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Abstract 36 

Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney 37 

disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. 38 

Whether hyperphosphatemia and/or associated changes in metabolic regulators, including 39 

elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of 40 

CKD is uncertain. Here we report that similar to patients with CKD, mice with adenine-induced 41 

CKD develop inflammation, anemia and skeletal muscle wasting. These complications are also 42 

observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-43 

FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-44 

induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and 45 

skeletal muscle wasting in a genetic mouse model of CKD.  Our mechanistic in vitro studies 46 

indicate that phosphate elevations induce inflammatory signaling and increase hepcidin 47 

expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia and 48 

skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the 49 

consumption of processed food, may have harmful effects irrespective of pre-existing kidney 50 

injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but 51 

also arguing for limiting phosphate intake in healthy individuals. 52 

 53 

 54 

 55 
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 4 

Introduction  57 

Phosphate (Pi) is an essential mineral nutrient (Erem and Razzaque, 2018). Once absorbed and in 58 

circulation, Pi is utilized by cells for various structures and functions. Pi metabolism is regulated 59 

by a specific set of hormones to maintain physiological Pi concentrations. Fibroblast growth 60 

factor 23 (FGF23) is the chief hormone maintaining body Pi balance by promoting renal Pi 61 

excretion when Pi load is high (Fukumoto and Yamashita, 2007; Isakova et al., 2011). 62 

Dysregulation of this system causes either low (hypophosphatemia) or high (hyperphosphatemia) 63 

serum Pi levels (Farrow et al., 2011; White et al., 2001; Wolf, 2012). Hyperphosphatemic states 64 

can result from various conditions, including rare genetic disorders, such as familial tumoral 65 

calcinosis (FTC), and acquired diseases, such as chronic kidney disease (CKD), which are more 66 

frequent. Moreover, increased consumption of foods and drinks rich in Pi-based additives is 67 

expanding in Westernized diets, leading to excess dietary Pi intake (Carrigan et al., 2014; 68 

Gutiérrez et al., 2010).  69 

CKD patients have an increased risk of death that is attributable to complications such as 70 

inflammation, anemia and skeletal muscle wasting (Amdur et al., 2016; Hoshino et al., 2020; 71 

Stenvinkel et al., 2016). The etiology of CKD-associated anemia is multifactorial and includes 72 

absolute iron deficiency and functional iron deficiency, with the latter caused by inflammatory 73 

cytokines including interleukin-6 (IL6) and interleukin-1 (IL1). These inflammatory mediators 74 

can directly induce the release of the liver-hormone hepcidin, the master regulator of iron 75 

metabolism (Falzacappa et al., 2007; Ganz and Nemeth, 2012; Kanamori et al., 2017). Hepcidin 76 

controls the flow of iron into circulation by regulating the iron exporter ferroportin (FPN) 77 

(Nemeth et al., 2004b). Hepcidin binding occludes FPN (Aschemeyer et al., 2018; Billesbølle et 78 

al., 2020) and induces its degradation, thereby restricting iron efflux into the circulation from 79 
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iron recycling macrophages, a process also known as reticuloendothelial system (RES) blockade, 80 

and from duodenal enterocytes responsible for dietary iron absorption. Collectively, these events 81 

reduce serum iron levels (hypoferremia), limiting the supply of iron for erythrocyte production 82 

(Nemeth et al., 2004a). 83 

Inflammatory cytokines such as IL6 and IL1 also act on skeletal muscle and induce 84 

muscle wasting, a comorbidity affecting 65% of CKD patients (Kovesdy et al., 2013; Li et al., 85 

2009; Zhang et al., 2013). The loss of protein from muscle is ascribed to protein degradation by 86 

the ubiquitin-proteasome system, suppression of protein synthesis and impaired growth of new 87 

muscle fibers (Wang and Mitch, 2014). As pleotropic activities of IL6 and IL1 induce the 88 

production of myostatin, a pivotal mediator of skeletal muscle wasting, these actions foster the 89 

simultaneous induction of atrophy-related gene programs and reduced cellular responses to pro-90 

growth signals, which initiates protein synthesis suppression. Together, inflammation and 91 

myostatin advance these CKD-associated comorbidities which reduce the survival and quality of 92 

life of CKD patients (Zhang et al., 2011). 93 

A prominent aspect of CKD is altered mineral metabolism, where hyperphosphatemia 94 

and excess serum FGF23 are factors associated with inflammation, anemia and mortality (Mehta 95 

et al., 2017; Mendoza et al., 2017; Navarro-González et al., 2009; Tran et al., 2016). Drugs have 96 

been developed to control hyperphosphatemia, but reports show conflicting results about 97 

outcomes. Studies of the effects of dietary Pi restriction in animal models are scarce. Dietary 98 

interventions to lower phosphate intake are challenging because they require long-term 99 

behavioral changes made more difficult by the lack of disclosure of Pi content of foods and 100 

beverages by the food industry (Gutiérrez and Wolf, 2010).  101 
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All cell types rely on Pi for housekeeping roles, and metabolic Pi uptake is facilitated by 102 

three families of sodium-Pi (Na/Pi) cotransporters. Type III Na/Pi cotransporters, PiT-1 and PiT-103 

2, are ubiquitously expressed and mediate cellular Pi homeostasis in all cells (Lederer and 104 

Miyamoto, 2012). Pathologic Pi accumulation in vasculature is mediated by PiT-1 and PiT-2, 105 

loading Pi into vascular smooth muscle cells where it activates signaling networks such as 106 

Ras/mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of 107 

activated B cells (NFB) (Chavkin et al., 2015; Turner et al., 2020; Zhao et al., 2011). These 108 

pathways provide plausible pathomechanisms that support excess Pi as a potential culprit behind 109 

the clinical association between hyperphosphatemia and CKD-associated vascular calcification.  110 

Under physiologic conditions, bone-derived FGF23 targets the kidney to increase Pi 111 

excretion by activating its canonical signaling complex, fibroblast growth factor receptor 1 112 

(FGFR1) and co-receptor Klotho (Czaya and Faul, 2019a). When FGF23 is in pathological 113 

excess, as found in dietary Pi overload or CKD, increased FGF23 targets the heart and liver by 114 

activating FGFR4, independently of Klotho (Faul et al., 2011; Grabner et al., 2015; Singh et al., 115 

2016). This non-canonical mechanism recruits FGFR4 as a pathologic receptor mediating the 116 

effects of excess FGF23 to cause cardiac hypertrophy and promote inflammation (Faul et al., 117 

2011; Grabner et al., 2015; Han et al., 2020; Leifheit-Nestler et al., 2017; Singh et al., 2016; 118 

Xiao et al., 2019). However, whether excess FGF23 and/or Pi directly contribute to functional 119 

iron deficiency or skeletal muscle wasting is unknown, and direct actions of excess Pi on the 120 

liver have not been studied to date. 121 

In this study, we examine whether hyperphosphatemia and/or pathologic FGF23-FGFR4 122 

signaling aggravates functional iron deficiency and skeletal muscle wasting, the common 123 

comorbidities in CKD. We expose mice constitutively lacking FGFR4 to hyperphosphatemia in 124 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.22.465390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465390
http://creativecommons.org/licenses/by/4.0/


 7 

the absence and presence of CKD. To further define the contribution of hyperphosphatemia, we 125 

subject Alport mice, a genetic model of progressive CKD, to a low Pi diet treatment. We identify 126 

a molecular mechanism in cultured mouse primary hepatocytes that links excess Pi to its actions 127 

on inflammation and iron metabolism, as increased inflammatory cytokines promote widespread 128 

pathologies and hepcidin production. Our findings reveal additional complications of 129 

hyperphosphatemia besides vascular calcification and identify plausible pathomechanisms 130 

underlying clinical associations between inflammation, anemia and skeletal muscle wasting, 131 

which could be targeted therapeutically. 132 

 133 

Results 134 

FGF23-FGFR4 signaling does not contribute to functional iron deficiency in adenine-135 

induced CKD  136 

To examine FGF23 inflammatory actions in vivo, we explored pathologic FGF23-FGFR4 137 

signaling and its role in functional iron deficiency. We subjected wild-type (FGFR4
+/+

) and 138 

constitutive FGFR4 knockout (FGFR4
-/-

) mice to adenine diet to induce CKD. Following 139 

adenine diet for 14 weeks, FGFR4
+/+

 and FGFR4
-/-

 mice display comparable renal dysfunction, 140 

as shown by elevations in blood urea nitrogen (BUN) and serum creatinine levels (Fig. 1a). On 141 

adenine diet, serum FGF23 and Pi levels significantly increased in both genotypes (Fig. 1b), as 142 

expected with marked kidney injury. No significant changes in serum calcium levels were 143 

observed between genotypes on adenine (Supplemental Fig. 1a), despite increased serum Pi 144 

levels (Fig. 1b). 145 
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We assessed gene expression of inflammatory cytokines and acute phase proteins in both 146 

genotypes in adenine-induced CKD. Unlike in healthy control mice, liver IL1 (Il1b), IL6 (Il6) 147 

and serum amyloid A1 (Saa1) transcript levels were significantly and similarly elevated (Fig. 1c, 148 

d) in both FGFR4
+/+

 and FGFR4
-/-

 mice.  149 

To identify if FGF23-FGFR4 signaling contributes to functional iron deficiency, we 150 

evaluated liver hepcidin (Hamp) mRNA and hematological responses. Compared with control 151 

mice, Hamp transcript levels were significantly and similarly elevated in both FGFR4
+/+

 and 152 

FGFR4
-/-

 mice on adenine (Fig. 1e). Complete blood count and serum analyses displayed 153 

significant reductions in red blood cell (RBC) count, mean corpuscular volume (MCV), 154 

hemoglobin and serum iron levels on adenine diet (Fig. 1f). Significant reductions in hematocrit 155 

percentage (HCT%), mean corpuscular hematocrit (MCH) and serum transferrin saturation 156 

percentage (TSAT%) were also observed (Supplemental Fig. 1b). Spleen tissue sections stained 157 

with Perl’s Prussian blue revealed profound intracellular iron sequestration, indicating severe 158 

RES blockade in both FGFR4
+/+

 and FGFR4
-/-

 mice on adenine (Fig. 1g). Taken together, our 159 

data demonstrates that FGF23-FGFR4 signaling does not affect inflammation, the acute phase 160 

response or functional iron deficiency and anemia in adenine-induced CKD. 161 

 162 

FGF23-FGFR4 signaling does not contribute to hypoferremia following dietary Pi overload  163 

Excess Pi is a hallmark of CKD, but direct pathologic effects of Pi on tissues other than the 164 

vasculature are poorly understood (Komaba and Fukagawa, 2016; Scialla and Wolf, 2014). To 165 

examine if liver Pi deposition is increased in CKD, we analyzed liver Pi levels in adenine-166 

induced mouse CKD model by colorimetric quantification. Hepatic Pi levels were elevated in 167 
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both FGFR4
-/- 

and FGFR4
+/+

 mice following adenine (Fig. 1h) but less so in FGFR4
-/-

 mice 168 

when compared to FGFR4
+/+

 mice. 169 

To establish whether excess Pi and/or FGF23 contributes to hypoferremia in the absence 170 

of CKD, we exposed FGFR4
+/+

 and FGFR4
-/-

 mice to a graded dietary Pi load for 12 weeks. 171 

Serum FGF23 levels increased in both genotypes on 2% Pi and 3% Pi diet, in comparison to 172 

mice on 0.7% Pi diet (Fig. 2a). Despite 2% Pi increasing serum FGF23, serum Pi levels 173 

significantly increased only on 3% Pi, in comparison to mice fed 0.7% Pi (Fig. 2a). Notably, 174 

these serum Pi levels are comparable to the elevated serum Pi levels observed in adenine-induced 175 

CKD (Fig. 1b). No significant differences in serum calcium levels were observed between 176 

genotypes (Supplemental Fig. 2a), despite elevated Pi levels (Fig. 2a). No pathologic changes 177 

were detected in kidneys regardless of genotype as BUN, serum creatinine and kidney tissue 178 

sections stained with hematoxylin and eosin (H&E) appeared similar to those of mice on 0.7% Pi 179 

(Supplemental Fig.  2b-d). Interstitial fibrosis was not detected in kidneys as shown by Masson’s 180 

trichrome staining (Supplemental Fig.  2e). These data indicate elevations in serum levels of 181 

FGF23 and Pi in mice on 2% Pi or 3% Pi diet are consequences of an increasing dietary Pi load 182 

and not renal dysfunction. 183 

As a high Pi diet has been reported to exacerbate inflammation and serum FGF23 levels 184 

