

1 For submission to PLOS Neglected Tropical Diseases (Oct 2021)

2

3 AT-752, a double prodrug of a guanosine nucleotide analog, inhibits yellow fever
4 virus in a hamster model

5

6 Kai Lin^{1*}, Steven S. Good¹, Justin G. Julander², Abbie Weight², Adel Moussa¹, Jean-Pierre
7 Sommadossi¹

8

9

10 ¹Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America

11 ²Institute for Antiviral Research, Utah State University, Logan, Utah, USA

12

13 *Corresponding author

14 Email: lin.kai@ateapharma.com (KL)

15

16

17 Running title: AT-752 inhibits yellow fever virus

18 Keywords: AT-752, yellow fever virus, flavivirus, hamster, antiviral

19

20

21 **Abstract**

22 Yellow fever virus (YFV) is a zoonotic pathogen re-emerging in parts of the world, causing a viral
23 hemorrhagic fever associated with high mortality rates. While an effective vaccine is available,
24 having an effective antiviral against YFV is critical against unexpected outbreaks, or when
25 vaccination is not recommended. We have previously identified AT-281, the free base of AT-752,
26 an orally available double prodrug of a guanosine nucleotide analog, as a potent inhibitor of YFV
27 *in vitro*, with a 50% effective concentration (EC₅₀) of 0.31 μ M. In hamsters infected with YFV
28 (Jimenez strain), viremia rose about 4 log₁₀-fold and serum alanine aminotransferase (ALT) 2-fold
29 compared to sham-infected animals. Treatment with 1000 mg/kg AT-752 for 7 days, initiated 4 h
30 prior to viral challenge, reduced viremia to below the limit of detection by day 4 post infection (pi)
31 and returned ALT to normal levels by day 6 pi. When treatment with AT-752 was initiated 2 days
32 pi, the virus titer and ALT dropped >2 log₁₀ and 53% by day 4 and 6 pi, respectively. In addition,
33 at 21 days pi, 70 – 100% of the infected animals in the treatment groups survived compared to 0%
34 of the untreated group ($p < 0.001$). Moreover, *in vivo* formation of the active triphosphate metabolite
35 AT-9010 was measured in the animal tissues, with the highest concentrations in liver and kidney,
36 organs that are vulnerable to the virus. The demonstrated *in vivo* activity of AT-752 suggests that
37 it is a promising compound for clinical development in the treatment of YFV infection.

38

39 **Author summary**

40 Yellow fever virus (YFV) is transmitted by mosquitoes, and its infection can lead to a lethal viral
41 hemorrhagic fever associated with liver damage. While an effective vaccine is available, in places
42 where the vaccination rate is low, in the event of an unexpected outbreak, or where vaccination is

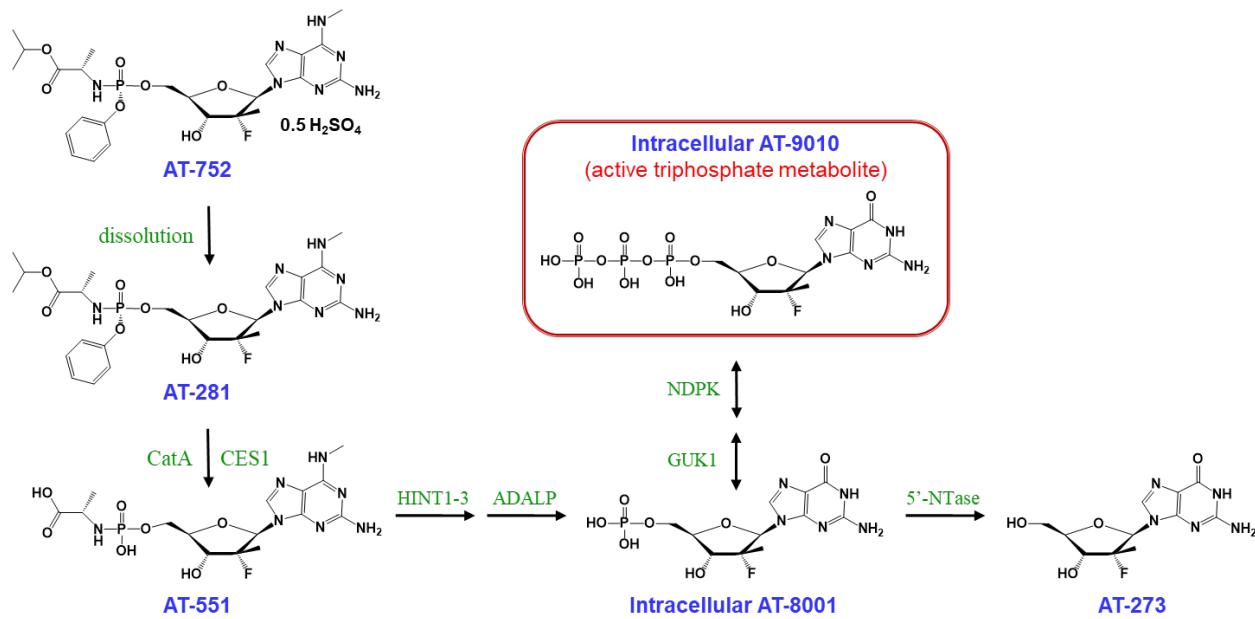
43 not recommended individually, having an effective antiviral treatment is critical. We previously
44 reported that the nucleotide analog prodrug AT-752 potently inhibited the YFV in cultured cells.
45 Here we showed that in hamsters infected with YFV, oral treatment with 1000 mg/kg AT-752 for
46 7 days reduced the production of infectious virus particles in the blood, and decreased serum
47 alanine aminotransferase, a marker of liver damage, to levels measured in uninfected animals. In
48 addition, at 21 days after infection, 70 – 100% of the infected animals in the treatment groups
49 survived compared to 0% in the untreated group. Moreover, the amount of the active metabolite
50 formed from AT-752 was highest in the livers and kidneys of the treated animals, organs that are
51 targeted by the virus. These results suggest that AT-752 is a promising compound to develop for
52 the treatment of YFV infection.

53

54 **Introduction**

55 Yellow fever virus (YFV) is one of the single-stranded, positive-sense RNA viruses of the
56 Flaviviridae family. According to the World Health Organization (WHO), yellow fever is endemic
57 in forty-seven countries in Africa and Central and South America, and half of the patients that
58 develop severe symptoms from this mosquito-borne virus die within 7 – 10 days [1]. Infection
59 from YFV is difficult to diagnose, but in severe cases, it affects the kidneys and liver, causing
60 jaundice with the latter, hence the name “yellow fever”. Although there is an effective vaccine, it
61 is not recommended for pregnant and lactating women, immune-compromised individuals nor
62 those older than 60 years [2, 3], so there is a real need for an effective antiviral treatment.
63 Moreover, this deadly virus is a threat in regions where the vaccine is under-utilized, resulting in
64 unanticipated cases from outbreaks or emergence in areas that have previously not been affected

65 by the virus, as observed by the recent large outbreaks and YFV emergence in Brazil and several
66 African countries [4, 5] that have caused significant morbidity and mortality.


67 Currently, there are no approved antiviral therapies for the treatment of yellow fever. Drugs
68 such as interferon [6] and ivermectin [7] are no longer being pursued, however, sofosbuvir [2, 8]
69 is being examined for the purpose of treating this malady until better options become available.

