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Nearly all cellular functions are mediated by protein-protein interactions and mapping
the interactome provides fundamental insights into the regulation and structure of
biological systems. In principle, affinity purification coupled to mass spectrometry (AP-
MS) is an ideal and scalable tool, however, it has been difficult to identify low copy number
complexes, membrane complexes and those disturbed by protein-tagging. As a result, our
current knowledge of the interactome is far from complete, and assessing the reliability
of reported interactions is challenging. Here we develop a sensitive, high-throughput, and
highly reproducible AP-MS technology combined with a quantitative two-dimensional
analysis strategy for comprehensive interactome mapping of Saccharomyces cerevisiae.
We reduced required cell culture volumes thousand-fold and employed 96-well formats
throughout, allowing replicate analysis of the endogenous green fluorescent protein (GFP)
tagged library covering the entire expressed yeast proteome. The 4159 pull-downs
generated a highly structured network of 3,909 proteins connected by 29,710 interactions.
Compared to previous large-scale studies, we double the number of proteins (nodes in the
network) and triple the number of reliable interactions (edges), including very low
abundant epigenetic complexes, organellar membrane complexes and non-taggable
complexes interfered by abundance correlation. This nearly saturated interactome
reveals that the vast majority of yeast proteins are highly connected, with an average of
15 interactors, the majority of them unreported so far. Similar to social networks between
humans, the average shortest distance is 4.2 interactions. A web portal (www.yeast-
interactome.org) enables exploration of our dataset by the network and biological

communities and variations of our AP-MS technology can be employed in any organism

or dynamic conditions.
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The large-scale study of cellular interactomes by MS-based proteomics dates back almost 20
years (1, 2), culminating in two studies in which nearly half the expressed yeast proteome was
successfully purified with identified interactors (3, 4). These datasets have been mined
extensively, leading to a network-based view of the cellular proteome. Given the importance of
the interactome for functional understanding and the dramatic improvements in MS-technology
during the last decade (5, 6), we set out to generate a substantially complete interactome of all
proteins present in an organism in a given state. We made use of an endogenously GFP-tagged
yeast library containing the 4159 proteins that were detectable by fluorescence under standard
growth conditions (7). Miniaturization and standardization of the workflow in combination with
an ultra-robust liquid chromatography system with minimal overhead time coupled to a
sensitive trapped ion mobility mass spectrometer employing the PASEF scan mode (8, 9),
resulted in very high data completeness across pull-downs. This workflow required only 1.5 mL
instead of liters of yeast culture, provided a constant throughput of 60 pull-downs per day and
allowed using the same conditions for soluble or membrane proteins of vastly different
abundances (Fig. 1A).

Measurement of the yeast interactome

To test the quantitative reproducibility of our workflow, we performed 24 biological replicates
of pull-downs of three nuclear complexes, which resulted in complete retrieval of these
complexes from a single bait each, with 9% average coefficients of variation (CVs) of enriched
complex members (Fig. 1B). This compares to a 69% repeatability of assigned interactions in
the previous large-scale screens (10).

Three layers of evidence help to establish an interaction between two proteins. The first two are
statistically significant enrichment of the proteins in the forward and in the reverse pull-downs
(where the prey pull-down significantly enriches the bait). Instead of employing only a t-test of
bait pull-down against a pull-down of a strain only expressing GFP, we made use of our vast
number of diverse GFP-tagged strains, to combine them into a single control group, thereby
efficiently removing false positives not specifically binding to the bait (Methods: Enrichment
analysis). Using this affinity enrichment (rather than affinity purification) concept (11), we
quantitatively compared all proteins across more than 8,000 pull-down measurements, making
use of the profile similarities of interacting proteins in correlation analysis. This third evidence
type turned out to be very informative due to the large quantitative accuracy combined with

close to a complete set of “virtual controls” (Methods: Protein correlation, Fig. 1C).
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We combined all three layers of each interaction into a single interaction score and retained
those with a minimum score of 2, corresponding to (a) a single pull-down at 1% FDR or (b) a
correlation z-score of at least five or (c) forward and reverse pull-downs at 5% FDR each, or
(d) one at 5% FDR combined with a correlation z-score greater than four. To retrieve clusters
and complexes from our interactome data, we used Markov clustering with the above-derived
score as the edge weights, without any training or a priori knowledge (Methods: Network
generation, Fig. 1C).

The replicate GFP pull-down measurement in the 4,147 yeast strains resulted in the enrichment
of 82% of the baits (Suppl. Fig. 1). Our MS-data provided statistically significant evidence for
a total of nearly 30,000 physical interactions, corresponding to an average of 15.2 interactions
per protein. Most were supported by forward pull-down (38%), followed by forward pull-down
and significant prey correlation (29%), whereas nearly all interactions with both forward and
reverse evidence also had significant correlations (> 99%) (Suppl. Fig. 2).

