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Abstract 
 

Most queries submitted to a literature search engine can be more precisely written as 
sentences to give the search engine more specific information. Sentence queries 
should be more effective, in principle, than short queries with small numbers of 
keywords. Querying with full sentences is also a key step in question-answering and 
citation recommendation systems. Despite the considerable progress in natural 
language processing (NLP) in recent years, using sentence queries on current search 
engines does not yield satisfactory results. In this study, we developed a deep 
learning-based method for sentence queries, called DeepSenSe, using citation data 
available in full-text articles obtained from PubMed Central (PMC). A large amount 
of labeled data was generated from millions of matched citing sentences and cited 
articles, making it possible to train quality predictive models using modern deep 
learning techniques. A two-stage approach was designed: in the first stage we used a 
modified BM25 algorithm to obtain the top 1000 relevant articles; the second stage 
involved re-ranking the relevant articles using DeepSenSe. We tested our method 
using a large number of sentences extracted from real scientific articles in PMC. Our 
method performed substantially better than PubMed and Google Scholar for sentence 
queries.  

 
 
Introduction 
 
Literature retrieval using search engines is routinely performed by biomedical scientists to find 
academic papers (related to a set of keywords) they are interested in. Public search engines, such 
as PubMed and Google Scholar, have been commonly used for this purpose. The ever-increasing 
number of biomedical research articles published every year has made it very challenging for 
search engines to rank the most relevant articles highly enough for users to find them. Missing 
important studies in a literature search can have serious consequences when designing a new 
study, such as wasting resources and/or time; it can also result in making wrong conclusions or 
missing new discoveries when interpreting experimental results. 
 
The importance of search engines for scientific literature retrieval has motivated researchers to 
develop effective solutions over the years, including both traditional methods [1-7] and more 
recently, deep learning methods [8-17]. Web-based tools have also been developed so that 
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researchers can conduct a literature search from various databases [18]. Most search engines use 
BM25 (or a variation of it) for its similarity ranking algorithm [19]. BM25 is a bag-of-words 
retrieval function that ranks a set of documents based on the number of query terms appearing in 
each document, regardless of their proximity within the document. A number of variations [20] 
have been proposed to address the known issues of BM25 [21]. User activity information has 
also been leveraged to improve users’ search experience [22-24]. In 2017, a new relevance 
search algorithm called “Best Match” was deployed at PubMed [24] using a “learn to rank” 
based machine learning algorithm [25-27] trained by user-click information from PubMed search 
logs. PubMed has been the major literature search tool for biomedical scientists around the world 
with more than 3 million visits per day [28, 29]. 
 
When searching for papers related to a particular topic of interest, it is more effective to search 
with more keywords that define a topic, such as using full sentences or asking questions. 
However, current search engines do not perform well for such query types (see Results for more 
details). For example, PubMed often does not return any results for sentence queries. In this 
study, we aim to develop a better method for document retrieval using sentence queries by taking 
advantage of recent advancements in deep learning algorithms for natural language processing 
(NLP). Methods that use sentence queries for document retrieval will also help the development 
of more accurate question-answering and citation recommendation systems.  
 
A major challenge when developing a quality search engine using machine learning methods is 
the availability of a large amount of labeled training data. The labeled data should consist of 
different queries matched to relevant papers. Generating such labeled data manually is very time 
and resource consuming. To tackle this challenge, we used the citation data from PubMed 
Central (PMC) full-text articles to generate labeled data. In full-text articles, when a sentence 
cited an article, we call the sentence as a citing sentence and the article as a cited article. They 
can be considered as a manually labeled case with the citing sentence as the query and the cited 
article as the relevant document. We can extract citing sentences and the corresponding cited 
articles from PMC full-text articles to generate millions of labeled cases, which can be used to 
train quality deep learning models.  
 
We tried several deep learning architectures and found that the decomposable attention model 
[30] offered the best tradeoff between accuracy and speed. We used a two-step approach, where 
in the first step a modified BM25 method was used to rank all the articles to generate the top 
1000 relevant articles; then the articles were re-ranked in the second step using deep learning 
models to produce the final ranking. 
 
