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Abstract

Persistent sensorimotor impairments after stroke can negatively impact quality of life.
The hippocampus is involved in sensorimotor behavior but has not been widely studied within
the context of post-stroke upper limb sensorimotor impairment. The hippocampus is vulnerable
to secondary degeneration after stroke, and damage to this region could further weaken
sensorimotor circuits, leading to greater chronic sensorimotor impairment. The purpose of this
study was to investigate the cross-sectional association between non-lesioned hippocampal
volume and upper limb sensorimotor impairment in people with chronic stroke. We
hypothesized that smaller ipsilesional hippocampal volumes would be associated with worse
upper-limb sensorimotor impairment.

Cross-sectional T1-weighted brain MRIs were pooled from 357 participants at the
chronic stage after stroke (>180 days post-stroke) compiled from 18 research cohorts
worldwide in the ENIGMA Stroke Recovery Working Group (age: median = 61 years,
interquartile range = 18, range = 23-93; 135 women and 222 men). Sensorimotor impairment
was estimated from the Fugl-Meyer Assessment of Upper Extremity scores. Robust mixed-

effects linear models were used to test associations between post-stroke sensorimotor


https://doi.org/10.1101/2021.10.26.465924
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.26.465924; this version posted October 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-
corrected, p-value < 0.025), controlling for age, sex, lesion volume, and lesioned hemisphere.
We also performed an exploratory analysis to test whether sex differences influence the
relationship between sensorimotor impairment and hippocampal volume.

Upper limb sensorimotor impairment was positively associated with ipsilesional (p =
0.005; d = 0.33) but not contralesional (p = 0.96; d = 0.01) hippocampal volume, such that
impairment was worse for participants with smaller ipsilesional hippocampal volume. This
association remained significant independent of lesion volume or other covariates (p = 0.001;
d = 0.36). Evidence indicates an interaction between sensorimotor impairment and sex for both
ipsilesional (p = 0.008; d = -0.29) and contralesional (p = 0.006; d = -0.30) hippocampal
volumes, whereby women showed progressively worsening sensorimotor impairment with
smaller hippocampal volumes compared to men.

The present study has identified a novel association between chronic post-stroke
sensorimotor impairment and ipsilesional, but not contralesional, hippocampal volume. This
finding was not due to lesion size and may be stronger in women. We also provide supporting
evidence that smaller hippocampal volume post-stroke is likely a consequence of ipsilesional
damage, which could provide a link between vascular disease and other disorders, such as

dementia.
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Introduction

Sensorimotor impairments are a major burden of disease for stroke survivors®. To help
clinicians, caregivers, and patients make informed and effective rehabilitation treatment
decisions, there is a critical need to identify biomarkers that accurately predict a patient’s
potential for sensorimotor recovery?3. MRI studies of regional brain volumes suggest
secondary degeneration of adjacent or remote regions may contribute to sensorimotor
impairment and could influence post-stroke sensorimotor outcomes*>.

The hippocampus is a brain region that is particularly vulnerable to post-stroke
secondary degeneration. Both rodent® and human’1! stroke studies have shown evidence of
damage within the hippocampus in the same hemisphere as an infarct (ipsilesional), but outside
of the lesion itself. Using structural MRI, smaller ipsilesional hippocampal volumes in stroke
patients have been reported in comparison to healthy controls’'%, as well as smaller bilateral
hippocampal volumes at the time of stroke!? and accelerated hippocampal atrophy observed
most prominently three months after stroke®!. Studies have also reported magnetic resonance
spectroscopy evidence of contralesional hippocampal neuronal loss® and contralesional
hippocampal atrophy measured with longitudinal MRI!. Given that stroke-related infarctions
of the hippocampus are uncommon®34 post-stroke hippocampal atrophy is most likely
attributed to secondary degenerative mechanisms such as spreading depression® or reduced
connectivity to lesioned structures®, among others. However, the extent to which lesion
volume relates to hippocampal damage remains unclear.

The hippocampus is widely known for its key role in memory, and this has led the field
of stroke recovery research to primarily focus on the role of hippocampal damage in cognitive
impairment®71%, Although not typically considered a primary sensorimotor region, there is
evidence that the hippocampus is also involved in sensorimotor behavior. The hippocampus is

densely connected to brain areas that play an important role in sensorimotor processing such
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as the thalamus and basal ganglia through the spinal-limbic pathway'®°. Reports of hippocampal
activity during sensorimotor behavior such as sensorimotor integration®®, sensorimotor
learning'’-1%, and motor control*® suggest that the hippocampus plays a role in sensorimotor
circuits. Sensorimotor task-related functional connectivity with the hippocampus has also been
reported with the thalamus?, sensorimotor cortex'8, and the supplementary motor area?:.
However, the relationship between hippocampal structural integrity and post-stroke upper-limb
sensorimotor impairment remains unclear. Given the involvement of the hippocampus in
sensorimotor circuits, hippocampal damage due to secondary degeneration after stroke could
further weaken sensorimotor circuits, leading to greater chronic sensorimotor impairment.
Alternatively, damage to the thalamus, basal ganglia, sensorimotor cortex, or supplementary
motor area, which are typically associated with greater sensorimotor impairment, may lead to
downstream degeneration of the hippocampus through functional or structural connections.

