

1 **Brain macrophages acquire distinct transcriptomes prior to**
2 **demyelination in multiple sclerosis**

3

4 Anneke Miedema^{1*}, Emma Gerrits^{1*}, Nieske Brouwer¹, Qiong Jiang¹, Laura Kracht¹,
5 Michel Meijer¹, Erik Nutma³, Regina Peferoen-Baert³, Anna T.E. Pijnacker¹, Evelyn
6 M. Wesseling¹, Marion H.C. Wijering¹, Hans-Joachim Gabius², Sandra Amor³, Bart
7 J.L. Eggen^{1†} and Susanne M. Kooistra^{1†\$}

8

9 *These authors contributed equally to this work.

10 †These authors contributed equally to this work.

11 \$Corresponding author

12 ¹Department of Biomedical Sciences of Cells & Systems, section Molecular
13 Neurobiology, University of Groningen and University Medical Center Groningen
14 (UMCG), Groningen, the Netherlands

15 ²Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-
16 Maximilians-University Munich, Munich, Germany

17 ³Department of Pathology, Amsterdam UMC, VUMC site, Amsterdam Neuroscience,
18 Amsterdam, Netherlands

19

20 **Abstract**

21 Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that is
22 characterized by inflammation and focal areas of demyelination, ultimately resulting
23 in axonal degradation and neuronal loss. Several lines of evidence point towards a
24 role for microglia and other brain macrophages in disease initiation and progression,
25 but exactly how lesion formation is triggered is currently unknown. Here, we
26 characterized early changes in MS brain tissue through transcriptomic analysis of
27 normal appearing white matter (NAWM). We found that NAWM was characterized by
28 enriched expression of genes associated with inflammation and cellular stress
29 derived from brain macrophages. Single cell RNA sequencing confirmed an early
30 stress response in brain macrophages in NAWM and identified specific macrophage
31 subsets that associate with different stages of demyelinating lesions. These early
32 changes associated with lesion development in MS brain tissue may provide
33 therapeutic targets to limit lesion progression and demyelination.

34

35 **Keywords:** multiple sclerosis; brain macrophages; microglia; single-cell RNAseq;
36 normal appearing white matter

37 **Introduction**

38 Multiple sclerosis (MS) is an auto-immune disease damaging the central nervous
39 system (CNS) and affects 2.8 million people worldwide[42]. MS is characterized by
40 demyelinated lesions in the brain, optic nerves and spinal cord, ultimately resulting in
41 damage to the axons which leads to cognitive problems, blindness, impaired motor
42 function or even paralysis, depending on the location and extent of the lesions[5].
43 Despite extensive efforts, the factors causing disease and initiating the formation of
44 new lesions are not yet known. Genome wide association studies (GWAS) point
45 towards a role of microglia, the resident macrophages in the parenchyma of the
46 brain, in MS pathology[15]. Besides microglia, other types of macrophages have
47 shown to be affected in mouse models for MS, for example perivascular
48 macrophages, meningeal macrophages, choroid plexus macrophages and infiltrating
49 peripheral monocytes, collectively termed CNS-associated macrophages
50 (CAMs)[16].

51 Additional clues towards the processes involved in lesion initiation are derived from
52 the analysis of the non-lesioned areas from the CNS of affected individuals, such as
53 normal-appearing white matter (NAWM). Compared to healthy controls, NAWM
54 shows several pathological abnormalities[1, 25]. For example, perturbed myelin-axon
55 interactions have been described as an early event in MS NAWM[25]. Additionally,
56 morphologically altered and HLA-DR-expressing macrophages are detected in
57 NAWM[1]. Analysis of gene expression levels indicated that inflammatory processes
58 are already ongoing in NAWM and might involve both microglia and astrocytes[12,
59 28, 32, 37, 40]. However, the underlying pathological mechanisms initiating and
60 driving (inflammatory) demyelination in MS remain incompletely understood, and
61 likely involve multiple cell types both within and outside the CNS[6]. To identify early

62 changes in MS brain tissue, we here analyzed the transcriptional profile of NAWM
63 tissue without apparent macrophage activation (*in situ*) and applied single-cell RNA
64 sequencing to further determine changes in brain macrophages, including microglia.

65

66 **Results**

67 **Transcriptomic changes in normal appearing white matter**

68 To identify global disease-associated transcriptomic changes in the brains of MS
69 donors, total tissue transcriptomic profiling was performed on white matter from
70 control donors (CWM), normal appearing white matter (NAWM) from MS donors and
71 demyelinated white matter lesions (WMLs) from MS donors (Fig. 1A, Supplementary
72 Table S1). To avoid the presence of demyelinated lesions or overt activation of
73 macrophages in NAWM samples, tissue sections immediately adjacent to the tissue
74 sections used for RNAseq were stained for PLP1 and HLA-DR, where for NAWM the
75 PLP1 score must be 10 to indicate intact myelin and HLA-DR score < 4 representing
76 low-grade macrophage activation status (Fig. 1A, Supplementary Fig. S1A,
77 Supplementary table S1). Principal component analysis segregated the WML
78 samples from CWM and NAWM samples in the first principal component (PC1).
79 Furthermore, a clear segregation between NAWM and CWM samples was observed
80 in PC2 and some NAWM samples grouped with WML samples, indicating that the
81 NAWM in MS brains is affected prior to demyelination (Fig. 1B). Differential gene
82 expression analysis confirmed the differences between the groups by identification of
83 hundreds of differentially expressed genes (DEGs; $\text{abs}(\text{logFC}) > 1$ and $\text{FDR} < 0.05$)
84 between NAWM vs CWM samples, WML vs NAWM and WML vs CWM (Fig. 1C,
85 Supplementary Table S2). Biological processes associated with DEGs enriched in
86 NAWM compared to CWM indicate that apoptosis, stress and inflammatory

87 responses are present in NAWM tissue prior to lesion formation (Fig. 1D).
88 Additionally, genes reported as immediate-early genes (IEGs), reported to be the
89 first genes being transcribed when cells are stimulated such as during an
90 inflammatory response, were enriched in NAWM compared to CWM (Supplementary
91 Fig. S1B, C). DEGs uniquely enriched in WML compared to NAWM were associated
92 with epithelial cell apoptosis and cilium assembly and movement, indicating that
93 these processes occur during or after demyelination/lesion formation. DEGs
94 associated with extracellular matrix organization, humoral immune response,
95 leukocyte migration and complement activation were enriched in both NAWM and
96 WML samples compared to CWM (Fig. 1D).

97 To elucidate whether the identified DEGs are caused by changes in cell type
98 composition we performed expression-weighted cell type enrichment analysis
99 (EWCE)[34]. DEGs enriched in NAWM when compared to CWM were significantly
100 enriched in CAMs and microglia and depleted in neurons, oligodendrocyte precursor
101 cells (OPC) and astrocytes. DEGs between WML and CWM were significantly
102 enriched for CNS-associated macrophage (CAM)-genes and depleted for
103 oligodendrocyte-, neuron- and OPC-genes (Fig. 1E). This suggests that these cell
104 types have a different abundance and/or disease-associated transcriptomic changes
105 in gene expression profiles between the conditions.

106

107 **Inflammation and stress gene modules are enriched in normal appearing white
108 matter**

109 To extract process- or cell type-specific gene modules a weighted gene co-
110 expression network analysis (WGCNA) was performed (Fig. 2A, Supplementary
111 Table S3), and combined with EWCE to identify whether modules contained cell type

112 specific gene expression profiles (Fig. 2B). The majority of the WGCNA-identified
113 gene modules were enriched in oligodendrocytes, indicating that these cells are
114 amongst the most affected cell types in MS brains, in line with the known
115 pathological features of MS lesions (Fig. 2B). However, not all oligodendrocyte-
116 associated modules were depleted in WML compared to CWM and NAWM ('red',
117 'green', 'brown', 'purple', 'cyan', 'yellow'; Supplementary Fig. S1D). This indicates
118 that transcriptomic changes also occur within the oligodendrocyte population, in the
119 absence of loss of oligodendrocyte numbers in WMLs, or that specific
120 subpopulations of oligodendrocytes are lost in WMLs. Additionally, many
121 oligodendrocyte modules were differentially abundant between CWM and NAWM,
122 where no demyelination was present ('red', 'green', 'brown', 'tan', 'cyan', 'yellow';
123 Supplementary Fig. S1D). One such module, 'tan', was enriched in NAWM
124 compared to CWM (Fig. 2C) and comprised both oligodendrocyte and astrocyte
125 genes (Fig. 2B). Module 'tan' was associated with 'stress response', 'metabolism'
126 and 'cell cycle', suggesting that prior to demyelination oligodendrocytes and/or
127 astrocytes display an early stress response (Fig. 2C). Two gene modules that were
128 enriched in astrocytes were detected ('black' and 'midnightblue') and both were
129 depleted in NAWM samples compared to CWM (Fig. 2D, Supplementary Fig. S1D).
130 Both modules contained genes associated with typical astrocyte functions, indicating
131 that astrocytic support may be depleted in NAWM tissue (Fig. 2D).

132
133 Module 'magenta', significantly enriched in WML samples, comprised genes
134 associated with inflammation, and was associated with CAMs, microglia and
135 lymphocytes, indicating that the abundance of these cells is increased in WML or
136 that they shift towards a more pro-inflammatory profile (Supplementary Fig. S1D, E,

137 Supplementary Table S3). Module 'pink' also comprised genes associated with
138 inflammation, and this module was particularly enriched in lymphocytes.
139 Interestingly, module 'pink' was also enriched in NAWM vs CWM samples,
140 suggesting lymphocyte infiltration in the brain occurs prior to demyelination
141 (Supplementary Fig. S1D, E, Supplementary Table S3).

142

143 Module 'greenyellow' was enriched in microglia (Fig. 2B) and was more abundant in
144 NAWM and WML samples compared to CWM. This module was comprised of genes
145 associated with stress response and autophagy, indicative of cellular stress in
146 microglia prior to demyelination (Fig. 2E). These data suggest that the increase in
147 inflammation-, stress- and apoptosis-related gene expression in NAWM and WML
148 total tissue compared to CWM (Fig. 1C, D) are derived from both oligodendrocytes
149 and brain macrophages in NAWM prior to demyelination.

150

151 **Transcriptomic heterogeneity of macrophages in MS brain tissue**

152 Both stress- and inflammation-related gene expression patterns were associated
153 with brain macrophages in NAWM tissue. Therefore, to investigate whether the
154 detected expression changes were due to altered gene expression patterns within
155 specific macrophage subpopulations in MS brains, single-cell RNAseq was
156 performed on $CD45^{pos}CD11B^{pos}$ macrophages isolated from NAWM tissue and
157 tissue with macroscopically visible demyelinated white matter (Fig. 3A). Normal-
158 appearing tissue from the cortex from the same donors was included to obtain
159 sufficient cells with contrasting signatures to identify disease-associated signatures
160 and heterogeneity in NAWM and WML samples whilst avoiding donor variation.

161

162 Macrophages were isolated from fresh post-mortem brain tissue within 12 hours after
163 autopsy using our mechanical isolation protocol for human microglia[9], performing
164 the entire procedure at 4°C to minimize possible *ex vivo* activation of cells (Fig. 3A,
165 Supplementary Fig. S2A). In total, 56,522 CD45^{pos}CD11B^{pos} cells were analyzed
166 using single-cell RNA sequencing (scRNAseq; Supplementary Fig. S2A, B) and
167 these were grouped into 10 subtypes (Hs 1-10) using unsupervised clustering (Fig.
168 3B). None of the clusters was donor-specific, but a segregation based on tissue
169 origin was observed where particularly NACT and NAWM derived cells segregated in
170 the UMAP (Fig. 3C, Supplementary Fig. S2C). Significant differences in gene
171 expression between NACT and NAWM-derived cells were observed, where cortical
172 tissue derived cells were associated with phagocytosis and synapse pruning and
173 white matter macrophages with stress and apoptosis (Supplementary Fig. S2C-E,
174 Supplementary Table S5). The expression of oligodendrocyte and neutrophil genes
175 were enriched in two small clusters (Hs9 and Hs10) and likely represent a small
176 number of non-macrophage cell types derived from the CNS parenchyma and the
177 small amount of blood present in the vessels at the time of autopsy (Fig. 3D,
178 Supplementary Table S4).

179

180 Recently, we reported the distinct transcriptomic profiles of microglia and other CNS-
181 associated macrophages (CAMs) in our single-nucleus RNA sequencing
182 (snRNAseq) dataset of human cortical brain tissue[11]. To distinguish between
183 different types of brain macrophages in the present dataset, gene set module scoring
184 was performed using marker genes specific for microglia or CAMs.
185 Expression of the CAM marker geneset was enriched in clusters Hs6 and Hs8 (Fig.
186 3D), and expression of typical CAM genes (CD163, F13A1, LYVE1; [16]) was

187 enriched in cluster Hs8 and these were most abundant in WML samples (Fig. 3E, F).
188 Cluster Hs6 was particularly enriched in the NAWM samples, whereas cluster Hs8
189 was enriched in WML samples (Fig. 3E). The identified gene signatures for the
190 human macrophage subtypes we identified was comparable with
191 macrophage/microglia subsets identified in other studies (Fig. 3G). In MS, distinct
192 lesion types can be identified that are characterized by different degrees of
193 demyelination and inflammation[24]. Immunohistochemistry/fluorescence for the
194 proteins FCGR2B and HLA-DR in six MS lesion types, showed that Hs8
195 macrophages are scarce in non-active lesions and almost exclusively found in and in
196 close proximity to blood vessels (Fig. 3H, I, J). Conversely, in active MS lesions,
197 IBA1^{pos}FCGR2B^{pos}HLA-DR^{pos} cells (Hs8) were much more abundant in both blood
198 vessels and the parenchyma (Fig. 3H, I). These data indicate that macrophages
199 and/or monocytes with a CAM-like signature infiltrate the brain parenchyma during
200 active lesion formation or that parenchymal microglia adopt a CAM-like signature.

201
202 Expression of heat-shock-protein (HSP) genes, IEGs and genes associated with
203 stress response was enriched in cluster Hs6. Since these findings are in line with the
204 enrichment of HSP-genes and IEGs in total tissue NAWM compared to CWM
205 (Supplementary Fig. S1B), this strongly suggest that HSP gene and IEG expression
206 of macrophages in NAWM compared to NACT is not an intrinsic property of WM
207 macrophages, but rather is MS pathology associated.

208
209 Expression of microglia marker genes was enriched in the majority of the cells, but
210 depleted in clusters Hs6, Hs7 and Hs8 (Fig. 3D). The expression of typical
211 homeostatic microglia markers including CX3CR1, P2RY12 and IRF8 was enriched

212 in clusters Hs1, Hs2, Hs3 and Hs5, suggesting that these clusters represent
213 homeostatic microglia (Fig. 3F, Supplementary Table S4). The expression of genes
214 associated with the complement system was enriched in cluster Hs3 (Fig. 3F). This
215 cluster was most abundant in NACT samples, but also slightly enriched in WML
216 compared to NAWM (Fig. 3E, Supplementary Fig. S2C). The expression of pro-
217 inflammatory genes was enriched in cluster Hs4, this cluster was equally abundant in
218 all groups (Fig. 3E, Supplementary Fig. S2C). The expression of myelinogenic,
219 developmental and disease-associated microglia genes (*FTL*, *SPP1*, *ASA1* and
220 *GPNMB*), that have activated/phagocytic microglia phenotypes in mice, was
221 enriched in cluster Hs7 (Fig. 3F, G, Supplementary Table S4). These data indicate
222 the cells in cluster Hs7 are microglia, associated with demyelination or other myelin-
223 associated processes.

