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o Abstract

1 Colorectal cancer is a common and deadly disease in the United States accounting for over 50,000 deaths
1 in 2020. This progressive disease is highly preventable with early detection and treatment, but many
2 people do not comply with the recommended screening guidelines. The gut microbiome has emerged
13 as a promising target for non-invasive detection of colorectal cancer. Most microbiome-based classification
14 efforts utilize taxonomic abundance data from operational taxonomic units (OTUs) or amplicon sequence
15 variants (ASVs) with the goal of increasing taxonomic resolution. However, it is unknown which taxonomic
16 resolution is optimal for microbiome-based classification of colorectal cancer. To address this question, we
7 used a reproducible machine learning framework to quantify classification performance of models based
1¢ on data annotated to phylum, class, order, family, genus, OTU, and ASV levels. We found that model
19 performance increased with increasing taxonomic resolution, up to the family level where performance was
20 equal (p > 0.05) among family (mean AUC: 0.689), genus (mean AUC: 0.690), and OTU (mean AUC:
21 0.693) levels before decreasing at the ASV level (p < 0.05, mean AUC: 0.676). These results demonstrate
22 a trade-off between taxonomic resolution and prediction performance, where coarse taxonomic resolution
2 (e.g. phylum) is not distinct enough but fine resolution (e.g. ASV) is to individualized to accurately classify
2 samples. Similar to the story of Goldilocks and the three bears, mid-range resolution (i.e. family, genus, and

s OTU) is just right for optimal prediction of colorectal cancer from microbiome data.

s Importance

2z Despite being highly preventable, colorectal cancer remains a leading cause of cancer related death in the
s United States. Low-cost, non-invasive detection methods could greatly improve our ability to identify and
2 treat early stages of disease. The microbiome has shown promise as a resource for detection of colorectal
s cancer. Research on the gut microbiome tends to focus on improving our ability to profile species and strain
st level taxonomic resolution. However, we found that finer resolution impedes the ability to predict colorectal
=2 cancer based on the gut microbiome. These results highlight the need for consideration of the appropriate

s taxonomic resolution for microbiome analyses and that finer resolution is not always more informative.
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a« Colorectal cancer is one of the most common cancers in men and women and a leading cause of
s cancer related deaths in the United States (1). Early detection and treatment are essential to increase
s survival rates, but for reasons such as invasiveness and high screening costs (i.e. colonoscopy), many
a7 people do not comply with recommended screening guidelines (2). This prompts a need for low cost,
s nhon-invasive detection methods. A growing body of research points to the gut microbiome as a promising
s target for non-invasive detection of screen relevant neoplasia (SRNs) consisting of advanced adenomas
«» and carcinomas (3, 4). The diagnostic potential of the gut microbiome in detecting SRNs has been
a1 explored through machine learning (ML) methods using abundances of operational taxonomic unit (OTU)
« Cclassifications based on amplicon sequencing of the 16S rRNA gene (3). Recent work has pushed for
s the use of amplicon sequence variants (ASVs) to replace OTUs for marker-gene analysis because of the
« improved resolution with ASVs (5). However, it is unclear if OTUs are the optimal taxonomic resolution for
s classifying SRNs from microbiome data or whether the additional resolution provided by ASVs is useful
« for ML classification. Topguoglu et al (6) recently demonstrated how to effectively apply machine learning
« (ML) methods to microbiome based classification problems and developed a framework for applying ML
«s practices in a more reproducible way. This analysis utilizes the reproducible framework developed by
s Topguoglu et al to determine which ML method and taxonomic level produce the best performing classifier

so for detecting SRNs from microbiome data.

