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Abstract  

Persistent sensorimotor impairments after stroke can negatively impact quality of life. 

The hippocampus is involved in sensorimotor behavior but has not been widely studied within 

the context of post-stroke upper limb sensorimotor impairment. The hippocampus is vulnerable 

to secondary degeneration after stroke, and damage to this region could further weaken 

sensorimotor circuits, leading to greater chronic sensorimotor impairment. The purpose of this 

study was to investigate the cross-sectional association between non-lesioned hippocampal 

volume and upper limb sensorimotor impairment in people with chronic stroke. We 

hypothesized that smaller ipsilesional hippocampal volumes would be associated with worse 

upper-limb sensorimotor impairment. 

Cross-sectional T1-weighted brain MRIs were pooled from 357 participants at the 

chronic stage after stroke (>180 days post-stroke) compiled from 18 research cohorts 

worldwide in the ENIGMA Stroke Recovery Working Group (age: median = 61 years, 

interquartile range = 18, range = 23-93; 135 women and 222 men). Sensorimotor impairment 

was estimated from the Fugl-Meyer Assessment of Upper Extremity scores. Robust mixed-

effects linear models were used to test associations between post-stroke sensorimotor 
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impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-

corrected, p-value < 0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. 

We also performed an exploratory analysis to test whether sex differences influence the 

relationship between sensorimotor impairment and hippocampal volume.  

Upper limb sensorimotor impairment was positively associated with ipsilesional (p = 

0.005; d = 0.33) but not contralesional (p = 0.96; d = 0.01) hippocampal volume, such that 

impairment was worse for participants with smaller ipsilesional hippocampal volume. This 

association remained significant independent of lesion volume or other covariates (p = 0.001; 

d = 0.36). Evidence indicates an interaction between sensorimotor impairment and sex for both 

ipsilesional (p = 0.008; d = -0.29) and contralesional (p = 0.006; d = -0.30) hippocampal 

volumes, whereby women showed progressively worsening sensorimotor impairment with 

smaller hippocampal volumes compared to men.  

The present study has identified a novel association between chronic post-stroke 

sensorimotor impairment and ipsilesional, but not contralesional, hippocampal volume. This 

finding was not due to lesion size and may be stronger in women. We also provide supporting 

evidence that smaller hippocampal volume post-stroke is likely a consequence of ipsilesional 

damage, which could provide a link between vascular disease and other disorders, such as 

dementia.  
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Introduction  

Sensorimotor impairments are a major burden of disease for stroke survivors1. To help 

clinicians, caregivers, and patients make informed and effective rehabilitation treatment 

decisions, there is a critical need to identify biomarkers that accurately predict a patient’s 

potential for sensorimotor recovery2,3. MRI studies of regional brain volumes suggest 

secondary degeneration of adjacent or remote regions may contribute to sensorimotor 

impairment and could influence post-stroke sensorimotor outcomes4,5. 

The hippocampus is a brain region that is particularly vulnerable to post-stroke 

secondary degeneration. Both rodent6 and human7–11 stroke studies have shown evidence of 

damage within the hippocampus in the same hemisphere as an infarct (ipsilesional), but outside 

of the lesion itself. Using structural MRI, smaller ipsilesional hippocampal volumes in stroke 

patients have been reported in comparison to healthy controls7–11, as well as smaller bilateral 

hippocampal volumes at the time of stroke12 and accelerated hippocampal atrophy observed 

most prominently three months after stroke6,11. Studies have also reported magnetic resonance 

spectroscopy evidence of contralesional hippocampal neuronal loss10 and contralesional 

hippocampal atrophy measured with longitudinal MRI11. Given that stroke-related infarctions 

of the hippocampus are uncommon13,14, post-stroke hippocampal atrophy is most likely 

attributed to secondary degenerative mechanisms such as spreading depression6 or reduced 

connectivity to lesioned structures13, among others. However, the extent to which lesion 

volume relates to hippocampal damage remains unclear. 

The hippocampus is widely known for its key role in memory, and this has led the field 

of stroke recovery research to primarily focus on the role of hippocampal damage in cognitive 

impairment6,7,10. Although not typically considered a primary sensorimotor region, there is 

evidence that the hippocampus is also involved in sensorimotor behavior. The hippocampus is 

densely connected to brain areas that play an important role in sensorimotor processing such 
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as the thalamus and basal ganglia through the spinal-limbic pathway15. Reports of hippocampal 

activity during sensorimotor behavior such as sensorimotor integration16, sensorimotor 

learning17–19, and motor control18 suggest that the hippocampus plays a role in sensorimotor 

circuits. Sensorimotor task-related functional connectivity with the hippocampus has also been 

reported with the thalamus20, sensorimotor cortex18, and the supplementary motor area21. 

However, the relationship between hippocampal structural integrity and post-stroke upper-limb 

sensorimotor impairment remains unclear. Given the involvement of the hippocampus in 

sensorimotor circuits, hippocampal damage due to secondary degeneration after stroke could 

further weaken sensorimotor circuits, leading to greater chronic sensorimotor impairment. 

