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Abstract  38 

Molecular genetic approaches applied to environmental DNA have great potential for biodiversity 39 

research and ecosystem monitoring. A metagenome contains genetic information from all organisms 40 

captured in an environmental sample. It has been primarily used to study bacteria and archaea, but 41 

promising reports focusing on metazoan diversity are emerging. However, methodological uncertainties 42 

remain, and studies are required to validate the power and the limitations of such an approach when 43 

applied to macro-eukaryotes. Here, we analyzed water sample metagenomes to estimate zooplankton 44 

diversity in 22 freshwater lakes across Eastern Canada. We tested the coherence of data based on 45 

morphologically identified zooplankton taxa and molecular genetic data derived from shotgun sequencing 46 

of environmental DNA collected at the same time. RV coefficients showed a significant correlation 47 

between the relative abundance of zooplankton families derived from small subunit rRNA genes extracted 48 

from the metagenomes and morphologically identified zooplankton. However, differences in congruence 49 

with morphological counts were detected when varied bioinformatic approaches were applied to 50 

presence-absence data. This study presents one of the first diversity assessments of a group of aquatic 51 

metazoans using metagenomes and validates the coherence of the community composition derived from 52 

genetic and classical species surveys. Overall, our results suggest that metagenomics has the potential 53 

to be further developed to describe metazoan biodiversity in aquatic ecosystems, and to advance this 54 

area we provide key recommendations for workflow improvement.   55 
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1. Introduction 56 

In the context of intensifying global change, there is a growing need for broad scale monitoring strategies 57 

and ecosystem assessment (Cardinale et al., 2012; Cordier et al., 2020). Approaches based on 58 

environmental DNA (eDNA), broadly defined as the total pool of DNA that can be isolated from the 59 

environment (Taberlet et al., 2012; Pawlowski, 2020; Rodriguez‐Ezpeleta et al., 2021), represent high-60 

throughput, cost-effective, non-invasive tools that are being increasingly used in biodiversity monitoring 61 

programs (Bohmann et al., 2014; Deiner et al., 2017). One of the most common methods to interpret the 62 

eDNA signal from a complex community is marker gene metabarcoding, which allows for multiple taxa to 63 

be investigated in a single sequencing experiment (Hajibabaei et al., 2011; Taberlet et al., 2012). This 64 

approach has led to numerous successful biodiversity assessments of terrestrial and aquatic biota, 65 

including metazoans (e.g. Hänfling et al., 2016; Sigsgaard et al., 2016; Deiner et al., 2017; Taberlet et al., 66 

2018), and has the potential to help us gain a more holistic view of an ecosystem with hundreds of 67 

organisms identified simultaneously from one environmental sample. Metabarcoding is a highly sensitive 68 

approach that can detect rare or cryptic species (Thomsen et al., 2012; Port et al., 2016), and is seen as 69 

a promising approach in ecological assessment studies of aquatic ecosystems (Aylagas et al., 2016; 70 

Cordier et al., 2017; Yang and Zhang, 2020). Nevertheless, metabarcoding as well as other PCR-based 71 

techniques, such as quantitative PCR, introduce biases. For example, universal primers used to barcode 72 

multiple groups of taxa simultaneously do not necessarily bind equally to different templates, leading to 73 

amplification bias or the complete loss of certain groups (Tedersoo et al., 2015; Alberdi et al., 2018; Kelly 74 

et al., 2019).  75 

Metagenomics, broadly defined as the application of high-throughput shotgun sequencing 76 

technologies to capture the entire pool of species present in an eDNA sample without targeting a specific 77 

gene marker (Tringe and Rubin, 2005), is an emerging approach but to date has been primarily applied to 78 

study microbial communities (Grossart et al., 2020). Metagenomics has only recently gained traction in 79 

the study of larger organisms such as metazoans and is now seen as a complement (Singer et al., 2020) 80 

and potential alternative to metabarcoding. There are several reasons that might explain the low number 81 

of studies using metagenomics to investigate eukaryotes (Barnes and Turner, 2016). First, the efficiency 82 

of metagenomics to capture the macro-eukaryote signal is not fully understood. Generally, it is believed 83 
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that macro-eukaryotes are present in much lower densities in the environment compared to microbes 84 

(Azam and Malfatti, 2007), which might limit the recovery of the macro-eukaryote DNA signal. Second, 85 

issues related to the large size and low coding density of eukaryote nuclear genomes may contribute to 86 

poor recovery of eukaryotes in environmental metagenomes. For example, genomes of eukaryotes 87 

contain many repetitive elements that are difficult to assemble into scaffolds, as well as long non-coding 88 

sequences which are generally less taxonomically informative (Bik et al., 2012). Abundance estimations 89 

of eukaryotes based on shotgun sequencing are further complicated by the high interspecific variability in 90 

the number of rRNA gene copies per nucleus (Bik et al., 2012). Finally, both micro- and macro-organisms 91 

will often not find a match in reference databases unless they closely relate to an organism that has had 92 

its whole genome sequenced. This is a well-known challenge in any eDNA assessments, but curated 93 