Dementia studies?? and healthy ageing® research also suggest that hippocampal atrophy
may differ by sex, as hippocampal atrophy has been found to accelerate in post-menopausal
women. Estrogen levels may play a mediating role in these trends?* and have been associated
with stroke severity and mortality?®. Stroke-related outcomes including disability and quality
of life are generally poorer in women than men®26:27_ although conclusive sex differences have
not been reported in terms of post-stroke sensorimotor impairment®. As such, sex could
moderate the relationship between sensorimotor impairment and hippocampal volume
following a stroke. In particular, women may have smaller hippocampal volumes and worse
sensorimotor impairment, potentially leading to stronger effect sizes compared to men.

In addition, associations between lesion size and hippocampal volume remain unclear.
One study reports larger lesion size is directly associated with smaller hippocampal volumes’,

while other studies report no clear relationship®. Given this lack of consensus, we also
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investigated whether lesion size was independently associated with hippocampal volume, using
a large sample of brain MRI scans with manually segmented stroke lesions.

The current study is a first step towards examining whether there is an association
between the volume of the non-lesioned post-stroke hippocampus and sensorimotor
impairment using a large cross-sectional dataset. In this study, we aimed to investigate the
relationship between sensorimotor impairment and ipsilesional and contralesional hippocampal
volumes (separately) in 357 participants with chronic stroke across 18 cohorts from the
ENIGMA Stroke Recovery Working Group?. Due to the heterogeneity of post-stroke brain
reorganization across individuals, large consortium-based multi-site studies such as the
ENIGMA Stroke Recovery Working Group are important for achieving large and diverse
samples that can identify associations that may have otherwise been undetectable in a smaller
single-site sample*C. In addition, the diversity of data allows us to verify whether associations
are maintained beyond a single cohort, improving the robustness and generalizability of
research findings. First, we investigated associations between sensorimotor impairment and
hippocampal volume, controlling for lesion size and additional covariates of age, sex, and
lesioned hemisphere. The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) was used
as a measure of sensorimotor impairment of the paretic upper limb3.. We hypothesized that
greater post-stroke sensorimotor impairment would be correlated with smaller ipsilesional but
not contralesional hippocampal volume. Based on the involvement of the hippocampus in
sensorimotor circuits, we hypothesized that the association between ipsilesional hippocampal
volume and sensorimotor impairment would be independent of lesion size. Second, in an
exploratory analysis, we tested to see if sex had a moderating effect on the relationship between
sensorimotor impairment and hippocampal volume. Due to more severe hippocampal
vulnerability and poorer stroke outcome trends in women, we hypothesized that women would

have a stronger relationship between more severe sensorimotor impairment and smaller
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hippocampal volume than men. Finally, given the lack of consensus in the literature regarding
lesion size and hippocampal volume, we independently tested associations between lesion size
and hippocampal volume, without the FMA-UE included in the model. We hypothesized that
larger lesion size would be significantly associated with smaller ipsilesional but not

contralesional hippocampal volumes.

Materials and methods

2.1 ENIGMA Stroke Recovery Dataset

A subset of cross-sectional data from the ENIGMA Stroke Recovery Working Group
database (available as of December 15, 2020) was used. Details of the ENIGMA Stroke
Recovery procedures and methods are available in Liew et al., 2020%°. The data were collected
across 18 research studies (cohorts) conducted at 10 different research institutes in six countries
(Table 1).

ENIGMA Stroke Recovery participants with the following data were included: 1) high
resolution (1-mm isotropic) T1-weighted brain MRI (T1w) acquired with a 3T MRI scanner,
2) Fugl-Meyer Assessment of Upper Extremity score (FMA-UE; acquired on a scale from 0-
66: 0 = severe sensorimotor impairment, 66 = no sensorimotor impairment), 3) age, and 4) sex.
As we were interested in studying effects of secondary degeneration of the hippocampus, we
only included participants with chronic stroke (defined as data acquired at least 180 days post-
stroke3?). Behavioral data were collected within approximately 72 hours of the MRI. Exclusion
criteria included site-reported bilateral, brainstem, or cerebellar lesions, participants with no
identifiable lesions, and participants with no sensorimotor impairment (FMA-UE = 66). In
addition, each hippocampus was visually inspected with lesion masks overlaid, and any brains

with hippocampal lesions were excluded. The total initial sample size was N = 357 (age:

10
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median = 61 years, interquartile range (IQR) = 18, range = 23-93; FMA-UE: median =41, IQR

= 28, range = 0-65; 135 women and 222 men) (Table 1).