Alternatively, damage to the thalamus, basal ganglia, sensorimotor cortex, or supplementary 

motor area, which are typically associated with greater sensorimotor impairment, may lead to 

downstream degeneration of the hippocampus through functional or structural connections.  

Dementia studies22 and healthy ageing23 research also suggest that hippocampal atrophy 

may differ by sex, as hippocampal atrophy has been found to accelerate in post-menopausal 

women. Estrogen levels may play a mediating role in these trends24 and have been associated 

with stroke severity and mortality25. Stroke-related outcomes including disability and quality 

of life are generally poorer in women than men1,26,27, although conclusive sex differences have 

not been reported in terms of post-stroke sensorimotor impairment28. As such, sex could 

moderate the relationship between sensorimotor impairment and hippocampal volume 

following a stroke. In particular, women may have smaller hippocampal volumes and worse 

sensorimotor impairment, potentially leading to stronger effect sizes compared to men. 

In addition, associations between lesion size and hippocampal volume remain unclear. 

One study reports larger lesion size is directly associated with smaller hippocampal volumes7, 

while other studies report no clear relationship6,10. Given this lack of consensus, we also 
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investigated whether lesion size was independently associated with hippocampal volume, using 

a large sample of brain MRI scans with manually segmented stroke lesions. 

The current study is a first step towards examining whether there is an association 

between the volume of the non-lesioned post-stroke hippocampus and sensorimotor 

impairment using a large cross-sectional dataset. In this study, we aimed to investigate the 

relationship between sensorimotor impairment and ipsilesional and contralesional hippocampal 

volumes (separately) in 357 participants with chronic stroke across 18 cohorts from the 

ENIGMA Stroke Recovery Working Group29. Due to the heterogeneity of post-stroke brain 

reorganization across individuals, large consortium-based multi-site studies such as the 

ENIGMA Stroke Recovery Working Group are important for achieving large and diverse 

samples that can identify associations that may have otherwise been undetectable in a smaller 

single-site sample30. In addition, the diversity of data allows us to verify whether associations 

are maintained beyond a single cohort, improving the robustness and generalizability of 

research findings. First, we investigated associations between sensorimotor impairment and 

hippocampal volume, controlling for lesion size and additional covariates of age, sex, and 

lesioned hemisphere. The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) was used 

as a measure of sensorimotor impairment of the paretic upper limb31. We hypothesized that 

greater post-stroke sensorimotor impairment would be correlated with smaller ipsilesional but 

not contralesional hippocampal volume. Based on the involvement of the hippocampus in 

sensorimotor circuits, we hypothesized that the association between ipsilesional hippocampal 

volume and sensorimotor impairment would be independent of lesion size. Second, in an 

exploratory analysis, we tested to see if sex had a moderating effect on the relationship between 

sensorimotor impairment and hippocampal volume. Due to more severe hippocampal 

vulnerability and poorer stroke outcome trends in women, we hypothesized that women would 

have a stronger relationship between more severe sensorimotor impairment and smaller 
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hippocampal volume than men. Finally, given the lack of consensus in the literature regarding 

lesion size and hippocampal volume, we independently tested associations between lesion size 

and hippocampal volume, without the FMA-UE included in the model. We hypothesized that 

larger lesion size would be significantly associated with smaller ipsilesional but not 

contralesional hippocampal volumes. 

Materials and methods  

2.1  ENIGMA Stroke Recovery Dataset 

A subset of cross-sectional data from the ENIGMA Stroke Recovery Working Group 

database (available as of December 15, 2020) was used. Details of the ENIGMA Stroke 

Recovery procedures and methods are available in Liew et al., 202029. The data were collected 

across 18 research studies (cohorts) conducted at 10 different research institutes in six countries 

(Table 1). 

ENIGMA Stroke Recovery participants with the following data were included: 1) high 

resolution (1-mm isotropic) T1-weighted brain MRI (T1w) acquired with a 3T MRI scanner, 

2) Fugl-Meyer Assessment of Upper Extremity score (FMA-UE; acquired on a scale from 0-

66: 0 = severe sensorimotor impairment, 66 = no sensorimotor impairment), 3) age, and 4) sex. 

As we were interested in studying effects of secondary degeneration of the hippocampus, we 

only included participants with chronic stroke (defined as data acquired at least 180 days post-

stroke32). Behavioral data were collected within approximately 72 hours of the MRI. Exclusion 

criteria included site-reported bilateral, brainstem, or cerebellar lesions, participants with no 

identifiable lesions, and participants with no sensorimotor impairment (FMA-UE = 66). In 

addition, each hippocampus was visually inspected with lesion masks overlaid, and any brains 

with hippocampal lesions were excluded. The total initial sample size was N = 357 (age: 
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median = 61 years, interquartile range (IQR) = 18, range = 23-93; FMA-UE: median = 41, IQR 

= 28, range = 0-65; 135 women and 222 men) (Table 1). 