DNA reference databases are growing rapidly, and thus it is expected that such limitations will continue to 94 

decrease in the near future (e.g., Lewin et al. 2018).  95 

Despite the challenges, a handful of studies have shown promising results in applying 96 

metagenomics for broad biodiversity assessments of metazoans in water (e.g. Cowart et al. (2018); 97 

Singer et al.(2020); Machida et al. (2021); Manu et al. (2021)) and sediment samples (e.g. Pedersen et al. 98 

(2016); Gelabert et al. (2021)). This type of work, however, requires adapting bioinformatics pipelines to 99 

accommodate the diluted metazoan signal in eDNA, especially when targeting rare organisms. For 100 

instance, in microbial metagenomic studies, reads are typically assembled before being mapped to 101 

genomes for annotation. However, this approach is not always feasible when working with extra-102 

organismal eDNA, likely due to the degraded nature and limited amount of starting genetic material 103 

(Barnes and Turner, 2016). An alternative to assembly is to annotate directly via mapping of 104 

metagenomic reads to reference databases of nucleotide or proteins sequences. Although 105 

computationally intensive, this approach has been reported effective when the output is processed using 106 

a Last Common Ancestor (LCA) algorithm or in combination with compositional interpolated Markov 107 

models (Quince et al., 2017). Given the relatively nascent nature of this field, we chose to evaluate the 108 

differences in diversity detected between targeting a taxonomically informative gene marker, the 18S 109 

rRNA gene in eukaryotes (i.e. SSU rRNA gene approach), vs. a broader analysis of the tens of millions of 110 

metagenomic reads (i.e. whole metagenome approach).  111 
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Here, we provide new insight on the effectiveness and reliability of metagenomics applied to extra-112 

organismal eDNA in water samples for describing freshwater zooplankton. Our main questions are: i) can 113 

we effectively detect zooplankton diversity in lake water metagenomes, ii) how does the metagenomic 114 

gene prediction approach based on a single taxonomic marker (SSU rRNA gene) compare to mapping 115 

the entire eukaryotic fraction of metagenome reads, and iii) do diversity metrics derived from 116 

metagenomes show similar responses to key environmental gradients as those detected with 117 

morphological taxonomic surveys? We assessed zooplankton (Cladocera, Copepoda, and Rotifera) 118 

diversity based on surface water metagenomes from 22 lakes in Eastern Canada and compared these 119 

results with zooplankton data from morphologically identified samples collected in net hauls from the 120 

same sites. Our study is a timely response to the growing interest in adapting metagenomics techniques 121 

for advancing a holistic perspective of aquatic food webs across all domains of life from a single 122 

environmental snapshot.  123 

 124 

2. Methods 125 

2.1. Sites description 126 

The 22 lakes were sampled as part of the Natural Sciences and Engineering Research Council of 127 

Canada (NSERC) Canadian Lake Pulse Network campaign in summer 2017 (Huot et al., 2019). (Figure 128 

1). Lakes span a range of morphological characteristics and trophic status, as summarized in Table S1. 129 

Sampling occurred at a station situated at the maximum depth of each lake. The complete field protocol 130 

details are provided by LakePulse (NSERC Canadian Lake Pulse Network, 2021). 131 

 132 

2.2. Sampling, DNA isolation, and taxonomic identification 133 

2.2.1. Zooplankton morphological identification  134 

Crustacean zooplankton were sampled over the depth of the water column from 1 m above the sediment 135 

up to the water surface using a Wisconsin net with 100 μm mesh (10 cm net radius and 100 cm length). 136 

For relatively shallow lakes (<6 m-deep), additional vertical hauls were taken in the same manner to 137 

increase sample volume. Crustacean zooplankton were anesthetized with CO2 (Alka-Seltzer) and 138 

preserved in 70% ethanol (approx. final concentration) at room temperature. Species-level identification 139 
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of crustacean zooplankton was done with a dissecting microscope under 100x to 400x magnification by 140 

BSA Environmental Services (Ohio, U.S.A.). Species biomass was estimated following the method from 141 

McCauley (1984). A detailed identification protocol is available in Paquette et al. (2021). 142 

Rotifer counts were done on Lugol-preserved tow haul samples collected in the same manner as 143 

the crustacean zooplankton samples (above), except that instead of sampling from 1 m above the 144 

sediment to the lake surface, the rotifer samples were collected from the euphotic zone only. In several 145 

instances, the euphotic zone is identical to max depth minus 1 m. The coherence between the original 146 

cladoceran zooplankton counts and the rotifer counts performed on a different set of samples was verified 147 

by counting Bosminidae individuals in both sample types, to confirm that the preserved samples for rotifer 148 

counting were representative of the original zooplankton samples (Supplementary File 1).   149 