2.2 MRI Data Analysis

Hippodeep, an automated convolutional neural network-based hippocampal
segmentation algorithm, was used to segment ipsilesional and contralesional hippocampal
volumes as well as estimated total head size from the T1 weighted MRI®3. Hippodeep was
previously found to be the most robust out of the freely available methods for segmenting the
hippocampus in people with stroke pathology®*. Hippocampal segmentations were visually
inspected according to previously described protocols?®24. Any segmentations that were not
properly segmented were marked as failed and excluded from the analysis. This resulted in
different sample sizes for the ipsilesional and contralesional analyses. More information on
demographics of samples after quality control can be found in Supplemental Tables 1-2. We
performed a supplemental analysis using only participants with hippocampal segmentations
that passed quality control for both ipsilesional and contralesional hippocampi and confirmed
that differences in sample sizes did not significantly influence the results (see Supplemental
Tables 3-6). To account for differences in head size, hippocampal volume was normalized for
head size by taking the ratio of hippocampal volume to head size for each participant and
multiplying it by the average head size across the sample, as done in previous studies of post-

stroke hippocampal volume’:10:3,

2.3 Manually Segmented Lesions

Lesions were manually segmented on the Tlw MRI by B.L., M.D., J.S., A.Z.P., and S-
L.L. according to an updated version of the Anatomical Tracings of Lesions After Stroke

(ATLAS) protocol®. Briefly, brain lesions were identified, and masks were manually drawn

11
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on each individual brain in native space using ITK-Snap®’. Each lesion was checked for quality
by at least two different tracers. An expert neuroradiologist (G.B.) was also consulted to ensure
lesion segmentation accuracy.

Although all participants were listed by the providing research sites as having unilateral
lesions, additional secondary lesions were discovered in 100 participants during manual
tracing, which were likely silent, subclinical, and/or prior strokes. Secondary lesions were
found in both hemispheres, the brainstem, and the cerebellum, and ranged in size. For this
paper, we refer to the primary lesioned hemisphere as the lesioned hemisphere noted by the
research site. We also performed follow-up analyses excluding participants with any identified
secondary lesions, which did not significantly impact results (Supplementary Materials).
Lesion probability maps were generated by nonlinearly normalizing lesion masks and

registering them to the MNI-152 template (Figure 1).

Figure 1. Lesion density maps for primary lesions from participants with cohort-reported left
and right hemisphere lesions are overlaid on the MNI-152 template. Lesioned hemisphere
refers to the primary lesion, as reported by the research cohort. The color bar refers to the

percentage of overlapping lesions across participants.

N=186 Left Hemisphere Lesions
N=171 Right Hemisphere Lesions
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Finally, lesion volume was calculated by summing the voxels within each manually
traced lesion mask. Lesion size was also normalized for head size as previously described for
hippocampal volume in Methods Section 2.2. Lesion size was then log transformed to

normalize the distribution of the data.

2.4 Statistical Analysis

2.4.1 Hippocampal Volume and Sensorimotor Impairment

We first tested our primary hypothesis that more severe post-stroke sensorimotor
impairment is correlated with smaller ipsilesional but not contralesional hippocampal volumes
by performing robust mixed-effects linear regressions with hippocampal volume as the
dependent variable (see Model 1). Sensorimotor impairment was measured using the FMA-
UE®L Sex (coded as a binary variable: women = 0, men = 1), age, and lesioned hemisphere
(coded as binary variable: left hemisphere lesion = 0.5, right hemisphere lesion = 1.5) were
included in the model as fixed effects and cohort was included in the model as a random effect:

Hippocampus~ FMA — UE + Sex + Age + Lesioned Hemisphere + random(Cohort) (1)

Next, we tested our exploratory hypothesis that sex may have a moderating effect on
the relationship between sensorimotor impairment and hippocampal volume by including an

FMA-UE*Sex interaction covariate as a fixed effect (Model 2):

Hippocampus~ FMA — UE + Sex + FMA — UE * Sex + Age + Lesioned Hemisphere +

random(Cohort) (2)

Sex differences in sensorimotor impairment, lesion size, and age were tested using an
independent t-test.