 

2.2 MRI Data Analysis 

Hippodeep, an automated convolutional neural network-based hippocampal 

segmentation algorithm, was used to segment ipsilesional and contralesional hippocampal 

volumes as well as estimated total head size from the T1 weighted MRI33. Hippodeep was 

previously found to be the most robust out of the freely available methods for segmenting the 

hippocampus in people with stroke pathology34. Hippocampal segmentations were visually 

inspected according to previously described protocols29,34. Any segmentations that were not 

properly segmented were marked as failed and excluded from the analysis. This resulted in 

different sample sizes for the ipsilesional and contralesional analyses. More information on 

demographics of samples after quality control can be found in Supplemental Tables 1-2. We 

performed a supplemental analysis using only participants with hippocampal segmentations 

that passed quality control for both ipsilesional and contralesional hippocampi and confirmed 

that differences in sample sizes did not significantly influence the results (see Supplemental 

Tables 3-6). To account for differences in head size, hippocampal volume was normalized for 

head size by taking the ratio of hippocampal volume to head size for each participant and 

multiplying it by the average head size across the sample, as done in previous studies of post-

stroke hippocampal volume7,10,35.  

 

2.3 Manually Segmented Lesions 

 Lesions were manually segmented on the T1w MRI by B.L., M.D., J.S., A.Z.P., and S-

L.L. according to an updated version of the Anatomical Tracings of Lesions After Stroke 

(ATLAS) protocol36. Briefly, brain lesions were identified, and masks were manually drawn 
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on each individual brain in native space using ITK-Snap37. Each lesion was checked for quality 

by at least two different tracers. An expert neuroradiologist (G.B.) was also consulted to ensure 

lesion segmentation accuracy.  

Although all participants were listed by the providing research sites as having unilateral 

lesions, additional secondary lesions were discovered in 100 participants during manual 

tracing, which were likely silent, subclinical, and/or prior strokes. Secondary lesions were 

found in both hemispheres, the brainstem, and the cerebellum, and ranged in size. For this 

paper, we refer to the primary lesioned hemisphere as the lesioned hemisphere noted by the 

research site. We also performed follow-up analyses excluding participants with any identified 

secondary lesions, which did not significantly impact results (Supplementary Materials). 

Lesion probability maps were generated by nonlinearly normalizing lesion masks and 

registering them to the MNI-152 template (Figure 1).  

 

Figure 1. Lesion density maps for primary lesions from participants with cohort-reported left 

and right hemisphere lesions are overlaid on the MNI-152 template. Lesioned hemisphere 

refers to the primary lesion, as reported by the research cohort. The color bar refers to the 

percentage of overlapping lesions across participants.   
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Finally, lesion volume was calculated by summing the voxels within each manually 

traced lesion mask. Lesion size was also normalized for head size as previously described for 

hippocampal volume in Methods Section 2.2. Lesion size was then log transformed to 

normalize the distribution of the data. 

 

2.4 Statistical Analysis 

2.4.1 Hippocampal Volume and Sensorimotor Impairment 

We first tested our primary hypothesis that more severe post-stroke sensorimotor 

impairment is correlated with smaller ipsilesional but not contralesional hippocampal volumes 

by performing robust mixed-effects linear regressions with hippocampal volume as the 

dependent variable (see Model 1). Sensorimotor impairment was measured using the FMA-

UE31. Sex (coded as a binary variable: women = 0, men = 1), age, and lesioned hemisphere 

(coded as binary variable: left hemisphere lesion = 0.5, right hemisphere lesion = 1.5) were 

included in the model as fixed effects and cohort was included in the model as a random effect:  

𝐻𝑖𝑝𝑝𝑜𝑐𝑎𝑚𝑝𝑢𝑠~ 𝐹𝑀𝐴 − 𝑈𝐸 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝐿𝑒𝑠𝑖𝑜𝑛𝑒𝑑 𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝐶𝑜ℎ𝑜𝑟𝑡) (1) 

 Next, we tested our exploratory hypothesis that sex may have a moderating effect on 

the relationship between sensorimotor impairment and hippocampal volume by including an 

FMA-UE*Sex interaction covariate as a fixed effect (Model 2):  

𝐻𝑖𝑝𝑝𝑜𝑐𝑎𝑚𝑝𝑢𝑠~ 𝐹𝑀𝐴 − 𝑈𝐸 + 𝑆𝑒𝑥 + 𝐹𝑀𝐴 − 𝑈𝐸 ∗ 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝐿𝑒𝑠𝑖𝑜𝑛𝑒𝑑 𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 +

𝑟𝑎𝑛𝑑𝑜𝑚(𝐶𝑜ℎ𝑜𝑟𝑡) (2) 

Sex differences in sensorimotor impairment, lesion size, and age were tested using an 

independent t-test. 

