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Abstract 

New therapeutic strategies to reduce sepsis-related mortality are urgently needed, as sepsis 

accounts for 1 in 5 deaths worldwide. Since hematopoietic stem and progenitor cells (HSPCs) are 

responsible for producing blood and immune cells, including in response to immunological stress, 

we explored their potential for treating sepsis. In a mouse model of Group A Streptococcus (GAS)-

induced sepsis, severe immunological stress was associated with significant depletion of bone 

marrow HSPCs and mortality within approximately 5-7 days. We hypothesized that the 

inflammatory environment of GAS infection drives rapid HSPC differentiation and depletion that 

can be rescued by infusion of donor HSPCs. Indeed, infusion of 10,000 naïve HSPCs into GAS-

infected mice resulted in rapid myelopoiesis and a 50-60% increase in overall survival. 

Surprisingly, mice receiving donor HSPCs displayed a similar pathogen load compared to 

untreated mice. Flow cytometric analysis revealed a significantly increased number of myeloid-

derived suppressor cells in HSPC-infused mice, which correlated with reduced inflammatory 

cytokine levels and restored HSPC levels. These findings suggest that HSPCs play an essential 

immunomodulatory role that may translate into new therapeutic strategies for sepsis.  
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Introduction 

Sepsis accounts for one in five deaths worldwide and is a common final pathway for many 

disease processes such as cancer, diabetes, and cardiovascular disease (1). Sepsis is an 

inflammatory syndrome largely driven by the activation of immune cells by pathogen associated 

molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) (2,3). After 

recognizing these molecules via pattern recognition receptors (PRR), immune cells become 

activated and produce proinflammatory cytokines, notably interleukins IL-1, IL-6, interferons 

(IFNs), and tumor necrosis factor that contribute to fever, vasodilation, and multiorgan dysfunction 

(3–6). For patients that progress to septic shock, mortality rates remain as high as 40% (7).  

Leukopenia is a feature of severe sepsis that arises from apoptosis of peripheral immune 

cells and is an independent risk factor for death. To counteract the adverse effects of leukopenia, 

investigators have used immunotherapies such as GM-CSF (8) or granulocyte infusions in an 

attempt to restore leukocyte numbers and improve survival. These strategies have produced 

mixed results (9–11). The benefits of granulocyte infusions in cancer patients with fever and 

neutropenia are limited by the difficulty of obtaining sufficient cells and the short-lived nature of 

those cells (12,13).  

Recent work from our group and others indicates that hematopoietic stem and progenitor 

cells (HSPCs) express surface receptors for cytokines, chemokines, and pathogen-associated 

molecular patterns (PAMPs) (14–21) and respond rapidly upon direct and indirect stimulation by 

these signals. HSPCs, the progenitors of all blood and immune cells, are comprised of five 

subgroups of hematopoietic cells: hematopoietic stem cells (HSC) which have long term self-

renewal capacity, and four types of multipotent progenitors (MPP 1-4), which are defined by lower 

self-renewal capacity and myeloid or lymphoid differentiation biases (6,22–26). Immune 

responses induce HSPCs in the bone marrow (BM) to produce effector immune cells via a process 
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called emergency hematopoiesis (18,20–22,27,28). The capacity of HSPCs to directly detect 

pathogen-derived molecules, cytokines, and chemokines suggests that emergency 

granulopoiesis can be mobilized from even the most primitive hematopoietic progenitors and that 

HSPCs have an active role in fighting infections. However, the extent and mechanism by which 

HSPC responses contribute to immunity in the acute setting remain poorly defined. 

We recently showed that chronic inflammatory stress impairs HSPC quiescence and self-

renewal while promoting their activation and terminal differentiation (28). Upon direct sensing of 

inflammatory cytokines such as interferon gamma (IFNg), HSCs are dislodged from their normal 

position near quiescence-enforcing CXCL12-abundant reticular cells in the niche. Inflammatory 

signaling induces transcription factors such as Pu.1, CEBPb, and BATF2 (18,20,28,29) to 

promote myeloid differentiation, leading to the expansion of granulocyte and monocyte 

populations. Disruption of the homeostatic balance of self-renewal and differentiation eventually 

leads to depletion of the progenitor compartment (20,22,28). Collectively, these studies point 

toward a direct role for HSPCs in supplying the myeloid cells critical to the immune response 

against infection.  

To test their contribution to immune responses during acute infection, we examined the 

role of HSPCs in a mouse model of Streptococcus pyogenes infection, also known as Group A 

Streptococcus (GAS). GAS is a common pathogen that causes a plethora of diseases, from mild 

skin infections to life-threatening necrotizing fasciitis and sepsis (6,30–32). GAS infections can 

infiltrate the bloodstream and other organs, causing high systemic levels of inflammatory 

cytokines including IFNg, TNF, IL-1, and IL-6. As HSPCs have been shown to activate and 

differentiate in response to these cytokines (15,18,20–22,33–35), in this study we sought to 

determine the role of HSPCs in immune responses against infections. 

