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Abstract9

Colorectal cancer is a common and deadly disease in the United States accounting for over 50,000 deaths10

in 2020. This progressive disease is highly preventable with early detection and treatment, but many11

people do not comply with the recommended screening guidelines. The gut microbiome has emerged12

as a promising target for non-invasive detection of colorectal cancer. Most microbiome-based classification13

efforts utilize taxonomic abundance data from operational taxonomic units (OTUs) or amplicon sequence14

variants (ASVs) with the goal of increasing taxonomic resolution. However, it is unknown which taxonomic15

resolution is optimal for microbiome-based classification of colorectal cancer. To address this question, we16

used a reproducible machine learning framework to quantify classification performance of models based17

on data annotated to phylum, class, order, family, genus, OTU, and ASV levels. We found that model18

performance increased with increasing taxonomic resolution, up to the family level where performance was19

equal (p > 0.05) among family (mean AUC: 0.689), genus (mean AUC: 0.690), and OTU (mean AUC:20

0.693) levels before decreasing at the ASV level (p < 0.05, mean AUC: 0.676). These results demonstrate21

a trade-off between taxonomic resolution and prediction performance, where coarse taxonomic resolution22

(e.g. phylum) is not distinct enough but fine resolution (e.g. ASV) is to individualized to accurately classify23

samples. Similar to the story of Goldilocks and the three bears, mid-range resolution (i.e. family, genus, and24

OTU) is just right for optimal prediction of colorectal cancer from microbiome data.25

Importance26

Despite being highly preventable, colorectal cancer remains a leading cause of cancer related death in the27

United States. Low-cost, non-invasive detection methods could greatly improve our ability to identify and28

treat early stages of disease. The microbiome has shown promise as a resource for detection of colorectal29

cancer. Research on the gut microbiome tends to focus on improving our ability to profile species and strain30

level taxonomic resolution. However, we found that finer resolution impedes the ability to predict colorectal31

cancer based on the gut microbiome. These results highlight the need for consideration of the appropriate32

taxonomic resolution for microbiome analyses and that finer resolution is not always more informative.33
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Colorectal cancer is one of the most common cancers in men and women and a leading cause of34

cancer related deaths in the United States (1). Early detection and treatment are essential to increase35

survival rates, but for reasons such as invasiveness and high screening costs (i.e. colonoscopy), many36

people do not comply with recommended screening guidelines (2). This prompts a need for low cost,37

non-invasive detection methods. A growing body of research points to the gut microbiome as a promising38

target for non-invasive detection of screen relevant neoplasia (SRNs) consisting of advanced adenomas39

and carcinomas (3, 4). The diagnostic potential of the gut microbiome in detecting SRNs has been40

explored through machine learning (ML) methods using abundances of operational taxonomic unit (OTU)41

classifications based on amplicon sequencing of the 16S rRNA gene (3). Recent work has pushed for42

the use of amplicon sequence variants (ASVs) to replace OTUs for marker-gene analysis because of the43

improved resolution with ASVs (5). However, it is unclear if OTUs are the optimal taxonomic resolution for44

classifying SRNs from microbiome data or whether the additional resolution provided by ASVs is useful45

for ML classification. Topçuoğlu et al (6) recently demonstrated how to effectively apply machine learning46

(ML) methods to microbiome based classification problems and developed a framework for applying ML47

practices in a more reproducible way. This analysis utilizes the reproducible framework developed by48

Topçuoğlu et al to determine which ML method and taxonomic level produce the best performing classifier49

for detecting SRNs from microbiome data.50

Utilizing publicly available 16S rRNA sequence data from stool of patients with SRNs and healthy controls,51

we generated taxonomic abundance tables with mothur (7) annotated to phylum, class, order, family, genus,52

OTU and ASV levels. Using the taxonomic abundance data and the mikropml R package (8), we quantified53

how reliably samples could be classified as SRN or normal using five machine learning methods including54

random forest, L2-regularized logistic regression, decision tree, gradient boosted trees (XGBoost), and55

support vector machine with radial basis kernel (SVM radial). Across the five machine learning methods56

tested, model performance increased with increasing taxonomic level usually peaking around genus/OTU57

level before dropping off slightly with ASVs (Supplemental Figure 1). Regardless of the taxonomic level,58

random forest (RF) models consistently had the largest area under the receiver operating characteristic59

curve (AUROC). Within the RF model, the highest AUROCs were observed for family (mean AUROC:60

0.689), genus (mean AUROC: 0.690), and OTU (mean AUROC: 0.693) level data with no significant61

difference between the three (p > 0.05, Figure 1A, Supplemental Figure 2). Performance with ASVs (mean62

AUROC: 0.676) was significantly lower than OTUs (p < 0.01), but comparable to family (p = 0.06) and genus63

(p = 0.05) levels (Figure 1A). These results suggest that increased resolution improves model performance64

up to the OTU level where further taxonomic resolution is not necessarily better for identifying individuals65
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with SRNs based on microbiome composition.66

While comparing AUROC values between models is a useful way to assess the overall model performance,67

they summarize the performance across all thresholds and can be misleading since models with the same68