224

225 **Activated/phagocytic microglia arise during demyelination**

226 To validate the hypothesis that Hs7 cells are associated with demyelination, we
227 profiled brain macrophages in the cuprizone mouse model of de- and remyelination.
228 Mice were fed with cuprizone or control diet for 3 or 5 weeks and macrophages were
229 isolated for scRNASeq from the whole brains with exclusion of the olfactory bulb,
230 cerebellum and brainstem (Fig. 4A). *Cx3cr1*^{pos} cells were sorted (Supplementary Fig
231 S3A) from a *Cx3cr1*^{lox-stop-tdTomato} reporter mouse strain one month after tamoxifen
232 administration to activate the reporter and were clustered based on their gene
233 expression profiles (Fig. 4B, Supplementary Fig. S3A, B). Significant changes in
234 cluster distribution between the groups were identified (Fig. 4C). Marker genes were
235 identified by differential gene expression analysis between all clusters (Fig. 4B,
236 Supplementary Table S6). Expression of genes specific for CAMs (*F13a1*, *Lyve1*,

237 *Cd163*) and monocytes (*H2-Ab1*, *H2-Aa*, *Cd74*, *Lyz*) was enriched in clusters Mm7
238 and Mm8, respectively, and these clusters were equally abundant in all groups (Fig.
239 4C, Supplementary Fig. S3C, D). Expression of genes associated with microglia
240 homeostasis, such as *P2ry12* and *Tmem119*, was enriched in clusters Mm1 and
241 Mm2 and depleted in Mm3, Mm4, Mm7 and Mm8 clusters (Fig. 4D, Supplementary
242 Fig. S3C, D, Supplementary Table S6). Two clusters with an increased abundance in
243 the demyelination groups (D3, D5) were identified: Mm3 and Mm4 (Fig. 4C). Marker
244 genes of Mm3 were *Lpl*, *Apoe*, *Spp1* and *Axl* (Fig. 4D, Supplementary Fig. S3C, D),
245 genes previously identified in microglia in several disease models and during
246 development and myelinogenesis[14, 18, 39]. Expression of genes associated with
247 the interferon response, such as *Ifit3*, *Stat1* and *Irf7* was enriched in the Mm4 cluster
248 (Fig. 4D, Supplementary Fig. S3C, D). A cluster of cells (Mm5) highly expressing
249 *Phlda3* and *Cdkn1a* (Fig. 4D, Supplementary Fig. S3D), associated with apoptosis,
250 was identified which was most abundant after 3 weeks demyelination (Fig. 4C).
251 Additionally, a cluster of cells (Mm6) associated with proliferation was identified, as
252 indicated by high expression of *Mki67* and *Top2a* (Fig. 4D, Supplementary Fig.
253 S3D), that also increased in abundance after 3 weeks demyelination. This finding
254 was supported by immunofluorescent stainings for the proliferation marker Ki67 with
255 IBA1, which revealed proliferating macrophages in the CP of demyelinated mouse
256 brains after 3 weeks cuprizone (Fig. 4D). Remarkably, in the remyelination group (2
257 weeks after discontinuation of the cuprizone diet), the cluster distribution was very
258 similar to the control condition (Fig. 4C), indicating that the Mm3 and Mm4
259 phenotypes may be reversible. The identification of the apoptotic (Mm5) and
260 proliferation (Mm6) clusters in the demyelination groups suggests that Mm3 and
261 Mm4 microglia might be (partly) replaced by proliferating microglia.

262

263 Changes in microglia proliferation and transcriptomic profiles were confirmed by
264 altered macrophage morphology (Fig 4E, 4F right panel) and density (Fig 4E, 4F left
265 panel) *in situ*. Immunohistochemistry for the macrophage marker IBA1 showed that
266 macrophage morphology was extremely affected in the cortex and caudate putamen
267 after 3 weeks on the cuprizone diet (D3) and nearly completely restored after 2
268 weeks remyelination. In the corpus callosum, macrophage morphology was changed
269 the most after 5 weeks of cuprizone diet (D5), and this effect was still moderately
270 present after 2 weeks remyelination, indicating that not all brain regions are affected
271 at the same time, likely due to differences in myelin content (Fig. 4E, F). Taken
272 together, these data indicate that the activated/phagocytic profile (Mm3) arises
273 during demyelination and disappears after remyelination.

274

275 **Activated/phagocytic microglia are present in lesion types with ongoing**
276 **demyelination**

277 Next, we compared the macrophage subtypes identified in the cuprizone mouse
278 study with the MS subtypes. Hs1, Hs2 and Hs3 macrophage clusters were
279 significantly enriched for marker genes of the Mm1 and Mm2 clusters from the
280 mouse study and depleted for Mm3, Mm7 and Mm8 marker genes (Fig. 5A). Mm7
281 (CAMs) and Mm8 (monocytes) marker genes were particularly enriched in Hs8 and
282 Hs10 (neutrophils), again showing that the Hs8 cluster may contain CAMs or
283 monocytes rather than microglia. Human cluster Hs6 was not significantly enriched
284 in any of the mouse clusters, indicating that this is a specific feature of MS pathology
285 that is not recapitulated in the healthy mouse brain or in response to cuprizone-
286 induced demyelination. Conversely, the mouse apoptotic (Mm5) and proliferating

287 (Mm6) clusters were not detected in the human data. Human cluster Hs7 was
288 significantly enriched for expression of the Mm3 mouse cluster that both showed an
289 activated/phagocytic profile (Fig. 5A), and cells in clusters Hs7 and Mm3 had
290 comparable differential gene expression profiles compared to homeostatic cells,
291 clusters Hs5 and Mm1 (Fig. 5B). Mm3 microglia appeared specifically in relation to
292 demyelination in the cuprizone mouse model (Fig. 4C), therefore the association of
293 Hs7 microglia with particular MS lesion types was investigated.
294 Immunohistochemical and immunofluorescent stainings for two marker genes of
295 cluster Hs7 in six different types of MS lesions in 3-11 independent donors showed
296 that ASA $H1^{pos}$ and LGALS 1^{pos} cells were particularly observed in pre-active, active
297 and mixes active/inactive lesions, confirming that Hs7 macrophages with an
298 activated/phagocytic profile are associated with (active) demyelination (Fig. 5C, D,
299 Supplementary Fig. S4).

300
301 Taken together, this study indicates the presence of an early stress response in
302 macrophages in NAWM of MS brains, and that the activated/phagocytic microglia
303 profile in WML is an early but persistent response to disease, associated with
304 ongoing demyelination during lesion formation and progression.

305 **Discussion**

306 Here, transcriptomic profiling of white matter from control donors, and NAWM and
307 WMLs from MS brain tissues is performed to detect early changes that may underlie
308 MS disease onset. This total tissue transcriptomic profiling pointed towards changes
309 in brain macrophages in NAWM tissue. Next, we performed single-cell RNAseq of
310 brain macrophages to investigate how these cells are affected in NAWM and WML
311 tissue. For this, fresh post-mortem brain tissue was obtained within 12 hours after
312 autopsy. Hence, it was not possible to process multiple donors at the same time,
313 possibly leading to batch effects induced by technical artefacts or post-mortem
314 variation. Therefore, we processed NAWM, WML and NACT from the same donors
315 (in one batch), to overcome inter-donor variation that may be confounded with
316 technical variation or other (post-mortem) artefacts. Rather than including brain
317 tissue from control donors, NACT was included as a reference, non-diseased brain
318 region to obtain sufficient heterogeneity in the single-cell RNAseq data to identify the
319 transcriptomic profiles of NAWM- and WML-specific macrophage subpopulations.
320 Additionally, MS donors die relatively young (often 55-70 years of age), whereas
321 “healthy” control (CTR) donors generally die due to aging (> 80 years of age),
322 hampering an age-matched design. Thus, using brain tissue from CTR donors would
323 create an aging bias in the dataset, and it would take years to obtain sufficient
324 numbers of fresh young CTR brain tissues which may make the data even more
325 prone to technical variation. We acknowledge that macrophage profiles differ in grey
326 and white matter tissue, which we also show in our dataset. Differences in microglia
327 transcriptomes from grey and white matter was also reported by van der Poel et al.
328 (2019) in both control and MS brains[30]. Nevertheless, we saw a large spectrum of
329 macrophage/microglia heterogeneity in human MS brains, and besides homeostatic

330 microglia, we observed signatures that were nearly exclusively observed in NAWM
331 and WML and displayed disease-associated signatures that partly overlap with those
332 found in disease models, during development and in other neurodegenerative
333 diseases[11, 14, 18, 33, 38].

334

335 Using scRNAseq, a cluster of macrophages was identified that was particularly
336 abundant in NAWM samples and showed enriched expression of heat shock
337 proteins and immediate-early genes (Hs6). These genes have been reported to be
338 induced by ex vivo activation of macrophages, such as incubation steps at 37 °C[27].

339 Importantly, our cell isolation was performed at 4° C throughout the entire procedure.

340 This stress-related gene signature was also identified in the total tissue bulk RNAseq
341 dataset, both by us and partly by Melief et al. (2019)[28], suggesting that these
342 genes are not induced by cell isolation procedures but are an early feature of MS
343 pathology that already occurs before the onset of demyelination. Even more, these
344 stress-associated macrophages did not appear in cuprizone-induced demyelinated
345 mice, confirming that the stress macrophage cluster does not arise in response to
346 demyelination itself but arises in MS brains before demyelination occurs. These data
347 show that brain macrophages display an early stress response prior to
348 demyelination, suggesting that these are amongst the first cells to be involved in the
349 onset of demyelination. Alternatively, the stress response in brain macrophages may
350 represent a protective response of these cells, aiming to prevent lesion formation in
351 that tissue area.

352

353 Two clusters of macrophages were identified that were particularly enriched in
354 demyelinated WML samples. Cluster Hs8 showed enriched expression of several

355 well-known CAM genes, such as *F13A1* and *LYVE1*[16]. Additionally, cluster Hs8
356 was significantly enriched for marker gene expression of the CAMs and monocytes
357 that were identified in the cuprizone dataset. The role of microglia and infiltrating
358 macrophages and monocytes in MS brains is complicated by the fact that they are
359 remarkably similar in case of disease[4, 13]. While under homeostatic conditions
360 microglia express certain unique markers, including *TMEM119*, these microglia
361 markers are downregulated in disease[4, 13]. At the same time, following exposure
362 to the CNS microenvironment of microglia-deficient mice, CNS-infiltrating
363 macrophages adopt a microglia-like phenotype[3]. Therefore, despite the detection
364 of marker genes for CAMs, from these data we cannot definitively conclude whether
365 Hs8 macrophages indeed represent CAMs or that they are microglia that express
366 CAM marker genes in response to pathology. In mice, it was shown that microglia
367 outnumber CAMs and dominate the CNS lesion in response to demyelination[29],
368 making it more likely that these Hs8 macrophages originate from microglia rather
369 than CAMs. On the other hand, blood-brain-barrier (BBB) dysfunction is a well-
370 known feature present in WMLs. BBB dysfunction makes the CNS prone to
371 increased infiltration of macrophages and/or monocytes[7]. In non-active lesions and
372 control brain tissue, Hs8 macrophages were rare and almost exclusively observed
373 near blood vessels. In (pre)-active and chronic lesions, Hs8 macrophages were more
374 frequent and also present in the parenchyma, suggesting that Hs8 macrophages
375 may come from blood vessels and invade the lesion parenchyma, or, alternatively,
376 that resident microglia switch to an Hs8 phenotype.

377

378 Cluster Hs7 showed an activated/phagocytic microglia signature that was similar to
379 profiles reported in mouse models of disease[16, 18], human AD[11] and during

380 fetal/neonatal development and myelinogenesis[14, 19, 38]. Hs7 microglia were
381 particularly detected in lesion types with ongoing active demyelination. A similar
382 gene expression profile was identified in the cuprizone dataset (Mm3), confirming
383 their association with active demyelination. Additionally, these Mm3 microglia were
384 no longer abundant when the brain was fully remyelinated. During mouse
385 development, a similar subset of microglia (axon tract associated microglia) appears
386 in regions that become heavily myelinated and disappears when myelination is
387 complete[14]. Another study also showed that a similar microglia subtype (CD11C^{pos})
388 is abundant in areas of primary myelination and is a critical source of IGF1-driven
389 myelination[38]. These data indicate that in WMLs of MS brains, a
390 phagocytic/activated microglia profile (Hs7) emerges that is similar to those found in
391 the developing brain and is associated with myelin-processes.

392

393 Taken together, our data reveals that macrophages in MS brains adopt a diverse
394 range of phenotypes. Furthermore, significant changes were observed in NAWM
395 tissue, indicating that prior to apparent lesion formation (demyelination), brain
396 macrophages are already responding to environmental cues. These data offer
397 insight into early disease-associated changes in MS brain tissue in relation to lesion
398 development and progression, that may provide therapeutical targets to prevent or
399 reduce demyelination.

400 **References**

401 1. Allen I V., McQuaid S, Mirakhur M, Nevin G (2001) Pathological abnormalities
402 in the normal-appearing white matter in multiple sclerosis. *Neurol Sci* 22:141–
403 144. doi: 10.1007/s100720170012

404 2. André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius H-J
405 (1999) Galectins-1 and -3 and their ligands in tumor biology. *J Cancer Res Clin
406 Oncol* 125:461–474. doi: 10.1007/s004320050303

407 3. Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Hayden
408 Gephart M, Plowey ED, Barres BA (2018) A Combination of Ontogeny and
409 CNS Environment Establishes Microglial Identity. *Neuron* 98:1170-1183.e8.
410 doi: 10.1016/j.neuron.2018.05.014

411 4. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB,
412 Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G,
413 Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying
414 microglia in the mouse and human CNS. *Proc Natl Acad Sci U S A* 113:E1738–
415 46. doi: 10.1073/pnas.1525528113

416 5. Compston A, Coles A (2008) Multiple sclerosis. *Lancet* (London, England)
417 372:1502–17. doi: 10.1016/S0140-6736(08)61620-7

418 6. Correale J, Gaitán MI, Ysrraelit MC, Fiol MP (2017) Progressive multiple
419 sclerosis: from pathogenic mechanisms to treatment. *Brain* 140:527–546. doi:
420 10.1093/brain/aww258

421 7. Derada Troletti C, de Goede P, Kamermans A, de Vries HE (2016) Molecular
422 alterations of the blood-brain barrier under inflammatory conditions: The role of
423 endothelial to mesenchymal transition. *Biochim Biophys Acta* 1862:452–60.
424 doi: 10.1016/j.bbadi.2015.10.010

425 8. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK,
426 Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R (2015) MAST: a
427 flexible statistical framework for assessing transcriptional changes and
428 characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol*
429 16:278. doi: 10.1186/s13059-015-0844-5

430 9. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR,
431 Veras MM, Pereira TF, Leite REP, Möller T, Wes PD, Sogayar MC, Laman JD,
432 den Dunnen W, Pasqualucci CA, Oba-Shinjo SM, Boddeke EWGM, Marie
433 SKN, Eggen BJL (2017) Transcriptomic analysis of purified human cortical
434 microglia reveals age-associated changes. *Nat Neurosci* 20:1162–1171. doi:
435 10.1038/nn.4597

436 10. George NI, Chang C-W (2014) DAFS: a data-adaptive flag method for RNA-
437 sequencing data to differentiate genes with low and high expression. *BMC*
438 *Bioinformatics* 15:92. doi: 10.1186/1471-2105-15-92

439 11. Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y, Lambourne
440 M, Mulder J, Kummer M, Möller T, Biber K, Dunnen WFA den, De Deyn PP,
441 Eggen BJL, Boddeke EWGM (2021) Distinct amyloid- β and tau-associated
442 microglia profiles in Alzheimer's disease. *Acta Neuropathol* 1–16. doi:
443 10.1007/s00401-021-02263-w

444 12. Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular
445 changes in normal appearing white matter in multiple sclerosis are
446 characteristic of neuroprotective mechanisms against hypoxic insult. *Brain*
447 *Pathol* 13:554–73. doi: 10.1111/j.1750-3639.2003.tb00485.x

448 13. Greter M, Lelios I, Croxford AL (2015) Microglia Versus Myeloid Cell
449 Nomenclature during Brain Inflammation. *Front Immunol* 6:249. doi:

450 10.3389/fimmu.2015.00249

451 14. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A,
452 Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko
453 E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B (2019)
454 Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and
455 in the Injured Brain Reveals Complex Cell-State Changes. *Immunity* 50:253-
456 271.e6. doi: 10.1016/j.jimmuni.2018.11.004