Here we found that GAS infection significantly depletes HSPCs in the bone marrow. We 

tested the idea of infusing HSPCs to restore the hematopoietic progenitor pool. Mice treated with 
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HSPCs showed restored HSPC numbers in the BM, increased myeloid cell production, and 

significantly improved overall survival. Surprisingly, HSPC infusion did not reduce pathogen 

burden. Instead, HSPC infusion correlated with a significant increase in the abundance of 

myeloid-derived suppressor cells (MDSCs) and a dampening of overall systemic inflammation. In 

summary, our studies indicate that HSPCs contribute to survival from sepsis by supporting the 

production of immunosuppressive MDSCs. 
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Results 

GAS infection induces trafficking of myeloid cells from the BM into circulation. 

To characterize the impact of acute infections on the hematopoietic system, we inoculated 

mice by intramuscular injection of the hind leg with 2x106 colony forming units (CFU) of the model 

pathogen S. pyogenes strain MGAS315. To characterize differentiated hematopoietic populations 

during infection, we performed flow cytometric analysis of BM and peripheral blood (PB) lineage 

cells 24h after GAS infection (Figure 1A) and collected serum for cytokine analyses. BM 

characterization of lineage cells showed a significant decrease in BM monocytes (Figure 1C) and 

granulocytes (Figure 1D) with no change in BM B- or T cells (Figure 1E & 1F). In contrast, PB 

lineage composition was significantly skewed towards myeloid cells with significantly higher 

circulating monocytes and granulocytes (Figure 1G & 1H) and lower lymphoid cells (Figure 1I & 

1J). Serum cytokine characterization showed a significant increase in monocyte chemoattractant 

protein-1 (MCP-1; also known as CCL2) (Figure 1B). These results suggest that myeloid cells 

exit the BM into circulation following an MCP-1 gradient, consistent with prior studies showing 

MCP-1-driven mobilization during inflammation (36,37).  

 

GAS infection depletes bone marrow HSPCs without evidence of extramedullary hematopoiesis. 

After 24h of infection, the state of HSPCs in the infected mice were analyzed by flow 

cytometry of bone marrow (BM) and spleen (Figure 2A) (See Table 1 for surface markers). BM 

cells were not gated for the common stem cell marker SCA1 (Figure 2B), since it has been 

previously described to be non-specifically expressed during inflammatory stress (19). The total 

number of HSPCs dropped significantly in just 24 hours in GAS-infected mice (Figure 2C). More 

specifically, HSPC subpopulations including HSCs, multipotent progenitor 3 (MPP3s), and 

MPP4s were significantly lower in GAS-infected mice (Figure 2D, 2E, and 2F).  
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 Extramedullary hematopoiesis is the proliferation and differentiation of HSCs in tissues 

other than the bone marrow, the canonical stem cell niche. The spleen is one of the most common 

sites of extramedullary hematopoiesis during infections (38). To assess whether a reciprocal 

increase in extramedullary hematopoiesis accompanied loss of HSPCs in the BM, we analyzed 

spleen tissue by flow cytometry. While there was a slight increase in total HSPCs in the spleen 

(Figure 2G), there was no significant change in spleen populations that include HSCs/MPP1, 

MPP2s, or MPP3/4 (Figure 2H-2J). This finding suggests that the loss of BM HSPC populations 

is not simply a result of migration from the BM into the spleen.  

 

GAS infection induces HSC myeloid differentiation. 

Activation of HSPCs by PAMPs or cytokines promotes their proliferation and differentiation 

(16,18,20–22,39). To determine the lineage fate of endogenous HSPCs following GAS infection, 

we performed lineage tracing experiments using the tamoxifen-inducible KRT18-CreERT2 : 

Rosa26-lox-STOP-lox-TdTomato mouse system (Figure 3A). Within the BM, Krt18 is almost 

exclusively expressed in HSCs (40) and these mice do not have any immunological impairment 

that would change the severity of our infection model. Tamoxifen induction activates the CreERT2 

protein in Krt18-expressing HSCs, resulting in irreversible TdTomato expression in HSCs and 

their newly formed progeny (Figure 3B).  

After five days of intraperitoneal injections of tamoxifen, mice were inoculated with GAS 

or saline. Since the average mammalian cell cycle takes 24h, we decided to trace the lineage of 

hematopoiesis 72h post GAS infection. After these 72 hours, BM and PB was harvested for flow 

cytometric analysis. Analysis of the BM showed that GAS infection induced the production of new 

HSPCs, which includes short term HSCs and MPPs (Figure 3C-3D). In addition, there was 

significant labeling of CD41+ HSCs, a myeloid-biased and proinflammatory subset of HSCs 

(Figure 3E) (41) and new cells of the myeloid lineage (Figure 3F-3H). While we found a significant 
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increase in new BM monocytes (Figure 3G), there was no significant change in the frequency of 

TdTomato-labeled granulocyte/monocyte progenitors (GMPs) (Figure 3I), which may simply 

reflect a rapid flow through this compartment to terminally differentiated populations. We also saw 

no statistically significant increase in BM granulocytes (Figure 3H); however, PB analysis showed 

a significant increase in new myeloid cells in both monocytic and granulocytic branches (Figure 

3L-3N). While there was a significant decrease in the production of new BM T cells (Figure 3J), 

there was no change in BM B cells (Figure 3K) nor PB T or B cells (Figure 3O-P). These data 

suggest that endogenous HSCs undergo rapid emergency myelopoiesis during GAS infection. 

