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Abstract (150 words) 38 

The genesis of broad neuronal classes from multipotential neural progenitor cells has 39 

been extensively studied, but less is known about the diversification of a single neuronal 40 

class into multiple types. We used single-cell RNA-seq to study how newly-born 41 

(postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete 42 

types. Computational analysis provides evidence that RGC type identity is not specified 43 

at mitotic exit, but acquired by gradual, asynchronous fate restriction of postmitotic 44 

multipotential precursors. Some types are not identifiable until a week after they are 45 

generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to 46 

the rest of the brain before their type identity has been determined. Optimal transport 47 

inference identifies groups of RGC precursors with largely non-overlapping fates, 48 

distinguished by selectively expressed transcription factors that could act as fate 49 

determinants. Our study provides a framework for investigating the molecular 50 

diversification of discrete types within a neuronal class. 51 

 52 

Keywords:  development, diversification, retina, retinal ganglion cell, single-cell RNA-seq, 53 

optimal transport 54 
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Introduction 73 
 74 
A central question in developmental neurobiology is how the brain’s diverse neuronal 75 

types arise from multipotential progenitors (Lodato & Arlotta, 2015; McConnell, 1991; 76 

Wamsley & Fishell, 2017). The vertebrate retina has been a valuable model for 77 

addressing this question: it is about as complicated as any other region of the brain, but 78 

has several features that facilitate mechanistic analysis (Dowling, 2012). The retina 79 

contains five classes of neurons – photoreceptors that sense light, three interneuronal 80 

classes (horizontal, bipolar and amacrine cells) that process visual information, and 81 

retinal ganglion cells (RGCs) that pass the information to the rest of the brain through the 82 

optic nerve (Fig. 1a) (Masland, 2012). These classes can be divided into numerous types, 83 

~130 in mouse and chick, each of which has characteristic morphological, physiological 84 

and molecular properties, and plays distinct roles in information processing (Baden et al., 85 

2016; Franke et al., 2017; Goetz et al., 2021; Macosko et al., 2015; Rheaume et al., 2018; 86 

Shekhar et al., 2016; Shekhar & Sanes, 2021; Tran et al., 2019; Yamagata, Yan, & Sanes, 87 

2021; Yan et al., 2020). Remarkably, nearly all types are distributed across the entire 88 

retina (Kay, Chu, & Sanes, 2012; Keeley, Eglen, & Reese, 2020; Rockhill, Euler, & 89 

Masland, 2000), so morphogen gradients, which play a critical role in other parts of the 90 

central nervous system (e.g. (Sagner & Briscoe, 2019)), cannot provide an explanation 91 

for retinal neuronal diversification (Marquardt & Gruss, 2002).  92 

 93 

Seminal studies have provided deep insights into how retinal classes arise(Bassett & 94 

Wallace, 2012; Cepko, 2014). First, lineage tracing in rodents and frogs showed that 95 

single retinal progenitor cells (RPCs) can give rise to neurons of all classes as well as 96 

glia, and are therefore multipotential (Holt, Bertsch, Ellis, & Harris, 1988; Turner & Cepko, 97 

1987; Turner, Snyder, & Cepko, 1990; Wetts & Fraser, 1988). Second, the competence 98 

of multipotential RPCs to generate cells of particular classes changes over time, 99 

accounting for their sequential (but overlapping) birth windows (Cepko, 2014; Livesey & 100 

Cepko, 2001). Such segregation of birth windows is a hallmark of many neuronal systems 101 

(Holguera & Desplan, 2018), and is believed to arise from the differential temporal 102 

regulation of gene expression in RPCs (Blackshaw et al., 2004; Brown, Patel, Brzezinski, 103 
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& Glaser, 2001; S. Chen et al., 1997; Clark et al., 2019; Trimarchi, Stadler, & Cepko, 104 

2008). Third, competence is probabilistic rather than deterministic, with stochastic factors 105 

accounting for variations in the distribution of cell classes generated by individual RPCs 106 

(Boije, MacDonald, & Harris, 2014; Gomes et al., 2011; Johnston & Desplan, 2010).  107 

 108 

In contrast to these well-established tenets of neuronal class generation, we know far less 109 

about how immature postmitotic neurons (which we call neuronal precursors here) 110 

committed to a specific class identity diversify into distinct types. We address this issue 111 

here, focusing on RGCs. All RGCs are similar in many respects: for example, they all 112 

elaborate dendrites that receive input from amacrine and bipolar interneurons, send 113 

axons through the optic nerve, and use glutamate as a neurotransmitter (Sanes & 114 

Masland, 2015). However, they differ in molecular, morphological and physiological 115 

details, which have led to their division into ~45 distinct types in mice (Baden et al., 2016; 116 

Bae et al., 2018; Goetz et al., 2021; Rheaume et al., 2018; Tran et al., 2019). Most of 117 

these types appear to be feature detectors that collectively transmit a diverse set of highly 118 

processed images of the visual world to the rest of the brain (Baden, Euler, & Berens, 119 

2020; Sanes & Masland, 2015). Several genes have been implicated in maturation of a 120 

few mouse RGC types (Clark et al., 2019; Kiyama et al., 2019; Liu et al., 2018; Lo Giudice, 121 

Leleu, La Manno, & Fabre, 2019; Lyu & Mu, 2021; Peng et al., 2017; Sajgo et al., 2017), 122 

but a comprehensive investigation of RGC diversification has been lacking.  123 

 124 

To gain insight into how and when adult RGC types emerge, we used high-throughput 125 

single-cell RNA-seq (scRNA-seq) to profile RGC precursors during embryonic and 126 

postnatal life in mice. We find that the number and distinctiveness of molecularly defined 127 

groups of precursors increases with developmental age, implying that types arise by a 128 

gradual process rather than from ~45 committed precursor types. Using statistical 129 

inference approaches, we identify fate associations among immature RGCs as 130 

transcriptomically distinct types emerge. These analyses suggest a model in which types 131 

arise from multipotential precursors by a process of restriction that we term fate 132 

decoupling. The decoupling is gradual and asynchronous, resulting in different types 133 

emerging at different times. We also use markers of RGCs that project to contralateral or 134 
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ipsilateral retinorecipient areas to subdivide each type by its projection pattern, leading to 135 

the conclusion that laterality may be specified prior to type identity is fixed. Together, our 136 

results provide both a model of RGC diversification and a computational framework that 137 

can be applied generally to analyze the diversification of closely related neuronal types 138 

within a class.   139 

 140 

Results 141 

  142 

Transcriptomic atlas of developing mouse RGCs  143 

Mouse RGCs are born between approximately embryonic days (E) 11 and 17 with new-144 

born RGCs exiting the mitotic cycle near the apical margin, then migrating basally to form 145 

the ganglion cell layer (Drager, 1985; Marcucci, Soares, & Mason, 2019; Voinescu, Kay, 146 

& Sanes, 2009) (Fig. 1b). Reported birthdates differ among publications, and are 147 

complicated by naturally occurring cell death and the central-peripheral developmental 148 

gradient, but a detailed analysis concludes that >95% of RGCs in adult mouse retina are 149 

born after E12.8 and >85% before E16 (Farah & Easter, 2005). Shortly after they are 150 

born, RGCs extend axons through the optic nerve, with some reaching retinorecipient 151 

areas by E15 (Godement, Salaun, & Imbert, 1984; Osterhout et al., 2011) and forming 152 

diverse projection patterns (Martersteck et al., 2017). During early postnatal life, they 153 

extend dendrites apically into the inner plexiform layer of the retina, receiving synapses 154 

from amacrine cells by postnatal day (P)4 and bipolar cells a few days later (Kim, Zhang, 155 

Meister, & Sanes, 2010; Lefebvre, Sanes, & Kay, 2015). Light responses are detected in 156 

RGCs by P10 but image-forming vision does not begin until eye-opening, around P14 157 

(Hooks & Chen, 2020). 158 

  159 

To determine when and how RGCs diversify, we used droplet-based scRNA-seq 160 

(Macosko et al., 2015; Zheng et al., 2017) to profile them at 5 stages: E13 and E14 (during 161 

the period of peak RGC genesis), E16 (by which time RGCs axons are reaching target 162 

retinorecipient areas), P0 (as dendrite elaboration begins), and P5 (shortly after RGCs 163 

begin to receive synapses). As RGCs comprise ≤1% of retinal cells (Jeon, Strettoi, & 164 

Masland, 1998), we enriched them with antibodies to two RGC-selective cell-surface 165 
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markers, Thy1/CD90 (Barres, Silverstein, Corey, & Chun, 1988) and L1cam 166 

(Demyanenko & Maness, 2003) (Supplementary Fig. 1a).  167 

 168 

We obtained a total of 98,452 single-cell transcriptomes with acceptable quality metrics 169 

(Methods). Of these, we identified 75,115 (76%) as RGCs based on their expression of 170 

canonical RGC markers including Rbpms (an RNA-binding protein) and Slc17a6 (the 171 

vesicular glutamate transporter VGLUT2) (Figs. 1c-e, Supplementary Figs. 1b-c). Non-172 

RGCs included amacrine cells (Tfap2a+Tfap2b+), cone photoreceptors (Otx2+Crx+), 173 

microglia (P2ry12+C1qa+), anterior segment cells (Mgp+Bgn+), and retinal progenitor 174 

cells (RPCs). Anterior segment cells were found only in E13 and E14 samples because 175 

whole eyes were dissociated at these stages. RPCs formed a continuum, containing both 176 

“primary” RPCs expressing cell-cycle related genes (e.g. Mki67, Ccnd5, Birc5) and 177 

previously described RPC regulators (e.g. Sfrp2, Vsx2 and Fgf15), and “neurogenic” 178 

RPCs expressing proneural transcription factors (e.g. Hes6, Ascl1, Neurog2)(Clark et al., 179 

2019). Importantly, these markers were not expressed in cells annotated as RGCs 180 

