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Abstract

Molecular genetic approaches applied to environmental DNA have great potential for biodiversity
research and ecosystem monitoring. A metagenome contains genetic information from all organisms
captured in an environmental sample. It has been primarily used to study bacteria and archaea, but
promising reports focusing on metazoan diversity are emerging. However, methodological uncertainties
remain, and studies are required to validate the power and the limitations of such an approach when
applied to macro-eukaryotes. Here, we analyzed water sample metagenomes to estimate zooplankton
diversity in 22 freshwater lakes across Eastern Canada. We tested the coherence of data based on
morphologically identified zooplankton taxa and molecular genetic data derived from shotgun sequencing
of environmental DNA collected at the same time. RV coefficients showed a significant correlation
between the relative abundance of zooplankton families derived from small subunit rRNA genes extracted
from the metagenomes and morphologically identified zooplankton. However, differences in congruence
with morphological counts were detected when varied bioinformatic approaches were applied to
presence-absence data. This study presents one of the first diversity assessments of a group of aquatic
metazoans using metagenomes and validates the coherence of the community composition derived from
genetic and classical species surveys. Overall, our results suggest that metagenomics has the potential
to be further developed to describe metazoan biodiversity in aquatic ecosystems, and to advance this

area we provide key recommendations for workflow improvement.
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56 1. Introduction

57 In the context of intensifying global change, there is a growing need for broad scale monitoring strategies
58 and ecosystem assessment (Cardinale et al., 2012; Cordier et al., 2020). Approaches based on

59  environmental DNA (eDNA), broadly defined as the total pool of DNA that can be isolated from the

60  environment (Taberlet et al., 2012; Pawlowski, 2020; Rodriguez-Ezpeleta et al., 2021), represent high-
61  throughput, cost-effective, non-invasive tools that are being increasingly used in biodiversity monitoring
62  programs (Bohmann et al., 2014; Deiner et al., 2017). One of the most common methods to interpret the
63 eDNA signal from a complex community is marker gene metabarcoding, which allows for multiple taxa to
64 be investigated in a single sequencing experiment (Hajibabaei et al., 2011; Taberlet et al., 2012). This
65 approach has led to numerous successful biodiversity assessments of terrestrial and aquatic biota,

66 including metazoans (e.g. Hanfling et al., 2016; Sigsgaard et al., 2016; Deiner et al., 2017; Taberlet et al.,
67 2018), and has the potential to help us gain a more holistic view of an ecosystem with hundreds of

68  organisms identified simultaneously from one environmental sample. Metabarcoding is a highly sensitive
69  approach that can detect rare or cryptic species (Thomsen et al., 2012; Port et al., 2016), and is seen as
70  apromising approach in ecological assessment studies of aquatic ecosystems (Aylagas et al., 2016;

71  Cordier et al., 2017; Yang and Zhang, 2020). Nevertheless, metabarcoding as well as other PCR-based
72  techniques, such as quantitative PCR, introduce biases. For example, universal primers used to barcode
73 multiple groups of taxa simultaneously do not necessarily bind equally to different templates, leading to
74  amplification bias or the complete loss of certain groups (Tedersoo et al., 2015; Alberdi et al., 2018; Kelly
75 etal, 2019).

76 Metagenomics, broadly defined as the application of high-throughput shotgun sequencing

77  technologies to capture the entire pool of species present in an eDNA sample without targeting a specific
78  gene marker (Tringe and Rubin, 2005), is an emerging approach but to date has been primarily applied to
79  study microbial communities (Grossart et al., 2020). Metagenomics has only recently gained traction in
80 the study of larger organisms such as metazoans and is now seen as a complement (Singer et al., 2020)
81 and potential alternative to metabarcoding. There are several reasons that might explain the low number
82 of studies using metagenomics to investigate eukaryotes (Barnes and Turner, 2016). First, the efficiency