Due to the limited overlap of the interactions reported by two previous large-scale studies (13%
shared interactions), Collins et al. merged and reanalyzed these datasets to create a consensus
network with 1,622 nodes (12). Our data encompasses 95% of these, but places nearly the entire
expressed yeast proteome in a network (3,909 nodes). Our dataset of 30,000 significant protein-
protein interactions confirms 62% of the much smaller Collins et al. dataset (Fig. 1E). Based
on a comparison with the BioGRID database (13), over two-thirds of the interactions reported

here are novel.
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Figure 1. A comprehensive and scalable interactomics technology.

A) Sample preparation in 96-well format and mass spectrometric measurement: Each strain of the GFP-
tagged library is lysed by mechanical disruption and transferred into anti-GFP nanobody coated microtiter
plates, where weak interactions are preserved by gentle washing. After enzymatic “in-well” digestion,
resulting peptides are transferred on standardized Cis-StageTips from which they are directly eluted into a
standardized 60 samples/day gradient. Data is acquired in the PASEF scan-mode on a trapped ion mobility
— Time of Flight mass spectrometer. B) Streamlined workflow and reduced transfer steps reduce the risk of
manual errors and sample variation: Demonstration of workflow reproducibility and sensitivity on three
nuclear complexes in biological replicates. Tagged members of each complex (baits) pull down the known
preys in very similar amounts. Lower panel: bar plot of mean coefficient of variation with standard
deviations. C) Two-dimensional interaction scoring: Columns represent pull-down experiments in replicates
(light color). Squares depict intensities of detected proteins across the pull down-experiments. Three levels
of evidence support each interaction: t-test of forward pull-down against complement experiments, t-test of
reverse pull-down, and protein profile correlation — the correlated abundance profile against all other proteins
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across all experiments (z-scored, Methods: Protein correlation). D) Proportion of interactions backed by
multiple layers of evidence. E) Overlap of proteins with at least one interactor and interactions detected in
this study with the previous state-of-the-art network (12).

Organization of protein-protein interactions in clusters

Markov clustering analysis - with our interaction scores as edge weights, condensed the network
into 623 clusters, with about 20,000 interactions within them, most supported by at least two
statistically significant levels of evidence (Fig. 1D). When we inspected known protein
complexes from different cellular compartments, especially membrane complexes, we found
them to recapitulate the literature to a large degree. Furthermore, we here retrieved 3628
interactions between membrane annotated proteins, compared to 853 in a dedicated membrane
proteome (14). This is shown exemplarily for the full retrieval of the endosomal retromer
complex, the conserved oligomeric Golgi complex, and the plasma membrane exocyst complex
(Fig. 2A). At the same time, our unbiased and high coverage analysis identified novel subunits
with tight association to known complexes. For instance, three subunits of the essential
endoplasmic reticulum (ER) membrane oligosaccharyl transferase (OST) complex - an integral
component of the translocon - associated with a-1,2-mannosidase (Mnsl; human homolog:
MAN1B1), an enzyme that catalyzes the ER glycoprotein trimming reaction which is required
for ER-associated protein degradation (ERAD). This indicates that the enzymatic activity of N-
linked oligosaccharide chain addition is physically connected to the removal of a terminal sugar,
at least in one isoform of the OST complex. The slow enzymatic activity of Mnsl acts as a
timer (15, 16) and we speculate that it co-translationally primes stalled or erroneous proteins
directly at its site of translocation for ERAD degradation. We also discovered a novel complex
defined by three unreported interactions (all with the maximum interaction score of 10) between
Tcdl, Tcd2 - mitochondrial proteins that are involved in tRNA base modification - and
YGRO012W, a protein of unknown function. A homolog of Tcdl and Tcd2 in E. coli termed
TcdA functions in a complex of three in the cyclization of an essential tRNA modification found
in all three domains of life (17).

Many biological complexes share members and these can be difficult to disentangle by
clustering algorithms. We speculated that our highly quantitative data could nevertheless
resolve these cases. Applying a network layout algorithm (Methods: Network generation) to
members of the transcription factor TFIID and the SAGA complex, separately reconstructed
these complexes, while correctly assigning shared members (Fig. 2A). At the global scale, we
found that about two-thirds of all interactions connected members within clusters, whereas the

remainder connected clusters to each other. For example, the cytoplasmatic signal recognition
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particle (SRP) is connected to another cluster containing the SRP-receptor (SRP101/102). The
largest connected clusters were the small and large subunits of the ribosome, with 362 inter-
complex connections.

Leveraging the common, endogenous GFP-tag on more than 3379 detected baits, we next
investigated if the MS-signal of the GFP peptides could be used to quantify each bait. Indeed,
these intensities correlated well (r = 0.77), with a recent compilation of yeast protein
abundances (18) (Fig. 2B). This validates our interaction workflow and allows tag-based
estimation of the relative abundances of proteins in a cluster, which is useful to determine their
functional role (19).