 Finally, we tested our hypothesis that sensorimotor impairment is independently 

associated with hippocampal volume regardless of lesion size by including lesion size as a 

fixed covariate (Model 3): 
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𝐻𝑖𝑝𝑝𝑜𝑐𝑎𝑚𝑝𝑢𝑠~ 𝐿𝑒𝑠𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 +  𝐹𝑀𝐴 − 𝑈𝐸 + 𝑆𝑒𝑥 + 𝐹𝑀𝐴 − 𝑈𝐸 ∗ 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝐿𝑒𝑠𝑖𝑜𝑛𝑒𝑑 𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 +

𝑟𝑎𝑛𝑑𝑜𝑚(𝐶𝑜ℎ𝑜𝑟𝑡) (3) 

 

2.4.2 Associations between Lesion Size and Hippocampal Volume 

To investigate associations between lesion size and hippocampal volume, regardless of 

sensorimotor impairment, we performed a robust mixed effects regression with ipsilesional and 

contralesional hippocampal volume as dependent variables with lesion size, age, sex, and 

lesioned hemisphere as fixed effects, and cohort as a random effect (Model 4):  

𝐻𝑖𝑝𝑝𝑜𝑐𝑎𝑚𝑝𝑢𝑠~ 𝐿𝑒𝑠𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝐿𝑒𝑠𝑖𝑜𝑛𝑒𝑑 𝐻𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝐶𝑜ℎ𝑜𝑟𝑡) (4) 

 

2.5 Statistical Tools 

All statistical analyses were performed in R (version 4.0.238). The Mahalanobis distance 

was used to detect multivariate outliers39, which were then removed from the analyses 

(Supplemental Materials). All continuous measures were normalized using the scale function 

in R to be analyzed as z-scores to calculate standardized beta coefficients. All mixed effects 

regressions were initially run as linear mixed effects regressions (lmer function from nlme 

package). Collinearity for variables in every model tested was ruled out (variance inflation 

factor ≤ 2.5). Regression assumptions of linearity, normality of the residuals, and homogeneity 

of the residual variance were tested by visually inspecting residuals versus fits plots as well as 

qq-plots. After detecting influential observations using Cook’s distance in each analysis40, the 

analyses were repeated using robust mixed-effects regression. Robust mixed effects regression 

(rlmer from the robustlmm package) avoids excluding data by reducing the weight of 

influential observations41. We therefore report the results of the robust mixed effects 

regression. For all analyses, beta coefficients for the factor of interest and confidence intervals 

(Beta(CI)), standard error (SE), t-value and degrees of freedom (t(DF)), standardized effect 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.26.465924doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465924
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

size (d-value), and uncorrected p-values are reported. For each analysis, a Bonferroni 

correction was applied for two comparisons (ipsilesional, contralesional; corrected p-value < 

0.025). Effect sizes were mapped onto a template of the hippocampus to visualize the results 

using ggseg42. 

Data availability  

To protect the privacy of research participants, individual subject data used in this study 

is not available in a public repository. Participating research cohorts vary in public data sharing 

restrictions as determined by a) ethical review board and consent documents; b) national and 

transnational sharing laws; and c) institutional processes that may require signed data transfer 

agreements for limited, predefined data use. However, data sharing is possible for new and 

participating ENIGMA Stroke Recovery working group members who agree to the 

consortium’s ethical standards for data use and upon the submission of a secondary analysis 

plan for group review. Upon the approval of the proposed analysis plan, access to relevant data 

is provided contingent on local PI approval, data availability, and compliance with supervening 

regulatory boards. Deidentified summary data as well as code used for this study can be made 

available upon reasonable request by the corresponding author. 

Results  

3.1 Hippocampal Volume and Sensorimotor Impairment 

Greater sensorimotor impairment was significantly associated with smaller ipsilesional 

(Beta = 0.16, p-value = 0.005, R2 = 0.27) but not contralesional (Beta = 0.003, p-value = 0.96, 

R2 = 0.29) hippocampal volume after adjusting for age, sex, lesioned hemisphere, and cohort 

(Table 2). When including FMA-UE*Sex interaction as a covariate, we observed a better 
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model fit and an increase in effect size for the association between sensorimotor impairment 

and ipsilesional hippocampal volume (Beta = 0.31, p-value < 0.001, R2 = 0.30; Table 3). 

Furthermore, FMA-UE remained independently associated with ipsilesional hippocampal 

volume after including lesion size in the model (Beta = 0.26, p-value = 0.001, R2 = 0.33; Table 

4, Figure 2). This association remained significant when excluding participants with secondary 

lesions (Beta = 0.30, p-value = 0.001, R2 = 0.35; Supplemental Table 7.). 
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Figure 2. Effect sizes (standardized Beta values) for ipsilesional and contralesional 

hippocampi are mapped onto a template for associations between hippocampal volumes and 

sensorimotor impairment (top left) and lesion size (bottom left), with warmer colors 

representing stronger positive associations. Trend lines (black line) are plotted for the 

association between ipsilesional hippocampal volume z-scores with FMA-UE z-scores (top 

right) and lesion size z-scores (bottom right). Scatter plot points are colored by research cohort.  
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3.2 Sex Effects on the Association between Hippocampal Volume and 