83 of metagenomics to capture the macro-eukaryote signal is not fully understood. Generally, it is believed
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84  that macro-eukaryotes are present in much lower densities in the environment compared to microbes
85 (Azam and Malfatti, 2007), which might limit the recovery of the macro-eukaryote DNA signal. Second,
86 issues related to the large size and low coding density of eukaryote nuclear genomes may contribute to
87  poor recovery of eukaryotes in environmental metagenomes. For example, genomes of eukaryotes
88  contain many repetitive elements that are difficult to assemble into scaffolds, as well as long non-coding
89  sequences which are generally less taxonomically informative (Bik et al., 2012). Abundance estimations
90 of eukaryotes based on shotgun sequencing are further complicated by the high interspecific variability in
91  the number of rRNA gene copies per nucleus (Bik et al., 2012). Finally, both micro- and macro-organisms
92  will often not find a match in reference databases unless they closely relate to an organism that has had
93 its whole genome sequenced. This is a well-known challenge in any eDNA assessments, but curated
94 DNA reference databases are growing rapidly, and thus it is expected that such limitations will continue to
95 decrease in the near future (e.g., Lewin et al. 2018).
96 Despite the challenges, a handful of studies have shown promising results in applying
97  metagenomics for broad biodiversity assessments of metazoans in water (e.g. Cowart et al. (2018);
98  Singer et al.(2020); Machida et al. (2021); Manu et al. (2021)) and sediment samples (e.g. Pedersen et al.
99 (2016); Gelabert et al. (2021)). This type of work, however, requires adapting bioinformatics pipelines to
100  accommodate the diluted metazoan signal in eDNA, especially when targeting rare organisms. For
101 instance, in microbial metagenomic studies, reads are typically assembled before being mapped to
102 genomes for annotation. However, this approach is not always feasible when working with extra-
103 organismal eDNA, likely due to the degraded nature and limited amount of starting genetic material
104  (Barnes and Turner, 2016). An alternative to assembly is to annotate directly via mapping of
105 metagenomic reads to reference databases of nucleotide or proteins sequences. Although
106  computationally intensive, this approach has been reported effective when the output is processed using
107  alLast Common Ancestor (LCA) algorithm or in combination with compositional interpolated Markov
108 models (Quince et al., 2017). Given the relatively nascent nature of this field, we chose to evaluate the
109 differences in diversity detected between targeting a taxonomically informative gene marker, the 18S
110 rRNA gene in eukaryotes (i.e. SSU rRNA gene approach), vs. a broader analysis of the tens of millions of

111  metagenomic reads (i.e. whole metagenome approach).
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112 Here, we provide new insight on the effectiveness and reliability of metagenomics applied to extra-
113 organismal eDNA in water samples for describing freshwater zooplankton. Our main questions are: i) can
114  we effectively detect zooplankton diversity in lake water metagenomes, ii) how does the metagenomic
115  gene prediction approach based on a single taxonomic marker (SSU rRNA gene) compare to mapping
116 the entire eukaryotic fraction of metagenome reads, and iii) do diversity metrics derived from

117  metagenomes show similar responses to key environmental gradients as those detected with

118 morphological taxonomic surveys? We assessed zooplankton (Cladocera, Copepoda, and Rotifera)
119 diversity based on surface water metagenomes from 22 lakes in Eastern Canada and compared these
120 results with zooplankton data from morphologically identified samples collected in net hauls from the
121  same sites. Our study is a timely response to the growing interest in adapting metagenomics techniques
122  for advancing a holistic perspective of aquatic food webs across all domains of life from a single

123  environmental snapshot.

124

125 2. Methods

126  2.1. Sites description

127  The 22 lakes were sampled as part of the Natural Sciences and Engineering Research Council of

128 Canada (NSERC) Canadian Lake Pulse Network campaign in summer 2017 (Huot et al., 2019). (Figure
129 1). Lakes span a range of morphological characteristics and trophic status, as summarized in Table S1.
130 Sampling occurred at a station situated at the maximum depth of each lake. The complete field protocol
131 details are provided by LakePulse (NSERC Canadian Lake Pulse Network, 2021).

132

133  2.2. Sampling, DNA isolation, and taxonomic identification

134 2.2.1. Zooplankton morphological identification

135  Crustacean zooplankton were sampled over the depth of the water column from 1 m above the sediment
136 up to the water surface using a Wisconsin net with 100 yum mesh (10 cm net radius and 100 cm length).
137 For relatively shallow lakes (<6 m-deep), additional vertical hauls were taken in the same manner to
138 increase sample volume. Crustacean zooplankton were anesthetized with CO, (Alka-Seltzer) and

139 preserved in 70% ethanol (approx. final concentration) at room temperature. Species-level identification


https://doi.org/10.1101/2021.10.27.465999
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.465999; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

140  of crustacean zooplankton was done with a dissecting microscope under 100x to 400x magnification by
141 BSA Environmental Services (Ohio, U.S.A.). Species biomass was estimated following the method from

142 McCauley (1984). A detailed identification protocol is available in Paquette et al. (2021).

143 Rotifer counts were done on Lugol-preserved tow haul samples collected in the same manner as
144  the crustacean zooplankton samples (above), except that instead of sampling from 1 m above the

145 sediment to the lake surface, the rotifer samples were collected from the euphotic zone only. In several
146 instances, the euphotic zone is identical to max depth minus 1 m. The coherence between the original
147 cladoceran zooplankton counts and the rotifer counts performed on a different set of samples was verified
148 by counting Bosminidae individuals in both sample types, to confirm that the preserved samples for rotifer
149  counting were representative of the original zooplankton samples (Supplementary File 1).

