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Summary
Mitochondria form highly dynamic populations in the cells of plants (and all eukaryotes).
The characteristics of this collective behaviour, and how it is influenced by nuclear
features, remain to be fully elucidated. Here, we use a recently-developed quantitative
approach to reveal and analyse the physical and collective "social" dynamics of
mitochondria in an Arabidopsis msh1 mutant where organelle DNA maintenance
machinery is compromised. We use a newly-created line combining the msh1 mutant
with mitochondrially-targeted GFP, and characterise mitochondrial dynamics with a
combination of single-cell timelapse microscopy, computational tracking and network
analysis. The collective physical behaviour of msh1 mitochondria is altered from
wildtype in several ways: mitochondria become less evenly spread, and networks of
inter-mitochondrial encounters become more connected with greater potential
efficiency for inter-organelle exchange. We find that these changes are similar to those
observed in friendly, where mitochondrial dynamics are altered by a physical
perturbation, suggesting that this shift to higher connectivity may reflect a general

response to mitochondrial challenges.

Keywords: mitochondrial dynamics, msh1, social networks, timelapse microscopy,

Arabidopsis thaliana
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Introduction

Mitochondria are key bioenergetic compartments of the eukaryotic cell. Within plant cells,
hundreds of mitochondria exist, largely as individual organelles -- contrasting with the
reticulated network form often seen in yeast and mammalian cells (Logan, 2006b; Johnston,
2019). These cellular populations are highly dynamic (Logan, 2010), interacting with each
other and other organelles (Islam, Niwa and Takagi, 2009; Jaipargas et al., 2015; Shai,
Schuldiner and Zalckvar, 2016; Barton et al., 2018; Krupinska et al., 2020; Chustecki et al.,
2021).

Recent work suggested that the collective cellular dynamics of plant mitochondria can
resolve a tension between mitochondrial proximity and spacing (Chustecki et al., 2021).
Mitochondria need to be physically proximal to allow membrane fusion and mixing of
contents including mitochondrial DNA (mtDNA) (Arimura et al., 2004; Sheahan, McCurdy
and Rose, 2005; Rose, 2021). In addition to this exchange, mitochondrial proximity
facilitates metabolic exchange and mitochondrial quality control, a process reliant on cycles
of fission and fusion, key for maintaining a healthy chondriome (Jones, 1986; Karbowski and
Youle, 2003; Arimura et al., 2004; Logan, 2006a; Takanashi et al., 2006; Twig et al., 2008; Liu
et al., 2009; Figge et al., 2012; Shutt and McBride, 2013; Agrawal, Pekkurnaz and Koslover,
2018). There are also many other functional implications of inter-mitochondrial proximity
including influence on membrane potential (Santo-Domingo et al., 2013), cristae alighnment
(Picard et al., 2015), and calcium waves (Ichas, Jouaville and Mazat, 1997). However, there
are also benefits to mitochondria remaining physically spaced, with benefits for energy
demand, inter-organellar colocalisation, and the regulation of metabolic demands (Chen
and Chan, 2006; Segui-Simarro and Staehelin, 2009; Bauwe, Hagemann and Fernie, 2010;
Sage, Sage and Kocacinar, 2012; Liesa and Shirihai, 2013; Spillane et al., 2013; Shai,
Schuldiner and Zalckvar, 2016; Yu et al., 2016; Schuler et al., 2017; Yu and Pekkurnaz, 2018).
The mitochondrial population thus faces a hypothesised tension between maintaining even

spacing of mitochondria and supporting inter-mitochondrial encounters.

Chustecki et al. (2021) explored this tradeoff between even spacing and supporting
encounters by characterising the ‘social networks’ of the dynamic cellular population,

allowing the characterisation of connectivity across the chondriome -- the whole population


https://doi.org/10.1101/2021.10.22.465420
http://creativecommons.org/licenses/by/4.0/

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465420; this version posted October 24, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

of mitochondria in a cell (Logan, 2010). Physical and network analysis revealed that wildtype
Arabidopsis uses mitochondrial dynamics to resolve this tension, with mitochondrial motion
allowing transient encounters between organelles -- and facilitating efficient exchange
through the population -- while also retaining physical spacing. The development of this
approach allows targeted, quantitative questions to be asked about how collective

mitochondrial behaviour responds to different situations.