For some proteins, for example the members of the chaperonin containing t-complex (CCT),
tagging is not possible because it interferes with protein stability or function (20). Based on
highly significant correlations between profiles of the subunits, CCT was nevertheless fully
recovered (Fig. 2C). Besides the eight conserved, ring-forming members, we also detected a
distinct set of 21 interacting proteins, about half of which had not been reported yet. Two of
these were catalytic subunits of protein phosphatase 2A, suggesting regulatory functions, and
others, such as tubulin and actin-related proteins (Tubl, Tub3, Arpl) major known folding
substrates. CCT may have a restricted or broad set of folding substrates (21), and our results
quantitatively support the former possibility.

The above examples only scratch the surface of the interesting biological leads contained in the
data. To allow ready exploration of interactions of interest, we created a web portal

(www.yeast-interactome.org), which supplies statistical evidence for protein-protein

associations, and summarizes the resulting clusters (Fig. 2D).
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Figure 2. High-quality dataset for the exploration of the interactome.

A) Clusters derived from our interactome for a range of challenging complexes such as chromatin-associated,
soluble and membrane-bound complex of various organelles. In each case, all known subunits were retrieved.
B) Tag-based quantification allows retrieving abundance information for the baits in a generic manner (left
panel). Correlation of tag peptide-based signals with a literature compilation of yeast protein abundances (18)
(right panel). C) For the non-taggable chaperonin containing t-complex (CCT), profile correlation analysis
nevertheless reveals its subunits and interactors. Interactions based on correlation only are shown in red
(dashed) and unreported interactions with CCT in green. D) Web application that allows exploration of
interaction data for interactions of interest. For all proteins, pull-downs are depicted as volcano plots together
with a violin plot that shows the MS intensity of user-selected outliers. Subnetwork from pull-downs of the
selected bait and reverse pull-downs or significant interactors.

Network architecture of the cellular interactome

The availability of data for large networks in systems ranging from power-grids, genetic
networks to human social networks, has enabled the study of their underlying architecture,
commonalities and differences (22). This topic also has a long history in protein interaction
networks. However, these analyses have been limited by the incompleteness of the data,
especially in multicellular species (23). With an in-depth protein-protein interaction map in
hand, we compared its characteristics to networks in different domains. Yeast proteins are
highly connected with an average of 15 and a median of 6 interactions per protein, significantly
more than the human BioPlex interactome (average interactions: 8) (24) (Fig. 3A). Influential
nodes — those with the highest number of normalized interactors (or degree centrality) — were
more common than in the GitHub package dependency network, but less common than in a

similarly-sized Facebook subnetwork (Suppl. Fig. 4). This high connectivity is reflected in a


https://doi.org/10.1101/2021.10.24.465633
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.24.465633; this version posted October 26, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

mean shortest path between yeast proteins of only 4.2, ranging from highly connected proteins
with only three steps to less connected ones with an average of more than 7. (Fig. 3B). This is
very similar to the 4.7 path-length for world-scale Facebook relationships (25).

One of the key features for most real-life networks with complex topology in contrast to random
networks is the scale-free power-law distribution of interactors (26, 27). Scale-free network
properties are thought to arise by preferential attachment over evolutionary time to already well-
connected nodes and can be identified by a linear relation of the node degree or number of
interactors with its frequency (number nodes with that degree) plotted in log-log space. While
this has been hard to prove for biological networks, they rather appear to be exponential or have
a truncated power-law degree distribution (28), our yeast interactome clearly displays scale-
free properties (Fig. 3C). In accordance with previous protein-protein interaction networks (3,
29), the exponent was below two, at the lower end of the two to four range of other scale-free
networks.

The high connectivity of most proteins organizes almost all of them (3,827) into a single giant
connected component, accompanied by 38 small components (82 proteins) (Fig. 3D). A total
of 478 proteins were outside of the network because MS-analysis of their pull-downs only
identified the bait itself. There was an significant enrichment for 87% of these baits
(FDR<0.01%), indicating that there were no identifiable interactors under our standard
conditions despite a successful pull-down (Suppl. Fig. 3, see volcano plots accessible via web-
application).

We next investigated the large-scale organization of the yeast interactome using the Louvain
community detection algorithm (Methods: Network comparisons). This revealed that yeast is
organized in smaller communities than GitHub, ego-Facebook and also Bioplex (Fig. 3E).
Important “bottleneck” proteins that are part of many shortest paths have a high “betweenness-
centrality”. The yeast interactome has comparably more of those central nodes and
bioinformatic enrichment analysis highlighted proteins involved in “RNA polymerase 117,
“mitochondrial nucleoid”, “gluconeogenesis” and “misfolded protein binding” (Fig. 3F; Suppl.
Table 1).

