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Abstract

Brain perfusion and normal blood brain barrier integrity are reduced early in Alzheimer’s
disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from
AD and control brains to characterise pathological transcriptional signatures. We found that
endothelial cells (EC) are enriched for expression of genes associated with susceptibility to
AD. EC transcriptional signatures identified mechanisms for impaired pB-amyloid clearance.
Evidence for immune activation was found with upregulation of interferon signalling genes in
EC and in pericytes (PC). Transcriptional signatures suggested dysregulation of vascular
homeostasis and angiogenesis with upregulation of pro-angiogenic signals (HIF1A) and
metabolism in EC, but downregulation of homeostatic growth factor pathways (VEGF, EGF,
insulin) in EC and PC and of extracellular matrix genes in fibroblasts (FB). Our genomic
dissection of vascular cell risk gene enrichment suggests a potentially causal role for EC and

defines transcriptional signatures associated with microvascular dysfunction in AD.
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Introduction

Alzheimer's disease (AD) is the most common form of dementia’, characterized by
extracellular deposits of toxic forms of B-amyloid (AB) protein, intracellular neurofibrillary
tangles (NFTs) and neurodegeneration. Large-scale genomic association studies have
suggested specific molecular processes responsible for susceptibility to disease**. The non-
neuronal cells in which these genes are predominantly expressed are candidates for early
“causal” roles in the initiation of the pathological cascades of AD®.

Brain microvasculature appears to play a major role in AD pathophysiology®®. Cells
constituting the blood brain barrier (BBB) contribute to the clearance of AR and other toxic
species from the central nervous system (CNS) and allow the selective exclusion of potentially
inflammatory or toxic blood proteins from the brain and control of immune cell trafficking®.
Vascular pericytes are responsible for regulating brain perfusion and contribute to the
regulation of endothelial permeability and immune activation”'°. Multiple in vivo imaging and
post mortem neuropathological studies, as well as studies of preclinical models, provide
evidence for impaired regulation of cerebral blood flow and maintenance of the integrity of the
blood brain barrier (BBB) in early AD'"'*. Recent work has begun to elucidate the
transcriptional mechanisms'>"’.

We have performed an integrated analysis of our own single-nuclei RNA sequencing
(snRNAseq) data with that from a previously published dataset'® to quantitatively define the
enrichment of brain microvascular cells for the expression of AD risk genes as a test of their
potential causal contributions to disease genesis®. We then explored the functional roles of
AD risk genes by assessing functional enrichment of genes co-expressed with them in
vascular cells. Differential expression and gene co-expression analyses allowed
characterisation of specific genes and pathways altered in AD. A cell-cell communication
analysis further defined signalling mechanisms supporting vascular homeostasis and

angiogenesis that are impaired with AD. Together, our results provide a transcriptomic
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mechanistic description for major features of the vascular pathophysiology observed in vivo

with AD.

Results

Endothelial cells are enriched in genes associated with genetic risk for AD

Our analyses were based on data from 57 different brain samples from donors with AD
(n=31) or non-diseased controls (NDC, n=26). Fluorescence-activated sorting (FACS) of
nuclei isolated before snRNAseq removed neuronal and oligodendrocyte nuclei to achieve a
better representation of the less abundant brain cell types of interest. Data was integrated
using LIGER" and clustered with UMAP? (Figure 1A). AD and NDC donor nuclei and nuclei
from different datasets, brain regions and sexes were well-mixed after integration (Figure S1).
Nuclei numbers did not differ significantly between AD and the NDC samples. Feature plots
of canonical cell markers identified major brain cell types in the integrated dataset (Figure S2).
Endothelial cells (EC) expressed marker genes FLT1, VWF, NOSTRIN (Figure S3A), CLDN5
and IFI27'"2" (Figure 1C). Specific expression of COL1A1, COL12A1, COL6A1 (Figure S3B)
and COL5A1 was used to identify fibroblasts (FB) (Figure 1C). A separate, heterogeneous
cluster of vascular mural cell nuclei expressed PDGFRB, RGS5 and GRM8 (characteristic of
PC'") (Figure S3C) and ACTA2 and MYH11 (highly expressed in smooth muscle cells
(SMC)') (Figure 1C). To distinguish PC from SMC nuclei, we re-clustered the EC, FB and
vascular mural cell (PC and SMC) nuclei from the total dataset (Figure 1B) to separate those
expressing high levels of ACTA2 and MYH11 with very low levels of RGS5 and GRM8
(corresponding to SMC) from those expressing high levels of RGS5 and GRM8 with very low
levels of ACTA2 and MYH11 (corresponding to PC) (Figure 1C and S4). We confirmed our
cluster annotations by demonstrating significant mutual overrepresentations of our cluster
markers and those reported previously in human'” (Figure S5A) and mouse'”?! (Figure S5B)
single nuclei or single cell RNA sequencing studies. To further characterize the identity of the

FB population, we tested the overrepresentation of previously described meningeal and
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perivascular FB markers'® and found that our FB markers were more significantly enriched in
perivascular fibroblast markers (Fisher’s exact test (FET) for overrepresentation: perivascular
FB markers, p = 2.82x107"; meningeal FB markers, p = 6.36x10™).

Well-annotated genes associated with genetic risk of AD** were expressed in nuclei from
all four vascular cell types (Figure 1F): 52/61 AD risk genes tested were found in at least one
of the vascular cells studied, although less than half of these genes were expressed in 5% or
more of nuclei (EC, 21/61; FB, 21/61; SMC, 17/61; PC, 19/61). 14/61 of these genes were
expressed in at least 5% of the nuclei across all four cell types (ADAM10, APOE, CD2AP,
CELF1, CLU, CNTNAP2, FERMT2, IQCK, MEF2C, PICALM, SORL1, SPPL2A, USP6NL,
WWOX).

We employed MAGMA.Celltyping to test for the significance of the enrichment of vascular
nuclei across the larger set of genomic loci associated with AD®. First, we analysed a dataset
that included all the canonical cell types of the brain (Figure S6-S8). This showed that the AD
risk gene expression enrichment is greatest in microglia, as has been reported previously®
(Figure 1D). Vascular cells also were relatively enriched, albeit less than microglia. To partition
enrichment amongst the individual vascular cell types, the analysis was repeated with vascular
cell data alone. Only EC were significantly enriched for expression of AD risk genes (Figure
1E). Brain small vessel disease and MRI brain white matter hyperintensities (WMH) are
associated with risk of AD?22. To test whether risks for small vessel disease were responsible
for the EC enrichment for AD genetic risk, we re-assessed enrichment for the latter after
statistically controlling for WMH risk gene expression®. The results remained virtually
unchanged (Figure 1E): the genetic risk for AD associated to the EC transcriptome thus
appears to be independent of that for WMH. However, when the analysis was repeated after
controlling for the microglial enrichment, the vascular enrichment largely disappeared,

suggesting that similar AD risk gene sets are enriched in microglia and vascular (Figure 1D).

