

Diversity, function and evolution of marine microbe genomes

2
3
4 Jianwei Chen^{1,2,3,4,#}, Yang Guo^{1,#}, Yangyang Jia^{1,2,#}, Guilin Liu¹, Denghui Li¹, Dayou Xu¹, Bing
5 Wang¹, Li Zhou¹, Ling Peng¹, Fang Zhao¹, Yuanfang Zhu¹, Jiahui Sun¹, Chen Ye², Jun Wang¹, He
6 Zhang^{1,2}, Shanshan Liu^{1,2,5,6}, Inge Seim⁷, Xin Liu^{1,2,6}, Xun Xu^{1,2,6}, Huanming Yang^{1,2,4,6}, GOMP
7 Consortium[†], Karsten Kristiansen^{3,4}, Guangyi Fan^{1,2,6*}

¹ BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China

10 ² BGI-Shenzhen, Shenzhen 518083, China
11 ³ Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen,
12 Universitetsparken 12, 2100 Copenhagen, Denmark

¹³ ⁴Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China

14 ⁵Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-sea Technology Laboratory, Sanya
15 572000, China

¹⁶ ⁶China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China

⁷ Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China

These authors contributed equally to this work.

21 Corresponding authors: Guangyi Fan (fanguangyi@genomics.cn).

24 **Abstract**

25 Trillions of marine bacterial, archaeal and viral species contribute to the majority
26 diversity of life on Earth. In the current study, we have done a comprehensive review
27 of all the published studies of marine microbiome by re-analyzing most of the available
28 high throughput sequencing data. We collected 17.59 Tb sequencing data from 8,165
29 metagenomic and prokaryotic samples, and systematically evaluated the genome
30 characters, including genome size, GC content, phylogeny, and the functional and

[†]The Global Ocean Microbiome Project (GOMP) was initiated at Oct. 28, 2021.

31 ecological roles of several typical phyla. A genome catalogue of 9,070 high quality
32 genomes and a gene catalogue including 156,209,709 genes were constructed,
33 representing the most integrate marine prokaryotic datasets till now. The genome size
34 of Alphaproteobacteria and Actinobacteria was significant correlated to their GC
35 content. A total of 44,322 biosynthetic gene clusters distributed in 53 types were
36 detected from the reconstructed marine prokaryotic genome catalogue. Phylogenetic
37 annotation of the 8,380 bacterial and 690 archaeal species revealed that most of the
38 known bacterial phyla (99/111), including 62 classes and 181 orders, and four extra
39 unclassified genomes from two candidate novel phyla were detected. In addition,
40 taxonomically unclassified species represented a substantial fraction of 64.56% and
41 80.29% of the phylogenetic diversity of Bacteria and Archaea respectively. The
42 genomic and ecological features of three groups of Cyanobacteria, luminous bacteria
43 and methane-metabolizing archaea, including inhabitant preference, geolocation
44 distribution and others were through discussed. Our database provides a comprehensive
45 resource for marine microbiome, which would be a valuable reference for studies of
46 marine life origination and evolution, ecology monitor and protection, bioactive
47 compound development.

48

49

50 **Introduction**

51 Marine microbes, which includes viroids, viruses, bacteria, archaea, fungi and protists
52 varies from non-cellular viruses, single-cell organisms to multicellular microorganisms,
53 encompassing all three domains of life. About 10^{30} prokaryotes cells and ten-times
54 more femtoplankton (viruses) are estimated in the oceans, comprising the majority of
55 global microbial biomass and 90% of ocean biomass[1-3]. After 3.5 billion years of
56 evolution, microbes account for the major fraction of the marine biodiversity,
57 abundance, and metabolism, and play fundamental roles in sustaining the development
58 and maintenance of all other marine lives and their activities [1, 4]. The enormous and
59 highly diverse marine microbes are responsible for up to 98% of primary marine
60 productivity in global cycling of nutrients, matter, and energy in the oceans through

61 biogeochemical processes (carbon, nitrogen, sulfur cycling, etc.) [3, 5, 6]. Furthermore,
62 marine microbes produce a plethora of natural biologically active products with such
63 as cytotoxic, antifoulants, anti-inflammatory, anti-viral, antifungal, antibacterial and
64 anti-tumor activities [7, 8], which represent important and promising sources for new
65 drug discovery and drug development [8-10].

66 While in terrestrial ecosystem, higher plants work as the main group of primary
67 producers, it is prokaryotes and other microbes who play that role in marine
68 ecosystem[3]. What is more, marine prokaryotes have been demonstrated to regulate
69 the biogeochemical cycles and the climates on a large scale, such as the global carbon
70 cycle [11-13], nitrogen cycle [14, 15], and green-house effect [16, 17]. For example, in
71 the case of carbon cycle, both phototrophic and chemoautotrophic marine prokaryotes
72 as well as other organisms such as algae and protists using light or chemical energy to
73 fix carbon into cellular material [18], among which, Cyanobacteria are recognized as
74 main contributors [19-21]. Occupying a broad range of habitats across all latitudes, and
75 even the most extreme niches [22], Cyanobacteria absorb more than 2/3 of the total
76 carbon sequestration in the ocean each year [23]. However, on the other hand, the dense
77 cyanobacteria blooms which sometimes are toxic could threaten ecosystem and human
78 health [24].

79 In addition to carbon sequestration, marine sediment methane and hydrates,
80 accounting for the vast majority of methane pool on the earth, represent another major
81 form of carbon in the ocean. However, only quite a small fraction of the seabed methane
82 could be released to the atmosphere[25, 26]. In marine sediments, the biogenic methane
83 is exclusively produced by methanogenic archaea in strictly anaerobic
84 environments[27], meanwhile, Ca. 80~90% of the global methane gross production
85 from marine sediments is oxidized by methanotrophic microbial communities [26].
86 Thus, microbes of both methanogens and methanotrophs exert a major control on global
87 climate and carbon (C) cycles, since methane could cause 25 times of green-house
88 effect compared to CO₂ [28].

89 Marine prokaryotes are also closely related to human beings. Such as some *Vibrio*
90 bioluminescence are useful as a biomarker during scientific experiments, and provides

91 abundant bioactive substances including medicines and cosmetics[29-31]. Except for
92 economical and medical product derived from them, many marine prokaryotes are
93 potential pathogens to human, which is one of the major threats of health especially for
94 people working in shipping and fishery industry [32, 33]. For example, many *Vibrio*
95 species are pathogenic[34], and marine *Vibrio* species can infect human with interaction
96 on coastal biomes[35].

97 Despite the global importance of marine prokaryotes, most of them remain
98 untouched and thus still are “dark matter” till now, either due to being unculturable or
99 their extreme diversity or rarity for some taxa[36, 37]. High-throughput sequencing
100 techniques now allow us to quickly obtain genome sequences of theoretically all the
101 species in certain environments without culturing. The metagenomics sequencing has
102 become an important tool for studying the composition of microorganisms in various
103 marine ecosystems, such as free-living bacterioplankton[38, 39], the sediment-dwelling
104 microbes[40, 41] and animal-associated symbionts[42, 43]. The Global Ocean
105 Sampling Expedition (GOS) and Tara Ocean Expedition increased our understanding
106 of marine microbial diversity and genetic characteristics vastly [44, 45]. However, the
107 genome sequencing and data mining of marine microbiome are still challenging, as
108 revealed by the slowly increased genome sequence of marine prokaryotes in public
109 database [46]. There are more than 280,000 prokaryotic genomes in public databases,
110 but only 8,615 marine prokaryotic genomes were found. Although many research
111 efforts have been devoted to the marine microbial study and great amount of sequencing
112 data have been generated till now, there is not a comprehensive summary of the
113 previous work, neither a good representative database that could be used as marine
114 prokaryotes genome reference catalogue. And it investigated that metagenomics and
115 bioinformatics are the powerful tools for massive expansion knowledge of microbial
116 genomics research [47, 48].

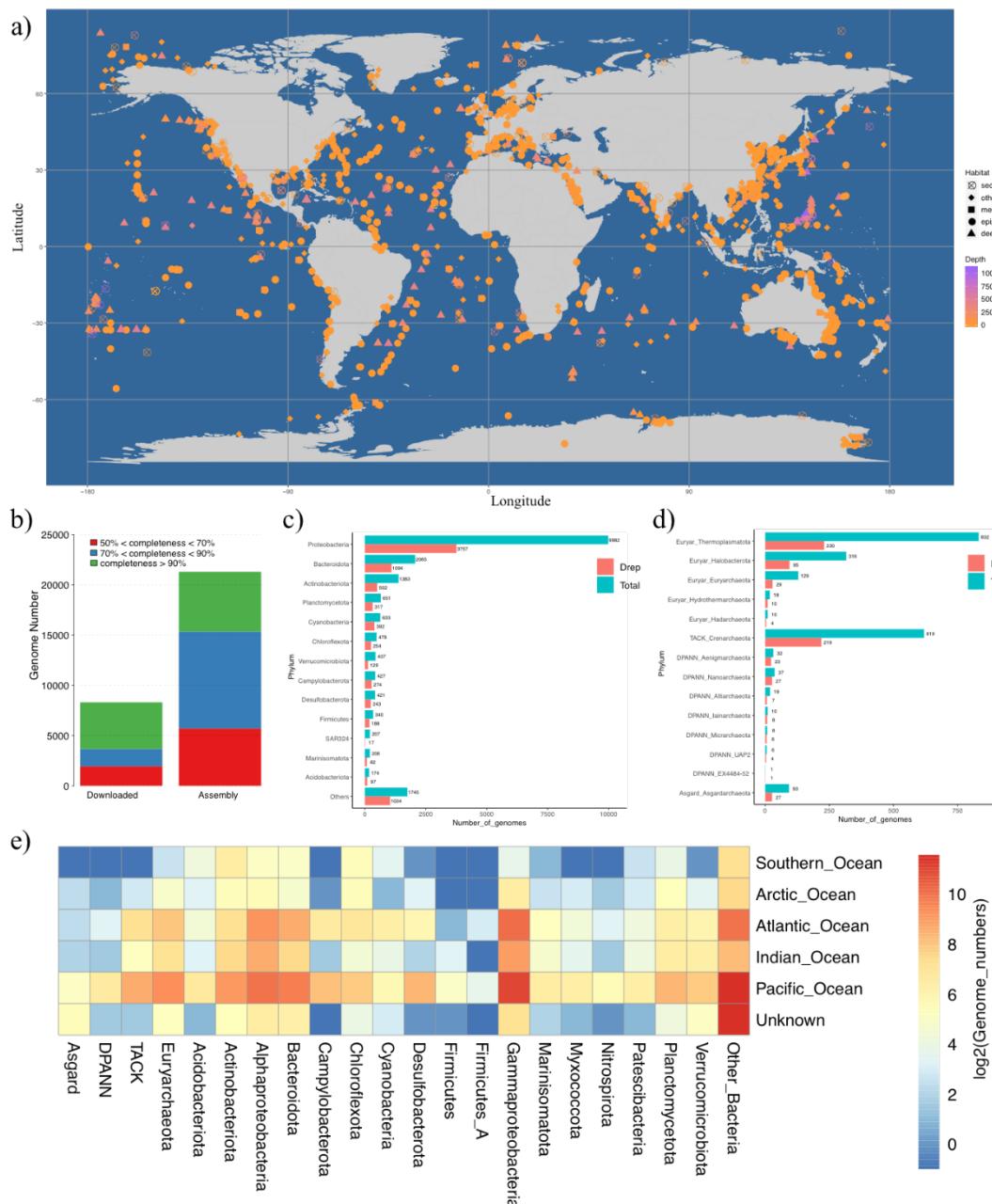
117 Thus, in this study, we comprehensively collected and analyzed all the publicly
118 available marine metagenomic high-throughput sequencing data from NCBI and EBI.
119 After re-analyze all those data, we generated a marine prokaryotic genome catalogue
120 included more than 20,000 genomes belonging to 113 phyla, and describe the massive