Sensorimotor Impairment 

A t-test revealed no significant differences in FMA-UE (t(260) = 1.13, p-value = 0.26) 

or age (t(249) = 1.12, p-value = 0.26) between women and men. Women did have significantly 

larger lesions than men (t(277) = 2.9, p-value = 0.004) (Figure 3). The FMA-UE*Sex 

interaction was a significant covariate for both ipsilesional (Beta = -0.26, p-value = 0.009, R2 

= 0.30) and contralesional (Beta = -0.27, p-value = 0.006, R2 = 0.32) hippocampal volumes 

(Figure 3, Table 3), even after accounting for lesion size (ipsilesional: Beta = -0.26, p-value = 

0.008, R2 = 0.33; contralesional: Beta = -0.27, p-value = 0.006, R2 = 0.32; Table 4). In the 

ipsilesional hippocampus, women had a positive slope (β = 0.26) and men had a negative slope 

close to 0 (β = -0.002). In the contralesional hippocampus, women had a positive slope (β = 

0.15) while men had a negative slope (β = -0.12) (Figure 3). The FMA-UE*Sex interaction 

remained significantly associated with both ipsilesional (Beta = -0.31, p-value = 0.008, R2 = 

0.35) and contralesional (Beta = -0.28, p-value = 0.017, R2 = 0.32) hippocampal volumes, even 

when excluding participants with secondary lesions (Supplemental Table 7).  
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Figure 3. Trend lines are plotted for the association between FMA-UE z-score (x-axis) and 

hippocampal volumes z-score (y-axis) for women (red) and men (blue) calculated from the 

FMA-UE*Sex interactions. Histograms for FMA-UE scores (bottom left), age (bottom middle), 

and lesion size (bottom right) are plotted by sex (women in red and men in blue).  

 

 

3.3 Hippocampal Volume and Lesion Size 

Larger lesion size was significantly associated with smaller ipsilesional (Beta = -0.21, 

p-value < 0.001, R2 = 0.33) but not contralesional hippocampal volume (Beta = -0.03, p-value 

= 0.60, R2 = 0.30), after adjusting for age, sex, lesioned hemisphere, and cohort (Table 5; 

Figure 2). Lesion size remained significantly associated with smaller ipsilesional, but not 

contralesional, hippocampal volume, even when excluding participants with secondary lesions 

(Beta = -0.18, p-value = 0.003, R2 = 0.33; Supplemental Table 8). 
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Discussion  

In this study, associations between sensorimotor impairment, lesion size, sex and 

hippocampal volume were investigated in participants with chronic stroke from 18 research 

cohorts in the ENIGMA Stroke Recovery working group29. Greater sensorimotor impairment 

and larger lesion sizes were both significantly associated with smaller ipsilesional hippocampal 

volumes, and the association between sensorimotor impairment and hippocampal volume was 

stronger in women than in men. 

To our knowledge, this is the first study to report associations between hippocampal 

volume and sensorimotor impairment in chronic stroke patients. Greater sensorimotor 

impairment was independently associated with smaller ipsilesional hippocampal volume, even 

after adjusting for lesion size. This suggests that post-stroke ipsilesional hippocampal integrity 

may be related to sensorimotor impairment. Spreading depression (SD) might explain 

secondary degeneration of the ipsilesional hippocampus, where neurotoxic signals from the 

core of the lesion propagate to adjacent grey matter regions and cause damage6,7,10. The ionic 

imbalance that results from a blockage of blood supply during the acute phase of a stroke causes 

a buildup of extracellular glutamate that leads to a self-propagating wave of cell depolarization 

throughout neighboring gray matter43. The hippocampus is filled with tightly packed, easily 

excitable glutamatergic neurons and a high density of N-methyl-D-aspartate receptors44, 

making it more susceptible to damage from SD. Overexcitation of the hippocampal 

glutamatergic network leads to hippocampal excitotoxicity, resulting in hippocampal neuron 

apoptosis, which is thought to be reflected on a macroscale as reduced hippocampal volume10. 

The damaging effects of SD are likely more prominent in the lesioned hemisphere because SD 

waves do not propagate easily through white matter45, therefore the waves cannot easily 

traverse to the contralesional hippocampus. While a magnetic resonance spectroscopy study 

reported evidence of hippocampal neuronal loss in the contralesional hippocampus, it was less 
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severe and not detectable using volumetric MRI10. SD is still not well understood, therefore 

contralesional hippocampal damage may be caused by mild SD or might be attributed to other 

forms of secondary degeneration such as diaschisis5. The available evidence is insufficient to 

support SD as the key cause of reduced ipsilesional hippocampal volumes observed in this 

study, however these findings could provide future directions for research investigating the 

mechanisms of stroke-related hippocampal damage.   