(Sugihara et al., 2017; Takashi et al., 2019; Yamada et al., 2014), we evaluated gene expression 185 

of inflammatory cytokines and acute phase proteins. Compared to 0.7% Pi, liver Il1b, Il6 and 186 

Saa1 transcript levels significantly increased in both FGFR4
+/+

 and FGFR4
-/-

 mice on 3% Pi, 187 

although not on 2% Pi diets (Fig. 2b, c). Liver injury was not detected, as no significant 188 

elevations in hepatic alanine aminotransferase (Alt1) or aspartate aminotransferase (Ast1) mRNA 189 
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levels were found on 3% Pi (Supplemental Fig. 3a, b). These data support the notion that dietary 190 

Pi overload induces inflammation, but not via FGF23-FGFR4 signaling. 191 

To explain these effects of 3% Pi diet and determine if increased tissue Pi deposition is 192 

associated with adverse outcomes, we analyzed the relationship between liver and serum Pi 193 

levels in both FGFR4
+/+

 and FGFR4
-/-

 mice following a graded dietary Pi load. A positive 194 

correlation was detected between hepatic and serum Pi levels in both genotypes, beginning with 195 

2% Pi (Fig. 2d). These results show liver Pi deposits increase following elevations in dietary Pi 196 

content. 197 

Next, we tested if increased liver Pi accumulation affects correlations between liver Pi 198 

and liver Hamp mRNA levels, as a high Pi diet induces Hamp expression (Nakao et al., 2015). A 199 

positive correlation between liver Pi and liver Hamp mRNA levels were detected in both 200 

FGFR4
+/+

 and FGFR4
-/-

 mice, again only with diets containing 2% or 3% Pi (Fig. 2e). As liver 201 

injury was not detected (Supplemental Fig. 3a, b), these data indicate that elevations in liver 202 

Hamp mRNA are independent of liver injury and may result from Pi-driven inflammation. 203 

We next explored if increased dietary Pi loading led to changes in hematological 204 

responses. Marked reductions in RBC, MCV, hemoglobin and serum iron levels were detected 205 

on 3% Pi and were similar in both FGFR4
+/+

 and FGFR4
-/-

 mice (Fig. 2f). HCT% and MCH 206 

were also significantly decreased (Supplemental Fig. 3c). Supporting these findings, spleen 207 

tissue sections revealed both FGFR4
+/+

 and FGFR4
-/-

 mice show increased intracellular iron 208 

deposits on 3% Pi (Fig. 2g). Thus, dietary Pi loading causes iron restriction and anemia even in 209 

the absence of CKD. 210 

 211 
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Mouse models of hyperphosphatemia exhibit signs of skeletal muscle wasting which are 212 

independent of FGF23-FGFR4 signaling. 213 

As inflammation is a known contributor of muscle wasting (Raj et al., 2008; Schaap et al., 2006; 214 

Verzola et al., 2016), and since hyperphosphatemia and excess FGF23 are associated with 215 

inflammation, we explored whether hyperphosphatemia contributes to skeletal muscle wasting, 216 

and if pathologic FGF23-FGFR4 signaling is involved in these effects. We analyzed skeletal 217 

muscle from FGFR4
+/+

 and FGFR4
-/-

 mice exposed to adenine-induced CKD (Fig. 1) or a 218 

graded dietary Pi load (Fig. 2). Examination of skeletal muscle strength indicates that mice on 219 

adenine or 3% Pi diet exhibit reduced grip strength in both FGFR4
+/+

 and FGFR4
-/-

 mice, in 220 

comparison to respective control mice (Fig. 3a). A reduction in gastrocnemius mass was also 221 

observed (Fig. 3b). Notably, gastrocnemius metallothionein-1 (Mt1) transcript levels were 222 

significantly elevated in both genotypes following adenine and 3% Pi diets (Supplemental Fig. 223 

4a, b), indicating that either condition fosters skeletal muscle abnormalities.  224 

We next investigated if these muscle deficits resulted from inflammation inducing 225 

myostatin and downstream atrophy-related gene programs, as both experimental models display 226 

elevated levels of liver Il1b and Il6 (Fig. 1c, Fig. 2b). Compared to respective control mice, 227 

gastrocnemius myostatin (Mstn) transcript levels were significantly elevated in both FGFR4
+/+

 228 

and FGFR4
-/-

 mice following adenine or 3% Pi diet (Fig. 3c). Additionally, both genotypes on 229 

2% Pi showed an increased trend in Mstn mRNA levels (Fig. 3c). As these findings suggest 230 

increased myofibrillar protein degradation, we further analyzed the expression of two specific 231 

ubiquitin ligases of muscle-protein breakdown, muscle RING-finger protein 1 (Murf1) and 232 

Atrogin-1. Compared with their respective control mice, gastrocnemius Murf1 and Atrogin1 233 
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transcript levels were significantly elevated in both FGFR4
+/+

 and FGFR4
-/-

 mice following 234 

adenine and 3% Pi diets (Fig. 3d). 235 

As elevated myostatin and increased myofibrillar protein degradation are features of 236 

skeletal muscle wasting, we assessed if these results prompt a shift towards smaller myofibers. 237 

Indeed, gastrocnemius tissue sections stained with H&E from FGFR4
+/+

 and FGFR4
-/-

 mice, on 238 

either adenine or 3% Pi diet, showed smaller muscle fiber size compared with controls (Fig. 3e). 239 

Taken together, these data suggest skeletal muscle wasting in adenine-induced CKD and 240 

hyperphosphatemia does not require FGF23-FGFR4 signaling. 241 

 242 

Low Pi feeding limits functional iron deficiency in COL4A3
-/-

 (Alport syndrome) mice 243 

Alport (COL4A3
-/-

) mice are an established model of progressive CKD which develop 244 

hyperphosphatemia with severe inflammation, hypoferremia and anemia (Francis et al., 2019). 245 

To test if hyperphosphatemia aggravates these pathologic complications, we exposed COL4A3
-/-

 246 

mice to a low Pi diet treatment (0.2% Pi) for 6 weeks. In comparison to wild-type (COL4A3
+/+

) 247 

mice on normal diet (0.6% Pi), COL4A3
-/-

 mice showed renal dysfunction by increased BUN and 248 

serum creatinine levels (Fig. 4a). COL4A3
-/-

 mice on low Pi diet displayed a reduction in both 249 

parameters (Fig. 4a), along with reduced pathologic alterations in kidney morphology 250 

(Supplemental Fig. 5a). As compared to wild-type mice, serum levels of FGF23 and Pi 251 

significantly increased in COL4A3
-/-

 mice on normal diet (Fig. 4b), but less so in COL4A3
-/-

 mice 252 

on low Pi diet (Fig. 4b). 253 
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To identify if a low Pi diet affects inflammation or the acute phase response in Alport 254 

mice, we assessed gene expression of inflammatory cytokines and acute phase proteins. 255 

Compared to wild-type mice on normal diet, liver Il1b, Il6 and Saa1 transcript levels were 256 

significantly elevated in COL4A3
-/-

 mice but much less elevated on 0.2% Pi (Fig. 4c, d). These 257 

data support the notion that excess Pi in Alport mice aggravates inflammation. 258 

As our results show that a low Pi diet decreases inflammation, we next explored its 259 

impact on functional iron deficiency. Compared to wild-type mice on normal diet, liver Hamp 260 

transcript levels were significantly elevated in COL4A3
-/-

 mice with complete reversal by low Pi 261 

diet (Fig. 4e). Assessing hematological responses, COL4A3
-/-

 mice on normal diet were anemic, 262 

with significant reductions in RBC count, MCV, hemoglobin and serum iron levels (Fig. 4f), as 263 

well as in HCT%, MCH and TSAT% (Supplemental Fig. 5b). COL4A3
-/-

 mice on normal diet 264 

displayed profound intracellular iron sequestration in spleen (Fig. 4g), along with excessive 265 

spleen and liver non-heme iron levels (Supplemental Fig. 5c, d). These effects were substantially 266 

ameliorated by low Pi diet in COL4A3
-/-

 mice, with improved hematologic parameters and 267 

reduced iron deposits in spleen (Fig. 4f, g). Non-heme iron levels in spleen and liver were 268 

reduced in COL4A3
-/-

 mice by treatment, indicating increased iron mobilization and decreased 269 

iron restriction (Supplemental Fig. 5c, d). These data indicate that dietary Pi restriction improves 270 

hematological responses and alleviates hypoferremia. 271 

As liver Pi accumulation is increased in adenine-induced CKD (Fig. 1h), we next 272 

explored if low Pi diet treatment reduces pathologic liver Pi deposits in progressive CKD. 273 

Compared to wild-type mice on normal diet, liver Pi levels were increased in COL4A3
-/-

 mice 274 

and were reduced on low Pi diet (Fig. 4h). Taken together, our data demonstrate that Pi 275 

restriction as a dietary intervention, in a genetic model of progressive CKD, reduces pathologic 276 
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Pi accumulation in the liver and alleviates the severity of renal injury and functional iron 277 

deficiency. 278 

 279 

Low Pi feeding counteracts signs of skeletal muscle wasting in COL4A3
-/-

 (Alport 280 

syndrome) mice  281 

To determine if reducing hyperphosphatemia limits skeletal muscle wasting, an important 282 

complication of CKD (Verzola et al., 2018), we analyzed skeletal muscle from wild-type 283 

(COL4A3
+/+

) and Alport (COL4A3
-/-

) mice subjected to either a normal diet (0.6% Pi) or a low Pi 284 

diet treatment (0.2% Pi) (Fig. 3). Compared to wild-type mice on normal diet, COL4A3
-/-

 mice 285 

showed significant reduction in grip strength which was improved by low Pi diet (Fig. 5a). 286 

Gastrocnemius mass was also reduced in COL4A3
-/-

 mice, and treatment tended to improve 287 

muscle weight (Fig. 5b). In particular, gastrocnemius Mt1 transcript levels were significantly 288 

elevated in COL4A3
-/-

 mice compared to wild-type mice on normal diet and were reduced by low 289 

Pi diet (Supplemental Fig. 4c). These results suggest that Pi restriction as a dietary intervention 290 

may improve skeletal muscle abnormalities in CKD. Furthermore, compared to wild-type mice 291 

on normal chow, COL4A3
-/-

 mice displayed significant elevations in gastrocnemius Mstn 292 

transcript levels which was reduced by treatment (Fig. 5c). Additionally, COL4A3
-/-

 mice on 293 

normal diet showed increased gastrocnemius Murf1 and Atrogin1 transcript levels, which were 294 

also reduced by low Pi diet (Fig. 5d). These data support the notion that dietary Pi restriction, as 295 

a treatment in COL4A3
-/-

 mice, reduces myostatin synthesis and subsequent atrophy-related gene 296 

programs. 297 
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As with adenine-induced CKD mice, or mice fed high phosphate diet, gastrocnemius 298 

tissue sections from COL4A3
-/-

 mice showed smaller muscle fiber size compared to wild-type 299 

controls (Fig. 5e). However, COL4A3
-/-

 mice fed low Pi diet showed improved muscle fiber size 300 

(Fig. 5e). Taken together, these data suggest that hyperphosphatemia affects skeletal muscle 301 

wasting in Alport mice, possibly by exacerbating systemic inflammatory cytokine concentrations 302 

and their catabolic effects on muscle. 303 

 304 

Pi targets hepatocytes and increases expression of inflammatory cytokines and hepcidin 305 

Having shown that inflammation, hypoferremia, and muscle wasting induced by high Pi are 306 

independent of FGF23-FGFR4 signaling, we tested if Pi directly affects inflammatory cytokine 307 

and hepcidin expression in mouse primary hepatocytes.  308 

We first analyzed the expression profile of the three families of Na/Pi cotransporters 309 

(type I - III). Quantitative polymerase chain reaction (qPCR) analysis detected high levels of Pit1 310 

and Pit2, but not Npt1 and 4, or NaPi2a, 2b and 2c (Supplemental Fig. 6a). This analysis 311 

indicates that type III Na/Pi cotransporters are the predominant Na/Pi family in primary 312 

hepatocyte cultures. 313 

Based on studies demonstrating that high extracellular Pi activates signaling pathways 314 

such as MAPK and NFB (Chavkin et al., 2015; Zhao et al., 2011), we assessed if MAPK, 315 

STAT3 and NFB signaling are activated in cultured hepatocytes in response to treatments with 316 