70 There have been many attempts by other investigators to develop direct-acting antiviral (DAA)
71 medications against yellow fever, from a benzodiazepine compound that targets the nonstructural
72 protein (NS) 4B which is thought to anchor the viral replication complex [9] to nucleoside analogs
73 that were effective in animal models [10, 11], but no compound has successfully demonstrated
74 efficacy in human testing. Nucleoside analogs are promising potential drugs for DAA development
75 because they target the highly conserved NS5 protein and have shown potent antiviral activity
76 against YFV *in vitro* [3]. Flavivirus NS5 proteins have two functional domains, an N-terminal
77 methyltransferase (MTase) domain and a C-terminal RNA-dependent RNA polymerase (RdRp)
78 domain, which play essential roles in viral RNA replication, transcription and capping, so
79 disrupting the activity of YFV NS5 would inhibit viral replication [4].

80 We have developed a 2'-fluoro-2'-C-methyl guanosine nucleotide prodrug AT-752, and
81 we have reported that its free base AT-281 has potent *in vitro* antiviral activity against YFV and
82 several other flaviviruses [12]. Against YFV, the effective concentration of AT-281, the free base
83 of the salt form AT-752, required to achieve 50% inhibition (EC₅₀) of the virus-induced cytopathic
84 effect (CPE) was 0.31 μ M, with an EC₉₀ of 0.26 μ M in reducing viral yield. In addition, this
85 nucleotide analog functions by having the active intracellular triphosphate metabolite AT-9010
86 (see putative pathway, Fig 1) inhibit NS5, causing termination of viral RNA synthesis [12]. We
87 now show the efficacy of AT-752 against YFV in a hamster model.

88 **Fig 1. AT-752 and its putative metabolic pathway to the pharmacologically active metabolite**

89 **AT-9010.** The metabolite AT-273 is a plasma surrogate for AT-9010.

91

92 **Methods**

93 **Cells, viruses and test compounds**

94 Vero 76 cells (American Type Culture Collection, Manassas, VA) used to verify viral titers were
95 maintained in Dulbecco's Modified Eagle medium (DMEM) supplemented with 10% fetal bovine
96 serum (FBS) and 100 µg/mL penicillin and 100 µg/mL streptomycin (Lonza, Walkersville, MD)
97 at 37°C in an atmosphere of 5% CO₂ and ≥95% humidity. The yellow fever virus (YFV Jimenez
98 hamster-adapted strain) was obtained as a generous gift from R. B. Tesh (University of Texas
99 Medical Branch, Galveston, TX) and stock was prepared by a further passage in hamsters (USU
100 V#2653). AT-752, its free base AT-281, and metabolites AT-551 and AT-273 were prepared for
101 Atea Pharmaceuticals by Topharman Shanghai Co., Ltd., Shanghai, China. AT-9010 and the

102 triphosphate internal standards used to quantify AT-9010 were synthesized by NuBlocks
103 (Oceanside, CA). Stock solutions were prepared in DMSO and stored at -20°C.

104 **Animal welfare**

105 The two animal studies described herein were conducted in AAALAC-accredited Laboratory
106 Animal Research Centers which strictly comply with the USDA Animal Welfare Act and follow
107 the PHS and NIH Policy of Humane Care and Use of Laboratory Animals, and the Guide for the
108 Care and Use of Laboratory Animals, National Research Council – ILAR, Revised 2011. The
109 study where hamsters were infected with YFV was conducted at Utah State University (USU,
110 Logan, UT) in full compliance with protocols that were reviewed and approved by USU
111 Institutional Animal Care and Use Committee (IACUC) prior to study initiation (IACUC number
112 #10010), and hamsters were assessed and monitored throughout the study by members of the USU
113 veterinary staff in accordance with AAALAC. The pharmacokinetic study was conducted in full
114 compliance with the approved protocol at WuXi AppTec (Shanghai, China).

115 **Pharmacokinetics (PK) and tissue distribution of AT-752 in hamsters**

116 Fifteen male Syrian golden hamsters (Beijing VITAL RIVER Laboratory Animals Co. Ltd.,
117 China) were set in 5 groups of 3 hamsters each and administered a dose of AT-752 at 500 mg/kg
118 in 40% PEG400, 10% solutol HS15, 50% 100 mM citrate buffer, pH 4.5 (v/v) by oral gavage.
119 Blood samples were collected from animals at 2 (group 1), 4 (group 2), 8 (group 3) and 12 h (group
120 4) post-dose. Serial blood samples were collected from animals in Group 5 at 0.5, 1, 2, 4, 8, 12
121 and 24 h post dose. For all samples, plasma was separated in EDTA and 5 µL dichlorvos (2 mg/mL;
122 stabilizing agent to prevent *in vitro* hydrolysis of the ester moiety of AT-281 by blood esterases)
123 and stored at -60°C. Concentrations of AT-281, and metabolites AT-551 and AT-273 were
124 determined in the plasma by LC/MS/MS.

125 After the blood collection at each terminal timepoint, the animals were anesthetized via
126 isoflurane. Liver, kidney, lung and brain were removed immediately, wrapped quickly with
127 aluminum foil, and dropped into liquid nitrogen within 20 seconds. Once frozen, tissue samples
128 were placed in a pre-labeled bag, and stored at -60°C until further processing, at which point, they
129 were weighed and homogenized using a Bead beater in 5 volumes ice-cold homogenization buffer
130 containing 70% methanol, 30% 268 mM K₂EDTA (final pH 7.8), and internal standards. All
131 homogenates were stored at -80°C until analyzed for concentrations of AT-281, and metabolites,
132 AT-551, AT-273 and AT-9010 using LC/MS/MS.

133 **LC-MS/MS analysis of AT-281, AT-551, AT-273 and AT-9010.** Plasma samples
134 were prepared for MS analysis by adding internal standards and extracting with 20 volumes chilled
135 MeOH/ACN (75:25, v/v). After vortex mixing (800 rpm for 10 min) and centrifugation (3220 g,
136 15 min, 4°C), the supernatants (25 µL) were diluted with an equal volume of H₂O, mixed and spun
137 again. For the tissue homogenates, after adding internal standards, 40 µL was mixed by vortex
138 with 400 µL MeOH/ACN (75:25, v/v), and centrifuged (3220 g, 15 min, 4°C). Aliquots of the
139 supernatants (25 µL) were diluted with an equal volume of H₂O, mixed and spun again. To
140 measure AT-281 and plasma metabolites AT-551 and AT-273, 4 µL samples were injected onto
141 an Acquity Gemini C18 (50 x 4.6 mm), 5 µm UPLC column with a Sciex Triple Quad 6500 mass
142 spectrometer (ESI positive ion, MRM mode). A binary nonlinear gradient with mobile phases A
143 (0.1% formic acid in water) and B (0.1% formic acid in ACN) were used to elute samples at 0.8
144 mL/min, with a run time of 5 min. For AT-9010, 40 µL of 20 mM NH₄OAC buffer (pH 8.4) was
145 added to the homogenate (40 µL) along with internal standards, and samples were lysed with 160
146 µL MeOH and 40 mM dibutylammonium acetate (DBAA), mixed by vortex and centrifuged (3220
147 g, 15 min, 4°C). Aliquots of the supernatants (35 µL) were dried under nitrogen and reconstituted

148 in H₂O, then mixed and spun again before injecting 15 µL onto an Acquity BEH C18 (50 x 2.1
149 mm), 1.7 µm UPLC column with an API 14000 mass spectrometer (ESI negative ion, MRM
150 mode). A binary nonlinear gradient with mobile phases A (0.001% NH₃·H₂O, 0.18 mM DBAA in
151 H₂O) and B (10 mM N, N-dimethyl-hexylamine, 3 mM NH₄OAc in ACN/H₂O (50:50, v/v)) were
152 used to elute samples at 0.5 mL/min, with a run time of 3 min. Standards in 50% MeOH were
153 used for calibration. Ions monitored were m/z 538.2/158.8 (AT-9010), 582.3/330.1 (AT-281),
154 464.2/165.1 (AT-551) and 300.1/152.1 (AT-273). Internal standards (ISS) as described previously
155 [13] were used to correct for variations in recovery.