150 2.2.3. Environmental DNA sampling for metagenomic analyses

151 Water for eDNA was collected at the same station as the net hauls with an acid-washed

152  integrated depth sampler over the euphotic zone down to 2 m below the surface. Our eDNA sampling
153 strategy aimed at targeting mainly extra-organismal DNA, i.e. DNA that is not contained within whole

154  organisms (Rodriguez-Ezpeleta et al., 2021), sometimes also referred to as ‘extracellular DNA’ (Taberlet
155 et al., 2012; Bohmann et al., 2014). Thus, for samples dedicated to eDNA analysis, water was first

156 passed through a 100 um nylon mesh to remove large particles, and then up to 500 mL of water was

157  vacuum-filtered on a Durapore 0.22 pm membrane (Sigma-Aldrich, St. Louis, USA) through a glass funnel
158 apparatus at a maximum pressure of 8 inHg until the filter clogged. Filtrations were done on site in a tent,
159  and filters were preserved immediately thereafter in cryovials at -80°C until analysis. Caution was taken to
160  limit foreign DNA contamination in the field. All materials and equipment were acid-washed between

161 lakes, and gloves were worn during sampling and filtering. In the laboratory, DNA was extracted from

162 filters using the DNeasy PowerWater kit (QIAGEN, Hilden, Germany) following the manufacturer’s

163 protocol with the addition of two steps as detailed by Garner et al. (2020). DNA was quantified using a
164  Qubit 2.0 fluorometer and the dsDNA BR Assay kit (Invitrogen, Carlsbad, CA, USA). An aliquot of each
165 DNA extract was sent to Genome Quebec facilities (Montreal, Canada) for shotgun library preparation
166  and sequencing on an lllumina NovaSeq 6000 S4 PE150 with flow cell type S2.

167
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168 2.3. Metagenomic analysis pipelines

169 Raw demultiplexed shotgun sequence files were quality checked using FastQC v.0.11.15. Adapter

170 trimming and quality filtering were done with Trimmomatic v.0.38 (Bolger et al., 2014) with a minimum
171  average quality of 25 and a minimum length of 36 nucleotides. We applied two slightly different

172  approaches to identify eukaryote sequences in the metagenomes (Figure 2).

173 In the whole metagenome approach, all cleaned shotgun paired-end sequences were merged
174  using PEAR (Zhang et al., 2014) before they were aligned against a local database consisting of all

175 Eukarya entries in the NCBI non-redundant nucleotide database with the following parameters: min e-
176  value 0.001, min percentage identity = 70, and retaining max 30 hits per read. BLASTn output files were
177  thenimported in MEGANSG v.6.20.17 (Huson et al., 2016) for taxonomic assignment based on the lowest
178 common ancestor (LCA) algorithm with a minimum score of 80, a minimum similarity of 80%, a minimum
179  support of 2 reads and a minimum complexity filter set at 0.1. A detailed bioinformatic workflow is

180 available as supplementary material (Supplementary File 2).

181 In the SSU rRNA gene prediction approach (corresponding to 18S rRNA genes in Metazoa), we
182 applied the results of the ‘raw reads analysis pipeline’ of the European Bioinformatics Institute (EBI)

183 MGnify (Mitchell et al., 2020). The detailed pipeline is described on the EBI website (https://emg-

184  docs.readthedocs.io/en/latest/analysis.html#raw-reads-analysis-pipeline). Briefly, paired end reads were
185 merged prior to adapter trimming and quality filtering. Additional non-coding RNAs (ncRNAs) were

186 identified with Infernal (Nawrocki and Eddy, 2013) (HHM-only mode) using a library of ribosomal RNA
187 hidden Markov models from Rfam (Kalvari et al., 2018) to identify large and small (LSU and SSU) rRNA
188  genes. Following this, the reads identified as SSU rRNA genes were aligned with BLASTn and annotated
189 following the whole metagenome approach described above (Figure 2).

190

191  2.4. Diversity analysis

192 Diversity analyses based on zooplankton assemblages surveyed using both microscopy and

193 metagenomics were conducted in R v.4.1.0. (R Core Team, 2020). All diversity indices were calculated on
194  assemblages binned to the family rank to deal with uneven taxonomic assignment resolution for different

195 zooplankton groups across analytical platforms. The most common diversity metrics (taxonomic richness,
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196  Shannon index, Pielou’s evenness) were estimated on zooplankton abundance data (i.e. the number of
197 individuals per liter or the number of sequencing reads) using the diversity function of the package vegan
198 (Oksanen et al., 2013) and were used in least-square regressions against key environmental gradients
199 identified from an earlier analysis of eastern Canadian LakePulse sites (Griffiths et al., 2021): epilimnetic
200 total phosphorus concentration, specific conductivity, lake depth and an index of watershed disturbance
201  calculated as the human impact index (HI) (Huot et al., 2019). All environmental variables were logarithm
202  transformed, except for HI values (percentages) that were arcsine transformed.