FGF23 or graded concentrations of Pi. Treatment with TNF or IL6 was used as a positive 317 

control for activation of these established networks regulating inflammatory gene expression. 318 
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Immunoblot analysis of ERK1/2, STAT3 and NFB showed that Pi treatments increased 319 

phosphorylated NFB levels without changing total NFB expression (Fig. 6a). Increased 320 

concentrations of Na2SO4, a salt generating another anionic species, had no effect on phospho-321 

NFB levels, indicating this response was specific to elevated Pi and not an unspecific response 322 

to increased anions. Pi treatment did not affect pERK1/2 or pSTAT3, and FGF23 had no effect 323 

on any of the pathways examined.  324 

We next analyzed gene expression by qPCR of inflammatory cytokines and acute phase 325 

proteins in isolated hepatocytes treated with increasing concentrations of Pi or Na2SO4 with LPS 326 

and IL6 treatments used as positive control. Elevations in Il1b, Il6 and Saa1 transcript levels 327 

were noted not only following LPS and IL6 but also Pi treatments (Fig. 6b, c). Treatments with 328 

Na2SO4 had no effect on gene expression. As inflammation is a known mediator of hepcidin 329 

synthesis, we analyzed Hamp mRNA levels. LPS, IL6 and Pi treatments all elevated Hamp 330 

transcript levels when compared to control (Fig. 6d). These data indicate high extracellular Pi 331 

can act on hepatocytes to increase the synthesis of inflammatory cytokines and hepcidin. 332 

Given that inflammation and NFB signaling regulate PiT1 expression (Koumakis et al., 333 

2019) and primary hepatocytes express Pit1 and Pit2 (Supplemental Fig.  6a), we examined if 334 

Pit1 and/or Pit2 mRNA levels were altered following LPS, IL6 or Pi treatment. Expression 335 

analysis showed that Pi significantly increased Pit1 transcript levels in a dose-dependent manner 336 

but had no effect on Pit2 expression (Fig. 6e, Supplemental Fig. 6b). To determine if this result 337 

is an action of hepatocytes sensing high extracellular Pi, we cotreated hepatocytes with 338 

phosphonoformic acid (PFA), a compound which is reported to inhibit chemisorption of 339 

calcium-Pi clusters, as aggregate formation is a byproduct of increased extracellular Pi (Villa-340 
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Bellosta et al., 2007; Villa-Bellosta and Sorribas, 2009). In the presence of PFA, Pi-induced Pit1 341 

expression was reduced compared to vehicle-treated control cells (Fig. 6f). Interestingly, PFA 342 

also altered the effects of LPS and IL6 on Pit1 expression. To confirm whether inhibiting high 343 

extracellular Pi and/or aggregate byproducts disrupts downstream actions of increased 344 

extracellular Pi, we co-treated hepatocytes with Pi and PFA, and observed that PFA interfered 345 

with Pi-induced effects on phospho-NFB levels without changing total NFB expression (Fig. 346 

6g).  347 

Furthermore, when isolated hepatocytes were treated with either LPS, IL6 or Pi in the 348 

presence or absence of PFA, the significant elevations in Il1b, Il6, Saa1 and Hamp transcript 349 

levels following Pi treatments were reversed in the presence of PFA (Fig. 6h-j). Interestingly, 350 

PFA slightly altered the effects of LPS on Il6 expression and IL6 on Hamp expression (Fig. 6h-351 

j). Taken together, our results indicate that in primary hepatocyte cultures type III Na/Pi 352 

cotransporters are predominant, and that increased extracellular Pi activates NFB signaling, 353 

increases PiT1 expression and induces inflammatory cytokine and hepcidin production. 354 

 355 

Pi induces hepcidin expression via paracrine IL1 and IL6 signaling 356 

Next, we explored if NFB is a necessary mediator for inflammatory cytokine and hepcidin 357 

regulation by high extracellular Pi in vitro. We treated mouse primary hepatocytes with either 358 

LPS or graded Pi concentrations in the presence or absence of a selective NFB pharmacologic 359 

inhibitor, BAY 11-7082 (Koumakis et al., 2019; Pierce et al., 1997). Significant elevations in 360 

Il1b, Il6 and Hamp mRNA levels were detected following LPS or Pi treatments, and these were 361 
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attenuated by BAY 11-7082 (Fig. 7a-b). Similar effects of BAY 11-7082 on Saa1, Haptoglobin 362 

and Pit1 mRNA expression were also observed, corroborating reports that NFB directly 363 

regulates PiT1 abundance (Supplemental Fig.  7a-c). 364 

As inflammation directly regulates hepcidin, we explored if Pi-induced hepcidin 365 

expression is a response resulting from direct or indirect actions of NFB. Testing indirect 366 

effects, we cotreated primary hepatocytes with either LPS or graded Pi concentrations in the 367 

presence or absence of anti-IL1 antibody, anti-IL6 antibody or both neutralizing antibodies in 368 

combination. Expression analysis detected significant elevations in Hamp mRNA levels 369 

following LPS or Pi treatments and was blunted by addition of either antibody alone or in 370 

combination (Fig. 7c). To ensure treatments generated endogenous IL1 and IL6 protein, we 371 

analyzed Saa1 and Haptoglobin mRNA expression, as both genes are regulated by IL1 and IL6 372 

(Zhou et al., 2016). Compared to vehicle-treated control cells, Saa1 and Haptoglobin transcript 373 

levels were reduced in the presence of either antibody alone or in combination, following LPS or 374 

Pi treatment (Supplemental Fig. 7d, e). Collectively, these results show Pi-mediated hepcidin 375 

production in cultured hepatocytes is a result of NFB amplifying PiT1 expression, which in 376 

turn, might intensify high extracellular Pi to augment NFB regulated inflammatory gene 377 

programs, prompting the induction of required cytokines IL1 and IL6 to mediate hepcidin 378 

production. 379 

 380 

Discussion  381 
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We report that hyperphosphatemia, either as a result of adenine-induced CKD or dietary 382 

Pi excess, increases inflammation to exacerbate anemia and skeletal muscle wasting. These 383 

complications are associated with increased liver Pi levels, which correlated with serum Pi 384 

concentrations. Supplying a low Pi diet treatment to Alport mice, a genetic model of CKD, 385 

results in beneficial outcomes that reduce functional iron deficiency and skeletal muscle wasting. 386 

Furthermore, our mechanistic in vitro studies indicate that Pi elevations induce hepatic 387 

production of IL6 and IL1 to increase hepcidin expression in hepatocytes, a potential causative 388 

link between hyperphosphatemia, anemia, and skeletal muscle dysfunction.  389 

Previously, we reported pathologic FGF23-FGFR4 signaling might contribute to excess 390 

inflammatory mediators (Singh et al., 2016), and we now followed up on the FGF23 391 

inflammatory role in clinically-relevant CKD models in vivo. Here, we examined wild-type 392 

(FGFR4
+/+

) and constitutive FGFR4 knockout (FGFR4
-/-

) mice subjected to adenine diet or a 393 

graded dietary Pi load. We found that on adenine, both FGFR4
+/+

 and FGFR4
-/-

 mice show 394 

comparable macroscopic parameters (Table 1) and degrees of functional iron deficiency (Fig. 1). 395 

These findings coincide with greater levels of liver Pi, which raises the possibility that 396 

pathologic Pi deposits, in tissues apart from the vasculature, may contribute to additional 397 

complications in CKD (Komaba and Fukagawa, 2016).  398 

Clinical reports indicate CKD patients have dysregulated Pi handling (Chang et al., 2014; 399 

Isakova et al., 2009) and together with the consumption of foods and drinks rich in Pi-based 400 

additives, such as in a Westernized diet, extra-renal Pi accumulation may occur (Isakova et al., 401 

2008). A recent study utilizing animal models supports this postulate, demonstrating that excess 402 

Pi leads to depositions into tissues such as the vasculature (Zelt et al., 2019). Moreover, a recent 403 

report indicates the major source of body Pi removed during hemodialysis in CKD patients, is 404 
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from cells releasing intracellular Pi (Chazot et al., 2020). As the serum Pi compartment 405 

represents a small fraction of total body Pi, and the uptake of excess Pi by tissues is recognized 406 

as a detrimental trigger, it is important to examine the degree of pathologic Pi accumulation in 407 

non-vascular tissue and whether it exacerbates complications in CKD, such as anemia and 408 

muscle wasting. 409 

We employed a graded Pi diet to study the effects of excess Pi on the liver (Fig. 2). 410 

Studies show conflicting results towards renal and liver health, following supplementation of a 411 

high Pi diet (Baquerizo et al., 2003; Haut et al., 1980; Ugrica et al., 2021). In our study, no 412 

significant changes in macroscopic parameters were observed following dietary Pi overload 413 

(Table 2). Also, no pathologic changes in kidney (Supplemental Fig. 2) or liver were detected 414 

(Supplemental Fig. 3). However, mice on a 3% Pi diet exhibit increased liver inflammation and 415 

Hamp expression, which corroborates previous observation that high dietary Pi influences 416 

hepcidin production (Nakao et al., 2015). These results coincide with positive correlations 417 

between liver Pi and liver Hamp mRNA expression, with onset of this correlation preceding 418 

significant elevations in serum Pi. Despite these data suggesting that liver Pi influences liver 419 

hepcidin production, our finding might indicate that increased extra-renal Pi accumulation 420 

provides a reservoir for storing excess Pi until tissue accumulation achieves saturation, in which 421 

case the serum Pi compartment then gradually rises, resulting in hyperphosphatemia. 422 

Furthermore, our data suggest that prolonged exposure to Pi, if not maintained in adequate 423 

quantities, might trigger pathologic outcomes, as mice on 3% Pi show a noticeable degree of 424 

hypoferremia. None of the observed effects of the high Pi diet were mediated by FGFR4, as 425 

FGFR4
-/-

 mice were comparable to wild-type mice in all the parameters measured. However, this 426 

work cannot exclude the potential of alternative FGFRs which might mediate the effects of 427 
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excess FGF23 towards functional iron deficiency following either adenine or 3% Pi diet, as a 428 

recent report exhibits the utilization of a single intraperitoneal injection of FGF23 blocking 429 

peptide was sufficient to rescue anemia (Agoro et al., 2018).  430 

Excess dietary Pi was shown to directly exacerbate intestinal inflammation in a model of 431 

experimental colitis (Sugihara et al., 2017) and that reducing dietary Pi provides beneficial 432 

outcomes towards systemic inflammation, accelerated aging, and survival, as demonstrated in a 433 

model of senescence (Morishita et al., 2001). We likewise observed increased inflammation in 434 

our hyperphosphatemic mouse models. Inflammatory cytokines can directly target skeletal 435 

muscle cells to induce muscle wasting by increasing myostatin production (Zhang et al., 2013), 436 

which both together, enhances protein degradation and reduces protein synthesis, as CKD 437 

illustrates catabolic conditions which are attributable to the vicious cycle generated between 438 

mineral dyshomeostasis and inflammation (Czaya and Faul, 2019b). We indeed observed 439 

skeletal muscle wasting in adenine-induced CKD, high phosphate diet, and genetic model of 440 

CKD. Ablation of FGFR4 in mice did not improve skeletal muscle function following adenine or 441 

3% Pi diets, suggesting hyperphosphatemia rather than pathologic FGF23-FGFR4 signaling 442 

might be the cause of skeletal muscle abnormalities (Fig. 3). This hypothesis is supported by 443 

reports demonstrating excess Pi influences skeletal muscle dysfunction (Acevedo et al., 2016; 444 

Chen et al., 2018; Chung et al., 2020), although it is possible additional FGFR isoforms directly 445 

promote skeletal muscle wasting due to excess FGF23 following adenine or high Pi diet. 446 

However, a recent report suggests that FGF23 does not directly affect skeletal muscle 447 

dysfunction (Avin et al., 2018).  448 

To assess whether reducing hyperphosphatemia can improve inflammation, anemia, and 449 

skeletal muscle wasting, we exposed Alport mice, a genetic model of progressive CKD, to a low 450 
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Pi diet treatment. Indeed, despite severe elevations in serum FGF23, dietary Pi restriction limited 451 

functional iron deficiency (Fig. 4). Our data also shows liver Pi levels were reduced in Alport 452 

mice following low Pi diet treatment, in comparison to Alport mice on normal diet. These 453 

findings provide strong evidence that hyperphosphatemia, specifically pathologic liver Pi 454 

accumulation, rather than pathologic FGF23-FGFR4 signaling, might exacerbate inflammation 455 

and hypoferremia. Skeletal muscle function and mass were also improved by a low Pi diet in 456 

