

1 Experience-induced remodeling of the hippocampal post- 2 synaptic proteome and phosphoproteome

3
4 Seok Heo^{1,2*}, Taewook Kang^{3*}, Alexei M. Bygrave^{1,2},
5 Martin R. Larsen^{3,4**}, and Richard L. Huganir^{1,2**}

6
7
8 ¹Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of
9 Medicine, Baltimore, Maryland 21205, USA

10 ²Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA

11 ³Protein Research Group, Department of Biochemistry and Molecular Biology, University of
12 Southern Denmark, Odense, Denmark

13 ⁴Lead Contact

14
15 *These authors contributed equally

16 **Correspondence: 1) Richard L. Huganir

17 The Johns Hopkins University School of Medicine
18 725 North Wolfe Street, Hunterian 1009A
19 Baltimore, MD 21205
20 Tel. (+1) 410-955-4050
21 E-mail rhuganir@jhmi.edu

22 2) Martin R. Larsen
23 University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
24 Tel. (+45) 60-111872
25 E-mail mrl@bmb.sdu.dk

26 27 Acknowledgements

28 We thank members of the R.L.H. laboratory for helpful comments, discussion and critical
29 reading of the manuscript. This work was supported by grants from the National Institute of Health
30 Grants (R01NS036715, R01MH112152, to R.L.H.), the Novo Nordisk Foundation
31 (NNF16OC0023448 to M.R.L), and the Villum Center for Bioanalytical Sciences at SDU (M.R.L),
32 and the Danish Diabetes Academy (NNF17SA0031406 to T.K.).

33 **Highlights:**

- 34 • The proteome and phosphoproteome of mouse hippocampal PSD fractions were
35 examined using quantitative phosphoproteomics and bioinformatics following inhibitory
36 avoidance training or non-associative immediate shock.
- 37 • Approximately 6,200 proteins and 3,000 phosphoproteins were identified and quantified
38 in the hippocampal PSD fractions.
- 39 • IA mediates widespread decreases in the abundance and phosphorylation of proteins in
40 the hippocampal PSD fraction.
- 41 • Kinases, phosphatases and their phosphorylation status were dynamically and
42 significantly regulated by IA and immediate shock.
- 43 • Functional validation shows that the protein phosphatase Ppm1h is linked to the regulation
44 of synaptic plasticity *in vitro* and *in vivo*.

45

46 **Keywords**

47 Inhibitory avoidance, postsynaptic density, learning and memory, phosphoproteomics

48

49 **In Brief**

50 Quantitative proteomics and phosphoproteomics combined with subcellular protein
51 fractionation and bioinformatic analysis identifies a highly dynamic regulation of synaptic protein
52 phosphorylation at the postsynaptic density following IA training and immediate shock.

53

54

55 **Summary**

56 The post synaptic density (PSD) of excitatory synapses contains a highly organized protein
57 network with thousands of proteins and is key node in the regulation of synaptic plasticity. To gain
58 new mechanistic insight into experience-induced changes in the PSD, we examined the global
59 dynamics of the PSD proteome and phosphoproteome in mice following various treatments. Mice
60 were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated
61 for quantitative proteomic and phosphoproteomics analysis. We used a sequential enrichment
62 strategy to explore the concurrent events of protein expression and phosphorylation in the
63 hippocampal PSD following IA training (IA) or immediate shock (Shock). We identified more than
64 6,200 proteins and 3,000 phosphoproteins in the sequential strategy covering a total of 7,429
65 proteins. On the phosphoproteins we identified a total of 9,589 phosphosites. Strikingly, of the
66 significantly IA-regulated proteins and phosphoproteins, a large fraction of the proteins displayed

67 an overall decrease in phosphorylation level. Bioinformatic analysis of proteins and
68 phosphoproteins that were regulated by IA were annotated for an involvement in regulation of
69 glutamate receptor functionality, calcium signaling, and synaptic plasticity. We also identified
70 synaptic kinases, phosphatases and their respective phosphosites regulated by IA training or
71 immediate shock. Furthermore, we found that AMPA receptor surface expression was regulated
72 by protein phosphatase, Mg²⁺/Mn²⁺ dependent 1H (Ppm1h). Together, these results unravel the
73 dynamic remodeling of the PSD upon IA learning or immediate shock and serve as a resource for
74 elucidating the synaptic proteome dynamics induced by experience-dependent plasticity.

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101 **INTRODUCTION**

102 The dynamic tuning of synaptic strength, through processes known as synaptic plasticity, is
103 crucial for learning and memory (Huganir and Nicoll, 2013). Long-term potentiation (LTP) and
104 long-term depression (LTD) are the two most studied forms of synaptic plasticity, arising from
105 dynamic changes in neurons, including gene expression, protein trafficking and post-translational
106 modifications (PTMs) (Costa-Mattioli et al., 2009; Ho et al., 2011). The post synaptic density (PSD)
107 is an essential structure of excitatory synapses which is composed of both membrane and
108 submembranous components. Biochemical and molecular biological studies have identified a
109 number of proteins in the PSD, including neurotransmitter receptors, scaffold proteins,
110 cytoskeleton proteins and signaling molecules, which together regulate synapse function, i.e., the
111 communication between the pre- and post-synapses. Biochemical enrichment of PSD fractions
112 and advances in proteomic approaches contribute to the expansion of our understanding of the
113 synaptic proteins enriched in the PSD and their PTMs (Xu et al., 2021). However, the dynamics
114 of PTM in the PSD upon various behavioral tasks in the brain, such as experience-dependent
115 activity changes are poorly understood, and could potentially shed light on important signaling
116 pathways for learning and memory processes in the brain.

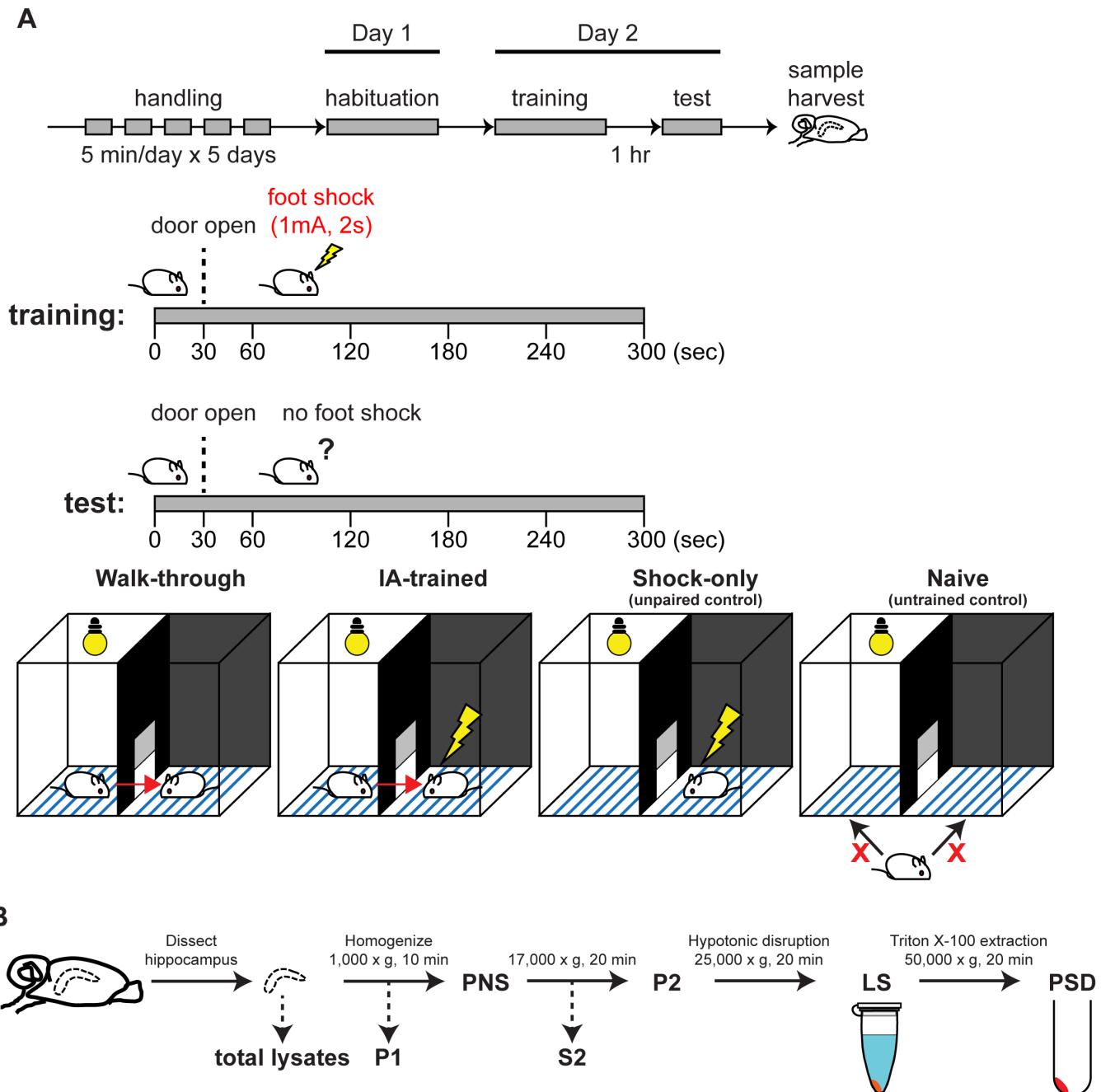
117 LTP at the Schaffer collateral pathway between CA3 and CA1 pyramidal neurons in the
118 hippocampus is the best characterized form of synaptic plasticity to date, both *in vitro* and *in vivo*.
119 For example, LTP at CA3-CA1 synapses has been observed *in vivo* following inhibitory avoidance
120 (IA) training in rats (Whitlock et al., 2006). The emotionally-motivated learning following single-
121 trial IA training is hippocampus-dependent (Best and Orr, 1973) and robust and long lasting
122 (Izquierdo et al., 1997). Memories formed by IA training are dependent on both protein synthesis
123 and degradation. For example, studies have shown that inhibition of protein synthesis with protein
124 synthesis inhibitors (e.g., anisomycin) infused in hippocampus or amygdala impaired
125 consolidation, re-consolidation and extinction of IA-memories (Milekic et al., 2007; Taubenfeld et
126 al., 2001; Vianna et al., 2001). In addition, proteasome-mediated protein degradation is also
127 required for intact IA-memory (Fioravante and Byrne, 2011; Lopez-Salon et al., 2001). Protein
128 phosphorylation/dephosphorylation of synaptic proteins also plays an important role in regulating
129 the strength of synaptic connections (Diering and Huganir, 2018; Fingleton et al., 2021). The
130 function of reversible protein phosphorylation mediated by kinases and phosphatases has been
131 studied for decades and it is clear that phosphorylation is critically important for learning and
132 memory (Coba, 2019; Woolfrey and Dell'Acqua, 2015). It is known that phosphorylation of
133 different synaptic proteins is involved in different processes during memory formation (Lee, 2006;
134 Woolfrey and Dell'Acqua, 2015). These data suggest that IA-learning and subsequent memory

135 formation requires both synthesis and degradation of proteins, coupled with proper regulation of
136 synaptic protein by PTMs such as phosphorylation.

137 Previous studies in mice have shown that IA induces changes in gene expression of c-Fos,
138 Arc, homer1a, Na^+/K^+ -ATPase subunits and glucose transporter type 1 (Tadi et al., 2015; Zhang
139 et al., 2011). In rats (Cammarota et al., 1998; Whitlock et al., 2006) and mice (Chiu et al., 2017),
140 IA training leads to recruitment of AMPA-type glutamate receptors (AMPARs) to the synaptosomal
141 membrane fraction. In addition, GluA1 phosphorylation such as at the CaMKII site Ser831 is
142 elevated following IA training (Cammarota et al., 1998; Whitlock et al., 2006). IA training also
143 increased hippocampal CaMKII activity in the early phase of memory formation (Cammarota et
144 al., 1998). These findings suggest that various synaptic proteins and their phosphorylation states
145 are involved in IA-mediated learning and memory formation. However, our knowledge on synaptic
146 proteins and their phosphorylation is limited to only a few synaptic proteins which are extensively
147 studied.

148 Recent technological advances in mass spectrometry-based proteomics, including
149 development of high-resolution mass spectrometry (HR-MS) instruments and tools for
150 quantitative assessment of protein phosphorylation (Engholm-Keller and Larsen, 2016),
151 alongside improvements in bioinformatics, enable unbiased characterization of proteins and their
152 phosphorylation in brain with unprecedented depth (Bayes and Grant, 2009; Dieterich and Kreutz,
153 2016; Kempf et al., 2016; Kitchen et al., 2014; Palmisano et al., 2012). The power of proteomic
154 approaches is being harnessed to identify how synaptic proteins and their phosphorylation
155 change with learning when combined with behavioral testing and pharmacological manipulations
156 (Borovok et al., 2016; Diering et al., 2017; Hong et al., 2013; Hosp and Mann, 2017; Kahne et al.,
157 2016; Liu et al., 2018; McNair et al., 2006).

158 Here we used HR-MS combined with isobaric tags for relative and absolute quantification
159 (iTRAQ) and TiO_2 -based phosphopeptide enrichment (Kang et al., 2019; Kang et al., 2018) to
160 probe PSD-specific proteomic and phosphoproteomic remodeling following IA training. We
161 identified a subset of significantly regulated PSD proteins and phosphoproteins which showed
162 decreased abundance 1 hour after IA training. Pathway analysis highlighted significantly enriched
163 cellular functions related to normal synaptic plasticity, such as regulation of neurotransmitter
164 receptor and ion transporter activity. Further analysis identified the involvement of distinct kinases
165 and phosphatases (e.g., ppm1h), along with their phosphorylation sites, for the early phase of
166 memory formation. This resource provides a novel perspective on IA- or immediate shock-
167 associated hippocampal PSD proteome and phosphoproteome dynamics, revealing that large
168 fractions of the synaptic proteins are differentially affected by different types of experiences.


169

170 **RESULTS**

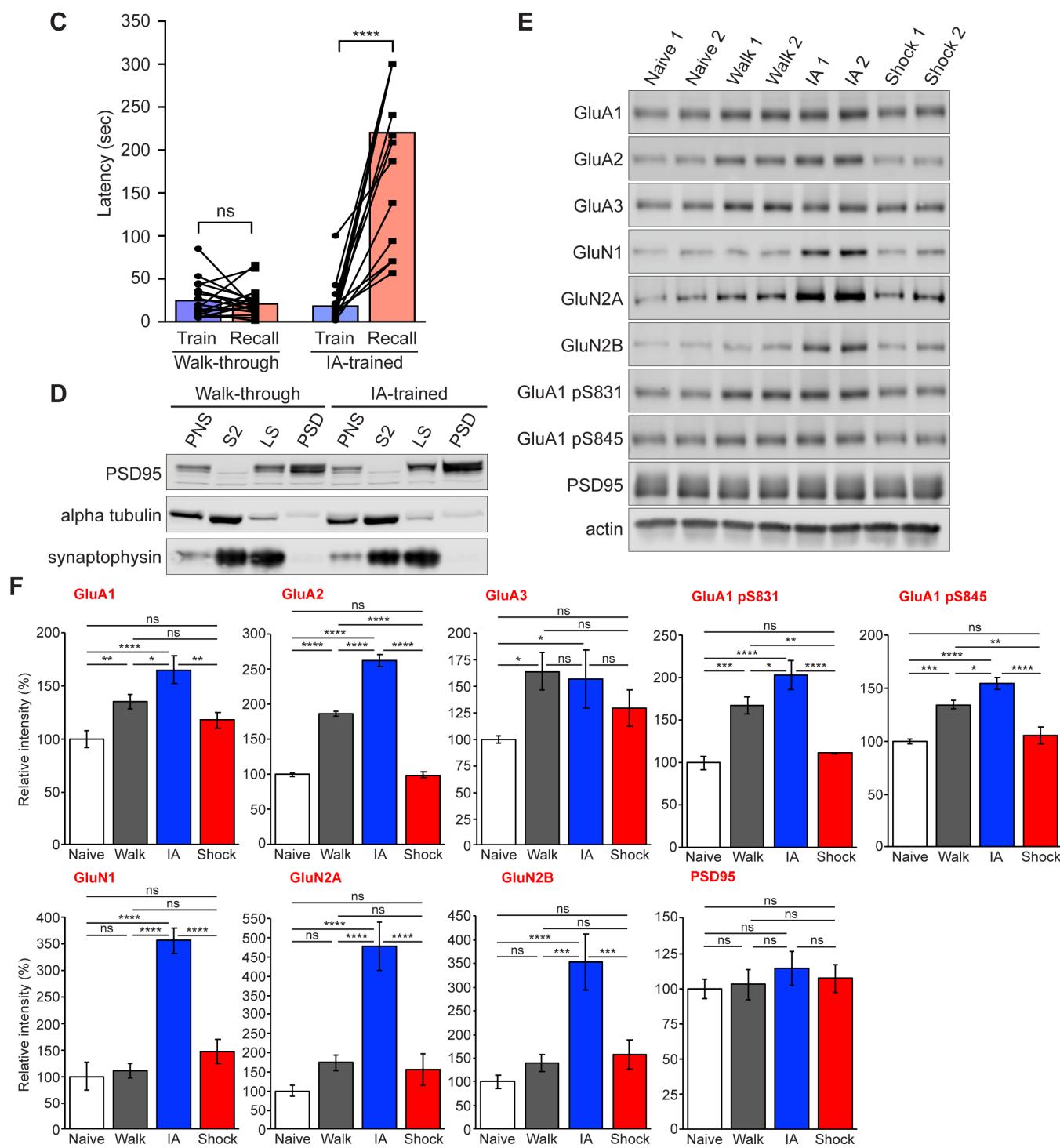
171 **Inhibitory avoidance training induces changes in glutamate receptors and their** 172 **phosphorylation status**

173 Initially, we sought to confirm that IA training induced a robust memory 1 hour after training,
174 and that we could replicate changes in synaptic proteins that have been reported previously (Tadi
175 et al., 2015; Whitlock et al., 2006). The IA training paradigm consisted of three sessions: 1) pre-
176 testing habituation (5 minutes/day x 5 days), 2) training (IA, Walk, Shock groups), and 3) memory
177 recall test. We used 4 experimental groups: IA trained animals (IA), a walk-through group that
178 received no shock when crossing from the light to the dark (Walk), shock only (Shock) and naïve
179 group (Naïve) animals (Figure 1A). One hour following training, IA memory was assessed by
180 measuring the latency of mice to cross into the dark side of the chamber, after which mice were
181 immediately euthanized and their hippocampi were harvested for PSD preparation (Figure 1B).
182 As expected, during the training session, mice from both Walk and IA groups showed short
183 latencies to cross to the dark chamber, indicating a preference for a dark environment
184 (photophobia). In contrast, during the memory recall session, the IA group showed significantly
185 longer latencies compared to the Walk group (Figure 1C). This demonstrates the robust one-trial
186 learning induced by IA training.

187 Hippocampi harvested after the recall test were homogenized to prepare PSD fractions. Crude
188 synaptosomes obtained from the post-nuclear supernatant (PNS) fraction were disrupted by
189 hypotonic solution followed by PSD extraction using Triton X-100 (see STAR METHODS; Figure
190 1B). The quality of the PSD fraction was monitored by visualizing the enrichment of PSD95 and
191 depletion of α -tubulin and synaptophysin in PSD fractions compared to other intermediate
192 fractions (Figure 1D). Numerous studies have demonstrated that trafficking of different types of
193 glutamate receptors contributes to LTP and other types of synaptic plasticity induced by learning
194 (Bevilaqua et al., 2005; Lee et al., 2000; Lee et al., 1998; Lussier et al., 2015; Mitsushima et al.,
195 2011; Park et al., 2014; Roth et al., 2017; Shipton and Paulsen, 2014; Zhang et al., 2015). We
196 probed for changes in AMPA and NMDA receptors, and their phosphorylation status, in
197 hippocampal PSD fractions from control (Naïve, Walk and Shock) and IA-trained mice. We found
198 a significant increase of GluA1, GluA2 and GluA3 following IA training compared to the naïve
199 control group. Subunits of NMDA receptors, GluN1, GluN2A, GluN2B, also increased following IA
200 training. The well characterized phosphorylation sites of GluA1 at Ser831 (pS831) and Ser845
201 (pS845) increased compared to all control groups (Figure 1E and 1F). All AMPA and NMDA
202 receptor subunits that we tested showed a robust increase in PSD following IA training.