203 Principal Component Analyses (PCA) were performed separately for each dataset using the
204  function prcomp on both logarithm and Hellinger-transformed abundance (i.e. the number of individuals
205 per liter or the number of reads sequenced) and biomass data where data were available (i.e. only for
206  crustacean zooplankton observations) (Legendre and Gallagher, 2001). The three main principal

207  components were extracted and used to derive an RV coefficient, analogous to Pearson’s correlation
208  coefficient for two given multivariate data matrices (Legendre and Birks, 2012). All possible pairwise

209 comparisons between datasets were explored — densities or biomass vs. either SSU rRNA genes or

210  whole metagenome, and SSU rRNA genes vs. whole metagenome. Coefficient significance was verified
211  with the function coeffRV in FactoMineR (Lé et al., 2008). We also considered the congruence between
212 community identifications done for each sample using morphological data and shotgun analyses by

213 calculating pairwise Jaccard and Bray-Curtis dissimilarities (the former based on incidence data and the
214 latter based on relative abundance data (number of individuals per liter) using the function vegdist in

215  vegan (Oksanen et al., 2013). For this analysis, no biomass data was used.

216

217 3. Results

218  3.1. Zooplankton taxonomy diversity across analytical platforms

219  Based on the microscopic analyses, we detected an average zooplankton family-level richness of 11.1
220  across the 18 lakes with complete zooplankton counts (Table 1; rotifer data were missing for three lakes).
221  The most dominant families in terms of counts were the Bosminidae, Cyclopidae and Daphniidae,

222 whereas the dominant families in terms of biomass (crustacean zooplankton only) were Daphniidae,

223 Cyclopidae, and Diaptomidae. Across the 22 sites, the crustacean community was relatively even based
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224 on abundance data, with a Pielou’s evenness index of 0.67 (0 = no evenness, 1 = complete evenness).
225 Considering just the crustacean zooplankton families for which there is a larger data set of hundreds of
226 lakes across our four focal ecozones (Paquette et al., 2021), we found a comparable amount of richness
227  and evenness within the range of the key environmental gradients captured by our 22 sites (Table 1).
228 High-throughput sequencing yielded on average ~28 million raw reads per metagenome and the
229  number of reads per sample after quality filtering and merging of the pairs varied between 7 and 29

230  million (Supplementary Figure S2). Overall, the proportion of the merged reads assigned to Eukaryotes
231 ranged between 0.5 and 1.2% of the total paired reads, with up to 46% of the eukaryotic reads confidently
232 assigned to Metazoans (Supplementary Figure S2). With the whole metagenome BLAST approach, we
233 detected a slightly greater average family richness of 15.95 (Table 1). Relative to the microscopy dataset
234  we found that the assemblages in our 22 lakes were less even (mean Pielou’s evenness = 0.47; Table 1).
235  The dominant taxa in terms of reads were Daphniidae, Diaptomidae and Brachionidae (Rotifera). Using
236  thetargeted SSU rRNA gene prediction approach, we detected the lowest average family richness

237 relative to the previous two analytical approaches, with a mean of 5.6 (min = 1, max = 10). The dominant
238  taxa detected were Diaptomidae, Synchaetidae (Rotifera) and Cyclopidae. Comparing across the

239 different platforms, we found that the SSU rRNA gene prediction approach yielded the lowest family

240  diversity values but evenness estimates that were closer to those generated through the microscopic

241 counts for densities (Table 1, Supplementary figure S3).

242

243 3.2. Congruence of morphological and sequencing zooplankton families

244  We found a nested group of family diversity as we moved from SSU rRNA genes, to microscopy to whole
245 metagenome datasets (Figure 3a). Nineteen out of 23 families that were detected at most sites using the
246  whole metagenome approach were also found in the microscopy dataset of the 22 lakes. Families that
247  were absent in the microscopy but present in the metagenomes are taxa that are often characterized as
248 benthic or littoral associated (i.e. Harpacticidae (copepoda), Chironomidae (Diptera larvae), Adinetidae
249  (Ratifera), and Philodinidae (Rotifera)).

250 Zooplankton family occurrences across lakes were compared between the three analytical

251 platforms (microscopy and two metagenomics approaches) to determine the level of congruence between
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252 survey methods (Figure 3b & 4). The families Ergasilidae (copepoda), Leptodoridae (cladocera), and
253 Holopediidae (cladocera) were consistently absent at most sites (found only in a single or a few sites),
254  whereas the Calanoida group (copepods - order level; found at 11 sites), Synchaetidae (rotifer; found at
255 11 sites), and the Cyclopoida group (copepods - order level; found at 13 of the 19 sites) were the three
256  taxa that were most consistently widely detected across all analytical platforms (Figure 4). It is worth
257  noting, however, that since the Calanoida and Cyclopoida groups were binned at order level, they are
258  likely to comprise more than one Family each. The reason for this grouping was two-fold: firstly, the

259 majority of the genetic reference sequences for these clades were lacking finer taxonomic resolution, and
260  secondly, these groups include nauplii or juvenile stages which could not be assigned to one or the other
261 order in the microscopy data based on morphological observations only.

