muris (10x), Tabula muris (Smartseq-2), Tabula
senis 10x 24 and 30 month. The accuracy was calculated using the steps below.

1. First, we annotate the clusters after only empty droplet filtering. We do it by mapping the
annotation that is the most frequent among the cells of the cluster. If most of the cells
don’t have an annotation, the cluster will be marked as unknown.

2. For accuracy analysis, we are only keeping the clusters that had an annotation (not
unknown) and where at least 75% of cluster cells had that annotation.

3. For the comparison, we have established a number of pairs of the annotations that we
are considering to be the same (Table S3). Some of those pairs are just different in
naming (example NK cells VS Natural Killer cells), and others were validated by marker
genes to be more accurately defined using our strategy.

4. Then, we count the number of clusters with a mismatch between automatic annotation
and annotation provided by the publisher. If the annotation pair is included in the table
from step 3, it will not be counted as a mismatch. After that, we compute the accuracy
percentage.

The tables of the same cell types, mismatches, exact numbers and breakdown by the dataset is
provided in Table S3.

Comparison of ddqc with author-provided annotations: We have compared ddqc with
author-provided quality control in tabula muris tissue:

1. First, the author-provided annotations were downloaded from figshare
(https://figshare.com/articles/dataset/Single-cell RNA-seq_data_from_microfluidic_emul
sion_v2_/59689607?file=13088039).

2. Then we calculated the percent of cells exclusive to ddqc in each cluster after ddqc
filtering (Table $6). It was calculated by taking the number of cells whose barcodes were
not present in author annotations (which means they were not included by the author for
final analysis) and dividing it by the total number of cells in the cluster.

3. To verify the automatic annotation for clusters with high percent (100%) exclusive, we
have computed signature scores for each of the clusters (using the
“pegasus.calc_signature_score” function) with cell type markers (Figure 3e). You can
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find the signature genes in the (Table S6).

4. We have also generated UMAP plots with cells colored based on percent exclusive of
their cluster. We had 2 categories: fully exclusive to ddqc or shared with paper. (Figure
3D)

Comparison of ddqgc to the standard cutoff method: We compared ddqc with the standard
cutoff or static threshold method (default in most pipelines) as a control, and only basic QC for
reference:
1. ddqc using the same steps as described in the ddqc section for loading the data and
filtering.
2. Standard Cutoff or Static threshold (cells with number of genes less than 200 and
mitochondrial transcripts percent higher than 10% are removed regardless of filtering)
3. No additional filtering (done for reference)

First, we evaluated the retained cells in all the three approaches independently by graph based
clustering, followed by differential gene expression using de analysis function and UMAP
visualization using umap the function. Also, additional statistics were recorded for future
analysis (Information about clusters and cells). Exploratory data analysis (EDA) was performed
by generating summary plots including boxplots, joyplots, and colored UMAP plots.

Next, for comparisons, we performed joint clustering as follows:

1. After QC was performed, each barcode is assigned a label which indicates if it was
filtered or retained by each method. Possible options are: retained by all methods,
retained by ddgc only, retained by Cutoff only, Neither (removed by both cutoff and ddqc)
Barcodes that were marked as “neither” were removed
All remaining barcodes were clustered (as above), and visualized using UMAP.

4. Both cluster and filter labels were used to color the UMAPSs for exploratory data analysis.
Barplots were also generated per cluster to visualize the distribution of each cluster by
cell retained in each method.

5. DGE was performed on the clusters to assign cell identity, and to identify cell-types lost
by single-threshold QC.

These plots helped to demonstrate differences between static threshold and ddqgc by
highlighting clusters of cells that were kept by one method, but lost by another.

wn

Unique Clusters: To demonstrate differences between static threshold and ddqc, we determined
how many meaningful “unique” clusters ddqc retained. A “unique” cluster was defined as a
cluster with at least 30 cells, and with at least 85% of its cells retained only by ddqc, but filtered
out by cutoff method. The presence of unique clusters indicates that a population of very similar
cells was almost entirely filtered by one method, thus suggesting that potentially some cell types
were exclusive only to the other method. This helped to demonstrate the advantage of ddqc
over a static threshold since it had many more unique clusters than the static threshold method
had. More detailed examples are provided in the results section.

Comparisons with miQC: At the time of testing, miQC was installed in R from GitHub using the
command “remotes::install_github("greenelab/miQC", build_vignettes = TRUE)”. miQC was run
on the test datasets using the standard steps as described in the vignette:
https://github.com/greenelab/miQC/blob/main/vignettes/miQC.Rmd. Comparison was performed
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by examining the intersection of miQC retained barcodes with those retained by ddqc,
leveraging the annotations in the ddqc results.

Trends table: We determined trends in QC metrics by iterating through all ddqc clusters in all
tissues and recording the clusters which satisfy one of the following criteria to a corresponding
table:
e Median number of genes lower than 200
Median number of genes higher than 2000
Median percent mito higher than 10
Median percent ribo lower than 10
Median percent ribo higher than 20

Visualization and plotting: Boxplots, joyplots and violin plots for each QC metric was
generated in R using the ggplot2 and ggridges packages. For the tissue summary plots (Figure
1) only basic QC was performed, and then the QC metrics plotted stratified by tissue. For
cell-type summary plots (Figure 2), graph-based clustering was performed after basic QC. A
horizontal red line for boxplots and violin plots, and vertical line for joyplots were added to
illustrate standard cutoff thresholds (10% for mitochondrial transcripts percent, 200 for number
of genes).

All analysis tasks were performed on the Broad Institute High-Performance Computing Cluster.
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