 

HSPC infusion promotes survival in GAS-infected mice. 

Given that HSPCs are activated to divide and differentiate into immune effector cells upon 

inflammatory stimulation and we observed an acute loss of HSPCs in GAS-infected mice, we 

hypothesized that infusion of naïve HSPCs (Lin- Sca-1+ c-Kit+) into GAS-infected mice could 

improve pathogen clearance, reduce tissue damage, and prolong survival. To test this hypothesis, 

we infected mice with 2x106 CFU MGAS315 and then infused 10,000 FACS-purified HSPCs 24h 

later, when endogenous HSPCs are significantly decreased (Figure 4A). This HSPC dose, 

equivalent to approximately 1.7x107 cells per m2 body surface area, is significantly lower than the 

dose used for granulocyte infusions, typically between 108-1010 cells per m2 (42). On day three 

post-infection, we harvested BM, limb tissue, and spleen to characterize BM populations and 

pathogen load (Figure 4B).  

BM characterization showed that HSPC infusion restored the relative abundance of 

HSPCs, HSCs, and myeloid-biased progenitors, such as MPP3s and GMPs, in the BM (Figure 

4C-4H. We observed that GAS-infected mice that received HSPCs showed lower morbidity than 

non-rescued mice, with improved overall body score and activity level. To assess survival, we 

performed Kaplan-Meier survival studies of GAS-infected mice in the absence or presence of 
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HSPC rescue (Figure 4K). GAS infected mice infused with HSPCs had significantly higher 

survival than non-rescued mice (Figure 4L). However, to our surprise, HSPC infusion did not 

significantly affect the pathogen burden in the infected muscle (Figure 4I) or pathogen spread to 

other tissues (Figure J). Overall, these findings suggest that HSPC infusion is beneficial during 

GAS infections and promotes survival by a mechanism other than pathogen clearance. 

 

Superinfection further depletes HSPCs in mice. 

To determine the extent of the protective potential of HSPC infusion during infections, we 

tested the efficacy of HSPC rescue in a mouse model of influenza and GAS superinfection. Here 

we used a model of influenza and Streptococcus pyogenes (strain MGAS315) bacterial 

superinfection. Mice were infected with influenza (strain H1N1 PR8) by intranasal injection of 150 

plaque-forming units (PFU). On day three post influenza virus infection, which represents peak 

viral replication for humans and mice (43,44), we injected mice with 2x106 CFU MGAS315 by IM 

inoculation (Supplemental figure 1A). On day four (24h post GAS infection), we analyzed bone 

marrow and PB. Lin- cells in the BM showed phenotypical differences in surface expression of 

Sca-1 and c-Kit proteins depending on the pathogen combination (19) (Supplemental figure 1B). 

In addition, superinfection caused a severe decrease in HSPCs and their subpopulations 

(Supplemental figure 1C-1H). Most notably, the absolute number of HSCs was reduced to 20-

30% of a healthy mouse (Supplemental figure 1D).  

We also analyzed BM and PB lineage populations of superinfected mice (Supplemental 

figure 2A). Similar to GAS-infected mice, superinfection led to an increase in serum levels of 

MCP-1 (Supplemental figure 2B) that resulted in the exit of BM monocytes and BM granulocytes 

(Supplemental figure 2C & 2G) into circulation (Supplemental figure 2D & 2H). BM B cell and 

T cell numbers did not change (Supplemental figure 2E & 2I), while the abundance of circulating 
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B and T cells was reduced in GAS infected and superinfected mice (Supplemental figure 2F & 

2J). 

 

HSPC infusion promotes survival in superinfected mice and increases levels of HSPCs and 

myeloid progenitors in the BM. 

The loss of HSPCs and HSCs was very prominent in superinfected mice, more so than in 

mice infected with GAS alone. Therefore, we hypothesized that an infusion of 10,000 HSPCs 

would also benefit mice in this model of superinfection (Figure 5A). As expected, HSPC infusion 

significantly increased HSPCs and myeloid-biased progenitors in superinfected mice (Figure 5B-

5G). As seen in GAS-infected mice, HSPC infusion did not promote bacterial (Figure 5H) or viral 

(Figure 5I) clearance in superinfected mice. The spread of bacteria to the spleen was also 

unaffected by HSPC infusion (Figure 5J). 