 In addition to hippocampal damage incurred by SD, ipsilesional disruption to 

sensorimotor circuits may cause secondary degeneration of the ipsilesional hippocampus, 

possibly as a result of anatomical connectivity to damaged areas (e.g., through the thalamus20, 

basal ganglia15, sensorimotor cortex18, or supplementary motor area21) via anterograde 

degeneration. Furthermore, as the hippocampus is an important limbic system structure, it is 

heavily involved in learning, memory, and emotion46. Post-stroke cognitive impairment47,48, 

depression47, and anxiety49 are all common pervasive symptoms in stroke survivors that 

interfere with rehabilitation and are associated with poor stroke outcomes47,48. Limbic system 

disruption caused by secondary post-stroke hippocampal damage may cause cognitive 

impairment or aggravate symptoms of depression and anxiety, which in turn, may interfere 

with stroke sensorimotor rehabilitation efforts. Further functional and longitudinal research is 

necessary to understand the relationship between hippocampal damage and sensorimotor 

circuits and how hippocampal volume loss may impact sensorimotor rehabilitation.  

In an exploratory analysis, we found significant sex differences in the association 

between FMA-UE and bilateral hippocampal volume, where women showed progressively 

greater sensorimotor impairment with smaller hippocampal volumes compared to men. This 

observation suggests that women with greater sensorimotor impairment may also have more 

hippocampal damage or more pre-existing hippocampal atrophy compared to men. In addition, 

sex differences observed in the association between sensorimotor impairment and hippocampal 
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volume did not appear to be driven by age or severity of sensorimotor impairment. Although 

lesion size was significantly larger in women, the FMA-UE*Sex interaction covariate was 

independently associated with hippocampal volume, even when accounting for lesion size. 

Overall, these findings should be considered exploratory given the unequal number of men and 

women in the sample. Further research is needed to confirm these findings, as our sample was 

unable to account for additional variables50,51 thought to influence the hippocampus in a sex-

dependent way such as estrogen levels24, dementia52–54, and depression55. Furthermore, the 

extent to which sex differences observed in stroke research are a result of physiological 

differences between sexes versus different contextual factors such as treatment received by 

women post-stroke remains unclear27,56. Further research on sex differences in stroke is crucial 

to improve our understanding of the relationship between hippocampal damage and 

sensorimotor impairment. 

Lastly, we found that larger lesion sizes were significantly associated with smaller 

hippocampal volumes, but only within the lesioned hemisphere, independent of sensorimotor 

impairment. This finding is in line with a previous study7 and may indicate that smaller 

hippocampal volumes observed in stroke patients may be specific to the amount of stroke-

related damage within the lesioned hemisphere beyond that which is attributed to age-related 

atrophy46 or other stroke risk factors such as hypertension57 or changes in estrogen24 that are 

typically observed bilaterally.  

 

Limitations and Future Directions 

This study only considered gross hippocampal volume. However, the hippocampus is 

composed of structurally and functionally distinct subfields, each differentially vulnerable to 

disease46,58. Structurally, reduced neuron density has been observed in the cells of the CA1 but 

not CA2 subfield of post-mortem stroke patients when compared to controls59, and larger white 
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matter hyperintensity volume has been associated with reduced volume of the hippocampal-

amygdala transition area60. Functionally, while the posterior extents of the hippocampus along 

the long axis are thought to be more involved with memory and cognitive processing61, the 

anterior extents have been implicated in sensorimotor integration46. Further research 

investigating sensorimotor impairment and the hippocampus at a finer resolution, such as at 

the level of hippocampal subfields58 or vertex-wise associations62, may reveal more specific 

and robust relationships that can better inform the understanding the impact of hippocampal 

damage on recovery and rehabilitation. 

In addition, although secondary lesions were discovered while manually tracing lesion 

masks, our findings did not change when participants with secondary lesions were excluded. 

Further research is necessary to investigate the impact of lesion location on the association 

between hippocampal volume and sensorimotor impairment. 

Given the focus on hippocampal volumes, another limitation of this study is the lack of 

cognitive and depression data. While cognitive and depressive scores are available for a small 

number of cohorts in the ENIGMA Stroke Recovery database, the participants with available 

data have very limited information. Many of the participating stroke sensorimotor 

rehabilitation research studies also used cognitive impairment as an exclusion criteria63, 

resulting in participants with no or mild cognitive deficits.  

Finally, the current sample is cross-sectional and cannot account for the extent of 

longitudinal hippocampal atrophy that may have occurred as a result of stroke, mild cognitive 

impairment, pre-existing dementia, or normal aging. This sample also does not contain data on 

type of dose of rehabilitation treatment received, which could also influence sensorimotor 

outcomes. However, the current cross-sectional analysis serves as a first step to examining the 

relationship between hippocampal volumes, sensorimotor impairment, lesion volume and sex 

and can be used to guide future questions using a longitudinal dataset. 
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Conclusion 

Our findings demonstrate a novel association between chronic post-stroke sensorimotor 

impairment and hippocampal volume that may be modulated by sex. We provide supporting 

evidence to existing literature that reduced hippocampal volume is likely a consequence of 

stroke-related damage within the lesioned hemisphere. Overall, these findings provide unique 

insight into the role that the hippocampus may play in post-stroke sensorimotor impairment. 
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Table 1. Demographics for ENIGMA Stroke Recovery Working Group participants included 

in the study by cohort. Total sample size (N), number of women and men, and information 

about age (years), Fugl-Meyer Assessment of Upper Extremity (FMA-UE), and raw lesion size 

in cubic centimeters (cc) are listed. For more information regarding cohort demographics by 

sex, see Supplemental Table 1-2. 