203

204


205

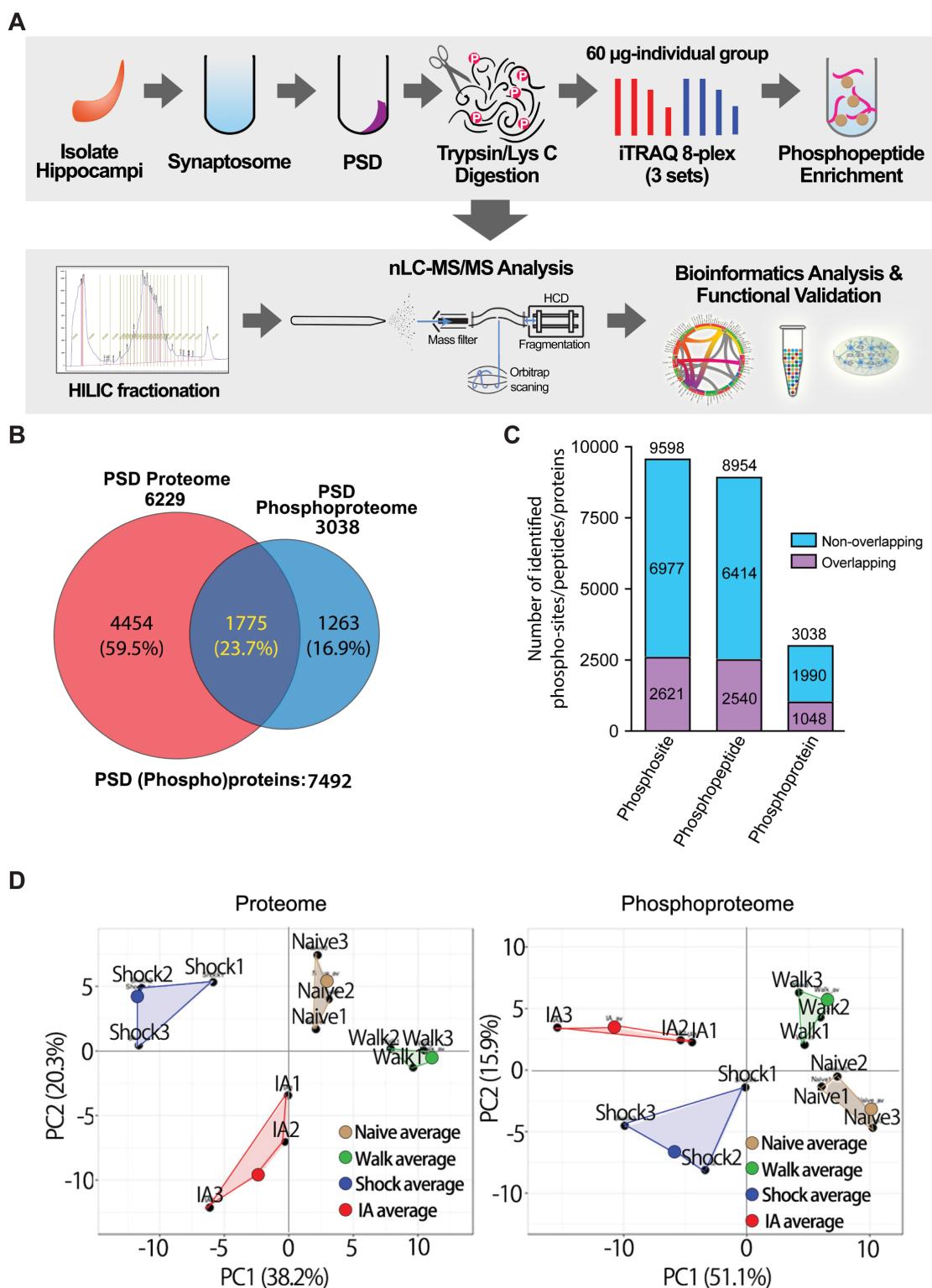
206

207

208

209

210 **Figure 1. Experience-dependent dynamics of synaptic proteins.**
211 (A) Schematic of IA task. The behavioral test is composed of 3 sessions. Session #1 is handling, Session
212 #2 is habituation, Session #3 is training and recall test followed by sample harvest (see STAR METHODS
213 for details). (B) Schematic of subcellular fractionation for PSD preparation. (C) Behavioral results of IA
214 training. The bar graph shows the latency for mice to cross to the dark side of the chamber, a measure of
215 IA memory formation. Walk group (left) showed no significant changes in latency between train (blue) and
216 recall test (red). IA group (right) showed significant increase of latency after training (2-way ANOVA,
217 adjusted p -value < 0.0001). (D) Validation of the PSD fraction quality in representative mice from Walk (left)


218 and IA (right) groups. Note the enrichment of PSD-95 and exclusion of alpha-tubulin in the PSD fraction.
219 (E and F) Representative Western blots quantification of key synaptic proteins and their phosphorylation
220 status in the PSD fraction. Western blot analysis to show changes of AMPAR, NMDAR and phospho-
221 AMPAR. Error bars display \pm SEM of 4 biological replicates.

222
223 Interestingly, GluA1, GluA2, GluA3, pS831 and pS845 of GluA1 also increased in Walk group
224 compared to naïve and Shock group (Figure 1E and 1F). In contrast, no changes in the level of
225 the synaptic scaffolding protein PSD-95 levels were detected. This validation indicates that IA
226 training increases the targeting and phosphorylation of AMPA and NMDA receptor to the PSD,
227 presumably underlying the expression of LTP *in vivo*.

228
229 **Quantitative analysis of the PSD proteome and phosphoproteome**

230 To identify and characterize changes in PSD proteins and their phosphorylation status and
231 potential signaling mechanisms mediated by IA training, we performed quantitative proteomics
232 and phosphoproteomics followed by bioinformatic analysis in mice that underwent IA training (see
233 STAR METHODS; Figure 2A). Proteins detected in more than two biological replicates were
234 retained for subsequent analysis with various bioinformatic tools. From our master dataset,
235 comprising of Naïve, Walk, IA and Shock groups, we successfully identified a total of 6,229
236 proteins and 3,038 phosphoproteins from PSD fractions, resulting in a total of 7,492 proteins
237 identified with an overlap of 1,775 proteins (Figure 2B; Table S1). We next analyzed
238 phosphoproteins identified and quantified from the PSD fractions. In the PSD fractions we
239 identified a total of 8,954 unique phosphopeptides carrying 9,598 unique phosphosites on 3,038
240 phosphoproteins (Figure 2C; Table S1). Among these, we quantitatively compared 2,540
241 overlapping phosphopeptides (28.37%) carrying 2,621 phosphosites (27.31%) on 1,048 proteins
242 (34.50%). Phosphopeptides that were detected at least twice in the triplicate experiments were
243 considered for subsequent bioinformatics analysis.

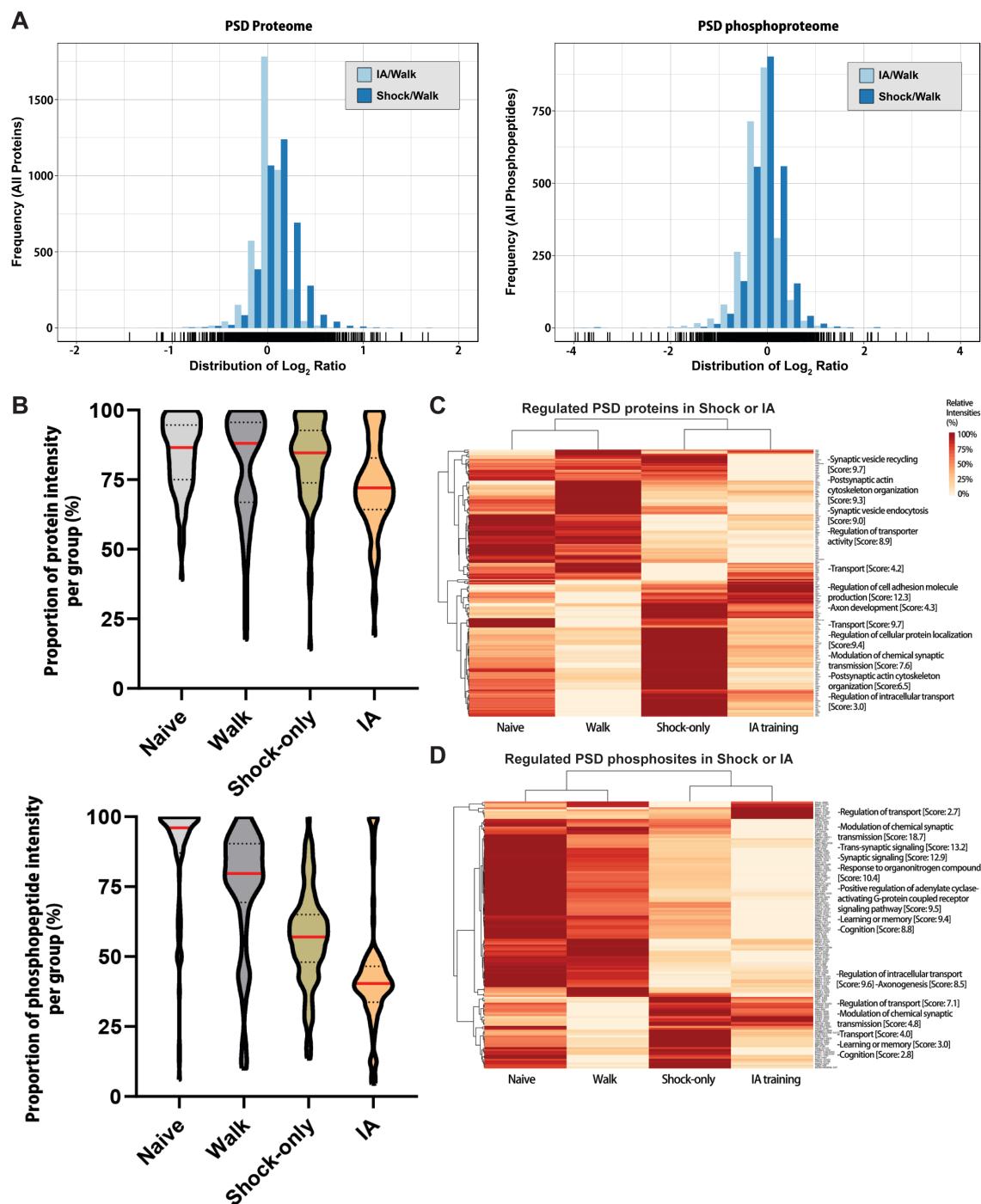
244 For an overall assessment of proteomic or phosphoproteomic similarities or differences of the
245 four groups (naïve, Walk, Shock, and IA training), we used principal component analysis (PCA;
246 see STAR METHODS). In a PCA from the PSD proteome, component 1 and 2, which account for
247 38.2% and 20.3% of total variability, respectively, clearly segregated each group into 4 distinct
248 clusters (Figure 2D). Furthermore, the distance between the biological replicates is smaller than
249 the separation between the groups. The PCA plot derived from the phosphoproteome data show
250 similar results. Together with Western blot validation of various synaptic glutamate receptors in
251 the PSD fractions (Figure 1E and 1F), these results further validate that the proteome and
252 phosphoproteome changes in these groups were clearly segregated, supporting the modulation
253 of proteins and phosphosites upon IA.

254 **Figure 2. Identification and quantification of experience-dependent proteome and**
 255 **phosphoproteome dynamics in hippocampal PSD fractions.**

256 (A) Workflow of sample preparation and mass spectrometry (MS)-based phosphoproteomics analysis. PSD
 257 fraction was prepared from hippocampi dissected from individual mice from all 4 groups. Proteins were
 258 extracted and digested with trypsin/LysC to generate peptides for iTRAQ labelling. Multiplex labelled

259 peptide mixture was subjected to phosphopeptide enrichment procedure using titanium dioxide (TiO₂)
260 beads. The flow-through (nonmodified peptides) and bound (phosphorylated peptides) fractions were
261 desalted on R3 stage tip column and subsequently fractionated by hydrophilic interaction liquid
262 chromatography (HILIC) fractionation. All fractions were analyzed using nLC-MS/MS. Acquired raw MS
263 datasets were processed using MS-GF⁺ pipeline for protein identification and quantification followed by
264 bioinformatics analysis and functional validation. (B) Venn diagram showing profile of mouse hippocampal
265 PSD proteome and phosphoproteome identified and quantified from this study. (C) Bar chart showing the
266 number of phosphosites, phosphopeptides and phosphoproteins identified from the hippocampal PSD
267 fractions. Purple bars indicate overlapping phosphosites, phosphopeptides and phosphoproteins from
268 biological replicates whereas cyan bars indicate non-overlapping ones. (D) Two-dimensional principal
269 components analysis (PCA) comparing regulated nonmodified (left) and phosphorylated proteins (right)
270 from IA (red), Walk (green), Shock (blue) and naïve (brown) groups based on component 1 and 2, which
271 accounted for 38.2/20.3% for nonmodified proteins and 51.1/15.9% for phosphoproteins of the variability,
272 respectively.

273


274 Based on this finding and the design of experimental groups reflecting exposure to the new
275 environment (i.e., IA chamber), we used the Walk group as a control for comparative analysis
276 between the IA and Shock groups.

277

278 **Experience dependent remodeling of the PSD proteome and phosphoproteome**

279 We found that PSD levels of AMPA and NMDA receptors increased following IA training, and,
280 albeit to a lesser extent, in the Walk group (Figure 1E and 1F). We hypothesized that the
281 experience of exploring the inhibitory avoidance chamber, even in the absence of a shock (and
282 associative emotional-learning), was enough to change neuronal activity and likely induce some
283 changes in synaptic plasticity. Therefore, to better isolate learning-induced changes, we used the
284 Walk group (with experience of the IA testing chamber) as an internal control in subsequent
285 analyses, thereby comparing the abundance of proteins and phosphoproteins from IA and Shock
286 groups to those from the Walk group.

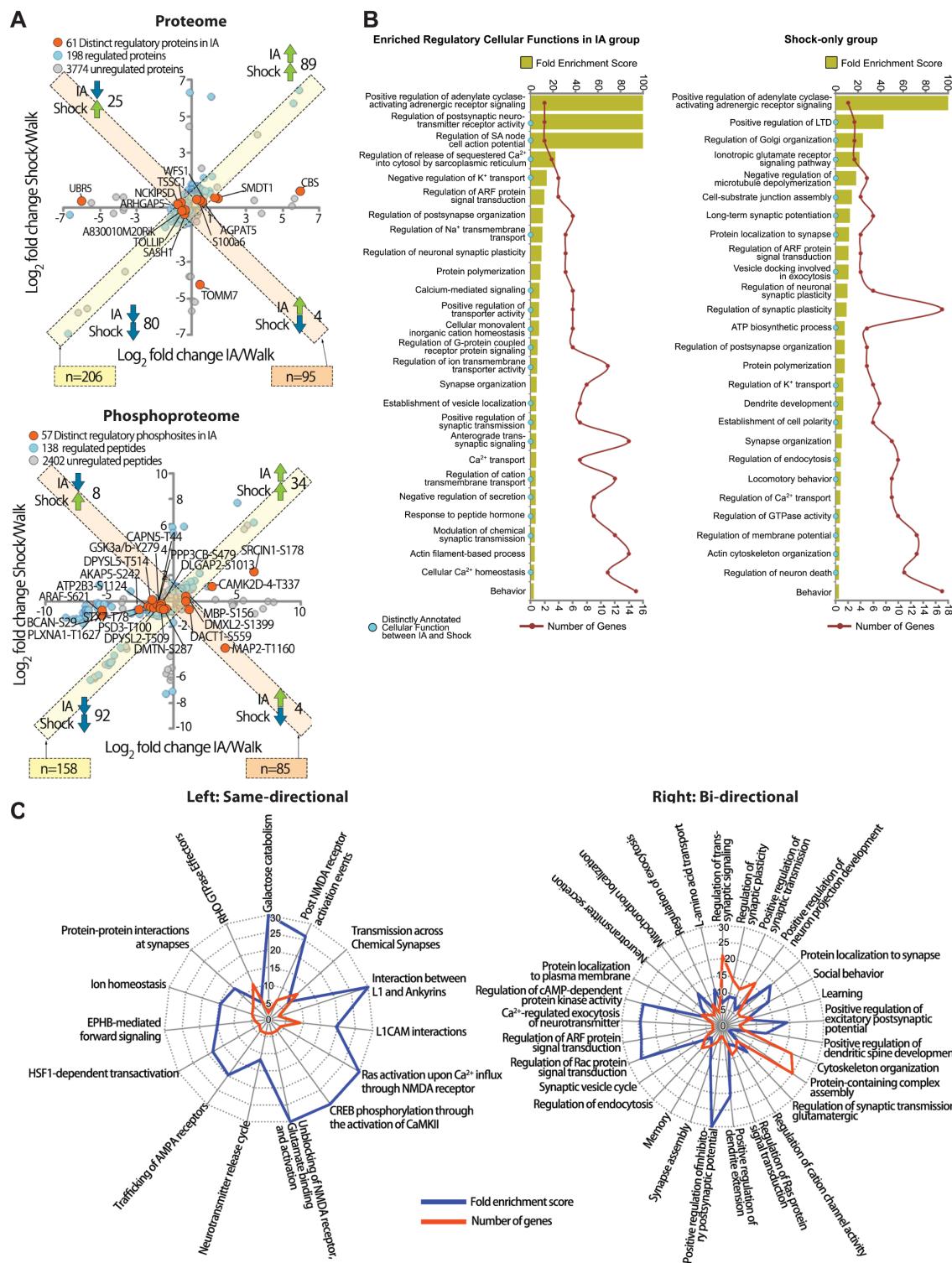
287 Next, we hypothesized that IA training or immediate shock would comprise changes in the
288 expression or phosphorylation levels of synaptic proteins that perform critical synaptic functions.
289 To assess this, we analyzed the overall changes of the proteins and phosphopeptides in the PSD
290 proteome in IA and Shock group compared to the Walk group. We observed that PSD proteins (n
291 = 3,972) and phosphopeptides (n = 2,540) were regulated following IA training or immediate shock,
292 and PSD phosphoproteome showed a broader distribution of changes than the proteome (Figure
293 3A). We next analyzed the trend of changes in expression and phosphorylation levels in the
294 hippocampal PSD fractions following IA training or immediate shock. The degree of alterations of
295 all quantified proteins showed insignificant changes in all 4 groups (Figure S1A). Interestingly, we
296 observed that overall phosphorylation levels showed a decreasing trend in Shock and IA groups

297 **Figure 3. Dynamic changes of PSD proteins following IA-training and immediate shock.**
298 (A) Histogram of fold changes (\log_2) showing frequency distribution of overall proteome and
299 phosphoproteome regulation (including only overlapping proteins between biological replicates) from the
300 IA or Shock group compared to the Walk group. In the comparison of IA group and Walk group, frequency
301 of the nonmodified proteins and phosphopeptides are shown with light blue bars; frequency of the proteins
302 and phosphopeptides from Shock group compared to the Walk group are shown with dark blue bars. (B)
303 Violin plots showing the proportion of the significantly regulated proteins (left panel) or phosphopeptides
304 (right panel) percentage based on normalized quantities in four groups following IA-training when compared
305 to Walk group. Y-axis represents proportions of intensities of the regulated proteins (left) or altered

306 phosphopeptides (right) intensities per group. Red lines inside of the violin plots represent the median of
307 overall percentages per group. The width of the plot represents the density of proteins or phosphopeptides.
308 Interquartile ranges are marked with dashed lines (Q3: upper quartile, Q1: lower quartile). (C) Heat map of
309 the significantly regulated proteins (top) and phosphosites (bottom) showing the clustered patterns of
310 experience-dependent regulation, for Naïve, Walk, IA and Shock groups ($n=3$ for each group) with
311 hierarchical clustering (left side) and categories of biological functions obtained by IPA analysis (right side).
312 The probability score based on p -value of biological function annotation are represented.
313

314 compared to the Walk group, with the IA group showing the greatest decrease in phosphorylation
315 level (Figure S1B). The same analysis was performed using significantly regulated protein and
316 phosphoproteins. We found that significantly regulated proteins from the IA group showed
317 decreased expression levels compared to the other three groups (Figure 3B, upper panel). The
318 decrease of protein levels is more obvious in the IA group, indicating that this decrease is
319 somewhat task specific. Interestingly, PSD proteins in the IA groups showed the lowest levels of
320 relative phosphorylation compared to Naïve, Walk and Shock groups (Figure 3B, lower panel).
321 The overall phosphorylation decreases of approximately 45% was observed in the Shock group
322 compared to the Naïve group. In comparison, in the IA group a phosphorylation decreases of
323 approximately 60% was observed 1-hour post-training, while the phosphorylation decrease was
324 only around 25% in the walk group.

325 We visualized the relative percentages of normalized intensities of significantly regulated
326 proteins and phosphoproteins in the PSD from each group with heatmaps combined with
327 hierarchical clustering (Figure 3C). Proteins and phosphoproteins regulated by IA training or
328 immediate shock were clustered based on their changing pattern across the groups followed by
329 functional annotation analysis to reveal enriched biological processes. As shown in Figure 3B, we
330 observed an overall reduction of protein and phosphorylation levels in the IA and Shock group.
331 However, it should be noted that the function of individual phosphosites often is not known and
332 therefore, the functional validation of selected phosphosites will be required to uncover the
333 potential roles in synaptic plasticity or learning and memory. Analysis of proteins belonging to this
334 cluster reveal significant enrichment of protein families involved in synaptic vesicle recycling,
335 postsynaptic actin cytoskeleton organization, synaptic vesicle endocytosis and regulation of
336 transporter activity (Figure 3C, upper panel). Analysis of proteins showing decreased
337 phosphorylation levels in the IA and Shock group reveals significant enrichment of biological
338 process terms, such as modulation of chemical synaptic transmission, trans-synaptic signaling,
339 synaptic signaling, positive regulation of adenyl cyclase-activating GPCR signaling pathway,
340 learning/memory, and cognition (Figure 3C, lower panel). Other clusters showing different
341 patterns of regulation in Walk, IA and Shock groups share some biological processes, but also


342 have distinct biological processes. Taken together, levels of proteins and their phosphosites are
343 dynamically regulated by the different types of experience.

344

345 **Bioinformatic analysis of experience-dependent proteome and phosphoproteome**
346 **dynamics**

347 To analyze individual proteins and their phosphosites regulated by IA training or immediate
348 shock, we grouped proteins and phosphoproteins based on their direction of change compared
349 to the Walk group. We discovered 198 proteins that were significantly regulated following IA
350 training or immediate shock (Figure 4A upper panel, IA↑/Shock↑: 89, IA↓/Shock↓: 80, IA↑/Shock↓:
351 4, IA↓/Shock↑: 25) and 138 phosphosites (Figure 4A lower panel, IA↑/Shock↑: 34, IA↓/Shock↓:
352 92, IA↑/Shock↓: 4, IA↓/Shock↑: 8). Among these regulated proteins, we identified 61 proteins and
353 57 phosphosites distinctively regulated by IA training. Figure 4A depicts all proteins and
354 phosphosites analyzed, and each quadrant in the graphs shows four different categories of
355 changes in the expression or phosphorylation levels of individual proteins. The upper right and
356 lower left quadrants depict proteins and phosphoproteins that exhibit same directional regulation:
357 both IA training and immediate shock result in either an increase (upper right quadrant, 89 proteins
358 and 34 phosphosites) or a reduction (lower left quadrant, 80 proteins and 92 phosphosites) in the
359 expression or phosphorylation levels (Figure 4A; Table S1) when compared to the Walk group.
360 The remaining categories are represented by proteins and phosphoproteins regulated in a bi-
361 directional manner. Enhanced protein or phosphorylation levels for these proteins are associated
362 with one form of experience (either IA training or immediate shock) while reduced protein or
363 phosphorylation levels are associated with the other form of experience. Proteins and
364 phosphoproteins categorized in lower right quadrant (4 proteins and 85 phosphosites) were
365 enhanced by IA training but reduced by immediate shock while those in upper left quadrant (25
366 proteins and 8 phosphosites) were reduced by IA training but enhanced by immediate shock
367 (Figure 4A; Table S1). Taken together, we found dynamic remodeling of the PSD proteome and
368 phosphoproteome following IA training or immediate shock compared to the walk-through control.