Here, we pursue this target by investigating the collective behaviour of mitochondria in the
msh1 mutant, where MutS HOMOLOGUE 1 (MSH1), responsible for recombination
surveillance of organellar genomes (Martinez-Zapater et al., 1992; Abdelnoor et al., 2003,
2006; Shedge et al., 2007; Arrieta-Montiel et al., 2009; Davila et al., 2011; Wu et al., 2020),
is compromised. Disruption of mitochondrial-localised MSH1 leads to an increase in single
nucleotide variants and insertion-deletion mutations in mtDNA (Wu et al., 2020). In some
plants, MSH1 disruption can also lead to substoichiometric shifting in the mitochondrial
genome (Martinez-Zapater et al., 1992; Sakamoto et al., 1996; Abdelnoor et al., 2003).
Although the full molecular mechanism of MSH1 action on the mitochondrial genome is still
not fully characterised (Fukui et al., 2018; Wu et al., 2020), multiple studies support the
model of MSH1 influencing double strand break repair (Davila et al., 2011; Christensen,
2014; Wu et al., 2020). msh1 does not, however, exclusively affect mtDNA: chloroplast DNA
maintenance is also compromised, and other effects, including metabolic influences of the
resulting organelle dysfunction and even epigenetic changes likely also contribute to the

phenotype (Xu et al., 2011, 2012; Virdi et al., 2015; Shao et al., 2017).

Disruption of MSH1 thus provides genetic challenges to the mtDNA and plastid DNA (ptDNA)
populations, as well as resultant metabolic and other stresses. We set out to investigate
whether these stresses had the effect of changing the collective cellular behaviour of
mitochondria. As described below, we explored this question by using single-cell
microscopy, computational analysis and network science approaches to characterise and
analyse mitochondrial behaviour in msh1 compared to wildtype Arabidopsis and other

mutants.
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97

98

99  Results
100
101  Construction, genotyping and phenotyping of mtGFP-msh1
102
103  To allow the visualisation of mitochondrial dynamics in the msh1 mutant, we created
104  mtGFP-msh1, combining the transgenic mtGFP line where GFP is localised to mitochondria
105 (from an original line kindly provided by Prof David Logan (Logan and Leaver, 2000)) with a
106  mutant line where MSH1, an organelle genome maintenance factor, is perturbed by a
107  premature stop codon- caused by a single nucleotide polymorphism (SNP) (Abdelnoor et al.,
108 2003; see Methods for more details). We verified the crossed line using dCAPs genotyping
109 for the SNP and rosette phenotyping for characteristic variegation in the msh1 line (Sl Fig.
110 1), where in contrast to both wildtype mtGFP and Col-0, mtGFP-msh1 retained the expected
111  variegated and low growth phenotype of the msh1 mutant (SI Fig. 2A,B,C). The candidate
112 line at F3 showed the presence of the SNP (SI Fig. 1A), as well as resistance to Kanamycin,
113  demonstrating presence of the mtGFP transgene (Logan and Leaver, 2000). Sequencing of
114  the F3 candidate line confirmed the presence of the SNP in the region encoding MSH1 (Sl
115  Fig. 3). Sequencing of three F4 candidate line offspring also showed the presence of the
116  SNP, validating the genetic makeup of the mtGFP-msh1 mutant.
117
118  msh1 alters physical dynamics of mitochondria
119
120  Following the creation of mtGFP-msh1, we used confocal microscopy to characterise
121 mitochondrial dynamics in single hypocotyl cells of 4-5 day seedlings in this mutant, and
122  compared these dynamics to the mtGFP transgenic line, representing wildtype
123 mitochondrial motion. This imaging approach followed the protocol from (Chustecki et al.,
124 2021). Briefly, we recorded timelapse videos of mitochondrial motion in single cells, and
125 computationally identified trajectories of individual mitochondria using TrackMate (Tinevez
126  etal., 2017). From these trajectories we can analyse individual and collective behaviour of
127  mitochondria, including speeds, colocalisations, and many more statistics (Chustecki et al.,

128  2021). Fig. 1 illustrates the process of tracking fluorescent mitochondria over time, in
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129 representative mtGFP (Fig. 1Ai) and mtGFP-msh1 (Fig. 1Bi) single cells. Generally and

130 qualitatively, as with wildtype mtGFP mitochondrial motion, mtGFP-msh1 mitochondria
131  showed a mixture of diffusive and ballistic motion, with some organelles remaining static,
132 and others moving swiftly across the cell. These organelles also colocalise with one another,
133  and occasionally colocalise with chloroplasts (Supp Video 1).