Alport mice, along with decreased expression of muscle myostatin and atrophy-related gene 457 

programs, culminating in larger myofiber size. These findings suggest the contribution of 458 

hyperphosphatemia to skeletal muscle wasting may result from an indirect mechanism that 459 

regulates inflammatory cytokines and their pleotropic activities, such as increased liver-derived 460 

IL1 and IL6, which might increase overall systemic levels that effectively target skeletal 461 

muscle. Despite this postulate, further work will be needed to determine if high extracellular Pi 462 

directly targets skeletal muscle cells to affect muscle function. Nonetheless, these data add to the 463 

growing list of adverse outcomes of Pi toxicity such as gingivitis, accelerated aging, vascular 464 

calcification and tumorigenesis (Erem and Razzaque, 2018). Furthermore, Alport mice on low Pi 465 

diet treatment displayed a reduced degree of pathologic kidney function, alterations in kidney 466 

morphology, and macroscopic parameters (Fig. 4, Supplemental Fig. 5, Table 3). Thus, we 467 

cannot exclude that these beneficial outcomes in Alport mice observed on treatment may be a 468 

repercussion of slightly improved kidney function, as a recent report demonstrates elevated Pi 469 

concentrations directly affect proximal tubular function (Shiizaki et al., 2021). 470 

Importantly, we identify a molecular mechanism that potentially links 471 

hyperphosphatemia to anemia and skeletal muscle dysfunction. Utilizing mouse primary 472 

hepatocytes, we demonstrate high extracellular Pi activates NFB signaling and leads to 473 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.22.465390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465390
http://creativecommons.org/licenses/by/4.0/


 23 

subsequent inflammatory cytokine and hepcidin production (Fig. 6). Employing PFA, a 474 

compound reported to reduce calcium-Pi deposition and cluster formation, as aggregates are a 475 

byproduct of increased extracellular Pi (Villa-Bellosta et al., 2007; Villa-Bellosta and Sorribas, 476 

2009), we confirm NFB activation is a direct action of Pi targeting hepatocytes, which prompts 477 

subsequent Pit1 mRNA expression, as observed from our BAY 11-7082 findings. This high 478 

extracellular Pi-NFB signaling axis is observed in other reservoirs such as vascular smooth 479 

muscle cells and ex vivo kidney slices (Rodríguez-Ortiz et al., 2020; Voelkl et al., 2018; Zhao et 480 

al., 2011). Although this reaffirms NFB directly influences PiT1 levels (Koumakis et al., 2019), 481 

it does not identify if our observations are dependent or independent of Pi translocation, as 482 

extracellular Pi might associate with various PiT1 extracellular regions to influence PiT1-PiT1 483 

homodimerization, PiT1-PiT2 heterodimerization or a conformational change in PiT1 to initiate 484 

the activation of selected binding partners which mediate downstream signaling events (Bon et 485 

al., 2018; Forand et al., 2016). In addition to this amplified hepatic PiT1 abundance and 486 

recognition of NFB as a necessary mediator of high extracellular Pi in hepatocytes, we show 487 

that the effect of Pi on hepcidin requires the indirect actions of NFB and biological activities of 488 

endogenous IL1 and IL6 proteins secreted by hepatocytes, as elucidated by our cell-based 489 

neutralization assay of these targeted cytokines (Fig. 7). Based on these findings, we speculate 490 

increased liver Pi deposits might underlie a clinical association between elevated body Pi and 491 

inflammation, where the prolonged duration of tissue accumulation permits Pi in the liver to 492 

directly target hepatocytes to induce inflammatory gene programs and hepcidin expression, 493 

contributing to hypoferremia. This could explain associations of inflammation and anemia in 494 

FTC patients, in addition to patients with and without CKD, before they exhibit 495 

hyperphosphatemia (Ramnitz et al., 2016; Tran et al., 2016; Wojcicki, 2013). 496 
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Our study has some limitations. Although we confirm hyperphosphatemia affects specific 497 

complications, our study does not specifically address the actions of certain aggregate 498 

byproducts formed by increased extracellular Pi. Nonetheless, this principal emphasis on 499 

elevations in plasma Pi concentrations will ultimately impact the formation of byproducts. 500 

Notably, the identification of the specific Pi sensor which mediates our observed hepatic Pi 501 

actions are not definite and remains to be defined with our ongoing studies. Moreover, our study 502 

does not address the specific actions of hyperphosphatemia on bone metabolism. As bone is a 503 

reservoir of extracellular Pi, potential alterations in bone health could relay a crosstalk between 504 

bone, liver and/or skeletal muscle, which might contribute to our reported observations.  505 

In summary, we investigated whether hyperphosphatemia and/or pathologic FGF23-506 

FGFR4 signaling aggravates inflammation, anemia, and skeletal muscle wasting. We establish 507 

hyperphosphatemia, as found in dietary Pi overload or in CKD, is a detrimental trigger which 508 

activates hepatic NFB signaling to stimulate an inflammatory response, which in turn, 509 

exacerbates hypoferremia and widespread complications such as skeletal muscle wasting. 510 

Notably, these findings are independent of pathologic FGF23-FGFR4 signaling. Clinical studies 511 

have demonstrated conflicting outcomes with traditional Pi binders in individuals with non-512 

dialysis-dependent CKD, but modern Pi binders, such as ferric citrate, demonstrate greater 513 

efficacy (Francis et al., 2019; Toussaint et al., 2020), and are being evaluated for their effect on 514 

CKD comorbidities. Furthermore, reports assessing dietary Pi restriction in animal models are 515 

scarce. Our current experimental data suggests hyperphosphatemia, in itself, is pathologic and 516 

demands further attention for alternative strategies to resolve current ineffective approaches. 517 

Treatments, such as pharmacologic inhibition of type II Na/Pi cotransporters, hold potential for 518 

therapeutic actions (Clerin et al., 2020; Thomas et al., 2019) but do not aim at altered mineral 519 
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metabolism. Using in vitro studies and complementary animal models, we provide insights 520 

regarding the interconnection between altered mineral metabolism and common complications. 521 

Dietary Pi restriction might alleviate these sequelae, if sustained effectively as a clinical 522 

treatment. By elucidating direct inflammatory actions of high extracellular Pi on hepatocytes, we 523 

expose additional adverse outcomes of hyperphosphatemia, besides vascular calcification. These 524 

findings may yield new targets for therapeutic development, with emphasis on hepatic Pi actions. 525 

Moreover, as studies indicate anti-FGFR4 therapy may be beneficial towards cardiomyopathy 526 

(Grabner et al., 2015), our data suggests these same beneficial outcomes for inflammation, 527 

anemia, and skeletal muscle wasting would not apply. Altogether, our study features a possibility 528 

to improve CKD patient survival and specific rare genetic disorders, such as FTC, by limiting 529 

excess body Pi. 530 

 531 

 532 

Materials and Methods 533 

Materials. Recombinant proteins used are mouse FGF23 (2629-FG, R&D Systems), mouse 534 

TNF (410-MT, R&D Systems) and mouse IL6 (406-ML, R&D Systems). This FGF23 peptide 535 

contains an arginine to glutamine amino acid substitution at position 179 which yields it resistant 536 

to furin protease-mediated degradation, thus prolonging its half-life. Lipopolysaccharide (LPS) 537 

(tlrl-3pelps, Invivogen) was used as endotoxin. Sodium phosphate dibasic anhydrous (Na2HPO4) 538 

(BP332-500, Fisher Scientific) and sodium phosphate monobasic anhydrous (NaH2PO4) (BP329-539 

1, Fisher Scientific) were used to prepare a 1 M stock sodium phosphate buffer solution 540 

containing 500 mM Na2HPO4 and 500 mM NaH2PO4 at an adjusted pH of 7.4. Sodium sulfate 541 
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(Na2SO4) (239313, Sigma-Aldrich) was used to prepare a 1 M stock sodium sulfate buffer 542 

solution at an adjusted pH of 7.4. Phosphonoformic acid (PFA) (P6801, Sigma-Aldrich) and 543 

BAY 11-7082 (S2913, Selleckchem) were used as agents to elucidate underlying signal 544 

transduction mechanisms. Anti-IL6 (MP5-20F3, R&D Systems) and anti-IL1 (AF-401-NA, 545 

R&D Systems) were used as antibodies in a cell-based assay to neutralize the biological activity 546 

of targeted cytokines. 547 

Mice. Animal studies were performed in the conformity with applicable laws and guidelines and 548 

were approved by the Animal Research Committee at the University of Alabama Birmingham 549 

School of Medicine (UAB). Studies were performed using male mice and were maintained on a 550 

NIH 31 rodent diet (Harlan Teklad) and fed ad libitum, unless otherwise indicated. Constitutive 551 

FGF Receptor 4 null (FGFR4
-/-

)
 
mice (Weinstein et al., 1998) were maintained on a C57BL/6 552 

background. Constitutive COL4A3
-/-

 null (Alport) mice (Cosgrove et al., 1996) were maintained 553 

on a mixed Sv129/C57BL/6 background. Both mouse models were housed in our UAB rodent 554 

facility, in a heterozygous breeding state.  555 

For experiments exploring the contribution of pathologic FGF23-FGFR4 signaling to 556 

CKD-associated pathologies, 10- to 14-week-old FGFR4
-/-

 mice and corresponding wild-type 557 

littermates were placed on a customized diet containing 0.2% adenine (TD.140290, Envigo) for 6 558 

weeks, switched to a customized diet containing 0.15% adenine (TD.170304, Envigo) for 2 559 

weeks and transitioned back to the customized 0.2% adenine diet for an additional 6 weeks. 560 

Wild-type littermates placed on a customized control diet (TD.170303, Envigo) served as 561 

controls. All experimental groups were permitted a one-week dietary acclimation period, using 562 

the customized control diet. After dietary acclimation, mice were unbiasedly assigned to either 563 

the customized control diet or customized adenine diet. After the 14-week duration, mice were 564 
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euthanized under 2.5% isoflurane anesthesia and samples were prepared as described in 565 

supplemental materials and methods. This experimental timeline is in accordance with previous 566 

studies (Noonan et al., 2020; Taylor et al., 2019). Adenine is known to induce kidney tubule-567 

interstitial damage and is considered a dietary model of CKD.  568 

For experiments testing the contribution of pathologic FGF23-FGFR4 signaling to 569 

systemic effects of a graded dietary phosphate load, 10- to 14-week-old FGFR4
-/-

 mice and 570 

corresponding wild-type littermates were unbiasedly assigned and fed a customized 0.7% 571 

phosphate diet (TD.180287, Envigo), a customized 2.0% phosphate diet (TD.08020, Envigo) or a 572 

customized 3.0% phosphate diet (TD.180286, Envigo) for 12 weeks. Wild-type littermates 573 

placed on the customized 0.7% phosphate diet served as controls. At end of the experimental 574 

period, mice were euthanized under 2.5% isoflurane anesthesia and samples were prepared as 575 

described in supplemental materials and methods.  576 

For experiments investigating the contribution of hyperphosphatemia to CKD-associated 577 

pathologies, 4-week-old Alport mice and corresponding wild-type littermates were unbiasedly 578 

assigned and fed a customized 0.6% phosphate diet (TD.200407, Envigo) or a customized 0.2% 579 

phosphate diet (TD.200406, Envigo) as treatment for 6 weeks. Constitutive COL4A3
-/-

 null mice 580 

are considered a genetic model of Alport syndrome and progressive CKD. When maintained on a 581 

mixed Sv129/C57BL/6 background, Alport mice die at 10 weeks of age due to rapid renal injury. 582 

Wild-type littermates placed on the customized 0.6% phosphate diet served as controls. At 10 583 

weeks of age, mice were euthanized under 2.5% isoflurane anesthesia and samples were 584 

prepared as described in supplemental materials and methods. A detailed description of diet 585 

compositions is indicated in Tables 4, 5 and 6.  All experimental group numbers were pre-586 
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determined on the basis of experience from previous publications. Investigators were not blinded 587 

to mouse genotypes. 588 

Serum Chemistry. Mouse blood was collected by cardiac puncture and transferred into 589 

microvette serum gel tubes (20.1344, Sarstedt). Samples were then centrifuged at 10,000 g for 5 590 

minutes at room temperature. Serum supernatants were harvested and stored at -80°C. Clinical 591 

chemistry analyses were performed by the Animal Histopathology & Laboratory Medicine Core 592 

at the University of North Carolina, which is supported in part by an NCI Center Core Support 593 