We tested the performance of our method using a large number of cases obtained from the PMC 
citation data, which were not used for model training. Our method achieved significantly better 
performance than the search engines of PubMed and Google Scholar.  
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Method and Data  
 
Problem formulation 
 
Our goal is to find the most relevant articles associated with a sentence query from a database of 
articles. To use the latest deep learning methods, we need a substantial amount of labeled 
training data. To that end, we assume that the articles cited by a sentence in a scientific article are 
highly relevant to that sentence. Based on this assumption, we first downloaded full-text articles 
from PubMed Central (PMC) and MEDLINE citations from PubMed. We extracted sentences 
with citations from the full-text part of the PMC XML files, and obtained titles, abstracts, 
publication year, article type (journal article, review, case reports, etc.) and journal names from 
the MEDLINE citations to build an internal database. This internal database is necessary since 
we will need to query it many times to generate the training data. In addition, we downloaded 
journal citation reports from Web of Science [31] and extracted the impact factors as one of the 
input features. We also extracted citation information from PubMed XML files and calculated 
the number of citations an article has for as many articles as possible. For each citing sentence 
and the cited article associated with it, we created a sentence-article pair (SEN, ABS) as a true 
case, where ABS contains both the title and abstract of the cited article as well as additional 
information related to the cited article. 
 
Applying a deep learning model directly to all the PubMed abstracts for a given query is not 
feasible due to the relatively high computational cost of deep learning models. To cope with this, 
we first built an SQL database of all the PubMed abstracts and used a modified BM25 algorithm 
[19] (called MBM) to query the top 1000 ranked articles, which are then re-ranked by the chosen 
deep learning model. When generating the training and validation dataset, we obtained two 
negative cases for each sentence query: one case was randomly chosen from the top 1,000 query 
results excluding the cited article, and the other case was randomly chosen from all the abstracts 
outside of the top 1000. This strategy allows the model to learn the general differences between 
the true and false cases and the subtle differences between the true and high-ranking false cases. 
When performing a sentence query, only articles published earlier than the article containing the 
citing sentence (SEN) were considered because SEN can cite only earlier articles. Our method is 
called DeepSenSe (Deep learning method using Sentence in Searches). 
 
The workflow of our methodology development is shown in Figure 1. 
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Figure 1. The workflow of our methodology development. SENs: citing sentences; ABS: titles and abstracts of 
cited articles. MBM: modified BM25 algorithm querying our database; PMT: PubMed TF-IDF algorithm querying 
PubMed database; PMB: PubMed “Best Match” algorithm querying PubMed database; DL: deep learning. Citing 
sentences were extracted from PMC full-text articles and split into training, validation, and test data. PubMed 
articles were used to build the MBM database. Citing sentences were paired with cited PubMed articles. In the 
training and validation data, the sentence-citation pairs served as true cases. False cases were created by randomly 
sampling two articles not cited by the sentence for each citing sentence. For testing, the citing sentence was used as 
the query sentence while the cited article was considered as the most relevant article. The citing sentences were used 
as queries to search using MBM, PMT, and PMB to get the top 1000 results which were then re-ranked by 
DeepSenSe to obtain the final ranking results. 
 
Datasets 
 
We downloaded the PMC full-text articles published before Oct. 23rd, 2019. Sentences with 
citations were then extracted from the full-text. Sentences with no meaningful keywords were 
excluded. The remaining citing sentences were divided into training, validation, and test datasets. 
About 79% of citations are articles with a PubMed ID (PMID, a unique number for each article 
in PubMed); other citations are books, webpages, conferences, etc.  
 
All the PubMed articles were stored and indexed in a MySQL database. A modified BM25 
algorithm (MBM) [32] was used for querying articles from our own database [33]. The speed 
and accuracy of the MBM are better than the standard BM25 algorithm. 
 
The query sentences were preprocessed using the NLTK (Natural Language Toolkit) package 
[34]. The sentences were first tokenized into words. Greek alphabets (α, β …) were converted 
into English words (alpha, beta, etc.). Stop words and punctuations were removed. The 
remaining tokens were rejoined with a space and used as the final query to the databases. When 
searching PubMed, we added “OR” between each pair of consecutive words. This is necessary 
for PubMed to return results. Sentences with less than 5 tokens or more than 50 tokens after 
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preprocessing (tokenization, conversion of Greek alphabets, removal of stop words and 
punctuations) were excluded. For each sentence query, we obtained the top 1000 relevant articles 
among all PubMed articles using MBM, PubMed TF-IDF (PMT) algorithm (the old PubMed 
algorithm before Best Match) or PubMed BestMatch (PMB) algorithm. Query sentences, whose 
corresponding cited articles have less than 50 words in their titles and abstracts, were excluded.  
 