134

135  We found that mitochondria in mtGFP-msh1 on average were less evenly spread and were
136  physically associated for longer times in hypocotyl cells (Fig. 2). Mean inter-mitochondrial
137  distance, reporting the average distance (in microns) to the nearest physical neighbour in
138  the cell, was lower in mtGFP-msh1, reflecting a less evenly-spread population (Fig. 2A). The
139  median speed of individual mitochondria in mtGFP-msh1 was also lower, although

140 differences between the lines did not cross a significance threshold when we used a

141  conservative non-parametric test (Fig. 2B). Colocalisation time, reporting the time over

142  which two mitochondria are within a threshold of each other, was higher in mtGFP-msh1
143  (Fig. 2C). Cell sizes were similar across all lines (Sl Fig. 5), suggesting that these physical

144  differences are intrinsic properties of the mitochondrial population and not a result of

145  altered cellular morphology.

146

147  Alterations in physical dynamics of msh1 affect social dynamics

148

149  To explore whether this decrease in spacing is accompanied by an increase in inter-

150 mitochondrial connectivity, we next characterised the “encounter networks” of

151 mitochondria, defined as the set of colocalisations between pairs of mitochondria that occur
152  within a given timeframe (see Methods, Fig. 1Aii, Bii, Sl Fig. 4). Akin to social networks,

153  describing social interactions between individuals in a population, these encounter

154  networks shape the potential for exchange of contents across the mitochondrial population
155 (Chustecki et al., 2021).

156

157  Salient features of these encounter networks for collective mitochondrial behaviour are the
158  degree distribution (the number of different mitochondria each mitochondrion encounters);
159 the diameter of the network (the length in edges of the longest direct route across the

160 network) and the network efficiency. This final quantity is the average of the reciprocal
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161  lengths of the shortest paths between each pair of mitochondria in the network. If all pairs
162  of mitochondria are connected by short paths (facilitating exchange through the network),
163  reciprocal lengths, and network efficiency, are high. If some pairs are connected only by
164 long paths, or are disconnected, reciprocal lengths and efficiency are low and information
165  exchange is more challenging.

166

167  We found that the encounter networks of mtGFP-msh1 had higher mean degree and higher
168 efficiency than the mtGFP single mutant (representative of wildtype mitochondrial

169  networks) (Fig. 3A,B). Mitochondria in the msh1 mutant are thus more directly connected
170  through encounters, facilitating easier exchange of contents. Network diameter is also

171  shorter across mtGFP-msh1 networks, again suggesting increased organelle connectivity;
172 but we note the significant difference was not retained after multiple hypothesis testing
173  (Fig. 3C). The size of networks, quantified either by node or edge number, remained similar
174  between mtGFP and mtGFP-msh1 over time (Sl Fig. 6). There was no significant difference
175  across values for betweenness centrality, an average of the number of shortest paths

176  crossing each node in the network (Fig. 3D).

177

178  These network statistics are time-dependent, because networks build up over time as more
179  encounters between individuals occur. As seen in Sl Fig. 7, msh1 differences in degree value
180 remain across observation time windows, with network efficiency differences significant at
181 later frames (Sl Fig. 7A,B, Fig. 3A,B), when networks have built up with more encounters.
182  Network diameter relationships across the lines do not change over time, but betweenness
183  centrality is significantly different for early comparisons between lines, but not at later

184  frames (Sl Fig. 7C,D, Fig. 3C,D). This could be a consequence of the topology of smaller

185 networks, before so many encounters and connections between smaller cliques of

186  mitochondria are formed.

187

188  The collective dynamic response to msh1 resembles the response to friendly

189

190  We next asked whether the altered mitochondrial behaviour in the face of the msh1

191  perturbation shared similarities with altered behaviour under a physical perturbation to

192  mitochondrial dynamics. To this end, we characterised an mtGFP-friendly mutant within
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193  which the fusion of these organelles is perturbed (El Zawily et al., 2014), increasing the

194  association time between individuals, and posing a transient challenge to the social

195 connectivity and physical spread trade-off as shown in (Chustecki et al., 2021). Recent work
196 hasilluminated the colocalization of FRIENDLY to depolarised mitochondria as an essential
197  part of the mitophagy pathway (Ma et al., 2021) -- its perturbation results in reduced

198 mitochondrial fusion, increased mitochondrial clustering, and a wide range of metabolic
199 issues (El Zawily et al., 2014; Ma et al., 2021). This mutant has a pronounced growth

200 phenotype, though more limited than msh1 (Sl Fig. 2D).