Grant (5P30CA016086-41) to the UNC Lineberger Comprehensive Cancer Center. Serum intact 594 

FGF23 was assessed using ELISA (60-6800, Quidel).  595 

Grip-strength test. Muscle strength was assessed using a Chatillon DFE series digital force 596 

gauge (E-DFE-200, Chatillon) with a metal grid adaptor, provided by the Behavioral Assessment 597 

Core at UAB. Mice were allowed to grip the metal grid with fore- and hindlimbs and then gently 598 

pulled backwards by their tail, until mice could not grip the metal grid. Each mouse was given 10 599 

trials, excluding the highest and lowest values. These 8 trials were then averaged. These 600 

averaged values are used to represent the muscle grip-strength of each individual mouse. 601 

Investigators were blinded to each experimental group. 602 

Mouse tissue collection. Unless otherwise indicated, tissues were excised, weighed and either 603 

immediately flash frozen in liquid nitrogen or fixed for histologic examination. Organ and 604 

gastrocnemius weights were measured with an OHAUS scout portable balance (SJX323N/E). 605 

Histology. Spleen, kidney and gastrocnemius tissues were fixed in 10% formalin solution for 24 606 

hours, transferred into 70% ethanol and subjected to paraffin embedding (IDEXX). Spleen, 607 

kidney and gastrocnemius sections were cut and either stained with Perl’s Prussian blue, H&E or 608 
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Masson’s trichrome (IDEXX) and used for representative images. Images were captured on a 609 

Keyence BZ-X800 fluorescent microscope with a 20x objective lens.  610 

Tissue phosphate quantifications. To quantify liver phosphate concentrations in mouse tissue, 611 

liver samples were weighed, homogenized in protein precipitation solution (0.53N HCL, 5.3% 612 

trichloroacetic acid (TCA)), boiled for 30 minutes at 95°C and cooled in room temperature water 613 

for 2 minutes. Samples were then centrifuged at 13,300 g for 30 minutes at 4°C. Supernatants 614 

were collected and subjected to colorimetric phosphate quantifications (ab65622, Abcam) 615 

according to the manufactures’ instructions. 616 

Tissue iron quantifications. To quantify non-heme iron concentrations in mouse tissues, spleen 617 

and liver samples were weighed, homogenized in protein precipitation solution (0.53N HCL, 618 

5.3% trichloroacetic acid (TCA)), boiled for 30 minutes at 95°C and cooled in room temperature 619 

water for 2 minutes. Samples were then centrifuged at 13,300 g for 10 minutes at room 620 

temperature. Supernatants were harvested and subjected to colorimetric iron quantifications 621 

(157-30, Sekisui Diagnostics) according to the manufactures’ instructions. 622 

Measurement of hematologic parameters and iron levels. Mouse blood was collected by 623 

cardiac puncture, transferred into microvette EDTA tubes (20.1341, Sarstedt), inverted to 624 

prevent clotting and stored at 4°C prior to shipment. Complete blood counts were measured by 625 

the Animal Histopathology & Laboratory Medicine Core at the University of North Carolina. In 626 

addition, serum supernatants were analyzed for iron and total iron binding capacity (TIBC) 627 

concentrations. Transferrin saturation percentage (TSAT%) = (serum iron/TIBC) × 100.  628 

Isolation and cultivation of mouse primary hepatocytes. Hepatocytes were isolated from 10- 629 

to 14-week-old male wild-type C57BL/6J mice, which were anesthetized and placed on a 37°C 630 
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heated surface to maintain adequate body temperature. Ventral laparotomy from the pubis to the 631 

cranial border of the liver was performed and the abdominal wall was incised to both sides, 632 

caudal of the diaphragm, exposing the inferior vena cava (IVC). Following suprahepatic 633 

diaphragm incision and surgical silk (5/0) ligation of the thoracic IVC, the infrarenal IVC was 634 

cannulated using a 24-gauage shielded catheter (381412, BD) attached to a perfusion line. A 635 

peristaltic pump was utilized to perfuse the liver with 30 mL of liver perfusion medium (17701-636 

038, Gibco) followed by 30 mL of liver digest medium (17703-034, Gibco), both pre-warmed in 637 

a 37°C water bath. The portal vein was incised to route consecutive retrograde perfusion through 638 

the liver at a rate of 3 mL/min until each solution was empty. Next, the digested liver was 639 

excised, transferred into a 10-centimeter dish containing hepatocyte wash medium (17704-024, 640 

Gibco) and was minced within a cell culture hood. The mixture was then filtered through a 70 641 

m nylon cell strainer (352350, Falcon) using a 20 mL plastic serological pipette into a 50 mL 642 

polypropylene conical tube (352098, Falcon) to remove debris. Cells were washed twice with 643 

chilled hepatocyte wash medium with centrifugation at 60 g for 3 minutes at 4°C to allow a soft 644 

separation of parenchymal cells from nonparenchymal cells. To enrich the hepatocyte cell 645 

population, the cell pellet was resuspended and inverted 4 times in 20 mL of chilled 36% iso-646 

osmotic percoll gradient solution (P1644, Sigma-Aldrich) (percoll gradient solution: William’s E 647 

medium solution (4 parts: 6 parts)) and centrifuged at 200 g for 7 minutes at 4°C. The enriched 648 

hepatocyte population was resuspended in 10 mL of chilled hepatocyte wash medium and 649 

subjected to two washes with centrifugation at 60 g for 2 minutes at 4°C. The washed pellet was 650 

resuspended in 12 mL of warm William’s E medium (12551-032, Gibco) supplemented with 651 

primary hepatocyte thawing and plating supplements (CM3000, Gibco), counted in a 652 

hemocytometer after staining with trypan blue (25900Cl, Corning), seeded at a density of 653 
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2.5x10
5
 cells/6-well or 1.0x10

5
 cells/12-well on plates coated with 100 g/mL of collagen type 1 654 

(354236, Corning) and allowed to adhere for 4 hours in a humidified 5% CO2 incubator at 37°C. 655 

After this attachment period, medium was exchanged with fresh warm William’s E medium 656 

solution supplemented with primary hepatocyte maintenance supplements (CM4000, Gibco) and 657 

incubated overnight in a humidified 5% CO2 incubator at 37°C. Next morning, media was 658 

exchanged with fresh warm DMEM (26140079, Gibco) supplemented with 1x 659 

Penicillin/Streptomycin (15140122, Gibco) and incubated for 6 hours in a humidified 5% CO2 660 

incubator at 37°C. This 6-hour serum-starvation period allows cells to synchronize to an 661 

identical cell cycle arrest phase, thus eliminating the potential impact between contrasting cell 662 

cycles and a cells overall response to exogenous treatment, as serum contains various growth 663 

factors and cytokines which promote the activation of signal transduction pathways related to 664 

cell proliferation and survival. 665 

Cell culture. Hepatocytes were isolated, cultivated and serum starved as described in 666 

supplemental methods. For experiments investigating the activation of signal transduction 667 

mediators, cells were seeded on 6-well collagen-coated plates and treated with either TNF [100 668 

ng/mL], IL6 [50 ng/mL], FGF23 [25 ng/mL] or appropriate amounts of sodium phosphate [1 M; 669 

pH 7.4] and sodium sulfate [1 M; pH 7.4] buffers to produce final desired concentrations and 670 

incubated for 30 minutes in a humidified 5% CO2 incubator at 37°C. DMEM supplemented with 671 

1x Penicillin/Streptomycin, which contains ~ 1 mM phosphate, served as a reference control 672 

(Ctrl). Sodium sulfate served as a negative control in response to increased anions.  673 

For experiments analyzing expression levels of specific target genes, cells were seeded 674 

on 12-well collagen-coated plates and treated with either LPS [100 ng/mL], IL6 [50 ng/mL] or 675 
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appropriate amounts of sodium phosphate [1 M; pH 7.4] and sodium sulfate [1 M; pH 7.4] 676 

buffers to produce final desired concentrations and incubated for 24 hours in a humidified 5% 677 

CO2 incubator at 37°C. As described above, DMEM with 1x Penicillin/Streptomycin served as a 678 

reference control (Ctrl) and sodium sulfate served as a negative control.  679 

For experiments investigating the role of high extracellular phosphate, cells were seeded 680 

on either 6-well or 12-well collagen-coated plates and pre-incubated for 1 hour with or without 681 

the addition of PFA [1 mM] in a humidified 5% CO2 incubator at 37°C. Cells were then either 682 

treated for 30 minutes to assess NFB activation or treated for 24 hours to analyze expression 683 

levels of specific target genes, and incubated accordingly in a humidified 5% CO2 incubator at 684 

37°C. Specific treatments were conducted with factors described above. DMEM with 1x 685 

Penicillin/Streptomycin served as a reference control (Ctrl).  686 

For experiments analyzing the participation of NFB signaling, cells were seeded on 12-687 

well collagen-coated plates and pre-incubated for 1 hour with or without the addition of BAY 688 

11-7082 [20 M] in a humidified 5% CO2 incubator at 37°C. Cells were then treated and 689 

incubated for 24 hours in a humidified 5% CO2 incubator at 37°C to analyze expression levels of 690 

specific target genes. Specific treatments were conducted with factors described above. DMEM 691 

with 1x Penicillin/Streptomycin served as a reference control (Ctrl). Total protein lysates were 692 

prepared from 30-minute treatments as described below. Total RNA was prepared from 24-hour 693 

treatments as described below. All 24-hour treatments were supplemented with 0.70% FBS 694 

(CM3000, Gibco).  695 

Cytokine neutralization. Hepatocytes were seeded on 12-well collagen-coated plates, cultivated 696 

and serum starved as described in supplemental methods. Primary mouse hepatocytes were 697 
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treated for 24 hours to analyze expression levels of specific target genes with either LPS [100 698 

ng/mL] or appropriate amounts of sodium phosphate buffer [1 M; pH 7.4] to produce a final 699 

desired phosphate concentration and incubated accordingly in a humidified 5% CO2 incubator at 700 

37°C. Treatments were performed with or without the addition of neutralizing antibodies against 701 

IL6 [6 g/mL] and/or IL1 [6 g/mL] as indicated. Total RNA was prepared from treatments as 702 

described below. All treatments were supplemented with 0.70% FBS (CM3000, Gibco). 703 

RNA isolation and quantification. Total RNA was extracted from liver and cultured 704 

hepatocytes using a RNeasy Plus Mini Kit (74136, Qiagen) and from gastrocnemius tissue using 705 

a RNeasy Plus Universal Mini Kit (73404, Qiagen) following the manufactures’ instructions. 706 

Employing a two-step reaction method, 1 g of total RNA was reverse transcribed into cDNA 707 

using iScript Reverse Transcription Supermix (1708840, Bio-Rad). Quantitative PCR was 708 

performed with 100 ng of cDNA, SsoAdvanced Universal SYBR Green Supermix (172-5272, 709 

Bio-Rad) and sequence specific primers (as indicated in Table 7). Samples were run in duplicate 710 

on a CFX96 Touch Real-Time Detection Instrument (1855196, Bio-Rad). Amplification was 711 

performed in forty cycles (95°C, 30 seconds; 98°C, 15 seconds; 60°C, 30 seconds; 65°C, 5 712 

seconds). The generated amplicon was systematically double-checked by its melting curve. 713 

Relative gene expression was normalized to expression levels of housekeeping genes 18S rRNA 714 

(for in vitro studies) or Gapdh (for in vivo studies). Results were evaluated using the 2
-∆∆Ct

 715 

method and expressed as mean ± SEM. 716 

Protein isolation and Immunoblotting. Total protein was extracted from cells which were 717 

placed on ice and scraped from 6-well or 12-well plates, using a 300 L or 150 L volume of 718 

RIPA lysis buffer (50 mM Tris-HCl pH 7.5, 200 mM NaCl, 1% Triton X-100, 0.25% 719 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.22.465390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465390
http://creativecommons.org/licenses/by/4.0/


 34 

deoxycholic acid, 1 mM EDTA, 1 mM EGTA) respectively, with addition of protease inhibitor 720 

(11836153001, Roche) and phosphatase inhibitors (P5726, P0044, Sigma-Aldrich). Cell lysates 721 

were then incubated on ice for 30 minutes and cleared by centrifugation at 13,000 g for 30 722 

minutes at 4°C. Supernatants were collected and protein was quantified using a Pierce BCA 723 

Protein Assay Kit (23225, Thermo Fisher Scientific).  724 

Following protein quantification, supernatants were appropriately aliquoted and 725 

suspended in volumes of laemmli sample buffer (1610747, Bio-Rad) with -mercaptoethanol 726 