 2.2.3. Environmental DNA sampling for metagenomic analyses 150 

Water for eDNA was collected at the same station as the net hauls with an acid-washed 151 

integrated depth sampler over the euphotic zone down to 2 m below the surface. Our eDNA sampling 152 

strategy aimed at targeting mainly extra-organismal DNA, i.e. DNA that is not contained within whole 153 

organisms (Rodriguez‐Ezpeleta et al., 2021), sometimes also referred to as ‘extracellular DNA’ (Taberlet 154 

et al., 2012; Bohmann et al., 2014). Thus, for samples dedicated to eDNA analysis, water was first 155 

passed through a 100 µm nylon mesh to remove large particles, and then up to 500 mL of water was 156 

vacuum-filtered on a Durapore 0.22 µm membrane (Sigma-Aldrich, St. Louis, USA) through a glass funnel 157 

apparatus at a maximum pressure of 8 inHg until the filter clogged. Filtrations were done on site in a tent, 158 

and filters were preserved immediately thereafter in cryovials at -80ºC until analysis. Caution was taken to 159 

limit foreign DNA contamination in the field. All materials and equipment were acid-washed between 160 

lakes, and gloves were worn during sampling and filtering. In the laboratory, DNA was extracted from 161 

filters using the DNeasy PowerWater kit (QIAGEN, Hilden, Germany) following the manufacturer’s 162 

protocol with the addition of two steps as detailed by Garner et al. (2020). DNA was quantified using a 163 

Qubit 2.0 fluorometer and the dsDNA BR Assay kit (Invitrogen, Carlsbad, CA, USA). An aliquot of each 164 

DNA extract was sent to Genome Quebec facilities (Montreal, Canada) for shotgun library preparation 165 

and sequencing on an Illumina NovaSeq 6000 S4 PE150 with flow cell type S2.  166 

 167 
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2.3. Metagenomic analysis pipelines 168 

Raw demultiplexed shotgun sequence files were quality checked using FastQC v.0.11.15. Adapter 169 

trimming and quality filtering were done with Trimmomatic v.0.38 (Bolger et al., 2014) with a minimum 170 

average quality of 25 and a minimum length of 36 nucleotides. We applied two slightly different 171 

approaches to identify eukaryote sequences in the metagenomes (Figure 2).  172 

In the whole metagenome approach, all cleaned shotgun paired-end sequences were merged 173 

using PEAR (Zhang et al., 2014) before they were aligned against a local database consisting of all 174 

Eukarya entries in the NCBI non-redundant nucleotide database with the following parameters: min e-175 

value 0.001, min percentage identity = 70, and retaining max 30 hits per read. BLASTn output files were 176 

then imported in MEGAN6 v.6.20.17 (Huson et al., 2016) for taxonomic assignment based on the lowest 177 

common ancestor (LCA) algorithm with a minimum score of 80, a minimum similarity of 80%, a minimum 178 

support of 2 reads and a minimum complexity filter set at 0.1. A detailed bioinformatic workflow is 179 

available as supplementary material (Supplementary File 2).  180 

In the SSU rRNA gene prediction approach (corresponding to 18S rRNA genes in Metazoa), we 181 

applied the results of the ‘raw reads analysis pipeline’ of the European Bioinformatics Institute (EBI) 182 

MGnify (Mitchell et al., 2020). The detailed pipeline is described on the EBI website (https://emg-183 

docs.readthedocs.io/en/latest/analysis.html#raw-reads-analysis-pipeline). Briefly, paired end reads were 184 

merged prior to adapter trimming and quality filtering. Additional non-coding RNAs (ncRNAs) were 185 

identified with Infernal (Nawrocki and Eddy, 2013) (HHM-only mode) using a library of ribosomal RNA 186 

hidden Markov models from Rfam (Kalvari et al., 2018) to identify large and small (LSU and SSU) rRNA 187 

genes. Following this, the reads identified as SSU rRNA genes were aligned with BLASTn and annotated 188 

following the whole metagenome approach described above (Figure 2). 189 

 190 

2.4. Diversity analysis 191 

Diversity analyses based on zooplankton assemblages surveyed using both microscopy and 192 

metagenomics were conducted in R v.4.1.0. (R Core Team, 2020). All diversity indices were calculated on 193 

assemblages binned to the family rank to deal with uneven taxonomic assignment resolution for different 194 

zooplankton groups across analytical platforms. The most common diversity metrics (taxonomic richness, 195 
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Shannon index, Pielou’s evenness) were estimated on zooplankton abundance data (i.e. the number of 196 

individuals per liter or the number of sequencing reads) using the diversity function of the package vegan 197 

(Oksanen et al., 2013) and were used in least-square regressions against key environmental gradients 198 

identified from an earlier analysis of eastern Canadian LakePulse sites (Griffiths et al., 2021): epilimnetic 199 

total phosphorus concentration, specific conductivity, lake depth and an index of watershed disturbance 200 

calculated as the human impact index (HI) (Huot et al., 2019). All environmental variables were logarithm 201 

transformed, except for HI values (percentages) that were arcsine transformed. 202 