Finally, we tested our hypothesis that sensorimotor impairment is independently
associated with hippocampal volume regardless of lesion size by including lesion size as a

fixed covariate (Model 3):

13
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Hippocampus~ Lesion Size + FMA — UE + Sex + FMA — UE * Sex + Age + Lesioned Hemisphere +

random(Cohort) (3)

2.4.2 Associations between Lesion Size and Hippocampal Volume

To investigate associations between lesion size and hippocampal volume, regardless of
sensorimotor impairment, we performed a robust mixed effects regression with ipsilesional and
contralesional hippocampal volume as dependent variables with lesion size, age, sex, and

lesioned hemisphere as fixed effects, and cohort as a random effect (Model 4):

Hippocampus~ Lesion Size + Sex + Age + Lesioned Hemisphere + random(Cohort) (4)

2.5 Statistical Tools

All statistical analyses were performed in R (version 4.0.2%). The Mahalanobis distance
was used to detect multivariate outliers®®, which were then removed from the analyses
(Supplemental Materials). All continuous measures were normalized using the scale function
in R to be analyzed as z-scores to calculate standardized beta coefficients. All mixed effects
regressions were initially run as linear mixed effects regressions (Imer function from nlme
package). Collinearity for variables in every model tested was ruled out (variance inflation
factor <2.5). Regression assumptions of linearity, normality of the residuals, and homogeneity
of the residual variance were tested by visually inspecting residuals versus fits plots as well as
qq-plots. After detecting influential observations using Cook’s distance in each analysis*°, the
analyses were repeated using robust mixed-effects regression. Robust mixed effects regression
(rlmer from the robustimm package) avoids excluding data by reducing the weight of
influential observations*:. We therefore report the results of the robust mixed effects
regression. For all analyses, beta coefficients for the factor of interest and confidence intervals

(Beta(Cl)), standard error (SE), t-value and degrees of freedom (t(DF)), standardized effect
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size (d-value), and uncorrected p-values are reported. For each analysis, a Bonferroni
correction was applied for two comparisons (ipsilesional, contralesional; corrected p-value <
0.025). Effect sizes were mapped onto a template of the hippocampus to visualize the results

using ggseg*.

Data availability

To protect the privacy of research participants, individual subject data used in this study
is not available in a public repository. Participating research cohorts vary in public data sharing
restrictions as determined by a) ethical review board and consent documents; b) national and
transnational sharing laws; and c) institutional processes that may require signed data transfer
agreements for limited, predefined data use. However, data sharing is possible for new and
participating ENIGMA Stroke Recovery working group members who agree to the
consortium’s ethical standards for data use and upon the submission of a secondary analysis
plan for group review. Upon the approval of the proposed analysis plan, access to relevant data
is provided contingent on local Pl approval, data availability, and compliance with supervening
regulatory boards. Deidentified summary data as well as code used for this study can be made

available upon reasonable request by the corresponding author.

Results

3.1 Hippocampal Volume and Sensorimotor Impairment

Greater sensorimotor impairment was significantly associated with smaller ipsilesional
(Beta = 0.16, p-value = 0.005, R?=0.27) but not contralesional (Beta = 0.003, p-value = 0.96,
R? = 0.29) hippocampal volume after adjusting for age, sex, lesioned hemisphere, and cohort

(Table 2). When including FMA-UE*Sex interaction as a covariate, we observed a better
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model fit and an increase in effect size for the association between sensorimotor impairment
and ipsilesional hippocampal volume (Beta = 0.31, p-value < 0.001, R? = 0.30; Table 3).
Furthermore, FMA-UE remained independently associated with ipsilesional hippocampal
volume after including lesion size in the model (Beta = 0.26, p-value = 0.001, R?=0.33; Table
4, Figure 2). This association remained significant when excluding participants with secondary

lesions (Beta = 0.30, p-value = 0.001, R?= 0.35; Supplemental Table 7.).
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Figure 2. Effect sizes (standardized Beta values) for ipsilesional and contralesional
hippocampi are mapped onto a template for associations between hippocampal volumes and
sensorimotor impairment (top left) and lesion size (bottom left), with warmer colors
representing stronger positive associations. Trend lines (black line) are plotted for the
association between ipsilesional hippocampal volume z-scores with FMA-UE z-scores (top

right) and lesion size z-scores (bottom right). Scatter plot points are colored by research cohort.
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3.2 Sex Effects on the Association between Hippocampal Volume and

Sensorimotor Impairment

A t-test revealed no significant differences in FMA-UE (t(260) = 1.13, p-value = 0.26)
or age (t(249) = 1.12, p-value = 0.26) between women and men. Women did have significantly
larger lesions than men (t(277) = 2.9, p-value = 0.004) (Figure 3). The FMA-UE*Sex
interaction was a significant covariate for both ipsilesional (Beta = -0.26, p-value = 0.009, R?
= 0.30) and contralesional (Beta = -0.27, p-value = 0.006, R? = 0.32) hippocampal volumes
(Figure 3, Table 3), even after accounting for lesion size (ipsilesional: Beta = -0.26, p-value =
0.008, R? = 0.33; contralesional: Beta = -0.27, p-value = 0.006, R? = 0.32; Table 4). In the
ipsilesional hippocampus, women had a positive slope (4 = 0.26) and men had a negative slope
close to 0 (# = -0.002). In the contralesional hippocampus, women had a positive slope (5 =
0.15) while men had a negative slope (5 = -0.12) (Figure 3). The FMA-UE*Sex interaction
remained significantly associated with both ipsilesional (Beta = -0.31, p-value = 0.008, R =
0.35) and contralesional (Beta = -0.28, p-value = 0.017, R?=0.32) hippocampal volumes, even

when excluding participants with secondary lesions (Supplemental Table 7).
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Figure 3. Trend lines are plotted for the association between FMA-UE z-score (x-axis) and
hippocampal volumes z-score (y-axis) for women (red) and men (blue) calculated from the
FMA-UE*Sex interactions. Histograms for FMA-UE scores (bottom left), age (bottom middle),

and lesion size (bottom right) are plotted by sex (women in red and men in blue).