(1610710, Bio-Rad) as reducing agent, denatured at 100°C for 5 minutes and stored at -80°C. 727 

Protein samples [20 g of cellular protein] were loaded onto 8% or 10% SDS polyacrylamide 728 

gels and separated by SDS-PAGE. Polyacrylamide gels were run in 1x Tris/Glycine/SDS buffer 729 

(1610732, Bio-Rad) at 20 mA per gel and stopped when sample dyes reached the end of the gels. 730 

Proteins were electroblotted onto PVDF membranes (IPVH00010, Merck Millipore) via a semi-731 

dry cassette (1703940, Bio-Rad) in 1x Tris/Glycine Buffer (1610734, Bio-Rad) with 20% 732 

methanol at 20 V for 1 hour. Membranes were then blocked in 5% nonfat dry milk with 0.5% 733 

Tween 20 diluted in 1x Tris buffered saline (TBS) pH 7.5 for 1 hour and probed with primary 734 

antibodies at 1:1,000 against specific antigens overnight at 4°C. ERK1/2 (4695, Cell Signaling), 735 

STAT3 (4904, Cell Signaling), NFB (8242, Cell Signaling) and -actin (4970, Cell Signaling) 736 

primary antibodies were used in 1x TBS with 5% nonfat dry milk and 0.5% Tween 20. Phospho-737 

ERK1/2 (9101, Cell Signaling), phospho-STAT3 (9145, Cell Signaling) and phospho-NFB 738 

(3033, Cell Signaling) primary antibodies were used in 1x TBS with 5% BSA and 0.5% Tween 739 

20.  740 
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Next day, membranes were subjected to three wash periods for 5 minutes in 1x TBS with 741 

0.5% Tween and then probed with horseradish peroxidase–conjugated goat anti-mouse or goat 742 

anti-rabbit secondary antibodies at 1:2,500 (W4021, W4011, Promega) in 1x TBS with 5% 743 

nonfat dry milk and 0.5% Tween at room temperature for 1 hour. Membranes were then 744 

subjected to three wash periods for 10 minutes in 1x TBS with 0.5% Tween at room temperature. 745 

Horseradish peroxidase activity was detected using enhanced chemiluminescence detection 746 

solution (RPN2106, GE Healthcare) and imaged on an SRX-101A X-ray film developer. All 747 

immunoblots were repeated with a minimum of three independent trials, with comparable results.  748 

Statistics. Data organization, scientific graphing and statistical significance of differences 749 

between experimental groups were performed by using GraphPad Prism (version 9.0.0). All 750 

results are expressed as mean ± SEM. Depending on number of experimental groups and factors 751 

analyzed, we performed a two-way ANOVA followed by a post-hoc Tukey test (for studies 752 

affected by 2 factors) or in the form of a one-way ANOVA (for studies measuring variance in 3 753 

groups or more). Correlation and slope analyses were examined by simple linear regression. 754 

Statistical significance was set at a P value of less than or equal to 0.05. Sample size was 755 

determined on the basis of sample availability, prior experimental studies performed in our 756 

laboratory and from prior literature. No formal randomization was used in any experiment. For in 757 

vivo experiments, animals were unbiasedly assigned into different experimental groups, 758 

regardless of genotype. Group allocation was not performed in a blinded manner. Whenever 759 

possible, investigators were blinded to experimental groups (for example, analysis of all grip-760 

strength measurements).  761 

Study Approval. All animal protocols and experimental procedures for adenine diet in 762 

FGFR4
+/+

 and FGFR4
-/-

 mice, graded phosphate diets in FGFR4
+/+

 and FGFR4
-/-

 mice, low 763 
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phosphate diets in COL4A3
+/+

 and COL4A3
-/-

 mice and primary hepatocyte isolations from wild-764 

type C57BL/6J mice, were approved by the Institutional Animal Care and Use Committees 765 

(IACUC) at the University of Alabama Birmingham School of Medicine. All animals were 766 

maintained in a ventilated rodent-housing system with temperature-controlled environments (22–767 

23°C) with a 12-hour light/dark cycle and allowed ad libitum access to food and water. All 768 

protocols adhered to the Guide for Care and Use of Laboratory Animals to minimize pain and 769 

suffering. No animals were excluded from analysis. 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

  778 
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Figures and Figure Legends 1113 

Figure 1 1114 
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Figure 1. FGF23-FGFR4 signaling does not contribute to functional iron deficiency in 1115 

adenine-induced CKD.  1116 

(A-B) Blood urea nitrogen (BUN), serum creatinine (A), serum FGF23 and serum phosphate (Pi) 1117 

levels (B). (C-E) Quantitative PCR (qPCR) analysis of Il1b, Il6, Saa1 (C-D) and Hamp (E) 1118 

expression levels in liver tissue. (F) Complete blood count (CBC) analysis. (G) Representative 1119 

gross pathology of perls’ prussian blue-stained spleen sections (scale bar, 50 m). (H) Liver Pi 1120 

levels. All values are mean ± SEM (n = 8–9 mice/group; *p ≤ 0.05 vs. FGFR4
+/+

 + control diet, 1121 

#p ≤ 0.05 vs. FGFR4
-/-

 + control diet, $p ≤ 0.05 vs. FGFR4
+/+

 + adenine diet) where statistical 1122 

analyses were calculated by two-way ANOVA followed by Tukey’s multiple comparison post-1123 

hoc test. Dotted lines indicate median FGFR4
+/+

 + control diet measurements.  1124 

 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 
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Figure 2 1133 
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Figure 2. FGF23-FGFR4 signaling does not contribute to hypoferremia following dietary Pi 1134 

overload.  1135 

(A) Serum FGF23 and serum Pi levels. (B-C) qPCR analysis of Il1b, Il6 and Saa1 expression 1136 

levels in liver tissue. (D) Scatter plots showing correlations between liver Pi and serum Pi levels. 1137 

(E) Scatter plots showing correlations between liver Hamp expression and liver Pi levels (a= 1138 

slopes are significantly different from each other). (F) CBC analysis. (G) Representative gross 1139 

pathology of perls’ prussian blue-stained spleen sections (scale bar, 50 m). All values are mean 1140 

± SEM (n = 8 mice/group; *p ≤ 0.05 vs. FGFR4
+/+

 + 0.7% Pi diet, #p ≤ 0.05 vs. FGFR4
-/-

 + 0.7% 1141 

Pi diet, $p ≤ 0.05 vs. FGFR4
+/+

 + 2% Pi diet, @p ≤ 0.05 vs. FGFR4
-/-

 + 2% Pi diet, &p ≤ 0.05 vs. 1142 

FGFR4
+/+

 + 3% Pi diet) where statistical analyses were calculated by two-way ANOVA 1143 

followed by Tukey’s multiple comparison post-hoc test. Dotted lines indicate median FGFR4
+/+

 1144 

+ 0.7% Pi diet measurements. Scatter plot shadows indicate 95% confidence interval.  1145 

 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 
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Figure 3 1154 
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Figure 3. Mouse models of hyperphosphatemia exhibit signs of skeletal muscle wasting 1155 

which are independent of FGF23-FGFR4 signaling. 1156 

(A) Grip strength. (B) Gastrocnemius weight. (C-D) qPCR analysis of Mstn (C), Murf1 and 1157 

Atrogin1 (D) expression levels in gastrocnemius tissue. (E) Representative gross pathology of 1158 

H&E-stained gastrocnemius sections (scale bar, 20 m). All values are mean ± SEM ((n = 8–9 1159 

mice/group; *p ≤ 0.05 vs. FGFR4
+/+

 + control diet, #p ≤ 0.05 vs. FGFR4
-/-

 + control diet); (n = 8 1160 

mice/group; 

p ≤ 0.05 vs. FGFR4

+/+
 + 0.7% Pi diet, 


p ≤ 0.05 vs. FGFR4

-/-
 + 0.7% Pi diet, 


p ≤ 1161 

0.05 vs. FGFR4
+/+

 + 2% Pi diet, 

p ≤ 0.05 vs. FGFR4

-/-
 + 2% Pi diet)) where statistical analyses 1162 

were calculated by two-way ANOVA followed by Tukey’s multiple comparison post-hoc test. 1163 

Dotted lines indicate median FGFR4
+/+

 + control diet or FGFR4
+/+

 + 0.7% Pi diet 1164 

measurements.  1165 
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Figure 4 1166 
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Figure 4. Low Pi feeding limits functional iron deficiency in COL4A3
-/-

 (Alport syndrome) 1167 

mice. 1168 

(A-B) BUN, serum creatinine (A), serum FGF23 and serum Pi levels (B). (C-E) qPCR analysis 1169 

of Il1b, Il6 and Saa1 (C-D) and Hamp (E) expression levels in liver tissue. (F) CBC analysis. (G) 1170 

Representative gross pathology of perls’ prussian blue-stained spleen sections (scale bar, 50 m). 1171 

(H) Liver Pi levels. All values are mean ± SEM (n = 7-9 mice/group; *p ≤ 0.05 vs. COL4A3
+/+

 + 1172 

0.6% Pi diet, #p ≤ 0.05 vs. COL4A3
-/-

 + 0.6% Pi diet) where statistical analyses were calculated 1173 

by two-way ANOVA followed by Tukey’s multiple comparison post-hoc test. Dotted lines 1174 

indicate median COL4A3
+/+ 

+ 0.6% Pi diet measurements.  1175 
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Figure 5 1186 
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Figure 5. Low Pi feeding counteracts signs of skeletal muscle wasting in COL4A3
-/-

 (Alport 1191 

syndrome) mice. 1192 

(A) Grip strength. (B) Gastrocnemius weight. (C-D) qPCR analysis of Mstn (C), Murf1 and 1193 

Atrogin1 (D) expression levels in gastrocnemius tissue. (E) Representative gross pathology of 1194 

H&E-stained gastrocnemius sections (scale bar, 20 m). All values are mean ± SEM (n = 7-9 1195 

mice/group; *p ≤ 0.05 vs. COL4A3
+/+

 + 0.6% Pi diet, #p ≤ 0.05 vs. COL4A3
-/-

 + 0.6% Pi diet) 1196 

where statistical analyses were calculated by two-way ANOVA followed by Tukey’s multiple 1197 

comparison post-hoc test. Dotted lines indicate median COL4A3
+/+ 

+ 0.6% Pi diet measurements.  1198 

 1199 

 1200 
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Figure 6 1201 
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Figure 6. Pi targets hepatocytes and increases expression of inflammatory cytokines and 1202 

hepcidin. 1203 

(A) Immunoblot analysis of total protein extracts from primary hepatocytes (n = 5 independent 1204 

isolations). -actin serves as loading control. (B-E) qPCR analysis of Il1b, Il6, Saa1 (B-C), 1205 

Hamp (D) and Pit1 (E) expression levels in primary hepatocytes; values are mean ± SEM (n = 4 1206 

independent isolations; *p ≤ 0.05 vs. control (Ctrl)). Dotted lines indicate median Ctrl 1207 

measurements. (F) qPCR analysis of Pit1 expression levels in primary hepatocytes following 1208 

stimuli, with or without phosphonoformic acid (PFA); values are mean ± SEM (n = 6 1209 

independent isolations; *p ≤ 0.05 vs. vehicle control (Ctrl), #p ≤ 0.05 vs. 1 mM PFA Ctrl). 1210 

Dotted lines indicate median vehicle Ctrl measurements. (G) Immunoblot analysis of total and 1211 

phosphorylated p65 (NFB) protein levels from primary hepatocytes following stimuli, with or 1212 

without PFA; (n = 5 independent isolations). -actin serves as loading control. (H-J) qPCR 1213 

analysis of Il1b, Il6, Saa1 (H-I) and Hamp (J) expression levels in primary hepatocytes following 1214 

stimuli, with or without PFA; values are mean ± SEM (n = 6 independent isolations; *p ≤ 0.05 1215 

vs. vehicle control (Ctrl), #p ≤ 0.05 vs. 1 mM PFA Ctrl) where statistical analyses were 1216 

calculated by one-way ANOVA (B-E) or by two-way ANOVA (F, H-J) followed by Tukey’s 1217 

multiple comparison post-hoc test. Dotted lines indicate median vehicle Ctrl measurements.  1218 

 1219 

 1220 

 1221 
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Figure 7 1223 
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Figure 7. Pi induces hepcidin expression via paracrine IL1 and IL6 signaling 1230 

