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Abstract

Most queries submitted to a literature search engine can be more precisely written as
sentences to give the search engine more specific information. Sentence queries
should be more effective, in principle, than short queries with small numbers of
keywords. Querying with full sentences is also a key step in question-answering and
citation recommendation systems. Despite the considerable progress in natural
language processing (NLP) in recent years, using sentence queries on current search
engines does not yield satisfactory results. In this study, we developed a deep
learning-based method for sentence queries, called DeepSenSe, using citation data
available in full-text articles obtained from PubMed Central (PMC). A large amount
of labeled data was generated from millions of matched citing sentences and cited
articles, making it possible to train quality predictive models using modern deep
learning techniques. A two-stage approach was designed: in the first stage we used a
modified BM25 algorithm to obtain the top 1000 relevant articles; the second stage
involved re-ranking the relevant articles using DeepSenSe. We tested our method
using a large number of sentences extracted from real scientific articles in PMC. Our
method performed substantially better than PubMed and Google Scholar for sentence
queries.

Introduction

Literature retrieval using search engines is routinely performed by biomedical scientists to find
academic papers (related to a set of keywords) they are interested in. Public search engines, such
as PubMed and Google Scholar, have been commonly used for this purpose. The ever-increasing
number of biomedical research articles published every year has made it very challenging for
search engines to rank the most relevant articles highly enough for users to find them. Missing
important studies in a literature search can have serious consequences when designing a new
study, such as wasting resources and/or time; it can also result in making wrong conclusions or
missing new discoveries when interpreting experimental results.

The importance of search engines for scientific literature retrieval has motivated researchers to
develop effective solutions over the years, including both traditional methods [1-7] and more
recently, deep learning methods [8-17]. Web-based tools have also been developed so that
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researchers can conduct a literature search from various databases [18]. Most search engines use
BM25 (or a variation of it) for its similarity ranking algorithm [19]. BM25 is a bag-of-words
retrieval function that ranks a set of documents based on the number of query terms appearing in
each document, regardless of their proximity within the document. A number of variations [20]
have been proposed to address the known issues of BM25 [21]. User activity information has
also been leveraged to improve users’ search experience [22-24]. In 2017, a new relevance
search algorithm called “Best Match” was deployed at PubMed [24] using a “learn to rank”
based machine learning algorithm [25-27] trained by user-click information from PubMed search
logs. PubMed has been the major literature search tool for biomedical scientists around the world
with more than 3 million visits per day [28, 29].

When searching for papers related to a particular topic of interest, it is more effective to search
with more keywords that define a topic, such as using full sentences or asking questions.
However, current search engines do not perform well for such query types (see Results for more
details). For example, PubMed often does not return any results for sentence queries. In this
study, we aim to develop a better method for document retrieval using sentence queries by taking
advantage of recent advancements in deep learning algorithms for natural language processing
(NLP). Methods that use sentence queries for document retrieval will also help the development
of more accurate question-answering and citation recommendation systems.

A major challenge when developing a quality search engine using machine learning methods is
the availability of a large amount of labeled training data. The labeled data should consist of
different queries matched to relevant papers. Generating such labeled data manually is very time
and resource consuming. To tackle this challenge, we used the citation data from PubMed
Central (PMC) full-text articles to generate labeled data. In full-text articles, when a sentence
cited an article, we call the sentence as a citing sentence and the article as a cited article. They
can be considered as a manually labeled case with the citing sentence as the query and the cited
article as the relevant document. We can extract citing sentences and the corresponding cited
articles from PMC full-text articles to generate millions of labeled cases, which can be used to
train quality deep learning models.

We tried several deep learning architectures and found that the decomposable attention model
[30] offered the best tradeoff between accuracy and speed. We used a two-step approach, where
in the first step a modified BM25 method was used to rank all the articles to generate the top
1000 relevant articles; then the articles were re-ranked in the second step using deep learning
models to produce the final ranking.