st Utilizing publicly available 16S rRNA sequence data from stool of patients with SRNs and healthy controls,
s2  We generated taxonomic abundance tables with mothur (7) annotated to phylum, class, order, family, genus,
ss  OTU and ASV levels. Using the taxonomic abundance data and the mikropml R package (8), we quantified
s« how reliably samples could be classified as SRN or normal using five machine learning methods including
ss random forest, L2-regularized logistic regression, decision tree, gradient boosted trees (XGBoost), and
s support vector machine with radial basis kernel (SVM radial). Across the five machine learning methods
57 tested, model performance increased with increasing taxonomic level usually peaking around genus/OTU
ss  level before dropping off slightly with ASVs (Supplemental Figure 1). Regardless of the taxonomic level,
s random forest (RF) models consistently had the largest area under the receiver operating characteristic
e curve (AUROC). Within the RF model, the highest AUROCs were observed for family (mean AUROC:
et 0.689), genus (mean AUROC: 0.690), and OTU (mean AUROC: 0.693) level data with no significant
e difference between the three (p > 0.05, Figure 1A, Supplemental Figure 2). Performance with ASVs (mean
e AUROC: 0.676) was significantly lower than OTUs (p < 0.01), but comparable to family (p = 0.06) and genus
e (p=0.05) levels (Figure 1A). These results suggest that increased resolution improves model performance

es Up to the OTU level where further taxonomic resolution is not necessarily better for identifying individuals
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e With SRNs based on microbiome composition.

ez While comparing AUROC values between models is a useful way to assess the overall model performance,
e they summarize the performance across all thresholds and can be misleading since models with the same
e AUROC can have different ROC curve shapes (9). Depending on the intended implementation of the model,
7 one may want to optimize the sensitivity over the specificity or vice versa. In this case, the optimal model will
7 detect as many true positives (people with SRNs) as possible. To further compare the model performance
72 across taxonomic levels we compared the sensitivity of the models at a specificity of 90%. The highest
7 sensitivity values were observed for family (mean sensitivity: 0.38), genus (mean sensitivity: 0.39), and
7 OTU (mean sensitivity: 0.37) level data (p > 0.05, Figure 1B), consistent with the AUROC results. Phylum
7 (mean sensitivity: 0.21), class (mean sensitivity: 0.22), order (mean sensitivity: 0.28), and ASV (mean
7 sensitivity: 0.32) sensitivity values were all significantly lower than family, genus, and OTU sensitivity values
7 (p < 0.05,Figure 1B). This analysis further supports the observation that finer resolution does not improve

s  SRN detection.

7 One hypothesis for the observation that model performance increases from phylum to OTU level then drops
s atthe ASV level is that at higher taxonomic levels (e.g. phylum) there are too few taxa and too much overlap
st to reliably differentiate between cases and controls. At the level of genus or OTU there is enough data
&2 and variation but at the ASV level, the data is too specific to individuals and does not overlap enough.
ss Examination of the prevalence of taxa in samples at each level supports this idea. A majority of taxa
s were present in greater than 70% of samples at the phylum (67% of taxa) and class (63% of taxa) levels.
s The opposite was observed at the OTU and ASV level where 50% and 41% of taxa, respectively, were
s only present in 20% or less of the samples (Supplemental Figure 3). Of note, the ML pipeline includes a
&7 pre-processing step that occurred prior to training and classifying the ML models. For example, perfectly
s correlated taxa provide the same information to build the model and thus can be collapsed. Additionally,
s features with zero or near-zero variance across samples were removed. Interestingly, despite starting
o0 Wwith 104,106 ASVs, only 478 (0.5%) remained after pre-processing. At the OTU level, 705 of the 20,079
ot OTUs (3.5%) remained after preprocessing (Table 1). While the resolution provided by ASVs is useful in
o2 certain contexts(10, 11), these results suggest that the resolution is too fine for use in machine learning

s Classification of SRNs based on microbiome composition.

s« A look into the most important taxa at each level for classifying samples revealed some nesting where
os several genera and their higher taxonomic classifications were in the top 10 most important taxa
s (Supplemental Figure 4). For example, the genus Gemella was an important taxon at the genus and

o7 OTU levels and its higher classifications were also important (Firmicutes > Bacilli > Bacillales > Bacillales
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e Incertae Sedis XI > Gemella). Fusobacterium displayed a similar pattern, except that the family level
% Classification (Fusobacteriaceae) importance was ranked 16th out of 54 families. In the case of unclassified
w0 Lachnospiraceae, there were several OTUs with this label that were in the top 10, however at the genus
w1 level this taxon was ranked lower in importance (21st out of 115 genera) suggesting there may be some

102 benefit to separating different taxonomic groupings within Lachnospiraceae.