Ipsilesional Hippocampus Contralesional Hippocampus
&) Women N=130 Women N=134
U)? : | Men N=206 ] | MenN=215 |
N
o
£
2 — e
go - = o T e A —
©
3
8 -2
o)
Q.
o
L _4| women p=0.26 [Men B=-0.002 Women B=0.15 [Men B=-0.12
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
FMA-UE Z-Score FMA-UE Z-Score

15
§ 10
O 5

0

0 20 40 60 20 40 60 80 5.0 75 10.0 125
FMA-UE by Sex Age by Sex Lesion Size by Sex

3.3 Hippocampal Volume and Lesion Size

Larger lesion size was significantly associated with smaller ipsilesional (Beta = -0.21,
p-value < 0.001, R?= 0.33) but not contralesional hippocampal volume (Beta = -0.03, p-value
= 0.60, R? = 0.30), after adjusting for age, sex, lesioned hemisphere, and cohort (Table 5;
Figure 2). Lesion size remained significantly associated with smaller ipsilesional, but not
contralesional, hippocampal volume, even when excluding participants with secondary lesions

(Beta = -0.18, p-value = 0.003, R?= 0.33; Supplemental Table 8).
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Discussion

In this study, associations between sensorimotor impairment, lesion size, sex and
hippocampal volume were investigated in participants with chronic stroke from 18 research
cohorts in the ENIGMA Stroke Recovery working group®. Greater sensorimotor impairment
and larger lesion sizes were both significantly associated with smaller ipsilesional hippocampal
volumes, and the association between sensorimotor impairment and hippocampal volume was
stronger in women than in men.

To our knowledge, this is the first study to report associations between hippocampal
volume and sensorimotor impairment in chronic stroke patients. Greater sensorimotor
impairment was independently associated with smaller ipsilesional hippocampal volume, even
after adjusting for lesion size. This suggests that post-stroke ipsilesional hippocampal integrity
may be related to sensorimotor impairment. Spreading depression (SD) might explain
secondary degeneration of the ipsilesional hippocampus, where neurotoxic signals from the
core of the lesion propagate to adjacent grey matter regions and cause damage® 1%, The ionic
imbalance that results from a blockage of blood supply during the acute phase of a stroke causes
a buildup of extracellular glutamate that leads to a self-propagating wave of cell depolarization
throughout neighboring gray matter®3. The hippocampus is filled with tightly packed, easily
excitable glutamatergic neurons and a high density of N-methyl-D-aspartate receptors,
making it more susceptible to damage from SD. Overexcitation of the hippocampal
glutamatergic network leads to hippocampal excitotoxicity, resulting in hippocampal neuron
apoptosis, which is thought to be reflected on a macroscale as reduced hippocampal volume?©,
The damaging effects of SD are likely more prominent in the lesioned hemisphere because SD
waves do not propagate easily through white matter®®, therefore the waves cannot easily
traverse to the contralesional hippocampus. While a magnetic resonance spectroscopy study

reported evidence of hippocampal neuronal loss in the contralesional hippocampus, it was less
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severe and not detectable using volumetric MRI%. SD is still not well understood, therefore
contralesional hippocampal damage may be caused by mild SD or might be attributed to other
forms of secondary degeneration such as diaschisis®. The available evidence is insufficient to
support SD as the key cause of reduced ipsilesional hippocampal volumes observed in this
study, however these findings could provide future directions for research investigating the
mechanisms of stroke-related hippocampal damage.

In addition to hippocampal damage incurred by SD, ipsilesional disruption to
sensorimotor circuits may cause secondary degeneration of the ipsilesional hippocampus,
possibly as a result of anatomical connectivity to damaged areas (e.g., through the thalamus?,
basal ganglial®, sensorimotor cortex*®, or supplementary motor area?!) via anterograde
degeneration. Furthermore, as the hippocampus is an important limbic system structure, it is
heavily involved in learning, memory, and emotion“t. Post-stroke cognitive impairment*’:48,
depression*’, and anxiety*® are all common pervasive symptoms in stroke survivors that
interfere with rehabilitation and are associated with poor stroke outcomes*’8. Limbic system
disruption caused by secondary post-stroke hippocampal damage may cause cognitive
impairment or aggravate symptoms of depression and anxiety, which in turn, may interfere
with stroke sensorimotor rehabilitation efforts. Further functional and longitudinal research is
necessary to understand the relationship between hippocampal damage and sensorimotor
circuits and how hippocampal volume loss may impact sensorimotor rehabilitation.