We tested the performance of our method using a large number of cases obtained from the PMC
citation data, which were not used for model training. Our method achieved significantly better
performance than the search engines of PubMed and Google Scholar.
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Method and Data

Problem formulation

Our goal is to find the most relevant articles associated with a sentence query from a database of
articles. To use the latest deep learning methods, we need a substantial amount of labeled
training data. To that end, we assume that the articles cited by a sentence in a scientific article are
highly relevant to that sentence. Based on this assumption, we first downloaded full-text articles
from PubMed Central (PMC) and MEDLINE citations from PubMed. We extracted sentences
with citations from the full-text part of the PMC XML files, and obtained titles, abstracts,
publication year, article type (journal article, review, case reports, etc.) and journal names from
the MEDLINE citations to build an internal database. This internal database is necessary since
we will need to query it many times to generate the training data. In addition, we downloaded
journal citation reports from Web of Science [31] and extracted the impact factors as one of the
input features. We also extracted citation information from PubMed XML files and calculated
the number of citations an article has for as many articles as possible. For each citing sentence
and the cited article associated with it, we created a sentence-article pair (SEN, ABS) as a true
case, where ABS contains both the title and abstract of the cited article as well as additional
information related to the cited article.

Applying a deep learning model directly to all the PubMed abstracts for a given query is not
feasible due to the relatively high computational cost of deep learning models. To cope with this,
we first built an SQL database of all the PubMed abstracts and used a modified BM25 algorithm
[19] (called MBM) to query the top 1000 ranked articles, which are then re-ranked by the chosen
deep learning model. When generating the training and validation dataset, we obtained two
negative cases for each sentence query: one case was randomly chosen from the top 1,000 query
results excluding the cited article, and the other case was randomly chosen from all the abstracts
outside of the top 1000. This strategy allows the model to learn the general differences between
the true and false cases and the subtle differences between the true and high-ranking false cases.
When performing a sentence query, only articles published earlier than the article containing the
citing sentence (SEN) were considered because SEN can cite only earlier articles. Our method is
called DeepSenSe (Deep learning method using Sentence in Searches).

The workflow of our methodology development is shown in Figure 1.
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Figure 1. The workflow of our methodology development. SENs: citing sentences; ABS: titles and abstracts of
cited articles. MBM: modified BM25 algorithm querying our database; PMT: PubMed TF-IDF algorithm querying
PubMed database; PMB: PubMed “Best Match” algorithm querying PubMed database; DL: deep learning. Citing
sentences were extracted from PMC full-text articles and split into training, validation, and test data. PubMed
articles were used to build the MBM database. Citing sentences were paired with cited PubMed articles. In the
training and validation data, the sentence-citation pairs served as true cases. False cases were created by randomly
sampling two articles not cited by the sentence for each citing sentence. For testing, the citing sentence was used as
the query sentence while the cited article was considered as the most relevant article. The citing sentences were used
as queries to search using MBM, PMT, and PMB to get the top 1000 results which were then re-ranked by
DeepSenSe to obtain the final ranking results.

Datasets

We downloaded the PMC full-text articles published before Oct. 23rd, 2019. Sentences with
citations were then extracted from the full-text. Sentences with no meaningful keywords were
excluded. The remaining citing sentences were divided into training, validation, and test datasets.
About 79% of citations are articles with a PubMed ID (PMID, a unique number for each article
in PubMed); other citations are books, webpages, conferences, etc.

All the PubMed articles were stored and indexed in a MySQL database. A modified BM25
algorithm (MBM) [32] was used for querying articles from our own database [33]. The speed
and accuracy of the MBM are better than the standard BM25 algorithm.

The query sentences were preprocessed using the NLTK (Natural Language Toolkit) package
[34]. The sentences were first tokenized into words. Greek alphabets (o, B ...) were converted
into English words (alpha, beta, etc.). Stop words and punctuations were removed. The
remaining tokens were rejoined with a space and used as the final query to the databases. When
searching PubMed, we added “OR” between each pair of consecutive words. This is necessary
for PubMed to return results. Sentences with less than 5 tokens or more than 50 tokens after
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preprocessing (tokenization, conversion of Greek alphabets, removal of stop words and
punctuations) were excluded. For each sentence query, we obtained the top 1000 relevant articles
among all PubMed articles using MBM, PubMed TF-IDF (PMT) algorithm (the old PubMed
algorithm before Best Match) or PubMed BestMatch (PMB) algorithm. Query sentences, whose
corresponding cited articles have less than 50 words in their titles and abstracts, were excluded.