w3 These results demonstrate a Goldilocks effect such that consideration of the appropriate taxonomic
w4 resolution for utilizing the microbiome as a predictive tool is warranted. In general, we found that finer
105 taxonomic resolution (e.g. ASV) did not add additional sensitivity to predicting SRNs based on microbiome
16 composition. Family, genus, and OTU level data all performed equally. At the ASV level the fine resolution
w7 actually impeded model performance due to the sparsity of shared taxa and led to decreased model
ws performance. The tendency for ASV level annotation to split single bacterial genomes into multiple taxa
19 (12) could also be a contributing factor to the sparsity of shared taxa. Additionally, these results indicate
1o that there are not specific individual bacterial strains that are useful to resolve SRNs, rather sets of closely
w1 related bacterial taxa. Overall, either family, genus, or OTU level taxonomy appear to perform equally for
12 predicting subjects with SRNs based on the composition of the gut microbiome. A potential benefit of
ns  Utilizing genus or family level data could be that it may allow for merging data generated from different 16S

1a rRNA gene regions or sequencing platforms.

s Materials and Methods

s Dataset. Raw 16S rBNA gene amplicon sequence data isolated from human gut samples (13) was
17 downloaded from NCBI Sequence Read Archive (SRP062005). This dataset contains stool samples
1s  from 490 subjects. Based on the available metadata, samples categorized as normal, high risk normal,
19 or adenoma were labeled “normal” for this analysis and samples categorized as advanced adenoma or
120 carcinoma were labeled as “screen relevant neoplasia” (SRN). This resulted in a total of 261 “normal”

21 samples and 229 “SRN” samples.

122 Data processing. Sequence data was processed with mothur (1.44.3) (7) using the SILVA reference
123 database (v132) (14) to produce count tables for phylum, class, order, family, genus, OTU, and ASV
124 following the Schloss Lab MiSeq SOP described on the mothur website (https:/mothur.org/wiki/miseq_
125 sop/). ASV level data was also produced using DADA2 (15) to ensure consistent results with a different
126 pipeline. Data was processed following the DADAZ2 pipeline, but setting pool=TRUE to infer ASVs from the

12z whole dataset rather than per sample. The resulting ASV table was subsampled for consistency with the
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12s - mothur data. The DADA2 generated ASVs performed worse than the mothur generated ASVs (DADA2 ASV
129 mean AUROC: 0.659, p < 0.05).

120 Machine Learning. Machine learning models were run with the R package mikropml (v0.0.2) (8) to
w1 predict the diagnosis category (normal vs SRN) of each sample. Data was preprocessed to normalize
132 values (scale/center), remove values with zero or near-zero variance, and collapse collinear features using
133 default parameters. Initially the models were run with default hyperparameters, but were expanded if the
13« peak performance was at the edge of the hyperparameter range. Each taxonomic model taxonomic level
135 combination (e.g. random forest on genus) was run with 100 different seeds. Each seed split the data into a
136 training (80%) and testing (20%) set, and output performance of the training and testing as area under the

137 receiver operating curve (AUROC).

13s 10 compare performance between taxonomic levels and models, P values were calculated as previously
139 described (6). To compare sensitivity at 90% specificity, probabilities on the test dataset were collected for
10 each seed and used to calculate sensitivity for specificity values ranging from 0 to 1 in 0.01 increments.
11 The sensitivity at a specificity of 90% was pulled for each seed. The averaged ROC curves were plotted
12 by taking the average and standard deviation of the sensitivity at each specificity value. An optional output
13 from the mikropml package is the permuted feature importance which is quantified by iteratively permuting
1« each feature in the model and assessing the change in model performance. Features are presumed to
1s be important if the performance of the model, measured by the AUROC, decreases when that feature is
s permuted. Ranking of feature importance was determined by ordering the features based on the average
1z change in AUROC across the 100 seeds where features with a larger decrease in AUROC are ranked higher

1s  in importance.

19 To quantify prevalence of the features, the number of samples with non-zero abundance was divided by the
10 total number of samples resulting in values ranging from 0 to 1 where 0 indicates the feature is not found in
151 any samples, 0.5 indicates the feature is found in half of the samples, and 1 indicates the feature is found

12 in all of the samples.