369 To isolate changes unique to IA training or immediate shock, we looked for proteins and
370 phosphoproteins that were regulated distinctively following IA training but not immediate shock or
371 vice versa. Proteins and phosphosites regulated by single factor exclusively (IA training or
372 immediate shock) are represented as spots close to x- (IA-unique) or y-axis (Shock-unique) on
373 the scatter plot shown in Figure 4A (i.e., clustered within a $\pm 5\%$ window of the x- or y-axis). GO
374 analysis of proteins and phosphoproteins regulated uniquely by IA training indicates a significant
375 enrichment for proteins involved largely in the regulation of synaptic functions including regulation

376

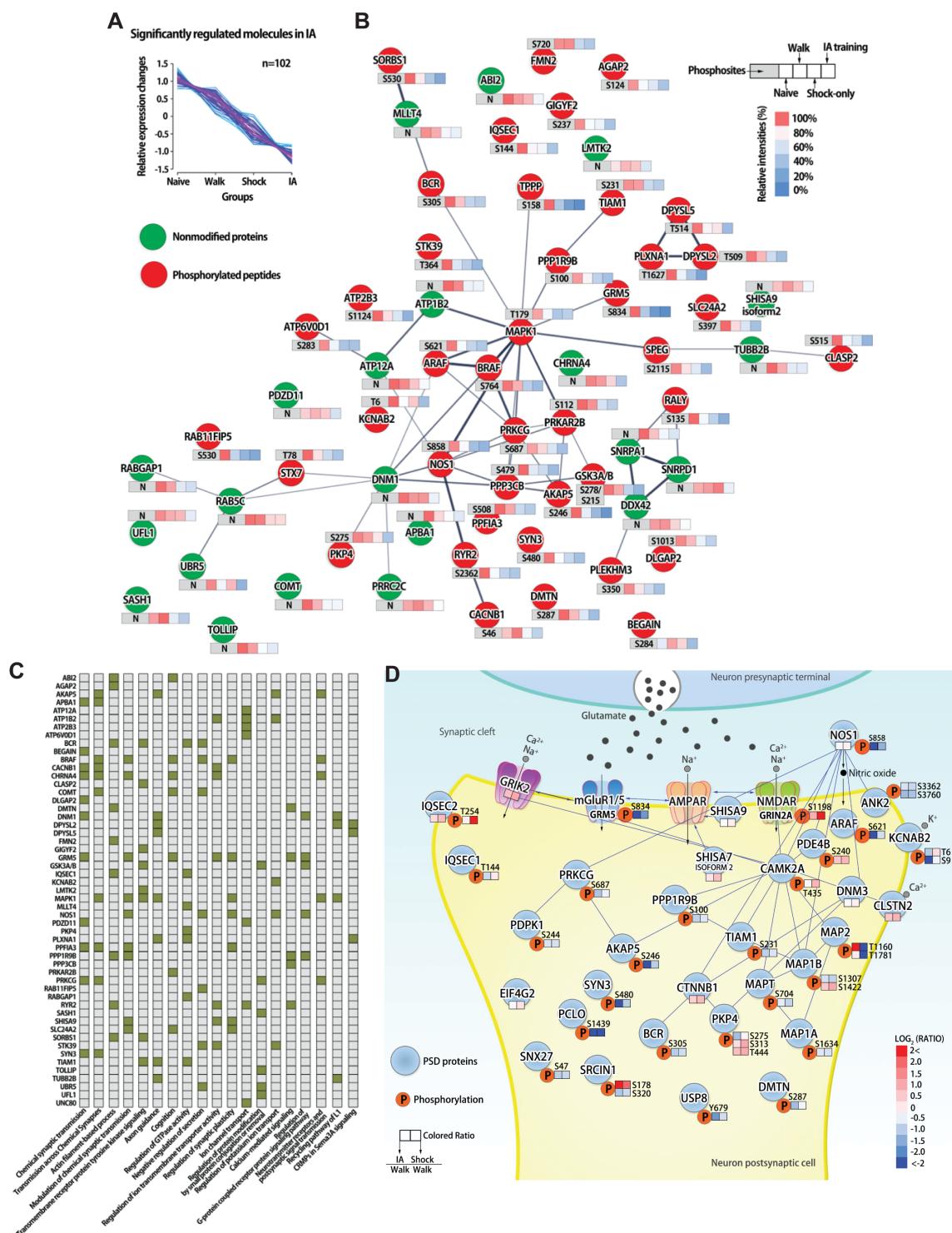
377 **Figure 4. Bioinformatics analysis of PSD proteins and phosphoproteins regulated by IA-training and**
378 **immediate shock.**

379 (A) Scatter plot showing all proteins (left panel) and phosphopeptides carrying relevant phosphosites in IA
380 (x-axis) or Shock (y-axis) group compared to Walk group. Every analyzed protein (left, n = 4,033) and
381 phosphopeptides (right, n = 2,597). Proteins and phosphosites that were significantly regulated by IA-

382 training or immediate shock are indicated in light blue. Proteins and phosphosites that were significantly
383 regulated by IA are indicated in orange. Other proteins and phosphosites that were not regulated are
384 displayed in light gray. Proteins and phosphopeptides showing same- (IA \uparrow /Shock \uparrow or IA \downarrow /Shock \downarrow) or bi-
385 directional (IA \uparrow /Shock \downarrow or IA \downarrow /Shock \uparrow) regulations are indicated in diagonal boxes with either light yellow
386 or light orange color, respectively (CV $\pm 5\%$). (B) Gene ontology (GO) enrichment analysis of regulated
387 proteins and phosphoproteins in IA (left panel) or Shock (right panel) groups showing the fold-enrichment
388 score (upper x-axis, gold bars) as well as the number of genes (lower x-axis, red line) for the indicated
389 groups. PANTHER Gene Ontology analysis was performed to show enriched cellular functions (FDR <
390 0.05). Distinctly annotated cellular functions are marked with cyan dot on the left y-axis. (C) Radar plot
391 showing signaling pathways on Reactome Pathway database (FDR < 0.05) that were affected by same-
392 (left panel) or bi-directionally (right panel) regulated PSD proteins and phosphoproteins in IA and Shock
393 groups. Fold enrichment of each pathway is displayed with blue lines, and the number of genes from each
394 pathway is displayed with red lines.
395

396 of postsynaptic neurotransmitter receptor and ion transmembrane transporter activity, regulation
397 of adenylate cyclase-activating adrenergic receptor signaling, cellular Ca $^{2+}$ homeostasis and
398 modulation of chemical synaptic transmission (Figure 4B, left panel; Table S2). In the case of
399 proteins and phosphoproteins uniquely regulated by immediate shock, GO analysis of this group
400 indicates significant enrichment of cellular functions involved in positive regulation of LTD,
401 regulation of Golgi organization, vesicle docking involved in exocytosis and negative regulation of
402 microtubule depolymerization (Figure 4B, right panel; Table S2). Taken together, both IA training
403 and immediate shock seem to engage some overlapping cellular functions, but there are also
404 proteins and phosphoproteins that are regulated uniquely by IA training or immediate shock,
405 which show distinct cellular functions in the GO analysis.

406 Next, we conducted reactome pathway analysis (Jassal et al., 2020) to unveil high-order
407 signaling pathways shared by the list of same- or bi-directionally regulated proteins and
408 phosphoproteins following IA training and immediate shock. Proteins and phosphoproteins that
409 were regulated with the same directionality in the IA and Shock groups revealed 15 significantly
410 enriched pathways including Ras activation upon NMDAR-mediated Ca $^{2+}$ influx, CREB
411 phosphorylation through CaMKII activation, AMPAR trafficking, protein-protein interaction at
412 synapses, and activation of NMDA receptors (Figure 4C left panel; Table S3). Proteins and
413 phosphoproteins regulated bi-directionally in IA and Shock group showed 29 enriched pathways
414 including positive regulation of excitatory/inhibitory postsynaptic potentials, dendritic spine
415 development, dendrite extension, regulation of cAMP-dependent protein kinase activity,
416 regulation of ARF and Rac protein signal transduction, and Ca $^{2+}$ -regulated exocytosis of
417 neurotransmitters (Figure 4C right panel; Table S3). Indeed, neurotransmitter receptor-related
418 reactome pathways were significantly enriched in the same directionally regulated protein group
419 while bi-directionally regulated proteins and phosphoproteins revealed a broader spectrum of
420 pathways involved in synaptic functions. Taken together, proteins and phosphoproteins that


421 showed same- or bi-directional regulation by IA training and immediate shock might be regarded
422 as 'common' or 'specific' proteins which were involved in shared or unique signaling pathways
423 involved in IA training- or immediate shock-mediated plasticity, respectively.

424

425 **Clustering and mapping of protein interaction network related to IA-learning**

426 Next, we employed fuzzy c-means clustering analysis to characterize the most enriched
427 clustering patterns among differentially regulated proteins and phosphoproteins following IA
428 training or immediate shock. We found that 102 regulated proteins and phosphosites were
429 clustered in the group which decreased in the IA group compared to the Walk group (Figure 5A).
430 We next used a combined approach of STRING (<https://string-db.org/>), DAVID
431 (<https://david.ncifcrf.gov/>), and KEGG (<https://www.genome.jp/kegg/>) pathway analyses on the
432 largescale dataset to systematically reveal protein-protein interaction networks among
433 significantly regulated proteins and phosphoproteins (Kang et al., 2018). We found that
434 significantly regulated proteins and phosphosites from PSD fractions in this cluster were closely
435 connected (Figure 5B). We also found that relationship and individual molecular interactions of
436 regulated proteins and phosphoproteins enriched 19 biological processes, including chemical
437 synaptic transmission, actin filament-based process, axon guidance, cognition, regulation of
438 GTPase activity and calcium-mediated signaling, which are associated with synaptic functions
439 (Figure 5C).

440 We determined the changes that occurred in the post-synaptic compartment to find protein-
441 protein interaction networks among PSD proteins from IA or Shock group classified from the
442 postsynaptic density (GO:0014069). Within the post-synaptic compartment, we found several
443 examples where IA training and immediate shock stimulation are associated with differential
444 regulation of levels of proteins or phosphorylations in PSD proteins. For example, we found that
445 neurotransmitter receptors and their phosphosites (e.g., GRIK2, S1198 on GRIN2A, S834 on
446 GRM5) showed a pattern of increased protein abundance or phosphorylation in the Shock group
447 (Shock/Walk) compared to the IA group (IA/Walk). We also found that phosphorylation levels on
448 ion channel proteins (e.g., KCNAB2), kinases (e.g., CAMK2A, ARAF, PRKCG), chemical
449 messenger producing enzyme (e.g., NOS1) and postsynaptic membrane proteins (e.g., CLSTN2)
450 showed similar patterns of change (IA<Shock) in abundance or phosphorylation level. Other
451 postsynaptic components that underwent significant downregulation in the IA group compared to
452 the Shock group include IQSEC1/2, SHISA7/9 and AKAP5. Some proteins showed a significant
453 increase in abundance or phosphorylation level in the IA and Shock groups. For example, levels
454 of two phosphorylation sites of MAP2 (S1307, S1422) and SRCIN1 (S178) showed dramatic

455

456 **Figure 5. Protein-protein interaction network of regulated PSD proteins and phosphopeptides**
 457 **carrying relevant phosphosites following IA-training and immediate shock.**

458 (A) Most enabled clustering map of regulated proteins, phosphoproteins carrying relevant phosphosites
 459 that significantly decreased following IA-training ($n = 102$, adjusted p -value < 0.1 with $CV \pm 30\%$ and same
 460 directional regulation (negative) in all experiments) using unsupervised fuzzy c-means clustering analysis
 461 (membership > 0.6) of relative expression changes. Within this cluster, PSD proteins and phosphoproteins

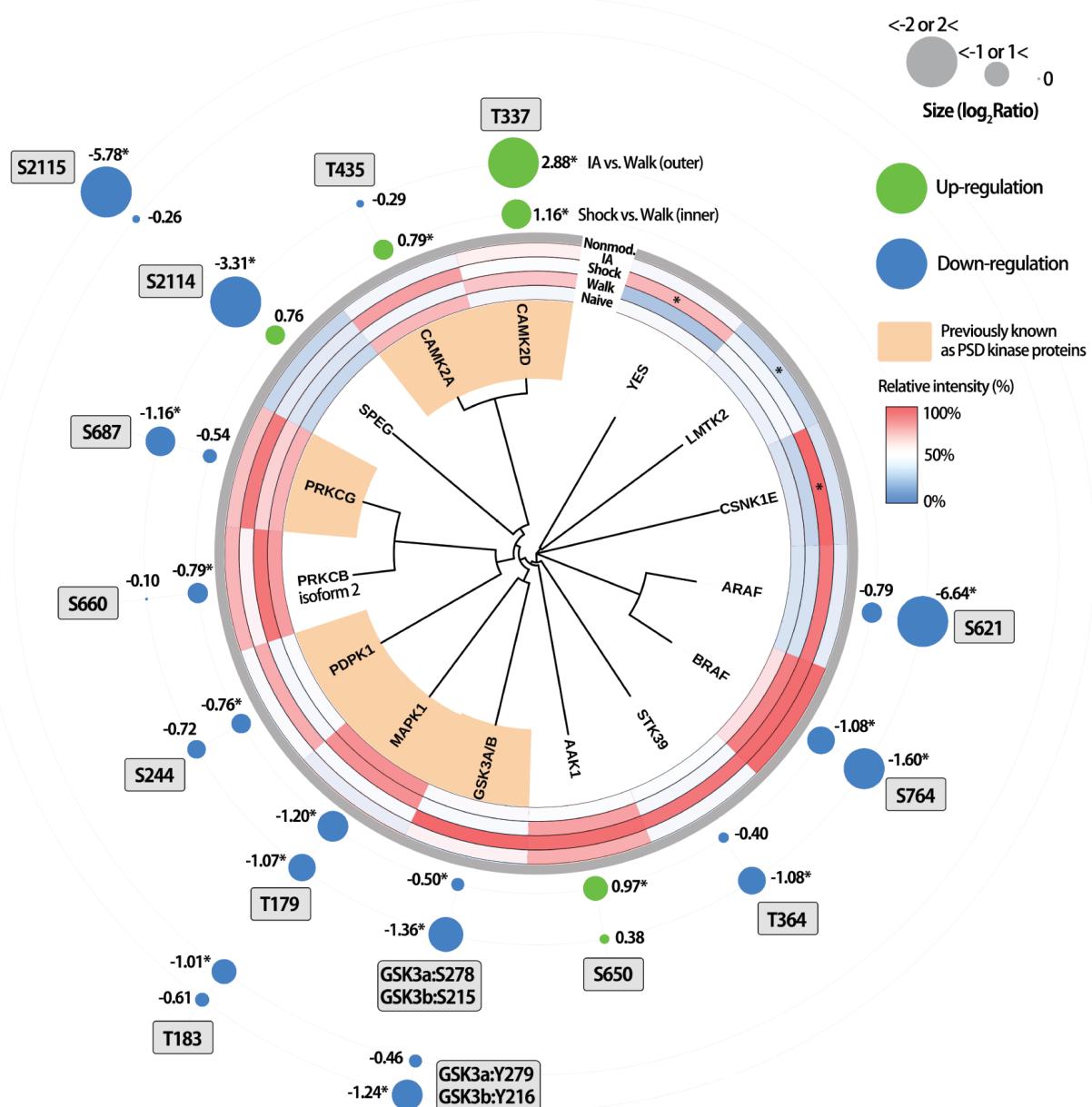
462 did not show significant changes following exposure to IA chamber (Walk). Immediate shock induced the
463 trend of decrease in protein and phosphorylation level but it was not significant while IA-training induced a
464 significant decreasing pattern of protein and phosphorylation levels. (B) Protein-protein interaction networks
465 of the clustered proteins and phosphoproteins carrying relevant phosphosites showing a decreasing pattern
466 following IA-training and immediate shock. The proteins and phosphoproteins from the most enabled cluster
467 (significantly decreased in IA) were analyzed against STRING database to generate an interaction network
468 map (confidence score > 0.7; high confidence). The quantitative information for each node (green:
469 nonmodified proteins, red: phosphoproteins) is shown as relative concentration (0-100%) in a box format
470 together with the information on designated phosphorylation sites. (C) Biological context of the
471 interconnected PSD proteins and phosphoproteins with their relevant phosphorylation sites significantly
472 decreased in IA. The gene symbols (left y-axis) that belong to enriched biological processes (x-axis) are
473 indicated with colored square. (D) Schematic overview of the significantly regulated PSD proteins and
474 phosphoproteins based on UniProt database following IA-training and immediate shock. The two squares
475 represent the \log_2 ratio of the expression level change of designated proteins or their phosphorylation level
476 in IA (left panel) or Shock (right panel) groups compared to the Walk group. Phosphoproteins are displayed
477 with red-circled "P" and their phosphorylated site residue number.
478

479 upregulation in the IA group, but showed significant downregulation in the Shock group. These
480 proteins and phosphosites were interconnected with each other within the same protein
481 interaction network map (Figure 5D). We also conducted signaling pathway analysis of regulated
482 proteins and phosphoproteins to examine whether there is a functional relationship between IA
483 training and immediate shock. We found that proteins and phosphoproteins regulated by IA
484 training or immediate shock were significantly over-represented in signaling pathways including
485 synaptic LTP/LTD, regulation of glutamate receptors, Rho family GTPase, synaptogenesis and
486 actin cytoskeleton (Figure S2A: for regulated proteins, Figure S2B: for regulated phosphoproteins;
487 Table S4). Within these protein interaction networks and signaling pathways, signaling molecules,
488 such as protein kinases and phosphatases, were revealed as centers interconnected with other
489 regulated proteins and phosphoproteins (Figure 5 and Figure S2). This result suggests that roles
490 of these proteins and their phosphosites in signaling pathways are associated with experience-
491 dependent remodeling of the synaptic proteome in the hippocampus after IA training or immediate
492 shock.
493

494 **Protein interaction networks of significantly regulated proteins or phosphosites in 495 hippocampus after both IA training and Shock**

496 To investigate the changes of protein-protein interactions and their potential upstream
497 proteins and their interacting proteins mediated by IA training or immediate shock, we performed
498 fuzzy c-means clustering analysis using a combination of freely accessible search databases
499 (e.g., IntAct, STRING, DAVID, Pubmed and UniProt) (Kang et al., 2020). First, we analyzed
500 upstream interaction networks that were regulated in the same direction by IA training and
501 immediate shock. We identified the eight most qualified upstream proteins showing changes in

502 the same direction in both IA training and Shock groups (57 down-regulated and 43 up-regulated
503 proteins/phosphoproteins) (Figure S3). Eight regulated upstream proteins including 14-3-3 protein
504 families (YWHAZ, YWHAB, YWHAE), GRIN2B, PRKCE, KCNMA1, HSD3B4 and MACF1 were
505 closely interconnected with each other. Interestingly, a large number of interacting proteins and
506 phosphoproteins which potentially interact with 14-3-3 protein families were identified, and they
507 were interconnected each other, which suggest that 14-3-3 may function as a signaling hub for
508 experience-dependent proteome remodeling in the hippocampal PSD.


509 We determined the most qualified upstream proteins showing higher expression in the Shock
510 group followed by manual confirmation of probable interacting proteins to reveal the major
511 differences between the IA and Shock groups. The interactome map of immediate shock-induced
512 changes in proteins and phosphoproteins showed six upstream proteins including YWHAB,
513 RPGRIP1L, ANK2, GRIN1, GRIN2B and DLG4. These 6 upstream proteins regulated by
514 immediate shock were grouped into three functional annotations; regulation of neuronal synaptic
515 plasticity, regulation of $\text{Ca}^{2+}/\text{K}^+$ ion transport, negative regulation of GPCR protein signaling
516 pathway (Figure S4). A series of DLG4 interacting proteins (proteins inside of the gray rim in
517 Figure S4) interconnected with interacting proteins from YWHAB and GRIN1. Together with
518 previous finding that 14-3-3 exert their activity by regulating NMDAR at postsynaptic sites (Qiao
519 et al., 2014), this finding expands the relationship of NMDAR functionality with 14-3-3 at
520 postsynaptic sites in the hippocampus as a response to immediate shock.

521

522 **Identification of regulated kinases and phosphatases**

523 Protein phosphorylation is one of the most common PTMs, controlling important cellular
524 processes through the action of kinases and phosphatases. Neuronal plasticity which mediates
525 learning and memory also require different kinases and phosphatases that can reversibly
526 phosphorylate and dephosphorylate specific sites on target proteins (Lee, 2006; Mansuy and
527 Shenolikar, 2006; Woolfrey and Dell'Acqua, 2015). As shown in Figure 3 and 4, we observed
528 dynamic changes in phosphorylation on several proteins, including various kinases and
529 phosphatases, from the hippocampal PSD fraction. We performed sequence homology analysis
530 (see STAR METHODS) of the significantly regulated kinases and phosphatases and their
531 phosphosites to characterize the regulation pattern of individual enzymes and to identify novel
532 kinases and phosphatases and their phosphosites associated with IA training or immediate shock.

533 We found that 15 kinases (total number of kinases identified 2 out of 3 biological replicates:
534 241) were significantly regulated in the IA and Shock groups (Figure 6). These include 6 kinases,
535 such as CAMK2A and 2D, PRKCG, PDPK1, MAPK1 and GSK3A/B, which are already known to

536

537 **Figure 6. Profiling of regulated protein kinases.**

538 Kinome analysis of the significantly regulated kinases at the protein and phosphorylation levels in the PSD
 539 following IA-training or immediate shock with their homology of the kinase domains. Kinases that are known
 540 to exist in the PSD are labeled in orange. Relative intensities (%) of significantly regulated kinases following
 541 IA-training or immediate shock are shown in color-coded boxes (inside of the gray rim). The levels (log₂
 542 ratio) of phosphorylation of specific residues on individual kinases are shown as a circular index with
 543 different colors (green: up-regulated, blue: down-regulated) and size (outside of the gray rim). Outer and
 544 inner circles indicate Log₂ ratio of given phosphosites in IA and Shock groups compared to Walk group,
 545 respectively.