AUROC can have different ROC curve shapes (9). Depending on the intended implementation of the model,69

one may want to optimize the sensitivity over the specificity or vice versa. In this case, the optimal model will70

detect as many true positives (people with SRNs) as possible. To further compare the model performance71

across taxonomic levels we compared the sensitivity of the models at a specificity of 90%. The highest72

sensitivity values were observed for family (mean sensitivity: 0.38), genus (mean sensitivity: 0.39), and73

OTU (mean sensitivity: 0.37) level data (p > 0.05, Figure 1B), consistent with the AUROC results. Phylum74

(mean sensitivity: 0.21), class (mean sensitivity: 0.22), order (mean sensitivity: 0.28), and ASV (mean75

sensitivity: 0.32) sensitivity values were all significantly lower than family, genus, and OTU sensitivity values76

(p < 0.05,Figure 1B). This analysis further supports the observation that finer resolution does not improve77

SRN detection.78

One hypothesis for the observation that model performance increases from phylum to OTU level then drops79

at the ASV level is that at higher taxonomic levels (e.g. phylum) there are too few taxa and too much overlap80

to reliably differentiate between cases and controls. At the level of genus or OTU there is enough data81

and variation but at the ASV level, the data is too specific to individuals and does not overlap enough.82

Examination of the prevalence of taxa in samples at each level supports this idea. A majority of taxa83

were present in greater than 70% of samples at the phylum (67% of taxa) and class (63% of taxa) levels.84

The opposite was observed at the OTU and ASV level where 50% and 41% of taxa, respectively, were85

only present in 20% or less of the samples (Supplemental Figure 3). Of note, the ML pipeline includes a86

pre-processing step that occurred prior to training and classifying the ML models. For example, perfectly87

correlated taxa provide the same information to build the model and thus can be collapsed. Additionally,88

features with zero or near-zero variance across samples were removed. Interestingly, despite starting89

with 104,106 ASVs, only 478 (0.5%) remained after pre-processing. At the OTU level, 705 of the 20,07990

OTUs (3.5%) remained after preprocessing (Table 1). While the resolution provided by ASVs is useful in91

certain contexts(10, 11), these results suggest that the resolution is too fine for use in machine learning92

classification of SRNs based on microbiome composition.93

A look into the most important taxa at each level for classifying samples revealed some nesting where94

several genera and their higher taxonomic classifications were in the top 10 most important taxa95

(Supplemental Figure 4). For example, the genus Gemella was an important taxon at the genus and96

OTU levels and its higher classifications were also important (Firmicutes > Bacilli > Bacillales > Bacillales97
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Incertae Sedis XI > Gemella). Fusobacterium displayed a similar pattern, except that the family level98

classification (Fusobacteriaceae) importance was ranked 16th out of 54 families. In the case of unclassified99

Lachnospiraceae, there were several OTUs with this label that were in the top 10, however at the genus100

level this taxon was ranked lower in importance (21st out of 115 genera) suggesting there may be some101

benefit to separating different taxonomic groupings within Lachnospiraceae.102

These results demonstrate a Goldilocks effect such that consideration of the appropriate taxonomic103

resolution for utilizing the microbiome as a predictive tool is warranted. In general, we found that finer104

taxonomic resolution (e.g. ASV) did not add additional sensitivity to predicting SRNs based on microbiome105

composition. Family, genus, and OTU level data all performed equally. At the ASV level the fine resolution106

actually impeded model performance due to the sparsity of shared taxa and led to decreased model107

performance. The tendency for ASV level annotation to split single bacterial genomes into multiple taxa108

(12) could also be a contributing factor to the sparsity of shared taxa. Additionally, these results indicate109

that there are not specific individual bacterial strains that are useful to resolve SRNs, rather sets of closely110

related bacterial taxa. Overall, either family, genus, or OTU level taxonomy appear to perform equally for111

predicting subjects with SRNs based on the composition of the gut microbiome. A potential benefit of112

utilizing genus or family level data could be that it may allow for merging data generated from different 16S113

rRNA gene regions or sequencing platforms.114

Materials and Methods115

Dataset. Raw 16S rRNA gene amplicon sequence data isolated from human gut samples (13) was116

downloaded from NCBI Sequence Read Archive (SRP062005). This dataset contains stool samples117

from 490 subjects. Based on the available metadata, samples categorized as normal, high risk normal,118

or adenoma were labeled “normal” for this analysis and samples categorized as advanced adenoma or119

carcinoma were labeled as “screen relevant neoplasia” (SRN). This resulted in a total of 261 “normal”120

samples and 229 “SRN” samples.121

Data processing. Sequence data was processed with mothur (1.44.3) (7) using the SILVA reference122

database (v132) (14) to produce count tables for phylum, class, order, family, genus, OTU, and ASV123

following the Schloss Lab MiSeq SOP described on the mothur website (https://mothur.org/wiki/miseq_124

sop/). ASV level data was also produced using DADA2 (15) to ensure consistent results with a different125

pipeline. Data was processed following the DADA2 pipeline, but setting pool=TRUE to infer ASVs from the126