262 When comparing pairwise taxon occurrences across the three datasets for all zooplankton

263 families and with copepods grouped at order level (Calanoida and Cyclopoida), we found consistent

264  detections in 45% of cases (either 3 out of 3 or 0 out of 3 detections). When comparing microscopy with
265 either genetic approach, the overall number of dual positive detections was higher between microscopy
266  and whole metagenome datasets, with a total of 34.3% positive matches across 17 lakes (two lakes

267 missing whole metagenome data were excluded) compared to only 17.3% positive matches for the

268  comparison with SSU rRNA gene data in 19 lakes (Figure 4).

269 To consider the congruence of the entire assemblage between analytical platforms we calculated
270  dissimilarity indices and RV coefficients. From a taxonomic presence-absence perspective (Jaccard

271 distances), whole metagenomes more strongly reflected the community composition based on

272  zooplankton counts than the SSU rRNA gene data (p = 0.0008). In contrast, when zooplankton family
273 relative abundances (Bray-Curtis dissimilarities) were considered, we found that the SSU rRNA gene data
274  performed similarly to the whole genome BLAST (p = 0.8051; Figure 5).

275 To further explore the congruence between assemblages, we calculated the RV coefficient based
276  on the three main PCA axes and found moderate and significant congruence between SSU rRNA gene
277 and morphology data (Table 2). Results were stronger when relative abundance data were log-

278  transformed to account for potential over-representation of model organisms in the reference databases,

279  which can yield inflated assigned read estimates compared to other taxonomic groups that are poorly

10
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280 populated in reference databases. When data were Hellinger-transformed, the RV coefficient between
281  whole metagenome and SSU rRNA gene datasets was also of moderate strength (Table 2).

282

283  3.3. Zooplankton diversity patterns over environmental gradients

284  We investigated the relationship between Family-level zooplankton diversity metrics (richness and

285  Shannon diversity) and major environmental gradients identified in the eastern ecozones: the human
286  impact index, total phosphorus (TP), specific conductivity and lake depth). Our analyses showed that
287  several consistent relationships were apparent across the analytical platforms. For richness, significant
288 negative relationships were observed between TP and both metagenomic datasets (SSU: ad;. R*=0.24,
289  p=0.02; WM: adj. R®=0.29, p = 0.01) (Figure 6 & Supplementary Table S2). A negative but non-

290  significant relationship (p = 0.24) was observed between TP and richness derived from morphological
291 identifications. We also detected negative relationships between richness and human impact index, but
292  the fit once again was only significant for the metagenomic datasets (SSU: ad;. R?=0.23, p =0.022; WM:
293  adj. R°=0.33, p = 0.006; Morphology: adj R* = 0.07, p = 0.14). Finally, a marginally significant relationship
294  (adj. R* adj. = 0.12, p = 0.08) was observed between richness derived from the whole metagenome

295  dataset and specific conductivity.

296 For Shannon diversity, a significant fit was found between the SSU rRNA gene data and TP (ad;.
297 R*=0.18, p = 0.03) and between SSU rRNA data and human impact index (adj. R* = 0.15, p = 0.056).
298  The fit between Shannon diversity derived from whole metagenome data and specific conductivity was
299 marginally significant (adj. R* = 0.11 p = 0.098) and no significant relationships emerged with lake depth
300 (Figure 6 & Supplementary Table S2).

301

302 4. Discussion

303  Consistent with other comparative analyses between eDNA metagenomics and morphological

304  approaches (Stat et al., 2017; Singer et al., 2020), our results show that the match is not perfect. Overall,
305  we detected modest congruence in taxon relative abundance across platforms and varying levels of

306  congruence between analytical platforms when we considered presence-absence data. Interestingly,

307 diversity metrics across all analytical platforms showed similar responses to epilimnetic phosphorus
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308 concentration, which is often considered a limiting nutrient in many lakes in Eastern Canada. Many

309 important improvements can be implemented in future metagenomic work to help refine the robustness of
310 this approach applied to metazoan biodiversity eDNA surveys (section 4.3).

311

312  4.1. To what extent do water metagenomes represent zooplankton biodiversity?

313 Using a variety of statistical approaches, we found that zooplankton communities surveyed using

314  morphological counts and metagenomic analyses were, at best, moderately correlated. While local

315 diversity metrics were similar across platforms, whole metagenome analysis detected the highest

316 richness of zooplankton taxa. It is also informative to compare the strength of our results with other eDNA
317 - morphological comparisons. For example, Keck et al. (2021) conducted a meta-analysis of comparative
318 metabarcoding and morphological studies, and found that eDNA detected significantly more taxa than
319 morphological counts, as eDNA may contain traces of taxa distributed outside of the immediate sampling
320  area. Although no such synthetic analysis has been done from metagenomes, we would expect a similar
321  finding. In our molecular dataset, we found four Families of zooplankton that were not recorded as part of
322  the morphological survey, but these taxa are either generally characterized as benthic or littoral