(Supplementary Fig. 1d). These stringent criteria ensured that our dataset comprised 181 

postmitotic committed RGCs, allowing us to focus on their diversification and maturation.   182 

 183 

Overall, we recovered ~5,900 to 18,500 RGCs at each of the five time points. Of the two 184 

surface markers used for enriching RGCs, Thy1 was effective at later stages as shown 185 

previously (Kay et al., 2011; Rheaume et al., 2018; Tran et al., 2019), whereas L1cam 186 

expression was more selective at E13 and E14 (Supplementary Figs. 1b,c). To evaluate 187 

the effectiveness of our enrichment strategy at early stages, we compared our data with 188 

two recent studies in which developing retinal cells were profiled using scRNA-seq without 189 

any enrichment (Clark et al., 2019; Lo Giudice et al., 2019). A joint analysis of these 190 

datasets at embryonic time points showed consistency in the transcriptional signatures of 191 

major cell groups without discernible biases (Supplementary Figs. 1e-g). However, our 192 

enrichment protocols increased the fractional yield of RGCs by >3X at E14 and E16 and 193 

by >100X at P0 (Supplementary Fig. 1h), which enabled us to resolve heterogeneity 194 

within this class at immature stages. For the analysis that follows, we compared precursor 195 
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RGCs (E13-P5) to a previously described dataset of 35,699 mature RGCs at P56(Tran 196 

et al., 2019).   197 

 198 
Figure 1, Transcriptomic profiling of single postmitotic RGCs during embryonic and 199 
postnatal development in mice. 200 
a. Sketch of a section of the mouse retina showing major cell classes - photoreceptors (PRs; rods 201 
and cones), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs), Müller glia (MGs) 202 
and retinal ganglion cells (RGCs). PRs reside in the outer nuclear layer (ONL), while BCs, HCs 203 
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and most ACs reside in the inner nuclear layer (INL). RGCs and some ACs reside in the ganglion 204 
cell layer (GCL). Axons of RGCs project to higher visual areas via the optic nerve. 205 
b. Retinal section of the indicated ages labeled for the cell-cycle marker MKI67 (red) and the RGC 206 
marker RBPMS (green); nuclei are counterstained by the Hoeschst dye (blue). Micrographs are 207 
orientated as the schematic in panel a. 208 
c. Visualization of transcriptional diversity of 98,452 cells using Uniform Manifold Approximation 209 
and Projection (UMAP), a nonlinear dimensionality reduction algorithm that assigns proximal x-y 210 
coordinates to cells (dots) with similar transcriptional profiles(Becht et al., 2019).  211 
d. Same as c, with cells colored by cell class, assigned based on transcriptional signatures 212 
displayed in panel e. RPC, retinal progenitor cells; Ant. Seg., anterior segment cells. 213 
e. Tracksplot showing expression patterns of cell-class specific marker genes (rows) across single 214 
cells (columns). Cells are grouped by class as in d. For each class, we randomly sampled 20% 215 
of total cells covering all immature time points (E13, E14, E16, P0, P5). For each gene, the scale 216 
on the y-axis (right) corresponds to normalized, log-transformed transcript counts detected in 217 
each cell. 218 
 219 

Immature RGCs diversify postmitotically  220 

One can envision two extreme models of RGC diversification. In one, RGC type would be 221 

specified at or before mitotic exit, with each type arising from a distinct set of committed 222 

precursors.  At the other extreme, all precursor RGCs would be identical when they exit 223 

mitosis, and gradually acquire distinct identities as they mature (Fig. 2a). Intermediate 224 

models could involve multiple groups of precursor RGCs, each biased towards a distinct 225 

set of terminal types. 226 

 227 

To distinguish among these alternatives, we analyzed the transcriptomic diversity of 228 

RGCs at each developmental stage using the same dimensionality reduction and graph 229 

clustering approaches devised for analysis of adult RGCs (Tran et al., 2019) (see 230 

Methods). This analysis led to three main results.  231 

 232 

First, RGCs were already heterogeneous soon after mitotic exit. There were 10 233 

transcriptionally defined precursor clusters at E13 (Fig. 2b), before or at the peak time of 234 

RGC birth. The number of discrete clusters increased only slightly by E14 (from 10 to 12; 235 

Fig. 2c), arguing against a model in which the number of precursor types extrapolated 236 

back to one. No single cluster dominated the frequency distribution at either time, as 237 

would be expected if a totipotent precursor RGC were to exist shortly after terminal 238 

mitosis.  239 

 240 
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Second, the number of transcriptionally defined clusters increased gradually, between 241 

E13 and adulthood, reaching 45 only after P5 (Figs. 2b-g). Several arguments indicate 242 

that this increase is biologically significant rather than being an artifact of the data or 243 

computational analysis.  (1) We used the same clustering procedure at all ages. (2) The 244 

qualitative trends were robust against variations in clustering parameters. (3) All 245 

embryonic clusters contained cells isolated with both cell markers, L1cam and Thy1 246 

(Supplementary Figs. 2a-c), indicating that lower cluster numbers at early stages did 247 

not result from biased collection methods. (4) The increase in the number of effective 248 

molecular types was robust as demonstrated by three diversity indices - Rao, Simpson 249 

and Shannon – all of which buffer against artificial inflation of diversity due to small 250 

clusters (Fig. 2h, Supplementary Fig. 2d; see Methods). (5) There was no systematic 251 

dependence of the number of clusters on the number of cells. For example, we identified 252 

12 clusters from 17,100 cells at E14 and 38 clusters from 17,386 cells at P5.  253 

 254 

Third, the transcriptomic variation became increasingly discrete with age. We quantified 255 

this increase in inter-cluster separation by calculating (1) the average cross-validation 256 

error of a multi-class classifier, and (2) the ratio of mean cluster diameter to mean inter-257 

cluster distance in the low dimensional embedding (Methods). Both metrics decrease in 258 

numerical value as the clusters are more-well defined. From these trends, we conclude 259 

that the boundaries between RGC clusters become sharper as development proceeds 260 

(Figs. 2i,j). 261 

 262 

Taken together, our results show that transcriptomic clusters of RGCs increase in number 263 

and distinctiveness over time, making it unlikely that RGC type identity is fully specified 264 

at the progenitor stage.  265 

 266 

 267 

 268 
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 269 
Figure 2. The number and discreteness of transcriptomic clusters of RGCs increases with 270 
age.  271 
a. Extreme models of RGC diversification. In one scenario (left) immature RGCs commit to one 272 
of the terminal types by the time of birth (i.e. mitotic exit) or shortly after. Alternatively (right), 273 
initially identical postmitotic RGC precursors acquire distinct molecular identities in a gradual 274 
process of restriction.   275 
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b-g. Visualization of transcriptomic diversity of immature RGCs at E13 (b), E14 (c), E16 (d), P0 276 
(e), P5 (f) and P56 (g) using UMAP. Cells are colored by their cluster identity, determined 277 
independently using dimensionality reduction and graph clustering (Methods). Clusters are 278 
numbered based on decreasing size at each age. Data for adults (P56) are replotted from (Tran 279 
et al., 2019). In that study 45 transcriptomic types were identified via unsupervised approaches, 280 
one of which was mapped to 2 known functional types by supervised approaches. We do not 281 
distinguish them in this study.   282 
h. Transcriptional diversity of RGCs as measured by the Rao diversity index (y-axis) increases 283 
with age (x-axis). The trend is insensitive to the number of genes used to compute inter-cluster 284 
distance (colors). See Methods for details underlying the calculation.    285 
i. Transcriptomic distinctions between RGC clusters become sharper with age as shown by 286 
decreasing average per-cluster error of a multiclass-classifier with age. Gradient boosted decision 287 
trees(T. Chen & Guestrin, 2016) were trained on a subset of the data, and applied on held out 288 
samples to determine the test error.   289 
j. RGC clusters also become better separated in the UMAP embedding, as shown by decreasing 290 
values of the average relative cluster diameter with age. 291 
 292 

Temporal relationships among immature RGC clusters  293 

We next investigated the temporal relationships among precursor RGC clusters identified 294 

at different ages. We again consider two extreme models. In a “specified” model, each 295 

terminal type arises from a single cluster at every preceding developmental stage (Fig. 296 

3a, left). In this model, distinct transcriptomic states among precursor RGCs correspond 297 

to distinct groups of fates. At the other extreme, distinct clusters would share similar sets 298 

of fates (Fig. 3a, right). In an intermediate model, fates of precursor clusters would exhibit 299 

partial overlap. 300 
 301 
As a first step in discriminating among these scenarios, we used transcriptome-wide 302 

correspondence among clusters as a proxy for fate association. We identified mappings 303 

between clusters across each pair of consecutive developmental stages (E13-E14, E14-304 

E16, E16-P0, P0-P5, and P5-P56) using gradient boosted trees (T. Chen & Guestrin, 305 

2016), a supervised classification approach (Methods). In each case, a classifier trained 306 

on transcriptional clusters at the older stage was used to assign older cluster labels to 307 

cells at the younger stage (e.g. E16 labels assigned to E14 RGCs). Patterns expected for 308 

the extreme models are schematized as “confusion matrices”(Stehman, 1997) in the 309 

lower panels of Fig. 3a. 310 
 311 
Correspondence fell between the two extremes (Figs. 3d-h and Supplementary Figs. 312 

3a-d). We quantified the extent of correspondence using two metrics: Normalized 313 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


 
 
 

 12 

Conditional Entropy (NCE) and the Adjusted Rand Index (ARI) (Methods). Both NCE and 314 

ARI are restricted to the range (0,1), with lower values of NCE and higher values of ARI 315 

consistent with a specified mode of diversification. Both metrics exhibited an increased 316 

degree of specificity with age (Figs. 3b,c). Since NCE and ARI provide a single measure 317 

of specificity for the entire datasets being compared, we also computed a “local metric”, 318 

the Occupancy Fraction, which quantifies mapping specificity for each cluster (Methods). 319 