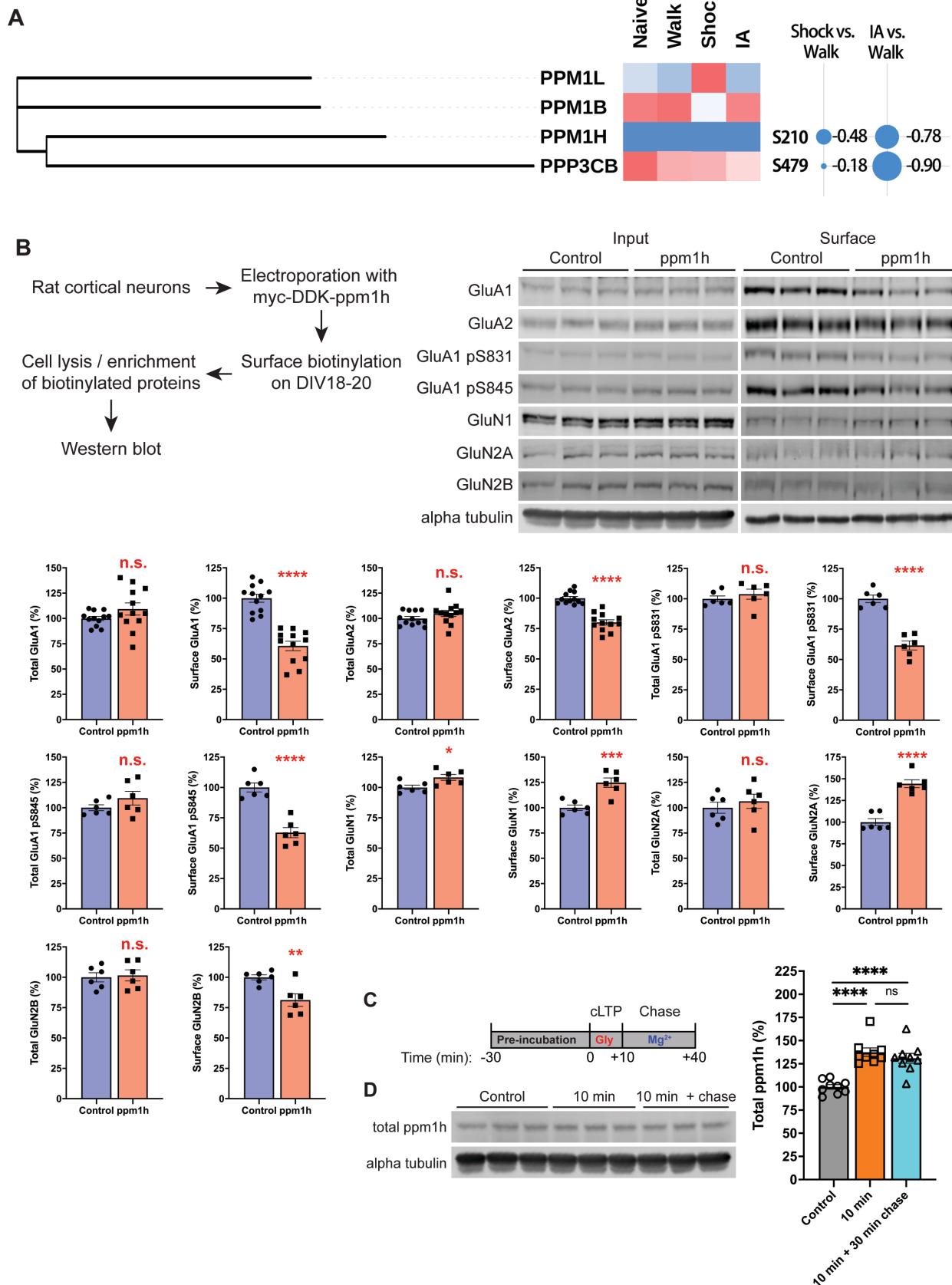
546

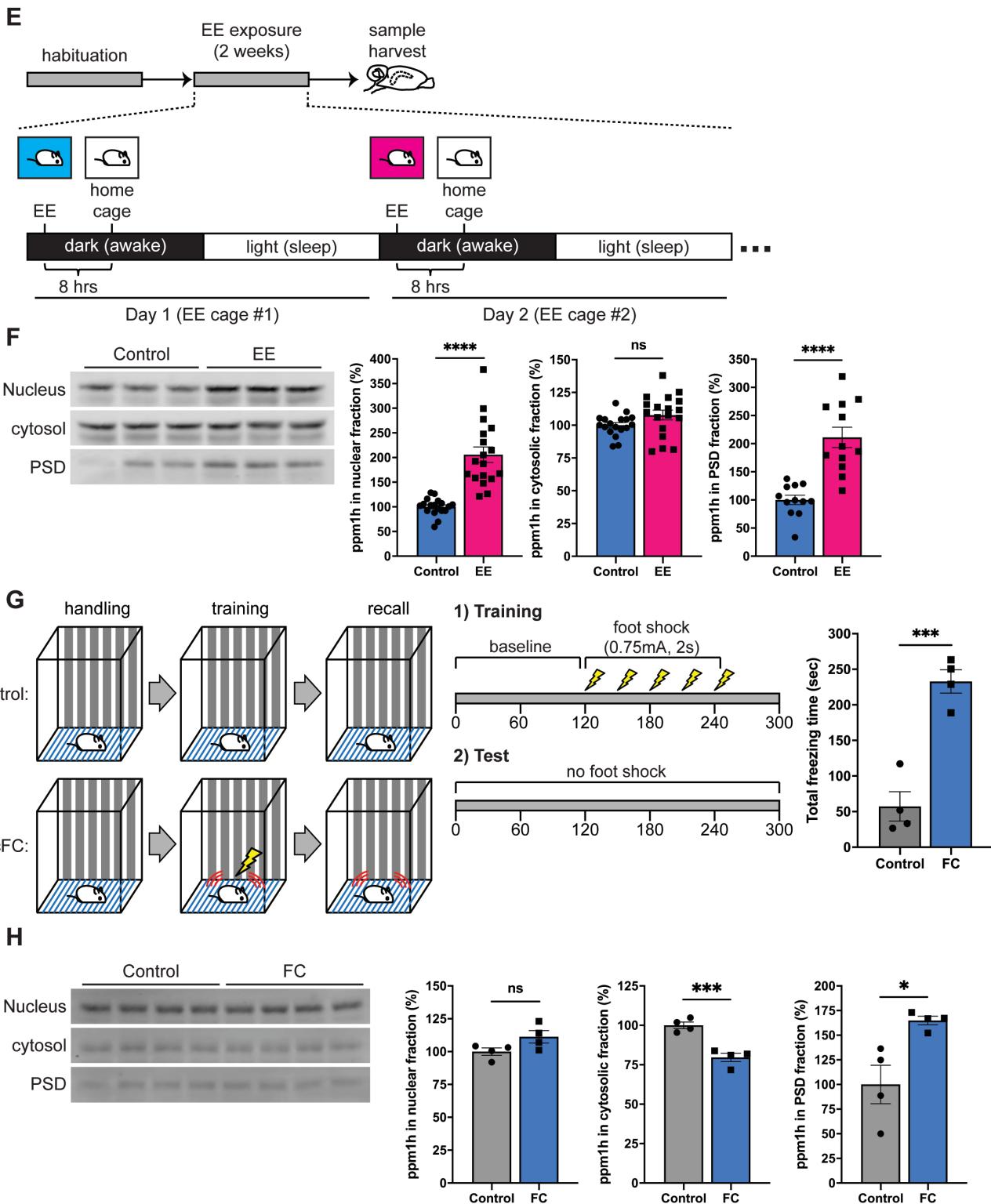
547 be localized in the PSD and play crucial roles for synaptic plasticity (Cheng et al., 2011; Lisman
 548 et al., 2002; Lisman et al., 2012; Peineau et al., 2008; Saito and Shirai, 2002; Thomas and Huganir,

549 2004). We found that 9 kinases such as YES, LMTK, CSNK1E, ARAF, BRAF, STK39, AAK1,
550 PRKCB isoform 2, and SPEG were newly identified in the PSD category using the QuickGO
551 (<https://www.ebi.ac.uk/QuickGO/term/GO:0014069>). CAMK2 function as homomeric or
552 heteromeric holoenzyme complexes, and each 12 subunits have different roles in synaptic
553 plasticity (Coultrap and Bayer, 2012). We found that CAMK2A was up-regulated following
554 immediate shock, but no obvious change was detected in IA group compared to Walk group.
555 CAMK2D was down-regulated in both the IA and Shock group with the most dramatic decreased
556 in the Shock group. The kinase phosphorylation pattern was differentially regulated compared to
557 the total protein levels by different experiences. For example, phosphorylation of CAMK2A on
558 T435 was up-regulated in the Shock group but slightly down-regulated in the IA group compared
559 to the Walk group. However, CAMK2D phosphorylation on T337 was up-regulated, while the total
560 CAMK2D protein level was down-regulated both in IA and Shock groups. Similarly, the total
561 PRKCG protein level was up-regulated while phosphorylation on S687 was down-regulated in
562 both IA and Shock groups. A series of kinases including PDPK1, GSK3A/B, AAK1, STK39, ARAF,
563 CSNK1E showed higher expression in the Shock group compared to the IA group like CAMK2A.
564 PRKCB isoform 2, MAPK1 and LMTK2 showed decreasing expression in both the IA and Shock
565 groups (Figure 6, inside of the gray rim). Our results show that the expression patterns of different
566 kinases are divergent depending on the experience.

567 The levels of autophosphorylation of regulated kinases also showed varied patterns. For
568 example, phosphorylation at T435 of CAMK2A and S2114 of SPEG were found to be bi-
569 directionally regulated by IA training or immediate shock (unfortunately, we did not identify the
570 activity driven phosphosite in CAMK2A (T286) most likely due to the close tryptic cleavage sites).
571 Phosphorylation of CAMK2D at T337 showed a significant increase in the Shock group and an
572 even higher increase in the IA group. Phosphorylation of kinases which decreased both in the IA
573 and Shock groups, such as SPEG (S2115), PRKCG (S687), GSK3A/3B (S278/S215, Y279/Y216),
574 STK39 (T364), BRAF (S764), ARAF (S621), showed a greater decrease in phosphorylation
575 following IA (Figure 6, outside of the gray rim). These results show that the expression levels of
576 kinases and their phosphorylation levels are regulated differentially by experience.

577


578 **Functional validation of PSD proteins regulated by IA training or immediate shock**


579 We observed a noticeable pattern of phosphorylation decrease in both the IA and Shock
580 groups (Figure 3B). This finding led us to speculate about roles of protein phosphatases during
581 IA training-mediated learning or in response to immediate shock. From our dataset, levels of
582 protein phosphatases and their phosphorylation were found to be differentially regulated following

583 IA training or immediate shock. Within the set of protein phosphatases regulated by IA training or
584 immediate shock, we identified that phosphorylation of Ppm1h (protein phosphatase, Mg²⁺/Mn²⁺
585 dependent 1H), previously reported to be linked to synaptic plasticity (Bliim et al., 2019; Spiegel
586 et al., 2014), was significantly down-regulated in both the IA training and Shock groups (Figure
587 7A). Unfortunately, we did not quantify the expression level of Ppm1h protein, although other
588 isoforms of Mg²⁺/Mn²⁺-dependent protein phosphatase (e.g., Ppm1l, Ppm1b) were quantified
589 (Figure 7A). Therefore, we additionally examined whether Ppm1h can be affected by different
590 types of neuronal activity or regulate synaptic plasticity *in vitro* and *in vivo*. First, we electroporated
591 *ppm1h* into cultured neurons and monitored the effect of Ppm1h overexpression on the levels of
592 surface AMPA and NMDA receptors. Following Ppm1h overexpression, we observed a decrease
593 of surface GluA1 GluA2, and phospho-GluA1 at S831 and S845, but no obvious changes in total
594 expression level (Figure 7B). Interestingly, Ppm1h overexpression resulted in an increase of
595 surface NMDAR subunits, GluN1 and GluN2A, but a decrease of surface GluN2B, indicating that
596 Ppm1h likely regulates AMPARs and NMDARs differentially (Figure 7B). Next, we performed
597 glycine-induced chemical LTP in cultured neurons and examined the abundance of Ppm1h
598 (Figure 7C). The total Ppm1h level increased after 10 min glycine stimulation and was maintained
599 during the 30 min chase period in the presence of Mg²⁺ (Figure 7D), suggesting that Ppm1h levels
600 can also be regulated by chemical LTP.

601 Next, we investigated the regulation of Ppm1h following neuronal activity changes *in vivo*.
602 First, we exposed mice to an enriched environment (EE) to induce brain-wide changes in neuronal
603 activity and examined the levels of hippocampal Ppm1h from different subcellular fractions (Figure
604 7E; see STAR METHODS). We observed increased levels of Ppm1h from nuclear and PSD
605 fractions while cytosolic fraction did not show any significant changes in the hippocampus after
606 EE exposure (Figure 7F). Second, we similarly examined the levels of hippocampal Ppm1h from
607 different subcellular fractions after contextual fear conditioning (cFC) to examine the effect of
608 learning-specific neuronal activity changes (Figure 7G; see STAR METHODS). Interestingly, we
609 observed a significant decrease of Ppm1h in the cytosol and an increase in PSD fractions while
610 nuclear Ppm1h levels did not change (Figure 7H). Taken together with our quantitative proteomic
611 results, these data indicate that levels of Ppm1h are differentially regulated by different types of
612 neuronal activity and that manipulation of Ppm1h level can affect the trafficking of glutamate
613 receptors to the surface of synapses, which may subsequently affect the regulation of synaptic
614 plasticity *in vitro* and *in vivo*. This places de-phosphorylation as another important regulator of
615 synaptic plasticity.

616

622 **Figure 7. Functional validation of Ppm1h in synaptic plasticity.**
623 (A) Experience-dependent regulation of Mg^{2+}/Mn^{2+} -dependent protein phosphatases. Clustered isoforms of
624 Ppm family showed unique regulations. Ppm1l had the highest level of expression Ppm1b the lowest
625 expression following immediate shock. The phosphorylation levels on Ppm1h (S210) and Ppp3cb (S479)
626 showed significant increase following IA-training. (B) Differential regulation of surface expression of AMPAR

627 and NMDAR subunits by Ppm1h overexpression. When Ppm1h was overexpressed, cortical neurons
628 exhibited increased surface expression of GluN1 and GluN2A. In contrast, surface expression of GluA1,
629 A2, GluA1 pS831, pS845 and GluN2B showed a significant decreased following Ppm1h overexpression.
630 (C and D) Regulation of Ppm1h during homeostatic scaling. (C) Scheme indicating experimental workflow
631 for homeostatic scaling. Cultured cortical neurons (DIV11) were treated with 20 μ M BIC or 1 μ M TTX for 48
632 hrs to induce homeostatic down- or up-scaling, respectively. (D) Homeostatic scaling regulated expression
633 levels of Ppm1h. TTX-mediated up-scaling exhibited slightly significant increase of Ppm1h level (1-way
634 ANOVA, adjusted p -value = 0.025) while BIC-mediated down-scaling resulted in more significant increase
635 of Ppm1h level (1-way ANOVA, adjusted p -value < 0.0001). (E and F) Regulation of Ppm1h during glycine-
636 induced chemical LTP (GI-cLTP). (E) Scheme indicating experimental workflow for GI-cLTP. Cultured
637 cortical neurons (DIV18 or older) were treated with 200 μ M glycine for 10 min followed by chase with Mg^{2+} -
638 containing ACSF for 30 min. (F) GI-cLTP increased the expression level of Ppm1h levels after both 10 min
639 stimulation and 30 min chase (1-way ANOVA, adjusted p -value for Control vs. 10 min and Control vs. 30
640 min chase < 0.0001). (G and H) Effect of enriched environment (EE) exposure to the level of Ppm1h in the
641 mouse hippocampus. (E) Scheme indicating experimental workflow for exposure to EE. Mice had been
642 tested for 2 weeks using 2-day EE exposure paradigm (see STAR METHODS), followed by isolation of
643 subcellular fractions (nuclear, cytosolic and PSD fractions) from hippocampus. (H) Characterization of
644 Ppm1h expression in different subcellular fractions following EE exposure. EE resulted in a significant
645 increase of Ppm1h in the nucleus and PSD while cytosolic Ppm1h levels did not change. (I and J) Effect of
646 contextual fear conditioning (cFC) to the level of Ppm1h in the mouse hippocampus. (I) Scheme indicating
647 experimental workflow for cFC. Mice were trained via cFC task (see STAR METHODS), followed by
648 isolation of subcellular fractions (nuclear, cytosolic and PSD fractions) from the hippocampus. Mice showed
649 a significant increase of time spent freezing after cFC. (J) Characterization of Ppm1h expression in different
650 subcellular fractions following cFC. Ppm1h significantly increased in PSD fractions while cytosolic or
651 nuclear Ppm1h level showed a significant decrease or no change after cFC training, respectively.
652

653 DISCUSSION

654 In this study, we examined the dynamics of the proteome and phosphoproteome induced by
655 IA training and immediate shock in mouse hippocampal PSD fractions by using high resolution
656 mass spectrometry combined with a multiplexed quantitative proteomics approach. iTRAQ
657 labeling combined with phosphopeptide enrichment using TiO_2 enabled us to identify and quantify
658 proteins and specific phosphosites in the PSD fractions from mice that were exposed to different
659 experiences (i.e., walk-through, IA training and immediate shock). We identified and quantified
660 over 6,200 PSD proteins and 3,000 phosphoproteins (including over 9,500 phosphosites).
661 Alteration in the expression levels of PSD proteins and phosphosites were observed after IA
662 training or immediate shock. These proteins and phosphoproteins were largely involved in
663 neuronal functions, such as synaptic plasticity, regulation of neurotransmitter receptors, ion
664 channels, and structural organization of synapses. One of the most interesting change was a
665 significant decrease in protein and phosphorylation level followed by both IA training and
666 immediate shock.

667 Recently, proteomic approaches are a critical tool to track the changes of proteome and post-
668 translational modifications in the field of neuroscience (Li et al., 2017; Schanzenbacher et al.,
669 2018; Thygesen et al., 2018; Thygesen et al., 2019). In this study, we analyzed the proteomic and

670 phosphoproteomic remodeling that occurs in the hippocampus of mice following different types of
671 experience to investigate molecular mechanisms underlying experience-dependent remodeling
672 of synapses. We applied multiple control groups, including Naïve group, to distinguish the effect
673 of learning on proteome remodeling by excluding the effect of other external stimuli, such as
674 exposure to the new environment (Walk) or immediate aversive stimulation (Shock). We
675 demonstrated that proteins and phosphosites are dynamically regulated following the robust
676 learning induced by IA training. We also found that associative learning by IA training resulted in
677 differential proteome and phosphosite remodeling compared to non-associative stimulation
678 (immediate shock) as well as to the exposure to the new environment (walk-through). We provide
679 comprehensive datasets highlighting experience-dependent remodeling of the hippocampal
680 proteome *in vivo*. The derived lists of proteins and phosphoproteins from our quantitative
681 proteomic analysis represent the patterns of proteome dynamics that may shed new light on the
682 mechanisms underlying synaptic plasticity and learning and memory.

683 Synaptic plasticity is associated with the delivery of different types of glutamate receptors to
684 the synapses (Huganir and Nicoll, 2013). In a previous study, phosphorylation of GluA1 at Ser831
685 increased, whereas phosphorylated GluA1 at Ser845 was not affected by IA training. Synaptic
686 targeting of total GluA1 and GluA2 AMPA receptor subunits, but not NR1 NMDA receptor subunit,
687 was enhanced after IA training (Whitlock et al., 2006). Our validation experiment showed a net
688 increase of GluA1, GluA2, two well-characterized phosphosites of GluA1 (Ser831 and Ser845)
689 and NMDAR subunits (GluN1, 2A, 2B) in PSD fraction after IA training (Figure 1E and F).
690 Interestingly, we observed significant increase of AMPAR, NMDAR subunits and two well-
691 characterized phosphorylation sites of GluA1 in the mouse hippocampal PSD fractions from Walk
692 group compared to the Naïve group. Our approach is a short-term exposure to the training
693 chamber (duration: maximum 5 minutes, number of exposures: maximum two times) followed by
694 the immediate harvest of the hippocampus. We have previously shown that mice exposed to the
695 enriched environment for 2 hrs exhibited increase of total and phosphorylated GluA1 at Ser831
696 and Ser845 in the mouse forebrain PSD fractions (Diering et al., 2016). Since the concept of
697 enriched environment had been originally introduced by Donald Hebb (Brown and Milner, 2003),
698 many studies showed that enriched environment has a considerable number of effects including
699 gene expression, transcription and translation, throughout the brain (Kempermann, 2019).
700 Although further studies need to be conducted to answer why AMPARs, NMDARs and phospho-
701 GluA1 increased after short exposure to the training platform, our results suggest that appropriate
702 cohorts which are exposed to the same behavioral apparatus without external stimulation, in this

703 study the Walk group, should be set as a control group for memory assessment and biochemical
704 validation.

705 Here, we employed IA task which is a commonly used behavioral task to investigate learning
706 and memory processes (Cammarota et al., 1995; Tadi et al., 2015; Whitlock et al., 2006). This
707 task consists of a single training session and a subsequent recall test to assess memory
708 formation. While the task is simple, the underlying mechanisms for memory acquisition,
709 consolidation, storage and retrieval are complex. Here, we set up a group of mice which foot
710 shock was delivered immediately after exposed to the IA training chamber to distinguish IA
711 training-induced proteome and phosphoproteomics dynamics from a shock-only stress response.
712 A general question is whether there are proteins which play overlapping or distinctive following IA
713 training and/or immediate shock. GO analysis of proteins regulated by IA training and immediate
714 shock revealed a series of cellular functions that were significantly enriched both in IA and Shock
715 group, or enriched uniquely in either IA or Shock group. Cellular functions, such as positive
716 regulation of adenylate cyclase-activating adrenergic receptor signaling, regulation of post-
717 synapse organization and neuronal synaptic plasticity, regulation of ARF protein signal
718 transduction, protein polymerization, Ca^{2+} transport and actin filament-based process, were found
719 to be enriched in both IA and Shock groups (Figure 4B). We also identified a series of cellular
720 functions that were uniquely enriched in either the IA or Shock group. For example, cellular
721 functions, such as regulation of postsynaptic neurotransmitter receptor activity, SA node cell
722 action potential, release of sequestered Ca^{2+} into cytosol by sarcoplasmic reticulum, synaptic
723 transmission, and anterograde trans-synaptic signaling, were distinctively enriched in IA group.
724 In the same way, we found that cellular functions including positive regulation of LTD, negative
725 regulation of microtubule depolymerization, vesicle docking involved in exocytosis, and regulation
726 of GTPase activity were uniquely enriched in Shock group (Figure 4B). Proteins that exhibit same
727 cellular functions in both IA and Shock groups may be categorized to common proteins that
728 respond to various experiences. On the other hand, proteins linked to cellular functions
729 distinctively enriched in either the IA or Shock group may be categorized by unique proteins that
730 respond differentially to either IA training or immediate shock. These findings support the idea
731 that those behavioral phenotypes elicited by different forms of experience (here IA training and
732 immediate shock) are mediated by proteins or PTMs involved in 1) shared cellular functions that
733 can be regulated in either same or different directions and 2) unique cellular functions that are
734 differentially enriched following specific experiences. Functional validation of PSD proteins or
735 phosphosites that are uniquely regulated by IA training or immediate shock will be required to
736 better understand molecular mechanisms for learning and memory formation.