156 **PK Data Analysis.** Plasma and tissue concentrations of AT-281, AT-551 and AT-273 were
157 subjected to non-compartmental pharmacokinetic analysis using Phoenix WinNonlin software
158 (version 6.3, Pharsight, Mountain View, CA). The linear/log trapezoidal rule was applied in
159 obtaining the PK parameters.

160 **AT-752 treatment against YFV in a hamster model**

161 Eighty female Syrian golden hamsters (LVG/Lak strain, Charles River), 90 – 110 g body weight,
162 were divided into nine groups as shown in Table 1. On Day 0, all the treatment animals (Groups 1
163 – 6) were inoculated with YFV, 200 CCID₅₀ per hamster in 0.1 mL volume via bilateral
164 intraperitoneal injection. This dose was approximately 6x the LD₅₀ in hamsters. Group 1 – 4
165 animals received vehicle [(PEG400 (40%, v/v)/ Solutol HS15 (10%, v/v)/100 mM Citrate buffer
166 pH 4.5 (50%, v/v)], 1000, 300 and 100 mg/kg of AT-752 respectively, by oral gavage twice daily
167 (BID) for 7 consecutive days starting 4 h prior to challenge. Group 5 received an oral dose of 1000
168 mg/kg AT-752 two days post challenge (pi), BID for 7 consecutive days while Group 6 were
169 administered 50 mg/kg ribavirin (RIBA), 4 h prior to challenge by intraperitoneal injection, BID
170 for 7 consecutive days. Two control groups were sham infected 4 h after being given 1000 mg/kg

171 AT-752 or vehicle orally, followed by BID dosing for 7 consecutive days. The final control group
172 did not receive virus or treatment. The hamsters were monitored for 21 and 18 days post virus
173 challenge for survival and weight change, respectively. Blood samples were taken ante mortem
174 via ocular sinus bleed on Day 4 pi for quantification of virus by infectious cell culture assay to
175 determine the 50% cell culture infectious dose (CCID₅₀) and on Day 6 pi to measure alanine
176 aminotransferase (ALT).

177

178 **Table 1. Treatment groups for the hamster study**

Test compound	n/group	Dose (mg/kg/d)	Treatment Schedule	Virus
AT-752	10	1,000	0.5 mL, p.o., bid X 7 d beg. -4 h	YFV
AT-752	10	300	0.5 mL, p.o., bid X 7 d beg. -4 h	YFV
AT-752	10	100	0.5 mL, p.o., bid X 7 d beg. -4 h	YFV
AT-752	10	1,000	0.5 mL, p.o., bid X 7 d beg. 2d pi	YFV
Ribavirin	10	50	0.5 mL, i.p., bid X 7 d beg. -4 h	YFV
Vehicle	15	--	0.5 mL, p.o. bid X 7 d beg. -4 h	YFV
AT-752	5	1,000	0.5 mL, p.o., bid X 7 d beg. -4h	Sham
Vehicle	5	--	0.5 mL, p.o., bid X 7 d beg. -4 h	Sham
Control	5	--	--	NA

179 Syrian golden hamsters were administered AT-752 (100 mg/mL) or vehicle orally, or ribavirin
180 (RIBA) by intraperitoneal injection, BID for 7 d, beginning 4 h prior or 2 d post infection with
181 YFV (200 CCID₅₀ per animal). Three control groups (sham infected or no treatment) were included
182 in the study.

183

184 **Infectious cell culture assay.** Virus titer was quantified using an infectious cell culture assay
185 where a specific volume of serum was added to the first tube of a series of dilution tubes. Serial
186 dilutions were made and added to Vero cells. Ten days later cytopathic effect (CPE) was used to
187 identify the end-point of infection. Four replicates were used to calculate the 50% cell culture
188 infectious doses (CCID₅₀) per mL of plasma [10].

189 **Serum alanine aminotransferase assay.** Blood samples taken via ocular sinus bleed on
190 Day 6 pi were centrifuged and serum collected. Alanine aminotransferase (ALT) was then
191 measured using the ALT reagent from Teco Diagnostics (Anaheim, CA) in a protocol modified
192 for 96-well plates. Briefly, 50 μ l aminotransferase substrate was placed in each well of a 96-well
193 plate, and 15 μ l of sample was added at timed intervals. The samples were incubated at 37°C, after
194 which 50 μ l color reagent was added to each sample and incubated for 10 min as above. A volume
195 of 200 μ l of color developer was next added to each well and incubated for 5 min. The plate was
196 then read on a spectrophotometer, and ALT concentrations were determined per manufacturer's
197 instructions.

198 **Statistical analysis.** Survival data were analyzed using the Wilcoxon log-rank survival
199 analysis and all other statistical analyses were done using one-way ANOVA and a Dunnett
200 multiple comparison (Prism 5, GraphPad Software, Inc).

201

202 **Results**

203 **AT-752 has favorable pharmacokinetics in hamsters.**

204 The plasma pharmacokinetics (PK) and tissue distribution of AT-281 and its metabolites AT-551,
205 the intermediate prodrug, and AT-273, the plasma surrogate for intracellular levels of the active

206 triphosphate metabolite AT-9010, were determined in male Syrian golden hamsters after a single
207 oral dose of AT-752 at 500 mg/kg (Table 2, Fig 2 and 3). In hamsters as in other rodents tested,
208 the parent prodrug AT-281 was quickly absorbed and metabolized with the rapid appearance of its
209 intermediate metabolite AT-551 in plasma, C_{max} 52.4 ± 23.5 nmol/mL at 0.5 h (Table 2). The
210 prodrug was converted to AT-551 and AT-273, with plasma PK comparable to previously reported
211 results of its congener AT-511 [13]. The plasma concentrations at 12 h post dose (or C_{trough} , given
212 that the dosing for the efficacy study was twice a day (BID) were 0.006 ± 0.002 nmol/mL for AT-
213 281, 3.4 ± 1.7 nmol/mL for AT-551, and 0.6 ± 0.1 nmol/mL for AT-273. Concentrations of these
214 three metabolites were also measured in the tissues collected – brain, lung, liver and kidney – up
215 to 24 h post dose (Fig 2 and 3), although no AT-281 was detected in the lung and brain.

216 Liver and kidney tissue, which are most vulnerable in YFV infection, had the highest
217 concentrations of AT-281 and its metabolites. In addition, concentrations of the active triphosphate
218 AT-9010 were measured in lung, liver and kidney tissues, indicating *in vivo* formation of the
219 intracellular metabolite (Fig 2 and 3), with mean residence times (MRT_{0-last}) between 7 and 11 h
220 (Table 2). There was no AT-9010 detected in the brain samples but given the low levels of the
221 other metabolites measured in that tissue (Fig 2), it is likely that the prodrug does not easily cross
222 the blood-brain barrier.