201

202  To explore the relationship between changes in mitochondrial behaviour due to physical
203  and genetic challenges, we compared mitochondrial behaviour in mtGFP, mtGFP-msh1, and
204  mtGFP-friendly. Strikingly, the physical and social statistics observed in mtGFP-msh1 and
205  mtGFP-friendly lines are remarkably similar, with no statistically detectable differences

206  between these genotypes. Of course, an absence of statistical significance does not imply
207  the absence of an effect, but the observed magnitudes of the statistics and our moderate
208  sample sizes (n=28 for mtGFP-msh1, n=19 for mtGFP-friendly) suggest that the behaviours
209 areindeed rather similar (Fig. 4). There was a slightly lower inter-mitochondrial distance
210 alongside an increased degree and network efficiency within mtGFP-msh1 -- suggesting a
211 marginally more pronounced shift towards connectivity -- although these observations did
212 not meet a statistical significance threshold for a nonparameteric comparison (Fig. 4 A,D,E).
213 Both mutant genotypes show a significantly decreased inter-mitochondrial distance, and
214  increased colocalization time and degree, when compared to wildtype mtGFP (Fig. 4 A,C,D).
215

216  Previous work (Chustecki et al., 2021) found that the difference between mtGFP-friendly
217  and wildtype behaviour diminished over time: initially rather cliquey, the friendly networks
218  became more globally connected over time as itinerant mitochondria formed social bridges
219  between cliques. Our statistical analysis here supports this picture for mean degree in both
220  friendly and msh1 (Sl Fig. 7A; Fig. 4D) while revealing a more nuanced picture for other

221  network statistics. In particular, network efficiency differences between the mutants and
222 wildtype do not diminish over time to the same extent (S| Fig. 7B; Fig. 4E), suggesting that
223 the global changes in collective behaviour are maintained robustly over time despite

224 similarities in local behaviour. Overall, both the magnitudes and time behaviour of collective
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225 dynamic changes were quantitatively similar in friendly and msh1, supporting the

226  comparable influences of the two perturbations.

227

228  Discussion

229

230  Mitochondria across eukaryotes are strikingly dynamic. In some cases, including the delivery
231  of ATP to synapses in neurons (Hollenbeck and Saxton, 2005; Mironov, 2007; MacAskill,

232 Atkin and Kittler, 2010) and fit mitochondria to growing buds in yeast (Fehrenbacher et al.,
233 2004; Pernice et al., 2018), the reasons for this motion are largely explained. In many other
234  cases, the advantages and disadvantages of the rich dynamics of mitochondria remain

235  unclear. Here we have demonstrated that two perturbations to nuclear-encoded machinery,
236  mshl1 and friendly, influence the collective dynamics of plant mitochondria in a similar way:
237  trading reduced spacing for increased connectivity. The quantitative similarity between the
238  two responses suggests that this shift may reflect a more general response of plant cells to
239  organelle stress (Fig. 5).

240

241  The msh1 mutation has a wide range of influences on the cell. Organelle DNA maintenance
242 is compromised, and many downstream metabolic and structural effects may arise as a

243 result. One potentially quite general principle is that the physical dynamics of organelles
244  exert control on the genetic dynamics of oDNA by dictating which oDNA molecules can

245  interact, be degraded, and so on -- and the cell may thus address genetic priorities by

246  controlling physical behaviour (Johnston, 2019; Edwards et al., 2021). Our msh1 results are
247  notincompatible with the hypothesis that genetic challenges to mtDNA integrity (here,

248  through compromised mtDNA maintenance (Wu et al., 2020)) induce a compensatory

249  physical response in mitochondrial dynamics, where the cell sacrifices mitochondrial spacing
250 to allow more encounters. The increased connectivity we observe across the chondriome
251  could then provide individual mitochondria with a chance to access undamaged mtDNA, or
252  extra copies of gene sequences to use as guide strands during double strand break repair.
253  However, the other effects of the msh1 mutation may also play important or leading roles in
254  shaping the collective dynamic response, including metabolic influence from mitochondrial
255  and chloroplast dysfunction, the further buildup of o DNA mutations, changes to nDNA

256  methylation, and consequent or independent influences on the internal structure of the cell
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257 (Davila et al., 2011; Christensen, 2014; Wu et al., 2020; Xu et al., 2011, 2012; Virdi et al.,
258 2015; Shao et al., 2017). Further work characterising mitochondrial collective dynamics in
259 lines controlling for these influences will help provide further support for the physical-

260 genetic feedback hypothesis.

261

262  Mitochondria are increasingly being recognised as ‘social’ organelles, with their interactions
263  playing important functional roles beyond what a collection of independent individuals

264  could achieve (Picard and Sandi, 2020). In plants, a picture of collective behaviour emerging
265  from a population of individuals is particularly pertinent, as mitochondria physically retain
266 individual identities to a much greater extent than in other kingdoms where fused networks
267 are common. The sharing of contents between mitochondria, and consequent control of
268  contents throughout the population, is an example of such emergent behaviour that could
269  not be achieved by independent organelles.