(A-B) qPCR analysis of Il1b, Il6 (A) and Hamp (B) expression levels in primary hepatocytes 1231 

following stimuli, with or without BAY 11-7082; values are mean ± SEM (n = 4 independent 1232 

isolations; *p ≤ 0.05 vs. vehicle control (Ctrl), #p ≤ 0.05 vs. 20 M BAY 11-7082 Ctrl). Dotted 1233 

lines indicate median vehicle Ctrl measurements. (C) qPCR analysis of Hamp expression levels 1234 

in primary hepatocytes following stimuli with or without anti-IL1, anti-IL6 or both antibodies 1235 

in combination; values are mean ± SEM (n = 4 independent isolations; *p ≤ 0.05 vs. vehicle 1236 

control (Ctrl), #p ≤ 0.05 vs. anti-IL1 Ctrl, $p ≤ 0.05 vs. anti-IL6 Ctrl, @p ≤ 0.05 vs. anti-IL1 + 1237 

anti-IL6 Ctrl) where statistical analyses were calculated by two-way ANOVA followed by 1238 

Tukey’s multiple comparison post-hoc test. Dotted lines indicate median vehicle Ctrl 1239 

measurements.  1240 

 1241 

 1242 

 1243 

 1244 

 1245 
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 1249 

Table 1. Macroscopic parameters of FGFR4
+/+

 and FGFR4
-/-

 mice receiving control and 1250 

adenine diet. 1251 

 1252 
 1253 
Values are expressed as mean ± SEM. Comparison between groups was performed in form of a 1254 

two-way ANOVA followed by a post-hoc Tukey test. A level of P<0.05 was accepted as 1255 

statistically significant; N=9/group; *p ≤ 0.05 vs. FGFR4
+/+

 + control diet, #p ≤ 0.05 vs. FGFR4
-1256 

/-
 + control diet.  1257 

 1258 

 1259 

 1260 

 1261 

 1262 

 1263 

 1264 

 1265 

 FGFR4
+/+ 

+ 

control diet 

 

FGFR4
-/- 

+ 

control diet 

FGFR4
+/+ 

+ 

adenine diet 

FGFR4
-/- 

+ 

adenine diet 

Body weight (g) 

 

30.1 ± 0.9 30.2 ± 0.3 16.8*
# 
± 0.5 17.5*

#
 ± 0.4 

Liver weight (g) 

 

1.14 ± 0.05 1.22 ± 0.08 0.74*
#
 ± 0.03 0.78*

#
 ± 0.05 

Spleen weight (mg) 

 

75.0 ± 2.2 76.0 ± 1.7 53.3*
#
 ± 3.3 56.0*

#
 ± 3.2 

Left kidney weight (mg) 

 

181.8 ± 8.5 173.2 ± 8.3 122.2*
#
 ± 4.9 101.8*

#
 ± 7.2 

Right kidney weight (mg) 

 

184.7 ± 10.7 175.2 ± 8.2 124.2*
#
 ± 4.1 102.8*

#
 ± 7.7 
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 1266 

Table 2. Macroscopic parameters of FGFR4
+/+

 and FGFR4
-/-

 mice receiving a graded 1267 

dietary Pi load. 1268 

 1269 
 1270 
 1271 
Values are expressed as mean ± SEM. Comparison between groups was performed in form of a 1272 

two-way ANOVA followed by a post-hoc Tukey test. No level of statistical significance was 1273 

accepted between groups; N=8/group 1274 

 1275 

 1276 

 1277 

 1278 

 1279 

 FGFR4
+/+ 

+ 

0.7% Pi diet 

 

FGFR4
-/- 

+ 

0.7% Pi diet 

FGFR4
+/+ 

+     

2% Pi diet 

FGFR4
-/- 

+      

2% Pi diet 

FGFR4
+/+ 

+     

3% Pi diet 

FGFR4
-/- 

+      

3% Pi diet 

Body weight (g) 

 

32.0 ± 1.0 31.9 ± 1.0 30.3
 
± 0.9 31.6 ± 0.9 29.5 ± 0.3 29.5 ± 0.4 

Liver weight (g) 

 

1.17 ± 0.04 1.15 ± 0.05 1.24 ± 0.03 1.20 ± 0.05 1.23 ± 0.5 1.19 ± 0.4 

Spleen weight 

(mg) 

 

76.3 ± 2.4 68.3 ± 1.7 77.0 ± 2.8 76.6 ± 2.8 76.6 ± 2.1 74.0 ± 1.7 

Left kidney 

weight (mg) 

 

146.5 ± 4.7 143.6 ± 4.5 156.0 ± 2.9 152.6 ± 3.4 153.4 ± 4.1 152.9 ± 3.7 

Right kidney 

weight (mg) 

 

149.0 ± 3.8 151.5 ± 3.7 152.9 ± 3.2 145.6 ± 3.5 152.5 ± 2.5 149.6 ± 3.9 
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 1280 

Table 3. Macroscopic parameters of Alport mice receiving either a 0.6% Pi diet or 0.2% Pi 1281 

diet. 1282 

 1283 

 1284 

 1285 

 1286 

 1287 

 1288 

 1289 

 1290 
 1291 
Values are expressed as mean ± SEM. Comparison between groups was performed in form of a 1292 

two-way ANOVA followed by a post-hoc Tukey test. A level of P<0.05 was accepted as 1293 

statistically significant; N=7-9/group; *p ≤ 0.05 vs. COL4A3
+/+

 + 0.6% Pi diet, #p ≤ 0.05 vs. 1294 

COL4A3
-/-

 + 0.6% Pi diet. 1295 

 1296 

 1297 

 1298 

 1299 

  1300 

 1301 

 COL4A3
+/+ 

+ 

0.6% Pi diet 

 

COL4A3
-/- 

+ 

0.6% Pi diet 

COL4A3
-/- 

+ 

0.2% Pi diet 

Body weight (g) 

 

26.3 ± 0.6 16.3* ± 0.6 22.2*
# 
± 0.6 

Liver weight (g) 

 

1.03 ± 0.04 0.68* ± 0.03 0.90
#
 ± 0.03 

Spleen weight (mg) 

 

72.2 ± 2.3 56.6* ± 2.4 65.9 ± 2.1 

Left kidney weight (mg) 

 

145.3 ± 1.6 124.1* ± 2.6 130.1* ± 2.1 

Right kidney weight (mg) 

 

147.4 ± 1.6 123.0* ± 3.4 133.6* ± 3.1 
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 1302 

Table 4. Composition of control and adenine diets. 1303 
 1304 

 1305 

Pi, phosphate; Ca, calcium; Na, sodium. These diets were manufactured by Envigo. 1306 

 1307 

 1308 

 1309 

 1310 

 1311 

 1312 

 1313 

 1314 

Diet Adenine 

(g/kg) 

Available 

Pi (%) 

Total 

Ca (%) 

Protein 

source 

Energy source Pi source 

TD.170303 

(control diet) 

 

0 

 

0.9 

 

0.6 

 

Casein 

20% protein 

66.9% Carbs 

13.2% Fat 

Casein 

Ca Pi, dibasic 

Na Pi, dibasic 

TD.170304 

(0.15% adenine) 

 

1.5 

 

0.9 

 

0.6 

 

Casein 

20% protein 

66.8% Carbs 

13.2% Fat 

Casein 

Ca Pi, dibasic 

Na Pi, dibasic 

TD.140290 

(0.2% adenine) 

 

2 

 

0.9 

 

0.6 

 

Casein 

20% protein 

66.8% Carbs 

13.2% Fat 

Casein 

Ca Pi, dibasic 

Na Pi, dibasic 
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 1315 

 1316 

Table 5. Composition of 0.7%, 2% and 3% phosphate (Pi) diets. 1317 
 1318 
 1319 

Pi, phosphate; Ca, calcium; K, potassium; Na, sodium. These diets were manufactured by 1320 

Envigo. 1321 

 1322 

 1323 

 1324 

 1325 

 1326 

 1327 

Diet Available 

Pi (%) 

Total 

Ca (%) 

Total 

iron 

(ppm) 

Total 

K (%) 

Total 

Na (%) 

Protein 

source 

Energy source Pi source 

TD.180287 

(0.7% Pi diet) 

 

0.7 

 

1.9 

 

280 

 

2.4 

 

1.2 

 

Crude 

33.3% protein 

53.9% Carbs 

12.8% Fat 

 

Crude protein 

TD.08020 

(2% Pi diet) 

 

2.0 

 

1.9 

 

280 

 

1.8 

 

0.9 

 

Crude 

33.3% protein 

53.9% Carbs 

12.8% Fat 

Crude protein 

K Pi, monobasic 

Na Pi, monobasic 

TD.180286 

(3% Pi diet) 

 

3.0 

 

1.9 

 

280 

 

2.4 

 

1.2 

 

Crude 

33.3% protein 

53.9% Carbs 

12.8% Fat 

Crude protein 

K Pi, monobasic 

Na Pi, monobasic 
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 1328 

 1329 

 1330 

 1331 

Table 6. Composition of 0.6% and 0.2% phosphate (Pi) diets. 1332 
 1333 
 1334 

Pi, phosphate; Ca, calcium; K, potassium; Na, sodium. These diets were manufactured by 1335 

Envigo. 1336 

 1337 

 1338 

 1339 

 1340 

 1341 

Diet Available 

Pi (%) 

Total 

Ca (%) 

Total 

iron 

(ppm) 

Total 

K (%) 

Total 

Na (%) 

Protein 

source 

Energy source Pi source 

TD.200407 

(0.6% Pi diet, normal) 

 

0.6 

 

0.6 

 

40 

 

0.6 

 

0.38 

Egg 

white 

solids 

17.7% protein 

65% Carbs 

17.3% Fat 

Egg white solids 

Ca Pi, monobasic 

TD.200406 

(0.2% Pi diet) 

 

0.2 

 

0.6 

 

40 

 

0.6 

 

0.38 

Egg 

white 

solids 

17.5% protein 

65.4% Carbs 

17.1% Fat 

Egg white solids 

Ca Pi, monobasic 
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 1342 

 1343 

 1344 

 1345 

 1346 

 1347 

Table 7. Oligonucleotides used as sequence specific primers in qPCR analyses 1348 
 1349 

Gene Species Orientation Primer Sequence (5’ – 3’) 

Npt1/Slc17a1 Mus musculus Forward 

Reverse 

GGC ACC TCC CTT AGA ACG AG 

CAG AAC ACA CCC AAC AAT ACC AAA 

Npt4/Slc17a3 Mus musculus Forward 

Reverse 

TGG TAC CCA TTG TTG CTG GC 

GGG ACA GCT TCA CAA ACG AGT 

NaPi2a/Slc34a1 Mus musculus Forward 

Reverse 

TCA TTG TCA GCA TGG TCT CCT C 

CCT GCA AAA GCC CGC CTG 

NaPi2b/Slc34a2 Mus musculus Forward 

Reverse 

CTC CTG CTG TCC CTT ACC TG 

TGT CAT TTG TTT TGC TGG CCT C 

NaPi2c/Slc34a3 Mus musculus Forward 

Reverse 

GAT GCC TTT GAC CTG GTG GA 

GCC ATG CCA ACC TCT TTC AG 

Pit1/Slc20a1 Mus musculus Forward 

Reverse 

TTC CTT GTT CGT GCG TTC ATC 

AAT TGG TAA AGC TCG TAA GCC ATT 

Pit2/Slc20a2 Mus musculus Forward 

Reverse 

GAC CGT GGA AAC GCT AAT GG 

CTC AGG AAG GAC GCG ATC AA 

Fgfr1 Mus musculus Forward 

Reverse 

GCT TGA CGT CGT GGA ACG AT 

AGC CAC TGA ATG TGA GGC TG 

Fgfr2 Mus musculus Forward 

Reverse 

ATC CCC CTG CGG AGA CA 

GAG GAC AGA CGC GTT GTT ATC C 

Fgfr3 Mus musculus Forward 

Reverse 

GTG TGC GTG TAA CAG ATG CTC 

CGG GCG AGT CCA ATA AGG AG 

Fgfr4 Mus musculus Forward 

Reverse 

TGA AGA GTA CCT TGA CCT CCG 

TCA TGT CGT CTG CGA GTC AG 

Alt1/Gpt1 Mus musculus Forward 

Reverse 

GCC CTC GAG TAC TAT GCG TC 

TGT CTT GGT ATA CCT CAT CAG CC 
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Ast1/Got1 Mus musculus Forward 