Principal Component Analyses (PCA) were performed separately for each dataset using the 203 

function prcomp on both logarithm and Hellinger-transformed abundance (i.e. the number of individuals 204 

per liter or the number of reads sequenced) and biomass data where data were available (i.e. only for 205 

crustacean zooplankton observations) (Legendre and Gallagher, 2001). The three main principal 206 

components were extracted and used to derive an RV coefficient, analogous to Pearson’s correlation 207 

coefficient for two given multivariate data matrices (Legendre and Birks, 2012). All possible pairwise 208 

comparisons between datasets were explored – densities or biomass vs. either SSU rRNA genes or 209 

whole metagenome, and SSU rRNA genes vs. whole metagenome. Coefficient significance was verified 210 

with the function coeffRV in FactoMineR (Lê et al., 2008). We also considered the congruence between 211 

community identifications done for each sample using morphological data and shotgun analyses by 212 

calculating pairwise Jaccard and Bray-Curtis dissimilarities (the former based on incidence data and the 213 

latter based on relative abundance data (number of individuals per liter) using the function vegdist in 214 

vegan (Oksanen et al., 2013). For this analysis, no biomass data was used. 215 

 216 

3. Results 217 

3.1. Zooplankton taxonomy diversity across analytical platforms 218 

Based on the microscopic analyses, we detected an average zooplankton family-level richness of 11.1 219 

across the 18 lakes with complete zooplankton counts (Table 1; rotifer data were missing for three lakes). 220 

The most dominant families in terms of counts were the Bosminidae, Cyclopidae and Daphniidae, 221 

whereas the dominant families in terms of biomass (crustacean zooplankton only) were Daphniidae, 222 

Cyclopidae, and Diaptomidae. Across the 22 sites, the crustacean community was relatively even based 223 
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on abundance data, with a Pielou’s evenness index of 0.67 (0 = no evenness, 1 = complete evenness). 224 

Considering just the crustacean zooplankton families for which there is a larger data set of hundreds of 225 

lakes across our four focal ecozones (Paquette et al., 2021), we found a comparable amount of richness 226 

and evenness within the range of the key environmental gradients captured by our 22 sites (Table 1).  227 

High-throughput sequencing yielded on average ~28 million raw reads per metagenome and the 228 

number of reads per sample after quality filtering and merging of the pairs varied between 7 and 29 229 

million (Supplementary Figure S2). Overall, the proportion of the merged reads assigned to Eukaryotes 230 

ranged between 0.5 and 1.2% of the total paired reads, with up to 46% of the eukaryotic reads confidently 231 

assigned to Metazoans (Supplementary Figure S2). With the whole metagenome BLAST approach, we 232 

detected a slightly greater average family richness of 15.95 (Table 1). Relative to the microscopy dataset 233 

we found that the assemblages in our 22 lakes were less even (mean Pielou’s evenness = 0.47; Table 1). 234 

The dominant taxa in terms of reads were Daphniidae, Diaptomidae and Brachionidae (Rotifera). Using 235 

the targeted SSU rRNA gene prediction approach, we detected the lowest average family richness 236 

relative to the previous two analytical approaches, with a mean of 5.6 (min = 1, max = 10). The dominant 237 

taxa detected were Diaptomidae, Synchaetidae (Rotifera) and Cyclopidae. Comparing across the 238 

different platforms, we found that the SSU rRNA gene prediction approach yielded the lowest family 239 

diversity values but evenness estimates that were closer to those generated through the microscopic 240 

counts for densities (Table 1, Supplementary figure S3). 241 

 242 

3.2. Congruence of morphological and sequencing zooplankton families 243 

We found a nested group of family diversity as we moved from SSU rRNA genes, to microscopy to whole 244 

metagenome datasets (Figure 3a). Nineteen out of 23 families that were detected at most sites using the 245 

whole metagenome approach were also found in the microscopy dataset of the 22 lakes. Families that 246 

were absent in the microscopy but present in the metagenomes are taxa that are often characterized as 247 

benthic or littoral associated (i.e. Harpacticidae (copepoda), Chironomidae (Diptera larvae), Adinetidae 248 

(Rotifera), and Philodinidae (Rotifera)).  249 

Zooplankton family occurrences across lakes were compared between the three analytical 250 

platforms (microscopy and two metagenomics approaches) to determine the level of congruence between 251 
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survey methods (Figure 3b & 4). The families Ergasilidae (copepoda), Leptodoridae (cladocera), and 252 

Holopediidae (cladocera) were consistently absent at most sites (found only in a single or a few sites), 253 

whereas the Calanoida group (copepods - order level; found at 11 sites), Synchaetidae (rotifer; found at 254 