121 diversity and globally distribution of marine prokaryotes. The discovery of a large
122 number of novel species has expanded the understanding of marine microbial diversity.
123 In addition to that, we also illustrated the main functions of marine prokaryotes in
124 various ocean ecosystems. Our resource will provide new foundation for studies about
125 how the marine microbes adapt to varying environmental conditions and how the
126 marine microbes affect the function and health of marine ecosystems. Furthermore, the
127 attractive genome-based mining of biosynthetic gene clusters (BGCs) provides new
128 insights for the screening of marine bioactive substances and the synthesis of novel
129 active compounds.

130

131 **Results**

132 **Benchmark of data set**


133 Sequencing data or assembled genomes where available, of a total of 8,165 prokaryote
134 genomic or metagenomic samples from the marine ecosystem, including seawater,
135 algae and marine animal symbiotic microbiome, mangrove and marine sediment were
136 downloaded from public databases. This dataset covered a broad range of the entire
137 ocean across the earth, with 3,089 samples isolated from Pacific Ocean, 1,396 from
138 Atlantic Ocean, 599 from Indian Ocean, 128 from Arctic Ocean, and 123 from Southern
139 Ocean (**Fig. 1a**). And then all data was used to generate the marine prokaryotic genome
140 and protein sequence catalogs (**Fig. S1**). This is the most comprehensive survey and
141 summary of the microbiome and their genome function and diversity in global marine
142 ecosystems to date. Firstly, the genomes of 10,598 isolate prokaryotic strains or
143 metagenomics assembled genomes (MAGs) were downloaded. Among the 10,598
144 genomes, 8,300 of them were moderate genomes (completeness >50%, contamination
145 <10%), of which 6,213 were substantial genomes (completeness >70%, contamination
146 <10%), and of the substantial genomes, 4,629 were near complete genomes
147 (completeness >90%, contamination <5%). In the current study, only the 6,213
148 substantial genomes were selected and retained for downstream analysis (**Fig. 1b**).
149 Meanwhile, more than 17.59 Tb sequencing data of 2,695 samples were used for
150 assembly and binning analysis respectively. A total of 20,671 moderate prokaryotic

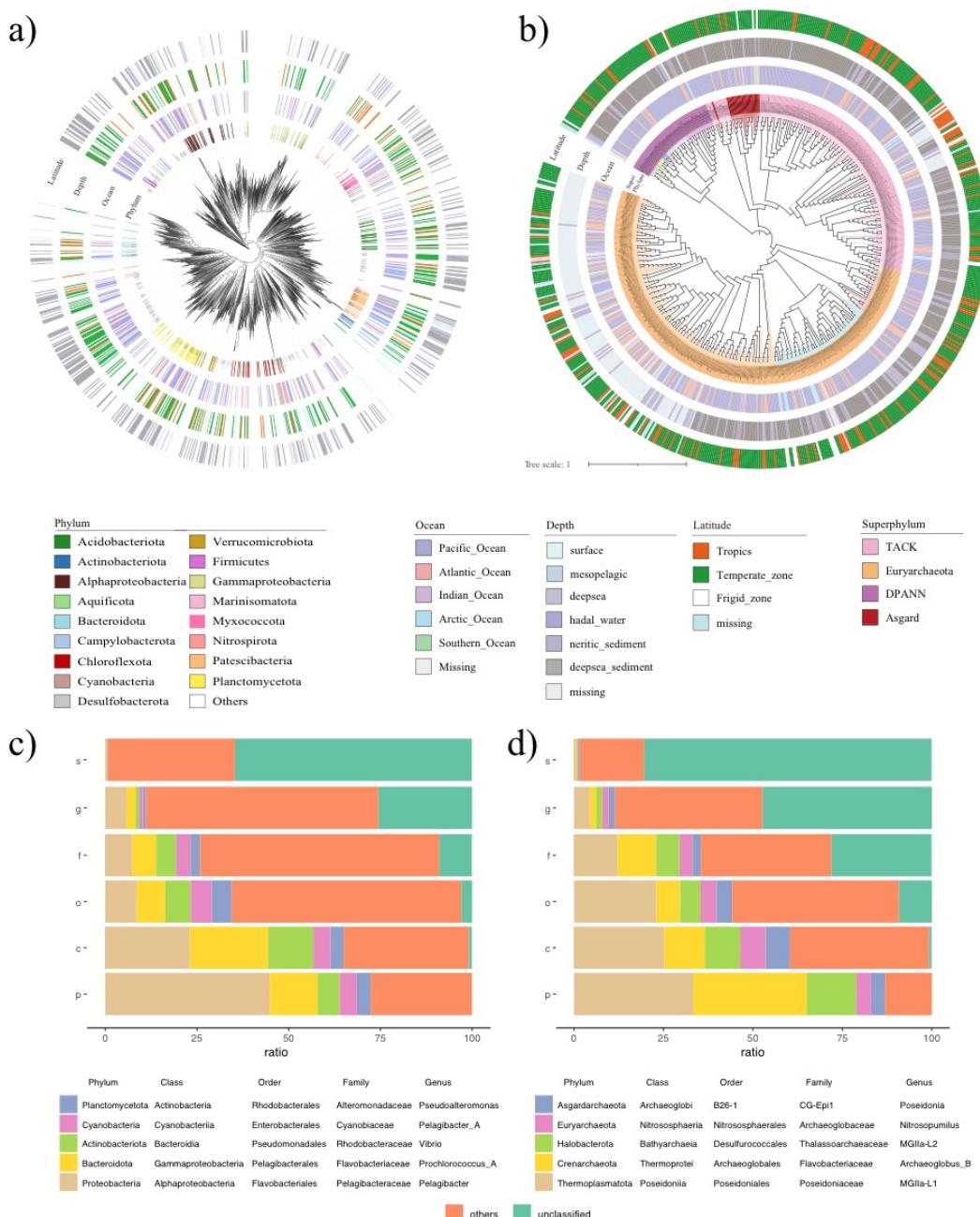
151 MAGs including 14,969 substantial MAGs were reconstructed, and only the 14,969
152 substantial genomes including 5,938 near complete genomes were remained for
153 downstream analysis as well (**Fig. 1b**). Besides, in the unique gene catalogue we
154 constructed, a set of 156,209,709 genes were included, which was near four times larger
155 than the Tara Ocean gene set [44].

156 After taxonomic classification for all downloaded genomes and assembled MAGs,
157 21,182 high quality prokaryotic genomes including 19,064 bacterial genomes and 2,118
158 archaeal genomes were obtained (**Fig. 1b**). And we generated a unique species-specific
159 genome catalogue of the marine microbiome basis 95% nucleotide identity threshold,
160 including 8,380 unique bacterial genomes and 690 unique archaeal genomes while only
161 3,753 genomes were from public database. The genome catalogue generated in our
162 study greatly exceed the previous results, such as 2,631 moderate genomes including
163 420 near complete genomes generated from 243 Tara Ocean microbial metagenomic
164 samples[44, 49], and 4,741 and 8,578 moderate genomes generated by GORG-Tropics
165 Database [50] and Earth's Microbiomes Project [51], respectively. We detected 97
166 bacteria phyla, with Gammaproteobacteria, Alphaproteobacteria, Bacteroidota,
167 Actinobacteriota, Planctomycetota and Cyanobacteriia being the most common phyla,
168 containing 5,875, 4,201, 2,114, 1,408, 665 and 643 assembled genomes respectively,
169 all of which are the most common bacterial populations (**Fig. 1c**). In addition to the
170 previous defined 97 bacterial phyla, two novel bacterial phyla were detected and
171 annotated by GTDB-tk, and here we name them as candidate phylum MSD20-3 and
172 candidate phylum MSD20-1. We also obtained 14 archaea phyla are detected with
173 Euryarchaeota and TACK being the mainly assembled archaeal genomes (**Fig. 1d**).

174 We further studied the global distribution of the marine microbes, and found that
175 the prokaryotic species distribution is quite different in different marine ecological
176 systems. For example, the bacterial species in different marine habitats, including
177 coastal surface waters, open seas, and sediments are very different from each other.
178 There are about 57.90% samples distributed in Pacific Ocean, and we found that more
179 than 61.74% archaeal genomes and 56.56% bacterial genomes were detected in this
180 ocean (**Fig. 1e**). Archaeal species rarely detected in the Southern Ocean, with only six

181 Euryarchaeota genomes detected in Antarctic Ocean. The Actinobacteriota,
182 Chloroflexota and Gammaproteobacteria are the common species in polar regions,
183 while Gammaproteobacteria, Alphaproteobacteria and Bacteroidota are the top three
184 abundant species distributed in Atlantic Ocean, Indian Ocean and Pacific Ocean.

185
186 **Fig.1 Benchmark of the data set.** a) Distribution of the samples collected in the current study.
187 Summary of the quality of the genomes with contamination <10% b), and taxonomic annotation of
188 the assembled genomes at phylum level for bacteria c) and archaea d). e) The genome distribution
189 among the different Ocean regions.