737 A central question for all forms of synaptic plasticity is the degree to which phenotypic changes
738 are driven by changes in protein expression and/or PTMs, such as phosphorylation. A previous
739 study indicates a requirement for protein synthesis and enhanced levels of protein
740 phosphorylation for synaptic plasticity (Costa-Mattioli et al., 2009; Montarolo et al., 1986; Woolfrey
741 and Dell'Acqua, 2015). However, the exact time frames that distinguish protein synthesis- or
742 phosphorylation-dependency for learning and memory formation remains unclear (Tully et al.,
743 1994; Villareal et al., 2007). In this study, we analyzed proteins from hippocampal PSD harvested
744 1hr after IA training or ~5mins after immediate shock. Interestingly, we observed a decreasing
745 pattern of protein level after IA training (Figure 3B). The degree of decrease was more obvious
746 for phosphorylation level (>50% dephosphorylated) than total protein level (approximately 25%).
747 Methodologically, inhibitory avoidance triggers sequential biochemical reactions in the
748 hippocampus that are important for memory formation, and these biochemical events are similar
749 to those necessary for synaptic plasticity including LTP (Izquierdo and Medina, 1997). LTP is the
750 most studied form of synaptic plasticity and it is the most closely linked molecular mechanism
751 underlying learning and memory. LTP triggers various changes in the postsynaptic sites of
752 neurons including gene expression, neuronal morphology, protein transportation and ion channel
753 properties. Long-term potentiation in the hippocampus is a well-established model for learning
754 and memory (Bliss and Collingridge, 1993; Nicoll, 2017). It was shown that LTP induced by
755 learning *in vivo* mimicked the effects of hippocampal LTP induced by high-frequency stimulation
756 (Asok et al., 2019; Izquierdo et al., 2006; Whitlock et al., 2006). One of the key regulators of these
757 neuronal processes occurring during LTP is protein phosphorylation (Giese and Mizuno, 2013;
758 Lee, 2006). However, our results show overall trend of dephosphorylation in both IA and Shock
759 groups. Because the degree of dephosphorylation is much bigger than reductions in protein level,
760 increased protein phosphatase activity following IA training and immediate shock can be one of
761 the possible mechanisms to explain our results. Among the protein components at the synapse,
762 enzymes controlling protein phosphorylation have been considered important for the induction
763 and maintenance of long-term changes in synaptic strength and, as a counterpart, protein
764 phosphatases have emerged as another key regulator of synaptic plasticity (Coba, 2019;
765 Woolfrey and Dell'Acqua, 2015). We found that Ppm isoforms were regulated differentially by IA
766 training and immediate shock. We were particularly interested in Ppm1h because it has recently
767 been reported that Ppm1h can counteract LRRK2 signaling via Rab protein dephosphorylation,
768 which may potentially link to the molecular mechanisms of LRRK2-mediated neurological
769 disorders such as Parkinson's disease. We showed that Ppm1h can manipulate levels of
770 glutamate receptors and is affected by neuronal activity both *in vivo* and *in vitro*. The result on

771 Ppm1h functionality is a good example supporting how global dephosphorylation of hippocampal
772 PSD proteome affects IA-mediated learning and memory.

773 We demonstrated that the PSD proteome underwent dynamic phosphorylation regulation
774 following IA training and immediate shock and this led us to investigate kinases in the PSD (Figure
775 6). More than 250 kinases are expressed in adult mammalian brains but only a few subsets of
776 kinase, such as calcium/calmodulin-dependent kinase II (CaMKII), extracellular signal regulated
777 kinase 1 and 2 (ERK1/2), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein
778 kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 α and
779 3 β (Gsk3 α /3 β), are known to play critical role in learning and memory (Giese and Mizuno, 2013).
780 We demonstrated that 15 kinases and their phosphorylation sites were dynamically regulated by
781 IA training or immediate shock. It is well known that CaMKII α is highly expressed in the
782 hippocampus and activated during LTP induction as well as affective learning (Lisman et al., 2002;
783 Lisman et al., 2012). However, previous study showed that CaMKII activation is required during,
784 but not after, training for memory formation by IA training (Murakoshi et al., 2017). Because PSD
785 fractions were prepared 1 hour after IA training, this may explain why IA-trained mice in our study
786 showed no obvious changes compared to the increased level of CaMKII α in the PSD of mice that
787 received immediate shock. We also found that CaMKII δ was decreased in IA and further
788 decreased in the shock group. The roles of CaMKII δ in memory process remain unclear, but there
789 is increasing evidence suggesting that this enzyme can be regulated by training and may
790 contribute to different stages of memory formation. For example, it was found that sustained
791 expression of CaMKII δ was observed up to 1 week after novel object recognition training and
792 antisense oligo to a CaMKII δ reversed the effect on memory persistence (Zalcman et al., 2018).
793 In this training paradigm, transcriptional activation via NF- κ B and increased histone acetylation in
794 the promoter region of *camk2d* gene resulted in increase of CaMKII δ expression beyond memory
795 consolidation (Federman et al., 2013). Our results also support the hypothesis that the level of
796 CaMKII δ could be differentially regulated in different subcellular fractions following different types
797 of behavioral task. We have also demonstrated that a series of kinases and their phosphosites
798 were differentially regulated by IA training or immediate shock (Figure 6). Functions and detailed
799 molecular mechanisms of these kinases will need to be tested.

800 In this study, we applied iTRAQ and TiSH phosphoproteomics approach to mouse
801 hippocampal PSD fractions and provided a comprehensive proteomic dataset containing
802 hundreds of proteins that showed changes in expression and/or phosphorylation following IA
803 training or immediate shock. We observed a significant decrease of PSD proteome and

804 phosphorylation and the dynamic regulation of synaptic kinases and phosphatases. These results
805 should be interpreted with some caution as we only analyzed PSD samples at the 1 hr post-
806 training time point. Therefore, we do not know how these findings generalize to other post-training
807 timepoints, or whether these phenomena specifically represent the proteome remodeling during
808 early phase of memory formation. Therefore, in future studies it will be interesting to monitor
809 proteome dynamics at multiple time scales to identify key modulators regulating memory
810 formation and its maintenance. In summary, we believe that the dataset from our current study
811 can be used broadly to study the underlying mechanisms for learning and memory formation.

812

813 **Acknowledgement**

814 We thank all members of the Huganir laboratory for helpful comments, discussion, and critical
815 reading of the manuscript and especially Drs. Bian Liu, Dylan Hale, Qianwen Zhu and Austin
816 Graves for data curation and critical discussion. We would like to thank especially Ashley Irving,
817 Sarah Rodriguez, Lisa Hamm and Richard Johnson for their technical assistance and
818 administrative support. This work was supported by NIH grants R01 NS036715 and R01
819 MH112152 (to R.L.H.). This study was supported by the Novo Nordisk Foundation
820 (NNF16OC0023448 to M.R.L.), the Villum Center for Bioanalytical Sciences at SDU (M.R.L.), and
821 the Danish Diabetes Academy (NNF17SA0031406 to T.K.).

822

823 **Author Contributions**

824 S.H., T.K., M.R.L. and R.L.H. designed research. S.H. and A.M.B. performed behavioral and
825 biochemical experiments and analyzed data. T.K. performed proteomic analysis and data
826 processing. S.H. and T.K. performed bioinformatic analysis. M.R.L. and R.L.H. supervised the
827 project including funding acquisition and project administration. S.H. T.K., A.M.B. M.R.L. and
828 R.L.H wrote the manuscript.

829

830

831

832

833

834

835

836

837 **STAR★METHODS**

838

839 Detailed methods are provided in the online version of this paper and include the following:

840

841 • **KEY RESOURCES TABLE**

842 • **CONTACT FOR REAGENT AND RESOURCE SHARING**

843 • **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

844 ○ Animal use

845 • **METHOD DETAILS**

846 ○ Inhibitory avoidance (IA)

847 ○ Enriched environment (EE)

848 ○ Dissociated rat neuronal cultures

849 ○ Surface biotinylation

850 ○ Subcellular fractionation and Western blotting

851 ○ Sample preparation for mass spectrometry analysis

852 - In-solution trypsin and Lys-C digestion

853 - iTRAQ labeling of peptides

854 - Enrichment of phosphorylated peptides

855 - Sample desalting

856 - Hydrophilic interaction liquid chromatography (HILIC)

857 ○ LC-MS/MS, proteomic data handling and bioinformatic analysis

858 - Reverse-phase nanoLC-ESI-MS/MS analysis

859 - MS data processing and statistical analysis

860 - Bioinformatic processing and data analysis

861 • **QUANTIFICATION AND STATISTICAL ANALYSIS**

862 • **DATA AND SOFTWARE AVAILABILITY**

863 • **ADDITIONAL RESOURCES**

864

865

866

867

868

869

870 • KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse anti-GluA1 (clone 4.9D)	Dong et al., 1997	N/A
Mouse monoclonal anti-GluA2	Millipore Sigma	Cat# MAB397, RRID: AB_2113875
Rabbit anti-GluA3 (JH4300)	Mao et al., 2010	N/A
Rabbit monoclonal anti-GluA1 pSer831	Abcam	Cat# ab109464, RRID: AB_10862154
Rabbit monoclonal anti-GluA1 pSer845	Abcam	Cat# ab76321, RRID: AB_1523688
Anti-GluN1/NR1 glutamate receptor, clone N308/48	(UC Davis/NIH NeuroMab Facility	Cat# 75-272, RRID: AB_11000180
Anti-GluN2A/NR2A glutamate receptor, clone N327/95	(UC Davis/NIH NeuroMab Facility	Cat# 75-288, RRID: AB_2345842
Anti-GluN2B/NR2B glutamate receptor, clone N59/20	(UC Davis/NIH NeuroMab Facility	Cat# 75-097, RRID: AB_10673405
Rabbit monoclonal anti-NMDAR1	Abcam	Cat# ab109182, RRID: AB_10862307
Rabbit monoclonal anti-NMDAR2A	Abcam	Cat# ab124913, RRID: AB_10975154
Mouse monoclonal anti-NMDAR2B	Abcam	Cat# ab28373, RRID: AB_776810
Mouse anti-PSD95	UC Davis/NIH NeuroMab	Cat# 75-028, RRID: AB_2307331
Sheep anti-Ppm1h	MRC PPU Unit, University of Dundee	Cat# DA018
Mouse monoclonal anti- α Tubulin (Clone B-5-1-2)	Millipore Sigma	Cat# T6074, RRID: AB_477582
Donkey anti-sheep IgG (H+L), HRP-conjugated	Thermo Fisher Scientific	Cat# A16047 RRID: AB_2534721
IRDye [®] 800CW Rabbit anti-HRP	LI-COR Biosciences	Cat# 926-32202, RRID: AB_2883971
IRDye [®] 680RD Donkey anti-Rabbit IgG (H + L)	LI-COR Biosciences	Cat# 926-68073, RRID: AB_10954442
IRDye [®] 800CW Donkey anti-Mouse IgG (H + L)	LI-COR Biosciences	Cat# 926-32212, RRID: AB_621847
Biological Samples		
N/A	N/A	N/A
Chemicals, Peptides, and Recombinant Proteins		
Sodium pyrophosphate decahydrate	Millipore Sigma	Cat# 221368; CAS: 13472-36-1
Sodium orthovanadate	Millipore Sigma	Cat# S6508; CAS: 13721-39-6

Ethylenediaminetetraacetic acid disodium salt dihydrate	Millipore Sigma	Cat# ED2SS; CAS: 6381-92-6
HEPES, ≥99.5% (titration)	Millipore Sigma	Cat# H3375; CAS: 7365-45-9
D-Sucrose	Fisher Scientific	Cat# BP220-10; CAS: 57-50-1
Tween® 20	Fisher Scientific	Cat# BP337-500; CAS: 9005-64-5
Odyssey Blocking Buffer (TBS)	LI-COR Biosciences	Cat# 927-50003; CAS: N/A
Immobilon Forte Western HRP substrate	Millipore Sigma	Cat# WBLUF0500; CAS: N/A
Immobilon-FL PVDF membrane	Millipore Sigma	Cat# IPFL00010; CAS: N/A
Urea, ≥99.0%	Millipore Sigma	CAS: 57-13-6
Thiourea, ≥99.0%	Millipore Sigma	CAS: 62-56-6
DL-Dithiothreitol, ≥99.0%	Millipore Sigma	CAS: 3483-12-3
Lysyl Endopeptidase®	Fujifilm Wako-Chemicals	Cat# 125-05061
cComplete, EDTA-free	Roche	Cat# 04 693 132 001
PhosSTOP™	Roche	Cat# 04 906 837 001
Okadaic acid, Free acid, >98%	LC Laboratories	Cat# O-2220 CAS: 78111-17-8
RIPA Lysis and Extraction buffer	Thermo Fisher Scientific	Cat# 89900
Triethylammonium bicarbonate buffer, 1 M	Millipore Sigma	CAS: 15715-58-9
Iodoacetamide	Millipore Sigma	CAS: 144-48-9
Modified trypsin	Promega	Cat# V511A
Titansphere titanium dioxide beads	GL science	CAS: 1317-70-0
Glycolic acid, ≥99.0%	Millipore Sigma	CAS: 79-14-1
Acetonitrile, HPLC grade	Millipore Sigma	CAS: 75-05-8
Trifluoroacetic acid, ≥99.0%	Millipore Sigma	CAS: 76-05-1
Ammonia solution, 25%	Fluka Analytical	Cat# 17093
POROS R2/R3 reversed-phase resin	Applied Biosystems	Cat# 1112906 and 1133903
TSKgel® Amide-80 resin, 3 µm	Tosoh Bioscience	Cat# 21867
Formic acid	Millipore Sigma	CAS: 64-18-6
Reprosil-Pur® C18-AQ reversed-phase, 3 µm	Dr. Maisch GmbH	Cat# r13.aq.
3M™ Empore™ C8 and C18 disks	3M Bioanalytical Technologies	Cat# C8-66882-U Cat# C18-66883-U
EZ-Link™ Sulfo-NHS-SS-Biotin	Thermo Fisher Scientific	Cat# 21331 CAS: 202057-28-1
Bicuculline methochloride	Tocris	Cat# 0131 CAS: 38641-83-7

Tetrodotoxin citrate	Tocris	Cat# 1069 CAS: 18660-81-6
Strychnine hydrochloride	Abcam	Cat# ab120416 CAS: 1421-86-9
Glycine (for general biochemistry)	Fisher Scientific	Cat# BP381-5 CAS: 56-40-6
Glycine (for chemical LTP)	Tocris	Cat# 0219 CAS: 56-40-6
Pierce™ NeutrAvidin™ UltraLink™ Resin	Thermo Fisher Scientific	Cat# 53150
Critical Commercial Assays		
Pierce™ BCA Protein Assay Kit	Thermo Fisher Scientific	Cat# 23225
Qubit® Fluorometric Protein Assay Kit	Thermo Fisher Scientific	Cat# Q33211
iTRAQ® 8 plex kit	AB Sciex	Cat# 4390811
Deposited Data		
Proteomic datasets (ProteomeXchange): iTRAQ hippocampal PSD proteome	This paper	
Database for data analysis		
Mouse sequences database	UniProtKB/Swiss-Prot	2013-06, 16,613 entries
Experimental Models: Cell Lines		
N/A	N/A	N/A
Experimental Models: Organisms/Strains		
Mouse: Wildtype C57BL/6 background (age: 8-10 week)	Charles River Laboratories	Order code: 027
Wild-type Sprague Dawley Rat (timed mated)	Envigo	Order code: 002-US
Recombinant DNA		
myc-Ppm1h on pCAGGS backbone	This paper	N/A
Sequence-Based Reagents		
N/A	N/A	N/A
Software and Algorithms		
Thermo Xcalibur™ 4.0 with Foundation 3.1	Thermo Fisher Scientific	Cat# OPTON-30487, RRID:SCR_014593
PANTHER Classification System v11.1 (released 2016.10.24)	(Mi et al., 2017; Mi et al., 2013)	http://www.pantherdb.org , RRID:SCR_015893

MS-GF ⁺	(Kim and Pevzner, 2014)	v9979, 07/16/2014, RRID:SCR_015646
MASIC	(Monroe et al., 2008a)	Version 2.6.5421.24315
R v3.3.3 (released 2017.03.06)	R Project for Statistical Computing	https://www.r-project.org , RRID:SCR_001905
iTOL	(Letunic and Bork, 2016)	N/A
Reactome DB	(Joshi-Tope et al., 2005)	https://reactome.org
PhosphoRS	(Taus et al., 2011)	Version 3.0
STRING database	(Szklarczyk et al., 2017)	Version 10.5, RRID:SCR_005223
IntAct database	(Orchard et al., 2014)	https://www.ebi.ac.uk/intact/
Fuzzy c-means cluster analysis	(Schwammle and Jensen, 2010)	N/A
MetaCore	Clarivate Analytics	https://clarivate.com/products/metacore/
QIAGEN Ingenuity Pathway Analysis	QIAGEN	N/A
Proteomics Identifications (PRIDE)	European Bioinformatics Institute (EBI)	RRID:SCR_003411 (https://www.ebi.ac.uk/pride/)
LI-COR Image Studio [®]	LI-COR Biosciences	N/A
Graphic State 2 TM A State Notation Program	Coulbourn Instruments	Version 2.101
GEMINI TM Avoidance system software	San Diego Instruments	N/A
ANY-maze behavior tracking software	Stoelting	Included in FC system
Other		
7 mL Tissue Grinder, Tenbroeck	Wheaton	Cat# 357424
BD 1ml TB syringe (26G x 3/8, 0.45mm x 10mm)	BD	Cat# 309625
Liquid Chromatography for HILIC	Agilent	1200 Series
Liquid Chromatography for MS	Thermo Fisher Scientific	EASY-nLC system
Orbitrap Mass Spectrometer	Thermo Fisher Scientific	Q-Exactive TM HF
Orbitrap Mass Spectrometer	Thermo Fisher Scientific	Fusion TM Lumos

MALDI TOF/TOF Mass Spectrometer	Bruker Daltonics	Ultraflex
Digital fluorescence Imaging System	LI-COR Biosciences	LI-COR Odyssey [®] CLx
Mouse passive avoidance cage	Coulbourn Instruments	Cat# H10-11M-PAA
Precision animal shocker – manual only	Coulbourn Instruments	Cat# H13-15
GEMINI TM Avoidance system test station with shock	San Diego Instruments	Cat# 2325-0301
Ugo Basile fear conditioning system	Stoelting	Cat# 60461-AM

871

872

873 • **CONTACT FOR REAGENT AND RESOURCE SHARING**

874 Further information and requests for resources and reagents should be directed to and will be
875 fulfilled by the Lead Contact, Martin R. Larsen (mrl@bmb.sdu.dk)

876

877

878 • **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

879 **Animal use**

880 All animals were treated in accordance with the Johns Hopkins University Animal Care and
881 Use Committee guidelines. For inhibitory avoidance experiments, mice (purchased from Charles
882 River Laboratories) were delivered at age 8 weeks and group housed for 2 weeks until IA testing.
883 Sprague Dawley rats (purchased from Envigo, former Harlan Laboratories) were used for primary
884 neuronal cultures at embryonic day 18 (E18) as described below. All animals were group housed
885 in a standard 12 hr light/ 12 hr dark cycle. IA testing was conducted during the dark phase.

886

887

888 • **METHOD DETAILS**

889 **Inhibitory avoidance (IA)**

890 Mice were handled for 5 min on each of the 5 consecutive days before beginning experiments.
891 The inhibitory avoidance (IA) testing cage consisted of a rectangular chamber (35.56 cm wide ×
892 17.78 cm deep × 30.48 cm high, Passive avoidance cage for mouse from Coulbourn Instruments;
893 24.13 cm wide × 20.32 cm deep × 20.32 cm high, GEMINITM Avoidance system from San Diego
894 Instruments) divided into two separate compartments, “light” and “dark” compartments. The light
895 compartment was built with transparent Plexiglas and illuminated with a bright overhead stimulus
896 light, while the dark compartment was built with nontransparent Plexiglas and was not illuminated.
897 The compartments were separated by a guillotine door, and both compartments were equipped
898 with metal grid floors connected to an electric generator source that delivered an electric shock

899 (1 mA, 2 seconds). IA testing cage was controlled by Graphic State 2, a state notation program
900 (Coulbourn Instruments). For our experiment, we adopted 3-step IA protocol which consisted of
901 3 individual sessions, habituation, acquisition, and retention. The latency to enter the dark
902 compartment was recorded as an index of memory consolidation.

903 For habituation (day 1), a mouse was placed in the light side of the chamber facing the wall
904 of the opposite side of the guillotine door. After 30 seconds the door was opened and the mouse
905 was allowed to explore until it entered the dark compartment. The door closed immediately after
906 the mouse entered the dark side and the mouse was returned promptly to the home cage after
907 entering the dark compartment of the testing cage.

908 For acquisition (day 2), the mouse again was placed in the light compartment of the testing
909 cage facing the wall of the opposite side of the guillotine door. The door was opened after 30
910 seconds, and the latency to cross to the dark side following door opening was recorded. The
911 guillotine door closed immediately after the mouse entered the dark compartment, and 3 seconds
912 later the mouse received a foot shock (2 seconds, 1 mA). The mouse remained in the dark
913 chamber for 30 seconds following foot shock for recovery, then it was returned gently to the home
914 cage. Animals in the 'shock-only' group were placed in the IA chamber and given a same strength
915 of foot shock (2 seconds, 1 mA) and were immediately removed from the IA chamber for tissue
916 harvest.