11 sites), and the Cyclopoida group (copepods - order level; found at 13 of the 19 sites) were the three 255 

taxa that were most consistently widely detected across all analytical platforms (Figure 4). It is worth 256 

noting, however, that since the Calanoida and Cyclopoida groups were binned at order level, they are 257 

likely to comprise more than one Family each. The reason for this grouping was two-fold: firstly, the 258 

majority of the genetic reference sequences for these clades were lacking finer taxonomic resolution, and 259 

secondly, these groups include nauplii or juvenile stages which could not be assigned to one or the other 260 

order in the microscopy data based on morphological observations only.  261 

When comparing pairwise taxon occurrences across the three datasets for all zooplankton 262 

families and with copepods grouped at order level (Calanoida and Cyclopoida), we found consistent 263 

detections in 45% of cases (either 3 out of 3 or 0 out of 3 detections). When comparing microscopy with 264 

either genetic approach, the overall number of dual positive detections was higher between microscopy 265 

and whole metagenome datasets, with a total of 34.3% positive matches across 17 lakes (two lakes 266 

missing whole metagenome data were excluded) compared to only 17.3% positive matches for the 267 

comparison with SSU rRNA gene data in 19 lakes (Figure 4). 268 

To consider the congruence of the entire assemblage between analytical platforms we calculated 269 

dissimilarity indices and RV coefficients. From a taxonomic presence-absence perspective (Jaccard 270 

distances), whole metagenomes more strongly reflected the community composition based on 271 

zooplankton counts than the SSU rRNA gene data (p = 0.0008). In contrast, when zooplankton family 272 

relative abundances (Bray-Curtis dissimilarities) were considered, we found that the SSU rRNA gene data 273 

performed similarly to the whole genome BLAST (p = 0.8051; Figure 5).  274 

To further explore the congruence between assemblages, we calculated the RV coefficient based 275 

on the three main PCA axes and found moderate and significant congruence between SSU rRNA gene 276 

and morphology data (Table 2). Results were stronger when relative abundance data were log-277 

transformed to account for potential over-representation of model organisms in the reference databases, 278 

which can yield inflated assigned read estimates compared to other taxonomic groups that are poorly 279 
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populated in reference databases. When data were Hellinger-transformed, the RV coefficient between 280 

whole metagenome and SSU rRNA gene datasets was also of moderate strength (Table 2).  281 

 282 

3.3. Zooplankton diversity patterns over environmental gradients 283 

We investigated the relationship between Family-level zooplankton diversity metrics (richness and 284 

Shannon diversity) and major environmental gradients identified in the eastern ecozones: the human 285 

impact index, total phosphorus (TP), specific conductivity and lake depth). Our analyses showed that 286 

several consistent relationships were apparent across the analytical platforms. For richness, significant 287 

negative relationships were observed between TP and both metagenomic datasets (SSU: adj. R2 = 0.24, 288 

p = 0.02; WM: adj. R2 = 0.29, p = 0.01) (Figure 6 & Supplementary Table S2). A negative but non-289 

significant relationship (p = 0.24) was observed between TP and richness derived from morphological 290 

identifications. We also detected negative relationships between richness and human impact index, but 291 

the fit once again was only significant for the metagenomic datasets (SSU: adj. R2 = 0.23, p = 0.022; WM: 292 

adj. R2=0.33, p = 0.006; Morphology: adj R2 = 0.07, p = 0.14). Finally, a marginally significant relationship 293 

(adj. R2 adj. = 0.12, p = 0.08) was observed between richness derived from the whole metagenome 294 

dataset and specific conductivity.  295 

For Shannon diversity, a significant fit was found between the SSU rRNA gene data and TP (adj. 296 

R2 = 0.18, p = 0.03) and between SSU rRNA data and human impact index (adj. R2 = 0.15, p = 0.056). 297 

The fit between Shannon diversity derived from whole metagenome data and specific conductivity was 298 

marginally significant (adj. R2 = 0.11 p = 0.098) and no significant relationships emerged with lake depth 299 

(Figure 6 & Supplementary Table S2).  300 

 301 

4. Discussion 302 

Consistent with other comparative analyses between eDNA metagenomics and morphological 303 

approaches (Stat et al., 2017; Singer et al., 2020), our results show that the match is not perfect. Overall, 304 

we detected modest congruence in taxon relative abundance across platforms and varying levels of 305 

congruence between analytical platforms when we considered presence-absence data. Interestingly, 306 

diversity metrics across all analytical platforms showed similar responses to epilimnetic phosphorus 307 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.465999doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.465999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

concentration, which is often considered a limiting nutrient in many lakes in Eastern Canada. Many 308 

important improvements can be implemented in future metagenomic work to help refine the robustness of 309 

this approach applied to metazoan biodiversity eDNA surveys (section 4.3). 310 

 311 

4.1. To what extent do water metagenomes represent zooplankton biodiversity? 312 

Using a variety of statistical approaches, we found that zooplankton communities surveyed using 313 

morphological counts and metagenomic analyses were, at best, moderately correlated. While local 314 

diversity metrics were similar across platforms, whole metagenome analysis detected the highest 315 

richness of zooplankton taxa. It is also informative to compare the strength of our results with other eDNA 316 