153 All code is available at: https://github.com/SchlossLab/Armour_Resolution_XXXX_2021
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189 Figure 1: Random Forest Model Performance. A) Strip plot of the area under the receiver operating
190 characteristic curve (AUROC) values on the test dataset for 100 seeds predicting SRNs using a random
191 forest model. Black points denote the mean and lines denote the standard deviation. Dashed line denotes
122 AUROC of 0.5 which is equivalent to random classification. Significance between taxonomic levels was
193 quantified by comparing the difference in mean AUROC and is denoted by letters A through E on the right
194 side of the plot; taxonomic levels with the same letter are in the same significance group and are not
195 significantly different from one another. B) Strip plot of the sensitivity at a specificity of 90% across the 100
1s model iterations for each taxonomic level. Black points denote the mean and the lines denote the standard

17 deviation. The letters W through Z on the right side of the plot denote the significance groups.
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s Tables

. Number of Features Percent of Features Kept
Taxonomic Level Number of Features

After Preprocessing After Preprocessing
Phylum 19 9 47.4 %
Class 36 19 52.8 %
Order 65 28 43.1 %
Family 124 54 43.5 %
Genus 316 115 36.4 %
OoTu 20,079 705 35%
ASV 104,106 478 0.5 %

199 Table 1: Summary of Features. Overview of the number of features at each taxonomic level before and

200 after preprocessing as described in the methods.

10
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21 Supplemental Figures
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23 Supplemental Figure 1: Model Performance across Taxonomy. Boxplots of AUROC values from
204 predicting whether samples came from subjects with screen relevant neoplasias (i.e. advanced adenoma
205 Or cancer) or healthy controls across five machine learning methods including random forest, L2-regularized
26 logistic regression (logistic regression), decision tree, gradient boosted trees (XGBoost), and support vector
207 machine with radial basis kernel (SVM radial). Due to the random split of data into training and testing sets,

28 €ach model was run across 100 seeds to account for variation in training/test datasplits.

11


https://doi.org/10.1101/2021.10.22.465538
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465538; this version posted October 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

209

210

211

212

213

available under aCC-BY 4.0 International license.

=== Phylum Class Order Family Genus OTuU ASV
Phylum Class Order Family
1
v rd 7
(4 7/ 4 d
075 i A 7/ ¢ 7 , 4 L, 7/
4 d 4 '
4 7/ /7 /7
4 4 v 4
% 05 p L’ R R
m 7 ’ 7/ ’ 7/ ’ 7/ ’
® 025{ /.° meanAUROC »” mean AUROC »” mean AUROC »” mean AUROC
= /i 0.592 /4 0.607 e 0.660 7 0.689
8 ’ / 7 ’
o ¢ 0 025 05 075 1
() Genus OoTu ASV
> 1
— ’ . 7 ’ e ’
0751 .’ . .’
CU e 4 7
§ L, 7 , /7 , 7
05 d e 7 e
< 7/ ’ e ’ 7/ ’
7/ 7/ 4
0.25 ,7  mean AUROC ,”  mean AUROC .7 mean AUROC
P 0.690 7 0.693 e 0.676
7/ 7 7/

0 ’ ’ ’ ’ ’ ’ ’ ’ ’
0 025 05 075 10 025 05 075 10 025 05 075 1
False Positive Rate

Supplemental Figure 2: Averaged ROC curves. ROC curves with averaged true positive rate (or
sensitivity) across the 100 iterations of the random forest model. The shaded region represents the
standard deviation form the mean. Dashed line represents an AUROC of 0.5, which is equivalent to random

classification. The mean AUROC for each taxonomic level is printed on the bottom right of the plot.
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25 Supplemental Figure 3: Prevalence of Taxa in Samples. Distribution of the prevalence of taxa across
215 samples at each taxonomic level. Percent of samples is split into 10 groups where the first is for taxa
217 present in 0 to 10% of samples, then >10% to 20% of samples, and so on. The total number of taxa for
218 each taxonomic level after preprocessing is in parenthesis next to the title of the plot (or the name of the