223

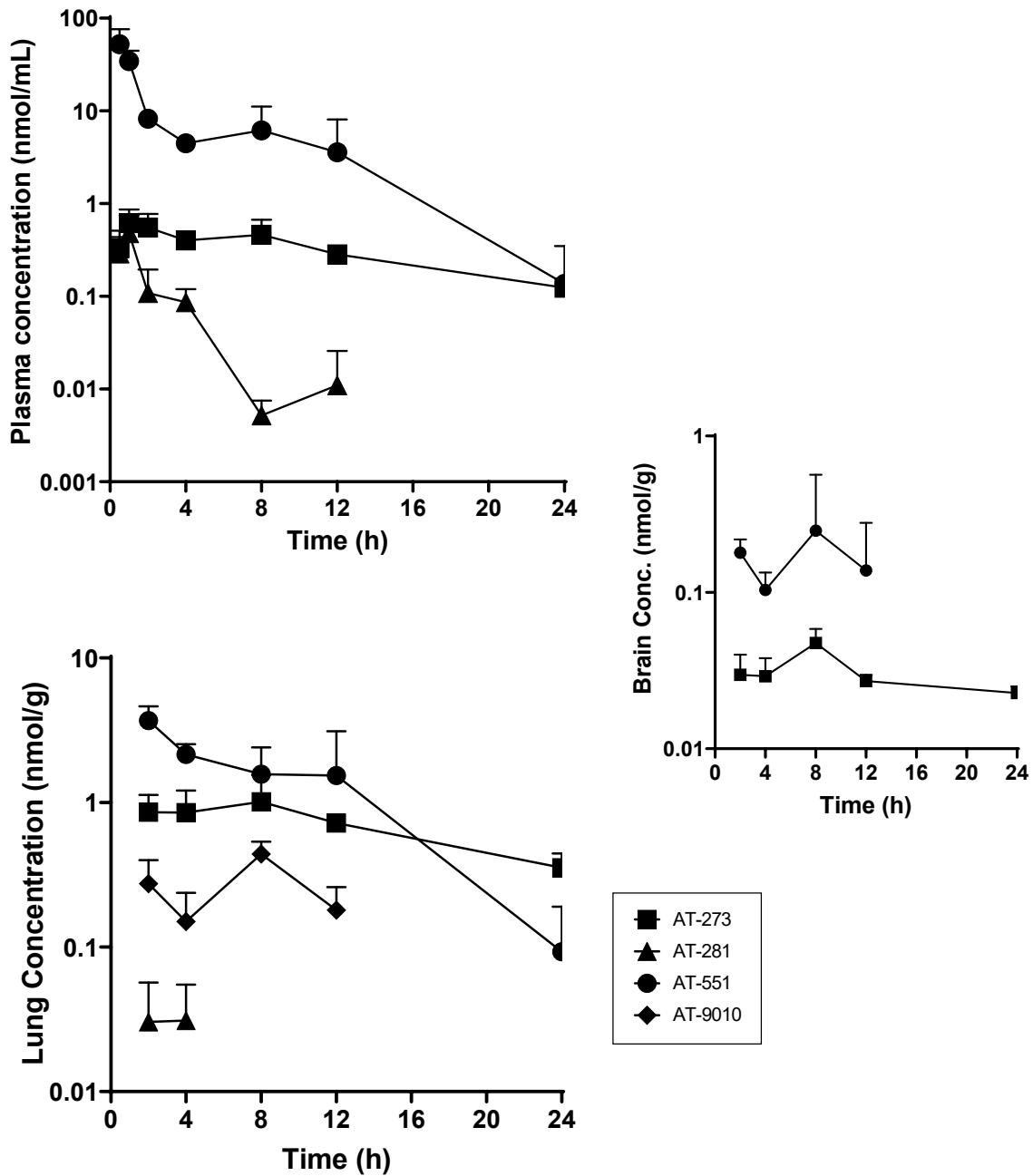
224 **Table 2. Pharmacokinetic parameters in male Syrian golden hamsters following oral**
225 **administration of 500 mg/kg AT-752**

Metabolite	Tissue	C_{max}^a (nmol/g)	T_{max}^b (h)	$AUC_{0-last}^{c\#}$ (nmol*h/g)	$MRT_{0-last}^{d\#}$ (h)
	Plasma*	0.6 ± 0.2	2.0 ± 1.7	1.7 ± 0.5	3.4 ± 1.0
	Brain	nd	nd	nd	nd

AT-281	Kidney	0.5 ± 0.3	2.0	2.2	4.2
	Liver	2.3 ± 1.8	2.0	7.8	4.5
	Lung	nd	nd	nd	nd
AT-551	Plasma*	52.4 ± 23.5	0.5 ± 0.0	113.9 ± 22.1	4.6 ± 1.5
	Brain	0.3 ± 0.3	8.0	1.9	6.9
	Kidney	16.1 ± 2.8	2.0	180.0	8.5
AT-273	Liver	74.6 ± 45.1	2.0	285.2	5.8
	Lung	3.7 ± 0.9	2.0	29.2	7.7
	Plasma*	0.9 ± 0.1	5.7 ± 4.0	10.8 ± 1.6	9.8 ± 1.1
AT-9010	Brain	0.1 ± 0.0	8.0	0.7	11.6
	Kidney	7.6 ± 1.8	8.0	129.5	11.6
	Liver	4.1 ± 0.8	2.0	38.1	8.3
AT-9010	Lung	1.0 ± 0.5	8.0	15.9	10.7
	Brain	nd	nd	nd	nd
	Kidney	2.0 ± 0.6	8.0	26.8	11.0
AT-9010	Liver	0.6 ± 0.2	8.0	4.9	6.7
	Lung	0.4 ± 0.1	8.0	3.0	7.0