Altogether, based on the total of 4,387 identified yeast proteins, only 10.9% had no discernable
interaction partner, whereas 74.2% had at least two. Given that some of our baits will have
context dependent interactions not captured here, our estimates are conservative and we

conclude that almost all yeast proteins are “social”.
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Figure 3. Properties of the protein interaction network.

A) Distribution of the number of interactors (grey). Sorted cumulative number of interactions reaches
saturation at 30,000 interaction (blue) B) The distribution of average shortest path length between all possible
pairs of nodes within the giant component shows a mean of 4.2 steps corresponding to 3.2 intermediaries
(“degrees of separation”) C) Power-law fit (green; equals a linear fit on a log-log scale) of the frequency of
proteins with a given number of interactions highlights the scale-free properties of the network. Exponential
fit depicted in orange D) Nearly all nodes of the network are connected with each other in the giant
component. E) Cumulative distribution function of the community sizes (Louvain algorithm) detects more
smaller communities for S. cerevisiae. F) Cumulative distribution function of betweenness centrality: The S.
cerevisiae interactome has more nodes with a high betweenness-centrality than the comparison data sets.

Betweenness Centrality

Global organization in clusters highlights novel interactions

Intensive research over the last decades has made S. cerevisiae arguably the best understood
single-cell eukaryotic organism, leading to the discovery of crucial conserved cellular
functions, such as metabolic pathways, mechanisms of DNA replication and transcription,
protein quality control and modifications that were later confirmed in human and other
organisms. Nevertheless, our interactome still contained uncharacterized proteins or
interactions not reported in the BioGRID database and thus providing novel biological insights
(extended selection Suppl. Fig. 6). Furthermore, BioGRID has accumulated binding events
from very disparate experiments without a common confidence score (133,900 physical
interactions from about 10,000 publications). We reasoned that our homogeneous, high-quality
data set would help biologists to highlight true positive interactors with biological relevance,
several of whom we discuss below.

A total of eleven evidences connect the uncharacterized protein YDL176W with the conserved

glucose-induced-degradation (GID) complex, only a few of which had been indicated by
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previous pull-down or genetic interaction data (3, 30) (Fig. 4B). These types of high-confidence
associations assist in prioritizing interactions and form the basis for a detailed mechanism and
structure discovery of a novel GID modulator. Similarly, our data ties the uncharacterized
protein YJRO11C to the conserved transcription and translation regulatory CCR4-Not complex
(31, 32) via high-significant interactions to a majority of its subunits (Fig. 4G). Finally,
YHR131C is linked to three and YLR407W to the fourth subunit of the kinase CK2 (Fig. 4N).
We discovered an interaction of Cue4 — a protein of unknown function containing a ubiquitin-
binding domain — with the ER membrane complex EMC, potential membrane protein
chaperone (Fig. 4L). As Cue4 is a paralogue of Cuel (coupling of ubiquitin conjugation to ER
degradation), a component of ERAD (33), this physical link and the known aggravating genetic
interactions of Acuel with EMC knock-outs (34) suggests an ERAD related quality control
mechanism for EMC.

The transcriptional regulator SWI/SNF unexpectedly interacts with the phosphate transporters
Pho87 and Pho90 (Fig. 4D). Out of four plasma membrane phosphate transporters only Pho87
and Pho90 comprise a cytoplasmatic accessible SPX domain. While an SPX dependent
phosphate sensing mechanism has been discovered in plants (35), it remains elusive in S.
cerevisiae. In Arabidopsis inositol pyrophosphate InsPs concentration increases under
phosphate rich conditions and promotes the interaction between SPX domains and a four-
stranded coiled-coil motif of phosphate starvation response transcription factors (36). Strikingly
the recently solved structure of SWI/SNF reveals such a coiled-coil four-helix-bundle at its
spine region (37) providing a potential SPX interaction site. This raises the possibility of a novel
cytoplasmatic sensing and retention mechanisms of this key transcriptional regulator which is
known to be necessary for a phosphate starvation response (38, 39). Interestingly, not only the
SWI/SNF complex but also an SPX domain-containing phosphate transporter named XPR1 -
which has recently been shown to be controlled by InsPg (40) - is present in humans.
Illustrating translational relevance, we expand the known interaction of the GTPase-activating
protein Iral/lra2 (NF1/neurofibromin in humans) and Gpb1/Gpb2 (ETEA in humans) (41) by
Trx2 a thioredoxin isoenzyme (human homolog: TXN) and Gpx1 (human homologs: GPX3-
6), an antioxidant enzyme whose glutathione peroxidase activity is neuroprotective in models
of Huntington’s disease (42) (Fig. 4C).