– morphological comparisons. For example, Keck et al. (2021) conducted a meta-analysis of comparative 317 

metabarcoding and morphological studies, and found that eDNA detected significantly more taxa than 318 

morphological counts, as eDNA may contain traces of taxa distributed outside of the immediate sampling 319 

area. Although no such synthetic analysis has been done from metagenomes, we would expect a similar 320 

finding. In our molecular dataset, we found four Families of zooplankton that were not recorded as part of 321 

the morphological survey, but these taxa are either generally characterized as benthic or littoral 322 

associated so may not have been present as individuals in the immediate sampling area. For instance, 323 

the Bdelloid rotifers Adinetidae and Philodinidae, which we only found via the whole metagenome 324 

analysis, are typically found to live on plants or debris in waters with dense vegetation and are generally 325 

not caught in plankton tows (Wallace and Snell, 2010). Across the metabarcoding and metagenomic 326 

literature, many have argued that eDNA approaches are more complementary to morphological 327 

approaches rather than directly exchangeable, and the coherence between metagenomic and 328 

metabarcoding for eukaryotic diversity surveys needs further detailed investigation (Garlapati et al., 2019; 329 

Cordier et al., 2020).  330 

 331 

4.2. Shotgun sequencing reveals diversity patterns over broad environmental gradients 332 

To explore diversity patterns over broad environmental gradients and among analytical platforms, 333 

richness and Shannon diversity metrics were plotted against epilimnetic total phosphorus (TP), specific 334 

conductivity, lake depth, and human impact index estimated in the 22 lakes (Huot et al., 2019). Based on 335 
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our preliminary dataset, we found relatively consistent patterns in zooplankton diversity across analytical 336 

platforms, indicating that shotgun sequencing shows promise for investigating ecological gradients in 337 

freshwater systems. Our findings are consistent with results reported by Singer et al. (2020) from a 338 

marine system, where despite revealing contrasting taxonomic diversity, both the metagenomic and 339 

metabarcoding data revealed similar ecological patterns, which in turn were useful to infer factors related 340 

to the ecosystem health and function. 341 

 342 

4.3. Limitations to the metagenomic approach and prospects  343 

Limitations of eDNA-based approaches have been widely studied, although these have been primarily 344 

based on PCR-based approaches. Challenges relate mostly to the availability and quality of eDNA itself 345 

in water, whereby investigators have identified the conditions contributing to eDNA degradation (Barnes 346 

et al., 2014) or the transport of eDNA over long distances (Deiner and Altermatt, 2014). Although our 347 

knowledge of these factors is constantly improving the robustness of eDNA research, there are also other 348 

aspects of the workflow - from sampling strategies to bioinformatics – which need to be improved to 349 

strengthen metagenomic approaches applied to the study of metazoans in the environment. 350 

4.3.1. Methodological considerations  351 

Our metagenomes were produced for the primary purpose of examining bacteria and archaea and thus 352 

the volume of water filtered was only ~250 ml to 500 ml, depending on how much water could be passed 353 

through the 0.22 µm membrane before it clogged (Garner et al., 2020). In contrast, the morphological 354 

identification of zooplankton was performed on tow haul samples collected from tens of liters across the 355 

full water column that were then concentrated to a few hundred milliliters. Furthermore, because the 356 

samples for DNA analysis were collected over the photic zone only, they might not fully represent the 357 

rotifer and crustacean zooplankton samples which were collected from below the thermocline and over 358 

the full water column, respectively. Overall, we are looking at diverging sampling efforts and distributions 359 

across approaches, which may have brought about some of the differences. 360 

Filter size selection could also play an influential role and may allow one to filter more water in 361 

future studies. We opted for a size selection step where we first pre-filtered water through a 100 µm 362 

mesh, which selected mostly for extra-organismal DNA (i.e. DNA that is no longer found within an 363 
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organism, as opposed to organismal DNA) (Rodriguez‐Ezpeleta et al., 2021). It is however likely that 364 

gametes and other juvenile stages in cladocerans and copepods passed through the 100 µm mesh and 365 

got caught on the 0.22 µm membrane, which may have contributed to the inflated number of reads 366 

assigned mainly to Daphniidae and copepods in the whole metagenome dataset. Selecting a filter with a 367 

pore size better suited to our target organisms may lead to a better overall coverage by minimizing the 368 

allocation of sequencing effort to DNA from non-target microbial taxa. For instance, 0.45 µm cellulose 369 

nitrate filters have been shown to yield consistent results for fish metabarcoding with high repeatability 370 

between filtration replicates (Li et al., 2018). Type of filter, pre-filtration step and pore size have all been 371 

identified as factors determining the final yield of eDNA, with differences observed between taxa and 372 

systems (Bowers et al., 2021) 373 

Filtering larger volumes of water combined with an increased sequencing depth may help yield a 374 

higher number of reads and more diversity for Eukarya, which are very much underrepresented in 375 

metagenomes in contrast with bacteria and archaea. Similar to earlier research, we found that the 376 

proportion of recovered eukaryotes tends to be < 0.5% of the total read assignments, either with a 377 

genome wide approach (Stat et al., 2017; Cowart et al., 2018) or a gene-centric approach (Tedersoo et 378 

al., 2015). In contrast, the filtration of 10 L of water targeting extracellular DNA combined with ultra-deep 379 

sequencing was shown to yield ~100 million reads per metagenome from a brackish lagoon and improved 380 

the coverage for Eukarya to a proportion corresponding to over 4% of the total number of reads (Manu, 381 