457 15. International Multiple Sclerosis Genetics Consortium IMSG (2019) Multiple
458 sclerosis genomic map implicates peripheral immune cells and microglia in
459 susceptibility. *Science* 365. doi: 10.1126/science.aav7188

460 16. Jordão MJC, Sankowski R, Brendecke SM, Sagar, Locatelli G, Tai Y-H, Tay
461 TL, Schramm E, Armbruster S, Hagemeyer N, Groß O, Mai D, Çiçek Ö, Falk T,
462 Kerschensteiner M, Grün D, Prinz M (2019) Single-cell profiling identifies
463 myeloid cell subsets with distinct fates during neuroinflammation. *Science* 363.
464 doi: 10.1126/science.aat7554

465 17. Kaltner H, Seyrek K, Heck A, Sinowitz F, Gabius H-J (2002) Galectin-1 and
466 galectin-3 in fetal development of bovine respiratory and digestive tracts. *Cell
467 Tissue Res* 307:35–46. doi: 10.1007/s004410100457

468 18. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R,
469 Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M,
470 Schwartz M, Amit I (2017) A Unique Microglia Type Associated with Restricting
471 Development of Alzheimer's Disease. *Cell* 169:1276-1290.e17. doi:
472 10.1016/j.cell.2017.05.018

473 19. Kracht L, Borggrewe M, Eskandar S, Brouwer N, Chuva de Sousa Lopes SM,
474 Laman JD, Scherjon SA, Prins JR, Kooistra SM, Eggen BJL (2020) Human

475 fetal microglia acquire homeostatic immune-sensing properties early in
476 development. *Science* 369:530–537. doi: 10.1126/science.aba5906

477 20. Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H (2017) An
478 updated histological classification system for multiple sclerosis lesions. *Acta
479 Neuropathol* 133:13–24. doi: 10.1007/s00401-016-1653-y

480 21. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted
481 correlation network analysis. *BMC Bioinformatics* 9:559. doi: 10.1186/1471-
482 2105-9-559

483 22. Langfelder P, Horvath S (2012) Fast R Functions for Robust Correlations and
484 Hierarchical Clustering. *J Stat Softw* 46:1–17. doi: 10.18637/jss.v046.i11

485 23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and
486 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15:550. doi:
487 10.1186/s13059-014-0550-8

488 24. Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I
489 (2018) Progressive multiple sclerosis patients show substantial lesion activity
490 that correlates with clinical disease severity and sex: a retrospective autopsy
491 cohort analysis. *Acta Neuropathol* 135:511–528. doi: 10.1007/s00401-018-
492 1818-y

493 25. Luchicchi A, Hart B, Frigerio I, van Dam A-M, Perna L, Offerhaus HL, Stys PK,
494 Schenk GJ, Geurts JJJG (2021) Axon-Myelin Unit Blistering as Early Event in
495 MS Normal Appearing White Matter. *Ann Neurol* 89:711–725. doi:
496 10.1002/ana.26014

497 26. Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, Marioni JC (2019)
498 EmptyDrops: distinguishing cells from empty droplets in droplet-based single-
499 cell RNA sequencing data. *Genome Biol* 20:63. doi: 10.1186/s13059-019-

500 1662-y

501 27. Mattei D, Ivanov A, van Oostrum M, Pantelyushin S, Richetto J, Mueller F,
502 Beffinger M, Schellhammer L, Vom Berg J, Wollscheid B, Beule D, Paolicelli
503 RC, Meyer U (2020) Enzymatic Dissociation Induces Transcriptional and
504 Proteotype Bias in Brain Cell Populations. *Int J Mol Sci* 21. doi:
505 10.3390/ijms21217944

506 28. Melief J, Orre M, Bossers K, van Eden CG, Schuurman KG, Mason MRJ,
507 Verhaagen J, Hamann J, Huitinga I (2019) Transcriptome analysis of normal-
508 appearing white matter reveals cortisol- and disease-associated gene
509 expression profiles in multiple sclerosis. *Acta Neuropathol Commun* 7:60. doi:
510 10.1186/s40478-019-0705-7

511 29. Plemel JR, Stratton JA, Michaels NJ, Rawji KS, Zhang E, Sinha S, Baaklini
512 CS, Dong Y, Ho M, Thorburn K, Friedman TN, Jawad S, Silva C, Caprariello A
513 V., Hoghooghi V, Yue J, Jaffer A, Lee K, Kerr BJ, Midha R, Stys PK,
514 Biernaskie J, Yong VW (2020) Microglia response following acute
515 demyelination is heterogeneous and limits infiltrating macrophage dispersion.
516 *Sci Adv* 6:eaay6324. doi: 10.1126/sciadv.aay6324

517 30. van der Poel M, Ulas T, Mizee MR, Hsiao C-C, Miedema SSM, Adelia,
518 Schuurman KG, Helder B, Tas SW, Schultze JL, Hamann J, Huitinga I (2019)
519 Transcriptional profiling of human microglia reveals grey–white matter
520 heterogeneity and multiple sclerosis-associated changes. *Nat Commun*
521 10:1139. doi: 10.1038/s41467-019-08976-7

522 31. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor
523 package for differential expression analysis of digital gene expression data.
524 *Bioinformatics* 26:139–140. doi: 10.1093/bioinformatics/btp616

525 32. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D,
526 Vistnes S, Stockley JH, Young A, Steindel M, Tung B, Goyal N, Bhaduri A,
527 Mayer S, Engler JB, Bayraktar OA, Franklin RJM, Haeussler M, Reynolds R,
528 Schafer DP, Friese MA, Shiow LR, Kriegstein AR, Rowitch DH (2019)
529 Neuronal vulnerability and multilineage diversity in multiple sclerosis. *Nature*
530 573:75–82. doi: 10.1038/s41586-019-1404-z

531 33. Siersma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E, Zoco J, Blum D,
532 Buée L, De Strooper B, Fiers M (2020) Novel Alzheimer risk genes determine
533 the microglia response to amyloid- β but not to TAU pathology. *EMBO Mol Med*
534 12. doi: 10.15252/emmm.201910606

535 34. Skene NG, Grant SGN (2016) Identification of Vulnerable Cell Types in Major
536 Brain Disorders Using Single Cell Transcriptomes and Expression Weighted
537 Cell Type Enrichment. *Front Neurosci* 10:16. doi: 10.3389/fnins.2016.00016

538 35. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y,
539 Stoeckius M, Smibert P, Satija R (2019) Comprehensive Integration of Single-
540 Cell Data. *Cell* 177:1888-1902.e21. doi: 10.1016/J.CELL.2019.05.031

541 36. van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, van
542 Dam A-M (2019) Regulation of microglial TMEM119 and P2RY12
543 immunoreactivity in multiple sclerosis white and grey matter lesions is
544 dependent on their inflammatory environment. *Acta Neuropathol Commun*
545 7:206. doi: 10.1186/s40478-019-0850-z

546 37. Waller R, Woodroffe MN, Wharton SB, Ince PG, Francesc S, Heath PR,
547 Cudzich-Madry A, Thomas RH, Rounding N, Sharrack B, Simpson JE (2016)
548 Gene expression profiling of the astrocyte transcriptome in multiple sclerosis
549 normal appearing white matter reveals a neuroprotective role. *J Neuroimmunol*

550 299:139–146. doi: 10.1016/j.jneuroim.2016.09.010

551 38. Wlodarczyk A, Holtman IR, Krueger M, Yoge N, Bruttger J, Khorooshi R,
552 Benmamar-Badel A, de Boer-Bergsma JJ, Martin NA, Karram K, Kramer I,
553 Boddeke EW, Waisman A, Eggen BJ, Owens T (2017) A novel microglial
554 subset plays a key role in myelinogenesis in developing brain. *EMBO J*
555 36:3292–3308. doi: 10.15252/embj.201696056

556 39. Wlodarczyk A, Khorooshi R, Marczynska J, Holtman IR, Burton M, Jensen KN,
557 Blaabjerg M, Meyer M, Thomassen M, Eggen BJL, Asgari N, Owens T (2020)
558 Type I interferon-activated microglia are critical for neuromyelitis optica
559 pathology. *Glia glia*.23938. doi: 10.1002/glia.23938

560 40. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-
561 appearing white matter in multiple sclerosis is in a subtle balance between
562 inflammation and neuroprotection. *Brain* 131:288–303. doi:
563 10.1093/brain/awm291

564 41. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O,
565 Benner C, Chanda SK (2019) Metascape provides a biologist-oriented
566 resource for the analysis of systems-level datasets. *Nat Commun* 10:1523. doi:
567 10.1038/s41467-019-09234-6

568 42. Number of people with MS | Atlas of MS.
569 <https://www.atlasofms.org/map/global/epidemiology/number-of-people-with->
570 ms. Accessed 22 Jun 2021

571

572

573 **Materials and methods**

574 **Bulk RNAseq experiment**

575 Post-mortem frozen human brain tissue and lesion classification

576 Snap frozen white matter (WM) MS brain tissue was obtained from the Netherlands
577 Brain Bank (NBB, Amsterdam, The Netherlands) (n = 117). From these MS donors
578 the diagnosis progressive MS was confirmed. Age and gender matched post-mortem
579 brain tissues from control donors were obtained from the Edinburgh Brain and
580 Tissue Bank (EBTB, Centre for Clinical Brain Sciences, University of Edinburgh) (n =
581 35). WM tissue blocks from MS donors and controls were characterized by
582 immunohistochemistry. Per tissue block every first and last two cryosections (5 μ m)
583 were used for immunohistochemical stainings, while the intermediate part was used
584 for bulk mRNA sequencing. For sample characterization, the presence or absence of
585 lesions or inflammation was confirmed by scoring demyelination and immune
586 activation through the markers proteolipid protein (PLP1) and Human Leukocyte
587 Antigen – DR isotype (HLA-DR) respectively. An HLA-DR and PLP1 score ranging
588 from 0 to 10 was assigned as previously described [20, 36] (Supplementary Fig.
589 S1A). Tissues with PLP1 score 0 (not intact myelin) and HLA-DR score higher than 5
590 (high macrophage activation) were included in the study as WM lesions, while all
591 tissues with PLP1 score 10 (intact myelin) and HLA-DR score lower than 4 (low
592 macrophage activation) were included in the study as NAWM. In addition, the PLP1
593 staining was used to determine if the white matter samples were contaminated with
594 grey matter areas. Samples with grey matter contamination were excluded for further
595 analysis.

596 Cryosections were fixed with acetone (for HLA-DR) or 4% paraformaldehyde (for
597 PLP1) for 10 minutes and 70% ethanol for 5 minutes, followed by a 3 minutes

598 incubation in PBS. Next, endogenous peroxidase activity was suppressed using
599 0.3% H₂O₂, followed by blocking in 5% normal horse serum (NHS) in PBS for 30
600 minutes. Sections were incubated overnight with mouse anti-human HLA-DR
601 (eBioscience, 17-9956-42, 1:750) or mouse anti-human PLP1 (Serotec, MCA839G,
602 1:500), followed by incubation with biotin-conjugated horse-anti mouse secondary
603 antibody (Vector, BA-2000-1.5, 1:400) for 2 hours at room temperature. After a 30
604 min incubation with the avidin-biotin solution (ABC, Vectastain ABC kit, Vector, PK-
605 6100), the complex was visualized with DAB in PBS containing 0.03% H₂O₂.
606 Subsequently, haematoxylin was used as nuclear counterstain, followed by mounting
607 in DePeX (Serva, 18243). Images were digitalized using a NanoZoomer 2.0-HT
608 Digital slide scanner C9600 (Hamamatsu Photonics). Sections were scored for HLA-
609 DR and PLP1 using an Axioskop microscope (Carl Zeiss).

610

611 **Table 1**

Immunohistochemistry			
	Company	Cat #	Dilution
Antibody (primary)			
PLP1 (clone plpc1)	AbD Serotec	MCA839G	1:500
HLA-DR (clone LN3)	eBioscience	14-9956	1:750
FCGR2B (datasheet CD32B)	Biorbyt	orb44658	1:350
ASAH1	Abcam	ab74469	1:500
LGALS1			1:100
Claudin5 (clone 4C3C2)	Thermo Fisher Scientific	35-2500	1:250
IBA1	Wako	019-19741	1:1000

IBA1	Abcam	ab5076	1:750
Ki67 (Clone B56)	BD Pharmingen	556003	1:400
Antibody (secondary)			
Biotin-Donkey anti-Rabbit IgG	JacksonImmunoRese arch	711-065-152	1:300
Cy3 Goat anti-Mouse IgG	JacksonImmunoRese arch	115-165-003	1:200
Donkey anti-Mouse, Alexa Fluor™ 594	Thermo Fisher Scientific	A21203	1:300
Donkey anti-Goat, Alexa Fluor™ 633	Thermo Fisher Scientific	A21082	1:300
Streptavidin, Alexa Fluor™ 488	Thermo Fisher Scientific	S11223	1:300
FACS			
Antibody (primary)	Company	Cat #	Dilution
FITC anti-human CD45	BioLegend	304006	1:25
PE anti-human CD11b	BioLegend	301306	1:40

612

613 Bulk RNAseq of frozen brain tissue

614 WM snap frozen tissue blocks were classified as WML containing either an active,
615 mixed active/inactive or remyelinated lesion (for lesion classifications of each sample
616 based on Luchetti et al. 2018[24] see Supplementary table S1), NAWM and CWM
617 (Supplementary Fig. S1A). Tissue sections immediately surrounded by the sections
618 used for classification was collected for RNA extraction and whole tissue 3'
619 mRNAseq. This concerned 20 10µm cryosections that were collected in 1 mL QIAzol

620 (Qiagen, 79306) and lysed and homogenized with a syringe. RNA was isolated using
621 the RNeasy Lipid Tissue mini kit (Qiagen, 74804) following manufacturer's
622 instructions. RNA was eluted in 40 μ l RNase free water, RNA concentrations and
623 integrity were measured on a Bioanalyzer 2100 (Aligent). Samples with a RIN value
624 > 4 were included for downstream analysis. cDNA libraries were obtained with the
625 QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen, 01596)
626 according to the manufacturer's protocol. Samples were sequenced on an Illumina
627 NextSeq 500 Sequencing System with NextSeq 500/550 High Output Kit v2.5
628 (Illumina, 20024906).

629

630 Bulk RNAseq analysis

631 For bulk analysis, raw reads were aligned to the GRCh37 reference genome from
632 Ensemble with Hisat (v0.1.5). Aligned reads were sorted with samtools (v1.2) and
633 counted with HTSeq (v0.6.1). FastQC (v0.11.3) and Picard (v1.130) were used to
634 perform quality control. Raw count matrices were loaded in R and annotated by
635 converting the ensemble IDs to gene symbols using the corresponding .gtf file. Lowly
636 expressed genes were filtered using a data-adaptive flag method for RNA-
637 sequencing (DAFS[10]). Only genes with > 1 counts in at least 2 samples were
638 included in the analysis. To determine whether donors from the same group would
639 cluster together, the count matrix was normalized with the blinded variance-
640 stabilizing method from DESeq2 from Bioconductor and mitochondrial genes were
641 removed prior to this analysis. A negative binomial generalized log-linear model was
642 used to model gene expression levels and differentially expressed genes were
643 determined using a likelihood ratio test [31]. Thresholds were set at $\text{abs}(\text{logFC}) > 1$
644 and $\text{adjusted-}p < 0.05$. Principal component analysis was performed on VST-

645 transformed counts. Visualizations were made with the CRAN package 'ggplot2'. For
646 WGCNA analysis, VST-transformed counts obtained from DESeq2 were used as
647 input[21, 23]. Signed WGCNA was performed using biweight mid-correlations and
648 the maximum number of excluded outliers was restricted to 10%[22]. Gene ontology
649 analysis was performed with MetaScape[41]. Cell (sub)type enrichment analyses
650 were performed with expression weighted cell type enrichment analysis (EWCE)[34]
651 using CTR donors from the snRNAseq dataset from[11] as a reference. For DEG
652 gene-sets, logFC was used for gene ranking in EWCE, for weighted gene co-
653 expression network analysis (WGCNA) the module membership scores.