Additionally, we find a new physical interaction between the two uncharacterized proteins
YPRO063C and YNRO021W (Suppl. Fig. 6) whose dimerization and structure has just been
predicted in a deep-learning approach (43).
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Apart from known and novel protein complexes, the yeast interactome depicted in Fig. 4,
clearly shows evidence of high order connections. These often map to different compartments
of the cell, such as the prominent connections between ribosomes in the cytoplasm and the
nucleolus, its site of maturation or connect large and small ribosomal subunits that despite its

“stickiness” are organized in individual clusters.
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Figure 4. Network of an in-depth interactome highlighting novel interactions.

Cellular interaction map of all significant interactions. Clusters are highlighted by circles and cellular
localization is indicated by most frequent GO term within a cluster. Enlargements show examples of either
novel interactions (based on BioGRID) or those that have not been described further as potential high
significant interactor and interactions involving uncharacterized proteins. A full browsable and interactive
version of this network can be found at our web application (www.yeast-interactome.org).
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Outlook

Here we have developed and applied a novel and highly scalable interactome technology,
enabling replicate measurement of the yeast network in a fraction of the measurement time and
starting materials needed previously. Our screen reached near saturation and contained nearly
all complexes expected under our experimental conditions (Fig. 3A, Fig. 4). Given its
streamlined nature, our workflow can now readily be used in other endogenously tagged model
organisms (44) or to study remodeling of the interactome in the presence of dynamic biological
processes or perturbations. Similarly, we envision its use with other interaction technologies
like BiolD or APEX using tagged libraries that nowadays can be easily generated using the
SWAp-Tag platform (45). The comprehensive yeast interactome data can further be used as
prior knowledge for hypothesis-driven analysis of protein complexes, for example for native
protein complex co-fractionation coupled to MS (46, 47). Additionally, we imagine that such
interactome data could also be combined with MS-crosslinking studies and recent advances in
computational prediction of protein structures from their sequences (48, 49) to yield complete

structural models in many cases.
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Experimental Methods

Cell growth. To achieve samples with similar cell numbers, pre-cultures of the S. cerevisiae
GFP-tagged library were grown in YPD media (1% yeast extract, 2% bacto™ peptone, 2%
glucose) for two days in 2 mL, u-bottom shaped 96-deep-well plates. This allowed cell
concentration convergence of different strains during the slow growing post-exponential phase.
Cells were resuspended and 50 pl of each pre-culture was used to inoculate 1.5 mL of fresh
YPD media (corresponding to an optical density of 0.5 at 600 nm) in 96-deep-well plates
(LoBind®, 2 mL, cat no. 0030504305, Eppendorf AG, Hamburg, Germany). Plates were
covered with an air permeable membrane and incubated while shaking at 300 rpm and 30 °C
for 6 hours. This allowed the progression through the lag phase and three cell cycles followed
by harvesting under standard growth conditions. Cells were pelleted in the 96-deep-well plates
by centrifugation at 3500 rpm (= 2451 g) for 5 min. The supernatant was discarded by fast
decanting and quick dabbing on paper towels. Plates with pellets were sealed with plastic covers

and stored at -80 °C until cell lysis.

Cell lysis. Dee-well plates with cell pellets were thawed on ice for 5 min. 100 pl of glass beads
(0.5 mm, acid-washed, cat no. G8772, Merck KGaA, Darmstadt, Germany) were added to each
well using a 96-well bead dispenser (LabTIE International, Veenendaal, Netherlands). After
5 min 250 pl of 4 °C cold lysis buffer (50 mM Tris HCI pH 7.5, 150 mM NacCl, 5% glycerol,
0.05% IGEPAL CA-630, protease inhibitor EDTA-free (cOmplete™, 1 tablet per 50 mL, cat
no. 11873580001, Merck KGaA, Darmstadt, Germany), 1 mM MgCl,, 0.75 U/pL in-house
Serratia marcescens endonuclease/SmDNase) were added. Plates were sealed using a heat
sealer (S200, cat no. 5392000005, Eppendorf AG, Hamburg, Germany), the low profile plate
adapter (cat no. 5392070020, Eppendorf AG, Hamburg, Germany) and transparent heat sealing
films (cat no. 0030127838, Eppendorf AG, Hamburg, Germany) for 2 sec at 180 °C and
immediately put back on ice. Cell lysis was performed within the 96-deep-well plates at 4 °C
via bead-beating (2010 Geno/Grinder®, SPEX SamplePrep, Metuchen, NJ) for 4 cycles of
1.5 min each at 1750 rpm. Plates were cooled in ice water and covered with ice for 7 min in-
between cycles and for 10 min after the last cycle. 4 plates were processed in parallel during
bead-beating and top and bottom positions were switched at each cycle. Cell debris was spun
down at max speed (4300 rpm = 4347 g) for 10 min at 4 °C. Plates were carefully put back on
ice and immediately used for the pull-down protocol (Fig. 1A).
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Interactor enrichment: Pull-downs and all sample handling steps were performed at 4 °C.
Anti-GFP nanobody coated 96-well microtiter plates were custom made and optimized for this
protocol allowing efficient and high reproducible “in-well” digestion, and mass spectrometry
compatibility (plates are now commercially available as: GFP-Trap® Multiwell Plate, cat no.
gtp-96, Chromotek GmbH, Martinsried, Germany). Plates were prepared with 200 uL wash
buffer 1 (50 mM Tris HCI pH 7.5, 150 mM NacCl, 5% glycerol, 0.05% IGEPAL CA-630) per
well on a shaker for 1 min at 800 rpm followed by removal of the buffer. The cell lysates were
carefully transferred from the 96-deep-well plates by slow uptake of 175 pL supernatant
without dislodging glass beads nor the cell debris pellet to the GFP-Trap plate. The GFP-Trap
plate was incubated for 1 h at 800 rpm on a small stroke (3 mm) shaker (TiMix 5 control,
Edmund Buhler GmbH, Tubingen, Germany) to enrich for GFP-tagged proteins and their
interactors. Cell lysates were discarded and plate wells were washed twice with 200 puL wash
buffer 1 and twice with wash buffer 2 (50 mM Tris HCI pH 7.5, 150 mM NaCl, 5% glycerol).
To allow stable binding of unspecific background proteins — an important factor for label-free
quantification — wash buffer was added slowly, and plates were not shaken during wash steps.
Emptied, protein-enriched plates were covered and stored at -80 °C until mass spectrometry