190

191 **Phylogenetic evolution of marine bacteria and marine archaea**

192 The phylogenetic distribution of the 8,380 bacterial (**Fig. 2a**) and 690 archaeal (**Fig. 2b**)
193 species revealed that taxonomically unclassified species represented 64.56% and 80.29%
194 of the phylogenetic diversity of Bacteria and Archaea respectively. However,
195 previously only 13 bacterial phyla with 22.55% unclassified species genomes and two
196 archaeal phyla (Euryarchaeota and Thaumarchaeota) with 18.25% unclassified species
197 genomes were found in Tara Ocean MAGs[49]. The large fraction of the unclassified
198 genomes indicates that there are still many prokaryotes that have not been studied in
199 the marine ecosystem. Most bacterial phyla (99/111) were detected and two newly
200 phyla included four genomes, 62 classes unclassified genomes and 181 orders
201 unclassified genomes were reported (**Fig. 2a &2c**). The first new phylum candidate
202 phylum MSD20-3 was phylogenetically close to phylum Elusimicrobiota, and three
203 draft genomes retrieved from SRR11637895 (bin.20), SRR9661844 (bin.98) and
204 SAMN10404973 (bin.31) were included (**Fig. 2a**), while the second new phylum
205 candidate phylum MSD20-1, including one draft genomes retrieved from
206 SAMN1451138 (bin.12), was phylogenetically close to phylum Hydrogenedentota (**Fig.**
207 **2a**). The average nucleotide identity (ANI) between the new phyla and their respective
208 most phylogenetically close relatives are both ~60%, indicating large divergence
209 distance between the genome of new phyla and their close relatives [52].

210 Compared with bacteria, our knowledge of archaea is still very limited. In previous
211 studies, microbiologists explore archaea mainly by means of pure culture or single-gene
212 diversity survey. However, only 22% known archaea phyla have isolated and cultured
213 representative species [53]. Here, we constructed 690 archaeal genomes distributing in
214 14 archaeal phyla (total 18 phyla), and five class unclassified genomes, 58 order
215 unclassified genomes were firstly found with a high unclassified species proportion
216 (**Fig. 2b&2d**). Among the 690 unique archaea genomes, Euryarchaeota takes up the
217 highest proportion (56.7%), followed by TACK (31.7%) and DPANN (7.7%), Asgard
218 (3.9%) has the least proportion (**Fig. 2b**). Especially we constructed 93 high quality
219 Asgard archaea genomes and obtained 27 de-redundant genomes included one

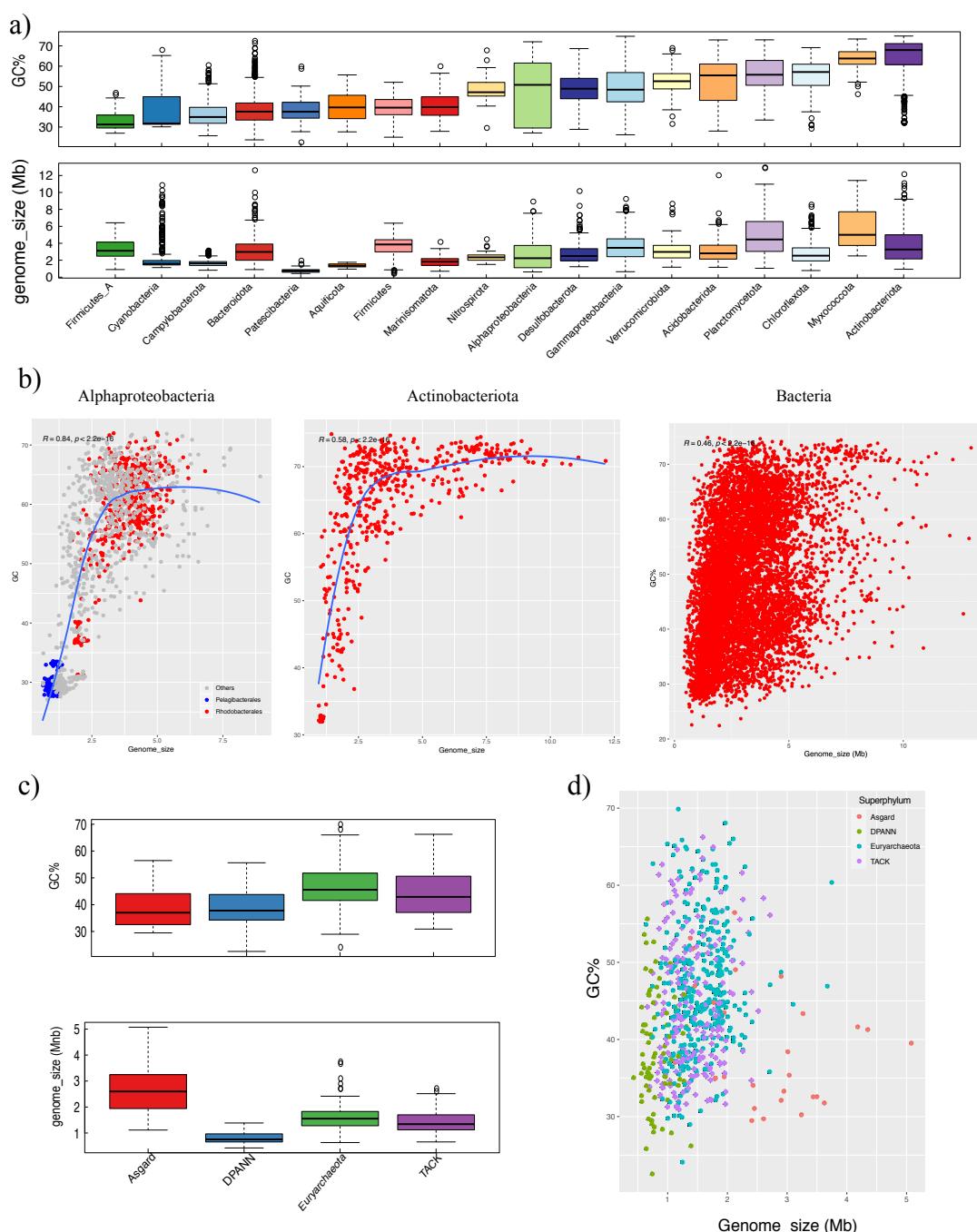
220 unclassified class. It was helpful for refining the phylogenetic relationships of Asgard
 221 and adding new evidence of the earliest evolutionary history of life [54].

222
 223 **Fig. 2. Phylogenetic tree and the proportion of different level of marine bacteria and archaeal**
 224 **genome.** The phylogenetic tree and sample metadata of 8,380 marine bacteria genomes a) and 690
 225 marine archaea genomes b). The top five abundant species and unclassified genomes in different
 226 taxonomic levels of bacteria c) and archaea d).

227
 228 **Genome features of marine prokaryotes**

229 The genome size and GC content vary greatly in different marine bacteria. The genome
230 size of most marine bacteria ranges from 2Mb to 5Mb, harboring mostly 3000-5000
231 genes, with GC content ranging from 30% to 60% (**Fig. 3a**). However, for bacteria in
232 certain phylum, they have extraordinary genome features. For example, Patescibacteria
233 has the smallest genomes with an average of only 0.80 Mb, followed by Aquificota with
234 averaged genome size of 1.37 Mb (**Fig. 3a**), while the largest genomes belong to
235 Myxococcota phylum, with an averaged genome size of 5.84 Mb. Likewise, for the GC
236 content of marine bacteria, Firmicutes_A has the lowest GC content of 33.34%, while
237 Myxococcota has the highest GC content of 63.47% in average (**Fig. 3a**).

238 Spearman correlation analysis indicates that the genome size and GC content of
239 marine bacteria has an overall significant positive correlation ($R=0.46$, $P<2.2e-16$). The
240 correlation coefficient between genome size and GC content of Alphaproteobacteria
241 ($R=0.84$, $P<2.2e-16$) and Actinobacteria ($R=0.58$, $P<2.2e-16$) are even higher than the
242 overall correlation coefficient (**Fig. 3b**). However, despite the significant positive
243 correlation, we found that as the genome size increased, the GC content of these two
244 species increased at first and finally reached the upper limit of 75%, which is in
245 accordance with the GC compositional range of prokaryotes between approximately
246 25% and 75% [55]. Furthermore, the GC content as a function of genome size
247 distribution is not linear but triangular, to which similar distribution pattern was also
248 observed in previous studies of bacteria[56], vertebrates[57] and plants[58].


249 In the phylum of Alphaproteobacteria, species with small size and low GC content
250 ($GC<35\%$ and genome size $<2.5M$) were Pelagibacterales (1,017 of 1,274 genomes,
251 blue), HIMB59 named Pelagibacteraceae (159 genomes) and Punicospirillales (26
252 genomes) as colored in blue at the left bottom of **Fig. 3b** (**Fig. 3b**). Pelagibacterales
253 (SAR11) are one of the smallest free cell living organisms (<0.7 um) composed of free-
254 living planktonic oligotrophic facultative photochemotroph bacteria[59]. Their high
255 surface to volume ratio guarantees them better capability to absorb nutrients from its
256 oligotrophic environment, and oxidize organic compounds from primary production
257 into CO_2 [60]. The species dominant in the top right of Alphaproteobacteria ($GC>35\%$
258 or genome size $>2.5M$) were Rhodobacterales (1042 of 2872 genomes, red),

259 Sphingomonadales (410 genomes), and Caulobacterales (357 genomes) (**Fig. 3b**).
260 Rhodobacterales are widespread in the marine ecosystem and show a nearly universal
261 conservation of the genes for production of gene transfer agents (GTAs) which are
262 virus-like particles[61]. Thus, our result indicated that transfer DNA might mediate
263 genetic exchange between cells and be an important factor in their evolution.

264 We found the GC frequency of the third base of the codon is very low (only 18.31%)
265 in the Pelagibacterales genomes with low GC content and small genome size (**Table 1**).
266 For the Rhodobacterales with a wide GC distribution and genome size, the species with
267 larger genome size (>2.5 Mb) have higher GC content than the species with smaller
268 genome size (<2.5 Mb), and the third-base GC frequency of the codon is significantly
269 higher (**Fig. 3b, Table 1**). And we have also observed the consistent patterns in
270 Actinobacteria (**Table 1**). It indicated that in high GC species, the third base of the gene
271 codons with higher variability is more inclined to use the G+C base instead of A+T
272 base.

273 For the marine archaeal genomes, the GC ratio is ranging from 30% to 55% with
274 genome sizes of ~1-3Mb (**Fig. 3c & 3d**). No significant correlation between genome
275 size and GC content in the marine archaea genomes was found (**Fig. 3d**). Most genomes
276 belonging to DPANN superphylum have extremely small cell and genome sizes (~0.5
277 to 1.5 Mb, averaged 0.82M) with limited metabolic capabilities [62]. The DPANN
278 genomes also have lowest GC content (averaged 38.60%) in archaea genomes. For
279 example, MAG SRR5506558.1_bin.59 (completeness 72.9%) has the smallest genome
280 size of 0.42M with 35.04% GC content, which is smaller than the previously reported
281 *N. equitans* (GCA_000008085.1) with genome size of 0.49 Mb and completeness
282 73.13%[63]. SRR5214304_bin.64 (completeness 89.72%) has the largest genome size
283 of 1.75M in DPANN superphylum with GC content of 38.77%. In archaea kingdom,
284 genomes in the phylum of Asgard have the largest genome size (average 2.68M), which
285 indicates more complex genome structure and content than other marine archaea.