In an exploratory analysis, we found significant sex differences in the association
between FMA-UE and bilateral hippocampal volume, where women showed progressively
greater sensorimotor impairment with smaller hippocampal volumes compared to men. This
observation suggests that women with greater sensorimotor impairment may also have more
hippocampal damage or more pre-existing hippocampal atrophy compared to men. In addition,

sex differences observed in the association between sensorimotor impairment and hippocampal
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volume did not appear to be driven by age or severity of sensorimotor impairment. Although
lesion size was significantly larger in women, the FMA-UE*Sex interaction covariate was
independently associated with hippocampal volume, even when accounting for lesion size.
Overall, these findings should be considered exploratory given the unequal number of men and
women in the sample. Further research is needed to confirm these findings, as our sample was
unable to account for additional variables®®5* thought to influence the hippocampus in a sex-
dependent way such as estrogen levels?*, dementia®>>*, and depression®®. Furthermore, the
extent to which sex differences observed in stroke research are a result of physiological
differences between sexes versus different contextual factors such as treatment received by
women post-stroke remains unclear?’-%6. Further research on sex differences in stroke is crucial
to improve our understanding of the relationship between hippocampal damage and
sensorimotor impairment.

Lastly, we found that larger lesion sizes were significantly associated with smaller
hippocampal volumes, but only within the lesioned hemisphere, independent of sensorimotor
impairment. This finding is in line with a previous study’ and may indicate that smaller
hippocampal volumes observed in stroke patients may be specific to the amount of stroke-
related damage within the lesioned hemisphere beyond that which is attributed to age-related
atrophy*® or other stroke risk factors such as hypertension®” or changes in estrogen®* that are

typically observed bilaterally.

Limitations and Future Directions

This study only considered gross hippocampal volume. However, the hippocampus is
composed of structurally and functionally distinct subfields, each differentially vulnerable to
disease*®8, Structurally, reduced neuron density has been observed in the cells of the CA1 but

not CA2 subfield of post-mortem stroke patients when compared to controls®®, and larger white
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matter hyperintensity volume has been associated with reduced volume of the hippocampal-
amygdala transition area®. Functionally, while the posterior extents of the hippocampus along
the long axis are thought to be more involved with memory and cognitive processing®?, the
anterior extents have been implicated in sensorimotor integration*®. Further research
investigating sensorimotor impairment and the hippocampus at a finer resolution, such as at
the level of hippocampal subfields®® or vertex-wise associations®?, may reveal more specific
and robust relationships that can better inform the understanding the impact of hippocampal
damage on recovery and rehabilitation.

In addition, although secondary lesions were discovered while manually tracing lesion
masks, our findings did not change when participants with secondary lesions were excluded.
Further research is necessary to investigate the impact of lesion location on the association
between hippocampal volume and sensorimotor impairment.

Given the focus on hippocampal volumes, another limitation of this study is the lack of
cognitive and depression data. While cognitive and depressive scores are available for a small
number of cohorts in the ENIGMA Stroke Recovery database, the participants with available
data have very limited information. Many of the participating stroke sensorimotor
rehabilitation research studies also used cognitive impairment as an exclusion criteria®?,
resulting in participants with no or mild cognitive deficits.

Finally, the current sample is cross-sectional and cannot account for the extent of
longitudinal hippocampal atrophy that may have occurred as a result of stroke, mild cognitive
impairment, pre-existing dementia, or normal aging. This sample also does not contain data on
type of dose of rehabilitation treatment received, which could also influence sensorimotor
outcomes. However, the current cross-sectional analysis serves as a first step to examining the
relationship between hippocampal volumes, sensorimotor impairment, lesion volume and sex

and can be used to guide future questions using a longitudinal dataset.

23


https://doi.org/10.1101/2021.10.26.465924
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.26.465924; this version posted October 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Conclusion

Our findings demonstrate a novel association between chronic post-stroke sensorimotor
impairment and hippocampal volume that may be modulated by sex. We provide supporting
evidence to existing literature that reduced hippocampal volume is likely a consequence of
stroke-related damage within the lesioned hemisphere. Overall, these findings provide unique

insight into the role that the hippocampus may play in post-stroke sensorimotor impairment.
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Table 1. Demographics for ENIGMA Stroke Recovery Working Group participants included

in the study by cohort. Total sample size (N), number of women and men, and information

about age (years), Fugl-Meyer Assessment of Upper Extremity (FMA-UE), and raw lesion size

in cubic centimeters (cc) are listed. For more information regarding cohort demographics by

sex, see Supplemental Table 1-2.