Differential gene expression (DGE) identifies transcriptional signatures of

dysfunctional angiogenesis in AD
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We employed a mixed-effects model in MAST? to discover genes differentially expressed in
AD relative to NDC for each of the cell types. Greater numbers of genes were downregulated
(90 genes, EC; 47 genes, FB; 47 genes, PC; FDR 0.1), than upregulated (73 genes, EC; 25
genes, FB; 25 genes, PC) in EC, FB and PC (Figure 2A-C). We did not find significant

differentially expressed genes (DEG) in the SMC.

Pathological angiogenic transcriptional signatures in AD

Proangiogenic HIF1A was overexpressed in EC in AD (Figure 2A). However, the
expression of multiple functionally related genes (e.g., SPRED2, SHC2, KSR1, RASGRF2,
DAB2IP, RASAL2, DUSP16, VCL and EGFR) involved in VEGFR2, EGFR and insulin
receptor-mediated pathways were downregulated. Pathological angiogenic gene expression
signatures also were found in FB with downregulation of the expression of VEGF, FGF, EGF
and IGF pathway genes (including SPRED2, DAB2IP and SPTBN1), DTX2, a regulator of
Notch signalling®® and the sialyltransferase gene, ST3GALG6 (Figure 2B, E). Gene expression
in PC highlighted a strikingly mixed angiogenic signature with upregulation of the angiogenic
Whnt/B-catenin signalling pathway and downregulation of EGF/EGFR signalling pathway genes
including RPS6KA2, ASAP1, MEF2D and EGFR (Figure 2C, F).

Clues to additional mechanisms responsible for loss of BBB integrity in AD were found
with the differentially expressed gene signatures. For example, genes contributing to adherens
junction assembly (VCL, TBCD and PIP5K1C) were variably differentially expressed in EC
(VCL and TBCD were downregulated, whereas PIP5K1C was upregulated). As noted above,
Whnt/B-catenin pathway genes, including TCF4 and APC, expression of which also support
blood brain barrier integrity?’, are significantly upregulated with AD in PC. Finally, LAMC1,

encoding for the gamma laminin subunit, was significantly downregulated in FB.

Differential expression of risk genes with functional roles in amyloid processing and immune

response in AD
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Risk genes with functional roles related to amyloid processing were differentially
expressed in AD. ADAM10, which encodes the constitutive a-secretase that governs non-
amyloidogenic pathway 3-amyloid precursor protein processing, was significantly upregulated
in PC. PICALM, encoding a clathrin assembly protein modulating clearance of AR, was
downregulated in EC. Risk genes related to immune responses also were differentially
expressed with AD. Increased expression of the inhibitory complement receptor CD46 gene
and decreased expression of JRAK3, which encodes an IL-1 receptor associated kinase were
found in PC. In EC, we also found increased expression of IFITM3, which regulates interferon

pathway inflammatory responses® and can potentiate gamma secretase activity?.

Co-expression modules for angiogenesis, lysosomal processing and interferon
activation are differentially regulated with AD

To identify gene co-expression modules differentially expressed with AD, we first
performed gene co-expression network analyses separately for EC, FB and PC pooled across
AD and NDC (MEGENA?®). We then determined which gene co-expression modules were
differentially associated with AD (limma®'). SMC were not included in this analysis because of
the relatively low number of nuclei available for analysis and consequent sparse co-expression

representation. Our results defined cell-specific gene regulation pathways associated with AD.

Reduced expression of co-expression modules enriched for angiogenesis and vascular
homeostasis

Although fold-changes varied, expression of modules enriched for multiple angiogenic or
vascular homeostasis pathways were generally decreased with AD, most prominently for EC
(Figure 3), e.g., Module 119, which is enriched in the EGF/EGFR signalling pathway (e.g.,
including EGFR, IQSEC1, INPP5D, NEDD4 and IQGAP1) and several hub genes (e.g., the
G-protein activator and adhesion G protein coupled receptor genes, DOCK9 and ADGRLA4,
respectively, and the hypoxia inducible transcription factor, EPAS1) with roles in

angiogenesis®***. Expression also was reduced for module 47, which is enriched in insulin-
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like growth factor 1 receptor (IGF1R) (IGF1R, PSMD5, PSMD1, TSC1, RASAL2) and Ras
signalling cascade (PSMD5, PSMD1, RASAL2) genes. Expression of several genes in module
47 with recognised functional roles in angiogenesis (e.g., RASAL2 and PALD1**) were
significantly independently downregulated in AD.

While the fold-changes were relatively low, FB modules functionally related to vascular
homeostasis also were significantly downregulated, e.g., Module 2, which was significantly
enriched in NOTCH signalling genes (Figure 3E), including NOTCH1 and NOTCH2, as well
as the regulators of NOTCH expression®, ARRB1 and DTX2, both of which also were
independently significantly differentially reduced in expression with AD. Module 2 also is
significantly enriched in genes individually downregulated in AD (FET adjusted p=1.28x10%).
Some of them (SPRED2, DAB2IP, ARRB1, SPTBN1) encode for proteins that are
downstream components of several growth factor signalling pathways (e.g., FGFR1-4,
VEGFR2, EGFR) or genes for components (COL5A1 and COL1A2) of the extracellular matrix
(ECM)*®. Angiogenesis pathway enriched modules were downregulated in PC, as well, e.g.,
module 19 (Figure 3F), in which several genes showing individually significantly reduced
expression in AD (EGFR, ZBTB16, IRAK3, TMTC1, MAOA) and genes involved in EGFR
signalling (EGFR, MAPK1, FOXO3) are found or module 15, which is enriched in PI3K-Akt
signalling pathway genes (ANGPT2, COL6A2, DDIT4, COL6A1, BCL2, PDGFA, PPP2R3B,
PPP2R3A) genes>®. A recent report has shown the Angpt2 knock out potentiates BBB leakage
in a preclinical AB mouse model*’.