Reverse 

CTG AAT GAT CTG GAG AAT GCC C 

TGC AAA GCC CTG ATA GGC TG 

Il6 Mus musculus Forward 

Reverse 

CTC TGG GAA ATC GTG GAA AT 

CCA GTT TGG TAG CAT CCA TC 

Il1b Mus musculus Forward 

Reverse 

TGC CAC CTT TTG ACA GTG ATG 

TGA TGT GCT GCT GCG AGA TT 

Saa1 Mus musculus Forward 

Reverse 

ACA CCA GCA GGA TGA AGC TAC T 

GAG CAT GGA AGT ATT TGT CTG AGT 

Hamp Mus musculus Forward 

Reverse 

GAG CAG CAC CAC CTA TCT CC 

TTG GTA TCG CAA TGT CTG CC 

Haptoglobin/Hp Mus musculus Forward 

Reverse 

AGA GAG GCA AGA GAG GTC CA 

GGC AGC TGT CAT CTT CAA AGT 

Atrogin1/Fbxo32 Mus musculus Forward 

Reverse 

TGA GCG ACC TCA GCA GTT AC 

GCG CTC CTT CGT ACT TCC TT 

Murf1/Trim63 Mus musculus Forward 

Reverse 

GAG GGC CAT TGA CTT TGG GA 

TGG TGT TCT TCT TTA CCC TCT GT 

Mstn Mus musculus Forward 

Reverse 

CTC CAG AAT AGA AGC CAT A 

GCA GAA GTT GTC TTA TAG C 

Mt1 Mus musculus Forward 

Reverse 

CGA CTT CAA CGT CCT GAG TAC 

AGG AGC TGG TGC AAG TG 

18S rRNA/Rn18s Mus musculus Forward 

Reverse 

TTG ACG GAA GGG CAC CAC CAG 

GCA CCA CCA CCC ACG GAA TCG 

Gapdh Mus musculus Forward 

Reverse 

CCA ATG TGT CCG TCG TGG ATC T 

GTT GAA GTC GCA GGA GAC AAC C 

 1350 
 1351 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.22.465390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465390
http://creativecommons.org/licenses/by/4.0/


Supplementary Figures and Legends 

Supplementary Figure 1 

 

Supplementary Figure 1. FGF23-FGFR4 signaling does not contribute to functional iron 

deficiency in adenine-induced CKD. 

(A) Serum calcium analysis from FGFR4
+/+

 and FGFR4
-/-

 mice, fed either control or adenine 

diet. (B) Hematocrit percentage (HCT%), mean corpuscular hematocrit (MCH) and serum 
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transferrin saturation percentage (TSAT%) analysis in FGFR4
+/+

 and FGFR4
-/-

 mice, fed either 

control or adenine diet. All values are mean ± SEM (n = 8–9 mice/group; *p ≤ 0.05 vs. FGFR4
+/+

 

+ control diet, #p ≤ 0.05 vs. FGFR4
-/-

 + control diet) where statistical analyses were calculated 

by two-way ANOVA followed by Tukey’s multiple comparison post-hoc test. Dotted lines 

indicate corresponding median measurements from FGFR4
+/+

 mice on control diet.  
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Supplementary Figure 2 

 

Supplementary Figure 2. FGF23-FGFR4 signaling does not contribute to hypoferremia 

following dietary Pi overload. 

(A) Serum calcium analysis from FGFR4
+/+

 and FGFR4
-/-

 mice, fed either a 0.7% Pi diet or an 

escalating Pi diet (2% Pi diet or 3% Pi diet). (B-C) BUN and serum creatinine analysis from 

FGFR4
+/+

 and FGFR4
-/-

 mice, fed either a 0.7% Pi diet or an escalating Pi diet (2% Pi diet or 3% 
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Pi diet). (D) Representative gross pathology of H&E-stained kidney sections (original 

magnification, 20x; scale bar, 50 m) from FGFR4
+/+

 and FGFR4
-/-

 mice, fed either a 0.7% Pi 

diet or an escalating Pi diet (2% Pi diet or 3% Pi diet). No pathologic changes were detected in 

sections stained with H&E, as FGFR4
+/+

 and FGFR4
-/-

 mice on a 2% Pi or 3% Pi diet display 

similar results to FGFR4
+/+

 mice fed a 0.7% Pi diet. (E) Representative gross pathology of 

Masson’s trichrome-stained kidney sections (original magnification, 20x; scale bar, 50 m) from 

FGFR4
+/+

 and FGFR4
-/-

 mice, fed either a 0.7% Pi diet or an escalating Pi diet (2% Pi diet or 3% 

Pi diet). No interstitial fibrosis was detected in sections stained with Masson’s trichrome, as 

FGFR4
+/+

 and FGFR4
-/-

 mice on a 2% Pi or 3% Pi diet display similar results to FGFR4
+/+

 mice 

fed a 0.7% Pi diet. All values are mean ± SEM (n = 8 mice/group). Dotted lines indicate 

corresponding median measurements from FGFR4
+/+

 mice on 0.7% Pi diet.  
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Supplementary Figure 3 

 

Supplementary Figure 3. Liver injury marker and hematological analyses in FGFR4
+/+

 and 

FGFR4
-/-

 mice fed a graded Pi diet.  

(A-B) qPCR analysis of liver tissue shows expression levels of alanine aminotransferase (Alt1) 

and aspartate aminotransferase (Ast1) are not significantly elevated in FGFR4
+/+

 and FGFR4
-/-

 

mice, fed either a 2% Pi diet or 3% Pi diet, when compared to FGFR4
+/+ 

mice on a 0.7% Pi diet. 

(C) Hematocrit percentage (HCT%) and mean corpuscular hematocrit (MCH) analysis in 

FGFR4
+/+

 and FGFR4
-/-

 mice, fed either a 0.7% Pi diet or an escalating Pi diet (2% Pi diet or 3% 
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Pi diet). All values are mean ± SEM (n = 8 mice/group; *p ≤ 0.05 vs. FGFR4
+/+

 + 0.7% Pi diet, 

#p ≤ 0.05 vs. FGFR4
-/-

 + 0.7% Pi diet, #p ≤ 0.05 vs. FGFR4
+/+

 + 2% Pi diet, @p ≤ 0.05 vs. 

FGFR4
-/-

 + 2% Pi diet) where statistical analyses were calculated by two-way ANOVA followed 

by Tukey’s multiple comparison post-hoc test. Dotted lines indicate corresponding median 

measurements from FGFR4
+/+

 mice on 0.7% Pi diet.  
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Supplementary Figure 4 

 

Supplementary Figure 4. Models of hyperphosphatemia exhibit signs of skeletal muscle 

wasting and low Pi feeding in COL4A3
-/-

 (Alport syndrome) mice counteracts muscle 

dysfunction.  

(A-C) qPCR analysis of gastrocnemius tissue shows expression levels of metallothionein-1 

(Mt1) are significantly elevated in FGFR4
+/+

 and FGFR4
-/-

 mice fed either adenine (A) or a 3% 

Pi diet (B). Alport (COL4A3
-/-

) mice on control diet (0.6% Pi diet) display elevated expression 

levels of Mt1 in gastrocnemius tissue, when compared to wild-type (COL4A3
+/+

) on a 0.6% Pi 

diet (C). A low Pi diet (0.2% Pi) in Alport mice reduces Mt1 expression levels (C). All values are 

mean ± SEM ((n = 8–9 mice/group; *p ≤ 0.05 vs. FGFR4
+/+

 + control diet, #p ≤ 0.05 vs. FGFR4
-

/-
 + control diet); (n = 8 mice/group; 


p ≤ 0.05 vs. FGFR4

+/+
 + 0.7% Pi diet, 


p ≤ 0.05 vs. FGFR4

-

/-
 + 0.7% Pi diet, 


p ≤ 0.05 vs. FGFR4

+/+
 + 2% Pi diet, 


p ≤ 0.05 vs. FGFR4

-/-
 + 2% Pi diet); (n = 

7-9 mice/group; 

p ≤ 0.05 vs. COL4A3

+/+
 + 0.6% Pi diet, 


p ≤ 0.05 vs. COL4A3

-/-
 + 0.6% Pi 

diet)) where statistical analyses were calculated by two-way ANOVA followed by Tukey’s 

multiple comparison post-hoc test. Dotted lines indicate corresponding median measurements 
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from FGFR4
+/+

 mice on control diet (A), FGFR4
+/+

 mice on 0.7% Pi diet (B) or COL4A3
+/+ 

mice on 0.6% Pi diet (C).  

Supplementary Figure 5 

 

Supplementary Figure 5. Low Pi feeding limits functional iron deficiency in COL4A3
-/-

 

(Alport syndrome) mice. 
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(A) Representative gross pathology of H&E-stained kidney sections (original magnification, 

20x; scale bar, 50 m) from wild-type (COL4A3
+/+

) and Alport (COL4A3
-/-

) mice, fed either 

control diet (0.6% Pi) or a low Pi diet (0.2% Pi). Pathologic changes were detected in sections 

stained with H&E from Alport mice fed a 0.6% Pi diet. A 0.2% Pi diet moderately improves this 

feature in Alport mice. (B) Hematocrit percentage (HCT%), mean corpuscular hematocrit 

(MCH) and serum transferrin saturation percentage (TSAT%) analysis in wild-type (COL4A3
+/+

) 

and Alport (COL4A3
-/-

) mice, fed either control diet (0.6% Pi) or a low Pi diet (0.2% Pi). (C) 

Spleen non-heme iron concentrations in wild-type (COL4A3
+/+

) and Alport (COL4A3
-/-

) mice, 

fed either control diet (0.6% Pi) or a low Pi diet (0.2% Pi). (D) Liver non-heme iron 

concentrations in wild-type (COL4A3
+/+

) and Alport (COL4A3
-/-

) mice, fed either control diet 

(0.6% Pi) or a low Pi diet (0.2% Pi). All values are mean ± SEM (n = 7-9 mice/group; *p ≤ 0.05 

vs. COL4A3
+/+

 + 0.6% Pi diet, #p ≤ 0.05 vs. COL4A3
-/-

 + 0.6% Pi diet) where statistical analyses 

were calculated by two-way ANOVA followed by Tukey’s multiple comparison post-hoc test. 

Dotted lines indicate corresponding median measurements from COL4A3
+/+ 

mice on 0.6% Pi 

diet.  
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Supplementary Figure 6 

 

Supplementary Figure 6. Pi targets hepatocytes and increases expression of inflammatory 

cytokines and hepcidin. 

(A) qPCR analysis of isolated primary hepatocytes shows absolute transcript expression of all 

three families of sodium phosphate cotransporters (type I, type II and type III). This analysis 

indicates type III sodium phosphate cotransporters (Pit1 and Pit2) have the highest expression 

levels in mouse primary hepatocyte cultures (n = 3 independent isolations). (B) qPCR analysis of 

primary hepatocytes shows Pit2 expression levels following inflammatory, dose-dependent Pi or 

dose-dependent Na2SO4 treatment. No significant elevations were detected following treatments, 

when compared to control (Ctrl); values are mean ± SEM (n = 4 independent isolations). Dotted 

lines indicate corresponding median measurements from Ctrl. 
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Supplementary Figure 7 
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Supplementary Figure 7. Pi induces hepcidin expression via paracrine IL1 and IL6 

signaling.  

(A-C) qPCR analysis of primary hepatocytes shows expression levels of Saa1 (A), Haptoglobin 

(B) and Pit1 (B) following lipopolysaccharide (LPS) or Pi stimulation, with or without BAY 11-

7082; values are mean ± SEM (n = 4 independent isolations; *p ≤ 0.05 vs. vehicle control (Ctrl), 

#p ≤ 0.05 vs. 20 M BAY 11-7082 Ctrl). Dotted lines indicate corresponding median 

measurements from vehicle Ctrl. (D-E) qPCR analysis of primary hepatocytes shows Saa1 and 

Haptoglobin expression levels following LPS or Pi stimulation, with or without anti-IL1, anti-

IL6 or both antibodies in combination; values are mean ± SEM (n = 4 independent isolations; *p 

≤ 0.05 vs. vehicle control (Ctrl), #p ≤ 0.05 vs. anti-IL1 Ctrl, $p ≤ 0.05 vs. anti-IL6 Ctrl, @p ≤ 

0.05 vs. anti-IL1 + anti-IL6 Ctrl) where statistical analyses were calculated by two-way 

ANOVA followed by Tukey’s multiple comparison post-hoc test. Dotted lines indicate 

corresponding median measurements from vehicle Ctrl. 
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