Cohort Total N (Women/Men) Median Age (years) Median F'MA-UE Median Lesi.on Size (cc)
(IQR, min-max) (IQR, min-max) (IQR, min-max)
Cohort 1 39 (10/29) 61 (17, 31-80) 43 (16, 0-58) 6.1 (20.3, 0.04-120.8)
Cohort 2 12 (6/6) 69.5 (12, 39-85) 33 (27, 13-48) 28.3(28.5, 4.2-137.4)
Cohort 3 15 (6/9) 61 (17, 33-85) 16 (13, 5-40) 21.1(68.7, 0.6-182.2)
Cohort 4 19 (6/13) 44 (15, 30-68) 10 (11, 1-34) 35.8 (54.4, 4.5-313.5)
Cohort 5 28 (12/16) 64 (18, 44-81) 52 (33, 8-65) 1.9 (25.7,0.1-237.7)
Cohort 6 10 (3/7) 61 (12.5, 49-72) 65 (3, 45-65) 1.4(1.1,05-9.1)
Cohort 7 14 (5/9) 58 (12, 45-69) 63 (14, 6-65) 2.0 (2.9, 0.04-6.9)
Cohort 8 11 (4/7) 56 (12, 45-74) 48 (15, 25-55) 35.8 (50.2, 0.7-103.9)
Cohort 9 11 (3/8) 59 (3, 45-68) 38 (18, 15-49) 2.6 (21.7,0.7-53.7)
Cohort 10 8 (4/4) 58 (8, 46-73) 48 (16, 35-59) 28.4 (43.2, 0.4-59)
Cohort 11 22 (6/16) 61.5 (11, 23-75) 49 (22, 23-64) 5.6 (41.5, 0.4-201.4)
Cohort 12 13 (4/9) 57 (13, 32-80) 54 (15, 38-63) 4.8 (18.2, 0.3-98)
Cohort 13 12 (4/8) 66 (16, 31-83) 51 (26, 19-62) 4.4 (37.6, 0.2-107.5)
Cohort 14 29 (18/11) 50 (15, 25-79) 41 (13, 24-53) 12.1 (28.6, 0.1-143.6)
Cohort 15 10 (3/7) 61.5 (11, 42-76) 29 (16, 11-60) 9.1(23.4, 3-186.1)
Cohort 16 40 (14/26) 66.5 (11, 43-93) 47 (30, 4-65) 9.2 (26.1,0.5-111.8)
Cohort 17 36 (15/21) 70 (14, 37-80) 53 (27, 8-65) 7.6 (29.3, 0.3-188.4)
Cohort 18 28 (12/16) 64 (14, 34-85) 27 (5, 14-34) 5(29.4,0.7-136.9)
Total 357 (135/222) 61 (18, 23-93) 41 (28, 0-65) 7.6 (33.4, 0.04-313.5)
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Table 2. Summary statistics from robust mixed-effects linear regression to test associations
between ipsilesional hippocampal volume and sensorimotor impairment (top) and
contralesional hippocampal volume and sensorimotor impairment (bottom). The full model as
well as the sample size (N), conditional R?, beta coefficient (Beta) with 95% confidence
interval (ClI), standard error (SE), t-value and degrees of freedom t(DF), standardized d-value,
uncorrected p-value for all fixed effect covariates are reported. Significant covariates are
denoted in bold.

Hippocampus ~ FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort)

Covariates Beta(Cl) SE t(DF) d-value p-value

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R?=0.27)

FMA-UE 0.16 (0.05 - 0.27) 0.06 2.80(287) 0.33 0.005

Sex -0.53 (-0.73 —-0.33) 0.10 -5.21(324) -0.58 <0.001
Lesioned Hemisphere 0.19 (-0.01-0.39) 0.10 1.84(336) 0.20 0.06

Age -0.32 (-0.42 - -0.22) 0.05 -6.16(335) -0.67 <0.001

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R?=0.29)

FMA-UE 0.003 (-0.10 - 0.11) 0.05 0.05(238) 0.01 0.96
Sex -0.50 (-0.69 —-0.31) 0.10 -5.14(343) 056 <0.001
Lesioned Hemisphere -0.32 (-0.51 - -0.13) 0.10 -3.30(346) -0.35 0.001
Age -0.41 (-0.51-0.32) 0.05 -8.30(346) -0.89 <0.001
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Table 3. Summary statistics from robust mixed-effects linear regression to test associations

between ipsilesional hippocampal volume and sensorimotor impairment (top) and
contralesional hippocampal volume and sensorimotor impairment (bottom) when including a
sensorimotor impairment and sex interaction. The full model as well as the sample size (N),
conditional R?, beta coefficient (Beta) with 95% confidence interval (Cl), standard error (SE),
t-value and degrees of freedom t(DF), standardized d-value, uncorrected p-value for all fixed

effect covariates are reported. Significant covariates are denoted in bold.