Despite the severity of the infection, superinfected mice that received an HSPC infusion 

(Figure 5K) had significantly improved survival compared to non-rescued mice (Figure 5L). This 

finding suggests that the protective properties of HSPC infusion are effective even in this very 

severe model of infection. 

 

HSPC infusion increases immunomodulatory MDSCs and prevents sepsis-induced cytokine 

exacerbation.  

Production of proinflammatory cues including IL1, IL6, IL8, TNF, and MIP1a is a key driver 

of morbidity during sepsis. Together, these cues contribute to systemic inflammatory response 

syndrome (SIRS), including fever, tachypnea, vasodilation, and circulatory collapse (5,45). These 

cytokines are independently associated with poor outcomes and death from sepsis in humans. 

Since we observed improved survival in mice receiving HSPC infusion without any changes in 
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pathogen load, we hypothesized that HSPCs could impact immunomodulatory cell composition 

and the inflammatory response to severe infection. Upon analysis of PB and BM populations after 

HSPC infusion (Figure 6A), there were no changes in BM or PB T lymphocytes that could indicate 

a Treg-related activity (Supplemental Figure 3A & 3B). However, we found that HSPC infusion 

significantly increased PB PMN-MDSCs (Figure 6B) and restored PB M-MDSCs levels (Figure 

6C). Similarly, HSPC infusion restored BM PMN-MDSCs and M-MDSCs populations in GAS-

infected mice (Figure 6D & 6E). These cells were functionally validated (Supplemental figure 

3C) as immunosuppressive cells by their ability to reduce activated T cell proliferation in culture 

(Supplemental figure 3D). Strikingly, cytokine profiling 72 hours after GAS infection showed 

reduced overall levels of proinflammatory cytokines in GAS-infected mice that received HSPC 

infusion (Figure 6F). These findings suggest that HSPC infusion supports the production of 

MDSC populations sufficient to dampen maladaptive proinflammatory cues during sepsis. 

 

Infused HSPCs do not engraft but produce myeloid cells including MDSCs. 

 In order to determine whether infused HSPCs directly differentiate into MDSCs, we 

performed lineage tracing experiments using expression of the CD45.1 variant to distinguish 

infused HSPCs from endogenous cells. Thirty days after infusion, the CD45.1+ cell compartment 

showed no HSCs but a low number of MPP1 and myeloid biased MPP3s in the BM (Figure 7A). 

Lineage analysis in the BM showed that these cells gave rise to more myeloid cells compared to 

lymphoid. Furthermore, a fraction of the cells became new monocytic-MDSCs (M-MDSCs) and 

polymorphonuclear-MDSCs (PMN-MDSCs) (Figure 7B). Upon examination of the peripheral 

blood, circulating CD45.1 were primarily myeloid cells, with a small fraction identified as M-

MDSCs and PMN-MDSCs (Figure 7C). Collectively, these data show that infused cells 

differentiate towards the myeloid lineage with no sign of stem cell engraftment. Whereas MDSCs 

did arise directly from infused cells, their numbers were not sufficient to account for the large 
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increase in MDSCs observed in the HSPC-rescued mice. These data suggest that HSPC infusion 

contributes to MDSC expansion via both direct and indirect mechanisms. 
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Discussion 

Here, we show HSPC infusion holds therapeutic potential for bacterial sepsis. Our studies 

demonstrate that GAS infection induces a robust myeloid response just 24 hours after infection 

and significantly depletes HSPC populations in the bone marrow. After infection, endogenous 

HSPCs are driven to differentiate towards the myeloid lineage. However, this response is 

insufficient to prevent disease progression and pathogen dissemination, resulting in mortality in 

5-7 days. While sepsis has been described to cause mobilization of HSPCs (46), we did not find 

any evidence of HSC or MPP mobilization to the spleen. Strikingly, we found infusing just 10,000 

HSPCs improved survival in GAS-infected mice and mice with GAS and influenza superinfection. 

This infusion was capable of increasing PB and BM hematopoietic populations of infected mice. 

Specifically, HSPC infusion restored BM HSPCs and both PB and BM MDSC populations. 

Importantly, HSPC infusion did not reduce pathogen burden, but contributed to survival via the 

generation of immunoregulatory cells that dampened maladaptive inflammatory signaling in 

infected mice. 

The hematopoietic and immune systems are comprised of immune cells with antimicrobial 

killing capacity as well as various types of immunomodulatory cells such as MDSCs, regulatory B 

cells (Bregs), and regulatory T cells (Tregs) (47–49). In the short time-frame of acute sepsis, 

myeloid cells such as neutrophils, monocytes, and macrophages are of critical importance in 

rapidly recognizing and killing invading bacteria. Our data demonstrate that these cells and even 

the progenitors that produce them in the bone marrow can be rapidly depleted during a severe 

acute infection. Furthermore, lineage tracing experiments provide the first direct evidence that 

terminally differentiated myeloid cells are rapidly produced from the level of the HSC during an 

acute infection. Initially we hypothesized that replacement of HSPCs may improve outcomes from 

acute bacterial infection by boosting the availability of myeloid cells to kill bacteria. While myeloid 
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cell populations were somewhat restored after HSPC infusion, this was insufficient to reduce 

pathogen burden. 