Results based on this metric were consistent with increased specificity of correspondence 320 

with age (Supplementary Fig. 3e). Overall, this analysis of transcriptomic 321 

correspondence suggests that poorly specified relationships among transcriptomic 322 

clusters at early stages are gradually refined to yield increasingly specific associations at 323 

later stages.  324 
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 325 
Figure 3. Incompletely specified temporal relationships among RGC clusters. 326 
a.  Top: Specified (left) and non-specified (right) modes of diversification. Nodes denote 327 
transcriptomic clusters of immature RGCs, and arrows denote fate relationships. Bottom: 328 
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Confusion matrices depicting transcriptomic correspondence between late and early clusters 329 
expected for the two modes. Circles and colors indicate the percentage of a given late cluster 330 
(row) assigned to a corresponding early cluster (column) by transcriptome-based classifier trained 331 
on early clusters. The number of late and early clusters have been set to eight and four for 332 
illustration purposes.  333 
b. Barplot showing values of the normalized conditional entropy (NCE) for each age calculated 334 
using the transcriptional cluster IDs and the Xgboost-assigned cluster IDs corresponding to the 335 
next age or to P56 (E.g. for E13, the NCE was calculated across E13 RGCs by comparing their 336 
transcriptional cluster ID with assigned E14 cluster IDs based on a classifier trained on the E14 337 
data). Lower values indicate specific mappings.  338 
c. Same as b, but plotting values of the adjusted Rand Index (ARI), where larger values 339 
correspond to higher specificity. 340 
d-h. Confusion matrices (representation as in a), showing transcriptomic correspondence 341 
between consecutive ages: E14-E13 (d), E16-E14 (e), P0-E16 (f), P5-P0 (g), P56-P5 (h). In each 342 
case, the classifier was trained on the late time point and applied to the early time point. Rows 343 
sum to 100%.  344 
 345 

Immature RGCs are multipotential 346 

The analysis presented so far relied on comparing clusters between ages and was 347 

therefore unable to link individual precursors to specific terminal fates.  At one extreme, 348 

individual precursor clusters might contain several groups of cells, each committed to a 349 

distinct, small number of fates. Alternatively, individual cells might be as multipotential as 350 

the clusters in which they reside (Fig. 4a).   351 

 352 

Cluster-based classification frameworks do not afford a straightforward way to explore 353 

variations in patterns of fate associations within clusters. We therefore turned to 354 

Waddington-Optimal Transport (WOT), a computational method rooted in optimal 355 

transport theory (Kantorovich, 1942; Monge, 1781) that utilizes scRNA-seq 356 

measurements at multiple stages, to infer developmental relationships (Schiebinger et 357 

al., 2019). Briefly, WOT computes a “transport matrix” Π between each pair of consecutive 358 

ages with elements Π"# encoding fate associations between a single RGC i at the younger 359 

age and RGC j at the older age (see Methods). Thus, WOT identifies fate associations 360 

between individual cells without invoking clustering. We conducted extensive 361 

computational tests to assess the numerical stability of associations reported by WOT 362 

(Supplementary Fig. 4). We also determined that when collapsed to the level of clusters, 363 

the WOT inferred transport maps strikingly mirrored the confusion matrices obtained from 364 

multi-class classification (Supplementary Fig. 5).  365 
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 366 

Based on the success of these tests, we applied WOT to compute the “terminal fate” for 367 

each precursor RGC. We leveraged the fact that in WOT, fate associations between 368 

RGCs at non-consecutive ages (e.g. E16 and P56) can be estimated in a principled way 369 

by multiplying the intermediate transport matrices. This yielded a fate vector 𝑓		for each 370 

of the 75,115 immature RGCs, whose kth element 𝑓' represents the predicted probability 371 

of commitment to adult type 𝑘 ∈ (1, 2,… , 45)  (Methods). A fully committed precursor 372 

would have all but one element of  𝑓 equal to zero, whereas a partially committed 373 

precursor would have multiple non-zero elements in  𝑓. Since the elements of 𝑓	are 374 

interpreted as probabilities, they are normalized such that ∑ 𝑓'3 = 1. 375 

 376 

We quantified the commitment of each precursor by computing its “potential” 𝑃 = 6
∑ 78

9
:

, 377 

which is defined analogously to the “inverse participation ratio” in physics (Fyodorov & 378 

Mirlin, 1992). In our case, the value of P for a given RGC ranges continuously between 1 379 

and 45, with lower values implying a commitment to specific fates, and higher values 380 

reflecting indeterminacy. Importantly, this measure of commitment does not rely on 381 

arbitrary thresholding of the 𝑓' values to assign precursors to types.  382 

 383 

Five results emerged from this analysis.  384 
 385 

• Nearly all prenatal RGCs (i.e. on or before P0) were multipotential rather than 386 
committed to a single terminal fate, with individual potentials distributed across a 387 
range of values (Fig. 4b).  388 
 389 

• Multipotentiality was a general feature of immature RGCs, being present in cells 390 
of all clusters at E13, E14 and E16 (Figs. 4c-f).  391 

 392 
• At early stages the average value of P varied among transcriptomic clusters, 393 

reflecting asynchronous specification (Fig. 4c). The tempo of commitment is 394 
further explored in the next section.   395 

 396 
• Although they were multipotential, no precursor RGC was totipotential (i.e. 397 

completely unspecified, corresponding to P=45). At E13 the average value of P 398 
was 11.6 ± 4.9 which was 4-fold lower than the maximum possible value of 45, and 399 
no precursor had P > 30.  400 

 401 
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• Finally, inferred multipotentiality decreased gradually during development, and 402 
some persisted postnatally, (average P = 3.4 ± 2.1 at P0, and 1.6 ± 0.9 at P5; Figs. 403 
4g,h).  404 

 405 

From these results, we conclude that early postmitotic RGCs are multipotential but not 406 

totipotential, and that type identity is specified gradually via progressive restriction.  407 

 408 

 409 
Figure 4. Multipotential fate associations between immature RGCs and terminal types 410 
inferred via Optimal Transport 411 
a. Extreme models of diversification at single-cell resolution. Multipotential fate associations in a 412 
transcriptionally defined cluster (ellipse) could arise from a mixture of unipotential RGCs (left) or 413 
from multipotential RGCs (right). 414 
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b. Distributions of potential P across immature RGCs by age showing that restriction increases 415 
with age.  416 
c. Inter- and intra-cluster variation of potential by age. At each age, variation in the potential values 417 
are shown for each transcriptomically defined cluster at that age. Dots denote the average 418 
potential and dotted lines depict the standard deviation for cells within each cluster.   419 
d-h. UMAP projections of E13 (d), E14 (e), E16 (f), P0 (g) and P5 (h) RGCs as in Fig. 2, but with 420 
individual cells colored by their inferred potential. Potential of all RGCs at P56 =1. The colorbar 421 
on the lower right is common to all panels, and values are thresholded at P = 20. 422 
 423 

Asynchronous specification of mouse RGC types via fate decoupling 424 

As a first step in understanding the progressive restriction of RGC fate, we analyzed the 425 

extent to which pairs of mature types were likely to have arisen from the same set of 426 

immature precursors.  To this end we computed a “fate coupling” value 𝐶(𝑙,𝑚; 𝑎𝑔𝑒) for 427 

each pair of terminal RGC types (l and m), defined as the Pearson correlation coefficient 428 

between the values of 𝑓B and 𝑓C	across all precursors at a given age (Methods). 𝑓B and 429 

𝑓C  are fate probabilities corresponding to types l and m as defined in the previous section. 430 

Values of 𝐶(𝑙,𝑚; 𝑎𝑔𝑒) in our data ranged from -0.11 to 0.95. Higher values of 𝐶(𝑙, 𝑚; 𝑎𝑔𝑒) 431 

indicate strong fate coupling between types l and m, implying the existence of common 432 

postmitotic precursors, whereas low 𝐶(𝑙,𝑚; 𝑎𝑔𝑒) values suggest that types l and m arose 433 

from largely nonoverlapping sets of precursors. We visualized the pattern of fate 434 

couplings as network graphs, where the nodes represent types and the edge weights 435 

represent values of 𝐶(𝑙, 𝑚; 𝑎𝑔𝑒). The arrangement of nodes was determined at E13 using 436 

a force directed layout algorithm (Fruchterman & Reingold, 1991), with pairwise distances 437 

being inversely proportional to values of 𝐶(𝑙, 𝑚; 𝐸13), the fate coupling values at E13 (Fig. 438 

5a). To visualize the temporal evolution of these fate couplings, we retained the same 439 

layout of nodes while updating edge weights according to 𝐶(𝑙,𝑚; 𝑎𝑔𝑒) (Figs. 5b-e). 440 

 441 

Types that were coupled in fate at the earliest time point gradually decoupled as 442 

development proceed. For example, at E13, 118/990 pairs (12%) were strongly coupled 443 

(threshold of 𝐶(𝑙, 𝑚; 𝑎𝑔𝑒)>0.2 as determined by randomization tests; see Methods), while 444 

at P5, only 8/990 (<1%) passed this criterion (Figs. 5a,e).  Lowering this threshold for 445 

coupling to 0.05 increased the number of strongly coupled pairs at P5 to only 2% (20/990).  446 

 447 
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Different pairs of types decoupled at different rates (Fig. 5f). As they decoupled, RGC 448 

precursors became increasingly restricted to a single type (i.e. 𝑓' ≫ 𝑓BG' for a precursor 449 

favoring type k). This corresponded to a “localization” of precursors in transcriptomic 450 

space, and is a proxy for specification (see Methods). We modeled the extent of 451 

localization vs. age via a logistic function (Fig. 5g and Supplementary Fig. 6d), and used 452 

this to calculate a specification time for each type (𝜏IJ) (see Methods for details). Based 453 

on this analysis, 7/45 types are specified postnatally. The average 𝜏IJ	 for RGCs was 454 

E17.8, but individual RGC types exhibited a wide range from E13.9 to P5.2 (Fig. 5h). The 455 

inferred specification time was not correlated to adult frequency (Fig. 5i).  456 