286

287

288 **Fig. 3. Summary and comparison of the genome size, GC content of marine bacteria and**
 289 **archaea genome.** The genome size and GC content statistics of major bacteria group a) and archaea
 290 superphylum c). And the genome size and GC content correlation of Alphaproteobacteria,
 291 Actinobacteria and all marine bacteria b) and all marine archaea d).

292

293 **Table 1. Codon base frequency statistics**

Taxon	1_A+T	1_C+G	2_A+T	2_C+G	3_A+T	3_C+G
-------	-------	-------	-------	-------	-------	-------

Actinobacteria (>2.5Mb)	17.06	71.64	49.61	50.39	10.23	89.77
Actinobacteria (<2.5Mb)	20.62	65.86	53.73	46.27	29.57	70.43
Rhodobacterales (>2.5Mb)	21.14	65.57	54.09	45.91	24.76	75.24
Rhodobacterales (<2.5Mb)	28.75	52.96	60.29	39.71	58.30	41.70
Pelagibacterales	38.74	39.28	68.26	31.74	81.69	18.31

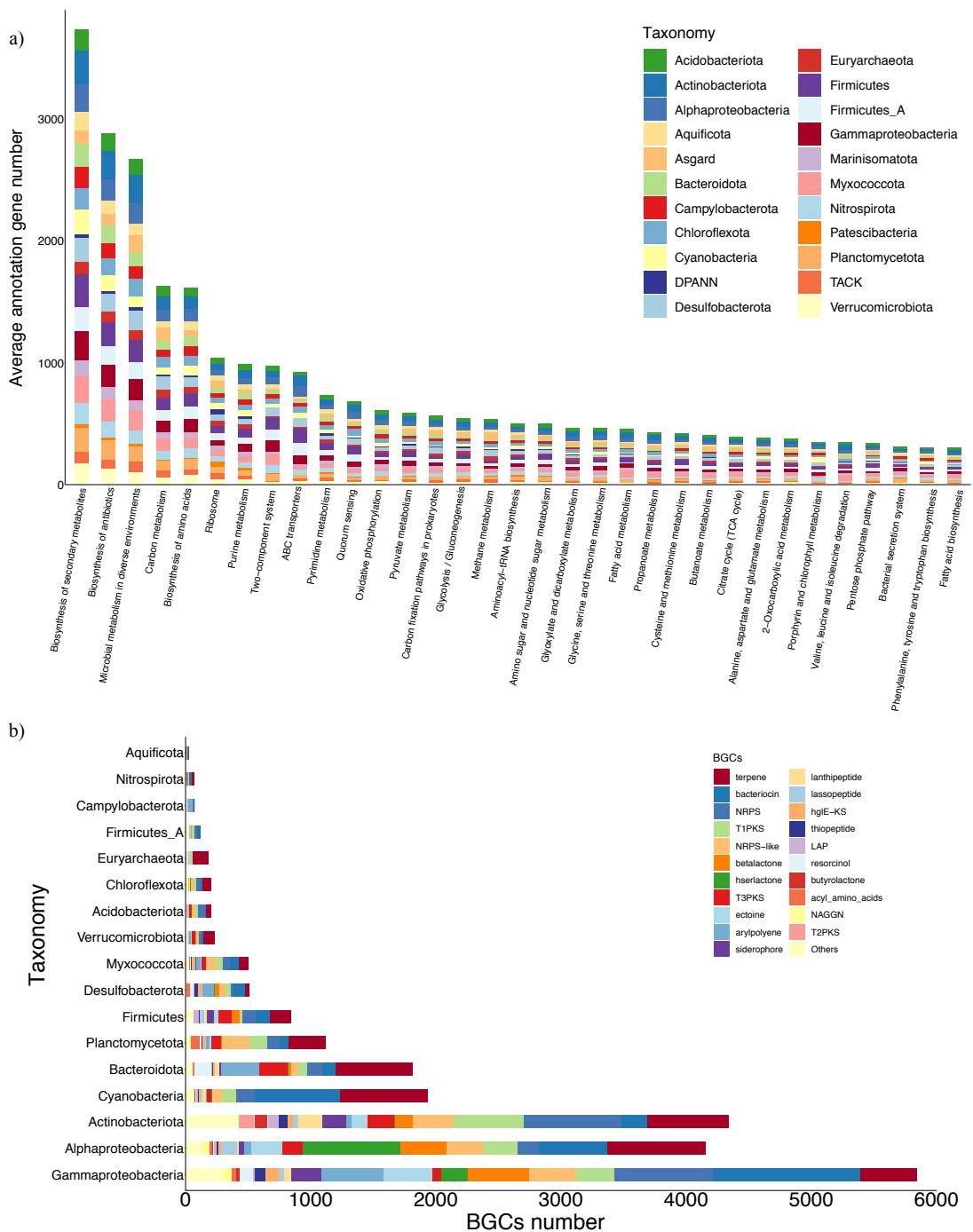
294

295 As in other environments, the genome size, GC content and distribution of
296 microbes are related to and restricted by physiochemical and nutritional conditions in
297 marine environments. Consistent with previous reports, most bacterioplankton and
298 pelagic dwelling bacteria, including Pelagibacterales (SAR11), Synechococcus,
299 Prochlorococcus and Thioglobaceae (SUP05) usually have low GC content (~28-40%)
300 and small genome size (~0.8-3Mb) (**Fig. 4a**) [64]. In contrast, both the GC content (33-
301 73%) and genome size (1-13Mb) of Myxococcota, Planctomycetota and archaea
302 Euryarchaeota ranged widely and distributed from the surface ocean to deep-sea. The
303 Punicospirillaceae (SAR116), Patescibacteria and archaea TACK superphylum have
304 small genome size but widely ranging GC content, of which while the
305 Punicospirillaceae is surface dwelling and the other two are living in various depth
306 ocean layers (**Fig. 4a**). The Archaea clades Euryarchaeota, TACK superphylum and
307 Bacteria clades Planctomycetota, Patescibacteria, Myxococcota occupy extreme low
308 temperature environments distributing from the Antarctic to the Arctic, while most
309 species of Punicospirillaceae, Pelagibacterales, Synechococcus, Prochlorococcus and
310 Thioglobaceae thrive in the temperate zone with small genome size (**Fig. 4b**).

311 Correlation test between marine microbial genome size and GC content with
312 various environmental factors were conducted using spearman correlation analysis. The
313 GC content of Euryarchaeota and Planctomycetota decreased significantly with salinity,
314 while the GC content of Patescibacteria decreased significantly with depth and latitude
315 (**Fig. 4c**). The GC content and genome size of SAR324 clade increased significantly
316 with salinity and temperature, and GC content of TACK superphylum increased
317 significantly with depth and temperature while the genome size decreased with
318 temperature (**Fig. 4c**).

319

320 **Fig. 4. Correlation analysis between the environmental factors and GC content and genome**
321 **size.** The distribution of 10 major species at different depth a) and latitude b). c) The correlation
322 analysis heatmap of environmental factors and GC content and genome size.


323

324 **Gene function analysis and BGCs detection**

325 Functional genes predicted from the reconstructed genomes were annotated against the
326 KEGG database. The annotated proportion of functional genes in different marine
327 prokaryotes are quite different. Totally, 240 KEGG pathways were detected in
328 Actinobacteriota genomes, followed by 237 and 218 pathways detected in
329 Gammaproteobacteria and Firmicutes respectively (Fig. 5a). Not surprisingly, species
330 with the smaller genome size seem to be annotated with fewer pathways, for example,
331 131 pathways were annotated in DPANN superphylum and 99 pathways in
332 Patescibacteria, indicating that genome-reduction are accompanied with loss of
333 metabolic functions [62, 65]. Biosynthesis of secondary metabolites (ko01110),
334 Biosynthesis of antibiotics (ko01130) and Biosynthesis of amino acids (ko01230) are
335 the most common pathway and the largest proportion genes in most marine prokaryotes
336 except for the DPANN superphylum and Patescibacteria. In particular, Actinobacteriota,

337 Firmicutes and Cyanobacteria contain an average of more than 270 genes per genome
338 annotated to the pathway of Biosynthesis of secondary metabolites, which indicates
339 that a huge number of potential marine bioactive substances.

340 Meanwhile, we detected more than 53 types of biosynthetic gene clusters (BGCs)
341 in marine bacterial genomes, and predicted 193 BGCs belong to 16 types in marine
342 archaeal genomes (**Fig. 5b**). In archaea, main types of terpene, T1PKS, resorcinol,
343 thiopeptide, TfuA-related, betalactone, bacteriocin and ectoine were found in
344 Euryarchaeota [66], while fewer types of phosphonate, NRPS and T3PKS were found
345 in TACK and Asgard genomes [67]. On the other hand, terpene, bacteriocin, NRPS and
346 NRPS-like, T1PKS and T3PKS, arylpolyene and hserlactone are the most common
347 BGCs occur in marine bacteria (**Fig. 5b**). For example, marine Cyanobacteria and
348 Actinobacteriota can produce a wide variety of bioactive substances with various
349 potential functions, such as antibacterial, anti-tumor, anti-virus, cytotoxicity, anti-
350 coagulation and blood pressure reduction. At present, more than 50% of newly
351 discovered marine microbial bioactive metabolites are produced by Actinobacteriota
352 [68]. In the current study, we found 1,101 NRPS and NRPS-like, 646 terpene, 564
353 T1PKS and 208 bacteriocin BGCs in 502 Actinobacteriota genomes, and 702 terpene,
354 680 bacteriocin, 224 NRPS and NRPS-like and 111 T1PKS were found in 392
355 Cyanobacteria genomes.