2021). Other emerging target enrichment techniques such as hybridization capture have great potential to 382 

improve the detection of metazoans in metagenomes (Seeber et al., 2019; Sevigny et al., 2021). 383 

Hybridization capture utilizes RNA probes carefully designed to bind the gene region of interest, 384 

enhancing the signal of desired taxa without introducing PCR-induced biases. Recent results based on 385 

ultra-deep sequencing have shown that the coverage for eukaryotes may be improved when combining 386 

shotgun sequencing with DNA target-capture methods (Manu, 2021). Alternatively, metatranscriptomics is 387 

an emerging and promising approach for characterizing zooplankton communities. A recent study by 388 

Lopez et al. (2021) comparing zooplankton estimates from observational with both amplicon sequencing 389 

and metatranscriptomics datasets has revealed higher congruence of observational zooplankton 390 
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abundance and composition with metatranscriptomics estimates compared to amplicons sequencing 391 

using genomic (gDNA) and complementary DNA (cDNA) amplicons sequencing. 392 

4.3.2. Bioinformatics considerations 393 

Carefully designed bioinformatic workflows are crucial for robust taxonomic assignment of sequencing 394 

reads. Our data suggest that using the whole metagenomic reads can capture the widest pool of 395 

biodiversity, but that the taxonomically informative gene markers, such as the SSU rRNA genes in 396 

eukaryotes better reflected the observed relative abundance of zooplankton families based on 397 

microscopy. We also found that in using a targeted approach using SSU rRNA genes as taxonomic 398 

markers, several taxa were missing or did not get taxonomically assigned using the lowest common 399 

ancestor (LCA) algorithm, even though they were present in relatively high abundances in microscopy 400 

counts. Some taxa were consistently missing or almost absent from our genetic datasets (such as the 401 

Bosminidae), despite being one of the most abundant taxonomic groups in microscopy. Such 402 

incongruences between traditional and metabarcoding data have frequently been reported (see Keck et 403 

al., 2021). We hypothesize that part of the issue with missing taxa in our metagenomes is caused by the 404 

same bioinformatic limitations as in any genetic-based study: the current lack of complete reference 405 

molecular data limits our ability to assign taxonomy to sequence reads. In molecular datasets, and 406 

especially in shotgun sequencing data, a large portion of the reads generated only get assigned to Class 407 

level or lower. These reads are typically filtered out bioinformatically, meaning that they are not 408 

considered in the estimation of diversity indices or in comparisons with other datasets. Therefore, we 409 

might be widely underestimating the abundance and diversity of certain taxonomic groups which are not 410 

populated in reference databases.  411 

Since using the full metagenome read set is computationally intensive and does not appear to 412 

yield a higher correlation with morphology-based identifications, a reasonable compromise that might 413 

increase coverage without multiplying computation efforts could be the combination of a few targeted 414 

genetic markers. For example, metagenome reads mapped against both the SSU and LSU rRNA gene 415 

markers has been shown to improve taxa recovery in a study of marine plankton from DNA preserved in 416 

marine sediment (Armbrecht, 2020). In addition to nuclear SSU rRNA genes, we investigated the 417 

mitochondrial cytochrome c oxidase subunit I (COI) but found the coverage for this marker to be very low 418 
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for metazoans, most likely due to the generally lower cellular abundance of mitochondria compared to 419 

ribosomes. For this reason, we did not pursue further metagenomic COI marker analyses.  420 

There is clearly an urgent need for curated molecular databases to improve interpretation of 421 

eDNA-based molecular datasets. This is especially the case for freshwaters, where monitoring efforts are 422 

limited and yet provide habitat for a disproportionate number of taxa per unit area (Strayer and Dudgeon, 423 

2010). Currently there are insufficient data for many taxa such that we cannot even assess the state of 424 

~40% of freshwater species in Canada (Desforges et al., 2021). Initiatives to improve sequencing 425 

coverage of eukaryotic biodiversity are underway, including the Barcode of Life Data System (BOLD) 426 

(Ratnasingham and Hebert 2007), the International Barcode of Life (IBOL) (https://ibol.org/), the Earth 427 

BioGenome Project (https://www.earthbiogenome.org/), i5K for arthropods (Robinson et al., 2011), and 428 

Diat.barcode for Diatoms (Rimet et al 2019). Such initiatives will multiply the number of curated 429 

references for taxonomic marker genes, which is key to improving taxonomic assignments in eDNA 430 

studies. 431 

 432 

5. Conclusion 433 

In this study, metagenomics and classical morphological analyses of zooplankton applied to 22 434 

freshwater lakes yielded contrasting abundance estimates but comparable diversity assessments at the 435 

family level. Metagenomics detected more taxa, including some that generally live outside the pelagic 436 

photic zone where the samples were taken, which is to be expected given the persistence and transport 437 

of eDNA in nature. Although metagenomic techniques still need to be improved with better adapted 438 

sampling protocols and refined bioinformatics pipelines specific to eukaryotic genomes, our results 439 

suggest enormous potential for extending metagenome analysis to the investigation of zooplankton and 440 