 457 

We illustrate this range by considering three pairs of RGC types in Supplementary Fig. 458 

6. C12 and C22 (numbered as in Tran et al., 2019; see Fig. 2g) exhibit low fate coupling 459 

at all ages profiled (Supplementary Fig. 6a), indicative of separate precursor 460 

populations. In contrast, C19 and C20 decouple only at P0, implying the existence of a 461 

common precursor throughout embryogenesis (Supplementary Fig. 6b). C21 and C34 462 

display an intermediate pattern, decoupling around E16 (Supplementary Fig. 6c). Taken 463 

together, these results suggest that RGC types emerge by asynchronous fate decoupling 464 

of multipotential precursors. 465 
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 466 

 467 
Figure 5. Fate decoupling of RGC types 468 
a. Force-directed layout visualization of fate couplings at E13, with nodes representing RGC types 469 
(numbered as in Tran, 2019) and the thickness of edges representing values of C(l,m;E13). Edges 470 
with C(l,m; E13) < 0.2 are not shown. Number of edges with C(l,m; E13) > 0.2 are indicated on 471 
top.  472 
b-e. Visualization of fate couplings at E14 (B), E16 (C), P0 (D) and P5 (E). The positions of the 473 
nodes are maintained as in panel a, but the edges are redrawn based on values of C(l,m;age) at 474 
each age. As in panel a, we only show edges C(l,m; age) > 0.2. 475 
f. The decay of pairwise fate couplings (y-axis) with age (x-axis). Each line corresponds shows 476 
the temporal decay of C(l,m) for RGC pair l and m estimated via a logistic model (Methods). For 477 
each pair, couplings at each age were fit to a model 𝐶(𝑙,𝑚; 𝑎𝑔𝑒) = 1/(1 + 𝑒MNOMP∗RST) with 𝛽V, 𝛽6 478 
representing fitted parameters. The fitting was performed using data for ages E13, E14, E16, P0 479 
and P5. The shaded portions correspond to the periods E8-E13 and P5- represent extrapolations 480 
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of the model. Black lines highlight the decay of all non-zero pairwise couplings for RGC type C8 481 
as an example. 482 
g. Schematic showing logistic modeling to estimate specification time 𝜏IJ for a particular type. The 483 
y-axis is a measure of the extent to which precursors biased towards the type are present in a 484 
single transcriptomically defined cluster (i.e. localization, see Methods for details). Localization 485 
is defined as a numerical value in the range (0, 1) with higher values consistent with increasing 486 
specification. Individual triangles represent the localization values computed using WOT inferred 487 
fate couplings at each age, while the curve represents the fit using the logistic model. Dotted line 488 
shows the minimum threshold a type to be specified at each age. Its curved shape arises due to 489 
the increase in the number of clusters with age.  490 
h. Localization curves (as in panel g) for the 38 RGC types showing the range of inferred 491 
specification times. 7 low frequency types have been excluded from display (see Supplementary 492 
Fig. 6d).  493 
i. Scatter plot showing poor correlation between adult frequency of a type (from (Tran et al., 2019)) 494 
and its predicated specification time (calculated from h). 495 
 496 

Fate decoupled groups of RGC types defined by transcription factors 497 

Because fate coupling is a metric of inferred overlap of developmental history, it is likely 498 

that tightly coupled types share common precursors. This relationship implies that tightly 499 

coupled types might also be specified by common transcriptional programs. As a step 500 

towards identifying candidate fate determinants, we identified 8 transcription factors (TFs) 501 

that are expressed by distinct groups of mature RGC types (Fig.6a, Supplementary Fig. 502 

7a). Three of these are well-characterized RGC-selective TFs: Foxp2, expressed by 5 F-503 

RGC types (Rousso et al., 2016); Tbr1, expressed by 5 T-RGC types (Liu et al., 2018); 504 

and Eomes (also known as Tbr2), expressed by 7 types (C.-A. Mao et al., 2020; Tran et 505 

al., 2019). The 7 Eomes/Tbr2 types include the melanopsin expressing intrinsically 506 

photosensitive (ip) RGC types (Berson, Dunn, & Takao, 2002).  The remaining five were 507 

Neurod2, Irx3, Mafb, Tfap2d, and Bnc2 that label 8, 5, 4, 6, and 3 types respectively. 508 

Eomes types also co-expressed Tbx20 and Dmrbt1 while Neurod2 types also co-express 509 

Satb2. Together, 40/45 mature types expressed at least one of these TFs in a manner 510 

that was, with few exceptions, mutually exclusive. In many cases, the fate proximity of 511 

types that shared TF expression was obvious (Fig. 6a). 512 

 513 

We refer to these TF-based groups as fate-restricted RGC subclasses – an intermediate 514 

taxonomic level between class and type based on inferred fate relationships. Consistent 515 

with their definition, the pairwise fate coupling among types from different subclasses was 516 

significantly lower than among types from the same subclass (Fig. 6b). Thus, precursor 517 
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RGC states associated with any two subclasses are more distinct than those associated 518 

with any two types. This is evident by the significant separation at E13 and negligible 519 

overlap at P5 for precursors favoring the Eomes, Mafb and Neurod2 subclasses 520 

respectively, as shown in Fig. 6c-e.  521 

 522 

We also asked whether the TF-based subclasses differed in inferred transcriptomic 523 

specification time 𝜏IJ, as defined in Fig. 5g. As shown in Figs. 6f-h, and Supplementary 524 

Figs. 7b-e, four subclasses were specified within a narrow interval (E16.8-E17.2), but 525 

three others differed substantially. The average specification time for the Eomes group 526 

was E14.6 (p < 0.0001, Student’s t-test, compared to the mean for all types), while that 527 

for the Mafb and Neurod2 groups were E16.9 (p < 0.001) and E18.5 (p < 0.0001), 528 

respectively. The early specification of the Eomes group is consistent with birthdating 529 

studies showing the average earlier birthdate of ipRGCs compared to all RGCs (McNeill 530 

et al., 2011).  531 

 532 

In summary, our results suggest the existence of fate-restricted RGC subclasses that 533 

arise from distinct sets of precursors and diversify into individual types.  This method of 534 

defining RGC groups, which relies on inferred proximity of precursors in transcriptomic 535 

space, is distinct from previous definitions of RGC subclass based on shared patterns of 536 

adult morphology, physiology or gene expression (see Discussion). Accordingly, the fate 537 

couplings at E13 were only weakly correlated with transcriptomic proximity in the adult 538 

retina (Supplementary Fig. 7f). Further, while TF-based groups align with some 539 

previously defined subclasses (e.g. ipRGCs or Tbr1+ RGCs), they do not map to others 540 

subclasses such as alpha-RGCs (4 types) or T5-RGCs (9 types) (Supplementary Fig. 541 

7g).  542 

 543 
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 544 
Figure 6. Temporal dynamics of RGC subsets expressing specific TFs 545 
a. E13 network graph of fate couplings from Fig. 5a, with RGC types colored based on their 546 
selective expression of TFs at P56. Asterisks denote 3/45 types that express more than 1 TF 547 
(also see Supplementary Fig. 7a).  548 
b.  Box-and-whisker plots showing that pairwise fate couplings are higher between types within 549 
the same TF subclass than between types in different TF subclasses at all immature ages. Black 550 
horizontal line, median; bars, interquartile range; vertical lines, 1st and 99th percentile; dots, 551 
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outliers. Stars indicate significant p-values based on a two-sided t-test (****, p < 10-7; ***, p < 10-552 
5; **, p < 10-2).  553 
c.  Eomes+ types. Top: UMAP representation of E13 RGCs with cells colored based on their 554 
cumulative fate association towards the 7 Eomes+ types. Bottom: UMAP representation of P5 555 
RGCs with cells colored based on their cumulative fate association towards the 7 Eomes+ types. 556 
The value corresponding to the color of each cell (colorbar, right) can be interpreted as the 557 
probability of commitment towards the corresponding subclass.  558 
d.  Same as c for Mafb+ types 559 
e.  Same as c for Neurod2+ types 560 
f-h. Localization curves (as in Fig. 5g) for Eomes+ types (f), Mafb+ types (g) and Neurod2+ types 561 
(h). The mean inferred specification time 𝜏IJ	for each group is indicated on top of each panel. 562 
 563 

Transcriptomic profiles of ipsilateral and contralateral RGCs  564 

Finally, we considered the origin of two RGC groups defined by their projections: those 565 

with axons that remain ipsilateral at the optic chiasm (I-RGCs) and those that cross the 566 

midline to innervate contralateral brain structures (C-RGCs). The proportion of I-RGCs 567 

varies among vertebrates, in rough correspondence to the extent of binocular vision, 568 

ranging from none in most lower vertebrates to ~50% in primates. In mice, 3-5% of RGC 569 

axons remain ipsilateral, with most I-RGCs residing in the ventrotemporal (VT) retinal 570 

crescent (Mason & Slavi, 2020). While some I-RGCs have been observed to project from 571 

the dorsocentral retina during embryonic stages, these are rapidly eliminated so-called 572 

“transient” I-RGCs (Soares & Mason, 2015).  Thus, in adulthood, C-RGCs are present 573 

throughout the retina while “permanent” I-RGCs are confined to the VT crescent.  574 

 575 

The zinc-finger transcription factor Zic2 is expressed in a subset of postmitotic RGCs in 576 

VT retina, and is both necessary and sufficient for establishing their ipsilateral identity 577 

(Herrera et al., 2003); transient dorsolateral I-RGCs do not express Zic2 (Pak, Hindges, 578 

Lim, Pfaff, & O'Leary, 2004). Isl2 marks a subset of C-RGCs throughout the retina and 579 

appears to specify a contralateral identity in part by repressing Zic2 (Pak et al., 2004). 580 

These two transcription factors were expressed in a mutually exclusive fashion in RGC 581 

precursors between E13 and E16 (Fig. 7a); Zic2 was down-regulated at later ages 582 