 Dysregulated inflammation is one of the main drivers of morbidity and mortality during 

infections (5,50–52). For example, excessive inflammatory responses are a common result of 

seasonal influenza (4,50) and SARS-CoV-2 infection (51). Seasonal influenza increases the 

susceptibility of patients to secondary bacterial infections or superinfection (53). Superinfections 

exacerbate the proinflammatory environment of common viral infections and are associated with 

increased morbidity and mortality (53,54). To our surprise, HSPC infusion was protective in a 

model of influenza and GAS superinfection, suggesting that its protective effects are robust even 

the setting of severe inflammation. In our mouse models, infection dramatically increased cytokine 

levels within just three days of infection. Interestingly, HSPC infusion was accompanied by an 

overall decrease in serum cytokine levels and a specific dampening of cytokines involved in 

“cytokine storm” (5,51,52). HSPCs have been described to produce cytokines, indicating that they 

have the capacity to direct immune function (55). However, whether the cytokines produced by 

HSPCs themselves contribute to the regulation of the immune response has heretofore been 

unknown. Our data point toward an immunomodulatory role of HSPC infusion that could prevent 

immune dysregulation during sepsis. 

Immunoregulatory cells in the hematopoietic system include Tregs, Bregs, and MDSCs 

(47,49,56). Perhaps the most recognized immunomodulatory cell known is the Treg. While Tregs 

have essential roles regulating immune responses to pathogens (47), we did not see differences 

in any lymphocyte population, including T cells, that would suggest a Treg-mediated anti-

inflammatory mechanism after HSPC infusion. MDSCs are immature myeloid cells that have 

strong anti-inflammatory roles by suppressing the responses of T-helper cells that contribute to 

the development of sepsis (49,57,58). PMN-MDSCs and M-MDSCs have strong anti-

inflammatory functions that can be beneficial or detrimental depending on the setting. In fact, 
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some studies have shown that MDSCs contribute to clinical worsening during sepsis (49). For 

almost three decades, increased circulating immature myeloid cells have been a clinical marker 

of SIRS (59). Interestingly, increased MDSCs during sepsis have also been associated with 

increased development of nosocomial infections (56). However, in our GAS model of accelerated 

infection, the increase in MDSC populations after HSPC infusion was accompanied by lower 

overall cytokine levels and increased survival, suggesting that the immunomodulatory functions 

of MDSCs are beneficial during the early stages of systemic inflammation and could prevent 

sepsis-related mortality (60).  

 An important limitation of our study is that the lineage fate and the tissue or organ 

destination of the infused HSPCs at the early stages of infusion remain unknown. The small 

number of cells infused makes it challenging to identify them in the pool of endogenous cells of 

the recipient mice. While our data suggest that infused HSPCs directly and indirectly boost MDSC 

production by endogenous cells, further work will be required to determine the mechanisms by 

which HSPCs contribute to MDSC expansion. In addition, further analysis of HSPC 

subpopulations will be required to determine if long term HSCs or short-lived multipotent 

progenitors confer the greatest therapeutic potential. Identifying a short-lived hematopoietic 

progenitor that can signal endogenous cells to restore MDSC populations could represent a 

promising alternative therapeutic avenue (12,14,16) to treat sepsis while avoiding concern of 

possible graft versus host disease complications (61,62). 

Currently, G-CSF, GM-CSF, and granulocyte transfusion (13,42,63) are used to prevent 

or treat sepsis in oncology patients with chemotherapy-induced fever and neutropenia. However, 

the clinical efficacy of granulocyte transfusion is poor (42,63). Here, we have shown infusing 

HSPCs is a promising alternative to granulocyte transfusion. Current granulocyte doses in 

humans are around 1x1010 cells per m2 body surface area given daily or every other day (42,64). 

Our infusion model only uses a single dose of 1.7x107 cells per m2 body surface area (or 10,000 
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HSPCs in a mouse). It is important to emphasize that 10,000 HSPCs is a relatively small number 

of cells to infuse into a mouse as it represents less than 0.01% of the nucleated bone marrow 

cells in a mouse. Collectively, the single low HSPC dose compared to multiple larger granulocyte 

transfusions suggests that HSPCs are more effective than granulocytes, cell for cell, in the 

treatment of sepsis. Our findings could lead to the development of an efficacious new therapeutic 

approach that could succeed where granulocyte infusions have fallen short.  
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Materials and Methods 

Mice 

We used WT C57Bl/6 (CD45.2) and C57Bl/6.SJL (CD45.1) mice 8–10 weeks of age. Lineage 

tracing using KRT18-CreERT2 : Rosa26-lox-STOP-lox-TdTomato we made by crossing KRT18-

CreERT2 mice obtained from Dr. Daisuke Nakada (Baylor College of Medicine) and Rosa26-lox-

STOP-lox-TdTomato mice (stock # 007914) obtained from Jackson Laboratories (Bar Harbor, ME 

USA, www.jax.org). All mice genotypes were confirmed by polymerase chain reaction (PCR) prior 

to the start of the experiments. Mice were assigned to each experimental group at random. Both 

male and female mice were used for all the experiments except for the superinfection survival 

studies as it has been shown that female mice have long-lasting hyperresponsiveness to 

respiratory infections (65). Therefore, only male mice were used in the superinfection 

experiments. Individual mice were assigned to groups randomly and were age and sex matched 

for each independent experiment. 