654

655 **Human brain macrophage experiment**

656 Fresh post-mortem human MS brain tissue

657 Of 5 donors, fresh post-mortem brain tissue was obtained from the Netherlands
658 Brain Bank (NBB). Immediately after autopsy, the tissue was transported from
659 Amsterdam to Groningen in HBSS with phenol red (Thermofisher Scientific, 14170-
660 088) supplemented with 15 mM HEPES (Lonza via Westburg, LOBE17-737E) and
661 0.6% glucose (Sigma Aldrich, G8769). Of each donor three samples were obtained:
662 i.e. 1) normal-appearing cortical tissue mainly consisting of a mixture of grey- and
663 white matter (NACT); 2) normal-appearing white-matter (NAWM); 3) white-matter
664 lesion (WML) tissue with the surrounding perilesional WM area (Fig. 3A). Lesions
665 were selected by the NBB based on post-mortem magnetic resonance imaging
666 (MRI) together with detailed macroscopic observations. Due to limited availability of
667 fresh post-mortem MS tissues and the relatively small size of the tissue samples with
668 MS lesions, all obtained tissue was used for single cell sequencing and, therefore,
669 the MS lesion type and HLA-DR activity within the NAWM are unknown.

670 Furthermore, due to limited control donors of similar ages, tissue from aged matched
671 control donors was not available. To correct for age as a batch effect and to allow for
672 within donor comparisons and generate sufficient contrasting signatures to identify
673 disease-associated signatures, we included multiple samples from each donor.
674 Besides WML and NAWM tissue, normal appearing cortical tissue (NACT) was used
675 as an internal reference group, since pathology in GM is known to be distinct from
676 WM pathology. Informed consent to perform autopsies and the use of tissue and
677 clinical data for research purpose were obtained from donors and approved by the
678 Ethical Committee of the VU University Medical Center (VUmc, Amsterdam, The
679 Netherlands).

680

681 Macrophage isolation from human brain tissue

682 Human macrophages were isolated as described previously[9]. In brief, meninges
683 were removed and the tissue was mechanically dissociated using a glass tissue
684 homogenizer. A cell suspension was obtained via filtering through 300- μ m and 106-
685 μ m sieves. Myelin was removed by a 24% Percoll gradient (Fisher Scientific, 17-
686 0891-01) in 10x HBSS (Gibco, 14180-046) and phosphate buffered saline (PBS)
687 density gradient centrifugation and followed by a second centrifugation step
688 containing a 60% and 30% Percoll layer with PBS on top. The interphase between
689 the Percoll layers was collected and contained the immune cells. Fc receptors were
690 blocked with human Fc receptor-binding inhibitor (eBioscience, 14-9161-73). For
691 FACS, cells were incubated for 20 min with anti-human CD11B-PE (BioLegend,
692 301306) and anti-human CD45-FITC (BioLegend, 304006) and washed with HBSS
693 without phenol red (Thermofisher Scientific, 14175-053). The cells were passed
694 through a 35- μ m nylon mesh, collected in round bottom tubes (Corning 352235),

695 stained with DAPI (Biolegend, 422801) and DRAQ5 (Thermofisher Scientific, 62251)
696 and sorted using a Beckman Coulter MoFloAstrios, Beckman Coulter MoFloXDP or
697 Sony SH800S cell sorter. Human macrophages were sorted as
698 DAPI^{neg}DRAQ5^{pos}CD11B^{pos}CD45^{pos}.

699

700 Single-cell RNA sequencing mouse and human cells

701 The single cell cDNA libraries were constructed using the Chromium Single Cell 3'
702 Reagents Kit v2 and corresponding user guide (10x Genomics) and sequenced on a
703 NextSeq 500 at the sequencing facility in the UMCG up to a depth of ~20,000
704 reads/cell.

705

706 scRNAseq data analysis

707 Raw reads were aligned to the GRCh38 or GRCm38 genome for human and mouse
708 samples, respectively, using Cell ranger (v3.0.0) with default settings. Raw count
709 files were loaded into R (v3.6) and barcode filtering was performed with thresholds at
710 >600 unique molecular identifiers (UMIs) for mouse cells and >400 for human
711 cells[26]. The multiplet rate mentioned in the 10x Genomics User Guide was used to
712 set an upper threshold per sample for the number of UMIs per cell. Cells with a
713 mitochondrial content >5% were removed from the dataset.

714 For the mouse dataset, the count files from different conditions were merged into
715 one and further analyzed with Seurat[35]. The data were normalized by dividing the
716 counts of each gene by the total sum of counts per cell and multiplied by a scale
717 factor of 10,000 and log-transformed. Highly variable genes (HVGs) were calculated
718 using the 'VST' method with default settings. The data was scaled and heterogeneity
719 associated with number of UMIs and mitochondrial and ribosomal content were

720 regressed out, then the data was clustered. Differential gene expression analysis
721 was performed with MAST[8].
722 For the human dataset, count matrices of the three brain regions per donor were
723 merged into one file per donor and normalized using the same method as for the
724 mouse data. HVGs were determined using the VST method. The datasets from the
725 donors were integrated using canonical correlation analysis[35]. The data was
726 scaled and heterogeneity associated with number of UMIs, mitochondrial content,
727 sex and ribosomal content were regressed out. The data was clustered using the
728 graph-based clustering method implemented in Seurat with default settings.
729 Differential gene expression was performed on the unintegrated data using logistic
730 regression with donor as a latent variable. Geneset module scoring was performed
731 using the AddModuleScore function in Seurat. Cell (sub)type enrichment analyses
732 were performed with EWCE using the human scRNAseq as a reference dataset and
733 marker genes of the cuprizone scRNAseq clusters ranked by logFC[34]. Statistical
734 analysis of cluster distribution changes between groups was performed using chi-
735 squared tests in R.

736

737 Gene sets from literature

738 From [33], EV7 was downloaded and genes with a $p_val_adj < 0.05$ and $abs(logFC) > 0.15$ were selected. From [14], table S1 was downloaded and marker genes from
739 cluster 4 were selected. From [18], table S2 was downloaded and upregulated genes
740 of "Microglia3" with a $p_val_adj < 0.05$ were selected. From [38], dataset EV1 was
741 downloaded and DEGs between neonatal CD11c^{pos} microglia and neonatal microglia
742 with $abs(logFC) > 2.5$ and $FDR < 0.05$ were used. From [11], DEGs between AD1
743 microglia and homeostatic microglia ($abs(logFC) > 0.15$ and $p_val_adj < 0.05$) were

745 used. From [19] cluster markers of cluster 8 were used ($\text{abs}(\text{avg_logFC}) > 0.25$ and
746 $\text{p_val_adj} < 0.05$).

747

748 **Paraffin-embedded human brain tissue**

749 Formalin-fixed paraffin-embedded, well-characterized tissues from 5 controls and 14
750 MS donors were obtained from the NBB. Lesions were classified based on HLA-DR
751 and PLP1 immunohistochemistry according to the system for lesion classification
752 from the NBB[24], resulting in the following lesion types indicated by a number: pre-
753 active (1), active (2), mixed active/inactive (chronic) (3), inactive (4) and shadow
754 plaques or remyelinated lesions localized in WM (6) and GM lesions (5). Paraffin
755 blocks were cut into 6- μm thick sections. After deparaffinization and heat-induced
756 antigen retrieval in 10 mM sodium citrate (pH 6.0) with 0.05% Tween for 10 minutes
757 in a microwave, sections were divided in two series. We used one series of sections
758 for immunohistochemistry and subsequent quantification and MS lesion scoring,
759 using the Avidin-Biotin Complex (ABC) method followed by a DAB staining. The
760 other series of sections we used for triple immunofluorescence stainings with various
761 antibody combinations.

762 Immunohistochemistry: After deparaffinization and antigen retrieval, endogenous
763 peroxidase was blocked using $\text{H}_2\text{O}_2/\text{PBS}$ 0.3% for 30 minutes. After washing with
764 PBS, tissue sections were incubated for 30 minutes with 2% normal serum (NS) and
765 2% bovine serum albumin (BSA). After a short wash with PBS, sections were
766 incubated overnight at 4°C with the primary antibody in PBS containing 1% NS and
767 1% BSA (Table 1). The following primary antibodies were used (Table 1): anti-PLP1
768 (AbD Serotec, MCA839G, dilution 1:100), anti-HLA-DR (eBioscience, 14-9956,
769 dilution 1:500), anti-FCGR2B (Bioorbyt, orb44658, dilution 1:350), anti-ASAH1

770 (Abcam, ab74469, dilution 1:500), anti-LGALS1[2, 17] (dilution 1:100). Next day,
771 sections were washed with PBS and incubated for 2 hours with the appropriate
772 biotinylated secondary antibodies (anti mouse or rabbit, Vector Labs, dilution 1:400;
773 Table 1), followed by a 30 minutes incubation with the ABC solution (Vectastain elite
774 kit, PK-6100). After rinsing with PBS, the sections were incubated for 10 minutes in
775 DAB and 0.03% H₂O₂. Finally, the sections were counterstained with cresyl violet,
776 dehydrated, and mounted with DepeX (Serva, 18243). Images were acquired using a
777 NanoZoomer 2.0-HT Digital slide scanner C9600 (Hamamatsu Photonics). Images of
778 the HLA-DR and PLP1 stainings were used for scoring the MS lesion, the results of
779 the FCGR2B, ASAHI and LGALS1 stainings were quantified as follows. From every
780 type of lesion five 40x magnified images were extracted per donor. To measure
781 FCGR2B activity near blood vessels, 80X magnified images were extracted from the
782 scans. Analysis was performed using FIJI by first applying colour deconvolution
783 using the H & DAB method. From the DAB channel a binary image was made using
784 manual thresholding and the area fraction was measured in ImageJ. Statistics were
785 performed with a two-way ANOVA for location and lesion type, followed by Tukey
786 post-hoc test for lesion types (Fig. 3I, J). Statistics on DAB total tissue coverage
787 quantifications were performed with a one-way ANOVA followed by Dunnet's test for
788 comparison of each group versus the CWM group (Fig. 5D).
789 Immunofluorescence: After deparaffinization and antigen retrieval as described
790 above, sections were incubated for 10 minutes in a Sudan Black solution (0.3%
791 Sudan Black/Ethanol 70%) to quench autofluorescence followed by dipping the
792 slides 3 times in ethanol 70% to remove excess of Sudan Black. After washing with
793 PBS, tissue sections were incubated for 30 minutes with 2% NS and 2% BSA. After
794 a short wash with PBS, sections were incubated overnight at 4 °C with primary

795 antibodies in PBS containing 1% NS and 1% BSA (Table 1). A mixture of goat anti-
796 Iba1 (Abcam, ab5076, dilution 1:500) and mouse anti-HLA-DR (eBioscience, 14-
797 9956, dilution 1:500) or mouse anti-CLDN5 (Thermo Fisher Scientific, 35-2500,
798 1:250) was in various separate experiments supplemented with antibodies raised in
799 rabbit, namely anti-FCGR2B (Biorbyt, orb44658, dilution 1:350), anti-ASAHI
800 (Abcam, ab74469, dilution 1:500), anti-LGALS1[2, 17] (dilution 1:100). After an
801 overnight incubation at 4°C, the sections were rinsed and incubated with a
802 biotinylated anti-rabbit antibody (anti-rabbit, Vector Labs, dilution 1:400), followed by
803 an incubation of 1 hour at room temperature with donkey anti-mouse IgG (H+L)
804 AlexaFluor™ 594 (Thermo Fisher Scientific A21203), donkey anti-goat IgG (H+L)
805 AlexaFluor™ 633 (Thermo Fisher Scientific A21082) and Streptavidin, AlexaFluor™
806 488 conjugate (Thermo Fisher Scientific S11223) all diluted 1:300 in PBS plus
807 Hoechst stain (Sigma 14530, 5µM final concentration). Sections were washed with
808 PBS and demi water, mounted with Mowiol and imaged on a Leica SP8X confocal
809 laser scanning microscope (Leica Microsystems, Amsterdam).

810

811 **Animal experiment**

812 Cuprizone mouse model

813 C57BL/6J-Cx3cr1^{tm2.1(cre/ERT2)Litt}Gt(ROSA)26Sor^{tm14(CAG-tdTomato)Hze} mice were used in
814 a model for cuprizone-induced demyelination. The mice were bred in-house on a
815 C57BL/6J background. In order to activate Cre-recombinase and express the
816 tomato reporter in CX3CR1 expressing cells, 6-weeks-old animals received twice
817 500 mg/kg body weight tamoxifen (Sigma Aldrich, T5648-5G) dissolved in corn oil
818 (Sigma Aldrich, C8267-500ML) via oral gavage with a 3-day interval. All animal
819 procedures were approved by the local central authority for scientific procedures on

820 animals (CCD) and performed in accordance to ethical regulations
821 (AVD105002015360). Demyelination was induced in 8-week-old male mice via a diet
822 containing 0.2% w/w cuprizone (Sigma Aldrich, C9012-25G). The chow diet was
823 freshly prepared every week by mixing cuprizone with standard powder food and
824 water, and stored at -20 °C. Animals were provided with this home-made chow three
825 times a week *ad libitum*. Control animals received similarly prepared chow, but
826 without cuprizone. The experimental timepoints were: early demyelination (3 weeks
827 cuprizone diet), complete demyelination, start remyelination (5 weeks cuprizone diet)
828 and remyelination following withdrawal of the cuprizone diet for 2 weeks. To reduce
829 biological variation and limit the effect of individual animals on the data,
830 macrophages from n=5 animals per group were pooled into one sample for
831 scRNAseq. Additionally, tissues from 3 animals were collected for
832 immunohistochemistry.

833

834 Macrophage isolation from mouse brain tissue

835 Mice were sacrificed under deep anaesthesia (4% isoflurane with 7.5% O₂) and
836 perfused with cold PBS. After perfusion, brains were removed from the skull and
837 kept in cold medium A (HBSS (Gibco, 14170-088) with 0.6% glucose (Sigma,
838 G8769) and 7.5 mM HEPES (Lonza, BE17-737E)). Macrophages were isolated
839 enzymatically from the whole brain minus olfactory bulb and cerebellum. Brains were
840 minced on a glass slide into small pieces with a knife and transferred to a tube
841 containing enzyme solution with: 2 mL PBS, 20 mg Protease from *Bacillus*
842 *licheniformis* (Sigma Aldrich, P5380-1G) and 20 µL L-cysteine, incubated on ice for
843 15 minutes while mixing every 5 minutes. After enzymatic dissociation, the cell
844 suspension was passed through a 100µm cell strainer (Corning, 21008-950), filled

845 up with 15 mL enriched HBSS. Cells were pelleted by centrifugation for 10 minutes,
846 300 RCF at 4 °C. Myelin was removed by 24% Percoll- (Fisher Scientific, 17-0891-
847 01) and PBS density gradient centrifugation for 20 minutes, 950 RCF at 4 °C. The
848 cells were passed through a 35-µm nylon mesh, collected in round bottom tubes
849 (Corning, 352235) and sorted using a Beckman Coulter MoFloAstrios cell sorter.
850 DAPI^{neg}tdTomatoRed^{pos} cells were collected for scRNAseq.

851

852 **Immunohistochemistry and immunofluorescence on mouse brain tissue**

853 4% PFA-fixed frozen mouse brains were sectioned at a thickness of 16 µm at
854 bregma -0.8. This region was selected because most cuprizone induced
855 demyelination is expected between bregma -0.6 and -1 based on previous
856 experience. Sections were stained using immunohistochemistry or
857 immunofluorescence method. For both methods, heat-induced antigen retrieval with
858 sodium citrate (pH 6) was applied to unmask the epitopes.