(Supplementary Fig. 8a). Furthermore, Zic2 expression at E13 correlated with Igfbp5 583 

and Zic1, and anti-correlated with Igf1 and Fgf12, consistent with recent reports (Wang, 584 

Marcucci, Cerullo, & Mason, 2016) (Fig. 7b and Supplementary Figs. 8b,c). We scored 585 

each cell at E13 based on its expression of ipsilateral genes (Methods), confirming that 586 
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expression of ipsilateral and contralateral gene signatures were anticorrelated (Fig. 7c). 587 

Together, these observations support the idea that at E13 Zic2+ cells represent I-RGCs, 588 

and Isl2+ cells represent some but not all C-RGCs. 589 

 590 

Using WOT, we then identified the descendants of presumptive I-RGCs at later ages. We 591 

found that I-RGCs comprised 4.3% of adult RGCs, consistent with the range of 3-5% 592 

noted above. We queried these cells to identify genes that distinguished putative I-RGCs 593 

and C-RGCs throughout the developmental time course. At a fold-change of ≥1.5 we 594 

found 59 DE genes at E13 and 89 at E14 (Figs. 7e,f). In addition to Zic2, Igfbp5, Isl2 and 595 

Igf1, which had been used to define I-RGCs and C-RGCs at E13, they included Igfbpl1, 596 

Pou3f1 and Cntn2 enriched in I-RGCs, and Lmo2, Pcsk1n and Syt4 enriched in C-RGCs. 597 

The number of genes DE between I- and C-RGCs decreased after E14, with 20, 9 and 0 598 

significant genes at E16, P0 and P5, respectively (Supplementary Figs. 8d,e), 599 

presumably reflecting the downregulation of axon guidance programs once 600 

retinorecipient targets have been reached (see Discussion).  601 

 602 

We also asked which RGC types included I-RGCs. At E13, putative I-RGCs were highly 603 

enriched in 2 of 10 clusters, comprising 38-40% of clusters 2 and 9, 9-14% of clusters 3 604 

and 5, and <2% of the other 6 clusters (Fig. 7d). In adults, RGCs expressing Tbr1, Mafb, 605 

Foxp2 and Neurod2 contained 3-4X more I-RGCs than RGCs expressing Eomes, Irx3 or 606 

Tfap2d. These results are consistent with previous observations that I-RGCs are 607 

morphologically and physiologically heterogenous but not uniformly distributed across 608 

types(Hong, Kim, & Sanes, 2011; Johnson et al., 2021). Lastly, the WOT-predicted 609 

relationship between E13 precursor RGC clusters and I-RGC-rich or -poor terminal types 610 

were consistent with these patterns. The top six I-RGC-rich types (C4, C15, C19, C20, 611 

C38, C45) derived 14% and 4% of their relative fate association from E13 clusters 2 and 612 

9, while the top six I-RGC-poor types (C8, C14, C18, C22, C31 and C41) derived only 3.8 613 

and 0.2 % of their relative fate association from E13 clusters 2 and 9. Thus, E13 clusters 614 

2 and 9 are preferred precursors of adult types that are relatively rich in I-RGCs. 615 

  616 

 617 
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 618 

 619 
Figure 7. Transcriptomic identification of ipsilaterally projecting RGCs 620 
a. Zic2, an I-RGC marker and Isl2, a C-RGC marker, are expressed in a mutually exclusive pattern 621 
at E13 (left), E14 (middle) and E16 (right). Zic2 is undetectable after E16 (Supplementary Fig. 622 
8a). Cells are colored based on a bivariate color scale representing co-expression of two markers 623 
(colorbar, right). 624 
b. Zic2 and Igfbp5, two I-RGC markers, are co-expressed at E13 (left) and E14 (middle). 625 
Representation as in panel a. 626 
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c. Scatter-plot of gene signatures used to identify I-RGCs (y-axis) and C-RGCs (x-axis) at E13 627 
are negatively correlated (Pearson R = -0.61). Each dot corresponds to a cell, the color represents 628 
the number of cells located at a particular (x,y) location (see colorbar, right). 629 
d. Barplot showing % of putative I-RGCs (y-axis) within each of the 45 adult RGC types, estimated 630 
by computing the descendants of E13 I-RGCs using WOT. RGC types are arranged along the x-631 
axis based on their membership of TF-groups shown in Fig. 6a (annotation matrix, bottom).  632 
e. Volcano plot showing DE genes (MAST test, p < 10-6) between predicted I-RGCs and C-RGCs 633 
at E13. The x- and the y-axes show the fold-change and the p-value in log2- and log10- units, 634 
respectively. Dots represent genes, with red and blue dots highlighting I- and C-RGC enriched 635 
genes respectively at fold-change > 1.5 and Bonferroni corrected p-value < 5x10-5. The two 636 
vertical bars correspond to a fold-change of 1.5 in either direction. Select I-RGC and C-RGC 637 
enriched genes are labeled. 638 
f. Same as panel e, for E14.      639 

 640 

 641 

Discussion 642 

The staggering diversity of its neurons underlies the computational power of the nervous 643 

system. Accordingly, a major quest in developmental neurobiology is to understand the 644 

mechanisms that diversify progenitors. A generally accepted way to deal with this 645 

diversity is to divide neurons into classes, and then subdivide classes into subclasses 646 

and subclasses into types (Zeng & Sanes, 2017). While much has been learned about 647 

how neural progenitors give rise to distinct neuronal classes, little is known about how 648 

classes diversify into subclasses and types.  649 

 650 

Here, we used mouse RGCs to address this issue. We recently generated a molecular 651 

atlas that divided RGCs into ~45 distinct types based on their patterns of gene expression 652 

(Tran et al., 2019). We used this atlas here as a foundation to ask how these types are 653 

specified during development. We conclude that the earliest precursor RGCs are 654 

multipotential and exhibit continuous variation in transcriptomic identity, then diversify into 655 

definitive types by a gradual process of fate restriction. Interestingly, these features 656 

resemble those that have been discovered to control the generation of retinal cell classes 657 

from cycling progenitors (RPCs): multipotentiality, progressive restriction of fate, and 658 

stochastic rather than deterministic fate choice (see Introduction). We suggest that, at 659 

least in this case, similar strategies are used to generate cell classes from mitotically 660 

active progenitors and cell types from postmitotic precursors.  661 

 662 
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Classes, subclasses and types 663 

Definitions of neuronal class, subclass and type have been contentious (Yuste et al., 664 

2020). In general, classes share general features of structure, function, molecular 665 

architecture and location, whereas types comprise the smallest groups within classes that 666 

can be qualitatively distinguished from other groups based on these and other criteria.  667 

Subclasses lie in-between. For RGCs, class identity has been clear for a century, but 668 

inventories of subclasses and types have emerged only over the last few decades, as 669 

high-throughput methods have been implemented for quantifying structural (primarily 670 

dendritic morphology), functional (responses to an array of visual stimuli) and molecular 671 

properties (gene and transgene expression) of large numbers of RGCs.  Fortunately, to 672 

the extent that they have been compared, there is excellent concordance among types 673 

defined by molecular, structural and physiological criteria (Bae et al., 2018; Goetz et al., 674 

2021; Tran et al., 2019) (see www.rgctypes.org).  Moreover, RGCs of a single type exhibit 675 

a regular spacing, called a mosaic arrangement, in that they tend to avoid other members 676 

of the same cell type whereas their association with members of other types is random 677 

(Kay et al., 2012; Keeley et al., 2020; Rockhill et al., 2000). The molecular basis of this 678 

property is poorly understood, but it provides an additional criterion for defining a type. 679 

Thus, while no two RGCs are identical, and variation may be continuous in some other 680 

structures (Cembrowski & Spruston, 2019), there is strong reason to believe that RGC 681 

types are discrete.   682 

 683 

The adult RGC atlas 684 

Developmental trajectories of cell types cannot be better than the adult types at which 685 

they are aimed.  We have two reasons to believe that our adult RGC atlas (Tran et al., 686 

2019) is accurate and complete. 687 

 688 

First, the atlas is based on detailed analysis of 35,699 cells, and is therefore powered to 689 

detect types occurring at ~0.1% frequency (>40 cells per type; 690 

https://satijalab.org/howmanycells/). Results were stable over a variety of parameters 691 

(Tran et al., 2019). Moreover, in the course of studies on responses of RGCs to injury, 692 
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we recently profiled an additional ~120,000 cells (A. Jacobi, N. Tran, W Yan and J.R.S, 693 

in preparation), without identifying additional types.  694 

 695 

Second, RGCs have now been classified by functional and structural properties, based 696 

on physiological responses to visual stimuli (Baden et al., 2016; Goetz et al., 2021) and 697 

serial section electron microscopy (Bae et al., 2018).   The numbers of types defined in 698 

these ways (47 in (Bae et al., 2018), 42 in (Goetz et al., 2021) and > 32 in (Baden et al., 699 

2016)) match well to the 45-46 defined molecularly (Tran et al., 2019). 700 

 701 

Multipotentiality of precursor RGCs 702 

The multipotentiality of dividing progenitor cells can be demonstrated by indelibly labeling 703 

a progenitor and then examining its progeny at a later stage.   For mammals, this was 704 

initially done by infecting single cells with a recombinant retrovirus encoding a reporter 705 

gene that could be detected following multiple cell divisions (Price, Turner, & Cepko, 706 

1987; Sanes, Rubenstein, & Nicolas, 1986; Turner & Cepko, 1987). More recently, it has 707 

become possible to greatly increase throughput by tracking scars or barcodes introduced 708 

by CRISPR/Cas9 (Baron & van Oudenaarden, 2019; Espinosa-Medina, Garcia-Marques, 709 