219 taxonomic level).
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Phylum Class
Fusobacteria (OTU 8) 4 0 Fusobacteriia (OTU 14) 4 —_—0—
Bacteroidetes (OTU 2) 4 — Betaproteobacteria (OTU 12) - ——
Synergistetes (OTU 7) 4 Ps Negativicutes (OTU 6) o — 00—
Actinobacteria (OTU 4) 4 —— Bactefoify’ia (OTU 2) T
Deinococcus-Thermus (OTU 12) - . Syn.erg'/stla(OTU 191 T
Unclassified Firmicutes (OTU 9) 4 — O
Verrucomicrobia (OTU 3) 1 —— Deltaproteobacteria (OTU 11) { ——@—
Firmicutes (OTU 1) 4 —— Verrucomicrobiae (OTU 3) 4 —@—
Proteobacteria (OTU 5) 4 —@— Bacilli(OTU 7)1 —@—
Unclassified Bacteria(OTU 6) 4 —@— Actinobacteria (OTU 4) 4 ——@——
-0.02 O.E)O 0.62 0.64 0.2)0 O.b1 0.I02 0.2)3 0.2)4
Decrease in AUROC Decrease in AUROC
Order Family
Fusobacteriales (OTU 18) « Bacteroidaceae (OTU 3) 4 —
Synergistales (OTU 16) 4 Clostridiales Incertae Sedis XI(OTU 37) 4 00—
Bacillales (OTU 20) 4 Lachnospiraceae (OTU 1) 4 . S—
Selenomonadales (OTU 6) Synergistaceae (OTU 26) 4 —0—
Coriobacteriales (OTU 7) 4 Bacillales Incertae Sedis XI(OTU 34) 4 — 00—
Burkholderiales (OTU 14) 4 Coriobacteriaceae (OTU 13) 4 ——@——
Unclassified Clostridia(OTU 23) 4 Unclassified Clostridia(OTU 44) 4 —0—
Desulfovibrionales (OTU 13) Enterobacteriaceae (OTU 10) 4 —@——
Actinomycetales (OTU 15) Desulfovibrionaceae (OTU 21) 4 ——@——
Verrucomicrobiales (OTU 3) Verrucomicrobiaceae (OTU 4) 4 ——@——
0.I01 0.I02 O.E)O O.IO1 0.I02
Decrease in AUROC Decrease in AUROC
Genus oTu
Porphyromonas (OTU 52) 4 Porphyromonas (OTU 178) 4 —_—
Bacteroides (OTU 5) 4 Fusobacterium (OTU 390) —0—
Gemella(OTU 88) 4 Unclassified Lachnospiraceae (OTU 35) 4 —@—
Fusobacterium (OTU 66) 4 Gemella(OTU 735) 4 -@-
Ruminococcus (OTU 12) Bacteroides (OTU 322) 4 -@-
Peptoniphilus (OTU 156) Unclassified Lachnospiraceae (OTU 122) 4 —-@—
Anaerostipes (OTU 4) Unclassified Lachnospiraceae (OTU 60) 4 —@—
Collinsella(OTU 22) 4 Ruminococcus (OTU 421) 1 @
Clostridium XIVb(OTU 51) 4 Coprobacillus (OTU 626) 1 @
Pseudoflavonifractor (OTU 79) Ruminococcus (OTU 19) 4 -@-
000 001 002 000 001 002 003
Decrease in AUROC Decrease in AUROC
ASV
Clostridium sensu stricto(OTU 162600)
Unclassified Clostridiales (OTU 13735) 4
Porphyromonas (OTU 2856)
Prevotella (OTU 42581) 4
Unclassified Ruminococcaceae (OTU 55648) -
Unclassified Lachnospiraceae (OTU 2860) 4 ——@——
Blautia(OTU 107590)
Unclassified Clostridiales (OTU 3061) 4
Unclassified Ruminococcaceae (OTU 44605) 4
Unclassified Ruminococcaceae (OTU 10829) 4 —@—
0.00 0.01 0.02

220

221

Decrease in AUROC

Supplemental Figure 4: Top 10 important taxa at each taxonomic level. Summary of the 10 most

222 important taxa for the random forest models at each taxonomic level based on the average decrease

223 in AUROC when the feature is permuted. Dot represents the mean decrease in AUROC and the lines

222 extending from the dot represent the standard deviation from the mean.
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