323 associated so may not have been present as individuals in the immediate sampling area. For instance,
324  the Bdelloid rotifers Adinetidae and Philodinidae, which we only found via the whole metagenome

325 analysis, are typically found to live on plants or debris in waters with dense vegetation and are generally
326 not caught in plankton tows (Wallace and Snell, 2010). Across the metabarcoding and metagenomic

327 literature, many have argued that eDNA approaches are more complementary to morphological

328  approaches rather than directly exchangeable, and the coherence between metagenomic and

329  metabarcoding for eukaryotic diversity surveys needs further detailed investigation (Garlapati et al., 2019;
330  Cordier et al., 2020).

331

332  4.2. Shotgun sequencing reveals diversity patterns over broad environmental gradients

333 To explore diversity patterns over broad environmental gradients and among analytical platforms,

334 richness and Shannon diversity metrics were plotted against epilimnetic total phosphorus (TP), specific

335  conductivity, lake depth, and human impact index estimated in the 22 lakes (Huot et al., 2019). Based on
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336  our preliminary dataset, we found relatively consistent patterns in zooplankton diversity across analytical
337 platforms, indicating that shotgun sequencing shows promise for investigating ecological gradients in
338 freshwater systems. Our findings are consistent with results reported by Singer et al. (2020) from a

339  marine system, where despite revealing contrasting taxonomic diversity, both the metagenomic and

340 metabarcoding data revealed similar ecological patterns, which in turn were useful to infer factors related
341  tothe ecosystem health and function.

342

343  4.3. Limitations to the metagenomic approach and prospects

344 Limitations of eDNA-based approaches have been widely studied, although these have been primarily
345 based on PCR-based approaches. Challenges relate mostly to the availability and quality of eDNA itself
346 in water, whereby investigators have identified the conditions contributing to eDNA degradation (Barnes
347  etal, 2014) or the transport of eDNA over long distances (Deiner and Altermatt, 2014). Although our
348 knowledge of these factors is constantly improving the robustness of eDNA research, there are also other
349 aspects of the workflow - from sampling strategies to bioinformatics — which need to be improved to

350 strengthen metagenomic approaches applied to the study of metazoans in the environment.

351 4.3.1. Methodological considerations

352 Our metagenomes were produced for the primary purpose of examining bacteria and archaea and thus
353 the volume of water filtered was only ~250 ml to 500 ml, depending on how much water could be passed
354  through the 0.22 um membrane before it clogged (Garner et al., 2020). In contrast, the morphological
355 identification of zooplankton was performed on tow haul samples collected from tens of liters across the
356  full water column that were then concentrated to a few hundred milliliters. Furthermore, because the
357  samples for DNA analysis were collected over the photic zone only, they might not fully represent the
358  rotifer and crustacean zooplankton samples which were collected from below the thermocline and over
359  the full water column, respectively. Overall, we are looking at diverging sampling efforts and distributions
360  across approaches, which may have brought about some of the differences.

361 Filter size selection could also play an influential role and may allow one to filter more water in
362  future studies. We opted for a size selection step where we first pre-filtered water through a 100 pm

363 mesh, which selected mostly for extra-organismal DNA (i.e. DNA that is no longer found within an
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364  organism, as opposed to organismal DNA) (Rodriguez-Ezpeleta et al., 2021). It is however likely that

365 gametes and other juvenile stages in cladocerans and copepods passed through the 100 pum mesh and
366  got caught on the 0.22 um membrane, which may have contributed to the inflated number of reads

367 assigned mainly to Daphniidae and copepods in the whole metagenome dataset. Selecting a filter with a
368 pore size better suited to our target organisms may lead to a better overall coverage by minimizing the
369 allocation of sequencing effort to DNA from non-target microbial taxa. For instance, 0.45 um cellulose
370 nitrate filters have been shown to yield consistent results for fish metabarcoding with high repeatability
371 between filtration replicates (Li et al., 2018). Type of filter, pre-filtration step and pore size have all been
372  identified as factors determining the final yield of eDNA, with differences observed between taxa and

373  systems (Bowers et al., 2021)

374 Filtering larger volumes of water combined with an increased sequencing depth may help yield a
375 higher number of reads and more diversity for Eukarya, which are very much underrepresented in

376 metagenomes in contrast with bacteria and archaea. Similar to earlier research, we found that the

377  proportion of recovered eukaryotes tends to be < 0.5% of the total read assignments, either with a

378  genome wide approach (Stat et al., 2017; Cowart et al., 2018) or a gene-centric approach (Tedersoo et
379  al, 2015). In contrast, the filtration of 10 L of water targeting extracellular DNA combined with ultra-deep
380 sequencing was shown to yield ~100 million reads per metagenome from a brackish lagoon and improved
381  the coverage for Eukarya to a proportion corresponding to over 4% of the total number of reads (Manu,
382 2021). Other emerging target enrichment techniques such as hybridization capture have great potential to
383 improve the detection of metazoans in metagenomes (Seeber et al., 2019; Sevigny et al., 2021).