Hippocampus ~ FMA-UE*Sex + FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort)
Covariates Beta(Cl) SE t(DF) d-value p-value
IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R?=0.30)

FMA-UE 0.31 (0.15 - 0.46) 0.08 3.86(336) 0.42 <0.001
FMA-UE*Sex -0.26 (-0.46 — -0.07) 0.10 -2.61(324) -0.29 0.009
Sex -0.53 (-0.73 —-0.33) 0.10 -5.29(336) -0.58 <0.001

Lesioned Hemisphere 0.17 (-0.03 - 0.37) 0.10 1.69(335) 0.18 0.09
Age -0.32 (-0.42 —-0.22) 0.05 -6.27(332) -0.69 <0.001

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R?=0.32)

FMA-UE 0.16 (0.01 -0.31) 0.08 2.06(334) 0.23 0.04

FMA-UE*Sex -0.27 (-0.46 — -0.08) 0.10 -2.76(348) -0.30 0.006
Sex -0.51 (-0.70 —-0.32) 0.10 -5.28(343) -0.57 <0.001
Lesioned Hemisphere -0.35(-0.54 — -0.16) 0.10 -3.58(343) -0.39 <0.001
Age -0.41 (-0.51--0.32) 0.05 -8.38(344) -0.90 <0.001
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Table 4. Summary statistics from robust mixed-effects linear regression to test associations

between ipsilesional hippocampal volume and sensorimotor impairment (top) and
contralesional hippocampal volume and sensorimotor impairment (bottom) when including
lesion size as a covariate. The full model as well as the sample size (N), conditional R?, beta
coefficient (Beta) with 95% confidence interval (Cl), standard error (SE), t-value and degrees
of freedom t(DF), standardized d-value, uncorrected p-value for all fixed effect covariates are

reported. Significant covariates are denoted in bold.

Hippocampus ~ Lesion Size + FMA-UE*Sex + FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort)
Covariates Beta(Cl) SE t(DF) d-value p-value
IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R?=0.33)
FMA-UE 0.26 (0.10 - 0.41) 0.08 3.28(332) 0.36 0.001
FMA-UE*Sex -0.26 (-0.45 —-0.07) 0.10 -2.65(332) -0.29 0.008
Lesion Size -0.19 (-0.29 —-0.09) 0.05 -3.75(333) -0.41 <0.001
Sex -0.58 (-0.78 — -0.39) 0.10 -5.91(325) -0.66 <0.001
Lesioned Hemisphere 0.17 (-0.03 - 0.36) 0.10 1.69(336) 0.18 0.09
Age -0.36 (-0.46 — -0.26) 0.05 -7.05(336) -0.77 <0.001
CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R?=0.32)
FMA-UE 0.15 (0.00 — 0.30) 0.08 1.94(338) 0.21 0.05
FMA-UE*Sex -0.27 (-0.46 — -0.08) 0.10 -2.77(348) -0.30 0.006
Lesion Size -0.03 (-0.13-0.07) 0.05 -0.56(349) -0.06 0.58
Sex -0.52 (-0.71 - -0.33) 0.10 -5.30(343) -0.57 <0.001
Lesioned Hemisphere -0.35(-0.54 — -0.16) 0.10 -3.59(343) -0.39 <0.001
Age -0.42 (-0.52 —-0.32) 0.05 -8.39(343) -0.91 <0.001
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Table 5. Summary statistics from robust mixed-effects linear regression to test associations
between ipsilesional hippocampal volume and lesion size (top) and contralesional hippocampal
volume and lesion size (bottom). The full model as well as the sample size (N), conditional R?,
beta coefficient (Beta) with 95% confidence interval (Cl), standard error (SE), t-value and
degrees of freedom t(DF), standardized d-value, uncorrected p-value for all fixed effect

covariates are reported. Significant covariates are denoted in bold.

Hippocampus ~ Lesion Size + Sex + Lesioned Hemisphere + Age + random(Cohort)

Covariates Beta(Cl) SE t(DF) d-value p-value

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R?=0.33)

Lesion Size -0.21 (-0.31--0.12) 0.05 -4.23(334) -0.46 <0.001

Sex -0.58 (-0.77 —-0.38) 0.10 -5.78(324) 064 <0.001
Lesioned Hemisphere 0.16 (-0.03 - 0.36) 0.10 1.64(336) 0.18 0.10

Age -0.35 (-0.45 — -0.25) 0.05 -6.83(335) 075 <0.001

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R?=0.30)

Lesion Size -0.03 (-0.12 - 0.07) 0.05 -0.53(348) -0.06 0.60
Sex -0.51 (-0.70 — -0.32) 0.10 -5.17(343) -0.56 <0.001
Lesioned Hemisphere -0.32 (-0.51 --0.13) 0.10 -3.34(346) -0.36 0.001
Age -0.42 (-0.52 - -0.32) 0.05 -8.36(344) -0.90 <0.001
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