To develop the training and validation datasets, the query sentences were paired with their 
corresponding cited articles and these pairs served as positive cases. In addition, two negative 
cases were constructed for each citing sentence by pairing the citing sentence with two articles 
not cited by the sentence: one randomly selected from the top 1,000 search results of the citing 
sentence and another randomly selected from all other articles. In total, there are 854,101 
sentences with 936,591 citations paired as positive cases and 1,870,387 negative cases in the 
training data. There are 145,455 sentences paired with 148,269 citations as positive cases and 
296,128 citations as negative cases in the validation dataset.  
 
Three test datasets were developed to evaluate different methods. The test datasets were 
constructed by querying the citing sentences against all PubMed abstracts using MBM, PMT, or 
PMB. Biopython package [35] was used to query the PubMed database. We first randomly 
selected 90,757 sentences whose cited articles are ranked in the top 1000 of search results by 
MBM. This test dataset is referred to as D1. More details on dataset D1 are given in Table S1 
(Supplementary Materials). 
 
The second test dataset (D2) includes cases for which the articles cited by the query sentences 
were all ranked in top 1000 by both MBM and PMT. The PubMed database implemented two 
relevance scoring algorithms: the TF-IDF algorithm has been used since 2013 and the “Best 
Match” algorithm, which is a L2R (learning to rank) machine learning algorithm, was deployed 
in 2017. Querying through the NCBI Entrez API gives results ranked by the TF-IDF algorithm 
while querying through the PubMed web portal gives results ranked by the “Best Match” 
algorithm. We used the Biopython package [35] to query the PubMed database through the 
Entrez API to get search results ranked by the TF-IDF algorithm, and wrote a Python script to 
query the PubMed database through its web API to get search results ranked by the “Best Match” 
algorithm. Among the 90,757 citing sentences, 57,123 sentences had their corresponding cited 
articles ranked in the top 1,000 search results by both MBM and PMT. Table S2 (Supplementary 
Materials) provides more details on dataset D2. 
 
Querying the PubMed database through its web API was much less efficient than through the 
Entrez API. We managed to get search results for 9,916 citing sentences for which the cited 
articles were ranked in the top 1,000 search results by MBM, PMT, and PMB. This dataset is 
referred to as dataset D3 (Table S3 in Supplementary Materials). 
 
To investigate the performance on sentence queries of Google Scholar, we randomly selected 
100 query sentences from D3. The sentences were used as queries to manually search on Google 
Scholar. In all the test datasets, the cited article of a query sentence is considered as the true 
relevant article for that sentence, and we check whether a search method ranked it in the top 1, 
20, or 100 among all the 1,000 search results. 
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The deep learning model 
 
After experimenting with different deep learning models including BERT (Bidirectional Encoder 
Representations from Transformers) [36], we found that the decomposable attention model [37] 
achieved the best tradeoff between accuracy and speed. The decomposable attention model is a 
simple neural architecture proposed by Parikh et al. for natural language inference. The core of 
the architecture consists of three steps: Attend, Compare, and Aggregate. To accommodate the 
characteristics of the search engine, a modified decomposable attention model was implemented 
in this work. Architecture of the modified decomposable attention model is shown in Figure 2. 
 
At the training stage, the inputs are the quadruplets {(𝒒, 𝒂, 𝒃, 𝒚)௡}௡ୀଵ

ே , where 𝒒 is the query 
sentence, 𝒂 and 𝒃 are the title and abstract of the cited article, and 𝒚 is the label. At the 
evaluation stage, each query sentence was paired with each of the top returned articles. The 
triplet (𝒒, 𝒂, 𝒃) was used as the input to the model that predicted the probability of relevance 
ranking for the returned article. 
 

 
 

Figure 2. The Decomposable Attention Model. 
 