 

Pathogen inoculation and quantification 

Mice were infected with Streptococcus pyogenes strain MGAS315 by intramuscular injection on 

the hind limb with 2x106 CFU. To determine the bacterial load, limb, spleen, and blood were 

collected from infected mice. Limb and spleen tissue were homogenized, serially diluted, and 

plated on blood agar plates (BAP) (BD, Franklyn Lake, New Jersey, www.bd.com). Blood was 

serially diluted and plated on BAP. Limb and spleen bacterial load was normalized to the grams 

of tissue that was homogenized.  

Influenza A H1N1 PR8 strain infections were done by intranasal inoculation with 150 PFU. Viral 

load was quantified by collecting viral particles from lung lavage fluid using Amicon Ultra 0.5 mL 

(Millipore Sigma, Burlington Massachusetts. www.emdmillipore.com), and RNA was purified 
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using the TRIZOL method followed by the quantification of viral particles by Real-Time PCR of 

virus-specific nucleoprotein (NP) gene. The exact quantity was calculated using a standard curve 

of purified viral particles with known concentration and normalized by the amount of lung tissue 

collected. 

 

Flow cytometry and cell sorting 

Flow cytometry analyses were done using LSR II and BD Fortessa instruments. Cells were 

identified by the differential expression of markers listed in Supplemental Table 1. Our cocktail 

of Lineage (Lin) markers include Gr1, CD11b, B220, CD4, CD8, and Ter119. 

Cell sorting of HSPCs and their subpopulations were done using the SONY SH800 sorter and the 

BD FACS Aria Fusion using the markers listed in Supplemental Table 1. Post-sort purity test 

showed that sorted cells were 95-98% pure. 

 

Cre induction 

Cre activation in KRT18-CreERT2 : Rosa26-lox-STOP-lox-TdTomato was induced with 

Tamoxifen. Each mouse was administered tamoxifen by intraperitoneal injection at a dose of 

100mg/Kg body weight for five consecutive days prior to the start of the lineage tracing 

experiments. 

 

Cell infusion 

All infusions were done intravenously by retroorbital injection. Rescued mice received cells 

resuspended in saline solution while the control mice were injected with saline solution alone. 
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Cytokine profiling 

Serum was collected using a BD Microtainer blood collection tube (San Jose, CA. 

www.bdbiosciences.com). Serum levels of cytokines were analyzed through Eve Technologies 

company (Calgary, AB, Canada. www.evetechnologies.com).  

 

T cell suppression assay 

T cells were isolated from the spleen using anti-CD3 magnetic beads from Miltenyi Biotec 

(Bergisch Gladbach, Germany. www.miltenyibiotec.com) and MDSCs were sorted using the 

SONY SH800 sorter and the BD FACS Aria Fusion as described above. T cell were activated with 

anti-CD3 and anti-CD28 coated plates and supplemented with IL-2 to support proliferation and 

then cultured alone of with M-MDSCs or PMN-MDSCs. T cells were stained with CellTrace Violet 

and proliferation mas measured by dye dilution using flow cytometry. 

 

Statistical tests 

Normality was assessed using the Shapiro-Wilk test and variances were compared using F-tests. 

Comparisons between two groups were made done using unpaired t-test for parametric data, 

Welch’s t-test for parametric data without equal variances, and Mann-Whitney test for non-

parametric data. Tests involving three or more comparisons we done using One Way ANOVA 

with Tukey’s correction for multiple comparisons or Kruskal-Wallis test with Dunn’s correction for 

multiple comparisons. Comparisons of survival curves were done using Mantel-Cox tests. Outliers 

were identified using the ROUT method (Q=5%). Graphs are shown as Mean +/- SEM. Sample 

size of each experiment was calculated based on pilot experiments and using an alpha=0.05 and 

power=0.80. Each specific statistical test used as well as group size and independent experiments 

are described on each figure legend. 
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Study approval 

Mice are housed in AAALAC-accredited, specific-pathogen-free animal facilities at Baylor College 

of Medicine and Texas Children’s Hospital. All experiments are approved and follow the 

guidelines stated in our protocol approved by the Institutional Animal Care and Use Committee 

(IACUC) and by the Baylor College of Medicine institutional review board. 
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Figures and figure legends 
Figure 1 