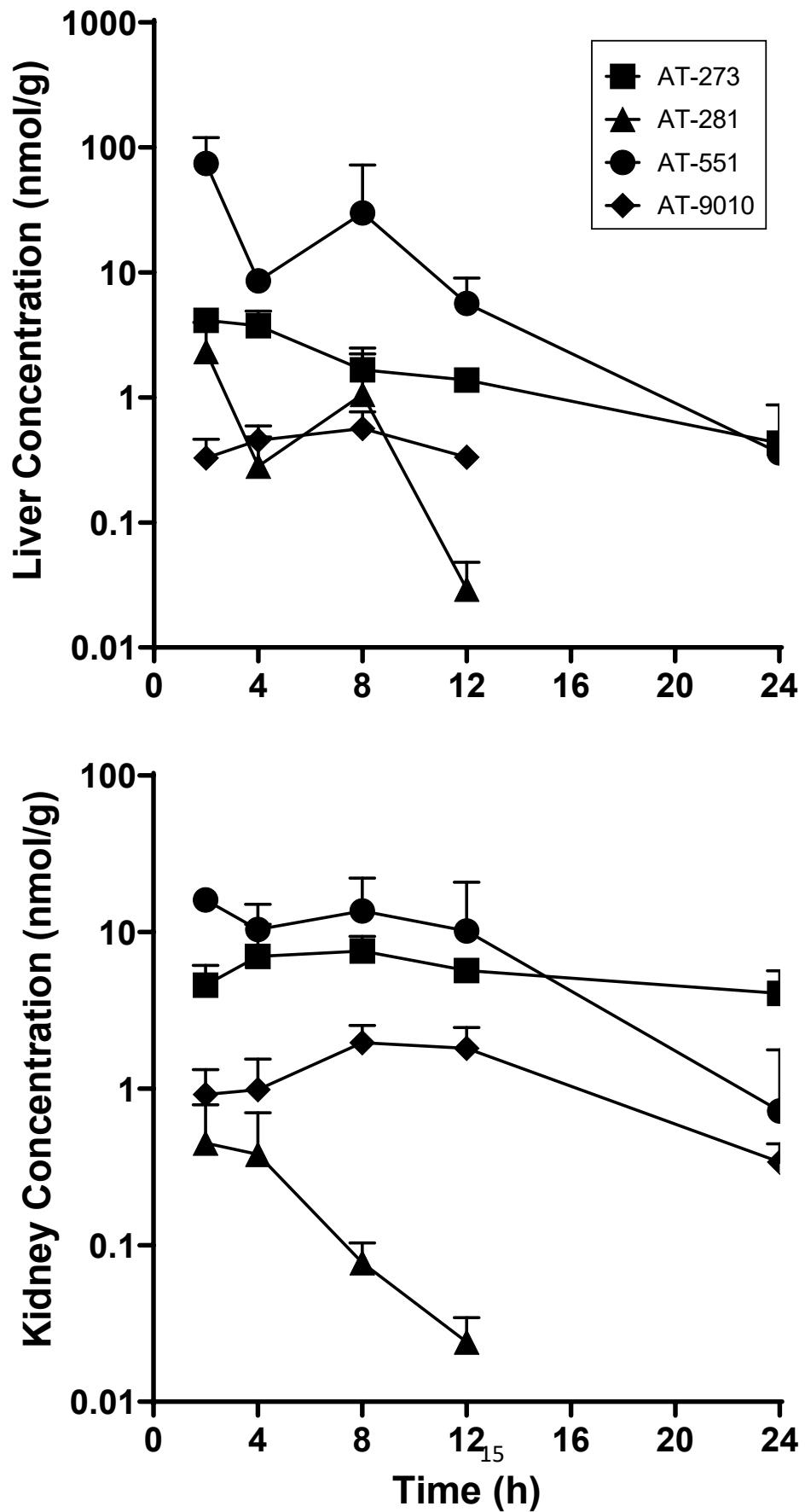
226 Plasma was separated from blood samples collected at 0.5, 1, 2, 4, 8, 12 and 24 h post dose. Tissue
 227 samples were collected from 2 – 24 h post dose. Concentrations of the free base AT-281 and its
 228 metabolites (see Fig 1 for the putative pathway) were measured by LC-MS/MS as described in the
 229 Methods, and mean pharmacokinetic parameters reported (n=3). *Plasma data expressed per mL.

230 ^a C_{max} = Maximum concentration across the time points measured


231 ^b T_{max} = Time at which C_{max} was observed

232 ^cAUC_{0-last} = Area under the curve, from 0 h to the last quantifiable concentration

233 ^dMRT_{0-last} = Mean residence time, from 0 h to the last quantifiable concentration


234 [#]Since a composite of each single mean value is used to construct the concentration time-curve
235 for the tissue samples, no SD values were available for T_{max} , $AUC_{0\text{-last}}$ and $MRT_{0\text{-last}}$.
236 nd = not determined because concentration was below the limit of quantitation

237

238

239 **Fig 2. Profile of AT-281 and its metabolites in plasma, lung and brain tissue after a single**
240 **oral dose of AT-752.** Syrian golden male hamsters were administered 500 mg/kg AT-752.
241 Samples were collected up to 24 h post dose and analyzed for AT-281 and its metabolites by LC-
242 MS/MS. Data are expressed as mean \pm SD (n= 3 per time point).

244 **Fig 3. Profile of AT-281 and its metabolites in liver and kidney tissue after a single oral dose**

245 **of AT-752.** Syrian golden male hamsters were administered 500 mg/kg AT-752. Tissue samples

246 were collected up to 24 h post dose and analyzed for AT-281 and its metabolites by LC-MS/MS.

247 Data are expressed as mean \pm SD (n= 3 per time point).

248

249 **AT-752 reduces viremia and improves disease outcomes of YFV-**

250 **infected hamsters**

251 To test the efficacy of AT-752 against YFV infection, Syrian golden hamsters were inoculated

252 with a Jimenez hamster-adapted strain, and the prodrug was first administered orally (100, 300 or

253 1000 mg/kg) 4 h prior to viral challenge, and afterwards as BID doses for 7 consecutive days,

254 beginning 1 h post infection (pi). There was a significant improvement in the survival of the YFV-

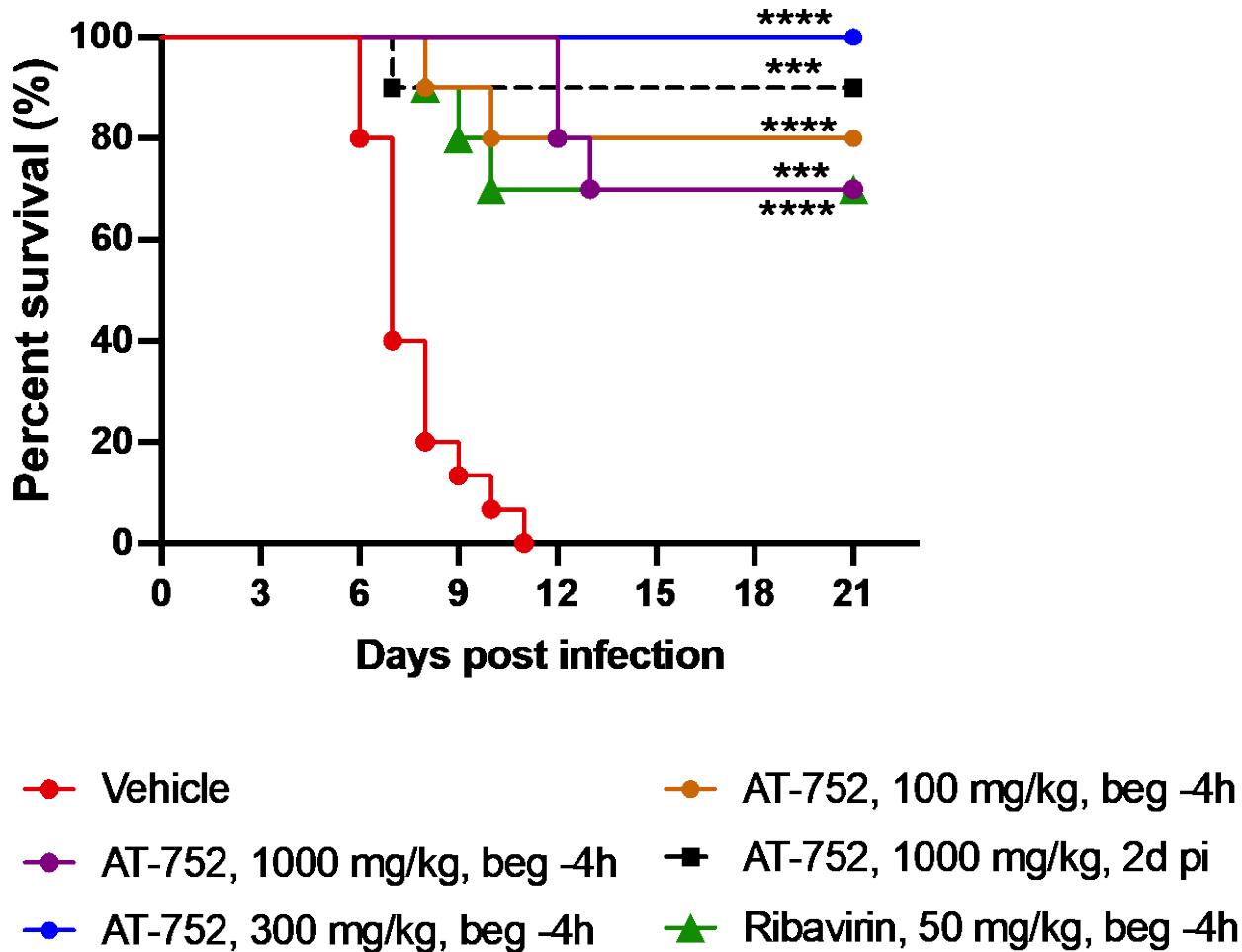
255 infected hamsters treated with all doses of AT-752, as compared with the vehicle-treated group

256 (p<0.001; Fig 4 and Table 3). Some mortality was observed in the 1000 and 100 mg/kg treatment

257 groups, while 100% of the 300 mg/kg group survived to the end of the study (Fig 4 and Table 3).