To develop the training and validation datasets, the query sentences were paired with their
corresponding cited articles and these pairs served as positive cases. In addition, two negative
cases were constructed for each citing sentence by pairing the citing sentence with two articles
not cited by the sentence: one randomly selected from the top 1,000 search results of the citing
sentence and another randomly selected from all other articles. In total, there are 854,101
sentences with 936,591 citations paired as positive cases and 1,870,387 negative cases in the
training data. There are 145,455 sentences paired with 148,269 citations as positive cases and
296,128 citations as negative cases in the validation dataset.

Three test datasets were developed to evaluate different methods. The test datasets were
constructed by querying the citing sentences against all PubMed abstracts using MBM, PMT, or
PMB. Biopython package [35] was used to query the PubMed database. We first randomly
selected 90,757 sentences whose cited articles are ranked in the top 1000 of search results by
MBM. This test dataset is referred to as D1. More details on dataset D1 are given in Table S1
(Supplementary Materials).

The second test dataset (D2) includes cases for which the articles cited by the query sentences
were all ranked in top 1000 by both MBM and PMT. The PubMed database implemented two
relevance scoring algorithms: the TF-IDF algorithm has been used since 2013 and the “Best
Match” algorithm, which is a L2R (learning to rank) machine learning algorithm, was deployed
in 2017. Querying through the NCBI Entrez API gives results ranked by the TF-IDF algorithm
while querying through the PubMed web portal gives results ranked by the “Best Match”
algorithm. We used the Biopython package [35] to query the PubMed database through the
Entrez API to get search results ranked by the TF-IDF algorithm, and wrote a Python script to
query the PubMed database through its web API to get search results ranked by the “Best Match”
algorithm. Among the 90,757 citing sentences, 57,123 sentences had their corresponding cited
articles ranked in the top 1,000 search results by both MBM and PMT. Table S2 (Supplementary
Materials) provides more details on dataset D2.

Querying the PubMed database through its web API was much less efficient than through the
Entrez API. We managed to get search results for 9,916 citing sentences for which the cited
articles were ranked in the top 1,000 search results by MBM, PMT, and PMB. This dataset is
referred to as dataset D3 (Table S3 in Supplementary Materials).

To investigate the performance on sentence queries of Google Scholar, we randomly selected
100 query sentences from D3. The sentences were used as queries to manually search on Google
Scholar. In all the test datasets, the cited article of a query sentence is considered as the true
relevant article for that sentence, and we check whether a search method ranked it in the top 1,
20, or 100 among all the 1,000 search results.
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The deep learning model

After experimenting with different deep learning models including BERT (Bidirectional Encoder
Representations from Transformers) [36], we found that the decomposable attention model [37]
achieved the best tradeoff between accuracy and speed. The decomposable attention model is a
simple neural architecture proposed by Parikh et al. for natural language inference. The core of
the architecture consists of three steps: Attend, Compare, and Aggregate. To accommodate the
characteristics of the search engine, a modified decomposable attention model was implemented
in this work. Architecture of the modified decomposable attention model is shown in Figure 2.

At the training stage, the inputs are the quadruplets {(q, a, b, y)"}_,, where q is the query
sentence, a and b are the title and abstract of the cited article, and y is the label. At the
evaluation stage, each query sentence was paired with each of the top returned articles. The
triplet (g, a, b) was used as the input to the model that predicted the probability of relevance
ranking for the returned article.
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Figure 2. The Decomposable Attention Model.

Embedding. Word embeddings with dimension d were used as representation of inputs. Let g =
(ql, -, CIzq) be the query sentence, a = (al, -, ala) and b = (bl, -, blb) be the title and
abstract of the cited article or returned article, respectively. I, 4, [}, are the lengths of the query

sentence, the title, and the abstract of the article, respectively. q;, a;, b; € R? are the i word of
the query sentence, the title, and the abstract of the article. The inputs are passed through a dense
layer F with an exponential linear unit (ELU) [38] activation function and dropout. The resultant
is then fed to subsequent steps of the model.