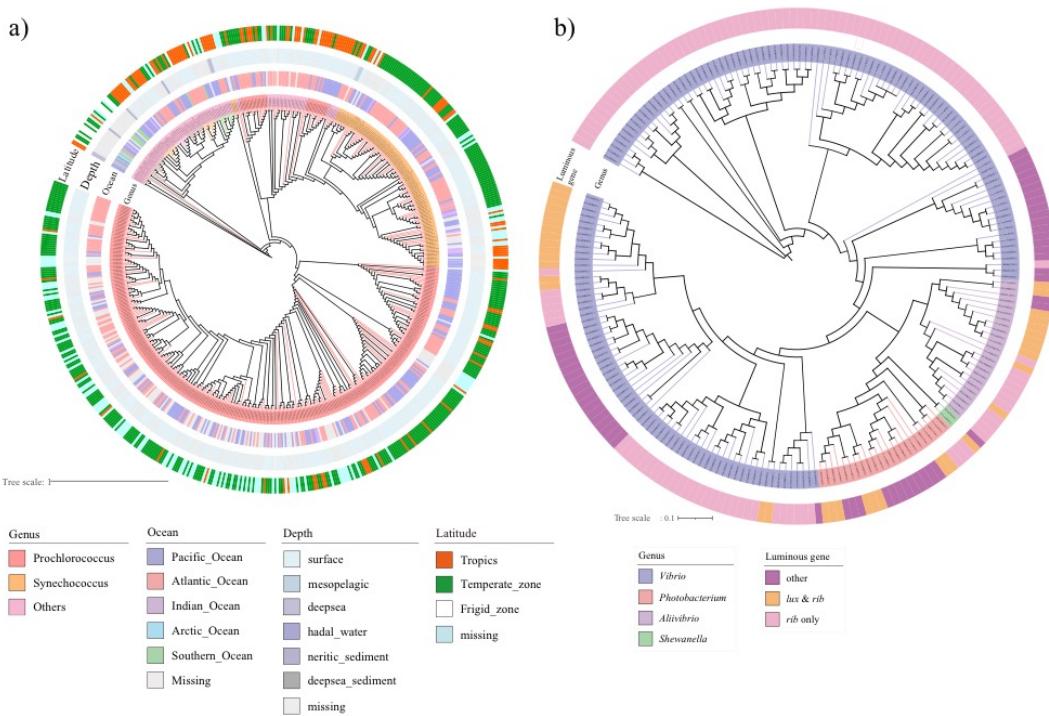
356

357 **Fig. 5. Summary of the KEGG functional annotation and secondary metabolite BGCs.**

358

359 Cyanobacteria diversity in marine ecosystem

360 Due to their extraordinary ability to fix nitrogen and carbon, Cyanobacteria are
 361 arguably the most successful group of microorganisms on Earth, playing important
 362 roles in the global ecology[69, 70]. They can produce oxygen through photosynthesis
 363 system PSI and PSII [71], and fix CO₂ into organic carbon via ### system [72].


364 *Prochlorococcus* and *Synechococcus* are the most abundant photosynthetic organism
365 on Earth, especially *Prochlorococcus*, which is responsible for a large fraction of
366 marine photosynthesis.

367 A total of 632 Cyanobacteria genomes (388 *Prochlorococcus* and 128
368 *Synechococcus*), of which 461 were downloaded from NCBI and 171 were newly
369 generated MAGs in the current study. For geographical distribution, 255 Cyanobacteria
370 were distributed in Atlantic Ocean, 224 in Pacific Ocean, 18 in Indian Ocean, 2 in
371 Arctic Ocean and 13 in Southern Ocean. The species *Phormidium* and *Leptolyngbya*
372 are taxonomically unique genotypes and endemic or restricted to polar habitats [73].
373 And we also found another three species, including Elainellales, Neosynechococcales
374 and Obscuribacterales, specifically distributed in Southern Ocean. Phylogenetic
375 analysis of evolution and geographical distribution indicated that *Prochlorococcus* and
376 *Synechococcus* were clearly separated clades and had no obvious association with the
377 ocean areas, mostly distributed in the ocean area between 40° south latitude and 45°
378 north latitude (**Fig. 6**) [74].

379 While Cyanobacteria are usually distributed in surface oceans, we reconstructed
380 four high quality Cyanobacteria MAGs (completeness > 80%, contamination < 5%) in
381 the 4000 meters deep-sea of Pacific Ocean, two which were classified as *Richelia*
382 *intracellularis_B*. Meanwhile, four *Richelia intracellularis_A* MAGs were
383 reconstructed in shallow water of 2 to 4 meters of Atlantic Ocean. Thus, we intended
384 to find the difference between deep-sea and shallow water *R. intracellularis* genomes.
385 GC content of *R. intracellularis_B* MAGs is higher than *R. intracellularis_A*,
386 suggesting the huge pressure of the deep ocean may require higher GC content to
387 maintain the stability of the genome [75]. Furthermore, proteins involved in the
388 photosynthesis pathways, such as, the photosystem proteins K02722, K02718, K02712,
389 K02706, K02692 and K02689 were detected in *R. intracellularis_A*, while missing in
390 deep-sea *R. intracellularis_B*. On the other hand, *R. intracellularis_B* contained several
391 unique gene functions related to photosystem II oxygen-evolving enhancer protein and
392 cytochrome including K08904, K02717, K02643 and K08906 which might relate to
393 temperature adaptation[76], all of which were missing in shallow-water *R.*

394 *intracellularis_A* genomes.

395

396

397 **Fig. 6. The phylogenetic tree of Cyanobacteria and marine bioluminescent bacteria.**

398

399 **Marine luminous bacteria genome detection**

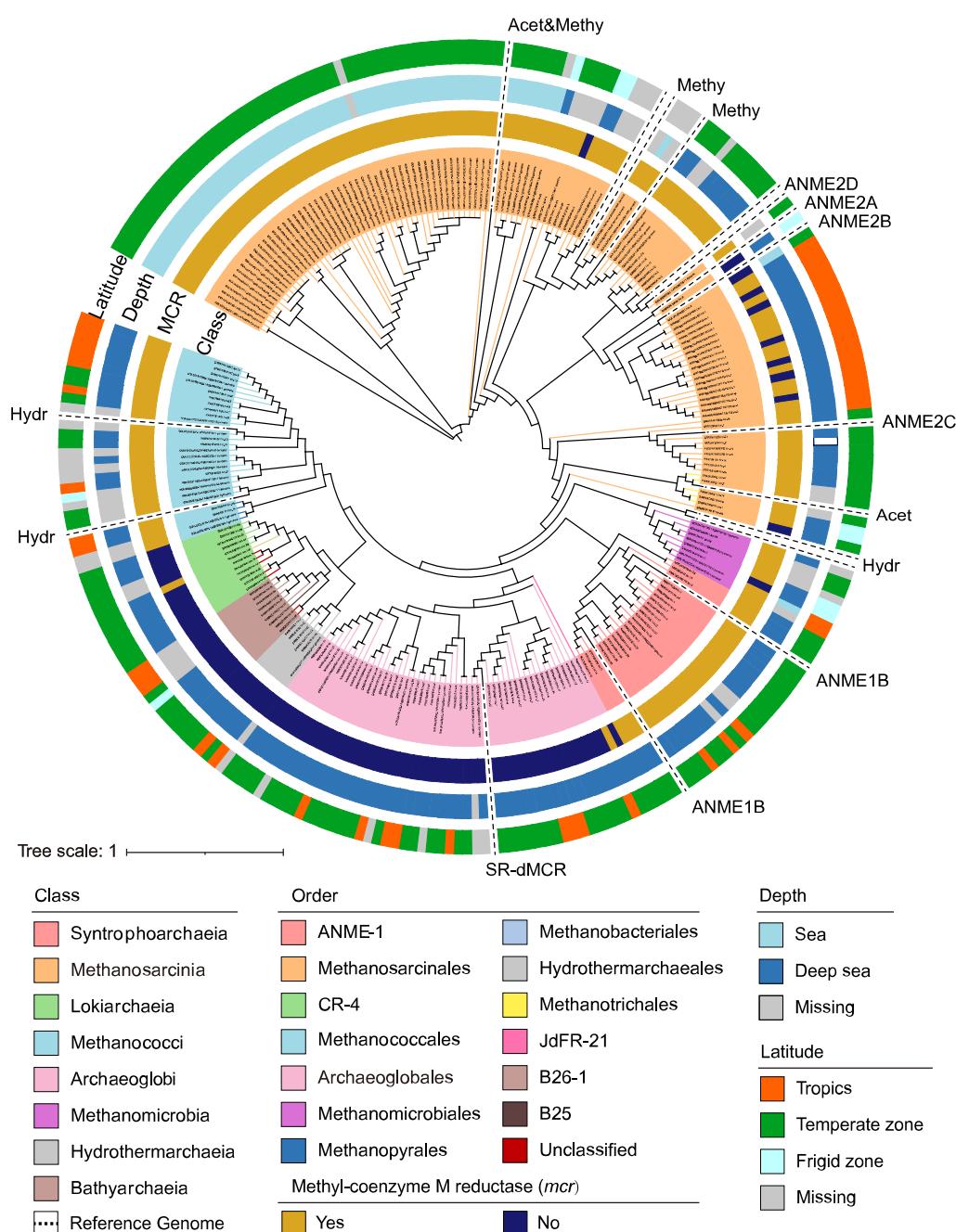
400 Bioluminescence is a widespread natural phenomenon involving visible light emission,
401 which is advantageous for luminescent organisms through prey luring, courtship
402 display, escaping from predators by dazzling and camouflage via counter illumination
403 [77, 78]. There discovered nearly 800 genera containing thousands of luminescent
404 species, and the vast majority of which reside in the ocean [79, 80]. Although fish and
405 crustaceans are the largest bioluminescent groups by biomass, bacteria dominated in
406 terms of abundance. By far, luminous bacteria have been found among in three families
407 of Vibrionaceae (*Vibrio*, *Photobacterium*, *Aliivibrio* and *Photorhabdus*),
408 Shewanellaceae (*Shewanella*) and Enterobacteriaceae. Except for *Photorhabdus* in the
409 five classified luminous genera, all the other four genus, including *Vibrio*,
410 *Photobacterium*, *Aliivibrio* and *Shewanella*, could reside in the sea[81]. Here in the
411 current study, we classified 213 luminous genomes assigned into 164 *Vibrio* (550
412 *Vibrio* genomes in total), 23 *Photobacterium* (49 genomes in total), 24 *Aliivibrio* (37

413 genomes in total) and 2 *Shewanella* (41 genomes in total) (**Fig. 5b**). Among of them,
414 one *Alliibrio fischeri* genome could live symbiotic or free-living style through the
415 aquatic environments and when could make the animal organs glowing (**Fig. 5b**). In
416 addition, no genome data of luminous Enterobacteriaceae was detected in our genome
417 catalogue.

418 All luminous bacteria are thought to share the same unique luminescent mechanism.
419 In bacterial luminescent reaction, enzymes encoded by the *lux* operon mediate the
420 oxidation of reduced flavin mononucleotide (FMNH₂) produced by *rib* operon and
421 long-chain fatty aldehyde (RCHO) to emit blue-green light[82]. The genetic *lux* operon
422 responsible for luminescence has been well understood. We screened the species and
423 strains has *lux* and *rib* operon (contain genes involved in the synthesis of riboflavin)
424 and found that many luminous Vibrionaceae species or strains apparently lack *lux*
425 operon, while *lux* operons were detected in some nonluminous species (**Fig. 5b**). It is
426 not clear about the mechanism and evolution of bioluminescence, we will be able to
427 identify new luminescent components quickly and accurately through the genome
428 resource of marine luminous microorganisms.