270

271  Other examples exist of where plant mitochondrial dynamics may influence mtDNA genetic
272 structure. In plant cells, contrasting with other kingdoms, different mitochondria contain
273  different subsets of the full mtDNA genome (Preuten et al., 2010). Many mitochondria may
274  contain no mtDNA at all, while some may contain the full genome (57 genes across 366kb in
275  Arabidopsis), and others may contain a subgenomic molecule containing some but not all
276  mtDNA genes (Arimura et al., 2004; Gualberto et al., 2014; Kozik et al., 2019). Processes of
277  mtDNA exchange and recombination are essential to maintain this diverse structure

278  (Bellaoui et al., 1998; Arrieta-Montiel et al., 2009; Davila et al., 2011; Gualberto and

279  Newton, 2017), with mtDNA sharing through the population of mitochondria constituting a
280  ‘discontinuous whole’ (Logan, 2006a). Such sharing and recombination is inherently shaped
281  and limited by the physical behaviour of organelles in the cell (Belliard, Vedel and Pelletier,
282  1979; Lonsdale et al., 1988; Gualberto and Newton, 2017; Aryaman et al., 2019; Johnston,
283  2019; Rose, 2021). In the shoot apical meristem (SAM), a cage-like mitochondrial network
284  has been observed to form (Segui-Simarro and Staehelin, 2009), in contrast to the largely
285 individual mitochondria observed in other tissues. This network structure allows mtDNA
286  mixing and may facilitate recombination (Edwards et al., 2021; Rose, 2021). In conjunction

287  with this physical change, relative expression of MSH1 is particularly high in the SAM, which
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288  may both assist with maintenance and support germline mtDNA segregation through gene
289  conversion as an evolutionary priority (Schmid et al., 2005; Edwards et al., 2021).

290

291 These links between the physical behaviour of mitochondria and the genetic behaviour of
292  mtDNA are still being elucidated across kingdoms (Aryaman et al., 2019; Johnston, 2019;
293 Edwards et al., 2021). The production, degradation, fission, fusion, partitioning, motion, and
294  arrangement of mitochondria in the cell all influence the genetic structure of the mtDNA
295  population. Plant cells, with largely individual mitochondria readily visualised in a quasi-2D
296  cytosolic domain, are an excellent model system for further exploring this link, and we

297  believe that the encounter networks we characterise here will find further use in

298 investigating the vital emergent collective dynamics of the chondriome.

299

300 Experimental Procedures

301

302 Plantlines

303

304 An MSH1 (previously CHM1-1) ethyl methanesulfonate-derived mutant line in the Columbia
305 background generated by G. Redei (Rédei, 1973) was obtained from the Arabidopsis stock
306 centre (N3372, http://arabidopsis.info/Stockinfo?NASC_id=3372). This line carries an SNP in
307 the fourth exon of genomic region AT3G24320, leading to a nonsynonymous glutamate->
308 stop codon change. This line was originally isolated in a g/1 marked plant, a linkage gene in
309 the 3rd chromosome, and so carries a gl1 polymorphism, and lacks trichomes. There is

310 evidence to suggest g/1 does not alter mitochondrial behaviour (Islam et al., 2020), and the
311  gene s highly expressed in only the early SAM, young leaf and young flower, not in the

312  hypocotyl used in this study (Nakabayashi et al., 2005; Schmid et al., 2005; Klepikova et al.,
313  2016). This mutant has been used in previous studies as a disruptor of normal MSH1

314  function (Xu et al., 2011; Wu et al., 2020). Seeds of Arabidopsis thaliana with mitochondrial-
315 targeted GFP, and the mtGFP-friendly (Mito-GFP:.fmt) line were kindly provided by Prof.
316  David Logan (Logan and Leaver, 2000; El Zawily et al., 2014).

317

318

319 Crossing and DNA extraction

10
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320

321 mshl and mtGFP seeds were surface sterilized in 50% (v/v) household bleach solution for 4
322 minutes with continual inversion, rinsed three times with sterile water, and plated onto %
323  MS Agar. Plated seeds were stratified in the dark for 2 days at 4°C. Seedlings were grown in
324  16hr light/8hr dark at 21°C for 4-5 days, before transferred to 4:2:1 compost-vermiculite-
325  perlite mixture, and grown until first flower buds developed.