Attend. At the Attend step, we first compute the unnormalized attention weights el-lj for each

element of the query sentence and the title, and for each element of the query sentence and the
abstract.

el =F(q)"F(a),i=1,.,15j=1,..,14 (1D
el =F(@@)"F(b),i=1,...0gj=1..1 (2)
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Then the normalized attention representations, g, g7, a}, b/, can be calculated as follows:

]’ "]
1._ vyla exp(eilj) -
U= LT plegy @ LT Tl 3)
o o)

a; =) ————q; j=1,..,1 4
j Zl=1z§5,= o (el) qir J a (4)
2 — lb exp(elzj) b - 1 l 5

ql ZJ:lzicbzlexp(elzk) j l ) lg ( )

l exp(eiz-) ]

by =31 — g i=1,..,1, 6

g l_lzsleexp(eﬁj) U J b (6)

where g; and g7 are the normalized attention representations of the query sentence attending to
the title and abstract of the article, and a]'-, b]f are the normalized attention representations of the
title and abstract of the article attending to the query sentence.

Compare. At the Compare step, we concatenate the corresponding input representation, the
normalized attention representation, and the difference between the input representation and the
normalized attention representation for the query sentence, the title and the abstract. Then a fully
connected layer G, with ELU activation function, dropout and max pooling was applied on top of
the concatenation as follows:

vy = G([q,qf, (@i —aD)D,i=1,..,14 (7
vy =G([apa, (¢ —a)]) =11, (8)
vy = G(q,qf, (g —aDDi=1,...1, 9
vy = G([b;, bj,(bj — bj)]),j =1, ... Ly (10)

Aggregate. At the step of Aggregate, we first aggregate elementwise the representations of the
query sentence, the title and the abstract through summation as follows:

l

vy = Zliil Vi, (11)

Uy = Zja=1 V2,j (12)
1

vy =YL vy (13)
l

Vy = Zjb=1 Vs, j (14)

Additional features are concatenated and passed through two fully connected layers with an
ELU activation function, dropout, and Batch Normalization [39] for an aggregated representation
(function L() in equation 15).

vs = L([features]) (15)
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All aggregated representations are then concatenated and passed through two fully
connected layers with ELU activation function, a dropout, a Batch Normalization, and finally a
Sigmoid layer (function H() in equation 16).

y = H([v1,v2,v5,v,,vf]) (16)
Model training

The modified decomposable attention model was trained and validated on the training and
validation datasets using the following settings: word embedding dimensions: 300; numbers of
hidden layers: [500, 300, 32, 16]; dropout rate: 0.2; optimizer: Adam [40]; loss function: binary
cross-entropy; learning rate: 0.01; batch size: 20; max training epochs: 20. We also used a 300-
dimensional word embedding trained on more than 17 million PubMed articles using fastText
[41]. The maximum length of query sentences and article titles was set to be 100 words, while
the maximum length of article abstracts was set to be 1,000 words. Early stopping was used to
determine the best epoch by monitoring the loss on the validation dataset. The programs used in
this study were implemented in Python. We used Keras [42] together with TensorFlow[43] to
implement deep learning models.

Results

We first evaluated DeepSenSe using test dataset D1. In D1, there are 90,757 sentences, and each
sentence has 1000 candidate relevant articles including the article the sentence actually cited. For
each query sentence, we check whether the algorithm can rank the corresponding cited article in
the top k articles among the 1000 candidate articles, where k=1, 10, and 100. To compare
ranking algorithms, we compare the numbers of times the ranking algorithms can rank the cited
articles in top k (n1:0p-x) for all 90,757 cases. For MBM the 7;0p-« values are 17,898, 44,957, and
62,609 for k=1, 10, and 100, respectively. As a comparison, DeepSenSe was able to improve
these values to 23,649, 61,132, and 79,830, respectively. The relative increases are 32%, 36%
and 28%, respectively (Figure 3A).

We compared DeepSenSe with PubMed TF-IDF (PMT) algorithm using D2 with 57,123 query
sentences, in which the articles cited by the query sentences were all ranked in top 1000 by both
MBM and PMT. The top 1000 articles from MBM and PubMed are different. So, we let
DeepSenSe to re-rank both sets of 1000 articles for each query sentence. Compared to MBM, the
DeepSenSe model was able to improve the 7.p-x values from 15,755 to 19,204, 35,567 to 42,911,
and 45,504 to 52,283 for k=1, 10, and 100, respectively. The relative increases are 22% (k=1),
21% (k=10), and 15% (k=100). Compared to PMT, DeepSenSe improved the values from 8,915
to 16,777 (k=1), 25,262 to 40,260 (k=10), and 37,033 to 50,434 (k=100). The relative increases
are 88%, 59%, and 36%, respectively (Figure 3B).