Cohort Total N (Women/Men) 
Median Age (years) 

(IQR, min-max) 

Median FMA-UE  

(IQR, min-max) 

Median Lesion Size (cc) 

(IQR, min-max) 

Cohort 1 39 (10/29) 61 (17, 31-80) 43 (16, 0-58) 6.1 (20.3, 0.04-120.8) 

Cohort 2 12 (6/6) 69.5 (12, 39-85) 33 (27, 13-48) 28.3 (28.5, 4.2-137.4) 

Cohort 3 15 (6/9) 61 (17, 33-85) 16 (13, 5-40) 21.1 (68.7, 0.6-182.2) 

Cohort 4 19 (6/13) 44 (15, 30-68) 10 (11, 1-34) 35.8 (54.4, 4.5-313.5) 

Cohort 5 28 (12/16) 64 (18, 44-81) 52 (33, 8-65) 1.9 (25.7, 0.1-237.7) 

Cohort 6 10 (3/7) 61 (12.5, 49-72) 65 (3, 45-65) 1.4 (1.1, 0.5-9.1) 

Cohort 7 14 (5/9) 58 (12, 45-69) 63 (14, 6-65) 2.0 (2.9, 0.04-6.9) 

Cohort 8 11 (4/7) 56 (12, 45-74) 48 (15, 25-55) 35.8 (50.2, 0.7-103.9) 

Cohort 9 11 (3/8) 59 (3, 45-68) 38 (18, 15-49) 2.6 (21.7, 0.7-53.7) 

Cohort 10 8 (4/4) 58 (8, 46-73) 48 (16, 35-59) 28.4 (43.2, 0.4-59) 

Cohort 11 22 (6/16) 61.5 (11, 23-75) 49 (22, 23-64) 5.6 (41.5, 0.4-201.4) 

Cohort 12 13 (4/9) 57 (13, 32-80) 54 (15, 38-63) 4.8 (18.2, 0.3-98) 

Cohort 13 12 (4/8) 66 (16, 31-83) 51 (26, 19-62) 4.4 (37.6, 0.2-107.5) 

Cohort 14 29 (18/11) 50 (15, 25-79) 41 (13, 24-53) 12.1 (28.6, 0.1-143.6) 

Cohort 15 10 (3/7) 61.5 (11, 42-76) 29 (16, 11-60) 9.1 (23.4, 3-186.1) 

Cohort 16 40 (14/26) 66.5 (11, 43-93) 47 (30, 4-65) 9.2 (26.1, 0.5-111.8) 

Cohort 17 36 (15/21) 70 (14, 37-80) 53 (27, 8-65) 7.6 (29.3, 0.3-188.4) 

Cohort 18 28 (12/16) 64 (14, 34-85) 27 (5, 14-34) 5 (29.4, 0.7-136.9) 

Total 357 (135/222) 61 (18, 23-93) 41 (28, 0-65) 7.6 (33.4, 0.04-313.5) 
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Table 2. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and sensorimotor impairment (top) and 

contralesional hippocampal volume and sensorimotor impairment (bottom). The full model as 

well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), t-value and degrees of freedom t(DF), standardized d-value, 

uncorrected p-value for all fixed effect covariates are reported. Significant covariates are 

denoted in bold.  

Hippocampus ~ FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE t(DF) d-value p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R2=0.27) 

FMA-UE 0.16 (0.05 – 0.27) 0.06 2.80(287) 0.33 0.005 

Sex -0.53 (-0.73 – -0.33) 0.10 -5.21(324) -0.58 <0.001 

Lesioned Hemisphere 0.19 (-0.01 – 0.39) 0.10 1.84(336) 0.20 0.06 

Age -0.32 (-0.42 – -0.22) 0.05 -6.16(335) -0.67 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R2=0.29) 

FMA-UE 0.003 (-0.10 – 0.11) 0.05 0.05(238) 0.01 0.96 

Sex -0.50 (-0.69 – -0.31) 0.10 -5.14(343) -0.56 <0.001 

Lesioned Hemisphere -0.32 (-0.51 – -0.13) 0.10 -3.30(346) -0.35 0.001 

Age -0.41 (-0.51 – 0.32) 0.05 -8.30(346) -0.89 <0.001 
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Table 3. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and sensorimotor impairment (top) and 

contralesional hippocampal volume and sensorimotor impairment (bottom) when including a 

sensorimotor impairment and sex interaction. The full model as well as the sample size (N), 

conditional R2, beta coefficient (Beta) with 95% confidence interval (CI), standard error (SE), 

t-value and degrees of freedom t(DF), standardized d-value, uncorrected p-value for all fixed 

effect covariates are reported. Significant covariates are denoted in bold.  