Embedding. Word embeddings with dimension 𝑑 were used as representation of inputs. Let 𝒒 =

ቀ𝑞ଵ, ⋯ , 𝑞௟೜
ቁ be the query sentence, 𝒂 = ൫𝑎ଵ, ⋯ , 𝑎௟ೌ

൯ and 𝒃 = ൫𝑏ଵ, ⋯ , 𝑏௟್
൯ be the title and 

abstract of the cited article or returned article, respectively. 𝑙௤ , 𝑙௔, 𝑙௕ are the lengths of the query 
sentence, the title, and the abstract of the article, respectively. 𝑞௜ , 𝑎௜ , 𝑏௜ ∈ ℝௗ are the ith word of 
the query sentence, the title, and the abstract of the article. The inputs are passed through a dense 
layer F with an exponential linear unit (ELU) [38] activation function and dropout. The resultant 
is then fed to subsequent steps of the model. 
 
Attend. At the Attend step, we first compute the unnormalized attention weights 𝑒௜௝

ଵ  for each 
element of the query sentence and the title, and for each element of the query sentence and the 
abstract. 
 

 𝑒௜௝
ଵ ≔ 𝐹(𝑞௜)

்𝐹൫𝑎௝൯, 𝑖 = 1, … , 𝑙௤ , 𝑗 = 1, … , 𝑙௔  (1) 

 𝑒௜௝
ଶ ≔ 𝐹(𝑞௜)

்𝐹൫𝑏௝൯, 𝑖 = 1, … , 𝑙௤ , 𝑗 = 1, … , 𝑙௕   (2) 
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Then the normalized attention representations, 𝑞௜

ଵ, 𝑞௜
ଶ, 𝑎௝

ᇱ, 𝑏௝
ᇱ, can be calculated as follows: 

 

 𝑞௜
ଵ ≔ ∑

௘௫ ௣ቀ௘೔ೕ
భ ቁ

∑ ௘௫ ௣൫௘೔ೖ
భ ൯

೗ೌ
ೖసభ

𝑎௝ ,
௟ೌ
௝ୀଵ  𝑖 = 1, … , 𝑙௤   (3) 

 𝑎௝ ≔ ∑
௘௫ ௣ቀ௘೔ೕ

భ ቁ

∑ ௘௫ ቀ௘ೖೕ
భ ቁ

೗೜
ೖసభ

𝑞௜ ,
௟೜

௜ୀଵ
 𝑗 = 1, … , 𝑙௔  (4) 

 𝑞௜
ଶ ≔ ∑

௘௫ ௣ቀ௘೔ೕ
మ ቁ

∑ ௘௫ ௣൫௘೔ೖ
మ ൯

೗್
ೖసభ

𝑏௝ ,
௟್
௝ୀଵ  𝑖 = 1, … , 𝑙௤  (5) 

 𝑏௝ ≔ ∑
௘௫ ௣ቀ௘೔ೕ

మ ቁ

∑ ௘௫ ௣ቀ௘ೖೕ
మ ቁ

೗೜
ೖసభ

𝑞௜ ,
௟೜

௜ୀଵ
 𝑗 = 1, … , 𝑙௕,  (6) 

 
where 𝑞௜

ଵ and 𝑞௜
ଶ are the normalized attention representations of the query sentence attending to 

the title and abstract of the article, and 𝑎௝
ᇱ, 𝑏௝

ᇱ are the normalized attention representations of the 
title and abstract of the article attending to the query sentence. 
 
Compare. At the Compare step, we concatenate the corresponding input representation, the 
normalized attention representation, and the difference between the input representation and the 
normalized attention representation for the query sentence, the title and the abstract. Then a fully 
connected layer G, with ELU activation function, dropout and max pooling was applied on top of 
the concatenation as follows: 
 

 𝒗ଵ,௜ ≔ 𝐺([𝑞௜ , 𝑞௜
ଵ, (𝑞௜ − 𝑞௜

ଵ)]), 𝑖 = 1, … , 𝑙௤  (7) 

 𝒗ଶ,௝ ≔ 𝐺൫ൣ𝑎௝, 𝑎௝
ᇱ, ൫𝑎௝ − 𝑎௝

ᇱ൯൧൯, 𝑗 = 1, … , 𝑙௔  (8) 

 𝒗ଷ,௜ ≔ 𝐺([𝑞௜ , 𝑞௜
ଶ, (𝑞௜ − 𝑞௜

ଶ)]), 𝑖 = 1, … , 𝑙௤   (9) 