 
Figure 1. GAS infection promotes a rapid myeloid cell response. (A) Experimental time frame 
of GAS infection and BM analysis. (B) Serum levels of MCP-1 of naïve and GAS-infected mice. 
Absolute number of (C) monocytes, (D) granulocytes, (E) B cells, and (F) F cells in the BM of 
naïve and infected mice. Relative abundance of (G) monocytes, (H) granulocytes, (I) B cells, and 
(J) T cells in the blood. (B-J) Data is representative of 3 independent experiments; n = 3-5 
mice/group; Statistical comparison done using Unpaired t-test; *p<0.05, **p<0.01, ****p<0.0001. 
Outliers were identified using the ROUT method (Q=5%). 
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Figure 2 

 
Figure 2. GAS infection depletes BM HSPCs 24hrs post infection. (A) Experimental time 
frame of GAS infection and BM analysis. (B) Flow plot of HSPC gating and representation of 
different surface expression of cKit and Sca-1 during infection. Plots are gated from lineage 
negative BM cells. (C-F) Absolute number of HSPCs, HSCs, multipotent progenitors (MPP) 3, 
and MPP4 in the BM of naïve and GAS infected mice. Spleen populations of (G) HSPCs, (H) 
HSC/MPP1, (I) MPP2, and (J) MMP3/4 identified by differential expression of CD150 and CD48. 
(C-J) Data is representative of 3 independent experiments; n = 4-5 mice/group; Statistical 
comparison done using Unpaired t-test; *p<0.05, **p<0.01. Outliers were identified using the 
ROUT method (Q=5%). 
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Figure 3 

 
Figure 3. Krt18 lineage tracing of naïve and GAS-infected HSCs. (A) Genetic model of KRT18-
CreERT2:Rosa26-lox-STOP-lox-TdTomato mouse system. (B) Representative gating of 
TdTomato expression in negative control (left; Genotype: Krt18-CreERT2+) and Tamoxifen-
induced positive control (right: Genotype: KRT18-CreERT2+ : Rosa26-lox-STOP-lox-TdTomato+/-

). Percent of BM (C) HSPC, (D) HSC, (E) CD41+ HSC, and (F) myeloid populations that are 
TdTomato+. Percent of BM (G) total monocytes, (H) granulocytes, (I) GMP, (J) BM T cells, and 
(K) BM B cells that are TdTomato+. Percent of PB (L) total myeloid cells, (M) monocytes, (N) 
granulocytes, (O) T cells, and (P) B cells that are TdTomato+. Data representative of 3 
independent experiments; (C-N) n=5-7 mice/group. Statistical comparison done using Unpaired 
t-tests; *p<0.05, **p<0.01. 
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Figure 4 

 
Figure 4. HSPC infusion in GAS-infected mice promotes survival and increases progenitor 
populations in the BM. (A) Experimental design of BM analysis and CFU count after HSPC 
infusion. (B) Flow plot of HSPC gating and representation of different surface expression of cKit 
and Sca-1 during infection. Plots are gated from lineage negative BM cells. (C-H) Absolute 
numbers of HSPCs, HSCs, and downstream progenitors in the BM of naïve, GAS-infected mice, 
and GAS-infected mice rescued with HSPCs. Quantified bacterial load in the (I) limb and (J) 
spleen of infected mice. (K) Experimental design of the survival study. (J) Survival curve of GAS 
infected mice with or without HSPC infusion. Data representative of 3 independent experiments; 
(C-H) n=5-7 mice/group, (I & J) n=8-10 mice/group, (L) n=9-10 mice/group. Statistical comparison 
done using (C-H) One-Way ANOVA with Tukey’s correction for multiple comparisons or (I & J) 
Unpaired t-tests. ns=not significant, *p<0.05, **p<0.01, ***p<0.001 *****p<0.0001. Comparison of 
(L) survival was done using Log-rank (Mantel-Cox) test. 
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Figure 5 

 
Figure 5. HSPC infusion in superinfected mice promotes survival without changing 
pathogen clearance. (A) Experimental design of BM analysis and CFU count post HSPC infusion 
in superinfected mice. (B-G) BM populations of HSPCs and downstream progenitors after HSPC 
infusion. Bacterial load in the (H) limb and (J) Spleen of infected mice. (I) Viral load of mice with 
or without HSPC infusion. (K) Experimental design of the survival studies on superinfected mice. 
(L) Survival curve after HSPC infusion. Experiments are representative of 3 independent 
experiments. (B-J) Comparison done with Unpaired t-test or Welch’s t-test. (B-G) n=5, (H-J) n=9-
11, and (L) n=9-10 mice per group. Comparison of (L) survival was done using Log-rank (Mantel-
Cox) test. ns=not significant, *p<0.05. 
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Figure 6 