whole dataset rather than per sample. The resulting ASV table was subsampled for consistency with the127
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mothur data. The DADA2 generated ASVs performed worse than the mothur generated ASVs (DADA2 ASV128

mean AUROC: 0.659, p < 0.05).129

Machine Learning. Machine learning models were run with the R package mikropml (v0.0.2) (8) to130

predict the diagnosis category (normal vs SRN) of each sample. Data was preprocessed to normalize131

values (scale/center), remove values with zero or near-zero variance, and collapse collinear features using132

default parameters. Initially the models were run with default hyperparameters, but were expanded if the133

peak performance was at the edge of the hyperparameter range. Each taxonomic model taxonomic level134

combination (e.g. random forest on genus) was run with 100 different seeds. Each seed split the data into a135

training (80%) and testing (20%) set, and output performance of the training and testing as area under the136

receiver operating curve (AUROC).137

To compare performance between taxonomic levels and models, P values were calculated as previously138

described (6). To compare sensitivity at 90% specificity, probabilities on the test dataset were collected for139

each seed and used to calculate sensitivity for specificity values ranging from 0 to 1 in 0.01 increments.140

The sensitivity at a specificity of 90% was pulled for each seed. The averaged ROC curves were plotted141

by taking the average and standard deviation of the sensitivity at each specificity value. An optional output142

from the mikropml package is the permuted feature importance which is quantified by iteratively permuting143

each feature in the model and assessing the change in model performance. Features are presumed to144

be important if the performance of the model, measured by the AUROC, decreases when that feature is145

permuted. Ranking of feature importance was determined by ordering the features based on the average146

change in AUROC across the 100 seeds where features with a larger decrease in AUROC are ranked higher147

in importance.148

To quantify prevalence of the features, the number of samples with non-zero abundance was divided by the149

total number of samples resulting in values ranging from 0 to 1 where 0 indicates the feature is not found in150

any samples, 0.5 indicates the feature is found in half of the samples, and 1 indicates the feature is found151

in all of the samples.152

All code is available at: https://github.com/SchlossLab/Armour_Resolution_XXXX_2021153
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Figures187

188

Figure 1: Random Forest Model Performance. A) Strip plot of the area under the receiver operating189

characteristic curve (AUROC) values on the test dataset for 100 seeds predicting SRNs using a random190

forest model. Black points denote the mean and lines denote the standard deviation. Dashed line denotes191

AUROC of 0.5 which is equivalent to random classification. Significance between taxonomic levels was192

quantified by comparing the difference in mean AUROC and is denoted by letters A through E on the right193

side of the plot; taxonomic levels with the same letter are in the same significance group and are not194

significantly different from one another. B) Strip plot of the sensitivity at a specificity of 90% across the 100195

model iterations for each taxonomic level. Black points denote the mean and the lines denote the standard196

deviation. The letters W through Z on the right side of the plot denote the significance groups.197
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Tables198

Taxonomic Level Number of Features
Number of Features

After Preprocessing

Percent of Features Kept

After Preprocessing

Phylum 19 9 47.4 %

Class 36 19 52.8 %

Order 65 28 43.1 %

Family 124 54 43.5 %

Genus 316 115 36.4 %

OTU 20,079 705 3.5 %

ASV 104,106 478 0.5 %

Table 1: Summary of Features. Overview of the number of features at each taxonomic level before and199

after preprocessing as described in the methods.200
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Supplemental Figures201

202

Supplemental Figure 1: Model Performance across Taxonomy. Boxplots of AUROC values from203

predicting whether samples came from subjects with screen relevant neoplasias (i.e. advanced adenoma204

or cancer) or healthy controls across five machine learning methods including random forest, L2-regularized205

logistic regression (logistic regression), decision tree, gradient boosted trees (XGBoost), and support vector206

machine with radial basis kernel (SVM radial). Due to the random split of data into training and testing sets,207

each model was run across 100 seeds to account for variation in training/test datasplits.208
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209

Supplemental Figure 2: Averaged ROC curves. ROC curves with averaged true positive rate (or210

sensitivity) across the 100 iterations of the random forest model. The shaded region represents the211

standard deviation form the mean. Dashed line represents an AUROC of 0.5, which is equivalent to random212

classification. The mean AUROC for each taxonomic level is printed on the bottom right of the plot.213
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214

Supplemental Figure 3: Prevalence of Taxa in Samples. Distribution of the prevalence of taxa across215

samples at each taxonomic level. Percent of samples is split into 10 groups where the first is for taxa216

present in 0 to 10% of samples, then >10% to 20% of samples, and so on. The total number of taxa for217

each taxonomic level after preprocessing is in parenthesis next to the title of the plot (or the name of the218

taxonomic level).219
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220

Supplemental Figure 4: Top 10 important taxa at each taxonomic level. Summary of the 10 most221

important taxa for the random forest models at each taxonomic level based on the average decrease222

in AUROC when the feature is permuted. Dot represents the mean decrease in AUROC and the lines223

extending from the dot represent the standard deviation from the mean.224
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