Cepko, & Lee, 2019; McKenna et al., 2016).  In sharp contrast, conclusively 710 

demonstrating that a single postmitotic cell is multipotential would require following a cell 711 

from an unspecified to a specified state, then turning back time, watching it again, and 712 

asking if it acquired the same mature identity. Since this is impossible, we used 713 

computational inference to draw tentative conclusions about the extent to which newly 714 

postmitotic RGCs are committed to mature into a particular type.  715 

 716 

Our analysis proceeded in three steps.  First, to ask whether RGCs were committed to a 717 

particular fate before or shortly after they were born, we assessed transcriptomic 718 

heterogeneity at a time when a large fraction was newly postmitotic (E13 and E14). We 719 

found that heterogeneity was present but limited: 10 transcriptomic clusters were 720 

distinguishable at E13 and 12 at E14. Thus, some heterogeneity is present in precursor 721 

RGCs, but far less than would be required to specify type identity before or immediately 722 

after their birth.  723 
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 724 

Second, we used a supervised classification approach to ask whether precursor RGC 725 

clusters mature into mutually exclusive sets of adult types.  This model would imply an 726 

orderly, step-wise restriction of cell fates. However, our results indicate substantial 727 

overlap in the types derived from cells in different immature clusters.  This result argues 728 

against a deterministic model of diversification, and suggests that precursor RGCs are 729 

incompletely committed to a specific type for a substantial period after they are generated. 730 

 731 

Third, we used optimal transport inference (WOT) to ask whether the multipotentiality 732 

observed at the level of groups was also a property of individual cells. WOT utilizes time 733 

course scRNA-seq snapshots to infer fate associations between individual cells sampled 734 

at different time points, without reference to the clusters in which they reside(Schiebinger 735 

et al., 2019). While being consistent with supervised classification results at the cluster 736 

level, WOT indicated that the majority of individual RGCs were multipotential at E13 and 737 

E14.  Of equal importance, immature RGCs were not totipotential: the average predicted 738 

potential (P) was 11.6 at E13, or ~25% of the maximum possible value of 45, and no 739 

RGCs had P >30. We conclude that single multipotential immature RGCs are biased in 740 

favor of particular groups of adult RGC types.   741 

 742 

Progressive restriction of RGC fate  743 

Further analysis provided insight into the structure of multipotentiality among RGCs. The 744 

adult RGC types associated with a precursor RGC were not a randomly chosen subset; 745 

rather some were more likely to arise from a common precursor state (“fate coupled”) 746 

than others. This suggests a model in which RGC types arise via a progressive 747 

decoupling of fates within multipotential precursors. Decoupling is asynchronously, with 748 

different types emerging at different times. By modeling the temporal kinetics of fate 749 

decoupling, we were able to estimate a tentative specification time for each type – that is, 750 

the time at which precursors become irrevocably committed to a particular fate. Analysis 751 

of transcriptomic changes that occur during this process, and the effects of visual 752 

experience on maturation, will be presented elsewhere (K.S., I.E.W., S.B. and J.R.S., in 753 

preparation).  754 
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 755 

Fate-restricted RGC subclasses 756 

For RGCs, class identity has been clear for a century, and type identity has been solidified 757 

during over the last few decades, but criteria for defining subclasses remain unclear. 758 

Tentative classifications have used molecular, physiological and morphological criteria 759 

(Sanes & Masland, 2015; Tran et al., 2019);  In general, these criteria correlate imperfectly 760 

with each other, the main exception being that ON and OFF RGCs (responding 761 

preferentially to increases and decreases in illumination, respectively) have dendrites that 762 

arborize in the inner and outer portion of the inner plexiform layer (Famiglietti & Kolb, 763 

1976).  764 

 765 

The pattern of fate couplings between RGC types at E13-14 provides an alternative way 766 

to define RGC subclasses – groups of RGC types that arise from the restriction of a 767 

common transcriptionally defined precursor state. We identified transcription factors 768 

selectively expressed within these subclasses.  Our rationale was that among them would 769 

be fate determinants, an idea that could be tested by conventional genetic manipulations.  770 

Support for this idea is that there is already strong evidence that one such factor is a fate 771 

determinant in mouse: Eomes is selectively expressed by ipRGCs (and a few other 772 

types), and Eomes mutants fail to form ipRGCs although their retinas are normal in many 773 

respects (C. A. Mao et al., 2014). This encourages the hope that some of the other 774 

transcription factors in this set are also fate determinants. It will also be interesting to 775 

determine whether members of fate-restricted subclasses share structural or functional 776 

properties. 777 

 778 

Laterality 779 

The transcription factors Isl2 and Zic2 selective markers of embryonic RGCs that project 780 

contralaterally or ipsilaterally, respectively, and are critical determinants of this choice 781 

(Herrera et al., 2003; Pak et al., 2004). We found that their expression was largely 782 

nonoverlapping in RGCs at E13, that they were co-expressed with previously reported 783 

markers of contralaterally and ipsilaterally projecting RGCs, respectively.  Because few 784 

RGC axons reach the optic chiasm before E14, our results are consistent with genetic 785 
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evidence that this differential expression is a cause rather than a consequence of the 786 

divergent choices the axons make at the chiasm. Among many genes co-expressed with 787 

Isl2 or Zic2 may be others that play roles in this choice. 788 

 789 

Zic2 is downregulated later in embryogenesis, so we used WOT to infer the fates of 790 

putative I-RGCs.  We found that they give rise to many types, consistent with previous 791 

results (Hong et al., 2011; Johnson et al., 2021). Surprisingly, however, there were few if 792 

any genes differentially expressed between the putative mature I- and C-RGCs.  793 

Assuming that WOT results are valid – an assertion that can be tested directly in the 794 

future – this result suggests a model in which newborn RGCs are doubly specified – by 795 

laterality and by type – but that once axonal choice has been made the laterality program 796 

is shut down. 797 

 798 

Beyond the retina  799 

Generation of neuronal classes has been analyzed in many parts of the vertebrate 800 

nervous system but we are aware of few reports on how classes diversify into types. A 801 

recent study addressed this issue for primary sensory neurons and reached the 802 

conclusion that newborn neurons in dorsal root ganglia are transcriptionally unspecialized 803 

and become type-restricted as development proceeds (Sharma et al., 2020).  Similarly, 804 

both excitatory neuronal subclasses appear to diversify postmitotically in the mouse 805 

cerebral cortex (Di Bella et al., 2021; Lodato & Arlotta, 2015), and there is suggestive 806 

evidence that the same is true for interneuronal subclasses (Wamsley & Fishell, 2017). 807 

In all of these cases, it is attractive to speculate that diversification may occur by a process 808 

of fate decoupling in subpopulations of distinct multipotential precursors, akin to that 809 

documented here for RGCs.  Our study provides a computational framework for 810 

investigating this issue. 811 
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Materials and Methods

Mice

All animal experiments were approved by the Institutional Animal Care and Use Committees
(IACUC) at Harvard University. Mice were maintained in pathogen-free facilities under standard
housing conditions with continuous access to food and water. Animals used in this study include
both males and females. A meta-analysis (not shown) did not show any systematic sex-related ef-
fects in either differentially expressed genes or cell-type proportions. For scRNA-seq and histology,
we used C57Bl/6J (JAX #000664). Embryonic and early post-natal C57Bl/6J mice were acquired
either from Jackson Laboratories (JAX) from time-mated female mice or time-mated in-house. For
timed-matings, a male was placed with a female overnight and removed the following morning (with
the corresponding time recorded as day E0.5).

Cell preparation

RGCs were enriched from dissociated retinal cells as previously described with minor modifications
(Tran et al., 2019). All solutions were prepared using Ames’ Medium with L-glutamine and sodium
bicarbonate (equilibriated with 95% O2/5% CO2), and all spin steps were done at 450g for 8 minutes.
Retinas were dissected out in their entirety immediately after enucleation and digested in ∼80U of
papain at 37◦C, with the exception of some E13 and E14 eyes which were digested whole, followed
by manual trituration in ovomucoid solution. Clumps were removed using a 40µm cell strainer
and the cell suspension was spun down and re-suspended in Ames + 4% BSA at a concentration
of 10 million cells per 100µl. Cells from E13, E14, E16, and P0 were incubated for 15 minutes
at room temperature with antibodies to Thy1 (also known as CD90) and L1CAM pre-conjugated
to the fluorophores APC (ThermoFisher Scientific#17-0902-82) and PE (Miltenyi Biotec 130-102-
243), respectively. Cells were washed with 6ml of Ames + 4% BSA, spun down and resuspended at
a concentration of ∼7 million cells/ml, and calcein blue was added to label metabolically active cells.

Viable Thy1 or L1CAM positive cells were sorted using a MoFlo Astrios sorter into ∼100µl of AMES
+ 4% BSA. Sorted cells were spun down a final time and resuspended in PBS + 0.1% BSA at a
concentration of 500-2000 cells/µl. P5 RGCs were enriched using only CD90, with either magnetic-
activated cell sorting (MACS) using large cell columns and CD90 pre-conjugated to microbeads
(#130-042-202 and #130-049-101, Miltenyi Biotec), fluorescence activated cell sorting (FACS) with
CD90 pre-conjugated to PE/Cy7 (ThermoFisher Scientific #25-0902-81), or both.

Droplet based single-cell (sc) RNA-seq

Statement on replicates: We profiled immature RGCs using scRNA-seq at five developmental time
points: E13, E14, E16, P0 and P5. At each age, data was collected from four replicate experiments.
Experiments at E13, E14, E16 and P0 involved two biological replicates (distinct mice). Each of
these biological replicates were further subdivided into two equal pools and the cells were subjected
to two different enrichment methods (anti-Thy1 and anti-L1cam). Thus, each of these time points
consisted of four replicate experiments. RGC enrichment at P5 exclusively utilized anti-Thy1, but
four biological replicate experiments were performed. One of these was profiled using 10X and three
of these were profiled using Drop-seq.