However, despite the decreased expression of modules enriched for many angiogenic
pathways central to angiogenesis with AD, we also found modules enriched in metabolic
pathways supporting angiogenesis in EC and PC and extracellular matrix genes in FB, the
expression of which was increased in AD. Module 661, the top upregulated module in AD,
includes TPI1 that encodes for the triosephosphate isomerase, an enzyme implicated in
glycolysis and gluconeogenesis®. Module 41, the expression of which is increased with AD,
includes genes encoding for the acyl-CoA dehydrogenase that executes the first step of the

B-oxidation of fatty acids (ACADS8, ACADS) and genes of the butanoate metabolism pathway


https://doi.org/10.1101/2021.10.27.465860
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.465860; this version posted October 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(BDH2, ACSM3, and ACADS)*, both of which are highly upregulated in AD. Module 12, also
increased in expression with AD, is amongst several in EC that were enriched for pathways
coding for proteins of the mitochondrial respiratory chain complexes, including ATP5PF,
ATP5PD, ATP6 NDUFB10 and NDUFS3. The most highly upregulated module in PC, module
512, was enriched in oxidative phosphorylation genes (NDUFA4L2, ATP5MC2, ATP5F1D)
and for lipid metabolism pathway genes (PDHA1, PRKAB1)***!. Fibroblasts play a central role
in the development of the basement membrane. Extracellular matrix collagen genes (COL3A1,
COL5A2, COL5A3, COL11A1, COL21A1), the fibronectin 1 gene (FN1), proteoglycan and
glycosaminoglycan metabolism-related genes (CHSY3, GXYLT2, GPC6, CHST15, TIAM1,
KDR, PLCE1, COL21A1, FLNB, ANK3, TP53) were enriched in modules upregulated with AD
in FB, e.g., in branches of modules 128, 135, 164, 408, 488 and 775. Modules 408 and 391,
also upregulated with AD in FB, were enriched in solute carrier genes involved in nutrient and

metabolite transfer across the blood brain barrier*.

Increased expression of APOE and lysosomal pathway enriched modules in FB and PC with
AD

Module 396, the most highly upregulated module in FB with AD, was enriched in the
AD risk gene APOE and other cholesterol metabolism-related genes (e.g., AGT), as well as
genes with individually increased expression in AD that are related to pathways for lytic
vacuole functions (including CACNG7, VPS28, CTSO, RRAGC, NPC2, GAA, HPS4, CTNS,
RABYA, VAMP4, VPS16 and RAB7A). Expression of module 512, which is enriched for lipid
metabolism (with PDHA1 and PRKABT) and lysosome (with PSAP, CLTB and CTSF)
pathways, increased in PC, whereas other lipid processing and metabolic gene pathways
were downregulated with AD, notably in module 500 (enriched for the sphingolipid signalling
pathway genes AKT3, MAPK14, PLCB1 and NSMAF). FB modules 2 (enriched for “regulation
of lipid metabolism by PPAR-a” and “metabolism of lipids and lipoproteins” pathways) and
modules 468 (enriched for “response to lipid”) and 284 (enriched for the “ABC transporters in

lipid homeostasis” pathway) also were downregulated with AD.
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Module enrichments suggest pathological amyloid processing and immune responses in AD

There was evidence for upregulation of A production and immune responses with AD.
Module 41, which was highly upregulated in EC, contains PSEN2 and APH1A, which encode
for components of the gamma secretase*®. We also found increased expression of interferon-
related co-expression modules in EC (module 661, the most highly upregulated modules
includes C2 and TRIM5 which is a interferon type I-stimulated gene**) and in PC (module 161
includes RNASEL, EIF4A3, AAAS and IFIT1) with AD. The most highly upregulated module
in PC (Module 512) is enriched for pathways for ferroptosis (GPX4, FTH1), which promotes
release of oxidised lipid species that generate pro-inflammatory damage-associated
molecular patterns (DAMPs) able to trigger the innate immune system*. However, modules
enriched for other immune response pathways were downregulated with AD, e.g., EC module
455, which is enriched for IL-6 signalling (NLK, IL6ST, JAK1), and PC module 19, enriched
for cytokine signalling, and modules 32 and 500, which are enriched for Toll-like response
genes. This was most striking for FB, for which the largest number of immune response
modules differentially expressed was identified (modules 468 and 154 enriched for interferon-
alpha responses, module 2 enriched for the Toll-like receptor 9 (TLR9) cascade, module 169
enriched for cytokine signalling (/IL15, KIT, RAF1) and module 16 enriched for JAK-STAT

signalling), all of which were downregulated with AD.

Two-layer neighbourhood analysis of risk genes suggests cell-specific mechanisms of
AD susceptibility

Cell-specific enrichments for risk genes expression provide insights into the genesis AD.
Cell specific co-expression signatures can suggest specific functional roles for the risk genes
in susceptibility. To explore those relevant to the cerebral microvasculature, we identified
genes having the most direct expression correlations (those within a two-layer neighbourhood,
i.e., any gene that is either directly connected to an AD risk gene or through at most one other

gene) with AD risk genes in the vascular cell-specific co-expression networks generated from
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both AD and NDC*°“%. To discover relationships specifically relevant to disease genesis, we
determined the overrepresentation of genes differentially expressed with AD in the
neighbourhoods of each GWAS gene in the cell-specific co-expression networks (Figure 4A).

AD risk genes PICALM, SORL1 and INPP5D had the largest neighbourhoods (230, 167
and 121 differentially expressed genes, respectively) in the EC co-expression network. The
neighbourhood of PICALM was enriched in IL-6 signalling genes (IL6ST, STAT3, JAK1), as
well as semaphorin (SEMA5A, ARHGEF11, SEMAG6D, ITGA1, MYH11, PLXNC1)and NOTCH
signalling-related genes (TNRC6C, B4GALT1, TFDP2, POFUT1, MAMLD1, TNRC6A). The
SORL1 neighbourhood also was enriched in genes for pathways involved in immune response
(e.g., T-cell activation, TYROBP causal network and cytokine response-related pathways) and
proteoglycan metabolism (chondroitin sulfate biosynthesis and proteoglycan metabolism)
pathway genes encoding proteins essential for vascular extracellular matrix formation. The
functional enrichment of the INPP5D neighbourhood showed an overrepresentation of
individual differentially expressed genes that were downregulated in insulin- and EGF/EGFR-
signalling pathways (Figure 4B).

While the co-expression neighbourhoods of AD risk genes WWOX, CLU and CCN2
expressed in FB (e.g., including individually differentially regulated genes ITPR2, ROBO1,
LHFPL6 and SLC38A1 [WWOX]; PALD1, ZBTB46, PDZD2, SIL1 [CLU]; SPTBN1, ZMIZ1,
KLF7, CACNA2D3 [CCNZ2]) and PC were enriched for genes involved in a range of functions,
the neighbourhood of WWOX also was enriched in Notch signalling pathway genes and both
this neighbourhood and that of IQCK were enriched in ECM-related pathways (Figure 4C). In
PC, the neighbourhood of MEF2C transcription factor (108 genes) (one of the largest) included
genes involved in the EGF/EGFR signalling pathway (EPS8, MEF2A, MEF2C, PLCE1, RAF1)

and Toll-like receptor pathways (e.g. MEF2A, PPP2CB, MEF2C and RIPK2) (Figure 4D).