384 Hybridization capture utilizes RNA probes carefully designed to bind the gene region of interest,

385 enhancing the signal of desired taxa without introducing PCR-induced biases. Recent results based on
386 ultra-deep sequencing have shown that the coverage for eukaryotes may be improved when combining
387  shotgun sequencing with DNA target-capture methods (Manu, 2021). Alternatively, metatranscriptomics is
388 an emerging and promising approach for characterizing zooplankton communities. A recent study by

389 Lopez et al. (2021) comparing zooplankton estimates from observational with both amplicon sequencing

390 and metatranscriptomics datasets has revealed higher congruence of observational zooplankton
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391 abundance and composition with metatranscriptomics estimates compared to amplicons sequencing
392 using genomic (gDNA) and complementary DNA (cDNA) amplicons sequencing.

393 4.3.2. Bioinformatics considerations

394  cCarefully designed bioinformatic workflows are crucial for robust taxonomic assignment of sequencing
395 reads. Our data suggest that using the whole metagenomic reads can capture the widest pool of

396  biodiversity, but that the taxonomically informative gene markers, such as the SSU rRNA genes in

397  eukaryotes better reflected the observed relative abundance of zooplankton families based on

398 microscopy. We also found that in using a targeted approach using SSU rRNA genes as taxonomic
399 markers, several taxa were missing or did not get taxonomically assigned using the lowest common
400  ancestor (LCA) algorithm, even though they were present in relatively high abundances in microscopy
401 counts. Some taxa were consistently missing or almost absent from our genetic datasets (such as the
402 Bosminidae), despite being one of the most abundant taxonomic groups in microscopy. Such

403 incongruences between traditional and metabarcoding data have frequently been reported (see Keck et
404  al., 2021). We hypothesize that part of the issue with missing taxa in our metagenomes is caused by the
405 same bioinformatic limitations as in any genetic-based study: the current lack of complete reference
406 molecular data limits our ability to assign taxonomy to sequence reads. In molecular datasets, and

407 especially in shotgun sequencing data, a large portion of the reads generated only get assigned to Class
408 level or lower. These reads are typically filtered out bioinformatically, meaning that they are not

409 considered in the estimation of diversity indices or in comparisons with other datasets. Therefore, we
410 might be widely underestimating the abundance and diversity of certain taxonomic groups which are not
411  populated in reference databases.

412 Since using the full metagenome read set is computationally intensive and does not appear to
413  vyield a higher correlation with morphology-based identifications, a reasonable compromise that might
414  increase coverage without multiplying computation efforts could be the combination of a few targeted
415 genetic markers. For example, metagenome reads mapped against both the SSU and LSU rRNA gene
416 markers has been shown to improve taxa recovery in a study of marine plankton from DNA preserved in
417 marine sediment (Armbrecht, 2020). In addition to nuclear SSU rRNA genes, we investigated the

418 mitochondrial cytochrome c oxidase subunit | (COI) but found the coverage for this marker to be very low
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419 for metazoans, most likely due to the generally lower cellular abundance of mitochondria compared to
420 ribosomes. For this reason, we did not pursue further metagenomic COIl marker analyses.

421 There is clearly an urgent need for curated molecular databases to improve interpretation of
422  eDNA-based molecular datasets. This is especially the case for freshwaters, where monitoring efforts are
423 limited and yet provide habitat for a disproportionate number of taxa per unit area (Strayer and Dudgeon,
424  2010). Currently there are insufficient data for many taxa such that we cannot even assess the state of
425  ~40% of freshwater species in Canada (Desforges et al., 2021). Initiatives to improve sequencing

426  coverage of eukaryotic biodiversity are underway, including the Barcode of Life Data System (BOLD)
427  (Ratnasingham and Hebert 2007), the International Barcode of Life (IBOL) (https://ibol.org/), the Earth
428 BioGenome Project (https://www.earthbiogenome.org/), i5K for arthropods (Robinson et al., 2011), and
429  Diat.barcode for Diatoms (Rimet et al 2019). Such initiatives will multiply the number of curated

430 references for taxonomic marker genes, which is key to improving taxonomic assignments in eDNA

431  studies.

432

433 5. Conclusion

434 In this study, metagenomics and classical morphological analyses of zooplankton applied to 22

435 freshwater lakes yielded contrasting abundance estimates but comparable diversity assessments at the
436  family level. Metagenomics detected more taxa, including some that generally live outside the pelagic
437 photic zone where the samples were taken, which is to be expected given the persistence and transport
438  of eDNA in nature. Although metagenomic techniques still need to be improved with better adapted

439  sampling protocols and refined bioinformatics pipelines specific to eukaryotic genomes, our results

440  suggest enormous potential for extending metagenome analysis to the investigation of zooplankton and
441  other aquatic micro- and macro-eukaryotes. Our comparative study contributes to a better understanding
442  of how the metagenomic approach might contribute to biodiversity and ecological assessments in

443  complement to other traditional and eDNA approaches.