We then compared DeepSenSe with PMT and PubMed BestMatch (PMB) algorithms. We used
D3 with 9,916 sentences, where the articles cited by the query sentences were all ranked in top
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1000 by MBM, PMT, and PMB. Again, DeepSenSe was able to improve the ranks substantially
for all three algorithms for this dataset (Figure 3C).
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Figure 3: Performance of DeepSenSe, MBM, PMT, PMB, and Google Scholar. A: Performance of DeepSenSe
and MBM on D1; B: Performance of DeepSenSe, MBM and PMT on D2; C: Performance of DeepSenSe, MBM,
PMT and PMB on D3; D: Performance of DeepSenSe, MBM, PMT, PMB and Google Scholar on 100 sentences
randomly selected from D3. Top1: the relevant article is ranked as top 1 of the search result; top20: the relevant
article is ranked within the top 20 of the search result; and top100: the relevant article is ranked within the top 100 of
the search result. MBM: modified BM25; PMT: PubMed TFIDF; PMB: PubMed Best Match.

Finally, we compared DeepSenSe with PMT, PMB, and Google Scholar using a very small test
dataset with only 100 sentences, since Google does not allow automatic querying of their system.
These 100 sentences were randomly selected from dataset D3. The comparison results are shown
in Figure 3D. In the Google Scholar search, we limited the domain to PubMed database to be
consistent with other searches. The performance of Google Scholar for this dataset is much
worse than the other search algorithms. Again, DeepSenSe performed the best among all the

search algorithms.

In Table S4 (Supplementary Materials), we show some examples, which DeepSenSe and MBM
ranked very differently. A clear trend we have observed is that DeepSenSe matches meanings
better than MBM, which, as a BM25 based method, matches exact keywords better.
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Conclusions and Discussions

Document retrieval using full sentences as queries can help users find relevant documents more
effectively. It is also very useful for building question-answering systems, identifying relevant
citations for scientific manuscripts, and comparing new findings with previous knowledge. In
this study, we developed a deep learning model, called DeepSenSe, trained using a large volume
of labeled data obtained from the citation data of PMC full-text articles. Tested on large test
datasets, DeepSenSe was able to substantially improve the rankings of existing methods
including a modified BM25 (MBM) and PubMed’s ranking algorithms. The combination of
MBM and DeepSenSe gave the best performance overall.

We tried several different deep learning architectures and the decomposable attention model had
the best tradeoff between accuracy and speed (in terms of both training and prediction). The
BERT model had better performance, but is much slower in training and prediction. With more
powerful hardware, it is possible that more sophisticated models can be employed to achieve
even better overall performance in the future.

User behavior analysis on PubMed showed that most queries are short and over 80% of all
queries had no more than four tokens [44-46]. We hypothesized that this may be partially due to
the current search engines not performing well for long queries, so that users do not tend to use
them as much. This user behavior could change if they find long queries can give them better
results.

In this study, we focused more on whether a relevant article will rank in the top 1, 20, and 100,
instead of its absolute rank. Since over 80% of users only clicked on the results from the first
page [44], it is crucial to show the most relevant articles on the first page. If a page shows 20
results then being ranked in the top 20 means the article is on the first page, and it has a much
higher chance to be found by a user.

We used ELU instead of ReLU because the effect of words with opposite meanings was also
significant in our situation. If we do not use ELU, the model predicts very high relevance scores
for almost all search results so that we cannot find out the cited articles.

It is worth mentioning that MBM, PubMed, and Google Scholar were not optimized for sentence
queries. So, the comparison in this study simply showed that DeepSenSe can improve MBM and
PubMed ranking results substantially for sentence queries using citation data as tests, instead of a
demonstration that DeepSenSe is better than these methods for general queries. Applying the
same concept to developing a search engine for general queries will be the subject of future
studies.

In addition to providing more relevant search results for sentence queries for search engines,
DeepSenSe is also ideally suited to scan full-text documents to identify relevant citations for the
sentences in the documents. For example, they can help authors add citations to the articles they
are writing or help institutions/agencies with document review by assessing the quality and
completeness of the citations in the documents. We are currently developing such a system,
which will be released in late 2021.

10
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