258 Treatment with 1000 mg/kg AT-752 initiated 2 d pi gave comparable survival results to those

259 given the prodrug beginning 4 h prior to the viral challenge, or 50 mg/kg ribavirin (RIBA) which


260 was used as a positive control. A 100% mortality rate (n=15/15) was observed in untreated

261 hamsters infected with YFV, with deaths occurring on Day 6 to 11 pi (Fig 4), resulting in a mean

262 day-to-death of 7.6 ± 1.5 . This mortality rate was higher than is typically observed in this model

263 [14].

264

266

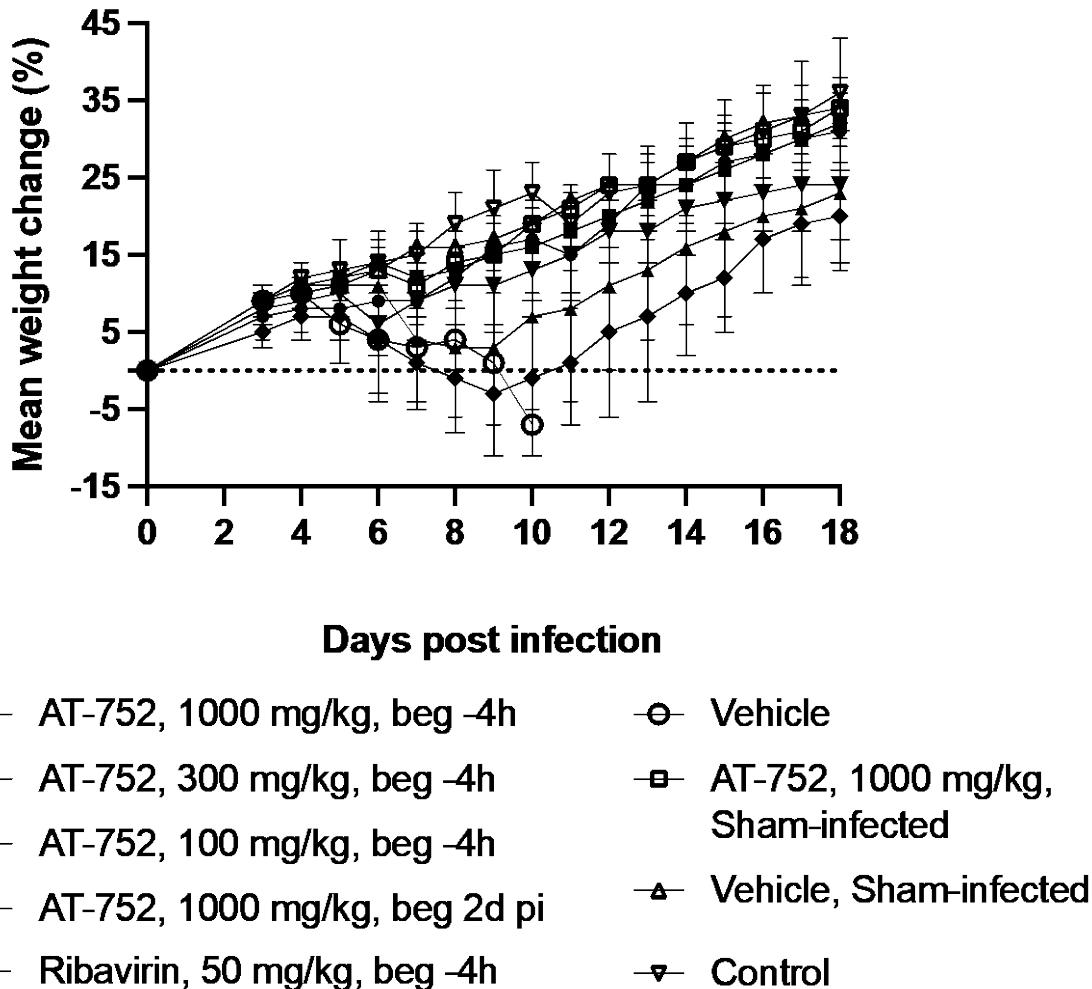
267 **Fig 4. Kaplan-Meier survival curves of YFV-infected hamsters treated with AT-752.** Syrian
268 golden hamsters challenged with YFV were administered vehicle (placebo), ribavirin (positive
269 control) or AT-752 four h prior to or 2 d post challenge, followed by BID doses of 1000, 300 or
270 100 mg/kg for 7 consecutive days starting 1 h post inoculation. Percent survival was calculated up
271 to 21 days post infection. The treated groups were significantly different from vehicle control by
272 one-way ANOVA and Dunnett's test, ****p<0.0001, ***p<0.001.

273

274

275 **Table 3. Effects of AT-752 treatment in hamsters infected with yellow fever virus**

Treatment	Dose (mg/kg)	Virus	Alive/total	Mean wt. change (g) ^a	Viremia (log ₁₀ CCID ₅₀ /mL)	ALT (IU/L)
AT-752	1,000	YFV	7/10	0.9 ± 3.3**	1.7 ± 0.0***	55 ± 4***
AT-752	300	YFV	10/10	1.5 ± 4.0***	2.3 ± 1.0***	81 ± 44**
AT-752	100	YFV	8/10	-6.9 ± 5.3	4.2 ± 1.2*	103 ± 36
AT-752	1,000 (begin 2d pi)	YFV	9/10	-0.1 ± 4.0**	2.5 ± 0.9***	63 ± 7***
Ribavirin	50	YFV	7/10	-6.3 ± 5.1	4.2 ± 1.5*	89 ± 29*
Vehicle	--	YFV	0/15	-7.7 ± 7.2	5.7 ± 1.8	133 ± 66
AT-752	1,000	Sham	5/5	2.2 ± 0.8**	1.7 ± 0.0***	53 ± 5***
Vehicle	--	Sham	5/5	4.8 ± 0.8***	1.7 ± 0.0***	61 ± 11**
Control	--	--	5/5	2.6 ± 2.1***	1.7 ± 0.0***	57 ± 3**