sample preparation (Fig. 1A).

Sample preparation for mass spectrometry. Protein-enriched GFP-Trap plates were brought
to room temperature and 50 pL of digestion mix 1 (4.5 M urea, 1.5 M thiourea, 10 mM Tris
HCI pH 8.5, 3 mM dithiothreitol, 2 ng/pL LysC) were added per well. Plates were incubated at
30 °C and 1000 rpm on a small stroke (3 mm) shaker. After 3 h, 100 uL of digestion mix 2
(10 mM Tris HCI pH 8.5, 7.5 mM chloroacetamide, 2 ng/pL LysC) were added and microtiter
plates and lids were sealed with parafilm®. The plates were incubated overnight at
30 °C/800 rpm. The reaction was stopped and the sample was acidified with 15 pL of 10% TFA
per well. Plates with peptides were stored at -80 °C till sample loading on EvoTips (Evosep,
Odense, Denmark) (Fig. 1A).

Loading of peptide samples on Evotips. Evotips (Evosep, Odense, Denmark) were activated
for 5 min in a 1-propanol Evotips-box reservoir at room temperature (RT), followed by a wash
step with 50 pl buffer B (acetonitrile (ACN) with 0.1 % formic acid (FA)) and centrifugation
at 500 g for 1 min at RT. The flow-through was discarded and Evotips were placed back into
1-Propanol. Evotips were conditioned with 50 pL of buffer A (ddH20 with 0.1 % FA) and
centrifugation at 500 g for 1.5 min at RT and were placed in a container with buffer A. 40 pL
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of thawed peptide sample were loaded and Evotips were centrifuged at 500 g for 1.5 min at RT
and placed back in a container with buffer A. 200 uL of buffer A were added and partially
washed through the Evotips by centrifugation at 500 g for 50 s. Evotips boxes with buffer A at
the container bottom were placed on the Evosep One liquid chromatography (LC) platform
(Evosep, Odense, Denmark) for LC-MS analysis. Pull-downs were acquired in technical

duplicates and the injection order was reversed after the first measurement (Fig. 1A).

Liquid-chromatography. For separating peptides by hydrophobicity and eluting them into the
mass spectrometer, we used the EvoSep One LC system and analyzed the yeast interactome
pull-down proteomes with the standardized 21 min (60 samples per day) gradient. We employed
a 15 cm x 150 pm inner diameter column with 1.9 um C18 beads (PepSep, Marslev, Denmark)
coupled to a 20 um ID electrospray emitter (Bruker Daltonik GmbH, Bremen, Germany). The
column was replaced between replicate measurements. Mobile phases A and B were 0.1 % FA
in water and 0.1 % FA in ACN, respectively. The EvoSep system was coupled online to a
trapped ion mobility spectrometry quadrupole time-of-flight mass spectrometer (50) (timsTOF
Pro, Bruker Daltonik GmbH, Bremen, Germany) via a nano-electrospray ion source (Captive
spray, Bruker Daltonik GmbH, Bremen, Germany). A 24-fraction library of wild-type S.
cerevisiae was generated using the high-pH reversed-phase “spider-fractionator” (51) and data

were acquired using the same sample set-up.