429

430 **Distribution of methane-metabolizing related genomes**


431 Methanogenesis is a strictly anaerobic process in which carbon is used as the electron
432 sink at the absence of oxygen. While biogenic methane is exclusively conducted by
433 methanogens, marine methane can be consumed either aerobically by Proteobacteria or
434 anaerobically by anaerobic methanotrophic archaea (ANME) [83, 84]. Methanogens
435 occupies a wide range of taxonomy with a large proportion belonging to the phylum of
436 Euryarchaeota [27]. These archaea usually use CO₂+H₂, acetate or other substrates
437 with methyl groups to produce methane. Since one of the key steps in the methanogenic
438 progress is catalyzed by methyl-coenzyme M reductase, its coding gene *mcrA* was
439 widely employed as a marker gene of methanogens. Interestingly, in anaerobic
440 condition, ANMEs and methanogens are genetically close, and both of the microbes
441 possess a typical methanogenesis pathway including *mcr* [85, 86]. ANME cells oxidize
442 methane via a reverse methanogenesis pathway, coupled with reduction of sulphate[27,

443 87], metal ions[88-90] and nitrate (or nitrite)[91]. On the other hand, in aerobic
444 condition, many reported aerobic methanotrophs belongs to the order Methylococcales
445 of Gamma-proteobacteria or the order Rhizobiales of Alpha-proteobacteria [83, 92].
446 Methane monooxygenase (MMO) is the key enzyme to perform the oxidization of
447 methane to methanol, and thus the *pmoA* gene which encodes a particulate MMO
448 protein component has been widely used in phylogenetic analyses [93].

449 In total, 272 genomes were picked out as methane-metabolizing related genomes
450 (MERGs), while 19 genomes were related to aerobic methanotrophs and 253 genomes
451 belong to methanogens and ANMEs (Fig. 7). According to the phylogenetic trees, the
452 class Methanomicrobia occupies both the most methanogens and ANMEs found in our
453 genome catalogue, while the ANMEs are related to subcluster of ANME-2 and the
454 methanogens are related to those using acetate or substrates with methyl groups. For
455 the subcluster of ANME-1, we found 24 Syntrophoarchaeas, and most of those might
456 be new species (18/24) according to a threshold of ANI > 0.95. As it comes to
457 hydrogenotrophic methanogens, the class of Methanococci and Methanomicrobia
458 contributes the most genomes.

459 Among all MERGs belongs to archaea, most MERGs were found in deep sea than
460 that of an area of <1000 m in the ocean while other species found >1000 m habitats in
461 sediment, and this pattern is in accordance with the fact that anaerobic conditions is
462 necessary for both methanogenesis or anaerobic oxidation of methane (AOM) (Fig.
463 7)[88, 94, 95]. Interestingly, the distribution pattern in latitude or depth, which is that
464 genomes from same depth group or temperature zones tends to cluster together,
465 indicates that marine prokaryotes with same function, or at least methane-metabolizing
466 related archaea, seem to evolve independently from different geolocations (Fig. 7). In
467 addition, there are a large proportion of genomes, which belongs to the lineages of
468 Archaeoglobi, Bathyarchaeia and Hydrothermarchaeia, occupy most enzymes in
469 methanogenesis pathway but lack the key enzyme coding gene of *mcr* (Fig. 7). Previous
470 studies have found two Bathyarchaeia genomes which harbored the *mcr* operon [96],
471 as well as several Archaeoglobi genomes [97]. It has been proposed that this *mcr* operon
472 in Bathyarchaeia most likely acquired from euryarchaeotal genomes through horizontal

473 gene transfer [98], or derived from the last common ancestor of Euryarchaeota and
474 Bathyarchaeota [96]. However, as it showed in our results, lineages such as
475 Archaeoglobi and Bathyarchaeia predominantly contain genomes that lack *mcr* operon
476 [98]. Thus, whether these lineages retain *mcr* operon from ancestor or gain *mcr* through
477 horizontal gene transfer is still inconclusive, and a larger and more systematic dataset
478 would be great help to that. Besides, the absence of *mcr* gene may also reflect the
479 incompleteness of genomes.

481 **Figure 7. Phylogenetic tree based on archaea genomes of MERGs and reference genomes by GTDB-TK.** The
482 classification (Order level and Class level), distribution (Sampling depth and altitude) and the existence of key
483 enzyme coded by *mcr* in methanogenesis pathway were indicated with different colors. Especially, MAGs of
484 unclassified orders were highlighted by red background. Reference genomes were represented by the type of
485 subclusters in white ground (Hydr: hydrogenotrophic methanogenesis, Acet: acetoclastic methanogenesis, Methy:
486 methylotrophic methanogenesis, Acet&Methy: both acetoclastic and methylotrophic methanogenesis, SR&dMCR:
487 a sulfate-reducing archaeon that contained most enzymes for methanogenesis except for *mcr*).

488

489 **Discussion**

490 The astronomical numbers, incredible diversity, and intense activity of marine
491 prokaryotes have made it a key group in regulating the biosphere, including human
492 being activities, and even the atmosphere, geosphere[3, 5, 6, 99]. Here we analyzed the
493 metagenomic sequencing data of the filtered samples from different oceanic depth
494 layers and the marine sediment samples, host-associated symbiotic samples in each
495 ocean and generated the most integrated marine prokaryotic genome catalogue to date.
496 The resource of 20,671 moderate quality genomes expands the phylogenetic diversity
497 of bacteria and archaea and represents the largest prokaryotic biodiversity in the marine
498 ecosystem. Archaea account for more than 20% of all prokaryotes in seawater, and are
499 the most important microbial group in marine subsurface sediments and most
500 geothermal habitats[27, 100]. In our data, it is currently the largest marine archaeal
501 genome resource dataset, and is the first time to present the phylogenetic tree of global
502 marine archaea containing the most genome level species. Besides, more than 65%
503 phylogenetic diversity was increased of marine prokaryotes, and the diversity increase
504 percentage is consistent with the Earth's Microbiomes Project [51]. However,
505 inconsistent with the recent studies of microbial diversity[101, 102], two novel
506 candidate Bacteria phyla were detected surprisingly. It indicated that there are still new
507 deep-branching lineages (new phyla or new orders) waiting to be discovered, especially
508 in marine ecosystems. Although we have not been able to collect the whole genomics
509 sequencing data of the entire marine ecosystem, the large-scale marine prokaryotic
510 genome data set currently generated has greatly enhanced our understanding of marine

511 ecosystems and microbial communities. The genome catalogue represents a key step
512 forward towards characterizing the species, functional and secondary metabolite BGCs
513 diversity in marine microbial communities, and will become a valuable resource for
514 future metabolic and genome-centric data mining.

515

516 **Method**

517 **Data collection**

518 We compiled all the publicly prokaryotic genomes from NCBI[103] at May 31, 2020.
519 To generated uncluttered genomes, we surveyed the of NCBI, EBI and JGI. In the NCBI
520 database, we screened 55 marine-related Taxonomy ids (**Table S1**). Based on these
521 taxonomy ids, we used NCBI's E-utilities tool to obtain sample information and sra
522 information, and filtered out non-metagenomic data. Finally, we obtained 26,238
523 marine metagenomics sample from NCBI public database. In the EBI database, we
524 downloaded the meta data of all classification systems, and then manually screened
525 them according to 27 keywords related to the ocean (**Table S1**), and obtained 5,168
526 marine metagenomics samples. In the JGI database, we directly used keywords to
527 download relevant sample information, manually corrected it, and finally obtained 82
528 samples. Because of the data interoperability between different databases, we removed
529 the duplicate data obtained from the three databases and finally got 6265 marine
530 prokaryotic genome samples and 2875 marine metagenomics samples for the
531 downstream analysis.

532

533 **Genome binning and quality evaluation**

534 For the metagenomics samples, after filtered low quality, PCR duplication and adapter
535 contamination reads, the clean data of each sample was assembled into contigs by
536 megahit (v1.1) with parameters “--min-count 2 --k-min 33 --k-max 83 --k-step 20”[104].
537 Subsequently Matabat2 (v2.12.1)[105] module from metawrap (v1.1.5)[106] was used
538 for binning analysis with parameters “-l 1000” to obtain the metagenomics assembled
539 genomes (MAGs).

540 CheckM (v1.0.12) [107] was used for genome quality evaluation of all public

541 genomes and new MAGs, and the low quality genomes (completeness < 50% or
542 contamination > 10%) was removed. All the moderate genomes (completeness >50%
543 and contamination <10%) were remained and only the substantial genomes
544 (completeness >70% and contamination <10%) were selected for downstream statistics
545 and analysis.

546

547 **Species clustering, gene annotation and phylogenetic analyses**

548 The taxonomic annotation of each genome was performed by the Genome Taxonomy
549 Database Toolkit (GTDB-tk, v1.0.2) using the “classify_wf” function and default
550 parameters[108]. To remove redundant genomes, we clustered the total 21,182
551 substantial genomes at an estimated species level by dRep (v2.6.2)[109] with
552 parameters “-comp 70 -con 10 -pa 0.9 --S_ani 0.95 --cov_thresh 0.3”. The Spearman
553 correlation between genome size and GC content and between the genome features and
554 environmental factors of the major phyla was calculated by R (v3.3.1). All phylogenetic
555 trees were constructed by FastTree (v2.1.10)[110] using the protein sequence
556 alignments produced by GTDB-Tk, and visualized by iTOL (v5.0)[111].

557 Potential CDS regions of all the microbial genomes, MAGs and metagenome
558 unbinned contigs were predicted by Prokka (v1.14.6)[112], and all predicated CDS
559 sequences were lumped and redundant sequences removed by Linclust [113] to
560 construct a unique gene catalogue for the marine microbiome. The gene sequences of
561 each non-redundant genomes were annotated by KEGG database (v87.0) by Diamond
562 (v0.8.23.85)[114], and secondary-metabolite biosynthetic gene clusters BGCs and
563 regions were identified using antiSMASH (v5.0)[115] with default parameters.

564

565 **Methane-metabolizing related genomes detection**

566 Considering the highly shared methane metabolizing pathway either between
567 methanogens and ANMEs or between aerobic methanotrophs, genomes in our genome
568 catalogue which harboring more than 80% of shared KEGG Orthologs of “Methane
569 Metabolism” (Meth-KOs) in several reported species of either methanogens and
570 ANMEs or aerobic methanotrophs (**Table S2**) were picked out as candidates.

571 Candidates were further selected as methane-metabolizing related genomes (MERGs)
572 if one harboring over 50 Meth-KOs. Phylogenetic analysis was performed with all
573 MERGs and also the genomes in Table 2.