859 Immunohistochemistry: After heat induced antigen retrieval as described above,
860 sections were washed with PBS and incubated with 0.3% H₂O₂/PBS to block
861 endogenous peroxidases for 30 minutes. Fc receptor blocking was performed for 1
862 hour using 5% normal goat serum dissolved in PBS with 0.3% Triton X-100. After
863 washing with PBS, sections were incubated overnight at 4 °C with the primary
864 antibody: IBA1 (Wako, 019-19741, dilution 1:1000) in PBS containing 1% normal
865 goat serum and 0.3% Triton X-100. The next day sections were washed with PBS
866 and incubated with a biotinylated secondary antibody: goat-anti-rabbit (Vector,
867 BA1000, dilution 1:400), followed by a 30 minutes incubation with the ABC solution
868 (Vectastain elite kit, PK-6100). After rinsing with PBS, the sections were incubated
869 for 10 minutes in DAB and 0.03% H₂O₂. Finally, the sections were dehydrated, and

870 mounted with DepeX (Serva, 18243). Images were acquired using a NanoZoomer
871 2.0-HT Digital slide scanner C9600 (Hamamatsu Photonics). Per sample 10X
872 zoomed images were saved from the striatum (1 image), corpus callosum (1 image)
873 and cortex (2 images). For quantification, areas were used and averaged per animal
874 with sizes of twice 500 x 500 μm (striatum), 200 x 625 μm (corpus callosum) and
875 four times 400 x 400 μm (cortex) respectively. IBA1^{pos} cells within these drawn areas
876 were quantified using the FIJI plugin 'cell counter'. Additionally, images were
877 converted to grayscale (8-bit images) and the percentage of IBA1 positive pixels was
878 measured by FIJI. A constant threshold of 160 was used for the quantification.
879 Statistics were performed with a one-way ANOVA followed by Dunnet's test for
880 comparison of each group versus the control group.

881 **Immunofluorescence:** After heat-induced antigen retrieval as described above,
882 blocking was performed for 1 hour using 5% normal goat and normal horse serum.
883 Sections were incubated overnight with the primary antibodies: Ki67 (BD
884 Pharmingen, 556003, dilution 1:400) and Iba1 (Wako, 019-19741, dilution 1:1000) in
885 order to visualize proliferating microglia. After incubation and washing with PBS
886 tissues were incubated with a secondary antibody mix containing donkey anti-rabbit
887 AF488 (Thermofisher Scientific, A21206, dilution 1:400) and goat anti-mouse IgG
888 CyTM3 (Jackson ImmunoResearch, 115-165-003, dilution 1:200) for 1.5 hours.
889 Additionally, nuclei were visualized by Hoechst. Images were acquired with a Leica
890 SP8X confocal laser scanning microscope (Leica Microsystems, Amsterdam) using a
891 HC PL APO CS2 40x/1.30 oil objective in a sequential order with optimized emission
892 using a white light laser and excitation detection using gated HyD detectors.

893

894 **Data availability statement**

895 The datasets supporting the conclusions of this article are available through Gene
896 Expression Omnibus at <https://www.ncbi.nlm.nih.gov/geo> with accession number
897 GSE179427.

898

899 **Acknowledgements**

900 The authors would like to thank Geert Mesander, Johan Teunis and Theo Bijma from
901 the UMCG Flow Cytometry Unit. For 10X Genomics library preparation, we
902 appreciate the help and flexibility of the EXPIRE group (UMCG). Sequencing was
903 performed with the excellent assistance from Diana Spierings and the ERIBA
904 Research Sequencing Facility. We thank the Netherlands Brain Bank for sample
905 collection and Corien Grit, Eline Sportel and Marissa Dubbelaar for preliminary
906 analyses.

907

908 **Funding**

909 AM and SMK were funded by Stichting MS Research (#16-947). MHCW is supported
910 by a grant from Stichting MS Research (#18-733c). AM and MHCW are supported by
911 grants from “Stichting de Cock-Hadders” (2019-47 and 2020-14, respectively). LK
912 holds a scholarship from the GSMS, University of Groningen, the Netherlands.

913

914 **Author contributions**

915 BJLE and SMK conceived the study. NB, EN, RPB, SA and SMK performed the bulk
916 RNAseq experiment. AM, EG, NB, QJ, LK, EW, MHCW and SMK isolated cells from
917 fresh human brain samples. EG, LK and SMK operated the FACS. AM and ATEP
918 performed the mouse experiment. EW genotyped the mice. MM performed
919 microscopy. HJG provided antibody for IHC. AM and EG performed scRNAseq. EG
920 performed bioinformatic analyses and visualized the data. AM and NB performed
921 validation experiments. AM, EG, NB, BJLE and SMK interpreted the data. AM and
922 EG wrote the manuscript with supervision of BJLE and SMK. All authors critically
923 read and approved the manuscript.

924

925

926 **Competing interests**

927 The authors report no competing interests.

928

929

930 **Figure legends**

931 **Figure 1. Transcriptomic changes in normal appearing white matter**

932 **(A)** Schematic overview of the experiment. **(B)** Principal component analysis of 68
933 white matter brain tissue samples. Colors depict donor groups. Shapes depict sex.
934 **(C)** Volcano plots depicting differential gene expression between NAWM vs CWM
935 samples (left), WML vs NAWM samples (center) and WML vs CWM samples (right).
936 Colored symbols indicate significantly differentially expressed genes ($\log FC > 1$ and
937 adjusted p -value < 0.05). **(D)** Dot plot depicting the 10 most significant gene ontology
938 analyses associated with DEGs from the comparisons indicated on top. Size depicts
939 # of genes in gene ontology set, color scale depicts significance level. **(E)** Bar plot
940 depicting expression-weighted gene set enrichment analysis of DEGs between
941 NAWM versus CWM (left) and WML vs CWM (right) based on cell type specific gene
942 signatures derived from human snRNAseq study (Gerrits et al. 2021). *: $p < 0.05$;
943 Abbreviations: CWM = control white matter (CTR donors); NAWM = normal
944 appearing white matter (MS donors); WML = white matter lesion (MS donors).

945

946 **Figure 2. Inflammation and stress gene modules are enriched in normal
947 appearing white matter**

948 **(A)** Gene dendrogram and module colors of weighted gene correlation network
949 analysis. **(B)** Heatmap depicting enrichment scores per module of expression-
950 weighted cell type enrichment analysis. **(C-E)** Boxplot depicting module eigen genes
951 for the tan, midnightblue and greenyellow gene modules (left). Bar plot depicting
952 gene ontology analysis of tan, midnightblue and greenyellow gene modules (right). *:
953 $p < 0.01$; **: $p < 0.001$; ***: $p < 0.0001$. Abbreviations: CWM = control white matter

954 (CTR donors); NAWM = normal appearing white matter (MS donors); WML = white
955 matter lesion (MS donors).

956

957 **Figure 3. Brain macrophage heterogeneity in multiple sclerosis brain tissue**

958 **(A)** Workflow of the experiment. **(B)** UMAP depicting 56,522 cells. Colors depict
959 unsupervised clustering. **(C)** UMAP where colors depict donor of origin (left) or tissue
960 region of origin (right). **(D)** UMAPs where color scales depict module scores of
961 microglia- and CAM-enriched gene sets (top) or expression levels of *S100A9* and
962 *PLP1* (bottom). **(E)** Bar plots depicting cluster distribution among donor groups with
963 standard error. Symbols depict individual samples. C = NACT; W = NAWM; L =
964 WML. **(F)** Dot plot depicting marker genes of each cluster. Size of the symbols
965 depicts the fraction of cells expressing the gene, color scale depicts average
966 expression level. **(G)** Heatmap depicting enrichment scores of literature-derived
967 gene-sets in the scRNAseq dataset. **(H)** Immunofluorescent images of stainings for
968 *FCGR2B* (orange; Hs8); *CLDN5* (magenta; blood vessels), Hoechst (cyan; nuclei)
969 and *IBA1* (green; macrophages) in a pre-active, active and inactive lesion. Left
970 panels: overview image. Scale bar = 25 μ m. Center panel: Zoom in on parenchymal
971 macrophages. Scale bar = 10 μ m. Right panel: Zoom in on vessel-associated
972 macrophages. **(I)** Quantification of immunohistochemistry for *FCGR2B* in
973 parenchyma and near/on blood vessels. *: p <0.05. Abbreviations: NACT = normal
974 appearing cortical tissue; NAWM = normal appearing white matter; WML = white
975 matter lesion.

976

977 **Figure 4. Activated/phagocytic microglia arise during demyelination**

978 (A) Workflow of the experiment. (B) UMAP depicting 12,885 cells. Colors depict
979 unsupervised clustering. (C) Bar plot depicting cluster distribution per group with
980 statistical analysis. (D) UMAPs depicting gene expression levels of *Mki67*, *Phlda3*,
981 *Lpl*, *Ifit3* and *Tmem119*. Immunofluorescent staining of caudate putamen region.
982 Hoechst (blue; nuclei), IBA1 (green; macrophages), Mki67 (magenta; Mm6).
983 Arrowheads indicate IBA1^{pos}Ki67^{pos} cells. (E) representative images of
984 immunohistochemistry for IBA1 in the cortex, corpus callosum and caudate putamen.
985 (F) Quantification of immunohistochemistry of 2-3 mice per group. *: p < 0.05; **: p <
986 0.01; ***: p < 0.001. Abbreviations: C = control; D3 = 3-weeks demyelination; D5 = 5-
987 weeks demyelination; R = remyelination.

988

989 **Figure 5: Activated/phagocytic microglia are present in lesion types with
990 ongoing demyelination**

991 (A) Heatmap depicting expression weighted gene set enrichment scores of cluster
992 markers derived from the cuprizone experiment in the human MS dataset. (B)
993 Fourway plot depicting gene signature of human Hs7 cluster compared to Hs5
994 cluster (x-axis) versus mouse Mm3 versus Mm1 cluster (y-axis). (C) Images of
995 immunofluorescent staining for ASAHI (orange, left; MS-4), LGALS1 (orange, right;
996 Hs7), HLA-DR (magenta; Hs7), Hoechst (cyan; nuclei) and IBA1 (green;
997 macrophages) in a pre-active, active and inactive lesion. Scale bar is 25 μ m
998 (overview), and 10 μ m (zoom). (D) Quantification of immunohistochemistry for HLA-
999 DR, LGALS1 and ASAHI in CTR donors and MS donors amongst 6 different lesion
1000 types in 3-11 donors per group. *: p < 0.05; **: p < 0.01; ***: p < 0.001. Abbreviations:
1001 CWM = control white matter (CTR donor); NAWM = normal appearing white matter

1002 (MS donor); WML = white matter lesion (MS donor); NACT = normal appearing
1003 cortical tissue (MS donor); CAM = CNS-associated macrophages.

1004

1005 **Supplementary Figure S1. Supplementary data related to figures 1 and 2**

1006 **(A)** Representative images of DAB staining for PLP and HLA-DR that was used for
1007 sample scoring. **(B)** Heatmap depicting gene expression of a manually selected set
1008 of immediate-early genes. Rows and columns are ordered by hierarchical clustering.
1009 **(C)** Box plots depicting sum of IEG expression (top), *HSPA1A* expression level
1010 (middle) and *SOCS3* expression level (bottom). **(D)** Box plots depicting module
1011 eigengenes per sample group derived from the WGCNA of 68 white matter brain
1012 tissue samples. **(E)** Bar plots depicting gene ontology analysis of pink and magenta
1013 modules. *: p <0.01; **: p < 0.001; ***: p < 0.0001. Abbreviations: CWM = control
1014 white matter (CTR donors); NAWM = normal appearing white matter (MS donors);
1015 WML = white matter lesion (MS donors); IEGs = immediate early genes.

1016

1017 **Supplementary Figure S2. Supplementary data related to figure 3**

1018 **(A)** Representative plots depicting FACS strategy to obtain live CD45^{pos}CD11B^{pos}
1019 cells. **(B)** Boxplots per sample depicting several indicated quality control parameters
1020 per cell. **(C)** Stacked bar plots depicting cluster distribution per sample with statistical
1021 analysis (Chi-squared test). C = NACT; W = NAWM; L = WML. **(D)** Volcano plot
1022 depicting significantly differentially expressed genes between NAWM and NACT
1023 samples (paired design). **(E)** Bar plots depicting top 15 gene ontology terms
1024 associated with DEGs between NACT and NAWM cells. *: p < 0.05; **: p < 0.01; ***:
1025 p <0.001. Abbreviations: NACT = normal appearing cortical tissue; NAWM = normal
1026 appearing white matter; WML = white matter lesion.

1027

1028 **Supplementary Figure S3. Supplementary data related to figure 4**

1029 (A) Representative plots depicting FACS strategy to obtain live Cx3cr1^{pos} cells. (B)
1030 Boxplots per sample depicting several QC indicated stats per cell. (C) Dot plot
1031 depicting expression of mouse homologs of the genes depicted in figure 3F. (D) Dot
1032 plot depicting expression of marker genes of each mouse scRNAseq cluster. Size of
1033 the symbols depicts the fraction of cells expression the gene, color scale depicts
1034 average expression level. Abbreviations: CAM = CNS-associated macrophages.

1035

1036 **Supplementary Figure S4. Supplementary data related to figure 5**

1037 Representative images of immunohistochemistry for HLA-DR, LGALS1, ASAHI and
1038 FCGR2B in CTR donors and 6 lesion types in MS donors. Abbreviations: CWM =
1039 control white matter (CTR donor).