1
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Drop-seq : A subset of P5 RGC dataset was collected using Drop-seq (Macosko et al., 2015), per-
formed largely as described previously (Shekhar et al., 2016). Briefly, cells were diluted to an
estimated final droplet occupancy of 0.05, and co-encapsulated in droplets with barcoded beads,
which were diluted to an estimated final droplet occupancy of 0.06. The beads were purchased from
ChemGenes Corporation, Wilmington MA (# Macosko201110). Individual droplet aliquots of 2 ml
of aqueous volume (1 ml each of cells and beads) were broken by perfluorooctanol, following which
beads were harvested, and hybridized RNA was reverse transcribed. Populations of 2,000 beads
(∼100 cells) were separately amplified for 14 cycles of PCR (primers, chemistry, and cycle condi-
tions identical to those previously described) and pairs of PCR products were co-purified by the
addition of 0.6x AMPure XP beads (Agencourt).Fifteen experimental replicates were sequenced in
total from 5 biological replicates using an Illumina NextSeq 500. Read 1 was 20bp; read 2 (paired-
end) was 60bp.

10X Genomics: Single cell libraries were prepared using the Single-cell gene expression 3’ kit on
the Chromium platform (10X Genomics, Pleasanton, CA) following the manufacturer’s protocol.
As our datasets were collected over a long period of time, we used a combination of v1 (a single
channel of P5 RGCs), v2 (E13, E14, E16, P0). Briefly, single cells were partitioned into Gel beads
in EMulsion (GEMs) in the 10X Chromium instrument followed by cell lysis and barcoded reverse
transcription of RNA, amplification, enzymatic fragmentation, 5’ adaptor attachment and sample
indexing. On average, approximately 8,000-12,000 single cells were loaded on each channel and
approximately 3,000-7,000 cells were recovered. Libraries were sequenced on the Illumina HiSeq
2500 platforms at the Broad institute (Paired end reads: Read 1, 26 bases, Read 2, 98 bases).

Statement on power analysis: An important question in all single-cell experiments is that of the
number of cells to profile. A widely used approach is the power analysis tool published by the Satija
lab (https://satijalab.org/howmanycells/). Fortunately, in this study we were also guided by
our previous study of adult RGCs, where we had knowledge of the frequency distribution of adult
RGC types, with the rarest type being approximately 0.2% (Tran et al., 2019). In that study, we
also found that when classification is performed in a supervised fashion based on an existing atlas,
approximately ∼8000 RGCs were sufficient to recover the accurate relative frequency distribution
of 45 RGC types. We therefore aimed to profile ∼ 8000 cell at each time point as our analysis
involved mapping immature RGCs to the adult atlas. With the exception of E13, all time points
contain 1.5-2X more cells than this target value.

Histology

Tissue Fixation: Adult (P56) mice were intracardially perfused with 2-5ml of PBS followed by 15ml
of 4% PFA, followed by additional fixation of eyes for 15 minutes in 4% PFA, with the exception
of XXXX. P0 and P5 mice were not perfused, rather eyes were fixed in 4% PFA for 30 minutes.
At E13, 14, and 16 embryos were fixed whole for 30 minutes in 4% PFA, following which eyes were
removed. Following fixation eyes from all time points were transferred to PBS and stored at 4◦C
until subsequent use.

Sectioning : Cross sections for immunohistochemistry (IHC) were generated using a Leica CM1850
cryostat. For some early developmental time points eyes were kept whole for IHC, otherwise retinas
were either (1) dissected out in their entirety from eyes, or (2) the cornea, iris and lens was removed
leaving the sclera and retina intact. Tissues were sunk in 30% sucrose overnight at 4◦C, embedded
in tissue freezing medium, and cryo-sectioned into 25mm slices. Slides with tissue sections were air

2
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dried for ∼3 hours and stored at -80◦C until staining.

Immunohistochemistry (IHC): All IHC solutions were made up in PBS + 0.3% Triton-X, and all
incubation steps were carried out in a humidified chamber. Following a 1 hour protein block in 5%
Normal Donkey Serum at room temperature, slides were incubated overnight at 4◦C with primary
antibodies, washed twice for 5 minutes each in PBS, incubated for 2 hours at room temperature with
secondary antibodies conjugated to various fluorophores (1:1000, Jackson Immunological Research)
and Hoechst (1:10000, Life Technologies), and washed again twice for 5 minutes each in PBS before
coverslipping with Fluoro-Gel (#17985, Electron Microscopy Sciences). Primary antibodies used
include: guinea pig anti-RBPMS (1:1000, #1832-RBPMS, PhosphoSolutions), rabbit anti-KI67
(1:250, #MA5-14520, ThermoFisher Scientific), rat anti-L1CAM (1:10, #130-102-243, Miltenyi
Biotec), rabbit anti-TBX20 (1:500, #A04704, Boster Bio), chicken anti-EOMES (1:500, #AB15894,
Millipore Sigma), rabbit anti-NEUROD2 (1:500, #ab104430, Abcam), guinea pig anti-PRDM8
(1:2000, kind gift from Sarah E. Ross; Ross et al., 2012), mouse anti-POU4F3 (1:500, #MAB1585,
Millipore Sigma), goat anti-VSX2 (1:200, #sc-21690, Santa Cruz Biotechnology), rabbit anti-SOX9
(1:1000, #AB5535, Millipore Sigma), and chicken anti-GFP (1:1000, #ab13970, Abcam).

Imaging

All images were acquired using an Olympus Fluoview 1000 scanning laser confocal microscope, with
a 20Xx oil immersion objective and 2x optical zoom. Optical slices were taken at 1µm steps. Fiji
(Schindelin et al., 2012) was used to pseudocolor each channel and generate a maximum projection
from image stacks. Brightness and contrast was adjusted in Adobe Photoshop.

Alignment and quantification of gene expression in single cells

All single-cell libraries were aligned to the UCSC mm10 transcriptomic reference (M. musculus)
and gene expression matrices were quantified using standard protocols described previously. For
the single-cell libraries generated using the 10X platform (E13, E14, E16, P0 and P5), these steps
were performed using cellranger v2.1.0 (10X Genomics). For the single-cell libraries generated using
Drop-seq (P5), we used Drop-seq tools (v1.12; Macosko et al., 2015), following procedures described
earlier (Shekhar et al., 2016). Alignment and quantification was done for each sample library sep-
arately to generate a genes × cells expression matrix of transcript counts. These matrices were
column-concatenated for further analysis.

We retained cells that expressed at least 700 genes, resulting in 98,452 cells. We also removed genes
expressed in fewer than 10 cells. The resulting M genes × N cells matrix of UMI counts Cmn was
normalized along each column (cell) to sum to 8, 340, the median of the column sums resulting in
a normalized matrix Xmn. This was followed by the transformation X̃mn ← log(Xmn + 1).

Overview of batch correction, dimensionality reduction and clustering

The following procedure was adopted to perform batch correction, dimensionality reduction and
clustering throughout the paper. The procedure was first applied on the entire dataset to separate
RGCs from other cell classes, and then to RGCs at each age to identify transcriptomically distinct
groups.

1. Identification of highly variable genes (HVGs): We used the Gamma-Poisson framework de-
scribed previously to identify HVGs (Pandey et al., 2018). Briefly, we compute for each gene
the mean (µm) and the coefficient of variation (CVm) for the UMI counts Cmn,

3
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µm =
1

N

∑
n

Cmn

σ2
m =

1

N

∑
n

(Cmn − µm)2 (1)

CVm =
σm
µm

For a given µm, the Gamma-Poisson model predicts a “null” coefficient of variation (CV null
m )

arising from a combination of Poisson “shot" noise and large variations in library size, assumed
to be due to technical reasons,

CV null
m =

1

µm
+

1

α
(2)

Here, α is the shape parameter of a Gamma-distribution fit to the distribution of normalized
library sizes Tn (using the R package MASS),

Tn =

∑
mCmn∑
m,nCmn

(3)

In practice, CV null
m serves as a tight lower-bound for empirically observed values of CVm

across the full range of µm. This enables us to compute for each gene m, a deviation score
dm = log CVm

CV nullm
, quantifying the extent to which its observed coefficient of variation exceeds

the predicted null model. Highly-variable genes (HVGs) are selected if they satisfy dm >
Mean(dm) + 0.8 ∗ std(dm).

2. Batch correction and Dimensionality Reduction: We subsetted the rows of the expression
matrix Xmn to the HVGs identified in Step 1. As our data comprised cells sampled at different
developmental ages as well as multiple biological replicates within each age, we used Liger,
a non-negative matrix factorization technique, to embed the data in a reduced dimensional
latent space of shared factors (Welch et al., 2019). Liger computes a factorized representation
for each matrix that separate “shared” and “dataset-specific” gene expression modules (factors).
We use Liger’s normalized H factor loadings for cells to build a nearest neighbor graph and
define clusters.

As in any matrix factorization technique, Liger requires the user to choose k, the dimension-
ality of the latent space. To find k, we use a Random Matrix Theory approach (outlined
in Peng et al., 2019). Briefly, k is estimated as as the number of eigenvalues of the sample
gene-gene correlation matrix that exceed the 99th percentile of the distribution of the largest
eigenvalue of a random Hermitian matrix of the same dimensions. This is given by the Tracy
Widom distribution (Tracy and Widom, 1993). For these calculations, we used the R package
RMTstat.

3. Clustering and 2D Visualization: To cluster cells based on transcriptomic similarity, we first
built a nearest-neighbor graph on the cells based on their normalized H factor coordinates
computed using Liger. The number of nearest neighbors was chosen to be 30. The edges were
weighted based on the Jaccard overlap metric, as described previously (Shekhar et al., 2016).
The graph was clustered using the Louvain method (Blondel et al., 2008). The normalized
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H factor coordinates were also used as input to project cells on to a nonlinear 2D space
using the Uniform Manifold Approximation and Projection algorithm (UMAP; Becht et al.,
2019). Graph-construction, clustering and the UMAP projection were performed using the R
packages FNN, igraph and umap, respectively.

Separation of major cell classes

We began by clustering the full dataset combining all ages using the procedure outlined above. For
applying Liger, each age was regarded as a separate “batch” but replicates within an age were not
distinguished at this stage.