Pathological growth factor and ECM signalling between vascular cells with AD
We applied CellChat to identify differentially expressed receptor-ligand pairs responsible

for cell-cell signalling (both autocrine and paracrine) in AD*’. 759 potential ligand-receptor
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pairs implicating 48 distinct signalling pathways were identified amongst genes expressed EC,
PC and FB (Figure 5). We first focused on assessment of interaction pairs that involved DEG
and pathways enriched in co-expression modules specifically with AD. The analysis provided
insight into mechanisms contributing to dysregulated angiogenesis with AD. Several VEGF-
related signalling pairs were detected only in NDC. Signalling via INHBA (FB/PC) — ACVR1B
and ACVR1A (EC) also was found only in NDC. By contrast, evidence for TGFB3 (EC) —
TGFBR1_R2 (FB) and the TGFB3 (EC) — ACVR21B_TGFBR2 (FB) signalling was found only
in AD samples.

Growth factor signalling important for angiogenesis and vascular homeostasis also was
generally decreased with AD. Receptor expression for the EGF(EC/PC)-EGFR(EC/PC),
EGF(EC/PC) - EGFR_ERBB2(PC), NTF3(FB/PC) - NTRK3(FB) communication pairs was
reduced. Decreased expression of FB LAMC1 should reduce autocrine and EC/PC CD44
signalling. Increased expression of CD46 in PC with AD may modulate NOTCH signalling in
an autocrine manner (CD46 (PC)- JAG1(PC))*. Autocrine NEGR1(FB)- NEGR1(FB)
signalling also increases in AD. Vascular cell interactions with the ECM were reduced with
decreased integrin expression on EC affecting multiple ligand-receptor communication pairs:
COL1A2 (EC/FB) - ITGB1 (EC), COL1A2 (FB) -ITGA2 (EC), COL4A1 (FB/PC) - ITGA2 (EC)
or COL4A2 (EC/FB) - ITGB1 (EC), COL4A4 (PC) - ITGA2_ITGB1(PC) and COL6A3 (FB) -
ITGA2_ITGB1 (EC). Both lower EC and PC integrin and FB laminin expression in AD also
should reduce the many laminin-ECM interactions identified (LAMC1 (FB) - ITGA1_ITGB1
(EC/PC) - ITGA2_ITGB1 (EC), LAMA3 (EC) - ITGA2_ITGB1(EC), LAMA4 (FB/PC) -
ITGA2_ITGB1(EC), LAMB1 (FB) - ITGA2_ITGB1(EC), LAMC1 (FB) - ITGA2_ITGB1 (EC/PC),
LAMC3 (EB/PC) - ITGA2_ITGB1 (EC), LAMC3 (FB/PC) - ITGA2_ITGB1 (EC/PC), LAMC1

(FB) - ITGA6_ITGB1(EC/PC), LAMC1 (FC) - ITGA7_ITGB1 (EC/PC)).

Expression of vascular endothelial angiogenic pathway genes is related to Ap plaque

and phosphorylated Tau (pTau) load


https://doi.org/10.1101/2021.10.27.465860
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.465860; this version posted October 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

To explore how vascular transcriptomic pathology may evolve over the course of AD, we
performed an exploratory analysis of gene expression as a regression of the individual brain
regional AR and pTau densities in the 24/57 brain samples used in the analyses above for
which quantitative IHC was available. We limited this regression analysis to the EC, the most
abundant of the cell populations, to minimise Type | errors. We found 28 genes were
significantly (adjusted p<0.1) differentially expressed with greater brain regional AR plaque
density and 75 genes differentially expressed with greater pTau density. Genes showing
significant regression with AB density in EC were enriched in VEGF signalling pathway
components (CYFIP1, PXN, CTNNA1, CALM1). By contrast, genes that showed significant
regression against pTau were enriched in EGFR, IGF1R and insulin receptor signalling

pathways (PPP2R5E, NF1, CALM1, DUSP16, AP2M1, RBX1).

Discussion

Brain vascular structural pathology and physiological dysfunction is characteristic of both
preclinical models expressing brain Ap and of AD'**°. We found that, although EC, SMC and
PC all express AD risk genes, EC appear to be uniquely significantly enriched amongst
vascular cells, suggesting a quantitatively more important role in “causally” mediating AD
susceptibility. Our results provided evidence that pathological regulation of angiogenic gene
expression contributes to the early vascular impairments in AD: we found upregulation of the
pro-angiogenic HIF1A and increased expression of mitochondrial oxidative and fatty acid
oxidation genes, metabolic drivers of angiogenesis®, in conjunction with downregulation of
vascular developmental and homeostatic pathways involving EGF/EGFR, VEGF/VEGFR and
insulin and IGF signalling in EC and PC and reduced expression of laminin and collagen IV
genes in FB. The correlation of these expression differences in angiogenic growth factor
pathways in EC with both the AB plaque and pTau burden suggests that impairments of
vascular growth factor pathway signalling worsen progressively through the course of the

disease. Analyses of cell-cell communication provided novel evidence for decreased signalling


https://doi.org/10.1101/2021.10.27.465860
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.465860; this version posted October 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

though VEGFR2 and components of the ECM to EC, decreased expression of the LDLR
pathway for clearance of AB from the CNS by EC, interferon pathway activation and increased
inflammatory responses in EC and PC. Together, these processes would be expected to
reduce clearance of A while also, via inflammatory activation, increasing pathological AB
production and processing?®. Specific evidence for this was found with upregulation in EC of
PSENZ2 and APH1A, which encode for components of the gamma secretase.

A recent preprint also reported that GWAS risk genes were enriched in EC and vascular
mural cells and suggested an “evolutionary shift” of AD risk gene expression from a singular
predominance in microglia in the mouse to microglial and vascular cells in humans'®. Our
analysis extends this by showing that, among vascular cells, risk genes associated with AD
are enriched significantly in EC, suggesting an involvement of EC in the early genesis of AD®.
Moreover, we showed that the risk genes enriched for expression in EC overlap substantially
with those in microglia (Figure 1D).

Co-expression and two-layer neighbourhood analyses provided insights into some
possible functional roles for proteins encoded by AD risk genes expressed in the vascular
cells. For example, our results showed lower expression of PICALM in EC with AD, suggesting
a mechanism by which vascular clearance of AB is reduced in AD?"*". Functionally less well
characterised AD GWAS genes, WWOX and IQCK, have large neighbourhoods in the FB and
PC co-expression networks associated with enrichment for pathways supporting maintenance
of BBB integrity’. Finally, INPP5D had consistently one of the largest two-layer
neighbourhoods across the vascular cell types, whereas the enriched pathways associated
with them were cell type specific (e.g., EGF/EGFR in EC and ECM components in FB).