1040

Figure 1

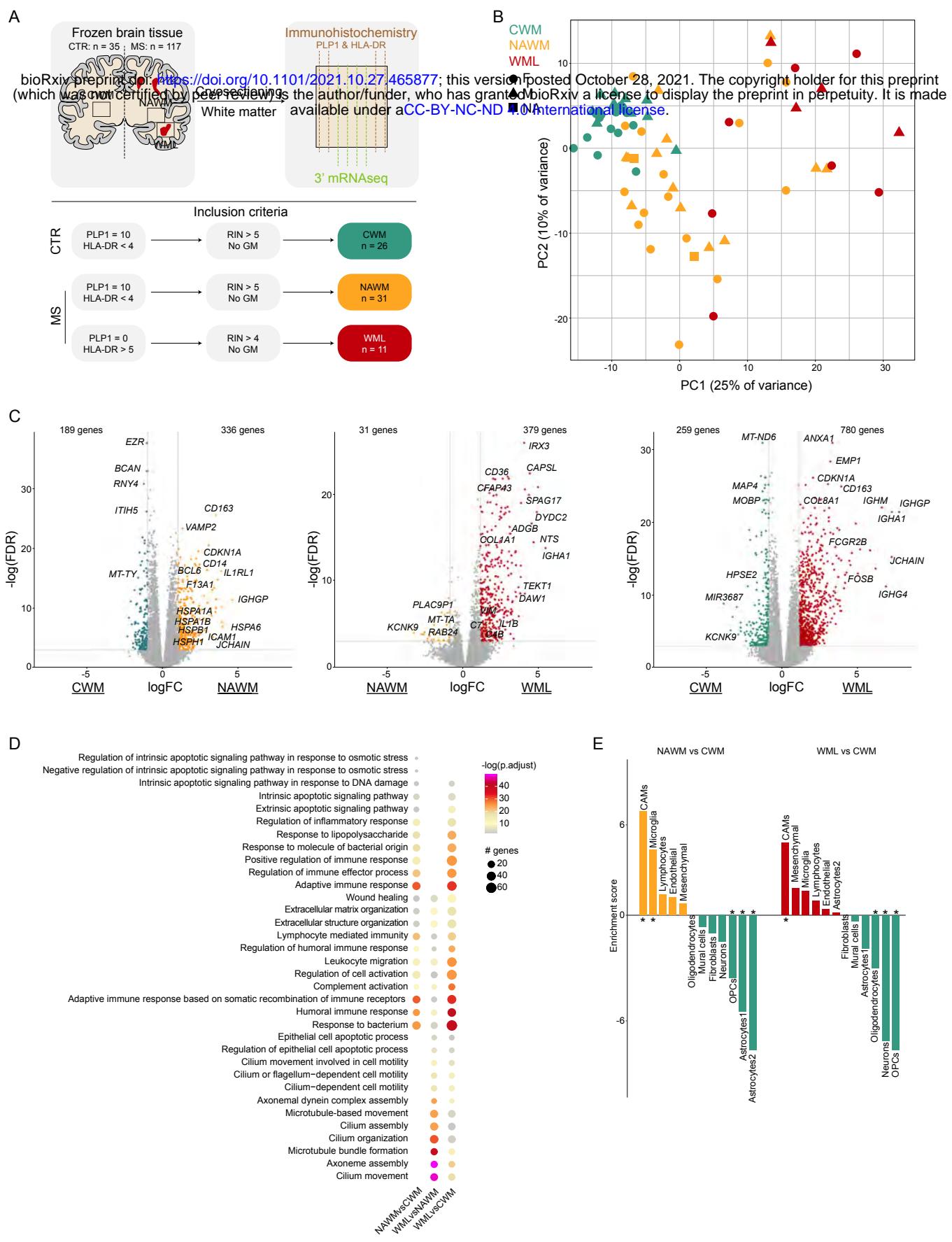


Figure 2

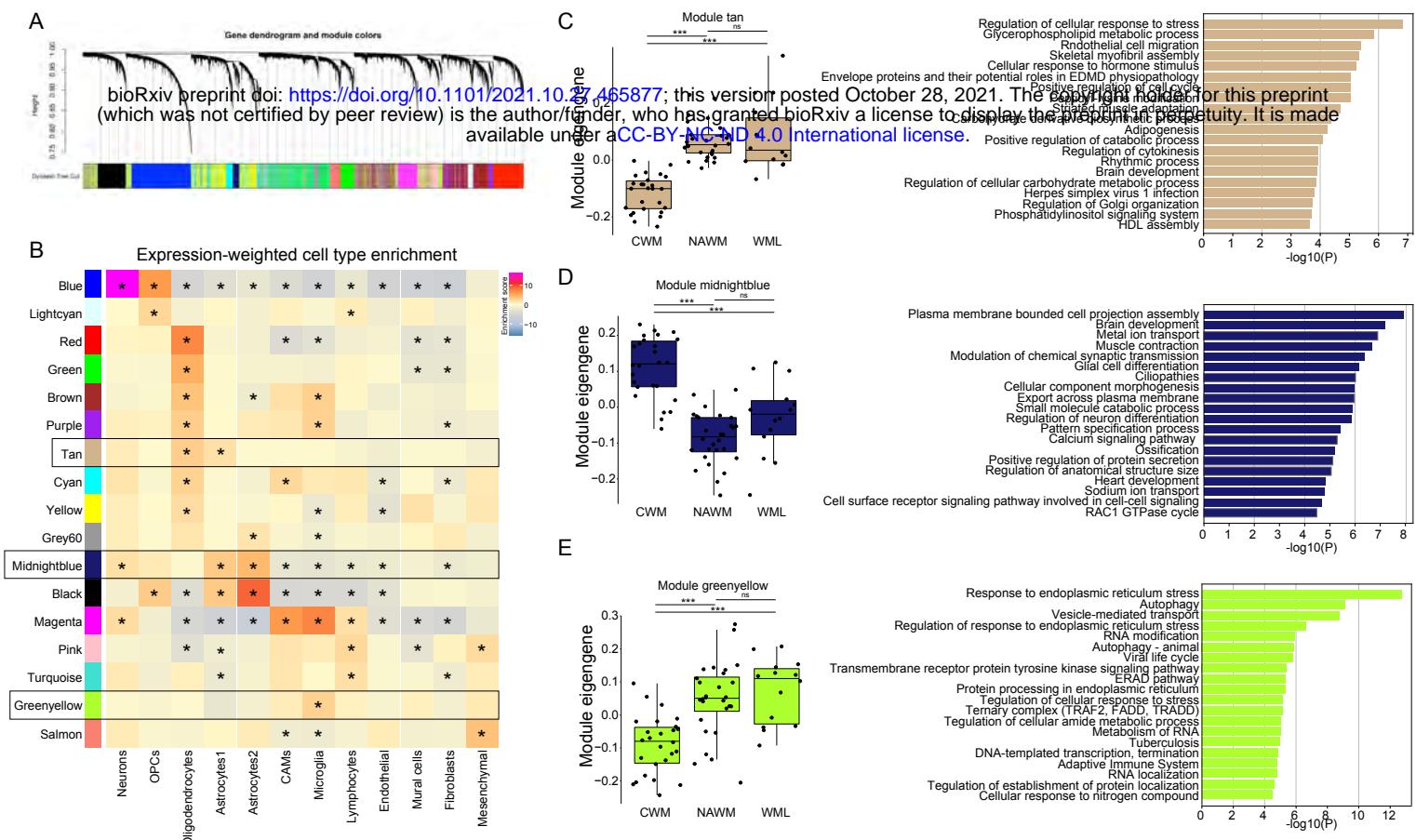


Figure 3

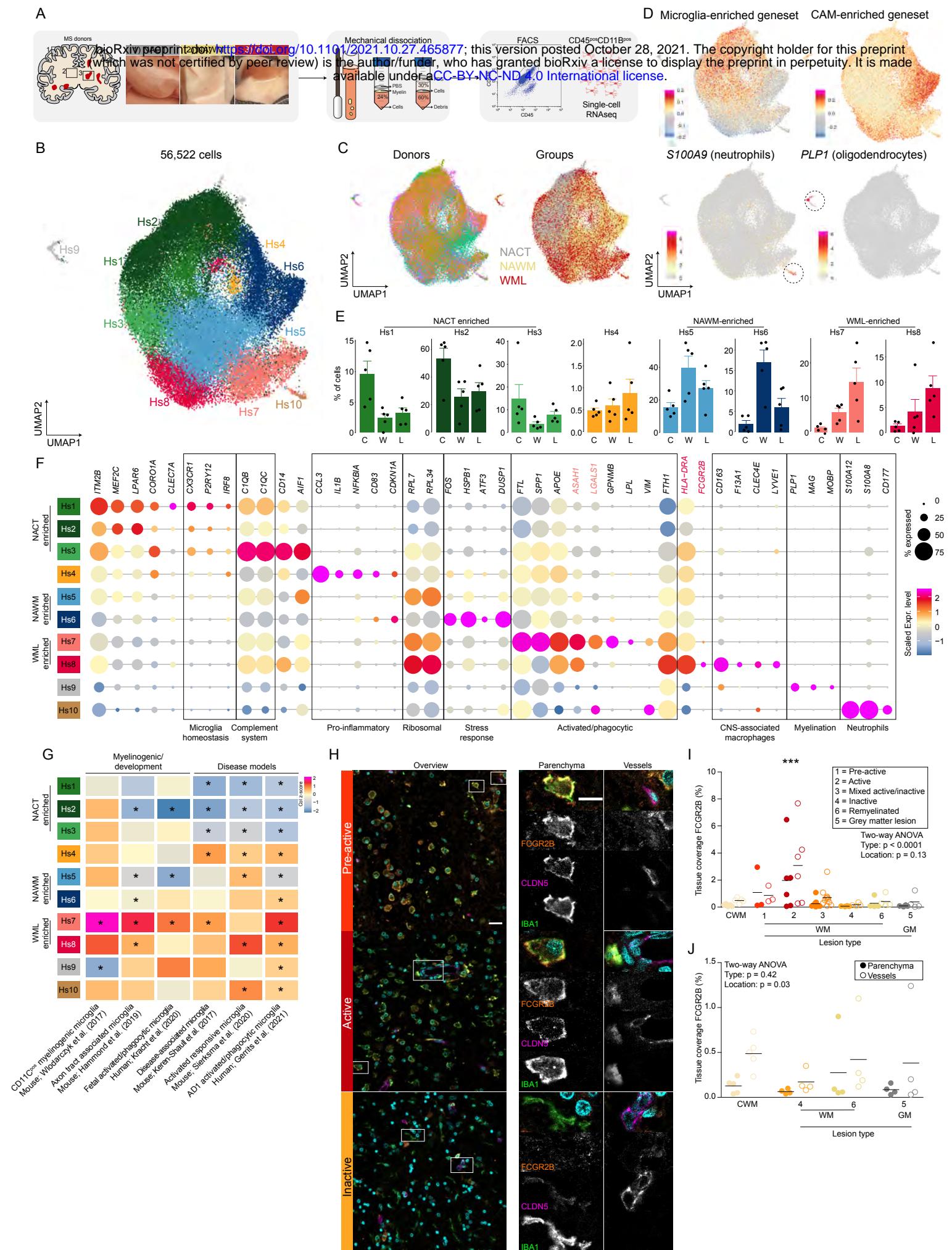
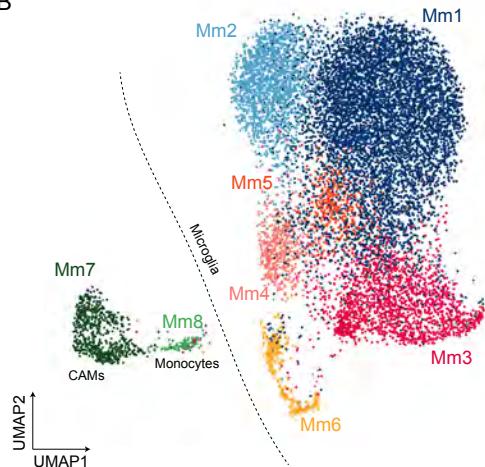
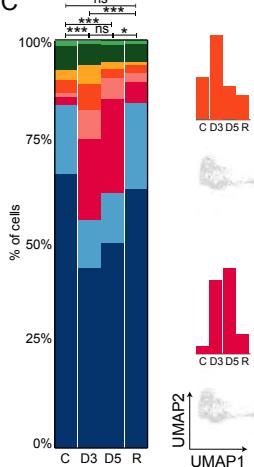
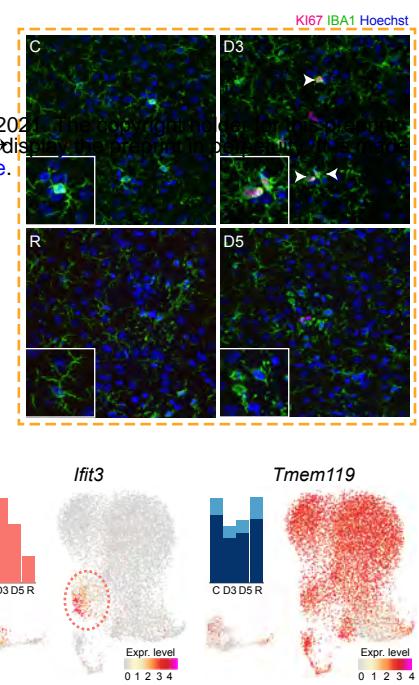
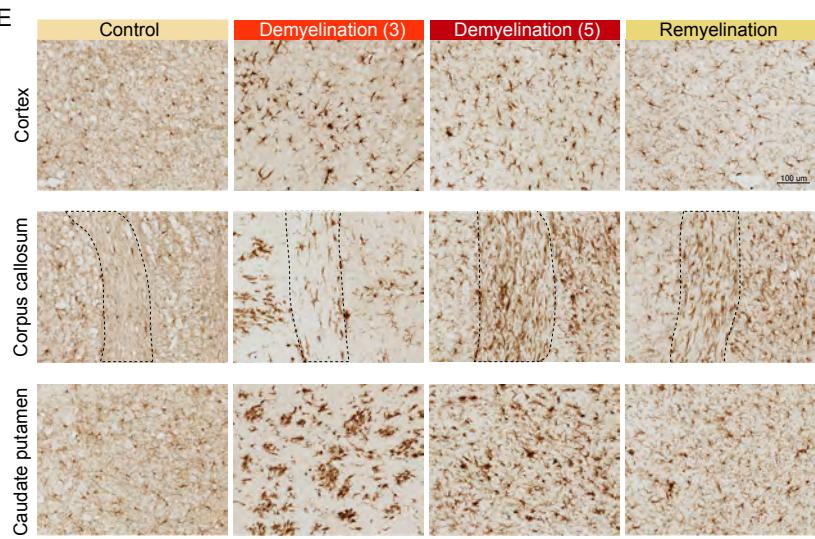