917 For the retention/memory test, 1 hr after training the mouse was reintroduced to the light
918 compartment of the testing cage facing the wall of the opposite side of the guillotine door. The
919 door opened 30 sec after the mouse was placed in the light compartment, and the latency to step
920 through to the dark compartment was recorded as a measure of memory retention (compared
921 with step through latency of acquisition trial). The maximum latency was set at 5 min, after which
922 mice were returned to the homecage. The hippocampus was dissected after completion of the
923 retention test (within 5-10 minutes). Mice were anesthetized with isoflurane for 15 seconds
924 followed immediately by cervical dislocation. Brains were removed and hippocampi were
925 dissected in ice-cold dissection media and immediately frozen with liquid nitrogen. Samples were
926 kept at -80°C until subcellular fractionation for PSD preparation.

927

928 **Enriched environment (EE)**

929 For all experiments mice were age 8-10 weeks. Mice were first handled and habituated to
930 minimize stress-induced changes. Mice were then either left in their home cage (control) or
931 allowed to explore an enriched environment (EE) which is composed of novel objects, tubes, and
932 strings of beads suspended from the cage lid in a large cage for 8 hours during wake period then

933 transferred back to the home cage. This is a physiologically relevant condition which expect to
934 drive neuronal activity and synaptic plasticity (Nithianantharajah and Hannan, 2006; Rampon et
935 al., 2000). On the next day, mice were exposed to the EE cage with different sets of novel objects
936 in a different arrangement for 8 hours. This 2-day EE cycle was repeated for 2 weeks. On the last
937 day, mice were exposed to the EE chamber then anesthetized by inhalation of isoflurane for 15
938 seconds followed immediately by cervical dislocation. Brains were removed and hippocampi were
939 dissected in ice-cold dissection media and immediately frozen with liquid nitrogen. Samples were
940 kept at -80°C until subcellular fractionation for PSD preparation.

941

942 **Dissociated rat neuronal culture**

943 Cortical neurons obtained from pregnant wild-type Sprague Dawley rats (purchased from
944 Envigo) at embryonic day 18 were initially prepared in Neurobasal media (Invitrogen)
945 supplemented with 2% B-27, 2 mM GlutaMax, 50 U/mL penicillin, 50 mg/mL streptomycin, and
946 5% horse serum (Invitrogen) and plated onto poly-L-lysine-coated tissue culture dishes at a
947 density of 800,000 cells per well. Cortical neurons were then transferred and maintained in a
948 humidified tissue culture incubator at 37 °C in a 95% air and 5% CO₂ mixture; 5 mM FDU (5-
949 Fluoro-2'-Deoxyuridine and 5 mM Uridine; Sigma) was added at DIV4 to inhibit glia proliferation
950 and cells were thereafter maintained in NM1 (Neurobasal media with 2% B-27, 2 mM GlutaMax,
951 50 U/mL penicillin, 50 mg/mL streptomycin, and 1% horse serum). Cultured cortical neurons were
952 fed twice per week. Cortical neurons were grown for 11–12 days in vitro for induction of
953 homeostatic up- and down-scaling and 18–19 days in vitro for induction of chemical LTP. For
954 ppm1h overexpression experiments, cortical neurons were electroporated with myc-ppm1h
955 construct at DIV0 using Rat Neuron Nucleofector kit (Lonza) following manufacturer's manual,
956 and cells were used when 2–3 weeks old.

957 For induction of homeostatic up- or down-scaling, cortical neurons (DIV11–12) were treated
958 with bicuculline (20 μM) or TTX for 48 hrs followed by either direct lysis in RIPA buffer containing
959 protease inhibitor cocktail (Roche), phosphatase inhibitor cocktail (Roche) and 1 μM okadaic acid,
960 or surface biotinylation. For glycine-induced chemical LTP experiments, cortical neurons (DIV19–
961 20) were first preincubated with Mg²⁺-ACSF (143 mM NaCl, 5 mM KCl, 10 mM HEPES [pH 7.42],
962 10 mM Glucose, 2 mM CaCl₂, 1 mM MgCl₂, 0.5 μM TTX, 1 μM Strychnine, and 20 μM BIC),
963 followed by glycine treatment for 10 min (chemical LTP ACSF: 200 μM glycine / 0 Mg²⁺), and
964 returned to the original Mg²⁺-ACSF (0 glycine / 1 mM MgCl₂) for 30 min prior to surface
965 biotinylation/lysis.

966

967 **Surface biotinylation**

968 Neurons were rinsed with ice-cold PBS containing 0.1 mM CaCl₂ and 1 mM MgCl₂ (pH 8.0)
969 (PBS-CM), then incubated in PBS-CM containing 1 mg/ml Sulfo-NHS-SS-biotin (Thermo Fisher
970 Scientific, 30 min, 4°C). After biotinylation reaction, neurons were rinsed with PBS-CM, and the
971 biotinylation reaction was quenched in PBS-CM containing 50 mM glycine (2 x 5 min, 4°C). Cells
972 were lysed in RIPA buffer containing protease inhibitor cocktail (Roche), phosphatase inhibitor
973 cocktail (Roche) and 1 µM okadaic acid, then cleared by centrifugation (17,000 x g, 10 min, 4°C).
974 Protein concentration of each lysate was quantified using BCA protein assay kit (Thermo Fisher
975 Scientific), and equal amounts of protein were incubated overnight with NeutrAvidin-coupled
976 agarose beads (Thermo Fisher Scientific) at 4°C with gentle rotation. Beads were washed three
977 times with ice-cold lysis buffer, and biotinylated proteins were eluted with 2x SDS sample buffer.
978 Cell-surface or total proteins were then subjected to SDS-PAGE and analyzed by Western blot.
979

980 **Sub-cellular fractionation and Western blotting**

981 For post-synaptic density preparation, hippocampi dissected immediately following memory
982 recall (one-hour following IA-training) were homogenized using 20 strokes from syringes equipped
983 with 26G x 3/8 (0.45mm x 10mm) needles in homogenization buffer (320 mM sucrose, 5 mM
984 sodium pyrophosphate, 1 mM EDTA, 10mM HEPES pH 7.4, 200 nM okadaic acid, 1 mM sodium
985 orthovanadate, protease inhibitor cocktail (Roche), phosphatase inhibitor cocktail (Sigma-
986 Aldrich)). The homogenate was then centrifuged at 1,000 x g for 10 minutes at 4°C to yield P1
987 (nuclear fraction) and post-nuclear supernatant (PNS) fractions. PNS fraction was further
988 centrifuged at 17,000 x g for 20 minutes at 4°C to yield P2 (membrane/crude synaptosome) and
989 S2 (cytosol) fractions. P2 was resuspended in hypotonic resuspension buffer (Milli-Q® water with
990 5 mM sodium pyrophosphate, 1 mM EDTA, 10mM HEPES pH 7.4, 200 nM okadaic acid, 1 mM
991 sodium orthovanadate, protease inhibitor cocktail (Roche), phosphatase inhibitor cocktail (Roche)),
992 then centrifuged at 25,000 x g for 20 minutes at 4°C to yield lysed synaptosome (LS)
993 fractions. Collected LS fractions were resuspended in resuspension buffer (50 mM HEPES pH
994 7.4, 5 mM sodium pyrophosphate, 1 mM EDTA, 200 nM okadaic acid, 1 mM sodium
995 orthovanadate, protease inhibitor cocktail (Roche), phosphatase inhibitor cocktail (Roche)) and
996 then mixed with an equal part of 1% Triton X-100 (containing protease and phosphatase
997 inhibitors). This mixture was incubated at 4°C with rotation for 10 minutes followed by
998 centrifugation at 50, 000x g for 20 minutes at 4°C to yield PSD preparation. The final PSD pellet
999 was resuspended in 50 mM HEPES pH 7.4 (containing protease and phosphatase inhibitors).

1000 The protein concentration from PSD fractions was determined using BCA protein assay followed
1001 by biochemical analysis.

1002 For Western blotting analysis, samples were quantified using BCA protein assay kit and
1003 loaded onto 9 or 12% SDS-PAGE (depending on the molecular weights of the protein of interest).
1004 Proteins were transferred to PVDF membrane, and the membranes were blocked with Odyssey
1005 blocking buffer for fluorescent detection for 1 hr at room temperature. Primary antibodies were
1006 resuspended in Odyssey blocker / TBS-T (1X TBS supplemented with 0.2% Tween® 20) mixture
1007 (Odyssey blocker : TBS-T = 1 : 1) and incubated overnight at 4°C with gentle rocking. Primary
1008 antibodies were removed and membranes were washed followed by IRDye®-conjugated
1009 secondary antibody incubation in blocking solutions. For primary antibodies where IRDye®-
1010 conjugated secondary antibodies were not available, membranes were first probed with HRP
1011 (horseradish peroxidase)-conjugated secondary antibodies followed by re-probing with IRDye®-
1012 conjugated anti-HRP antibody. Blots were developed using either LI-COR Odyssey® CLx Imaging
1013 system (LI-COR).

1014

1015 **Sample preparation for mass spectrometry analysis**

1016 ***In-solution trypsin and Lys-C digestion***

1017 PSD fractions isolated from mouse hippocampi were lysed, reduced, and predigested in 6 M
1018 Urea, 2 M Thiourea, containing 10 mM Dithiothreitol and 2 µl Lys-C endopeptidase supplemented
1019 with PhosSTOP™ phosphatase inhibitor for 2 h at room temperature (RT). Thereafter, the lysates
1020 were diluted 10 times using 20 mM Triethylammonium bicarbonate buffer (TEAB; pH adjusted to
1021 7.5) and tip-sonicated for 2 x 20 seconds on ice. Samples were then alkylated by 20 mM
1022 iodoacetamide for 20 min in the dark before digestion with 2% (w/w) trypsin overnight at 37°C.

1023

1024 ***iTRAQ labeling of peptides***

1025 Peptide concentration was measured by Qubit® Fluorometric protein assay according to the
1026 manufacturer's instructions. A total of 60 µg was aliquoted from all samples (4 groups from total
1027 lysates and PSD fractions) and lyophilized before labeling with iTRAQ® 8 plex kit (AB Sciex).
1028 Three biological replicates were made and labeling was performed as follows: total naïve 113,
1029 total walk-through 114, total shock-only 115, total IA-trained 116, PSD naïve 117, PSD walk-
1030 through 118, PSD shock-only 119, PSD IA-trained 121. The labeling was performed according to
1031 the manufacturer's protocol and complete labeling was validated by running combined aliquots
1032 on MALDI MS (Bruker Daltonics, Germany). The equal amount (60 µg) of protein per sample were
1033 mixed in equal ratios and stored at -20°C until phosphopeptide enrichment.

1034

1035 ***Enrichment of phosphorylated peptides***

1036 The purification of phosphopeptides was performed according to a slightly modified TiSH
1037 (TiO₂-SIMAC-HILIC) phosphopeptide enrichment procedures (Engholm-Keller and Larsen, 2016;
1038 Kang et al., 2018; Thingholm et al., 2006), in which nonmodified peptides are first separated from
1039 phosphopeptide species using TiO₂ beads. Briefly, the lyophilized iTRAQ labeled sample was
1040 made up to 1 ml loading buffer [1 M glycolic acid, 80% acetonitrile (ACN), 5% TFA] and added
1041 with TiO₂ beads at 0.6 mg/100 µg (bead/peptide), and incubated at RT for 10 min. The suspension
1042 was centrifuged for 15 sec in a table centrifuge and the supernatant loaded onto a second batch
1043 of TiO₂ (containing half the amount of TiO₂ as initially used) and incubated at RT for 15 min. The
1044 two batches of TiO₂ were washed with 100 µl of washing buffer 1 [80% ACN, 1% trifluoroacetic
1045 acid (TFA)] and centrifuged for 15 sec in a tabletop centrifuge. The supernatant was removed,
1046 and the beads were washed with 100 µl washing buffer 2 (10% ACN, 0.1% TFA) and centrifuged
1047 for 15 sec in a tabletop centrifuge. The supernatant was removed, and the beads were dried in a
1048 vacuum centrifuge for 5 min. The bound peptides were eluted with 100 µl of 1% ammonium
1049 hydroxide for 15 min and then centrifuged at 1,000 g for 1 min. The eluted peptides were passed
1050 over a C8 stage tip (Thingholm and Larsen, 2009) to retain the TiO₂ beads and dried by vacuum
1051 centrifugation to produce the enriched phosphopeptide fraction. The flow through from the initial
1052 loading buffer (containing nonmodified peptides) and washes were combined and dried by
1053 vacuum centrifugation to produce the nonmodified peptide fraction. The nonmodified peptide
1054 fraction was acidified with TFA and desalting on a R3 stage tip column before HILIC fractionation.

1055

1056 ***Sample desalting***

1057 Samples were desalting before HILIC fractionation. The desalting columns were self-made by
1058 inserting a small plug of C18 material into the constricted end of a 200 µl tip and packed with a
1059 mixture of R2 and R3 reversed-phase resin applying manual air pressure with a syringe, followed
1060 by an optimized desalting procedure (Thingholm et al., 2006). Briefly, the samples were acidified
1061 before loading onto the columns (equilibrated with 0.1% TFA), followed by washing with 0.1%
1062 TFA, and peptides were eluted using 60% ACN, 0.1% TFA and were lyophilized before further
1063 processing.

1064

1065 ***Hydrophilic Interaction Liquid Chromatography (HILIC)***

1066 The phosphorylated and the nonmodified peptide samples were subjected to fractionation
1067 using HILIC (Kang et al., 2018). Briefly, these samples were resuspended in 90% ACN, 0.1% TFA

1068 (Solvent B) and loaded onto a 450 μ M OD x 320 μ M ID x 17 cm micro-capillary column packed
1069 with TSKgel[®] Amide-80 resin material using an Agilent 1200 Series HPLC. Peptides were
1070 separated using a gradient from 100–60% Solvent B (Solvent A: 0.1% TFA) running for 30 min at
1071 a flow-rate of 6 μ l/min. The fractions were automatically collected in a 96 well plate at one-minute
1072 intervals after UV detection at 210 nm.

1073

1074 **LC-MS/MS, proteomic data handling and bioinformatic analysis**

1075 **Reverse-phase nanoLC-ESI-MS/MS analysis**

1076 All fractions were redissolved in buffer A (0.1% FA) and analyzed using a nLC-MS/MS system
1077 consisting of an Easy-nLC and an Orbitrap FusionTM Lumos (phospho-proteome) or a Q-
1078 exactiveTM HF (proteome) mass spectrometers (MS) were used separately to increase the speed
1079 of analysis. The samples were loaded onto a 2 cm pre-column (100 μ m inner diameter) and
1080 separated on a 17 cm fused silica capillary column (75 μ m inner diameter). All columns were
1081 homemade and packed with ReproSil-Pur[®] C18 AQ 3 μ m reversed-phase resin material. The
1082 peptides were eluted using 73–133 min gradients from 1 to 40% buffer B (95% ACN, 0.1% FA)
1083 and introduced into the MS instrument via nanoelectrospray according to the intensity of each
1084 HILIC peptide fraction. A full MS scan in the mass area of 400–1400 Da was performed in the
1085 Orbitrap with a resolution of 120,000, an AGC target value of 5×10^5 , and a maximum injection
1086 time of 100 ms. For each full scan, ‘Top speed’ mode was selected for higher energy collision
1087 dissociation (HCD). The settings for the HCD were as follows: AGC target value of 3×10^4 ,
1088 maximum injection time of 60 ms, isolation window of 1.2 Da, and normalized collision energy of
1089 38. All raw data were viewed in XcaliburTM v4.0.

1090

1091 **MS Data processing and statistical analysis**

1092 The raw MS data sets were processed for protein/peptide identification using the MS-GF+
1093 (v9979, 07/16/2014) (Kim and Pevzner, 2014) combined MASiC (Monroe et al., 2008b) pipeline
1094 with a peptide mass tolerance of 20 ppm, reporter ion m/z tolerance half width of 2 mDa, and a
1095 false discovery rate (FDR) of 1% for proteins and peptides. All peak lists were searched against
1096 the UniProtKB/Swiss-Prot database of mouse sequences (06/2013, 16,613 entries) with decoy
1097 using the parameters as follows: enzyme, trypsin; maximum missed cleavages, 2; fixed
1098 modification, carbamidomethylation (C), iTRAQ tags (K, peptide N termini); variable modifications,
1099 oxidation (M) and phosphorylation (S, T, Y). Data sets with raw MS values were filtered to remove
1100 potential errors using several criteria. For relative protein quantification, the output tsv file from
1101 MS-GF⁺ combine MASiC pipeline was imported into Microsoft Excel and filtered as follows:

1102 elimination of contaminants and reversed sequences for each accession number. Protein relative
1103 expression values from the respective unique or razor peptides were calculated by summing all
1104 unique/razor peptides intensity of each protein and normalized to the number of total intensities
1105 of each group estimating the relative amounts of the different protein within the relative sample.
1106 The resulting ratios were logarithmized (base = 2) to achieve a normal distribution. Ratios were
1107 averaged over overlapping proteins or phosphopeptides. Fragment ion masses (b- and y-type
1108 ions) with the phosphorylation were checked at the peptide backbone in the MS/MS data sets
1109 using PhosphoRS. Fuzzy c-means cluster analysis was performed by using expression changes
1110 for regulated proteins/phosphopeptides.

1111

1112 ***Bioinformatic processing and data analysis***

1113 Gene Ontology annotation enrichment analysis was performed using the PANTHER.
1114 Reactome pathway analysis was used to functionally annotate genes implicated in canonical
1115 pathways, using an FDR threshold of 0.05. The regulated proteins and phosphorylation were
1116 searched against the STRING database (version 10.5) and IntAct database
1117 (<https://www.ebi.ac.uk/intact/>) for protein-protein interactions. Ingenuity Pathway Analysis (IPA;
1118 Ingenuity Systems) was used to functionally annotate genes implicated in causal biological
1119 pathways and functions.

1120 We used the FASTA sequences of the kinase domains retrieved from the KinBase resource
1121 or phosphatase domains from the Unitprot database and aligned them by ClustalX2.1 using
1122 default parameters for multiple alignment and bootstrapping N-J tree. Kinase or phosphatase
1123 sequences were visualized by phylogenetic distances using the Interactive Tree of Life (iTOL)
1124 tool (<https://itol.embl.de>).

1125

1126 **QUANTIFICATION AND STATISTICAL ANALYSIS**

1127 Significantly regulated proteins or phosphopeptides were accepted if the z-test for adjusted *p*-
1128 value was < 0.05 (95% confidence) with the Benjamini and Hochberg correction in a normal
1129 distribution or if the corrected *p*-value was < 0.1 (90% confidence) with a coefficient of variation
1130 (CV%) of 30% or smaller. Regulated proteins or phosphopeptides had the same ratio direction
1131 (log₂ ratio, positive or negative) in all of identified biological replicates.

1132

1133 **DATA AND SOFTWARE AVAILABILITY**

1134 The proteomics data and search results associated with this study have been deposited to
1135 the ProteomeXchange Consortium (Deutsch et al., 2020) via the PRIDE (Perez-Riverol et al.,
1136 2019) partner repository.

1137

1138 **ADDITIONAL RESOURCES**

1139 N/A

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

Reference List

1165

1166 Asok, A., Leroy, F., Rayman, J.B., and Kandel, E.R. (2019). Molecular Mechanisms of the
1167 Memory Trace. *Trends Neurosci* 42, 14-22.

1168 Bayes, A., and Grant, S.G. (2009). Neuroproteomics: understanding the molecular organization
1169 and complexity of the brain. *Nat Rev Neurosci* 10, 635-646.

1170 Best, P.J., and Orr, J., Jr. (1973). Effects of hippocampal lesions on passive avoidance and
1171 taste aversion conditioning. *Physiol Behav* 10, 193-196.

1172 Bevilaqua, L.R., Medina, J.H., Izquierdo, I., and Cammarota, M. (2005). Memory consolidation
1173 induces N-methyl-D-aspartic acid-receptor- and Ca²⁺/calmodulin-dependent protein kinase II-
1174 dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
1175 properties. *Neuroscience* 136, 397-403.

1176 Blim, N., Leshchyns'ka, I., Keable, R., Chen, B.J., Curry-Hyde, A., Gray, L., Sytnyk, V., and
1177 Janitz, M. (2019). Early transcriptome changes in response to chemical long-term potentiation
1178 induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. *Genomics*
1179 111, 1676-1686.

1180 Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in
1181 the hippocampus. *Nature* 361, 31-39.

1182 Borovok, N., Nesher, E., Levin, Y., Reichenstein, M., Pinhasov, A., and Michaelovski, I. (2016).
1183 Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. *Mol
1184 Cell Proteomics* 15, 523-541.

1185 Brown, R.E., and Milner, P.M. (2003). The legacy of Donald O. Hebb: more than the Hebb
1186 synapse. *Nat Rev Neurosci* 4, 1013-1019.

1187 Cammarota, M., Bernabeu, R., Levi De Stein, M., Izquierdo, I., and Medina, J.H. (1998).
1188 Learning-specific, time-dependent increases in hippocampal Ca²⁺/calmodulin-dependent
1189 protein kinase II activity and AMPA GluR1 subunit immunoreactivity. *Eur J Neurosci* 10, 2669-
1190 2676.

1191 Cammarota, M., Izquierdo, I., Wolfman, C., Levi de Stein, M., Bernabeu, R., Jerusalinsky, D.,
1192 and Medina, J.H. (1995). Inhibitory avoidance training induces rapid and selective changes in
1193 3[H]AMPA receptor binding in the rat hippocampal formation. *Neurobiol Learn Mem* 64, 257-
1194 264.

1195 Cheng, L., Locke, C., and Davis, G.W. (2011). S6 kinase localizes to the presynaptic active
1196 zone and functions with PDK1 to control synapse development. *J Cell Biol* 194, 921-935.

1197 Chiu, S.L., Diering, G.H., Ye, B., Takamiya, K., Chen, C.M., Jiang, Y., Niranjan, T., Schwartz,
1198 C.E., Wang, T., and Huganir, R.L. (2017). GRASP1 Regulates Synaptic Plasticity and Learning
1199 through Endosomal Recycling of AMPA Receptors. *Neuron* 93, 1405-1419 e1408.

1200 Coba, M.P. (2019). Regulatory mechanisms in postsynaptic phosphorylation networks. *Curr
1201 Opin Struct Biol* 54, 86-94.

1202 Costa-Mattioli, M., Sossin, W.S., Klann, E., and Sonnenberg, N. (2009). Translational control of
1203 long-lasting synaptic plasticity and memory. *Neuron* 61, 10-26.

1204 Coultrap, S.J., and Bayer, K.U. (2012). CaMKII regulation in information processing and
1205 storage. *Trends Neurosci* 35, 607-618.