Innate immune responses are central to AD pathogenesis and progression but have not
been well defined in the microvasculature to date®**2. We found evidence for cell-specific
differences in vascular inflammatory responses to AD in EC with upregulation of interferon
signalling genes in EC. PC also appear to play a role in vascular inflammatory mediation of

early AD. Recently identified risk genes CD46, encoding a serine protease which mediates
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inactivation of complement proteins, and IRAK3, encoding a homeostatic mediator of innate
immune responses®® were upregulated and downregulated, respectively, in PC.

However, the most strikingly differentially expressed gene sets in AD are involved in
angiogenesis and vascular homeostasis. VEGF/VEGFR and insulin signalling pathways®* in
EC and EGF/EGFR signalling in EC and PC were downregulated with AD** and negatively
correlated with AB pathology, despite upregulation of other genes (e.g. HIF1A) associated with
pro-angiogenic regulation?®. These results add to prior evidence of dysfunctional angiogenesis
in AD'®*349 We have extended descriptions by showing that, despite angiogenic signals (e.g.,
upregulation of HIF1A) and metabolic adaptations, major downstream effector pathways fail
to respond at the transcriptional level.

Previous reports also have implicated dysfunction of both EC and PC in AD®. Our
observations emphasise the extent to which pathology of FB also contribute to vascular
abnormalities in AD, with NOTCH signalling as a candidate mechanism central for this.
Multiple genes encoding for ECM components were downregulated in FB, which should

5758 impair angiogenesis®* and lead to altered expression of

contribute to BBB dysfunction
tight junction proteins in EC®® via reduced signalling between ECM proteins in FB and integrins
in EC®.

Although we have made a number of novel observations, our analyses had limitations
which need to be addressed in future work. Our data was generated from nuclei from multiple
brain regions and thus could address robustly only those transcriptomic differences that were
common to all of these regions in AD, even given that we took the confound of brain region
into account as a fixed effect in the statistical models. A second limitation was that we
assessed the total extracted populations of nuclei without seeking to identify and separately
study cells expressed from specific vascular anatomic zones''". Nevertheless, the high
overlap of our cellular markers and the cellular markers from human and mouse brain vessel-
associated cells in previous reports provides some confidence that all major cell types were

represented. Third, like other recent studies, our conclusions are based on relatively sparse

(10X Genomics Single Cell 3° Gene Expression assay) sequencing of the nuclear transcriptome,
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which may be biased relative to those from the whole cell, potentially reducing the power to
detect transcripts from some genes®. Use of larger numbers of nuclear and co-expression-
based analyses, which rely less on detection of absolute expression levels than do single gene
differential expression analyses, may have reduced the impact of this although the impact of
this limitation, but this is difficult to assess without future, more comprehensive transcriptional
analyses of the whole cells.

Impairment of angiogenesis and vascular homeostasis, reduced endothelial Ap clearance
with reduced expression of PICALM and increased production of AR by EC with upregulation
of interferon (IFITM3) and y-secretase component genes all will act to increase toxic AB
concentrations in the brain?®. The extraordinary length of the brain capillary network (~650 km)
and its large surface area (~120 cm?/g) suggest that even small relative effects could
contribute substantially to increasing the overall AR burden in the CNS®'. The identification of
significant EC enrichment in AD risk genes also suggests that their specific contribution to
inflammatory activation and reduced A clearance are early, potentially “causal” factors in the
onset of sporadic, late onset AD. Our work suggests specific mechanisms by which small
vessel disease from many causes (e.g., metabolic disease, hypertension, smoking) could
potentiate early AD and add to the rationale for AD prevention through interventions for control
of modifiable cardiometabolic risk factors®>. More generally, our results suggest that EC
therapeutic targets related to angiogenic, inflammatory and AR clearance pathways deserve

prioritisation in the search for treatments able to slow or prevent the onset of AD.
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Methods

Data for this study was generated from cortical brain tissue processed locally as we

described earlier®® or from that described and made available publicly previously'.

Local tissue access and snRNA sequencing
Brain cortical tissue sequencing

Local tissue access and data generation was carried out in accordance with the Regional
Ethics Committee and Imperial College Use of Human Tissue guidelines. Tissues and
processing were described previously®®>. Cases were selected from the London
Neurodegeneration (King’s College London) and Parkinson’s UK (Imperial College London)
Brain Banks. Entorhinal and somatosensory cortex from 6 non-diseased control (NDC) cases
(Braak stage 0-II) and 6 AD cases (Braak stage IlI-VI) were used (total of 24 brain samples).
Brains used for this study excluded cases with clinical or pathological evidence for small vessel
disease, stroke, cerebral amyloid angiopathy, diabetes, Lewy body pathology (TDP-43), or
other neurological diseases. Where the information was available, cases were selected for a

brain pH greater than 6 and all but one had a post mortem delay of less than 24 hr.

Table 1: Cohort information for locally processed samples

M:F ratio Age at death Post mortem RIN
(yrs, mean delay (hr, (mean
+/- SD) mean +/- SD) +/- SD)
Non-diseased 4:2 79.3 +/-6.5 18 +/- 6.9 49 +/-2.0
controls (Braak 0-ll)
Alzheimer’s disease | 4:2 81 +/-6.8 221+/-159 7.1 +/-0.7
(Braak 111-VI)

Immunohistochemistry

Immunohistochemical staining was performed on formalin-fixed paraffin-embedded
sections from homologous regions of each brain used for snRNASeq locally. Standard
immunohistochemical procedures were followed using the ImmPRESS Polymer (Vector

Laboratories) and SuperSensitive Polymer-HRP (Biogenex) kits (Table 2). Briefly,
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endogenous peroxidase activity and non-specific binding was blocked with 0.3% H20O, and
10% normal horse serum, respectively. Primary antibodies were incubated overnight at 4°C.
Species-specific IMmPRESS or SuperSensitive kits and DAB were used for antibody
visualization. Counter-staining for nuclei was performed by incubating tissue sections in
haematoxylin (TCS Biosciences) for 2 min. AD pathology was assessed by A plaque (4G8,

BioLegend 17-24) and pTau (AT8, NBS Biologics) staining.

Table 2. List of antibodies and immunostaining methods

Antigen
Antigen Antibody Dilution IHC Staining Kit
Retrieval
4G8 Citrate
_ . Supersensitive
Ap BioLegend 1:15,000  Buffer, in Kit
i
(800702) Steamer
AT8 Citrate
. . Supersensitive
pTau Invitrogen 1:1,600 Buffer, in Kit
i
(MN1020) Steamer

Labelled tissue sections were imaged using a Leica Aperio AT2 Brightfield Scanner (Leica
Biosystems). Images were analysed using HALO software (Indica Labs, Version 2.3.2989.34).
The following image analysis macros were used for the study: area quantification macro

(amyloid), multiplex macro (pTau).