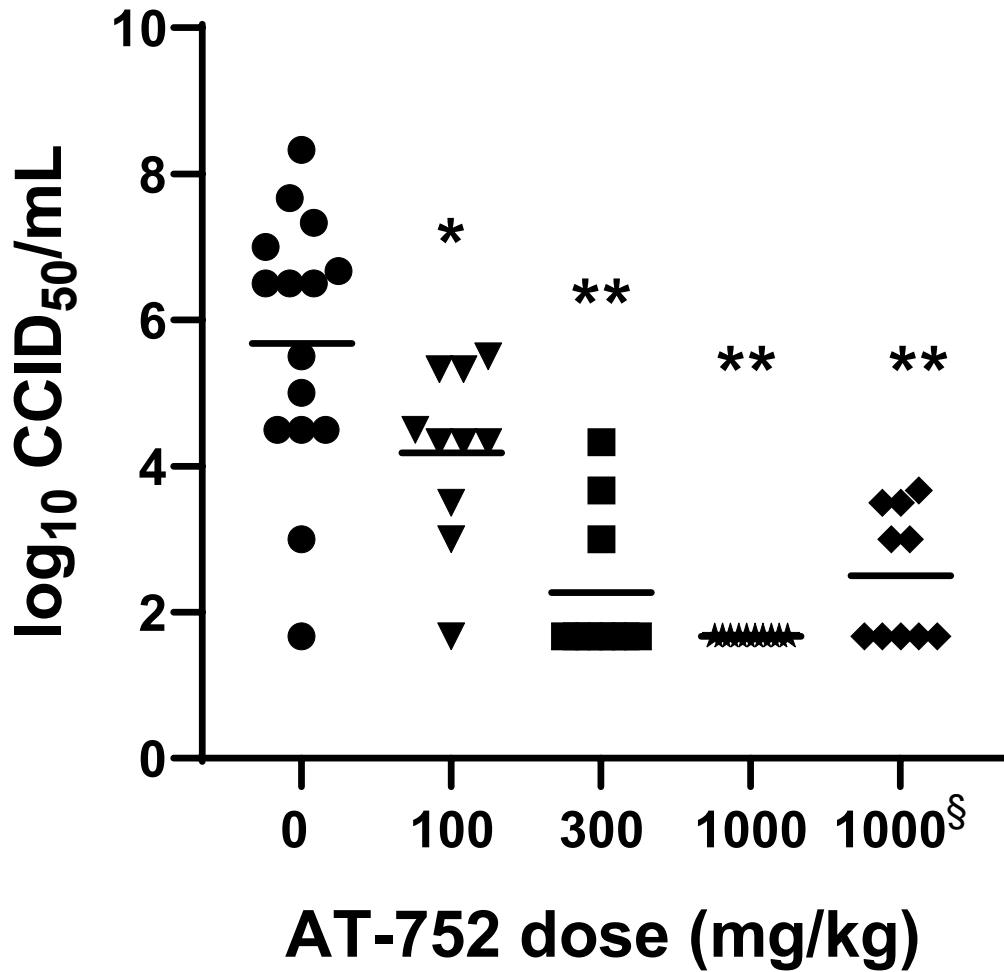

276 Syrian golden hamsters challenged with YFV were administered Vehicle, AT-752 or Ribavirin (positive control) 4 h prior to challenge
 277 – or 2 d post infection, followed by BID doses for 7 consecutive days starting 1 h post inoculation. Three groups not given the virus
 278 were used as controls. Animals were monitored 21 days for survival and weight change. Serum isolated from blood collected on Days
 279 4 and 6 pi was used to measure viremia (mean virus titer) and ALT respectively, as described in the Methods. Data are expressed as
 280 mean ± SD, and significant differences determined by one-way ANOVA and Dunnett's test.

281 ^aDifference between weights on 4 and 7 d post-virus challenge, representing maximal weight change within this study.

282 ***P<0.001, **P<0.01, *P<0.05 as compared to the vehicle YFV-infected group.

283 Body weights of the hamsters were recorded on day 0 and then daily from day 3 to 18 pi
284 to evaluate the effect of treatment on any change as an indicator of health. Weight change curves
285 of the YFV-infected groups treated with 1000 or 300 mg/kg AT-752 were similar to those of sham-
286 infected animals treated with 1000 mg/kg AT-752 (Fig 5). Moreover, there was no significant
287 difference in weight change curves between AT-752-treated animals and normal controls and no
288 toxicity, as evidenced by a lack of weight loss or mortality, was observed from AT-752 treatment
289 in these animals. This is different from the animals treated with 50 mg/kg/d of RIBA (positive
290 control) where weight change declined steeply after Day 6 pi and rebounded after Day 10 pi (Fig
291 5). There was also a drop in the average weight of infected hamsters treated with 100 mg/kg AT-
292 752 between Days 6 and 9 pi, which diverged from the other AT-752 treatment groups (Fig 5).
293 These weight change curves corresponded with weight change between Days 4 and 7 pi (Table 3),
294 when maximal weight change occurred in this study.

295 YFV-infected animals treated with 1000 or 300 mg/kg AT-752, regardless of treatment
296 initiation time, had significantly reduced weight loss compared to vehicle control (Table 3; $p < 0.01$
297 by ANOVA and Dunnett's test). However, there was no significant improvement in weight change
298 observed in YFV-infected animals treated with 100 mg/kg AT-752 or with 50 mg/kg RIBA (Table
299 3). Taken together, these data demonstrate a dose-dependent change in weight for groups treated
300 with AT-752. The decline in average weight change of YFV-infected vehicle-treated animals
301 began after Day 4 pi and continued until the animals had succumbed to disease or were humanely
302 euthanized (Fig 5). As expected, sham-infected hamsters, untreated or vehicle-treated, had a
303 consistent increase in weight over the course of the study (Fig 5, Table 3).


304

310

311 Viremia, a primary endpoint, was measured in serum collected on Day 4 pi. For the animals
312 infected with YFV, all the treatment groups had significantly lower viremia titers as compared
313 with vehicle only treatment (Fig 6, Table 2). In fact, the virus titer measured in the 1000 mg/kg

314 AT-752 treated group initiated 4 h prior to virus inoculation was similar to the basal levels
315 measured in the sham-infected control groups – representing the assay's limit of detection – which
316 was about 4 \log_{10} -fold lower than the vehicle only group ($p<0.001$). The drop in viremia occurred
317 even when AT-752 treatment was initiated at 2 dpi, being more than 2 \log_{10} lower than the
318 untreated infected animals on Day 4 pi (Fig 6). Higher average titers in animals treated with 100
319 mg/kg AT-752 or 50 mg/kg RIBA indicated a more modest 1.4 \log_{10} decrease in viremia compared
320 to the vehicle only group ($p<0.05$; Table 2). These data are consistent with survival and weight
321 change data. A similar pattern to the viremia results was observed in ALT concentrations measured
322 from serum collected at Day 6 pi. Except for the group treated with 100 mg/kg AT-752, all the
323 treatment groups had significantly lower ALT levels than the vehicle only group ($p<0.05$; Table
324 2). These data showed a dose-dependent improvement in serum ALT when YFV-infected animals
325 were treated with AT-752, regardless of when treatment was initiated.

326

327

328 **Fig 6. Virus titer in YFV-infected hamsters treated with AT-752.** Syrian golden hamsters
329 challenged with YFV were administered 0 (vehicle), 100, 300 or 1000 mg/kg AT-752 four h prior,
330 followed by BID doses for 7 consecutive days starting 1 h post inoculation (pi). Serum was
331 collected 4 d pi, and titers measured by an infectious assay as described in the Methods. The treated
332 groups were significantly different from vehicle by one-way ANOVA and Dunnett's test, *p<0.05,
333 **p<0.001.
334 § AT-752 dosing began 2 d post challenge.