1206 Deutsch, E.W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, J.J., Kundu, D.J., Garcia-
1207 Seisdedos, D., Jarnuczak, A.F., Hewapathirana, S., Pullman, B.S., et al. (2020). The
1208 ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics. *Nucleic
1209 Acids Res* 48, D1145-D1152.

1210 Diering, G.H., Heo, S., Hussain, N.K., Liu, B., and Huganir, R.L. (2016). Extensive
1211 phosphorylation of AMPA receptors in neurons. *Proc Natl Acad Sci U S A* 113, E4920-4927.

1212 Diering, G.H., and Huganir, R.L. (2018). The AMPA Receptor Code of Synaptic Plasticity.
1213 *Neuron* 100, 314-329.

1214 Diering, G.H., Nirujogi, R.S., Roth, R.H., Worley, P.F., Pandey, A., and Huganir, R.L. (2017).
1215 Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. *Science* 355,
1216 511-515.

1217 Dieterich, D.C., and Kreutz, M.R. (2016). Proteomics of the Synapse--A Quantitative Approach
1218 to Neuronal Plasticity. *Mol Cell Proteomics* 15, 368-381.

1219 Engholm-Keller, K., and Larsen, M.R. (2016). Improving the Phosphoproteome Coverage for
1220 Limited Sample Amounts Using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and
1221 Fractionation. *Methods Mol Biol* 1355, 161-177.

1222 Federman, N., de la Fuente, V., Zalcman, G., Corbi, N., Onori, A., Passananti, C., and Romano,
1223 A. (2013). Nuclear factor kappaB-dependent histone acetylation is specifically involved in
1224 persistent forms of memory. *J Neurosci* 33, 7603-7614.

1225 Fingleton, E., Li, Y., and Roche, K.W. (2021). Advances in Proteomics Allow Insights Into
1226 Neuronal Proteomes. *Front Mol Neurosci* 14, 647451.

1227 Fioravante, D., and Byrne, J.H. (2011). Protein degradation and memory formation. *Brain Res
1228 Bull* 85, 14-20.

1229 Giese, K.P., and Mizuno, K. (2013). The roles of protein kinases in learning and memory. *Learn
1230 Mem* 20, 540-552.

1231 Ho, V.M., Lee, J.A., and Martin, K.C. (2011). The cell biology of synaptic plasticity. *Science* 334,
1232 623-628.

1233 Hong, I., Kang, T., Yun, K.N., Yoo, Y., Park, S., Kim, J., An, B., Song, S., Lee, S., Kim, J., *et al.*
1234 (2013). Quantitative proteomics of auditory fear conditioning. *Biochem Biophys Res Commun*
1235 434, 87-94.

1236 Hosp, F., and Mann, M. (2017). A Primer on Concepts and Applications of Proteomics in
1237 Neuroscience. *Neuron* 96, 558-571.

1238 Huganir, R.L., and Nicoll, R.A. (2013). AMPARs and synaptic plasticity: the last 25 years.
1239 *Neuron* 80, 704-717.

1240 Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Medina, J.H., and Cammarota, M.
1241 (2006). Different molecular cascades in different sites of the brain control memory consolidation.
1242 *Trends Neurosci* 29, 496-505.

1243 Izquierdo, I., and Medina, J.H. (1997). Memory formation: the sequence of biochemical events
1244 in the hippocampus and its connection to activity in other brain structures. *Neurobiol Learn Mem*
1245 68, 285-316.

1246 Izquierdo, I., Quillfeldt, J.A., Zanatta, M.S., Quevedo, J., Schaeffer, E., Schmitz, P.K., and
1247 Medina, J.H. (1997). Sequential role of hippocampus and amygdala, entorhinal cortex and
1248 parietal cortex in formation and retrieval of memory for inhibitory avoidance in rats. *Eur J
1249 Neurosci* 9, 786-793.

1250 Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook,
1251 J., Gillespie, M., Haw, R., *et al.* (2020). The reactome pathway knowledgebase. *Nucleic Acids
1252 Res* 48, D498-D503.

1253 Kahne, T., Richter, S., Kolodziej, A., Smalla, K.H., Pielot, R., Engler, A., Ohl, F.W., Dieterich,
1254 D.C., Seidenbecher, C., Tischmeyer, W., *et al.* (2016). Proteome rearrangements after auditory
1255 learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain. *J
1256 Neurochem* 138, 124-138.

1257 Kang, T., Boland, B.B., Alarcon, C., Grimsby, J.S., Rhodes, C.J., and Larsen, M.R. (2019).
1258 Proteomic Analysis of Restored Insulin Production and Trafficking in Obese Diabetic Mouse
1259 Pancreatic Islets Following Euglycemia. *J Proteome Res* 18, 3245-3258.

1260 Kang, T., Boland, B.B., Jensen, P., Alarcon, C., Nawrocki, A., Grimsby, J.S., Rhodes, C.J., and
1261 Larsen, M.R. (2020). Characterization of Signaling Pathways Associated with Pancreatic beta-
1262 cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in db/db Mice. *Mol Cell
1263 Proteomics* 19, 971-993.

1264 Kang, T., Jensen, P., Huang, H., Lund Christensen, G., Billestrup, N., and Larsen, M.R. (2018).
1265 Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion
1266 from Isolated Pancreatic beta-cells Using Post-translational Modification Specific Proteomics
1267 (PTMomics). *Mol Cell Proteomics* 17, 95-110.

1268 Kempermann, G. (2019). Environmental enrichment, new neurons and the neurobiology of
1269 individuality. *Nat Rev Neurosci* 20, 235-245.

1270 Kempf, S.J., Metaxas, A., Ibanez-Vea, M., Darvesh, S., Finsen, B., and Larsen, M.R. (2016). An
1271 integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's
1272 mouse model. *Oncotarget* 7, 33627-33648.

1273 Kim, S., and Pevzner, P.A. (2014). MS-GF+ makes progress towards a universal database
1274 search tool for proteomics. *Nat Commun* 5, 5277.

1275 Kitchen, R.R., Rozowsky, J.S., Gerstein, M.B., and Nairn, A.C. (2014). Decoding
1276 neuroproteomics: integrating the genome, translatome and functional anatomy. *Nat Neurosci*
1277 17, 1491-1499.

1278 Lee, H.K. (2006). Synaptic plasticity and phosphorylation. *Pharmacol Ther* 112, 810-832.

1279 Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F., and Huganir, R.L. (2000). Regulation of
1280 distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. *Nature* 405,
1281 955-959.

1282 Lee, H.K., Kameyama, K., Huganir, R.L., and Bear, M.F. (1998). NMDA induces long-term
1283 synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in
1284 hippocampus. *Neuron* 21, 1151-1162.

1285 Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display
1286 and annotation of phylogenetic and other trees. *Nucleic Acids Research* 44, W242-W245.

1287 Li, J., Zhang, W., Yang, H., Howrigan, D.P., Wilkinson, B., Souaiaia, T., Evgrafov, O.V.,
1288 Genovese, G., Clementel, V.A., Tudor, J.C., et al. (2017). Spatiotemporal profile of postsynaptic
1289 interactomes integrates components of complex brain disorders. *Nat Neurosci* 20, 1150-1161.

1290 Lisman, J., Schulman, H., and Cline, H. (2002). The molecular basis of CaMKII function in
1291 synaptic and behavioural memory. *Nat Rev Neurosci* 3, 175-190.

1292 Lisman, J., Yasuda, R., and Raghavachari, S. (2012). Mechanisms of CaMKII action in long-
1293 term potentiation. *Nat Rev Neurosci* 13, 169-182.

1294 Liu, H.H., McClatchy, D.B., Schiapparelli, L., Shen, W., Yates, J.R., 3rd, and Cline, H.T. (2018).
1295 Role of the visual experience-dependent nascent proteome in neuronal plasticity. *Elife* 7.

1296 Lopez-Salon, M., Alonso, M., Vianna, M.R., Viola, H., Mello e Souza, T., Izquierdo, I., Pasquini,
1297 J.M., and Medina, J.H. (2001). The ubiquitin-proteasome cascade is required for mammalian
1298 long-term memory formation. *Eur J Neurosci* 14, 1820-1826.

1299 Lussier, M.P., Sanz-Clemente, A., and Roche, K.W. (2015). Dynamic Regulation of N-Methyl-d-
1300 aspartate (NMDA) and alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA)
1301 Receptors by Posttranslational Modifications. *J Biol Chem* 290, 28596-28603.

1302 Mansuy, I.M., and Shenolikar, S. (2006). Protein serine/threonine phosphatases in neuronal
1303 plasticity and disorders of learning and memory. *Trends Neurosci* 29, 679-686.

1304 McNair, K., Davies, C.H., and Cobb, S.R. (2006). Plasticity-related regulation of the
1305 hippocampal proteome. *Eur J Neurosci* 23, 575-580.

1306 Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., and Thomas, P.D. (2017).
1307 PANTHER version 11: expanded annotation data from Gene Ontology and Reactome
1308 pathways, and data analysis tool enhancements. *Nucleic Acids Res* 45, D183-D189.

1309 Mi, H., Muruganujan, A., Casagrande, J.T., and Thomas, P.D. (2013). Large-scale gene
1310 function analysis with the PANTHER classification system. *Nat Protoc* 8, 1551-1566.

1311 Milekic, M.H., Pollonini, G., and Alberini, C.M. (2007). Temporal requirement of C/EBPbeta in
1312 the amygdala following reactivation but not acquisition of inhibitory avoidance. *Learn Mem* 14,
1313 504-511.

1314 Mitsushima, D., Ishihara, K., Sano, A., Kessels, H.W., and Takahashi, T. (2011). Contextual
1315 learning requires synaptic AMPA receptor delivery in the hippocampus. *Proc Natl Acad Sci U S*
1316 A 108, 12503-12508.

1317 Monroe, M.E., Shaw, J.L., Daly, D.S., Adkins, J.N., and Smith, R.D. (2008a). MASIC: A software
1318 program for fast quantitation and flexible visualization of chromatographic profiles from detected
1319 LC-MS/(MS) features. *Computational Biology and Chemistry* 32, 215-217.

1320 Monroe, M.E., Shaw, J.L., Daly, D.S., Adkins, J.N., and Smith, R.D. (2008b). MASIC: a software
1321 program for fast quantitation and flexible visualization of chromatographic profiles from detected
1322 LC-MS/(MS) features. *Comput Biol Chem* 32, 215-217.

1323 Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R., and Schacher, S.
1324 (1986). A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in
1325 Aplysia. *Science* 234, 1249-1254.

1326 Murakoshi, H., Shin, M.E., Parra-Bueno, P., Szatmari, E.M., Shibata, A.C.E., and Yasuda, R.
1327 (2017). Kinetics of Endogenous CaMKII Required for Synaptic Plasticity Revealed by
1328 Optogenetic Kinase Inhibitor. *Neuron* 94, 37-47 e35.

1329 Nicoll, R.A. (2017). A Brief History of Long-Term Potentiation. *Neuron* 93, 281-290.

1330 Nithianantharajah, J., and Hannan, A.J. (2006). Enriched environments, experience-dependent
1331 plasticity and disorders of the nervous system. *Nat Rev Neurosci* 7, 697-709.

1332 Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell,
1333 N.H., Chavali, G., Chen, C., del-Toro, N., *et al.* (2014). The MIntAct project--IntAct as a common
1334 curation platform for 11 molecular interaction databases. *Nucleic Acids Res* 42, D358-363.

1335 Palmisano, G., Parker, B.L., Engholm-Keller, K., Lendal, S.E., Kulej, K., Schulz, M.,
1336 Schwammle, V., Graham, M.E., Saxtorph, H., Cordwell, S.J., *et al.* (2012). A novel method for
1337 the simultaneous enrichment, identification, and quantification of phosphopeptides and
1338 sialylated glycopeptides applied to a temporal profile of mouse brain development. *Mol Cell
1339 Proteomics* 11, 1191-1202.

1340 Park, P., Volianskis, A., Sanderson, T.M., Bortolotto, Z.A., Jane, D.E., Zhuo, M., Kaang, B.K.,
1341 and Collingridge, G.L. (2014). NMDA receptor-dependent long-term potentiation comprises a
1342 family of temporally overlapping forms of synaptic plasticity that are induced by different
1343 patterns of stimulation. *Philos Trans R Soc Lond B Biol Sci* 369, 20130131.

1344 Peineau, S., Bradley, C., Taghibiglou, C., Doherty, A., Bortolotto, Z.A., Wang, Y.T., and
1345 Collingridge, G.L. (2008). The role of GSK-3 in synaptic plasticity. *Br J Pharmacol* 153 *Suppl 1*,
1346 S428-437.

1347 Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J.,
1348 Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., *et al.* (2019). The PRIDE database and
1349 related tools and resources in 2019: improving support for quantification data. *Nucleic Acids
1350 Res* 47, D442-D450.

1351 Qiao, H., Foote, M., Graham, K., Wu, Y., and Zhou, Y. (2014). 14-3-3 proteins are required for
1352 hippocampal long-term potentiation and associative learning and memory. *J Neurosci* 34, 4801-
1353 4808.

1354 Rampon, C., Jiang, C.H., Dong, H., Tang, Y.P., Lockhart, D.J., Schultz, P.G., Tsien, J.Z., and
1355 Hu, Y. (2000). Effects of environmental enrichment on gene expression in the brain. *Proc Natl
1356 Acad Sci U S A* 97, 12880-12884.

1357 Roth, R.H., Zhang, Y., and Huganir, R.L. (2017). Dynamic imaging of AMPA receptor trafficking
1358 in vitro and in vivo. *Curr Opin Neurobiol* 45, 51-58.

1359 Saito, N., and Shirai, Y. (2002). Protein kinase C gamma (PKC gamma): function of neuron
1360 specific isotype. *J Biochem* 132, 683-687.

1361 Schanzenbacher, C.T., Langer, J.D., and Schuman, E.M. (2018). Time- and polarity-dependent
1362 proteomic changes associated with homeostatic scaling at central synapses. *Elife* 7.

1363 Schwammle, V., and Jensen, O.N. (2010). A simple and fast method to determine the
1364 parameters for fuzzy c-means cluster analysis. *Bioinformatics* 26, 2841-2848.

1365 Shipton, O.A., and Paulsen, O. (2014). GluN2A and GluN2B subunit-containing NMDA
1366 receptors in hippocampal plasticity. *Philos Trans R Soc Lond B Biol Sci* 369, 20130163.

1367 Spiegel, I., Mardinly, A.R., Gabel, H.W., Bazinet, J.E., Couch, C.H., Tzeng, C.P., Harmin, D.A.,
1368 and Greenberg, M.E. (2014). Npas4 regulates excitatory-inhibitory balance within neural circuits
1369 through cell-type-specific gene programs. *Cell* 157, 1216-1229.

1370 Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A.,
1371 Doncheva, N.T., Roth, A., Bork, P., et al. (2017). The STRING database in 2017: quality-
1372 controlled protein-protein association networks, made broadly accessible. *Nucleic Acids
1373 Research* 45, D362-D368.

1374 Tadi, M., Allaman, I., Lengacher, S., Grenningloh, G., and Magistretti, P.J. (2015). Learning-
1375 Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic
1376 Coupling in Long Term Memory. *PLoS One* 10, e0141568.

1377 Taubenfeld, S.M., Milekic, M.H., Monti, B., and Alberini, C.M. (2001). The consolidation of new
1378 but not reactivated memory requires hippocampal C/EBPbeta. *Nat Neurosci* 4, 813-818.

1379 Taus, T., Kocher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C., and Mechtler, K. (2011).
1380 Universal and Confident Phosphorylation Site Localization Using phosphoRS. *Journal of
1381 Proteome Research* 10, 5354-5362.

1382 Thingholm, T.E., Jorgensen, T.J., Jensen, O.N., and Larsen, M.R. (2006). Highly selective
1383 enrichment of phosphorylated peptides using titanium dioxide. *Nat Protoc* 1, 1929-1935.

1384 Thingholm, T.E., and Larsen, M.R. (2009). The use of titanium dioxide micro-columns to
1385 selectively isolate phosphopeptides from proteolytic digests. *Methods Mol Biol* 527, 57-66, xi.

1386 Thomas, G.M., and Huganir, R.L. (2004). MAPK cascade signalling and synaptic plasticity. *Nat
1387 Rev Neurosci* 5, 173-183.

1388 Thygesen, C., Boll, I., Finsen, B., Modzel, M., and Larsen, M.R. (2018). Characterizing disease-
1389 associated changes in post-translational modifications by mass spectrometry. *Expert Rev
1390 Proteomics* 15, 245-258.

1391 Thygesen, C., Larsen, M.R., and Finsen, B. (2019). Proteomic signatures of neuroinflammation
1392 in Alzheimer's disease, multiple sclerosis and ischemic stroke. *Expert Rev Proteomics* 16, 601-
1393 611.

1394 Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of
1395 consolidated memory in *Drosophila*. *Cell* 79, 35-47.

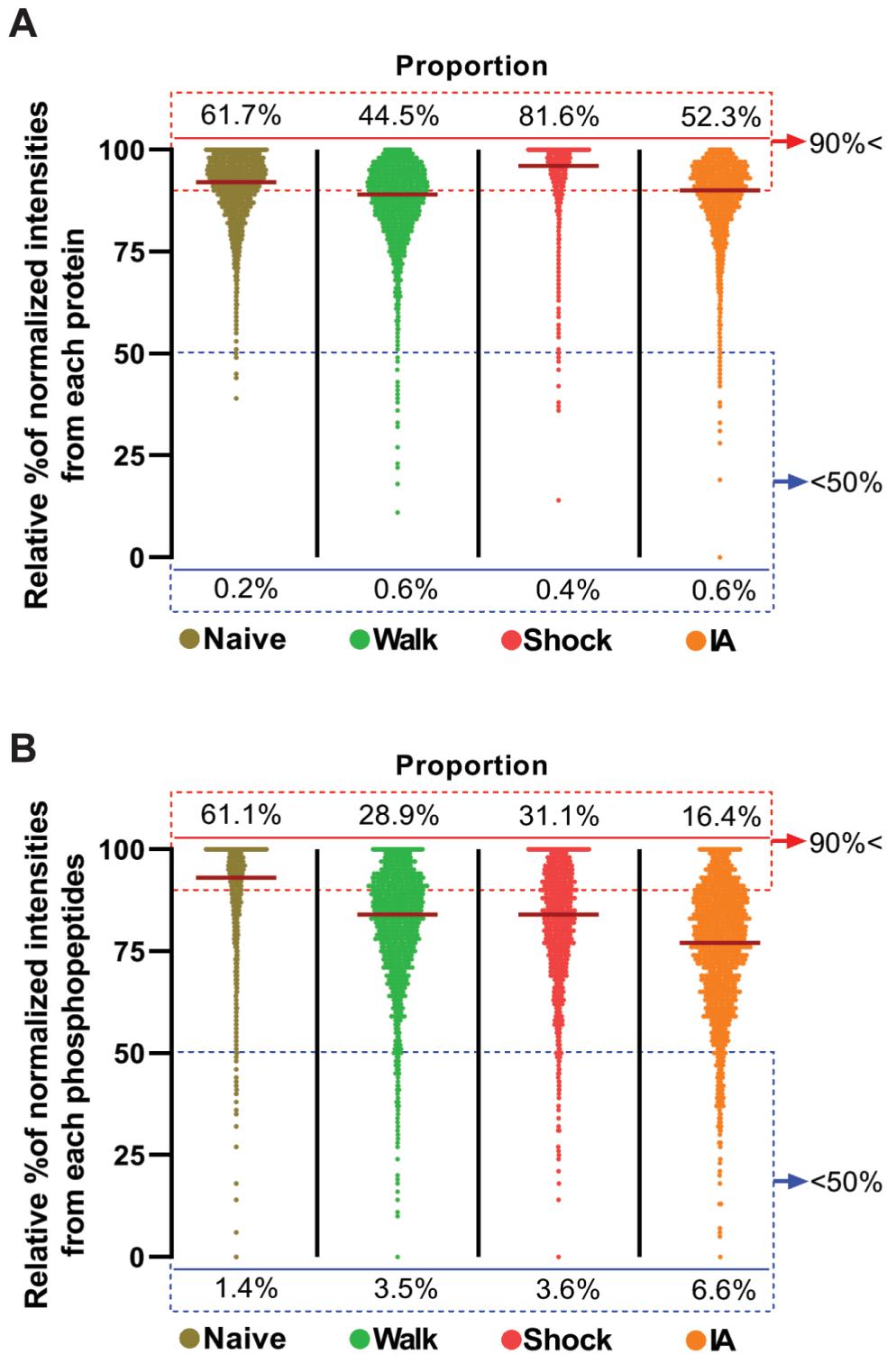
1396 Vianna, M.R., Szapiro, G., McGaugh, J.L., Medina, J.H., and Izquierdo, I. (2001). Retrieval of
1397 memory for fear-motivated training initiates extinction requiring protein synthesis in the rat
1398 hippocampus. *Proc Natl Acad Sci U S A* 98, 12251-12254.

1399 Villareal, G., Li, Q., Cai, D., and Glanzman, D.L. (2007). The role of rapid, local, postsynaptic
1400 protein synthesis in learning-related synaptic facilitation in aplysia. *Curr Biol* 17, 2073-2080.

1401 Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning induces long-term
1402 potentiation in the hippocampus. *Science* 313, 1093-1097.

1403 Woolfrey, K.M., and Dell'Acqua, M.L. (2015). Coordination of Protein Phosphorylation and
1404 Dephosphorylation in Synaptic Plasticity. *J Biol Chem* 290, 28604-28612.

1405 Xu, Y., Song, X., Wang, D., Wang, Y., Li, P., and Li, J. (2021). Proteomic insights into synaptic
1406 signaling in the brain: the past, present and future. *Mol Brain* 14, 37.