326

327  Crossing technique followed the (Browse et al., 1993) protocol, with mtGFP plants as the
328 pollen donor and msh1 accepting. Pollinated stigmas were wrapped gently in plastic wrap
329 and siliques left to develop. F2 seeds were sown onto 50ug/ml Kanamycin % MS plates,
330 selecting for individuals carrying the fluorescence construct (Logan and Leaver, 2000), and
331 grown on soil as before. Leaf samples were taken for DNA extraction from all but F2 seeds.
332

333  Quick DNA extraction was performed on young leaf samples (2-3 weeks old, age dependent
334  ongrowth rate). Leaf samples were macerated with a pipette tip in 40ul Extraction Buffer
335  (2.5mL 2M TRIS-HCL, 500uL 1M EDTA, 6.25mL 2M KCL, made to 50mL with BPC water).

336 Sample was then incubated in a heat block for 10min at 95°C. 40ul dilution buffer was then
337 added (3% BSA (1.5g in 50mL), filter sterilised), and samples spun down at 13000rpm for 60s
338  before storing at -20°C.

339

340 Genotyping and sequencing

341

342 For genotyping, primer set 1 was used. A reverse primer (RP1) running into the snp site was
343  designed using dCAPS finder 2.0 (Neff et al., 1998), and the forward primer (FP1, see

344  supplementary material) was designed 200bp upstream of the restriction site. By design,
345  BsrGl will cut a region of 30bp from the 293bp element if the SNP is present, producing one
346 larger (260bp) and one smaller (~30bp) fragment compared to the WT single fragment

347  (293bp). After PCR amplification, half (5uL) of PCR product for each sample was directly
348 added to 1.5uL Cutsmart buffer [NEB], 0.2uL BsrGl restriction enzyme [NEB], 8.3uL nuclease-
349  free H,0. Samples were then incubated at 37°C overnight, before alternate

350 undigested/digested samples loaded for gel electrophoresis.

351

11
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352 Tosequence MSH1, the region of interest was first amplified by PCR using primer set 2 (see
353  supplementary information) and Phusion high-fidelity DNA polymerase (NEB CAT#M0530S).
354  PCR products were then purified using QlAquick PCR Purification Kit (Qiagen) and

355 sequenced from primer FP2 using an ABI 3730 capillary sequencer (Applied Biosystems).
356

357 Imaging and video analysis

358

359  Seedlings for imaging were sterilized, stratified and grown 50ug/ml Kanamycin % MS plates
360 asdescribed above. After 4-5 days, seedlings were taken for imaging, and prior to mounting,
361  stained with 10uM propidium iodide (PI) solution for three minutes to capture the cell wall.
362  Simple mounting of whole seedlings on microscope slides with coverslips was used

363 (modified from (Whelan and Murcha, 2015)). In order to minimize the effects of hypoxia and
364  physical stress on the seedling, imaging was undertaken in less than ten minutes after the
365  cover slip was added.

366

367 We used a Zeiss 710 laser scanning confocal microscope for imaging of seedlings. To

368 characterise cells we used excitation wavelength 543nm, detection range 578-718nm for
369  both chlorophyll autofluorescence (peak emission 679.5nm) and for PI (peak emission

370  648nm). For mitochondrial capture we used excitation wavelength 488nm, detection range
371  494-578nm for GFP (peak emission 535.5nm). Time-lapse images were taken, and all

372  samples used in this study have the same time interval between frames, and same length of
373  capture, allowing for direct comparison.

374

375  For image analysis, single cells were cropped using the PI cell wall outline with Fiji (Image J
376  2.0.0). The universal length scale of 5 pixels/um was applied across all samples. To counter
377  the occasional sample drift within time-lapse videos, 3D drift correction was applied with
378  default settings, using the cell outline via the Propidium lodide channel as the stability

379 landmark (correct 3D drift, FlJI, Imagel 2.1.0, (Parslow, Cardona and Bryson-Richardson,
380 2014)).

381

382  Tracking of individual mitochondria was done using Trackmate (Tinevez et al., 2017) in

383 Imagel 2.0.0. The LoG detector was used with typical settings being 1um blob diameters
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384  (the typical size of a mitochondrion), although 0.8um was occasionally used for lower signal
385 samples. Detection threshold was set between 1.5-8, and filters applied on spots if

386  necessary. The Simple LAP Tracker was run with a linking max distance of 4um (3um used
387 for afew samples), gap-closing distance of 5um (4um used for a few samples) and gap-
388 closing max frame gap of 2 frames. For each sample, quality of overlaying detection for
389 mitochondria was scrutinised, and occasional tracks edited for precision.