 𝒗ସ,௝ ≔ 𝐺൫ൣ𝑏௝, 𝑏௝
ᇱ, ൫𝑏௝ − 𝑏௝

ᇱ൯൧൯, 𝑗 = 1, … , 𝑙௕  (10) 

 
Aggregate. At the step of Aggregate, we first aggregate elementwise the representations of the 
query sentence, the title and the abstract through summation as follows: 
 

 𝒗ଵ ≔ ∑ 𝒗ଵ,௜
௟೜

௜ୀଵ
  (11) 

 𝒗ଶ ≔ ∑ 𝒗ଶ,௝
௟ೌ
௝ୀଵ   (12) 

 𝒗ଷ ≔ ∑ 𝒗ଷ,௜
௟೜

௜ୀଵ
  (13) 

 𝒗ସ ≔ ∑ 𝒗ସ,௝
௟್
௝ୀଵ   (14) 

 
Additional features are concatenated and passed through two fully connected layers with an 
ELU activation function, dropout, and Batch Normalization [39] for an aggregated representation 
(function L() in equation 15). 
 

 𝒗𝒇 ≔ 𝐿([𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠])  (15) 
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All aggregated representations are then concatenated and passed through two fully 
connected layers with ELU activation function, a dropout, a Batch Normalization, and finally a 
Sigmoid layer (function H() in equation 16).  
 

 𝒚ෝ ≔ 𝐻൫ൣ𝒗ଵ, 𝒗ଶ, 𝒗ଷ, 𝒗ସ, 𝒗௙൧൯  (16) 

 
Model training 
 
The modified decomposable attention model was trained and validated on the training and 
validation datasets using the following settings: word embedding dimensions: 300; numbers of 
hidden layers: [500, 300, 32, 16]; dropout rate: 0.2; optimizer: Adam [40]; loss function: binary 
cross-entropy; learning rate: 0.01; batch size: 20; max training epochs: 20. We also used a 300-
dimensional word embedding trained on more than 17 million PubMed articles using fastText 
[41]. The maximum length of query sentences and article titles was set to be 100 words, while 
the maximum length of article abstracts was set to be 1,000 words. Early stopping was used to 
determine the best epoch by monitoring the loss on the validation dataset. The programs used in 
this study were implemented in Python. We used Keras [42] together with TensorFlow[43] to 
implement deep learning models.  
 
 
Results 
 

We first evaluated DeepSenSe using test dataset D1. In D1, there are 90,757 sentences, and each 
sentence has 1000 candidate relevant articles including the article the sentence actually cited. For 
each query sentence, we check whether the algorithm can rank the corresponding cited article in 
the top k articles among the 1000 candidate articles, where k = 1, 10, and 100. To compare 
ranking algorithms, we compare the numbers of times the ranking algorithms can rank the cited 
articles in top k (ntop-k) for all 90,757 cases. For MBM the ntop-k values are 17,898, 44,957, and 
62,609 for k = 1, 10, and 100, respectively. As a comparison, DeepSenSe was able to improve 
these values to 23,649, 61,132, and 79,830, respectively. The relative increases are 32%, 36% 
and 28%, respectively (Figure 3A).  

 
We compared DeepSenSe with PubMed TF-IDF (PMT) algorithm using D2 with 57,123 query 
sentences, in which the articles cited by the query sentences were all ranked in top 1000 by both 
MBM and PMT. The top 1000 articles from MBM and PubMed are different. So, we let 
DeepSenSe to re-rank both sets of 1000 articles for each query sentence. Compared to MBM, the 
DeepSenSe model was able to improve the ntop-k values from 15,755 to 19,204, 35,567 to 42,911, 
and 45,504 to 52,283 for k = 1, 10, and 100, respectively. The relative increases are 22% (k=1), 
21% (k=10), and 15% (k=100). Compared to PMT, DeepSenSe improved the values from 8,915 
to 16,777 (k=1), 25,262 to 40,260 (k=10), and 37,033 to 50,434 (k=100). The relative increases 
are 88%, 59%, and 36%, respectively (Figure 3B).   
 