other aquatic micro- and macro-eukaryotes. Our comparative study contributes to a better understanding 441 

of how the metagenomic approach might contribute to biodiversity and ecological assessments in 442 

complement to other traditional and eDNA approaches.  443 

 444 

List of figures: 445 
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Figure 1. Map of Canada showing the location of the 22 lakes in Eastern Canada and their trophic status 446 

based on total phosphorus concentration: oligotrophic (less than 10 µg/L), mesotrophic (10 – 30 µg/L) and 447 

eutrophic (greater than 30 µg/L). 448 

Figure 2. Detailed bioinformatics workflow used on shotgun sequencing data. 449 

Figure 3. a) Diagram showing the number of zooplankton families and their overlap in detection via the 450 

three approaches: morphology-based microscopy (blue), whole metagenome sequencing (green), and 451 

gene prediction approach based on the small subunit subset of reads (orange). b) Divergent plots 452 

showing the number of lakes in which each zooplankton family were detected via the different 453 

approaches (grey: microscopic identification; green: whole-metagenome approach; orange: small-subunit 454 

(SSU) rRNA genes approach). 455 

Figure 4. Heatmap with the number of each zooplankton Family-level (or Order-level in the case of 456 

Cyclopoida and Calanoida copepods and unidentified families of Rotifera) detection across analytical 457 

platforms (microscopy, whole metagenome, and small subunit (SSU) rRNA genes). A value of zero 458 

signifies that a Family/Order was absent from all datasets. 459 

Figure 5. Boxplots showing Bray-Curtis (left) and Jaccard (right) dissimilarities between the microscopy-460 

based taxonomic composition and the sequence read composition using the whole-metagenome 461 

approach (green) and the SSU rRNA gene subset approach (orange). The significant ANOVA test is 462 

indicated with an asterisk. 463 

Figure 6. Diversity metrics (left: Taxonomic richness, right: Shannon entropy) estimated from microscopy, 464 

SSU rRNA genes (SSU), and whole metagenome (WM) datasets plotted against environmental gradients 465 

using generalized additive model (GAM). Environmental data were log transformed, except for the human 466 

impact index (expressed as percentage), which was arcsine transformed. Red and yellow backgrounds 467 

identify significant and marginally significant relationships, respectively. Adjusted R-squared and p-values 468 

for each GAM are listed in Supplementary Table S2) 469 

 470 

Data archiving statement: 471 

Sequence data were submitted to the EBI metagenomics platform for analysis and archiving under Study 472 

MGYS00003941. 473 
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Table 1. Summary of the main diversity indices (mean (min – max)) estimated for the three survey 649 

approaches at the Family taxonomic level. Microscopic estimates for Shannon and Pielou were based on 650 

abundance data (the number of individuals per liter, or the number of sequenced reads). 651 

Approach 

Taxonomic 

richness 

Shannon index Pielou’s evenness 

Microscopy 11.1 (7 – 15) 1.6 (0.7 – 1.9) 0.67 

SSU rRNA gene subset 5.6 (1 – 10) 1.2 (0 – 1.9) 0.74 

Whole metagenome 14.2 (10 – 21) 1.3 (0 – 2.0) 0.47 

Microscopy (198 LakePulse sites) 6.49 (2 – 10) 1.14 (0.1 – 1.8) 0.61 

 652 

 653 

  654 
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Table 2. Results of the congruence test between datasets (RV coefficients with significance values) using 655 

two types of data transformation (Hellinger or log10+1) on genetic and morphological data (abundance of 656 

all zooplankton and biomass of crustacean zooplankton only). 657 

Matrices compared Taxa included Transformation RV 
coefficient p-value 

Density-SSU All zooplankton Hellinger 0.39 0.004 
Density-WM All zooplankton Hellinger 0.006 0.93 
SSU-WM All zooplankton Hellinger 0.38 0.003 
Density-SSU All zooplankton Log10+1 0.48 0.0006 
Density-WM All zooplankton Log10+1 0.12 0.39 
SSU-WM All zooplankton Log10+1 0.17 0.19 

Biomass-SSU Crustaceans only Hellinger 0.21 0.12 
Biomass-WM Crustaceans only Hellinger 0.03 0.96 
Biomass-Density Crustaceans only Hellinger 0.64 3.33E-06 
SSU-WM Crustaceans only Hellinger 0.25 0.045 
Biomass-SSU Crustaceans only Log10+1 NS NS 
Biomass-WM Crustaceans only Log10+1 NS NS 
Biomass-Density Crustaceans only Log10+1 0.51 0.0002 
SSU-WM Crustaceans only Log10+1 0.12  0.28 

Density-SSU Rotifers only Hellinger 0.09 0.68 
Density-WM Rotifers only Hellinger 0.13 0.53 
SSU-WM Rotifers only Hellinger 0.09 0.70 

Density-SSU Rotifers only Log10+1 0.08 0.96 
Density-WM Rotifers only Log10+1 0.10 0.66 
SSU-WM Rotifers only Log10+1 0.02 0.96 
 658 
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