Hippocampus ~ FMA-UE*Sex + FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE t(DF) d-value p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R2=0.30) 

FMA-UE 0.31 (0.15 – 0.46) 0.08 3.86(336) 0.42 <0.001 

FMA-UE*Sex -0.26 (-0.46 – -0.07) 0.10 -2.61(324) -0.29 0.009 

Sex -0.53 (-0.73 – -0.33) 0.10 -5.29(336) -0.58 <0.001 

Lesioned Hemisphere 0.17 (-0.03 – 0.37) 0.10 1.69(335) 0.18 0.09 

Age -0.32 (-0.42 – -0.22) 0.05 -6.27(332) -0.69 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R2=0.32) 

FMA-UE 0.16 (0.01 – 0.31) 0.08 2.06(334) 0.23 0.04 

FMA-UE*Sex -0.27 (-0.46 – -0.08) 0.10 -2.76(348) -0.30 0.006 

Sex -0.51 (-0.70 – -0.32) 0.10 -5.28(343) -0.57 <0.001 

Lesioned Hemisphere -0.35 (-0.54 – -0.16) 0.10 -3.58(343) -0.39 <0.001 

Age -0.41 (-0.51 – -0.32) 0.05 -8.38(344) -0.90 <0.001 
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Table 4. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and sensorimotor impairment (top) and 

contralesional hippocampal volume and sensorimotor impairment (bottom) when including 

lesion size as a covariate. The full model as well as the sample size (N), conditional R2, beta 

coefficient (Beta) with 95% confidence interval (CI), standard error (SE), t-value and degrees 

of freedom t(DF), standardized d-value, uncorrected p-value for all fixed effect covariates are 

reported. Significant covariates are denoted in bold.  

Hippocampus ~ Lesion Size + FMA-UE*Sex + FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE t(DF) d-value p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R2=0.33) 

FMA-UE 0.26 (0.10 – 0.41) 0.08 3.28(332) 0.36 0.001 

FMA-UE*Sex -0.26 (-0.45 – -0.07) 0.10 -2.65(332) -0.29 0.008 

Lesion Size -0.19 (-0.29 – -0.09) 0.05 -3.75(333) -0.41 <0.001 

Sex -0.58 (-0.78 – -0.39) 0.10 -5.91(325) -0.66 <0.001 

Lesioned Hemisphere 0.17 (-0.03 – 0.36) 0.10 1.69(336) 0.18 0.09 

Age -0.36 (-0.46 – -0.26) 0.05 -7.05(336) -0.77 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R2=0.32) 

FMA-UE 0.15 (0.00 – 0.30) 0.08 1.94(338) 0.21 0.05 

FMA-UE*Sex -0.27 (-0.46 – -0.08) 0.10 -2.77(348) -0.30 0.006 

Lesion Size -0.03 (-0.13 – 0.07) 0.05 -0.56(349) -0.06 0.58 

Sex -0.52 (-0.71 – -0.33) 0.10 -5.30(343) -0.57 <0.001 

Lesioned Hemisphere -0.35 (-0.54 – -0.16) 0.10 -3.59(343) -0.39 <0.001 

Age -0.42 (-0.52 – -0.32) 0.05 -8.39(343) -0.91 <0.001 
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Table 5. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and lesion size (top) and contralesional hippocampal 

volume and lesion size (bottom). The full model as well as the sample size (N), conditional R2, 

beta coefficient (Beta) with 95% confidence interval (CI), standard error (SE), t-value and 

degrees of freedom t(DF), standardized d-value, uncorrected p-value for all fixed effect 

covariates are reported. Significant covariates are denoted in bold.  

Hippocampus ~ Lesion Size + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE t(DF) d-value p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R2=0.33) 

Lesion Size -0.21 (-0.31 – -0.12) 0.05 -4.23(334) -0.46 <0.001 

Sex -0.58 (-0.77 – -0.38) 0.10 -5.78(324) -0.64 <0.001 

Lesioned Hemisphere 0.16 (-0.03 – 0.36) 0.10 1.64(336) 0.18 0.10 

Age -0.35 (-0.45 – -0.25) 0.05 -6.83(335) -0.75 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R2=0.30) 

Lesion Size -0.03 (-0.12 – 0.07) 0.05 -0.53(348) -0.06 0.60 

Sex -0.51 (-0.70 – -0.32) 0.10 -5.17(343) -0.56 <0.001 

Lesioned Hemisphere -0.32 (-0.51 – -0.13) 0.10 -3.34(346) -0.36 0.001 

Age -0.42 (-0.52 – -0.32) 0.05 -8.36(344) -0.90 <0.001 
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