574

575

576

577 **Reference**

- 578 1. Munn, C.B., *Marine Microbiology: Ecology and Applications*. Boca Raton: CRC Press, 2019.
- 579 2. Overmann, J. and C. Lepleux, *Marine Bacteria and Archaea: Diversity, Adaptations, and*
580 *Culturability*. 2016: p. 21-55.
- 581 3. Alvarez-Yela, A.C., et al., *Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a*
582 *Coral Atoll of the Seaflower Biosphere Reserve*. *Frontiers in Marine Science*, 2019. **6**.
- 583 4. McFall-Ngai, M., et al., *Animals in a bacterial world, a new imperative for the life sciences*.
584 *Proc Natl Acad Sci U S A*, 2013. **110**(9): p. 3229-36.
- 585 5. Salazar, G. and S. Sunagawa, *Marine microbial diversity*. *Current Biology*, 2017. **27**(11): p.
586 R489-R494.
- 587 6. Liu, J., et al., *Microbial assembly, interaction, functioning, activity and diversification: a review*
588 *derived from community compositional data*. *Marine Life Science & Technology*, 2019. **1**(1): p.
589 112-128.
- 590 7. Zhang, F., et al., *A marine microbiome antifungal targets urgent-threat drug-resistant fungi*.
591 *Science*, 2020. **370**(6519): p. 974-978.
- 592 8. Carroll, A.R., et al., *Marine natural products*. *Natural Product Reports*, 2020. **37**(2): p. 175-223.
- 593 9. Molinski, T.F., et al., *Drug development from marine natural products*. *Nature Reviews Drug*
594 *Discovery*, 2008. **8**(1): p. 69-85.
- 595 10. Montaser, R. and H. Luesch, *Marine natural products: a new wave of drugs?* *Future Med Chem*,
596 2011. **3**(12): p. 1475-89.
- 597 11. Arrigo and R. Kevin, *Carbon cycle: marine manipulations*. *Nature*, 2007. **450**(7169): p. 491-2.
- 598 12. Azam, F., et al., *Bacteria-Organic Matter Coupling and Its Significance for Oceanic Carbon*
599 *Cycling*. 1993.
- 600 13. Riebesell, U., et al., *Enhanced biological carbon consumption in a high CO₂ ocean*. *Nature*,
601 2007. **450**(7169): p. 545-548.
- 602 14. Wuchter, C., et al., *Archaeal nitrification in the ocean*. *Proc Natl Acad Sci U S A*, 2006. **103**(33):
603 p. 12317-22.
- 604 15. Tolar, B.B., et al. *Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing*
605 *Archaeal Communities to Nitrification Rates in the Coastal Ocean*. in *Agu Fall Meeting*. 2015.
- 606 16. Dean, J.F., et al., *Methane Feedbacks to the Global Climate System in a Warmer World*. *Reviews*
607 *of Geophysics*, 2018. **56**(1): p. 207-250.
- 608 17. Thauer, R.K., et al., *Methanogenic archaea: ecologically relevant differences in energy*
609 *conservation*. *Nat Rev Microbiol*, 2008. **6**(8): p. 579-91.
- 610 18. Jean and Wilson, *Marine microbiology: ecology and applications (2nd Edn)*. *Journal of*
611 *Biological Education*. Vol. 46. 2012. 120-120.

612 19. Chisholm, S.W., et al., *A novel free-living prochlorophyte abundant in the oceanic euphotic*
613 *zone*. *Nature*, 1988. **334**(6180): p. 340-343.

614 20. Johnson, P.W. and J.M. Sieburth, *Chroococcoid cyanobacteria in the sea: A ubiquitous and*
615 *diverse phototrophic biomass*. *Limnology & Oceanography*, 1979. **24**(5): p. 928-935.

616 21. Waterbury, J.B., et al., *Widespread occurrence of a unicellular, marine, planktonic,*
617 *cyanobacterium*. *Nature*, 1979. **277**(5694): p. 293-294.

618 22. Stewart, I. and I. Falconer, *Cyanobacteria and cyanobacterial toxins*. 2020.

619 23. Field, C.B., et al., *Primary production of the biosphere: integrating terrestrial and oceanic*
620 *components*. *Science*, 1998. **281**(5374): p. 237-40.

621 24. Huisman, J., et al., *Cyanobacterial blooms*. *Nat Rev Microbiol*, 2018. **16**(8): p. 471-483.

622 25. Macdonald, G.J., *Role of methane clathrates in past and future climates*. *Climatic Change*, 1990.
623 **16**(3): p. 247-281.

624 26. Reeburgh, W.S., *Oceanic Methane Biogeochemistry*. *Cheminform*, 2007.

625 27. Maignien, L., *Microbial ecology of carbon and sulphur cycles in deep-sea carbonate mounds*
626 *and mud volcanoes*. 2011.

627 28. Rothman and H. D., *Atmospheric carbon dioxide levels for the last 500 million years*.
628 *Proceedings of the National Academy of Sciences of the United States of America*, 2002. **99**(7):
629 p. 4167-4171.

630 29. Arrieta, J.M., S. Arnaud-Haond, and C.M. Duarte, *What lies underneath: conserving the oceans'*
631 *genetic resources*. *Proc Natl Acad Sci U S A*, 2010. **107**(43): p. 18318-24.

632 30. Mayer, A.M., et al., *Marine pharmacology in 2009-2011: marine compounds with antibacterial,*
633 *antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral*
634 *activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of*
635 *action*. *Mar Drugs*, 2013. **11**(7): p. 2510-73.

636 31. Mayer, A.M., et al., *Marine pharmacology in 2007-8: Marine compounds with antibacterial,*
637 *anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and*
638 *antiviral activities; affecting the immune and nervous system, and other miscellaneous*
639 *mechanisms of action*. *Comp Biochem Physiol C Toxicol Pharmacol*, 2011. **153**(2): p. 191-222.

640 32. Blake, P., *Disease caused by a marine Vibrio clinical characteristics and epidemiology*.
641 *N.engl.j.med*, 1979. **300**.

642 33. Howard, R.J. and N.T. Bennett, *Infections caused by halophilic marine Vibrio bacteria*. *Annals*
643 *of Surgery*, 1993. **217**(5): p. 525-531.

644 34. West, P.A., *The human pathogenic vibrios--a public health update with environmental*
645 *perspectives*. *Epidemiol Infect*, 1989. **103**(1): p. 1-34.

646 35. Diner, R.E., et al., *Microbiomes of pathogenic Vibrio species reveal environmental and*
647 *planktonic associations*. *ResearchSquare*, 2019.

648 36. Solden, L., K. Lloyd, and K. Wrighton, *The bright side of microbial dark matter: lessons*
649 *learned from the uncultivated majority*. *Curr Opin Microbiol*, 2016. **31**: p. 217-226.

650 37. Breitbart, M., et al., *Genomic analysis of uncultured marine viral communities*. *Proceedings of*
651 *the National Academy of Sciences*, 2002. **99**(22): p. 14250-14255.

652 38. Cao, S., et al., *Structure and function of the Arctic and Antarctic marine microbiota as revealed*
653 *by metagenomics*. *Microbiome*, 2020. **8**(1).

654 39. Kraemer, S., et al., *Diversity and biogeography of SAR11 bacteria from the Arctic Ocean*. *The*
655 *ISME Journal*, 2019. **14**(1): p. 79-90.

656 40. Dong, X., et al., *Metabolic potential of uncultured bacteria and archaea associated with*
657 *petroleum seepage in deep-sea sediments*. *Nature Communications*, 2019. **10**(1).

658 41. Anantharaman, K., J.A. Breier, and G.J. Dick, *Metagenomic resolution of microbial functions*
659 *in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center*. *ISME J*, 2016. **10**(1):
660 p. 225-39.

661 42. Li, C., et al., *A survey of the sperm whale (*Physeter catodon*) commensal microbiome*. *PeerJ*,
662 2019. **7**: p. e7257.

663 43. Monteil, C.L., et al., *Ectosymbiotic bacteria at the origin of magnetoreception in a marine*
664 *protist*. *Nat Microbiol*, 2019. **4**(7): p. 1088-1095.

665 44. Sunagawa, S., et al., *Structure and function of the global ocean microbiome*. *Science*, 2015.
666 **348**(6237): p. 1261359.

667 45. Yooseph, S., et al., *The Sorcerer II Global Ocean Sampling expedition: expanding the universe*
668 *of protein families*. *PLoS Biol*, 2007. **5**(3): p. e16.

669 46. Bodor, A., et al., *Challenges of uncultivable bacteria: environmental perspectives*. *Reviews in*
670 *Environmental Science and Bio/Technology*, 2020. **19**(1): p. 1-22.

671 47. Saito, M.A., et al., *Progress and Challenges in Ocean Metaproteomics and Proposed Best*
672 *Practices for Data Sharing*. *Journal of Proteome Research*, 2019. **18**(4): p. 1461-1476.

673 48. Aguiar-Pulido, V., et al., *Metagenomics, Metatranscriptomics, and Metabolomics Approaches*
674 *for Microbiome Analysis*. *Evolutionary Bioinformatics*, 2016. **12**s1: p. EBO.S36436.

675 49. Tully, B.J., E.D. Graham, and J.F. Heidelberg, *The reconstruction of 2,631 draft metagenome-*
676 *assembled genomes from the global oceans*. *Scientific Data*, 2018. **5**(1).

677 50. Pachiadaki, M.G., et al., *Charting the Complexity of the Marine Microbiome through Single-*
678 *Cell Genomics*. *Cell*, 2019. **179**(7): p. 1623-1635 e11.

679 51. Nayfach, S., et al., *A genomic catalog of Earth's microbiomes*. *Nat Biotechnol*, 2020.

680 52. Lee, I., et al., *OrthoANI: An improved algorithm and software for calculating average*
681 *nucleotide identity*. *International Journal of Systematic and Evolutionary Microbiology*, 2016.
682 **66**(2): p. 1100-1103.

683 53. Adam, P.S., et al., *The growing tree of Archaea: new perspectives on their diversity, evolution*
684 *and ecology*. *ISME J*, 2017. **11**(11): p. 2407-2425.

685 54. Zaremba-Niedzwiedzka, K., et al., *Asgard archaea illuminate the origin of eukaryotic cellular*
686 *complexity*. *Nature*, 2017. **541**(7637): p. 353-358.

687 55. Musto, H., et al., *Genomic GC level, optimal growth temperature, and genome size in*
688 *prokaryotes*. *Biochemical and Biophysical Research Communications*, 2006. **347**(1): p. 1-3.

689 56. Almanidis, A., et al., *Correlation between bacterial G+C content, genome size and the G+C*
690 *content of associated plasmids and bacteriophages*. *Microb Genom*, 2018. **4**(4).