Mass spectrometry. Mass spectrometric analysis was performed in a data-dependent (dda)
PASEF mode. For ddaPASEF, 1 MS1 survey TIMS-MS and 4 PASEF MS/MS scans were
acquired per acquisition cycle. The cycle overlap for precursor scheduling was set to 2. lon
accumulation and ramp time in the dual TIMS analyzer was set to 50 ms each and we analyzed
the ion mobility range from 1/Ko = 1.3 Vs cm™ to 0.8 Vs cm™. Precursor ions for MS/MS
analysis were isolated with a 2 Th window for m/z < 700 and 3 Th for m/z >700 in a total m/z
range of 100-1,700 by synchronizing quadrupole switching events with the precursor elution
profile from the TIMS device. The collision energy was lowered linearly as a function of
increasing mobility starting from 59 eV at 1/Ko = 1.6 VS cm™ to 20 eV at 1/Ko = 0.6 Vs cm,
Singly charged precursor ions were excluded with a polygon filter (otof control, Bruker
Daltonik GmbH, Bremen, Germany). Precursors for MS/MS were picked at an intensity
threshold of 2,000 arbitrary units (a.u.) and re-sequenced until reaching a “target value” of
24,000 a.u. considering a dynamic exclusion of 40 s elution. The capillary voltage was set to
1,750 V and dry gas temperature to 180 °C.
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Raw data processing. MS raw files were processed using MaxQuant (v1.6.17.0) (52, 53),
which extracts features from four-dimensional isotope patterns and associated MS/MS spectra,
on a computing cluster (SUSE Linux Enterprise Server 15 SP2) utilizing UltraQuant
(github.com/kentsisresearchgroup/UltraQuant). To allow processing in an acceptable time
frame, RAW files were handled in 5 parallel batches of approximately 1700 files each
containing plates equally distributed across the measurement period. Files were searched
against the S. cerevisiae Uniprot databases (UP000002311 559292; canonical and isoform,
reviewed-sp and unreviewed-tr from 02/2020). For high significance identification the false-
discovery rates were reduced and controlled at 0.1% both on peptide spectral match (PSM) and
protein levels. Peptides with a minimum length of seven amino acids were considered for the
search including N-terminal acetylation and methionine oxidation as variable modifications and
cysteine carbamidomethylation as fixed modification, while limiting the maximum peptide
mass to 4,800 Da. Enzyme specificity was set to LysC cleaving C-terminal to lysine. A
maximum of two missed cleavages were allowed. The parameter “type” was set to “TIMS-
DDA” with “TIMS half width” at 4. The instrument was set to “Bruker TIMS” and main search
peptide tolerance reduced to 8 ppm, the max. charge set to 5 and min. peak length to 3. Peptide
identifications by MS/MS were transferred by matching four-dimensional isotope patterns
between the runs (4D-MBR) using a narrow elution match time window of 12 s and a reduced
ion mobility window of 0.01 1/Ko. Protein quantification was performed by label-free
quantification using a minimum ratio count of 2. The 24-fraction library was added as an
additional parameter group with the same group-specific settings, but LFQ disabled and
“separate LFQ in parameter groups” under global parameters enabled. The writing of additional
tables was disabled for performance reasons.

Raw data availability. All mass spectrometry raw data and MaxQuant output tables have been
deposited to the ProteomeXchange Consortium (54) via the PRIDEpartner repository with the

dataset identifier available upon publication.

Data processing and normalization. Twelve outdated samples of the GFP library were
eliminated. These included wrongly annotated ORFs that were merged with others: YAR044W,
YPRO90W, YDR474C, YFR024C, YJL021C, YJLO17W, YGL046W, YFL0O06W, YGR272C,
YBR100W, YJL018W, YJL012C-A. After the removal of potential contaminants, reverse and
“only identified by site” hits, MaxQuant proteinGroups.txt output files from the 5 batches were

merged using the majority protein IDs column. Values were filtered for two valid values within

22


https://doi.org/10.1101/2021.10.24.465633
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.24.465633; this version posted October 26, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

at least one replicate group. To adjust for potential differences between the 5 MaxQuant batches
caused by the parallel applied label free normalization algorithm and for potential handling
batch effects between 96-well plates, values were median normalized if there were more than

5% of valid values in each of the corresponding groups.

Missing value imputation. Missing values were imputed in a two-tiered approach. For proteins
with measured values in more than 5% of all samples (or minimally 400 samples), a protein-
specific missing value imputation approach was used. Here, a random value was sampled from
a normal distribution with following properties: mean = median of all measured intensity values
for the given protein, standard deviation = standard deviation of all measured intensity values
for the given protein. Lower and upper bounds for the normal distribution were set to three
standard deviations from the mean and minimally to zero. The function “rtruncnorm” from the
R library “truncnorm” was employed. For proteins with less than 5% valid values (or in less
than 400 samples), global metrics were employed for missing value imputation. Here, missing
values were sampled from a normal distribution with the following parameters: mean = mean
of all quantified values across all proteins and samples minus 1.8 times the standard deviation,
standard deviation = the standard deviation of all quantified values across all proteins and

samples multiplied by 0.3.