390

391  Physical statistics

392

393  Physical statistics include speed (um/frame), the distance moved per frame per trajectory.
394  This value is averaged over all trajectories from the duration of the video. Inter-

395  mitochondrial distance is the minimum Euclidean distance (um) between every

396 mitochondrion and its nearest physical neighbour in each frame. This value is average over
397 all frames of the video. Colocalisation time is the number of frames any two mitochondria
398 have spent within a threshold distance (1.6um) of each other, averaged over all frames.
399

400  Network statistics

401

402  Encounter networks are built from the close associations of mitochondria. A threshold

403  distance of 1.6pum was used to define a characteristic close association, being just over one
404  mitochondrion's length. Lower threshold distances can also be used, yielding less

405  encounters, but similar connectivity trends (Chustecki et al., 2021). Networks build up as
406  encounters (edges) between mitochondria (nodes) are registered over time.

407 The mean degree is the number of immediate neighbours each node has, averaged over the
408 number of nodes in the network. Network efficiency is the average, over all pairs of nodes,

409 of the reciprocal shortest distance between each pair:

E(G) =

410 where Gis the network of interest, n is the number of nodes in the network and d(i, j) is the
411  distance (edge number) between node i and node j. The graph diameter is the length of the
412  longest direct path across the network, a quantification of the number of edges connecting

413  the two furthest nodes across a network. The mean graph betweenness centrality is the
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414  average number of shortest paths crossing each node in the network. The mean connected
415 component number is the average number of disconnected subgraphs within the network.
416

417  Accession numbers

418  All analysis code and data is available from Github at

419  https://github.com/StochasticBiology/plant-mito-dynamics
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453  Supplementary Figure 5: No evidence found for a difference between median cell area
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455  Supplementary Figure 6: Node number and edge number of encounter networks did not
456  vary greatly between lines for mtGFP, mtGFP-msh1, and mtGFP-friendly.

457  Supplementary Figure 7: Social summary statistics provide evidence of differences

458  between mtGFP, mtGFP-msh1 and friendly, at three earlier time points.

459  Supplementary Video 1: An example cell from 4-5 day old mtGFP-msh1 hypocotyl,

460 showing GFP-tagged mitochondria.
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Figure 1: Characterising the “social networks” of plant mitochondria in mtGFP (A) and
mtGFP-msh1 (B). Top panels (i) illustrate the tracking process of (green) fluorescent
mitochondria in single hypocotyl cells from seedlings, using Trackmate (Tinevez et al., 2017).
Mitochondria are automatically identified (pink spots, diameter 1um), and computed tracks
over time are shown (for clarity, only 10 local frames are shown (yellow)). Insets show
whole-plant phenotypes of the two lines at later development. Bottom panels (ii) show the

networks of mitochondrial encounters corresponding to the single-cell dynamics (nodes are
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769  mitochondria, edges are encounters), built up over a time window of observation (here 233
770  seconds).
771
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Figure 2: Physical summary statistics differ between mtGFP and mtGFP-msh1. Each point
represents a summary statistic for one cell (mtGFP n= 18, mtGFP-msh1 n= 28). P-values
represents outcome of the Wilcoxon rank sum test across both genotypes, without multiple
hypothesis correction. Boxplots represent the median and 25th/75th percentile, with
whiskers showing the smallest/largest value within 1.5x the interquartile range. Each
individual point gives the mean statistic across an entire video, corresponding to 233

seconds of video time.
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Figure 3: Social summary statistics differ between mtGFP and mtGFP-msh1. Each point

represents a summary statistic for one cell (mtGFP n= 18, mtGFP-msh1 n= 28). P-values

represents outcome of the Wilcoxon rank sum test across both genotypes, without multiple

hypothesis correction. Boxplots represent the median and 25th/75th percentile, with

whiskers showing the smallest/largest value within 1.5x the interquartile range. Each

individual point is from a network corresponding to an observed time window of 233

seconds.
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Figure 4: Physical and social summary statistics compared across mtGFP, mtGFP-msh1 and

friendly. Each point represents a summary statistic for one cell (mtGFP n= 18, mtGFP-msh1

n= 28, friendly n = 19). P-values represent Kruskal Wallis test outcomes across all three

genotypes, and pairwise p-values are false discovery rate adjusted outcomes of a post-hoc

Dunn test, without multiple hypothesis correction across statistics. Boxplots represent the

median and 25th/75th percentile, with whiskers showing the smallest/largest value within

1.5x the interquartile range. Each physical datapoint (A-C) is a mean across a 233 second

time window, and each social datapoint (D-G) is from a network corresponding to a time

window of 233 seconds.
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802  Figure 5: Different resolutions to the social/spacing tradeoff. There exists a tradeoff

803  (coloured curves) between physical spacing of mitochondria (horizontal axis) and the

804  connectivity of the chondriome (vertical axis). Without mitochondrial dynamics, static