691 57. Vinogradov, A.E., *Genome size and GC-percent in vertebrates as determined by flow cytometry:*
692 *the triangular relationship*. *Cytometry*, 1998. **31**(2): p. 100-109.

693 58. Šmarda, P., et al., *Genome Size and GC Content Evolution of *Festuca*: Ancestral Expansion and*
694 *Subsequent Reduction*. *Annals of Botany*, 2007. **101**(3): p. 421-433.

695 59. Grote, J., et al., *Streamlining and core genome conservation among highly divergent members*
696 *of the SAR11 clade*. *mBio*, 2012. **3**(5).

697 60. Giovannoni, S.J., et al., *Genome streamlining in a cosmopolitan oceanic bacterium*. *Science*,
698 2005. **309**(5738): p. 1242-5.

699 61. Fu, Y., et al., *Water mass and depth determine the distribution and diversity of Rhodobacterales*

700 62. *in an Arctic marine system*. FEMS Microbiol Ecol, 2013. **84**(3): p. 564-76.

701 63. Dombrowski, N., et al., *Genomic diversity, lifestyles and evolutionary origins of DPANN*
702 *archaea*. FEMS Microbiology Letters, 2019. **366**(2).

703 64. Huber, H., et al., *A new phylum of Archaea represented by a nanosized hyperthermophilic*
704 *symbiont*. Nature, 2002. **417**(6884): p. 63-7.

705 65. Mende, D.R., et al., *Environmental drivers of a microbial genomic transition zone in the ocean's*
706 *interior*. Nat Microbiol, 2017. **2**(10): p. 1367-1373.

707 66. Tian, R., et al., *Small and mighty: adaptation of superphylum Patescibacteria to groundwater*
708 *environment drives their genome simplicity*. Microbiome, 2020. **8**(1): p. 51.

709 67. Wang, S., et al., *Characterization of the secondary metabolite biosynthetic gene clusters in*
710 *archaea*. Comput Biol Chem, 2019. **78**: p. 165-169.

711 68. Chen, R., et al., *Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay*
712 *Microbial Mats*. Front Microbiol, 2020. **11**: p. 1950.

713 69. Berdy, J., *Bioactive microbial metabolites*. J Antibiot (Tokyo), 2005. **58**(1): p. 1-26.

714 70. Sims, G.K., E.P.J.S.B. Dunigan, and Biochemistry, *Diurnal and seasonal variations in*
715 *nitrogenase activity (C2H2 reduction) of rice roots*. 1984. **16**(1): p. 15-18.

716 71. Nadis and S.J.e. American, *The cells that rule the seas*. 2003. **289**(6): p. 52.

717 72. Janina, S., et al., *Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1)*
718 *proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii*
719 *due to increased PSII activity under sulfur deprivation*. 2015. **6**: p. 892-.

720 73. Berkeley, B.J.U.o.C., *Cyanobacteria: Life History and Ecology*.

721 74. Komárek and J.í.J.A. Studies, *About endemism of cyanobacteria in freshwater habitats of*
722 *maritime Antarctica*. 2015. **148**(1): p. 15-32.

723 75. Clokie, M.R.J., et al., *Phages in nature*. Bacteriophage, 2011. **1**(1): p. 31-45.

724 76. Yakovchuk, P.J.N.A.R., *Base-stacking and base-pairing contributions into thermal stability of*
725 *the DNA double helix*. 2006.

726 77. Ziegler, M., et al., *Bacterial community dynamics are linked to patterns of coral heat tolerance*.
727 *Nat Commun*, 2017. **8**: p. 14213.

728 78. Kahlke, T. and K.D.L. Umbers, *Bioluminescence*. Current Biology, 2016. **26**(8): p. R313-R314.

729 79. Verdes, A. and D.F. Gruber, *Glowing Worms: Biological, Chemical, and Functional Diversity*
730 *of Bioluminescent Annelids*. Integrative and Comparative Biology, 2017. **57**(1): p. 18-32.

731 80. Haddock, S.H.D., M.A. Moline, and J.F. Case, *Bioluminescence in the Sea*. Annual Review of
732 *Marine Science*, 2010. **2**(1): p. 443-493.

733 81. Widder, E.A., *Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological*
734 *Diversity*. Science, 2010. **328**(5979): p. 704-708.

735 82. Dunlap, P., *Biochemistry and Genetics of Bacterial Bioluminescence*. 2014. **144**: p. 37-64.

736 83. Brodl, E., A. Winkler, and P. Macheroux, *Molecular Mechanisms of Bacterial Bioluminescence*.
737 *Computational and Structural Biotechnology Journal*, 2018. **16**: p. 551-564.

738 84. Islam, T., et al., *Novel Methanotrophs of the Family Methylococcaceae from Different*
739 *Geographical Regions and Habitats*. 2015.

740 85. Ruff, S.E., et al., *Global dispersion and local diversification of the methane seep microbiome*.
741 *Proc Natl Acad Sci U S A*, 2015. **112**(13): p. 4015-20.

742 86. Holler, T., et al., *Carbon and sulfur back flux during anaerobic microbial oxidation of methane*
743 *and coupled sulfate reduction*. 2011.

744 86. Zehnder, A.J. and T.D. Brock, *Methane formation and methane oxidation by methanogenic*
745 *bacteria*. *Journal of Bacteriology*, 1979. **137**(1): p. 420-32.

746 87. Timmers, P.H., et al., *Reverse Methanogenesis and Respiration in Methanotrophic Archaea*.
747 *Archaea*, 2017. **2017**: p. 1654237.

748 88. Beal, E.J., C.H. House, and V.J. Orphan, *Manganese- and Iron-Dependent Marine Methane*
749 *Oxidation*. *Science*, 2009. **325**(5937): p. 184-187.

750 89. Cai, et al., *A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III)*
751 *reduction*. *Isme Journal Emultidisciplinary Journal of Microbial Ecology*, 2018.

752 90. Leu, A.O., et al., *Anaerobic methane oxidation coupled to manganese reduction by members of*
753 *the Methanoperedenaceae*. *Isme Journal*, 2020. **14**(4).

754 91. Haroon, M.F., et al., *Anaerobic oxidation of methane coupled to nitrate reduction in a novel*
755 *archaeal lineage*. *Nature*, 2013. **500**(7464): p. 567-70.

756 92. Bowman, *Methylococcales*, in *Bergey's Manual of Systematics of Archaea and Bacteria*. 2018.
757 p. 1-4.

758 93. Bowman, J.P., *Methylococcales ord. nov*, in *Bergey's Manual of Systematics of Archaea and*
759 *Bacteria*. 2015. p. 1-10.

760 94. Martens, C.S. and R.A. Berner, *Methane production in the interstitial waters of sulfate-depleted*
761 *marine sediments*. *ence*, 1974. **185**(4157): p. 1167-1169.

762 95. Boetius, A., et al., *A marine microbial consortium apparently mediating anaerobic oxidation of*
763 *methane*. *Nature*, 2000. **407**(6804): p. 623-626.

764 96. Evans, P.N., et al., *Methane metabolism in the archaeal phylum Bathyarchaeota revealed by*
765 *genome-centric metagenomics*. *ence*. **350**.

766 97. Wang, Y., et al., *Expanding anaerobic alkane metabolism in the domain of Archaea*. *Nature*
767 *Microbiology*, 2019.

768 98. Nayfach, S., et al., *A genomic catalog of Earth's microbiomes*. *Nature Biotechnology*, 2020.

769 99. Parkes, R.J., et al., *A review of prokaryotic populations and processes in sub-seafloor sediments,*
770 *including biosphere:geosphere interactions*. *Marine Geology*, 2014. **352**: p. 409-425.

771 100. Offre, P., A. Spang, and C. Schleper, *Archaea in Biogeochemical Cycles*. *Annual Review of*
772 *Microbiology*, 2013. **67**(1): p. 437-457.

773 101. Schloss, P.D., et al., *Status of the Archaeal and Bacterial Census: an Update*. *mBio*, 2016. **7**(3).

774 102. Parks, D.H., et al., *A standardized bacterial taxonomy based on genome phylogeny substantially*
775 *revises the tree of life*. *Nat Biotechnol*, 2018. **36**(10): p. 996-1004.

776 103. Kitts, P.A., et al., *Assembly: a resource for assembled genomes at NCBI*. *Nucleic Acids Res*,
777 2016. **44**(D1): p. D73-80.

778 104. Li, D., et al., *MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics*
779 *assembly via succinct de Bruijn graph*. *Bioinformatics*, 2015. **31**(10): p. 1674-6.

780 105. Kang, D.D., et al., *MetaBAT, an efficient tool for accurately reconstructing single genomes from*
781 *complex microbial communities*. *PeerJ*, 2015. **3**: p. e1165.

782 106. Uritskiy, G.V., J. DiRuggiero, and J. Taylor, *MetaWRAP-a flexible pipeline for genome-resolved*
783 *metagenomic data analysis*. *Microbiome*, 2018. **6**(1): p. 158.

784 107. Parks, D.H., et al., *CheckM: assessing the quality of microbial genomes recovered from isolates,*
785 *single cells, and metagenomes*. *Genome Res*, 2015. **25**(7): p. 1043-55.

786 108. Parks, D.H., et al., *A complete domain-to-species taxonomy for Bacteria and Archaea*. *Nature*
787 *Biotechnology*, 2020.

788 109. Olm, M.R., et al., *dRep: a tool for fast and accurate genomic comparisons that enables*
789 *improved genome recovery from metagenomes through de-replication*. ISME J, 2017. **11**(12): p.
790 2864-2868.

791 110. Price, M.N., P.S. Dehal, and A.P. Arkin, *FastTree 2--approximately maximum-likelihood trees*
792 *for large alignments*. PLoS One, 2010. **5**(3): p. e9490.

793 111. Letunic, I. and P. Bork, *Interactive Tree Of Life (iTOL) v4: recent updates and new developments*.
794 Nucleic Acids Res, 2019. **47**(W1): p. W256-W259.

795 112. Seemann, T., *Prokka: rapid prokaryotic genome annotation*. Bioinformatics, 2014. **30**(14): p.
796 2068-2069.

797 113. Steinegger, M. and J. Soding, *Clustering huge protein sequence sets in linear time*. Nat
798 Commun, 2018. **9**(1): p. 2542.

799 114. Buchfink, B., C. Xie, and D.H. Huson, *Fast and sensitive protein alignment using DIAMOND*.
800 Nature Methods, 2014. **12**(1): p. 59-60.

801 115. Medema, M.H., et al., *antiSMASH: rapid identification, annotation and analysis of secondary*
802 *metabolite biosynthesis gene clusters in bacterial and fungal genome sequences*. Nucleic Acids
803 Research, 2011. **39**(suppl_2): p. W339-W346.

804