444

445  List of figures:
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446  Figure 1. Map of Canada showing the location of the 22 lakes in Eastern Canada and their trophic status
447 based on total phosphorus concentration: oligotrophic (less than 10 pg/L), mesotrophic (10 — 30 pg/L) and
448  eutrophic (greater than 30 pg/L).

449  Figure 2. Detailed bioinformatics workflow used on shotgun sequencing data.

450  Figure 3. a) Diagram showing the number of zooplankton families and their overlap in detection via the
451 three approaches: morphology-based microscopy (blue), whole metagenome sequencing (green), and
452  gene prediction approach based on the small subunit subset of reads (orange). b) Divergent plots

453 showing the number of lakes in which each zooplankton family were detected via the different

454  approaches (grey: microscopic identification; green: whole-metagenome approach; orange: small-subunit
455  (SSU) rRNA genes approach).

456  Figure 4. Heatmap with the number of each zooplankton Family-level (or Order-level in the case of

457 Cyclopoida and Calanoida copepods and unidentified families of Rotifera) detection across analytical
458 platforms (microscopy, whole metagenome, and small subunit (SSU) rRNA genes). A value of zero

459  signifies that a Family/Order was absent from all datasets.

460  Figure 5. Boxplots showing Bray-Curtis (left) and Jaccard (right) dissimilarities between the microscopy-
461 based taxonomic composition and the sequence read composition using the whole-metagenome

462 approach (green) and the SSU rRNA gene subset approach (orange). The significant ANOVA test is

463  indicated with an asterisk.

464  Figure 6. Diversity metrics (left: Taxonomic richness, right: Shannon entropy) estimated from microscopy,
465 SSU rRNA genes (SSU), and whole metagenome (WM) datasets plotted against environmental gradients
466  using generalized additive model (GAM). Environmental data were log transformed, except for the human
467  impact index (expressed as percentage), which was arcsine transformed. Red and yellow backgrounds
468 identify significant and marginally significant relationships, respectively. Adjusted R-squared and p-values
469  for each GAM are listed in Supplementary Table S2)

470

471  Data archiving statement:

472 Sequence data were submitted to the EBI metagenomics platform for analysis and archiving under Study

473 MGYS00003941.
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649  Table 1. Summary of the main diversity indices (mean (min — max)) estimated for the three survey
650  approaches at the Family taxonomic level. Microscopic estimates for Shannon and Pielou were based on

651 abundance data (the number of individuals per liter, or the number of sequenced reads).

Taxonomic Shannon index  Pielou’s evenness
Approach richness
Microscopy 11.1 (7 — 15) 1.6 (0.7 -1.9) 0.67
SSU rRNA gene subset 5.6 (1-10) 1.2(0-1.9 0.74
Whole metagenome 14.2 (10 -21) 1.3(0-2.0) 0.47
Microscopy (198 LakePulse sites) 6.49 (2 -10) 1.14 (0.1 -1.8) 0.61
652
653
654
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Table 2. Results of the congruence test between datasets (RV coefficients with significance values) using

two types of data transformation (Hellinger or logip+1) on genetic and morphological data (abundance of

all zooplankton and biomass of crustacean zooplankton only).

Matrices compared Taxa included Transformation RV p-value
coefficient

Density-SSU All zooplankton Hellinger 0.39 0.004
Density-WM All zooplankton Hellinger 0.006 0.93
SSU-WM All zooplankton Hellinger 0.38 0.003
Density-SSU All zooplankton Logiot+l 0.48 0.0006
Density-WM All zooplankton Logiotl 0.12 0.39
SSU-WM All zooplankton Logiotl 0.17 0.19
Biomass-SSU Crustaceans only Hellinger 0.21 0.12
Biomass-WM Crustaceans only Hellinger 0.03 0.96
Biomass-Density Crustaceans only Hellinger 0.64 3.33E-06
SSU-WM Crustaceans only Hellinger 0.25 0.045
Biomass-SSU Crustaceans only Logietl NS NS
Biomass-WM Crustaceans only Logiotl NS NS
Biomass-Density Crustaceans only Logiotl 0.51 0.0002
SSU-WM Crustaceans only Logiot+l 0.12 0.28
Density-SSU Rotifers only Hellinger 0.09 0.68
Density-WM Rotifers only Hellinger 0.13 0.53
SSU-WM Ratifers only Hellinger 0.09 0.70
Density-SSU Rotifers only Logiot+l 0.08 0.96
Density-WM Rotifers only Logiotl 0.10 0.66
SSU-WM Rotifers only Logiotl 0.02 0.96
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