805 organelles are either colocalised or spaced, with little capacity to support both behaviours
806 together (pink). Mitochondrial dynamics provides a resolution: as organelles move, they can
807 transiently colocalise while usually remaining spaced (blue), allowing some capacity for both
808  behaviours. Wildtype Arabidopsis adopts a particular balance between spacing and

809 encounters. This balance is shifted in strikingly similar ways in the msh1 mutant

810 compromising organelle DNA maintenance, and the friendly mutant compromising

811  mitochondrial dynamics.
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815
816  Supplementary Figure 1: Genotyping for F3 mshl homozygosity leads to consistently

817 variegated F4 progeny. (A) dCAPS genotyping for WT gives 293bp fragment, but in the

818 presence of msh1 SNP mutation gives ~260bp fragment, when digested with a restriction
819 enzyme. Each line has an undigested (left band) and a digested (right band) sample.

820 Homozygosity is demonstrated by one upper band (left, 293bp), and one lower band (right,
821  ~260bp). Heterozygosity is demonstrated by one left band and two fragments in the right
822  band. (B) Phenotype of candidate line 11.9.2, showing all individuals with variegated

823  phenotype typical of the msh1 mutation in Arabidopsis (30 days old). Scale bar = 1cm.
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824
825  Supplementary Figure 2: Plant phenotypes reveal developmental differences across

826  genotypes. Rosette images of 31 day old plants taken of A) Col-0; B) mtGFP; C) mtGFP-msh1;
827 D) mtGFP-friendly. Scale bar = 1cm.
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828
829  Supplementary Figure 3: Single nucleotide polymorphism in MSH1 retained in the F3

830 generation of mtGFP-msh1 cross. Upper panel illustrates single autoscaled peaks, showing
831  base pair reads across the middle of the amplified region and at position 294 (arrow),

832  evidence of a homozygous SNP. Lower panel shows alignment of base pair reads of mtGFP-
833  msh1 F3 parent, Col-0 sample, and the TAIR reference genome at the MSH1 gene.

834  Highlighted base shows the SNP leading to CAG (glutamine) to TAG (stop).

835
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836
837  Supplementary Figure 4: Sample encounter networks for mtGFP (A) and mtGFP-msh1 (B).

838  Networks are built from close encounters (edges) between mitochondria (nodes) (see

839 methods) over different cells (i)-(iii). Networks here are built up from 233 seconds of video
840  time.

841
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Supplementary Figure 5: No evidence found for a difference between median cell area
across genotypes. Comparison of two-dimensional cell area (um?) between the three
genotypes using the Kruskal-Wallis test. Boxplots represent the median and 25th/75th
percentile, with whiskers showing the smallest/largest value within 1.5x the interquartile

range. P-value represents Kruskal Wallis test outcome across all three genotypes.
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Supplementary Figure 6: Node number (A) and edge number (B) of encounter networks

did not vary substantially between lines for mtGFP, mtGFP-msh1, and mtGFP-friendly.

With the exception of edge numbers for early frame 10. From left to right (i-iv) graphs show

snapshots of networks at frames 10, 50, 100, 120. P-values represent Kruskal Wallis test

outcomes across all three genotypes, and pairwise p-values are false discovery rate adjusted

outcomes of a post-hoc Dunn test, without multiple hypothesis correction across statistics.
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860  Supplementary Figure 7: Social summary statistics (A-D) provide evidence of differences

861 between mtGFP, mtGFP-msh1 and friendly, at three earlier time points (10 frames (i), 50
862  frames (ii), 100 frames (iii). Each point represents a summary statistic for one cell (mtGFP
863  n=18, mtGFP-msh1 n= 28, friendly n = 19). P-values represent Kruskal Wallis test outcomes
864  across all three genotypes, and pairwise p-values are false discovery rare adjusted outcomes
865  of a post-hoc Dunn test, without multiple hypothesis correction across statistics. Boxplots
866  represent the median and 25th/75th percentile, with whiskers showing the smallest/largest
867  value within 1.5x the interquartile range. Frames correspond to 19, 97 and 194 seconds,

868  respectively. P-values are for individual experiments.

869

870 Link: https://org.uib.no/stochasticbiology/SuppVideol-MSH17.avi
871  Supplementary Video 1: An example cell from 4-5 day old mtGFP-msh1 hypocotyl,

872  showing GFP-tagged mitochondria (green), and a Propidium lodide stain around the cell

873  (red); autofluorescence from the chloroplasts also detected (red).

38


https://doi.org/10.1101/2021.10.22.465420
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465420; this version posted October 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

874

39


https://doi.org/10.1101/2021.10.22.465420
http://creativecommons.org/licenses/by/4.0/