 
Figure 6. HSPC infusion increases and restores MDSC populations and dampends 
inflammation after GAS. (A) Representative gating of MDSCs by their surface expression of 
Ly6G and Ly6C. Gated on CD11b+ cells. PB populations of (B) PMN-MDSCs and (C) M-MDSCs 
of naïve, GAS-infected, and GAS-infected mice infused with HSPCs. BM populations of (D) PMN-
MDSCs and (E) M-MDSCs of naïve, GAS-infected, and GAS-infected mice infused with HSPCs. 
(F) Heatmap of serum cytokine levels using ClustVis web tool (Metsalu and Vilo, 2015). Data 
representative of 2 (A-E) or 4 (F) independent experiments. (B-E) Statistical comparison done 
using One-Way ANOVA with Tukey’s correction for multiple comparisons; n=7 mice per group; 
*p<0.05, **p<0.01. Outliers were identified using the ROUT method (Q=5%). 
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Figure 7 

 
Figure 7. Lineage fate of infused HSPCs in GAS-infected mice skews myeloid without signs 
of stem cell engraftment. Gating representation of the lineage fate of (A) BM HSPCs, (B) BM 
lineage cells, and (C) PB lineage cells 30 days after GAS infection. Data is representative of 3 
independent experiments.  
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Supplemental figure 1 

 
Supplemental figure 1. Superinfection further depletes HSPCs and HSCs in the BM. (A) 
Experimental design of superinfection. (B) Flow cytometry plots of HSPCs (LSK) and their 
phenotypic expression of surface c-Kit and Sca-1. (C-H) Absolute number of HSPC, HSCs, and 
MPP subpopulations in the BM of naïve, GAS-infected, flu-infected, or superinfected mice. Data 
is representative of 3 independent experiments; n=5 mice/group. Comparison was done using 
One-Way ANOVA and Tukey’s correction for multiple comparisons; *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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Supplemental figure 2 

 
Supplemental Figure 2. GAS infection and superinfection promotes exit of myeloid cells 
from BM into circulation. (A) Experimental time frame of superinfection and BM analysis. (B) 
Serum levels of MCP-1 of naïve and mice infected with GAS, flu, or both pathogens. Absolute 
number of (C) monocytes, (E) B cells, (G) granulocytes, and (I) T cells in the BM of naïve and 
infected mice. Relative abundance of blood (D) monocytes, (F) B cells, (H) granulocytes, and (J) 
T cells. (B-J) Data is representative of 3 independent experiments; n = 3-5; Statistical comparison 
done using Unpaired t-test; *p<0.05, **p<0.01,***p<0.001, ****p<0.0001. 
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Supplemental figure 3 

 
Supplemental Figure 3. MDSCs reduce activated T cell proliferation. Abundance of T cells in 
the(A) BM and (B) PB of mice; n=5-7 mice per group. (C) Experimental design of T cell 
suppression assay. Created with BioRender.com (D) Flow cytometric measurement of T cell 
proliferation by dilution of CellTrace Violet dye. ‘M’ represents M-MDSCs and ‘PMN’ represents 
PMN-MDSCs. Data is representative of at least 2 experiments. Statistical comparison done using 
One Way ANOVA and Tukey’s Correction for multiple comparisons; ***p<0.001, ****p<0.0001. 
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Tables 
Population Markers 
HSC Lin- ckit+ CD150+ CD48- CD34- Flk2- 
CD41+ HSCs Lin- ckit+ CD150+ CD48- CD34- Flk2- CD41+ 
Donor HSPCs Lin- ckit+ Sca1+ 
HSPCs Lin- ckit+ 
MPP1 Lin- ckit+ CD150+ CD48- CD34+ Flk2- 
MPP2 Lin- ckit+ CD150+ CD48+ Flk2- 
MPP3 Lin- ckit+ CD150- CD48+ CD34+ Flk2- 
MPP4 Lin- ckit+ CD150- CD48+ CD34+ Flk2+ 
GMP Lin- ckit+ CD41- CD150- CD16/32+ 
MkP Lin- ckit+ CD150+ CD41+ 
Myeloid cells Gr1+ Mac1+ B220- CD4- CD8- 
B cells Gr1- Mac1- B220+ CD4- CD8- 
T Cells Gr1- Mac1- B220- CD4+ CD8- or Gr1- Mac1- B220- CD4- CD8+  
Granulocytes Gr1+ Mac1+ B220- CD4- CD8- SSC-mid F4/80- 
Eosinophils Gr1- Mac1+ B220- CD4- CD8- SSCHi 
Macrophages Gr1+ Mac1+ B220- CD4- CD8- SSClow F4/80+ 
Monocytes Mac1+ B220- CD4- CD8- SSClow 
PMN-MDSC CD11b+ Ly6G+ Ly6ClowCD244+ 
M-MDSC CD11b+ Ly6G- Ly6Chi 

Table 1: Surface markers for flow cytometry. Hematopoietic cell populations identified by flow 
cytometry were characterized using the listed surface markers. Lineage (Lin) markers include 
Gr1, CD11b, B220, CD4, CD8, and Ter119. 
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