Nuclei isolation and enrichment for lower abundancy cell populations

Local processing of the fresh frozen entorhinal and somatosensory cortical tissue blocks
began with sectioning to 80 um on a cryostat and grey matter separated by scoring the tissue
with sharp forceps to collect ~200 mg grey matter in an RNAse-free Eppendorf tube. Nuclei
from NDC and AD samples were isolated in parallel using a protocol based on Krishnaswami
et al. (2016)%*. All steps were carried out on ice or at 4°C. Tissue was homogenized in a 2 ml
glass douncer containing homogenization buffer (0.1% Triton-X + 0.4 U/ul RNAseln + 0.2 U/pl

SUPERaseln). The tissue homogenate was centrifuged at 1000 g for 8 min, and the majority
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of supernatant removed without disturbing the tissue pellet. Homogenised tissue was filtered
through a 70 um filter and centrifuged in an Optiprep (Sigma) density gradient at 13,000 g for
40 min to remove myelin and cellular debris. The nuclei pellet was washed and filtered twice
in PBS buffer (PBS + 1% BSA + 0.2 U/ml RNAseln). Isolated nuclei were labelled in
suspension in 1 ml PBS buffer with 1:500 anti-NeuN antibody (Millipore, MAB377, mouse) and
1:250 anti-Sox10 antibody (R&D, AF2864, goat) for 1 hr on ice. Nuclei were washed twice
with PBS buffer and centrifuged at 500 g for 5 min. Nuclei were incubated with Alexa-fluor
secondary antibodies at 1:1000 (goat-anti-mouse-647 and donkey-anti-goat-488) and Dapi
(1:1000) for 30 min on ice, and washed twice. Nuclei were FACS-sorted on a BD Aria Il, using
BD FACSDiva software, gating first for Dapi +ve nuclei, then singlets and then Sox10- and
NeuN-negative nuclei. A minimum of 150,000 double-negative nuclei were collected.

We also isolated nuclei, from adjacent localizations of the same tissue samples as
described above, which were not subjected to the FACS-enrichment step but were directly
processed for single nucleus capture and snRNA sequencing as described in the following
section. In this way, we obtained an unbiased representation of all the brain cell types. The
resulting dataset was used for the analysis described in the “Enrichment of brain cell types in
AD and WMH GWAS signal” section.

Sorted nuclei were centrifuged at 500 g, resuspended in 50 yl PBS buffer and counted on
a LUNA-FL Dual Fluorescence Cell Counter (Logos Biosystems, L20001) using Acridine
Orange dye to stain nuclei. Sufficient nuclei were added for a target of 7,000 nuclei for each
library prepared. Barcoding, cDNA synthesis and library preparation were performed using
10X Genomics Single Cell 3' Gene Expression kit v3 with 8 cycles of cDNA amplification, after
which up to 25 ng of cDNA was taken through to the fragmentation reaction and a final
indexing PCR was carried out to 14 cycles. cDNA concentrations were measured using Qubit
dsDNA HS Assay Kit (ThermoFisher, Q32851), and cDNA and library preparations were
assessed using the Bioanalyzer High-Sensitivity DNA Kit (Agilent, 5067-4627). Samples were
pooled to equimolar concentrations and the pool sequenced across 24 lanes of an lllumina

HiSeq 4000 according to the standard 10X Genomics protocol. The snRNAseq data will be
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made available for download from the Gene Expression Omnibus (GEO) database

(https://lwww.ncbi.nlm.nih.gov/geo/) under accession number GSE160936.

Single Nuclei RNA Sequence Analyses
Processing of FASTQ files

Locally generated snRNASeq data were pre-processed using 10X Genomics Cell
Ranger. lllumina sequencing files were aligned to the genomic sequence (introns and exons)
using GRCh38 annotation in Cell Ranger v3.1. Nuclei were identified above background by

the Cell Ranger software.

Quality control, dataset integration, dimension reduction and clustering

Feature-barcode matrices from CellRanger produced corresponding to the local dataset
produced as described above were jointly processed with the feature-barcode matrices from
a previously published dataset'®. that were downloaded from the Gene Expression Omnibus
(accession number GSE148822). Together, the two datasets were generated from 57 brain
samples. Quality control (QC), dataset integration, dimension reduction and clustering were
performed using the Nextflow pipeline nf-core/scflow®.

QC was performed separately on each sample. Nuclei that had less than 200 features
were excluded, whereas for the higher feature filtering criterion, an adaptive threshold was
estimated in each sample, which was four median absolute deviations above the median
feature number in the sample. Nuclei with more than 5% of mitochondrial gene counts were
also excluded. Only genes that had at least one count in 5 nuclei per sample were retained.
The QC also included an ambient RNA profiling using the EmptyDrops package® using default
parameters. Finally, multiple identification was performed using DoubletFinder®” using 10
principal components based on the 2000 most variable features and a pK value of 0.005.

Sample integration was performed using the Liger package (v1.0.0)" incorporated in the
nf-core/scflow pipeline (v0.7.1)%°. The k value was optimized at 20 and the lambda value at 5.

3000 genes were employed in the integration process. The integration threshold was 0.0001
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and the maximum number of performed iterations was set to 100. The normalized cell factors
from the integrated dataset were then used as an input for dimension reduction and clustering,
which was performed using UMAP?. Clustering was performed with the Leiden method using
a resolution parameter of 0.00001 and a k value of 50.

Cell-type identification of clusters was performed by plotting canonical cell markers using
the FeaturePlot function in Seurat (v3.2.3)%. To efficiently separate the vascular mural cells,
we isolated the ECs and the vascular mural cell clusters and re-ran the steps of the integration,
dimension reduction and clustering. Cluster specific genes were identified using the
FindMarkers function in Seurat (using the MAST method?® with the function arguments set to
default). To validate the cell-type specificity of the clusters and their identity, we compared the
top 100 cluster markers of our dataset with the top 100 cluster markers of the same cell types

17,21

from previously published human and mouse datasets using an overrepresentation

analysis.

Overrepresentation analysis

Overrepresentation analysis was performed to determine if the overlap between two gene
sets is significantly higher that if it occurred by chance. This was done using with the
"enrichment" function of the R package bc3net (v1.0.4) (https://github.com/cran/bc3net),
which performs a Fisher’'s exact test (FET). The p values associated with the Fisher's exact
test correspond to the probability that the overlap between the two gene sets and has occurred

by chance.