Figure 4


A



B


C

D

Mki67

E

F

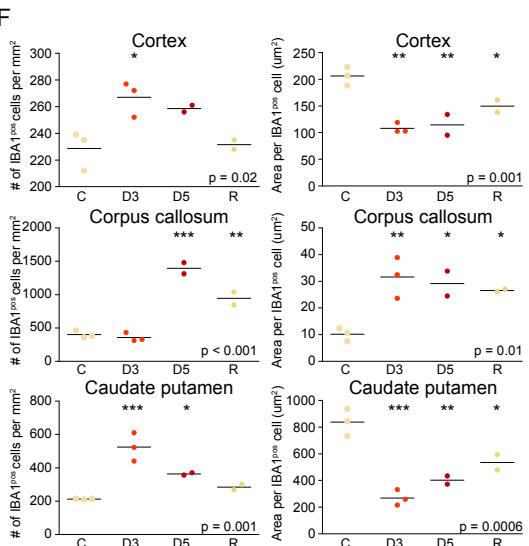
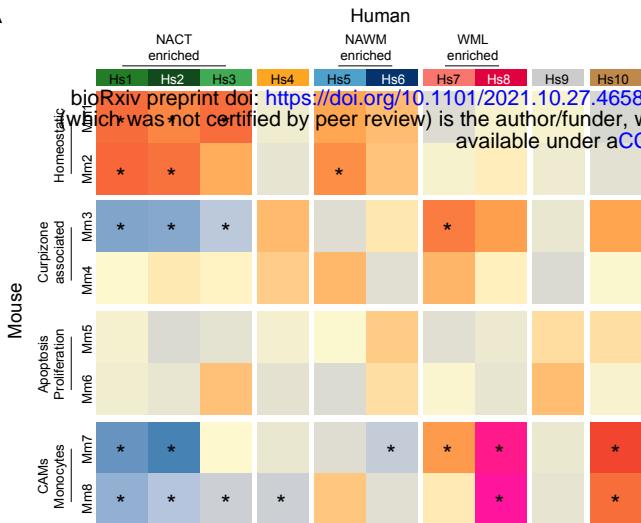
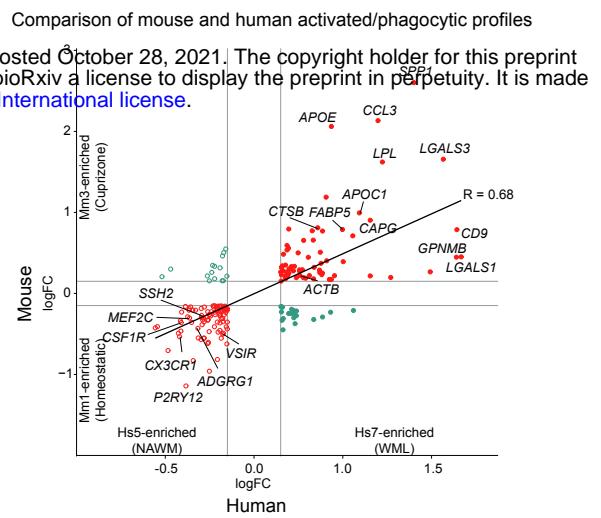
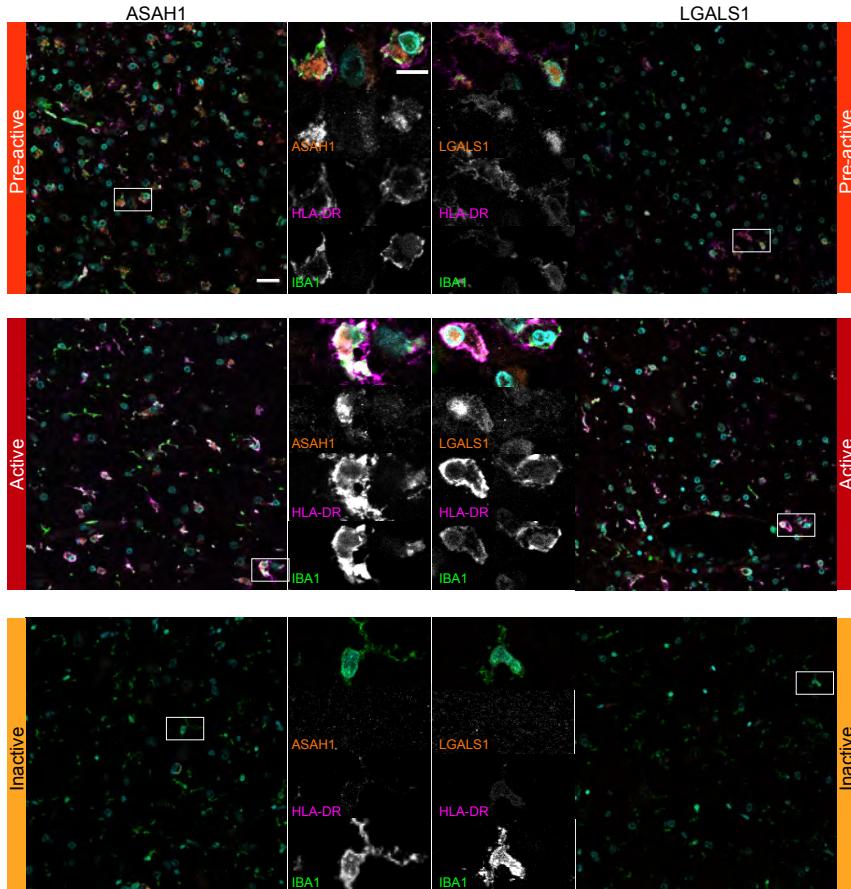
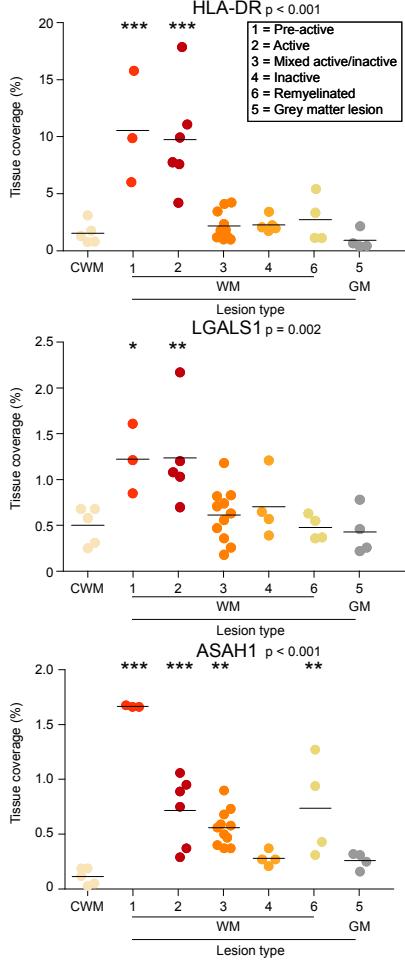
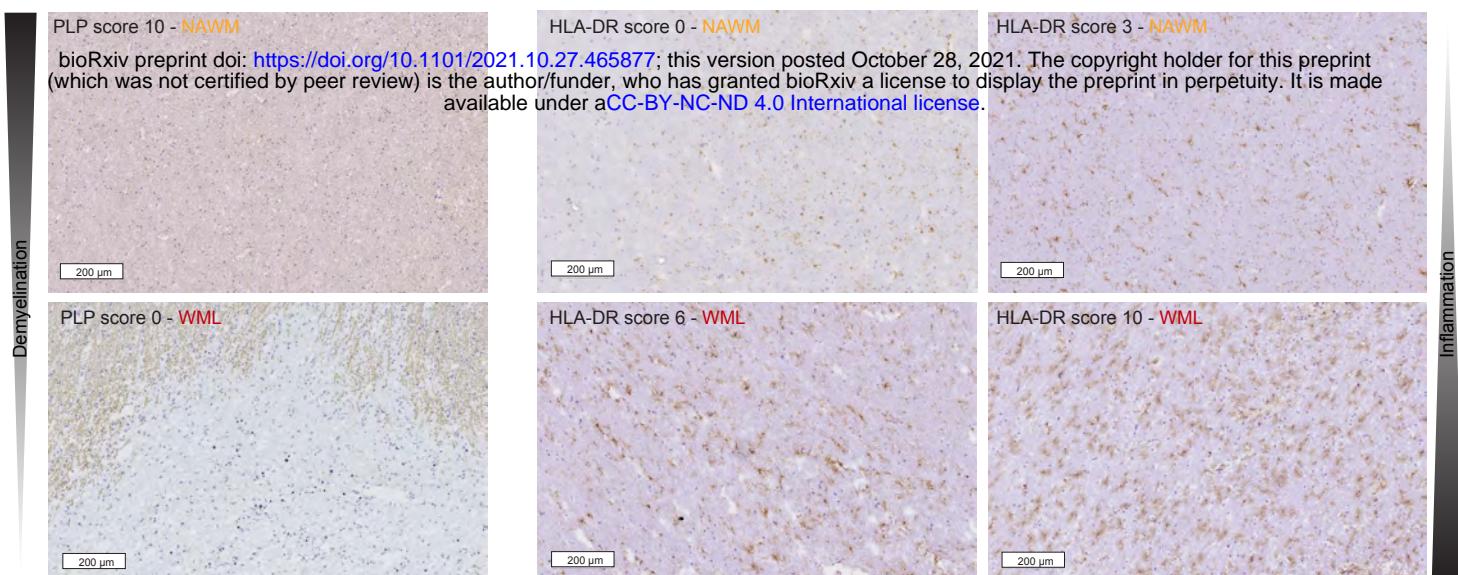




Figure 5

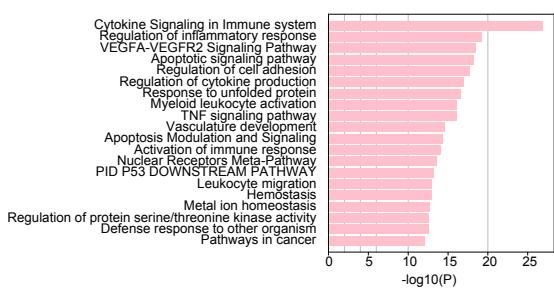
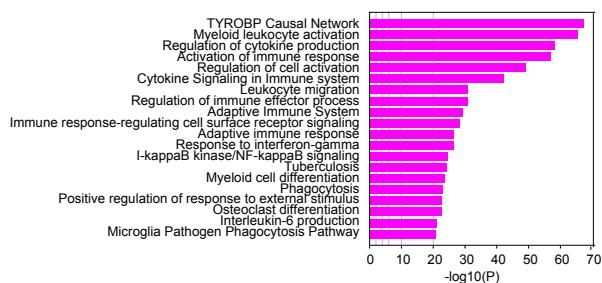
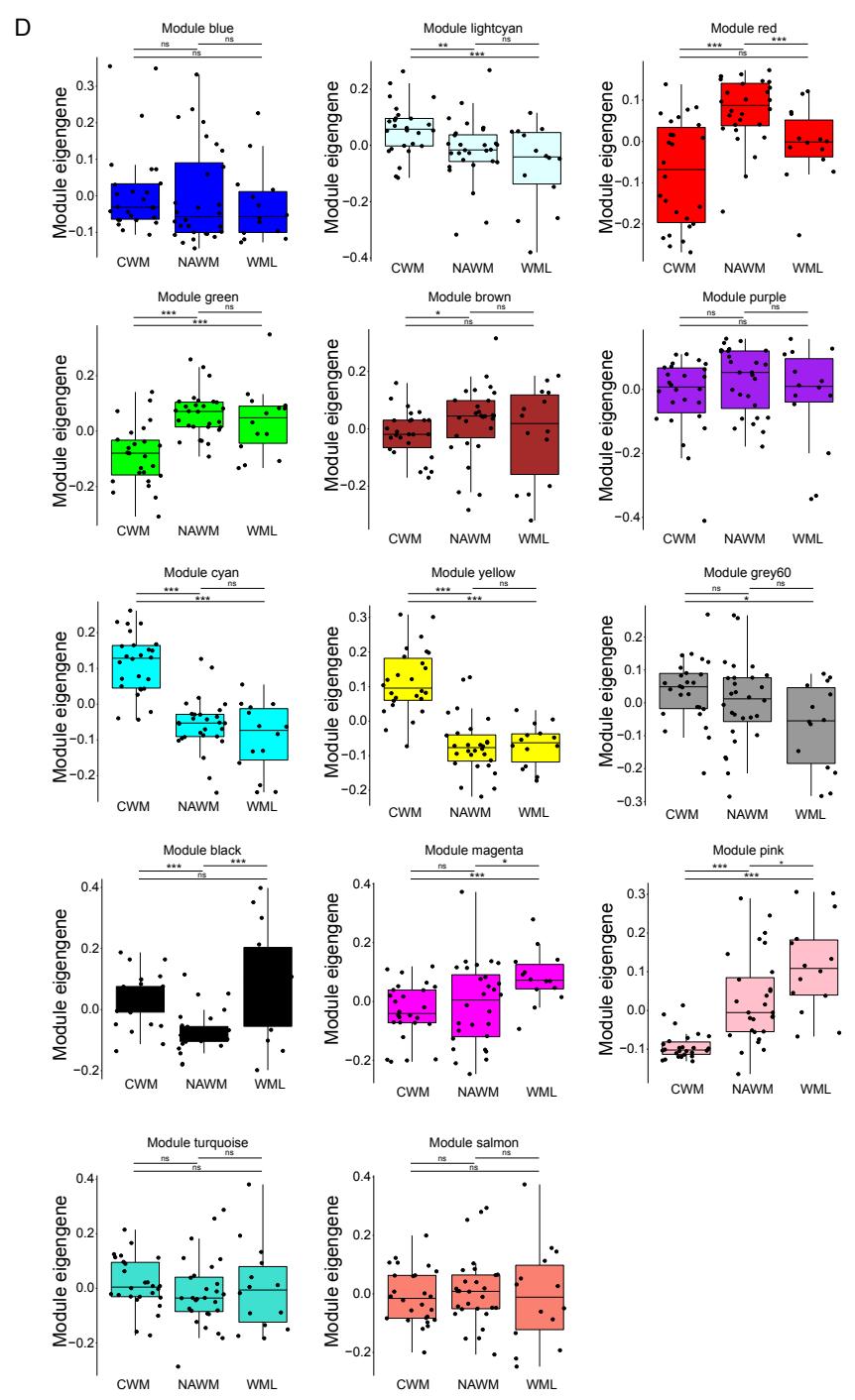
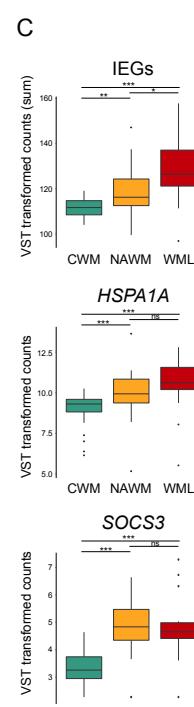
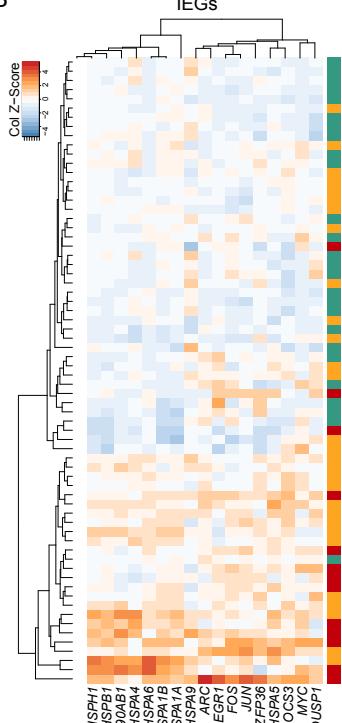