335

336 Discussion

337 Yellow fever, which is caused by infection from the mosquito-borne YFV, can lead to a lethal viral
338 hemorrhagic fever associated with liver and kidney failure [2]. With mosquito control and
339 vaccination campaigns, it was no longer considered a dangerous infectious disease by the end of
340 the 20th century but had become a neglected tropical disease. However, in 2016, yellow fever re-
341 emerged as a human threat when outbreaks occurred in endemic areas and in non-endemic areas
342 with historically low YFV activity, possibly aided by climate change and an increase in densely
343 populated areas with low vaccination coverage [5]. Thus, there is an urgent need for a safe and
344 efficacious DAA to aid in the management of these unexpected events that have resulted in
345 significant morbidity and mortality.

346 Here, we used an animal model to show that oral treatment with AT-752 is effective in
347 improving disease parameters such as survival, serum ALT levels and weight change in hamsters
348 infected with YFV. Pre-treatment with AT-752 (4 h prior to viral challenge) significantly reduced
349 virus load in a dose-dependent manner (Table 2). Just as importantly, when AT-752 treatment was
350 initiated two days after infection, viremia in the infected hamsters was decreased by $>2 \log_{10}$ on
351 Day 4 pi, a time noted for clinical symptoms in this model [14]. While this latter result is
352 promising, more work would need to be done to determine the efficacy of AT-752 in treating the
353 disease after clinical symptoms are apparent, a more likely scenario with humans.

354 YFV belongs to the genus *Flavivirus*, which includes the Dengue and Zika viruses. These
355 viruses have a highly conserved NS5 whose interactions, if disrupted, result in the loss of viral
356 replication, likely across all flaviviruses [4, 15]. We have previously reported that AT-752 has a
357 direct effect on dengue viral replication, and presumably YFV as well, by forming the intracellular
358 active triphosphate AT-9010, which then inhibits the RdRp responsible for viral replication [12].

359 In addition, the tissue distribution study revealed that the highest concentrations of AT-9010 were
360 found in liver and kidney, the two organs most affected by YFV. These data show that not only
361 does the prodrug significantly reduce viremia in this animal model of disease, but the greatest
362 amounts of the active triphosphate metabolite were formed in the tissues most affected by the
363 virus.

364 Despite many attempts to develop an effective treatment for yellow fever, including other
365 nucleoside analogs [3, 10, 11, 14], no compound has successfully demonstrated efficacy against
366 the disease in human testing. Sofosbuvir, a clinically approved drug against hepatitis C virus
367 (HCV), has recently been shown to inhibit YFV *in vitro* and *in vivo* [2, 8], and a clinical trial in
368 Brazil to test its efficacy in humans infected with YFV is currently underway [16]. AT-752 has
369 also been shown to be a potent inhibitor of HCV [12], as is its congener AT-527 which forms the
370 same active triphosphate, and was up to 58-fold more potent than sofosbuvir against HCV clinical
371 isolates [13]. To conclude, AT-752, with its broad potent antiviral activity against flaviviruses and
372 favorable safety profile [12], as well as its demonstrated efficacy in an *in vivo* hamster model, is a
373 promising candidate for clinical development for the treatment of yellow fever.

374

375 **Acknowledgments**

376 This research was supported in part by contract HHSN272201700041I Task order A11 from the
377 Virology Branch, NIAID, NIH. The authors thank Dr. Kerry-Ann da Costa for her excellent
378 assistance in preparing this manuscript. This study was sponsored by Atea Pharmaceuticals, Inc.

379 **References**

380 1. Soteras Jalil E. Yellow Fever. World Health Organization [Internet] [updated 7 May 2019; cited
381 2021 8 Jun]. Available from: <https://www.who.int/news-room/fact-sheets/detail/yellow-fever>.

382 2. Mendes É A, Pilger DRB, Santos Nastri ACS, Malta FM, Pascoalino BDS, Carneiro D'Albuquerque
383 LA, et al. Sofosbuvir inhibits yellow fever virus in vitro and in patients with acute liver failure. Ann
384 Hepatol. 2019;18(6):816-24.

385 3. Zandi K, Amblard F, Amichai S, Bassit L, Tao S, Jiang Y, et al. Nucleoside analogs with antiviral
386 activity against yellow fever virus. Antimicrob Agents Chemother. 2019;63(9).

387 4. Kleinert RDV, Montoya-Diaz E, Khera T, Welsch K, Tegtmeyer B, Hoehl S, et al. Yellow fever:
388 Integrating current knowledge with technological innovations to identify strategies for controlling re-
389 emerging virus. Viruses. 2019;11(10).

390 5. Douam F, Ploss A. Yellow fever virus: Knowledge gaps impeding the fight against an old foe.
391 Trends Microbiol. 2018;26(11):913-28.

392 6. Julander JG, Ennis J, Turner J, Morrey JD. Treatment of yellow fever virus with an adenovirus-
393 vectored interferon, DEF201, in a hamster model. Antimicrob Agents Chemother. 2011;55(5):2067-73.

394 7. Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19
395 complementary regimen. J Antibiot (Tokyo). 2020;73(9):593-602.

396 8. de Freitas CS, Higa LM, Sacramento CQ, Ferreira AC, Reis PA, Delvecchio R, et al. Yellow fever
397 virus is susceptible to sofosbuvir both in vitro and in vivo. PLoS Negl Trop Dis. 2019;13(1):e0007072.

398 9. Guo F, Wu S, Julander J, Ma J, Zhang X, Kulp J, et al. A novel benzodiazepine compound inhibits
399 yellow fever virus infection by specifically targeting NS4B protein. J Virol. 2016;90(23):10774-88.

400 10. Julander JG, Bantia S, Taubenheim BR, Minning DM, Kotian P, Morrey JD, et al. BCX4430, a novel
401 nucleoside analog, effectively treats yellow fever in a Hamster model. Antimicrob Agents Chemother.
402 2014;58(11):6607-14.

403 11. Julander JG, Jha AK, Choi JA, Jung KH, Smee DF, Morrey JD, et al. Efficacy of 2'-C-methylcytidine
404 against yellow fever virus in cell culture and in a hamster model. *Antiviral Res.* 2010;86(3):261-7.

405 12. Good SS, Shannon A, Lin K, Moussa A, Julander JG, La Colla P, et al. Evaluation of AT-752, a
406 double prodrug of a guanosine nucleotide analog with in vitro and in vivo activity against dengue and
407 other flaviviruses. *Antimicrob Agents Chemother.* 2021;in press.

408 13. Good SS, Moussa A, Zhou X-J, Pietropaolo K, Sommadossi J-P. Preclinical evaluation of AT-527, a
409 novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. *PLoS*
410 *One.* 2020;15(1):e0227104.

411 14. Julander JG, Furuta Y, Shafer K, Sidwell RW. Activity of T-1106 in a hamster model of yellow
412 Fever virus infection. *Antimicrob Agents Chemother.* 2007;51(6):1962-6.

413 15. Hodge K, Tunghirun C, Kamkaew M, Limjindaporn T, Yenchitsomanus PT, Chimnaronk S.
414 Identification of a conserved RNA-dependent RNA polymerase (RdRp)-RNA interface required for
415 flaviviral replication. *J Biol Chem.* 2016;291(33):17437-49.

416 16. Figueiredo-Mello C, Casadio LVB, Avelino-Silva VI, Yeh-Li H, Sztajnbok J, Joelsons D, et al. Efficacy
417 of sofosbuvir as treatment for yellow fever: protocol for a randomised controlled trial in Brazil (SOFFA
418 study). *BMJ Open.* 2019;9(11):e027207.

419