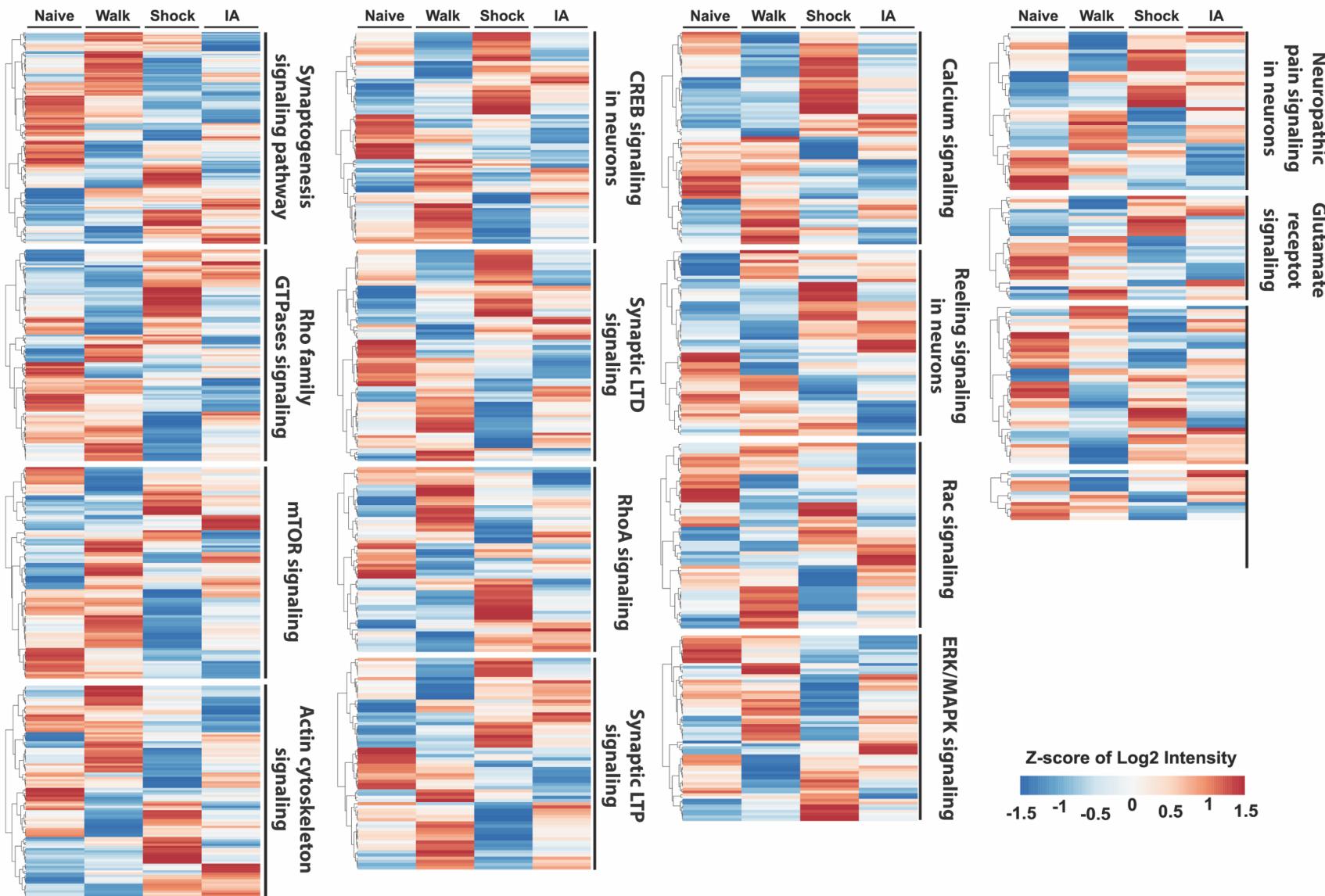

1407 Zalcman, G., Federman, N., Fiszbein, A., de la Fuente, V., Ameneiro, L., Schor, I., and
1408 Romano, A. (2018). Sustained CaMKII Delta Gene Expression Is Specifically Required for
1409 Long-Lasting Memories in Mice. *Mol Neurobiol*.

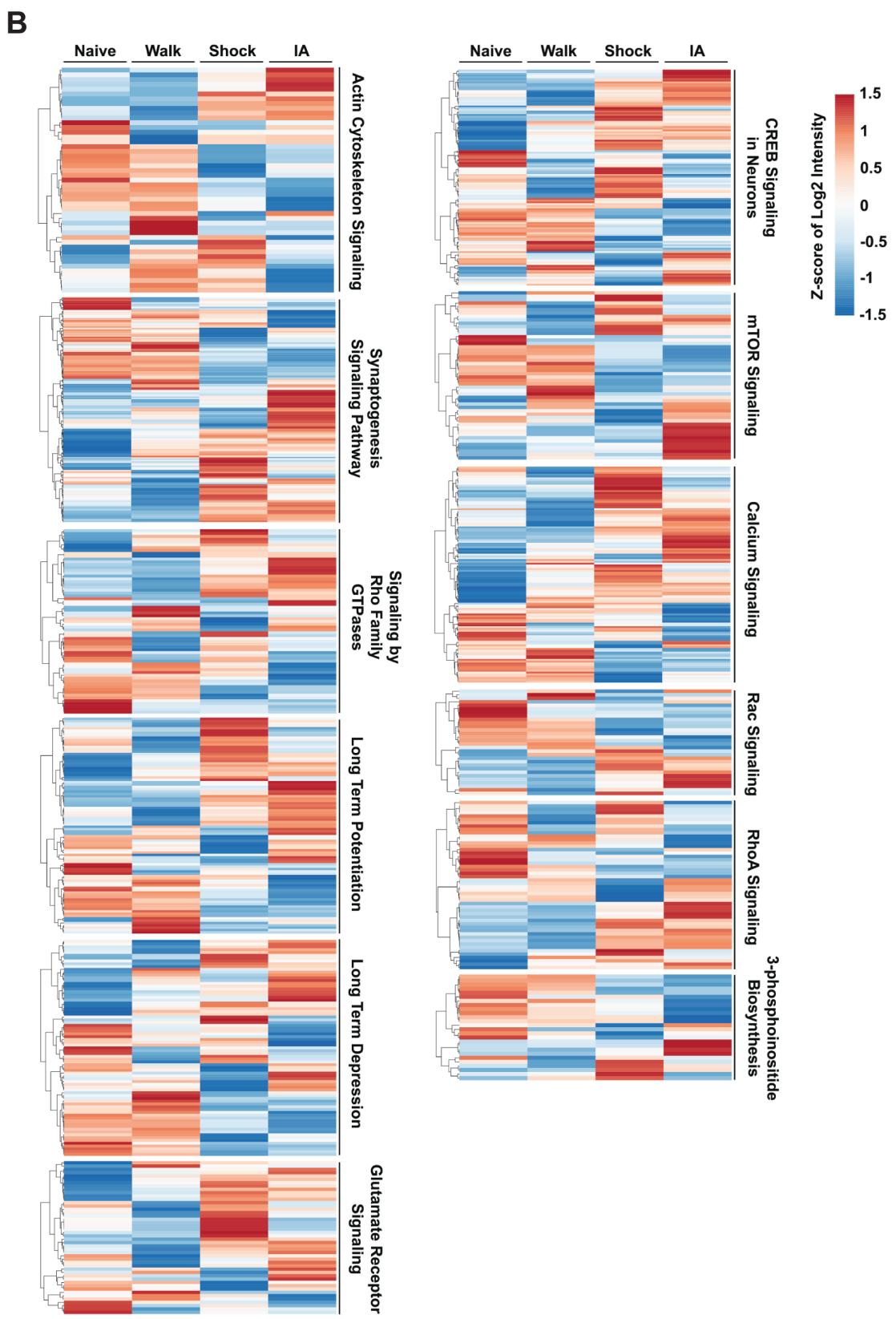
1410 Zhang, Y., Cudmore, R.H., Lin, D.T., Linden, D.J., and Huganir, R.L. (2015). Visualization of
1411 NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. *Nat Neurosci* 18, 402-407.

1412 Zhang, Y., Fukushima, H., and Kida, S. (2011). Induction and requirement of gene expression in
1413 the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory
1414 avoidance memory. *Mol Brain* 4, 4.

1415

Figure S1


Figure S1. Dynamic changes of the proportion of PSD proteins and phosphoproteins following IA-training and immediate shock. (Related to Figure 3B)


Violin plots showing relative percentile of normalized intensities of all identified and quantified (A) proteins and (B) phosphopeptides in the PSD. Y-axis represents proportions of relative (%) intensities

of proteins and phosphopeptides per group. Dark red lines inside of the violin plots indicate the median of the relative percentiles. The width of the plots represents the density of proteins and phosphopeptides. Percentile values in the box with red dashed line indicate the proportion values (%) of the proteins and phosphopeptides which have relative percentile of normalized intensities higher than 90%. Percentile values in the box with blue dashed line indicate the proportion values (%) of the proteins and phosphopeptides which have relative percentile of normalized intensities lower than 50%. This result demonstrates that the overall regulation of PSD proteome shows a more obvious decreasing pattern in phosphorylation levels (proportion above 90% intensities: Naïve > Shock > Walk > IA, proportion below 50% intensities: Naïve < Walk < Shock < IA) than non-modified protein levels following IA-training or immediate shock.

Figure S2

A

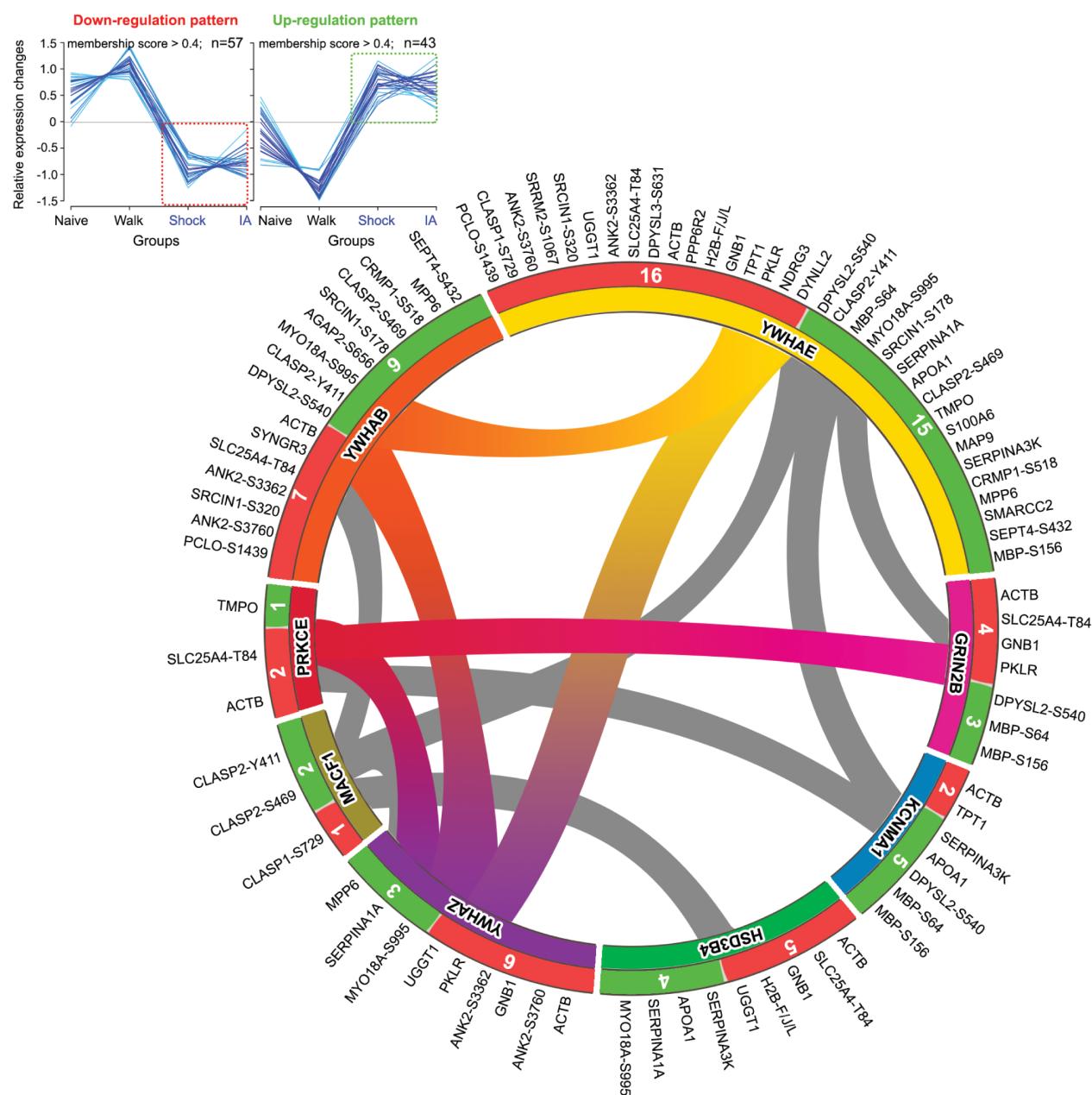


Figure S2. Experience-dependent regulation of PSD proteome and phosphoproteome and related signaling pathways. (Related to Figure 5)

(A) Heatmap ordered by hierarchical clustering shows the experience-dependent dynamic regulation of PSD proteins that are involved in the same signaling pathways (1% FDR). (B) Heatmap ordered by hierarchical clustering shows the experience-dependent dynamic regulation of PSD phosphoproteins that are involved in the same signaling pathways (1% FDR). Values for individual protein (row) from all groups (column) are color-coded based on the z-scores of Log₂ transformed intensity of proteins. These results indicate that proteins and/or phosphoproteins in the PSD that are involved in the same signaling pathways exhibit different roles following different types of experiences.

Figure S3

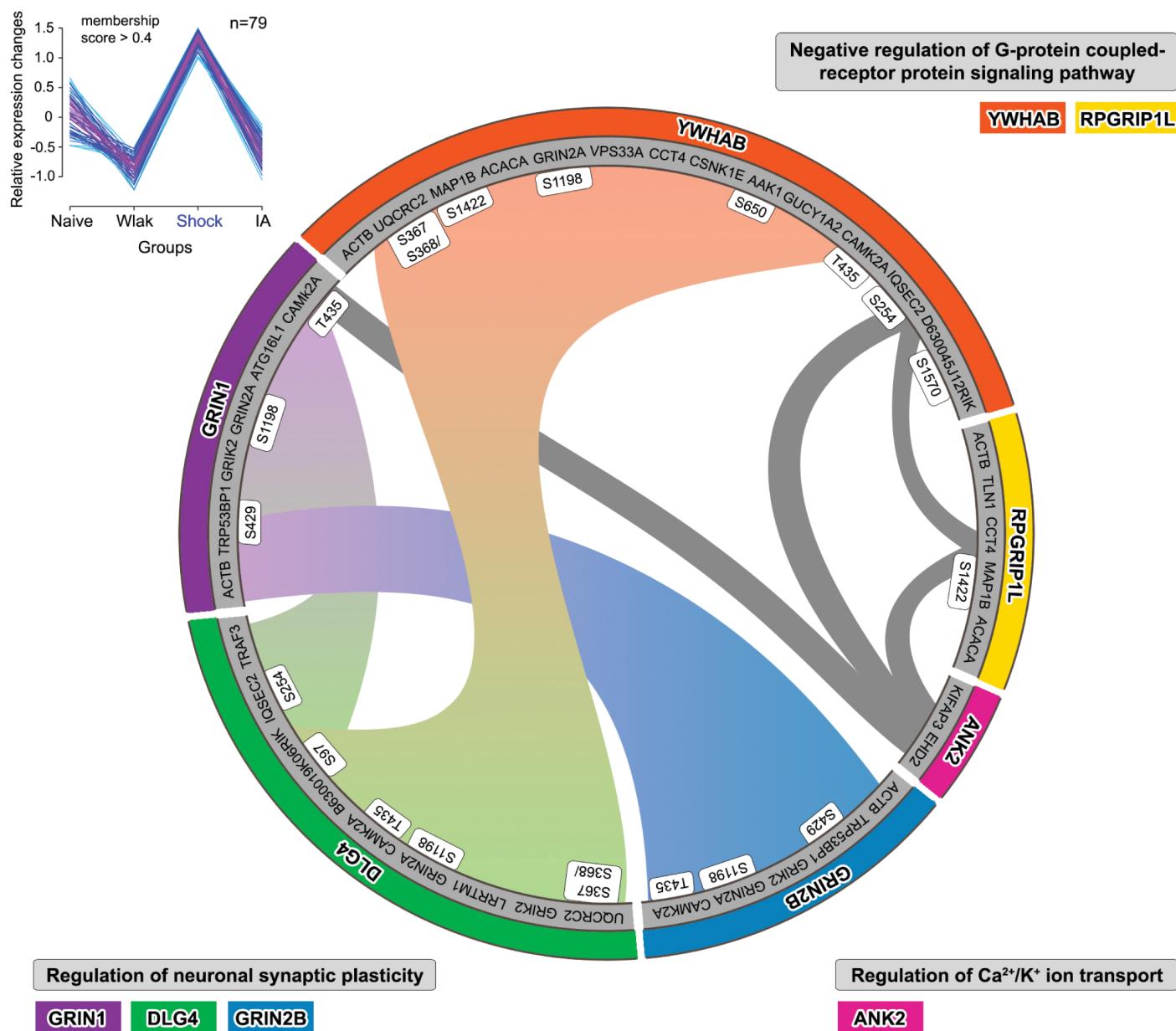


Figure S3. Protein interaction networks of the regulated PSD proteins and phosphoproteins by both IA-training and immediate shock. (Related to Figure 5)

Protein interaction map showing upstream proteins and their interacting proteins generated using combinatorial resources (IntAct, STRING, DAVID, Pubmed, and UniProt) and Fuzzy c-means clustering analysis, indicating significantly modulated proteins and phosphoproteins that show up- or down-regulation following both IA-training and immediate shock. Clustering analysis (membership > 0.4) showing up- ($n = 43$) or down-regulated ($n = 57$) proteins and phosphoproteins in both IA and Shock groups are shown in the upper left panel. The inner rim of the circular interactome map (CIM) represents

possible upstream modulators (*p*-value < 0.05) and the outer rim represents their interacting proteins. The red-colored outer rim (including the number of proteins and phosphoproteins assigned to the classified upstream proteins) of the CIM indicates the down-regulated upstream interacting proteins and phosphoproteins following both IA-training and immediate shock (down-regulation pattern; left). The green-colored outer rim (including the number of proteins and phosphoproteins assigned to the classified upstream proteins) of the CIM indicates the up-regulated upstream interacting proteins and phosphoproteins following both IA-training and immediate shock (up-regulation pattern; right). The *p*-values for individual upstream modulator are listed below: 14-3-3 protein beta, YWHAB (*p*-value: 0.00002); 14-3-3 protein epsilon, YWHAE (*p*-value: 0.001); GRIN2B (*p*-value: 0.002); calcium-activated potassium channel subunit alpha-1, KCNMA1 (*p*-value: 0.002); 3 beta-hydroxysteroid dehydrogenase type 4, HSD3B4 (*p*-value: 0.03); 14-3-3 protein zeta, YWHAZ (*p*-value: 0.04); microtubule-actin cross-linking factor 1, MACF1 (*p*-value: 0.05); protein kinase C epsilon type, PRKCE (*p*-value: 0.09).

Figure S4

Figure S4. Protein interaction networks of up-regulated proteins and phosphoproteins by immediate shock. (Related to Figure 5)

Protein interaction networks of upstream proteins and their interacting proteins associated with distinctively up-regulated proteins and phosphoproteins (with their relevant phosphosites) following immediate shock, generated using combinatorial resources (IntAct, STRING, DAVID, Pubmed, and UniProt) and Fuzzy c-means clustering analysis. Clustering analysis (membership > 0.4) showing up-regulated proteins and phosphoproteins (n = 79) in the Shock group is shown in the upper left panel. The inner rim of the CIM represents interacting proteins and outer rim represent upstream proteins. PSD proteins and phosphoproteins within this cluster reveal 6 regulated upstream proteins that belong

to 3 functional annotations (gray box outside of the CIM). The *p*-values for individual parent regulator are listed below: 14-3-3 protein beta, YWHAB (*p*-value: 0.0001); RPGR-interacting protein 1-like protein, RPGRIP1L (*p*-value: 0.07); ankyrin 2, ANK2 (*p*-value: 0.06); glutamate receptor NMDA2B, GRIN2B (*p*-value: 0.02); disks large homolog 4, Dlg4 (*p*-value: 0.002); glutamate receptor NMDA1, GRIN1 (*p*-value: 0.0006).

SUPPLEMENTAL TABLES:

Table S1 (separate file, related to Figure 2). List of PSD proteins and phosphoproteins (including phosphopeptides and phosphosites) that were identified and quantified from this study (identified and quantified from at least 2 out of 3 biological replicates).

PSD proteins and phosphoproteins (identified and quantified from at least 2 out of 3 biological replicates from this study) are listed. Sheet #1 shows description on columns of each table. Sheet #2 (Proteome) shows the list of PSD proteins and Sheet #3 (Phosphoproteome) shows the list of phosphoproteins including the information on phosphopeptides and phosphosites.

Table S2 (separate file, related to Figure 4B). List of proteins and phosphoproteins from mouse hippocampal PSD fractions distinctively regulated by IA-training (IA-unique) or immediate shock (Shock-unique).

Sheet #1 shows description on columns of each table. Sheet #2 (Proteome) and Sheet #3 (Phosphoproteome) show the list of hippocampal PSD proteins and phosphoproteins (including phosphopeptides and phosphosites information) distinctively regulated by IA training (Figure 4B left panel) or immediate shock (Figure 4B right panel).

Table S3 (separate file, related to Figure 4C). List of proteins and phosphoproteins from mouse hippocampal PSD fractions regulated same-directionally or bi-directionally by IA-training or immediate shock.

Sheet #1 shows description on columns of each table. Sheet #2 and #4 (#2: PROT_same-directional, #4: PHOS_same-directional, related to Figure 4C left panel) show the list of hippocampal PSD proteins and phosphoproteins (including phosphopeptides and phosphosites information) that were same-directionally regulated by IA-training or immediate shock. Sheet #3 and #5 (#3: PROT_bi-directional, #4: PHOS_bi-directional, related to Figure 4C right panel) show the list of PSD proteins and phosphoproteins (including phosphopeptides and phosphosites information) that were bi-directionally regulated by IA-training or immediate shock.

Table S4 (separate file, related to Figure S2). List of regulated proteins and phosphoproteins from mouse hippocampal PSD fractions involved in distinct signaling pathways shown in Figure S2.

Sheet #1 shows description on columns of each table. Sheet #2 and #3 (#2: PROT_Shock-induced, #3: PROT_IA-induced, related to Figure S2A) show the list of hippocampal PSD proteins that were regulated by immediate shock and IA-training. Sheet #4 and #5 (#4: PHOS_Shock-induced, #5: PHOS_IA-induced, related to Figure S2B) show the list of hippocampal PSD phosphoproteins that were regulated by IA-training and immediate shock.