A


B

C

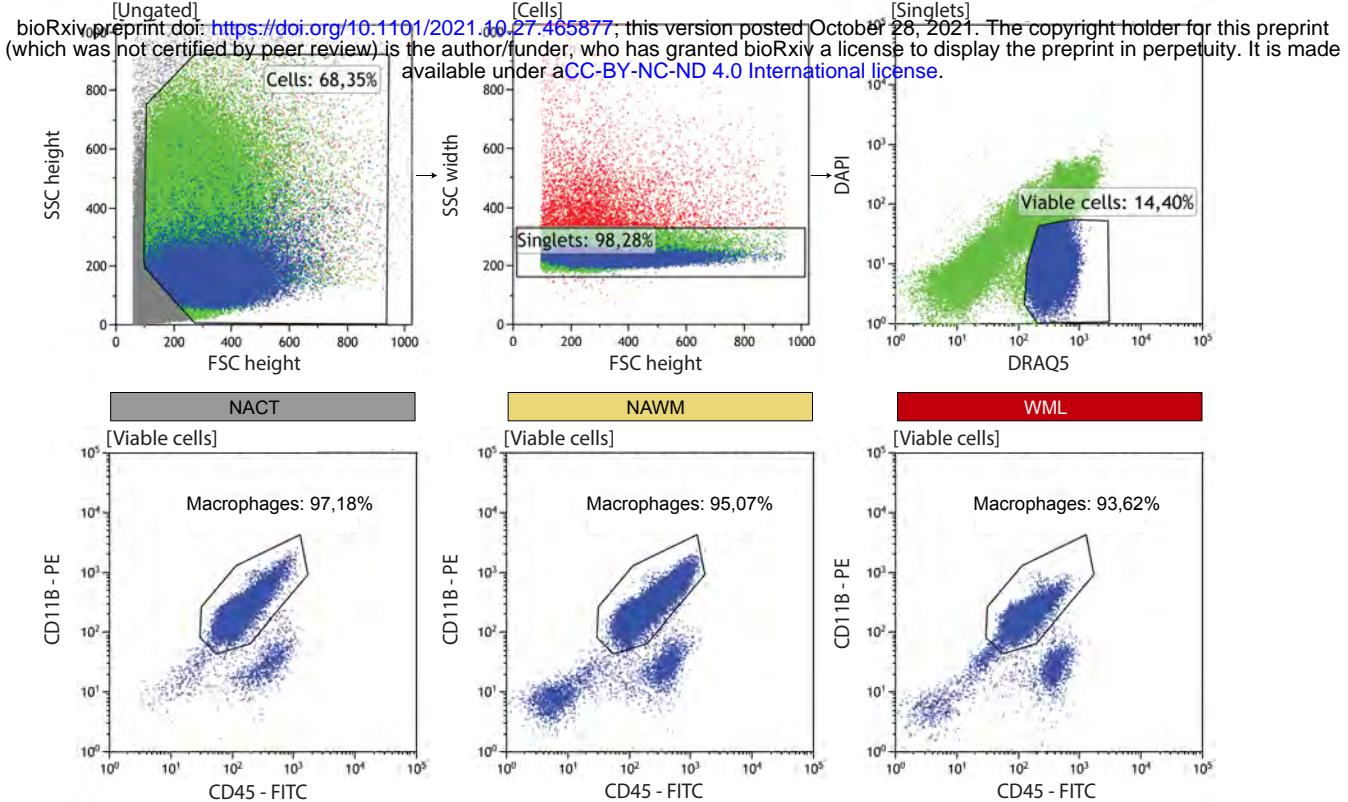


D

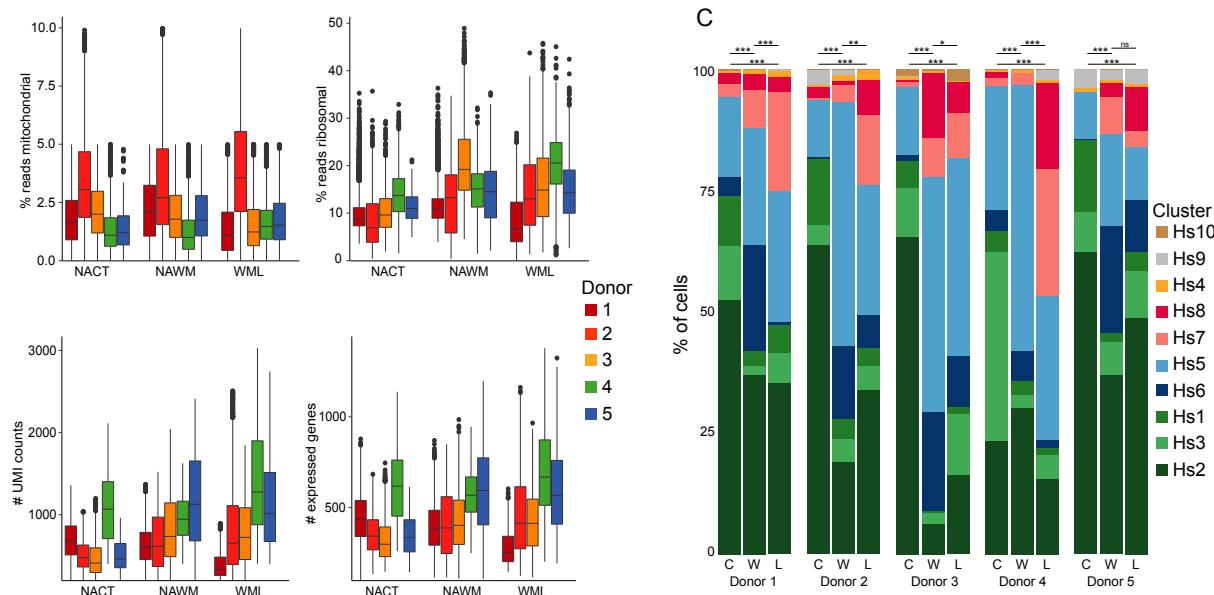






Supplementary figure S1

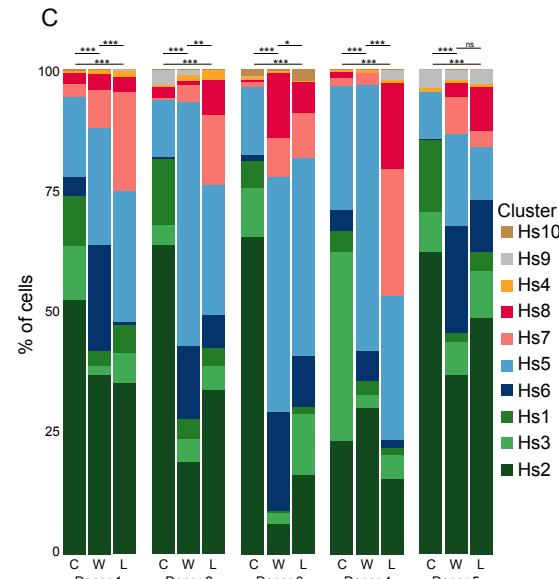
A

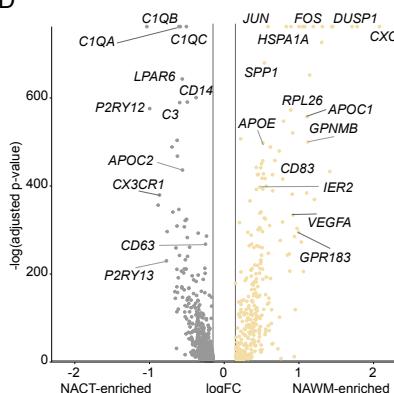


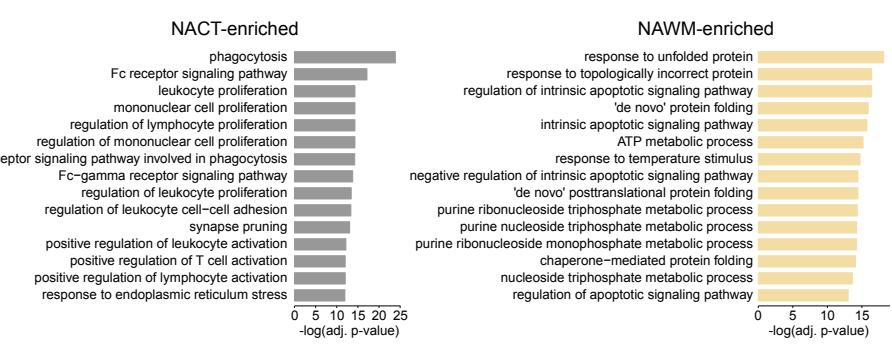
B



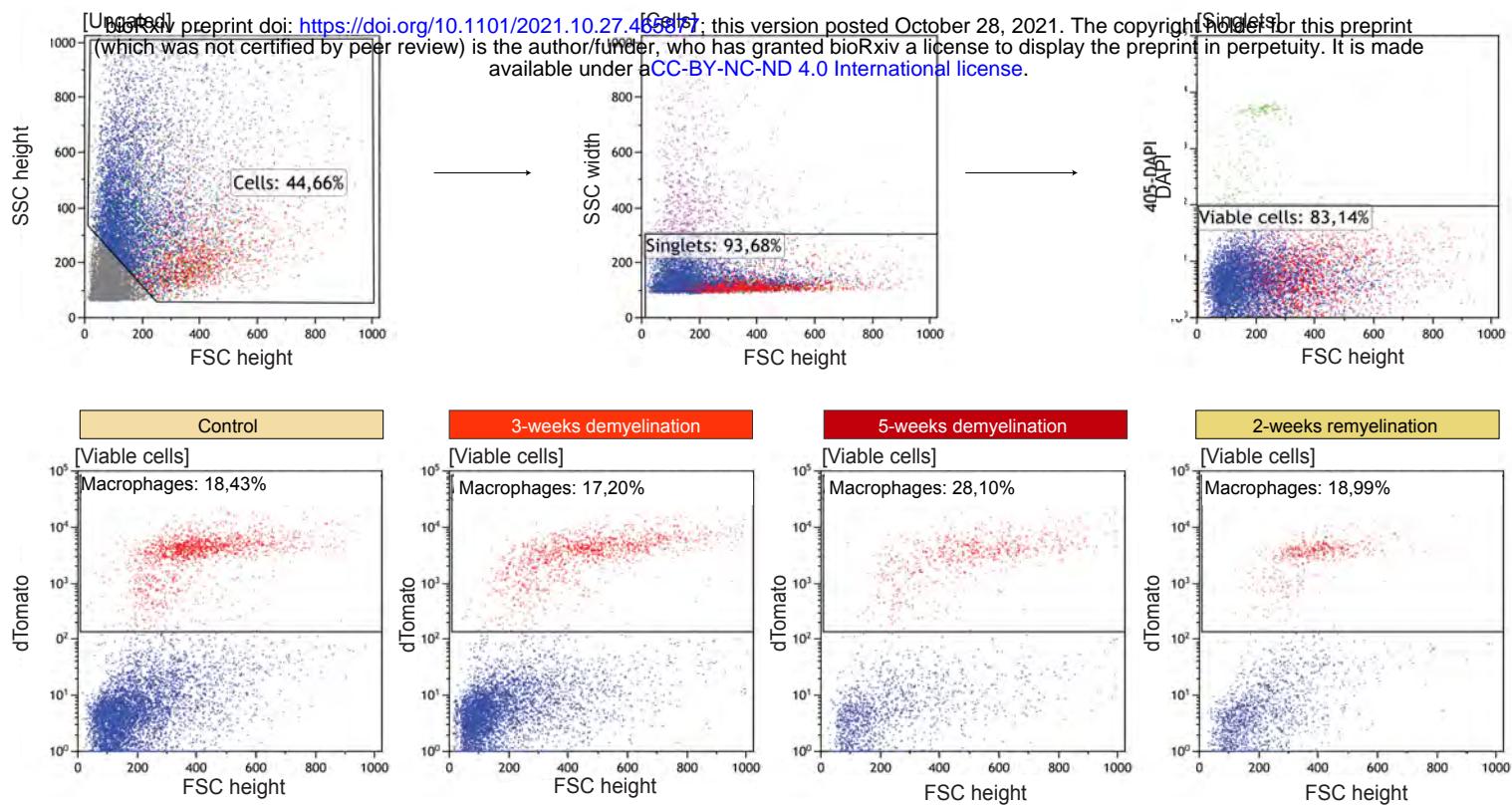
Supplementary figure S2


A

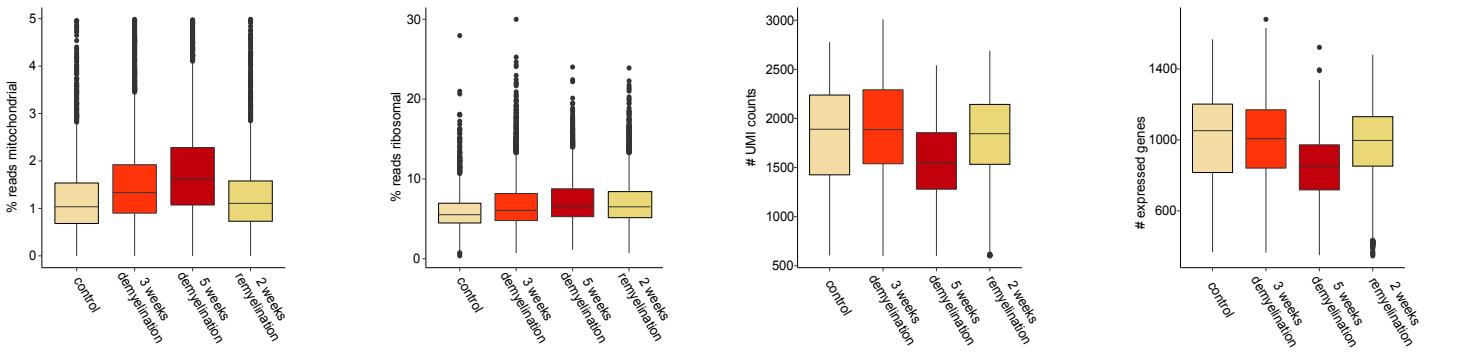

B


C

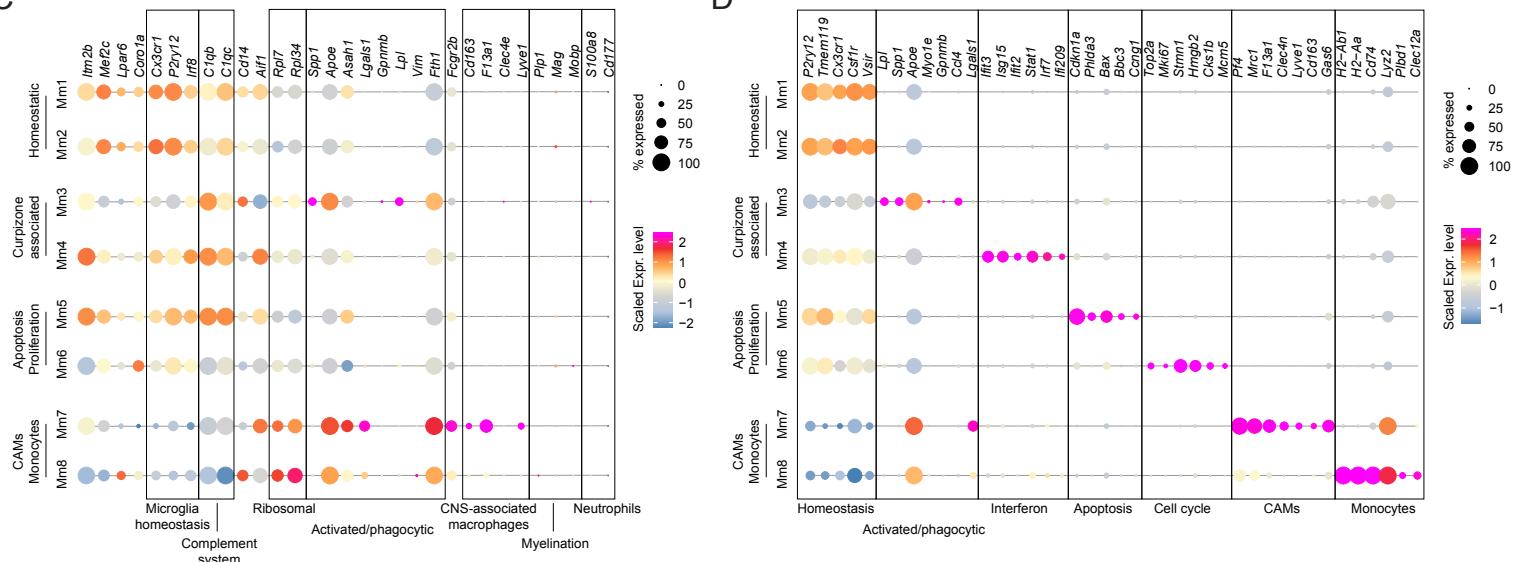
D

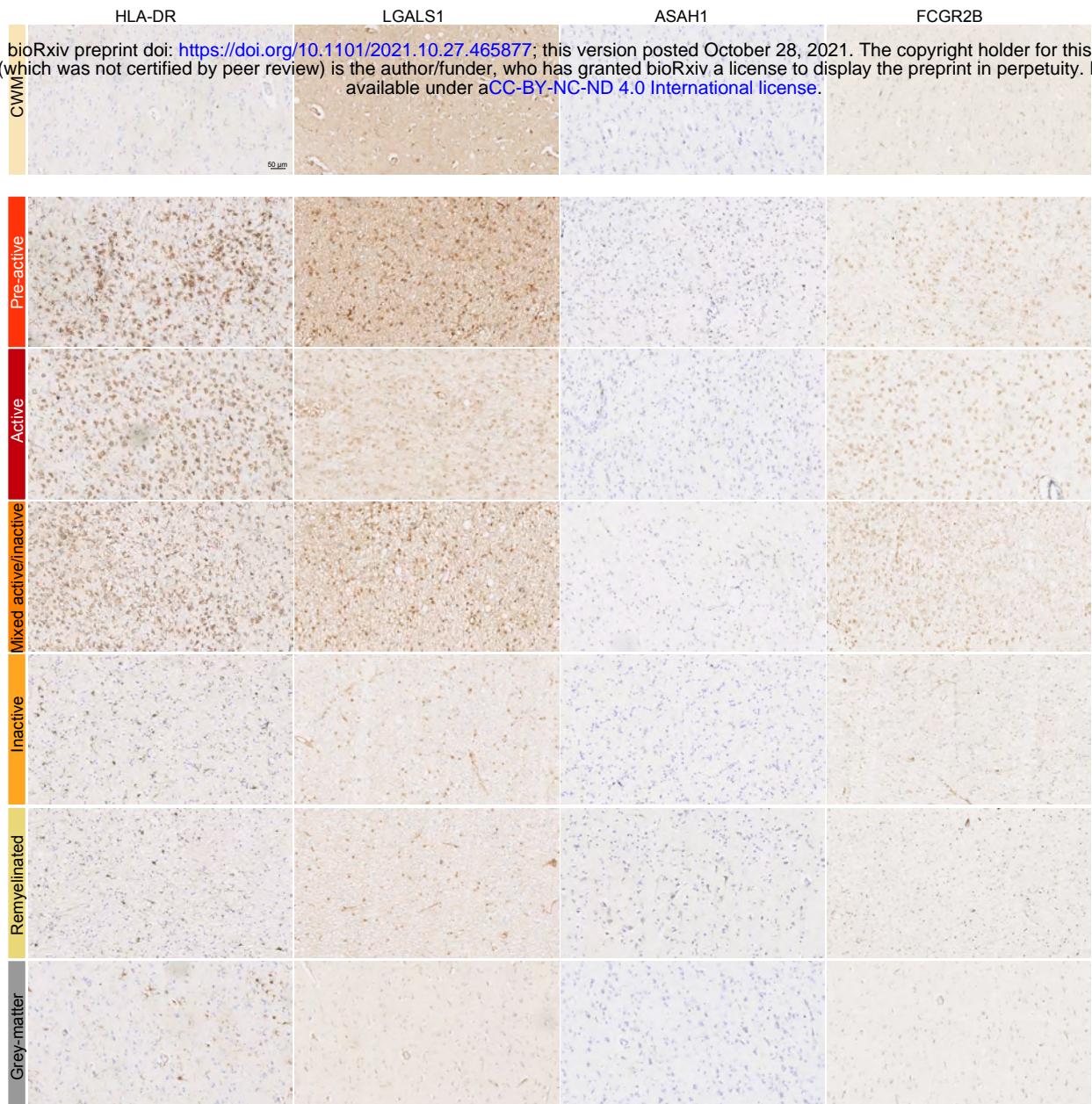


E



Supplementary figure S3


A


B

C

D