Protein correlation. Due to the large sample number that would negatively influence
correlation, we chose a subsampling approach: For each protein pair across the sample profile,
the top 2% of samples with the highest intensities for both proteins were selected (resulting in
2-4% depending on their overlap) and complemented by twice the number of randomly selected
samples as background. The selected subset of samples was used to calculate the Pearson
correlation coefficients of the protein pair (Fig. 1C). The effect of weighted correlation can be
visualized by enabling “subsample values” under protein correlation in our web application

(yeast-interactome.org). Since the distributions of correlation coefficients varies between

proteins and in order to define a universal cut-off for significant correlations, correlation
coefficients were normalized via row wise z-scoring. A z-scored Pearson correlation coefficient
above 4 and 5 therefore corresponds to a chance probability of below 3.2*10° and 2.9*107,

respectively.

Enrichment analysis. A two-tailed Welch’s t-test was performed on each replicate-grouped

pull-down sample using all corresponding complement samples as a combined control (11).
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Within the combined control group, samples with the highest bait correlation (top 5%) were
excluded in order to provide a bait-unrelated control. FDR cutoff-lines were calculated using
an analytical approach using an SO-parameter of 0.5 (55).

Network generation. Interactions for the first two layers of evidence (forward and reverse pull-
down) were defined between bait proteins and significantly enriched prey proteins from the t-
tests. They were scored based on their FDR of 5%, 1%, 0.1% and 0.01% at 1, 2, 3 and 4,
respectively (“score_FDR™). For the third layer of evidence, an interaction for z-scored Pearson
correlation coefficients above 4 and 5 was scored at 1 and 2, respectively (“score_cor”). All
three layers of evidence were combined into a single interaction score ranging from 1-10
(“score_FDR+cor”), thereby weighting interactions based on their experimental significance
(Fig. 1C). Networks were created and exported into Cytoscape (56) for further analysis and
visualization strategies. The network was filtered for interactions with a combined score equal
to or above 2, thereby excluding interactions based only on a single t-test with an FDR of above
1% or a z-scored Pearson correlation coefficient of below 5. The Markov clustering algorithm
was applied using the interaction score as edge weight and a granularity parameter of 2.5 while
retaining inter-cluster edges. The “CompoundSpringEmbedder” (CoSE) layout algorithm was
applied to single clusters. The network including edges (interactions) and nodes (proteins),
annotations, and layouts can be downloaded as Cytoscape session at (www.yeast-

interactome.org) or at the NDEX network database (57) via the UID available upon publication.

Organelle based mapping of clusters. Within the Cytoscape group preferences the attribute
aggregation was enabled and “visualization for group” were set to “none”. The WordCloud
“minimum word occurrence” and the “max. words per label” was set to 1, and normalization to
0. To generate outcome with location specific words only, the excluded words list was extended
by following terms: apparatus, matrix, membrane, intermembrane, chromosome, ii, protein,
anchor, coated, cytoplasmic, iv, lipid, pass, peripheral, secreted, pit, side, single, centromere,
type, endomembrane, tip, reticulum, body, localizes, kinetochore, gpi, note, neck, prospore,
granule, replication. The “AutoAnnotate” plugin (58) was used to generate localization-based
name for each markov cluster utilizing WordCloud (59) (most abundant word within
“Subcellular localization [CC]”). Collapsed localization (collapse singleton clusters enabled)
based labeled groups were organized using the “Boundary Layout” using self-defined areas.
Node repulsion was increased to 1,000,000. For cluster annotation the standard complex name

from EMBL Complexportal was used. For each cluster the two most frequent names were used,
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(minimum word occurrence: 2). The image of the background cell in Figure 4, the Cytoscape
session and the web application is an adopted version from SwissBioPics by the Swiss-Prot
group of the SIB Swiss Institute of Bioinformatics. Cell image in Figure 2A was created with

BioRender.com.

Network comparisons. Network comparison analysis was performed in Python 3.8.1. Tabular
data was loaded via the pandas package (1.3.1) and converted to a network via NetworkX
(2.6.2). To calculate “Betweeness” and “Degree Centrality”, the respective NetworkX functions
were used. To perform community analysis, a Python implementation of the Louvain algorithm
was used (https://github.com/taynaud/python-louvain, version 0.15). Cumulative distribution
functions were plotted using the matplotlib-library (3.4.2) and NumPy (1.20.3). Reference
datasets were downloaded from the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/) and the BioPlex Interactome homepage
(https://bioplex.hms.harvard.edu/interactions.php). The accompanying notebook is available as
Supplementary File “Yeast_Network_comparisons.ipynb”. Gene annotation enrichment was
performed using the 1D tool in Perseus (v.1.6.7.0). Annotation terms were filtered for 5% FDR

(Benjamini—Hochberg correction) and a score above 0.
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