We then compared DeepSenSe with PMT and PubMed BestMatch (PMB) algorithms. We used 
D3 with 9,916 sentences, where the articles cited by the query sentences were all ranked in top 
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1000 by MBM, PMT, and PMB. Again, DeepSenSe was able to improve the ranks substantially 
for all three algorithms for this dataset (Figure 3C).  
 

 
Figure 3: Performance of DeepSenSe, MBM, PMT, PMB, and Google Scholar. A: Performance of DeepSenSe 
and MBM on D1; B: Performance of DeepSenSe, MBM and PMT on D2; C: Performance of DeepSenSe, MBM, 
PMT and PMB on D3; D: Performance of DeepSenSe, MBM, PMT, PMB and Google Scholar on 100 sentences 
randomly selected from D3. Top1: the relevant article is ranked as top 1 of the search result; top20: the relevant 
article is ranked within the top 20 of the search result; and top100: the relevant article is ranked within the top 100 of 
the search result. MBM: modified BM25; PMT: PubMed TFIDF; PMB: PubMed Best Match. 
 
Finally, we compared DeepSenSe with PMT, PMB, and Google Scholar using a very small test 
dataset with only 100 sentences, since Google does not allow automatic querying of their system. 
These 100 sentences were randomly selected from dataset D3. The comparison results are shown 
in Figure 3D. In the Google Scholar search, we limited the domain to PubMed database to be 
consistent with other searches. The performance of Google Scholar for this dataset is much 
worse than the other search algorithms. Again, DeepSenSe performed the best among all the 
search algorithms. 
 
In Table S4 (Supplementary Materials), we show some examples, which DeepSenSe and MBM 
ranked very differently. A clear trend we have observed is that DeepSenSe matches meanings 
better than MBM, which, as a BM25 based method, matches exact keywords better.  
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Conclusions and Discussions 
 
Document retrieval using full sentences as queries can help users find relevant documents more 
effectively. It is also very useful for building question-answering systems, identifying relevant 
citations for scientific manuscripts, and comparing new findings with previous knowledge. In 
this study, we developed a deep learning model, called DeepSenSe, trained using a large volume 
of labeled data obtained from the citation data of PMC full-text articles. Tested on large test 
datasets, DeepSenSe was able to substantially improve the rankings of existing methods 
including a modified BM25 (MBM) and PubMed’s ranking algorithms. The combination of 
MBM and DeepSenSe gave the best performance overall.  
 
We tried several different deep learning architectures and the decomposable attention model had 
the best tradeoff between accuracy and speed (in terms of both training and prediction). The 
BERT model had better performance, but is much slower in training and prediction. With more 
powerful hardware, it is possible that more sophisticated models can be employed to achieve 
even better overall performance in the future. 
 
User behavior analysis on PubMed showed that most queries are short and over 80% of all 
queries had no more than four tokens [44-46]. We hypothesized that this may be partially due to 
the current search engines not performing well for long queries, so that users do not tend to use 
them as much. This user behavior could change if they find long queries can give them better 
results. 
 
In this study, we focused more on whether a relevant article will rank in the top 1, 20, and 100, 
instead of its absolute rank. Since over 80% of users only clicked on the results from the first 
page [44], it is crucial to show the most relevant articles on the first page. If a page shows 20 
results then being ranked in the top 20 means the article is on the first page, and it has a much 
higher chance to be found by a user. 
 
We used ELU instead of ReLU because the effect of words with opposite meanings was also 
significant in our situation. If we do not use ELU, the model predicts very high relevance scores 
for almost all search results so that we cannot find out the cited articles. 
 
It is worth mentioning that MBM, PubMed, and Google Scholar were not optimized for sentence 
queries. So, the comparison in this study simply showed that DeepSenSe can improve MBM and 
PubMed ranking results substantially for sentence queries using citation data as tests, instead of a 
demonstration that DeepSenSe is better than these methods for general queries. Applying the 
same concept to developing a search engine for general queries will be the subject of future 
studies.  
 
In addition to providing more relevant search results for sentence queries for search engines, 
DeepSenSe is also ideally suited to scan full-text documents to identify relevant citations for the 
sentences in the documents. For example, they can help authors add citations to the articles they 
are writing or help institutions/agencies with document review by assessing the quality and 
completeness of the citations in the documents. We are currently developing such a system, 
which will be released in late 2021. 
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