Enrichment of brain cell types in AD and WMH GWAS signal

GWAS summary statistics for AD* and WMH (a radiological manifestation of small vessel
disease)* were tested for enrichment in brain cell types using the MAGMA.Celltyping
(v1.0.1)°%® and MungeSumstats (v1.1.24)"° packages. First, summary statistics were
appropriately formatted using MungeSumstats for use with MAGMA.Celltyping. Then, SNP

associations from the summary statistics were mapped to genes using the map.snps.to.genes
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function of MAGMA. Celltyping. Next, as described for the default workflow of
MAGMA.Celltyping, genes with low variability between the cell clusters were dropped using
the drop_uninformative_genes and then quantile groups for each cell type were prepared
using the prepare.quantile.groups function.

We first calculated the enrichment in AD and WMH GWAS signal across all the brain cell
types on the dataset that had not been subjected to the FACS enrichment step to remove
neurons and oligodendrocytes (see “Nuclei isolation and enrichment for lower abundancy cell
populations” section) (Figure 1D and S9A, respectively). This was performed using the
calculate_celltype_associations function with default parameters and the “linear” enrichment
mode. This analysis was repeated after controlling for the microglial enrichment of the GWAS
signal. Next, we calculated the enrichment in AD and WMH GWAS signal on each of the
vasculature-associated cell types (EC, FB, PC and SMC) (Figure 1E and S9B, respectively).
Finally, we assessed if the enrichment of the vasculature-associated cell types in our dataset
in AD GWAS signal changed after controlling for the enrichment in WMH GWAS signal. For
this, we re-ran the calculate_celltype_associations function for the AD summary statistics and
the SNP-to-gene mapping of the WMH GWAS (that was calculated earlier with the

map.snps.to.genes function) in the genesOutCOND argument of the function.

Differential gene expression analysis

DGE analysis was performed using MAST (v1.18.0). The transcriptomic alterations in AD
vs NDC samples were assessed separately in each cell type by means of a zero-inflated
regression analysis using a mixed-effects model. The use of a mixed-effects model is
particularly important in the context of snRNAseq DGE analyses to account for the
pseudoreplication bias that would otherwise be observed if a fixed-effects-only model was
employed’’. The model specification was zlm(~diagnosis + (1|sample) + cngeneson + pc_mito
+ sex + brain_region, sca, method = "glmer", ebayes = F). The fixed effect term pc_mito
accounts for the percentage of counts mapping to mitochondrial genes. The term cngeneson

is the cellular detection rate. Each nuclei preparation was considered as a distinct sample for
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the mixed effect. Models were fit with and without the dependent variable and compared using
a likelihood ratio test. Units for differential expression are defined as log2 fold difference in AD
vs NDC nuclei. The inclusion of a “dataset” term in the model was not necessary because the
inclusion of the brain region term completely accounted for it. In the subset of samples that
corresponded to the dataset produced in our laboratory, we also performed an exploratory
regression analysis of gene expression against the two histopathological features (using pTau
or AB as markers) using MAST. The model specification was zlm(~histopath_marker +
(1|sample) + cngeneson + pc_mito + sex + brain_region, sca, method = "glmer", ebayes = F).
In this case, units for differential expression are defined as log2 fold difference/% pTau positive
cells (or log2 fold difference/% Ap plaque area), i.e., a one unit change in
immunohistochemically-defined pTau (or AB plague) density is associated with one log2-fold
change in gene expression. In both MAST analyses, genes expressed in at least 10% of nuclei
from each cell type were tested. Genes with an adjusted p-value <0.1 were defined as

meaningfully differentially expressed.

Gene ontology and pathway enrichment analysis

The gene ontology (GO) enrichment and the pathway enrichments analysis were carried
out using the R package enrichR (v 3.0), which uses Fisher's exact test (Benjamini-Hochberg
FDR < 0.1)"2. Genesets with minimum and maximum genes of 10 and 500 respectively were
considered. To improve biological interpretation of functionally related gene ontology and
pathway terms and to reduce the number of redundant gene sets, we first calculated a pairwise
distance matrix using Cohen’s kappa statistics based on the overlapping genes between the

enriched terms and then performed hierarchical clustering of the enriched terms™.

Gene co-expression analysis
Gene co-expression modules and hub-genes were identified separately for each cell type

using the MEGENA (v1.3.7) package®. MEGENA constructs a hierarchy of co-expression
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modules with larger (“parent”) that are further divided into subset (“children”) modules.
“Children” modules are subsets of the “parent” ones and have higher numbers as names than
their “parents”. To reduce the effect of noise, due to the sparsity of the expression matrix in a
snRNAseq experiment, a sample-level pseudo-bulking was performed by summing the raw
counts of all the nuclei in a sample. Genes expressed in at least 50% of the samples were
used as input. The MEGENA pipeline then was applied using default parameters, using
Pearson’s correlations and a minimum module size of 10 genes. Parent modules were
produced from which a sub-set of genes form smaller child modules. The co-expression
module hierarchy was represented graphically using Cytoscape software (Mac OS version

3.8.0)"* (Figure 3A-C).

Gene Set Enrichment Analyses (GSEA)

AUCell”® (R package v1.6.1) was used to quantify the enrichment of the co-expression
modules in our nuclei. Normalised data was processed in AUCell using
the AUCell_buildRankings function. The resulting rankings, along with the gene lists of
interest, were then put into the function AUCell_calcAUC (aucMaxRank set to 5% of the
number of input genes).

The statistical comparison of the enrichment of the co-expression modules in our AD
nuclei vs the NDC nuclei was performed using the limma package in R*. The module
enrichment matrix was log2-normalized. The default configuration of the limma package was
employed with the following linear model (which corresponds to the model employed in the
DGE analysis with MAST package): ~diagnosis+nFeature+pc_mito+brain_region+sex, where
nFeatures is the total number of distinct features expressed in each nucleus (to account for
the fact that nuclei that express a higher number of features may have higher AUCell scores).
We also corrected for a potential pseudoreplication bias’’, by using the duplicateCorrelation

function of the limma package with the sample as the “blocking” variable.

Cell-cell communication analysis
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Cell-cell communication analysis was performed using CellChat v0.5.5*. CellChat
employs a curated database of potential signalling ligand-receptor pairs from the literature.
Among all these potential ligand-receptor pairs, cell-cell interactions are identified based on
mass action models, along with differential expression analysis and statistical tests on cell
groups. The CellChat algorithm with default parameters (unless otherwise specified) was
applied to the subset of the dataset that corresponded to the ECs, FBs and PCs, separately
on the AD and NDC samples. The human CellChat database was used for the ligand-receptor
pairs. Communications that involved less that 100 nuclei were filtered out (using the min.cells
argument in the filterCommunication function). The ligand-receptor pairs involving genes that
showed differential expression in AD compared to the NDC nuclei were identified and are

documented in the text as follows: Ligand (expressing celltype(s)) — Receptor (expressing

celltype(s)).
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Figure 1. Characterisation of cell-type specific transcriptomes and their relative enrichment in
Alzheimer’s disease risk genes. (A) UMAP plot of the integrated snRNAseq dataset from 57 brain
samples. (B) UMAP plot after re-integration and clustering of the EC, FB, PC and SMC nuclei in (A),
allowing discrimination between PC (red) and SMC (cyan) nuclei (EC and FB, grey). (C) Heatmap of
the average scaled expression of representative marker genes for each cluster. (D) MAGMA.Celltyping
enrichment of brain nuclei in genomic loci associated with genetic risk for AD. The bars correspond to
the log1o p value of the enrichment (dark brown, line indicates significance threshold adjusted for all cell
types). Enrichment of vascular nuclei is reduced after controlling for genes enriched in microglia (dark
green) (F) MAGMA.Celltyping AD risk gene enrichment of nuclei of the brain vasculature (dark brown
bar, line indicates significance threshold adjusted for vascular cell types). Enrichment is not changed
substantially after controlling for the enrichment of genetic loci associated with white matter
hyperintensities (WMH) (light brown). (H) Dot plot of the average scaled per cluster expression of genes
previously associated with genetic risk for AD (size, percentage of nuclei per cluster with >1 count;
colour scale, average scaled gene expression). Abbreviations: AST, astrocytes; EC, endothelial cells;
FB, fibroblasts; MGL, microglia; NEU, neurons; EN, excitatory neurons; IN, inhibitory neurons; OLG,

oligodendrocytes; PC/SMC, pericytes and smooth muscle cells.
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Figure 2 Alzheimer’s disease is associated with dysregulation of vascular homeostasis. Volcano
plots showing genes differentially expressed in AD relative to NDC in (A) EC, (B) FB and (C) PC.
Corresponding dot plots of the functional enrichment analysis on the DEG (D-F, (dot size, functional

enrichment gene set size; colour, FDR).
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Figure 3 Gene co-expression module hierarchy for (A) EC, (B) FB and (C) PC. Modules that are
significantly differentially enriched in AD relative to NDC nuclei are represented as points in the graph
(red, upregulated modules with AD; blue, downregulated modules). (D-F) Heatmaps of odds ratios from
the functional enrichment analyses for significantly differentially enriched modules in EC (D), FB (E)

and PC (F) (red, upregulated; blue, downregulated).
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Figure 4 Exploration differentially expressed genes (DEG, AD vs. NDC) in two-layer

neighbourhoods of AD risk genes. (A) Dot plot of the overrepresentation of DEG identified in each

cluster (abscissa) in AD relative to CTR in the 2-layer neighbourhood of each GWAS gene (ordinate)

(dot size, number of the overlapping genes; colour, adjusted p value).B-D) Functional enrichment of
prioritized GWAS genes in EC (B), FB (C) and PC (D)(colour scales represent the odds ratio of the

enrichment).
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Figure 5 Circular plot of representative results from the cell-cell communication analysis
(CellChat v0.5.5). The innermost circle links connect the gene symbols of the ligands with their
corresponding receptors. The link colour denotes the diagnosis specificity (i.e. if a ligand-receptor pair
was identified only in NDC (blue), only in AD (red) or in both conditions (green). Moving outward, the
second track of the plot describes whether the gene corresponds to a ligand (black sectors) or a
receptor (grey) in the communication. Genes that were also identified as differentially expressed with
AD are highlighted (cyan, downregulated; orange, upregulated). Finally, the cell type where the ligand

or the receptor gene is expressed is denoted in the outermost track of the plot.
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Figure S1. UMAP plots of the integrated snRNAseq dataset (see Figure 1A) by diagnosis (A), sex
(B) and brain region (EntC, entorhinal cortex; OC, occipital cortex; OTC, occipital temporal cortex;

SSC, somatosensory cortex) showing that the nuclei were well mixed with respect to these parameters
after integration
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Figure S2. UMAP feature plots of canonical cell marker genes for microglia (CD74), astrocytes
(GFAP), oligodendrocytes (PLP1) and neurons (RBFOX3).
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Figure S3. UMAP feature plots of marker genes for EC (A), FB (B) and PC and SMC (C).
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Figure S4. UMAP plot after re-integration and clustering of the EC, FB, PC and SMC nuclei in the
integrated dataset (A). EC and FB nuclei are coloured in grey. Four subclusters (PC1, PC2, PC3, PC4
and SMC) correspond to PC and SMC (B). Violin plots of genes previously shown to be specific for PC
(RGS5 and GRM8) and SMC (ACTA2, MYH11).
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Figure S5 Dot plots of the overlap between cell markers for EC, FB, PC and SMC previously
identified for (A) human'” and (B) mouse?' and the cluster markers used in the present study.
The size of the dots correspond to the overlap between the cluster gene sets and the colour of the dot

to the adjusted p-value of an overrepresentation Fisher's exact test.
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Figure S6 UMAP plot of the snRNAseq dataset that was generated without prior FACS-
enrichment step to remove neurons and oligodendrocytes. AST, astrocytes; EN, excitatory
neurons; IN, inhibitory neurons; MGL, microglia; OLG, oligodendrocytes; OPC, oligodendrocyte

progenitor cells; VASC, vascular cells.
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Figure S7 UMAP plots of the snRNAseq dataset that was generated without prior FACS-
enrichment step (Figure S6) by diagnosis (A), sex (B) and brain region (EntC, entorhinal cortex;
OC, occipital cortex; OTC, occipital temporal cortex; SSC, somatosensory cortex), showing that the

nuclei were well mixed with respect to these parameters after integration.
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Figure S8. UMAP feature plots of canonical cell marker genes in the dataset of Figure S6 and S7
for microglia (CD74), astrocytes (GFAP), oligodendrocytes (PLP1), oligodendrocyte precursor
cells (PCDH15), neurons (RBFOX3, GAD2, MIAT, MEG3) and vascular cells (FLT1, RGS5, ACTA2,
COL1A1).
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Figure S9 MAGMA.Celltyping enrichment of brain nuclei in genomic loci associated with genetic
risk for WMH. The bars correspond to the logio p value of the enrichment. The dark line marks the
corrected significance threshold. Only vascular nuclei show enrichment with fully corrected significance
across the whole dataset. (F) MAGMA.Celltyping WMH risk gene enrichment of nuclei of the brain
vasculature showing no significant enrichment for any of the cell types, suggesting that the enrichment

for genomic loci associated to WMH is equally distributed among them.
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