Approximately 40 clusters were distinguished at this stage. For each cluster, we computed a signa-
ture expression vector by averaging the expression levels of HVGs across the cells. These expression
vectors were used to perform hierarchical clustering, which enabled us to visualize the transcriptional
interrelationships between these clusters as a dendrogram. Hierarchical clustering was implemented
in the R package hclust (correlation distance, average linkage method). Major clades in the re-
sulting dendrogram corresponded to well known retinal classes and this was confirmed by their
expression of known class-specific markers. Each cluster was therefore assigned to its class, which
included retinal ganglion cells (RGCs; Rbpms, Slc17a6, Sncg, Nefl), microglia (P2ry12, C1qa-c,
Tmem119 ), photoreceptors (Otx2, Gngt2, Gnb3 ), amacrine cells (Tfap2a, Tfap2b, Onecut2 ), ante-
rior segment cells (Mgp, Col3a1,Igfbp7 ), cycling progenitors (Ccnd1, Fgf15, Hes5 ) and neurogenic
progenitors (Hes6, Ascl1, Neurog2 ). Deeper annotation (e.g. of RGC type) was not done at this
stage.

No other cellular classes were identified. 3 clusters comprising fewer than 1.2% of the cells expressed
markers of more than one class. These were flagged as doublets and removed from further analyses.

Clustering RGCs at each time point

RGCs identified in step “Separation of Major Cell Classes” were segregated by age, and each group
was separately analyzed following the clustering pipeline outlined previously. When implementing
Liger, each biological replicate was regarded as a separate batch. The nominal clusters identified
by the Louvain algorithm were refined as follows:

1. Removing contaminants: Clusters were flagged for further examination if they did not exclu-
sively express RGC-specific markers (e.g. Rbpms, Slc17a6, Sncg, Nefl). These clusters were
small (typically < 1-2% of cells) and in all cases expressed non-RGC markers (e.g. P2ry12
or Tfap2b). These cells, which likely reflect trace contaminants, were discarded from further
analysis.

2. Merging proximal clusters: Transcriptomic relationships between nominated clusters were
visualized on a dendrogram computed using hierarchical clustering, as noted above above.
Neighboring clusters on the dendrogram, which were leaves in a terminal branch, were assessed
for differential expression using the MAST differential expression (DE) test (Finak et al.,
2016). A gene g was regarded as significantly DE between clusters Ca and Cb if it satisfied
|logFCg(Ca, Cb)| > 0.5 and MAST p value was less than 10−5 (FDR corrected), where:

logFCg(Ca, Cb) = ln

(
|Cb|
|Ca|

∑
n∈Ca Xgn∑
n∈Cb Xgn

)
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is defined to be the log-fold change in expression. Clusters that showed fewer than 10 signifi-
cant DE genes were merged.

In this manner, we identified 10 RGC clusters at E13, 12 at E14, 19 at E16, 27 at P0, and 38 at P5.
Using MAST, we identified DE genes that distinguished each cluster against the rest at any given
age.

Joint analysis with whole-retina scRNA-seq datasets

We compared our data with two scRNA-seq studies that profiled the whole retina during develop-
ment:

1. Clark et al., Neuron, 2019: Count matrices and cell/gene level annotations were downloaded
from the author’s public repository https://github.com/gofflab/developing_mouse_retina_
scRNASeq. This dataset contains whole retinal cells sampled at 10 time points (E11, E12, E14,
E16, E18, P0, P2, P5, P8, P14) with four of these (E14, E16, P0, P5) common with our study.
We excluded P5 from our analysis as only N = 11 RGCs were identified by the authors at
this time point.

2. Giudice et al., Development, 2019: Count matrix corresponding to E15.5 retinal cells was
kindly provided by the authors.

For consistency with our filtering parameters, we extracted cells based on a cutoff of 700 genes/cell
from each of the above datasets. For the Clark et al. dataset, this selected 17,827 cells at E14, 1,674
cells at E16 and 8,343 cells at P0 respectively (N=27,844 cells). In these samples, RGCs comprised
19%, 28% and 0.45%. For the Giudice et al. dataset, this selected 5218 cells, of which 23% were
RGCs.

These were combined with the retinal cells profiled in this study at corresponding time points (25,685
cells at E14; 21,274 cells at E16; and 23,251 cells at P0). Together this resulted in a 14,350 genes
× 103,272 cells expression matrix that was analyzed following steps outlined previously. In the
alignment step, cells from each combination of age and study was considered as a separate “batch”.

We visualized the transcriptional heterogeneity of the full dataset using UMAP, and used the ex-
pression of canonical markers to confirm the co-clustering of cell-classes in Figure S2 (Rbpms for
RGCs, Tfap2b for ACs, Fgf15 for RPCs and Gngt2 for RPCs).

Diversity Indices

We quantified the molecular diversity of RGCs based on clusters at each stage using 3 measures
of population diversity - The Rao index (Figure 2), the Shannon index, and the Simpson index
(Figure S2). For N clusters with relative frequencies p1, p2, . . . , pN , these indices are defined as
follows,

• Let dij be a distance measure between clusters i and j (0 ≤ dij ≤ 1). The Rao index is defined
as,

R =
∑
i 6=j

dijpipj

We used varying number of genes (≈ 1200-3000) to calculate dij . The computed Rao index
was insensitive to these variations.
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• The Shannon index is defined as,

H = −
∑
i

pi log pi

• The Simpson index is defined as
S =

∑
i

p2
i

While the Rao and Shannon indices increase with diversity, the Simpson index decreases with
diversity.

Analysis of cluster distinctiveness

We quantified the mutual separation of clusters at each age using two approaches:

Multi-class classification: We trained a multi-class classifier (R package xgboost) at each age on
50% of the cells using their cluster IDs. The remaining 50% of the cells were used to test the learned
classifier and estimate a classification error per cluster, which were averaged at each age. As clusters
become better separated, the average classification error decreases.

Relative positions in PCA: At each age, the top 20 PCA coordinates were first standardized by
z-scoring. For each cluster C at a given age, we computed two quantities:

• rC , the median of euclidean distances of each cell from the cluster centroid in the standardized
PCA coordinates.

• dC , the median of euclidean distances of each cell from the centroid of the nearest external
cluster.

For a cluster C, a low of value rC/dC indicates a higher degree of separatedness. Averaging this
metric across all the clusters at a given age quantifies the degree to which clusters are separated in
the UMAP representation.

Relating clusters across ages using XGBoost

Analysis Overview : To distinguish between “specified” and “non-specified” modes of diversification
(Figure 3), we first used a supervised classification approach to associate immature RGC clusters
at young ages (tests) to cluster IDs determined at a older ages (references). We used XGBoost,
a decision-tree based ensemble learning algorithm (Chen and Guestrin, 2016), to train multi-class
classifiers on reference clusters, and used these to assign labels to individual test RGCs.

Two kinds of references were used: (1) Classifiers trained on the adult (P56) clusters were used
to assign immature RGCs at each of the five developmental ages (five separate analyses) to adult
labels. (2) Classifiers trained on E14, E16, P0, and P5 clusters were used to assign E13, E14, E16,
and P0 RGCs to labels corresponding to the previous age, respectively (four separate analyses).
The correspondence between classifier assigned labels and cluster IDs of test RGCs were visualized
using confusion matrices (e.g. Figure 3D-H) and quantified using two metrics - the Adjusted Rand
Index (ARI) and Normalized Conditional Entropy (NCE) metrics, described below.
Classification Overview : To describe our classification analysis, we introduce some notation to fa-
cilitate a description in general terms. Let AR and AT denote the reference and the test atlases for
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the purpose of supervised classification. The number of cells (i.e. RGCs) contained in the reference
and test atlases are denoted |AR| and |AT |, respectively. AR and AT could be any pair of ages
as described above. Without loss of generality, let us assume that AR contains r transcriptomic
clusters denoted denoted {CR1 , CR2 , . . . , CRr }. Similarly, the AT is assumed to contain t transcriptom-
ically defined clusters denoted {CT1 , CT2 , . . . , CTt }.

Each cell in our dataset is the member of a particular atlas, and is assigned to a single cluster
within the atlas based on its transcriptome. The transcriptome of each cell is a vector (denoted
using lowercase boldface symbols, e.g. u or v) with number of elements equal to the number of
HVGs (the features used for classification). Let cluster(u) denote the transcriptionally assigned of
cell u. For example, the following statement,

u ∈ AT , cluster(u) = CTk

translates to “Cell u in atlas AT is a member of cluster CTk .” Our goal is to assign each cell u ∈ AT ,
a second ID cluster′(u) based on its transcriptomic correspondence to the reference atlas AR. We
accomplish this via an XGBoost classifier trained on AR and applied it to every cell in AT , allowing
us to infer transcriptomic correspondences between the two sets of clusters. The main steps are as
follows,

• The expression matrices in AR and AT are z-scored along each feature. The initial set of
features are chosen as the common HVGs in the two atlases. Parameters are adjusted to
select the common top ∼2000-3000 HVGs.

• Classifiers ClassR0 and ClassT0 are trained on AR and AT independently. For training, we
randomly sample 60% of cells in each cluster up to a maximum of 300 cells. The remaining
“held-out" cells are used for validation. We ran the training routine for xgboost with the
following parameter specification ∗,

xgb_params <- list("objective" = "multi:softprob",
"eval_metric" = "mlogloss",
"num_class" = nClusters,
"eta" = 0.2,"max_depth"=6, subsample = 0.6)

• When applied to a cell vector u, the classifier ClassR0 (or ClassT0 ) returns a vector of p =
(p1, p2, . . .) of length r (or t) with entries representing probability values of predicted cluster
memberships in the corresponding atlas. We use these values to compute the “softmax”
assignment of u, so that cluster′(u) = arg maxi pi.

• Post training, ClassR0 and ClassT0 are evaluated on the respective validation sets. Using the
predicted cluster assignments of the “held out” cells, we compute for each cluster in AR and
AT the error-rate, defined as the fraction of held-out cells that were misclassified. If the error-
rate for any cluster was higher than 10%, the classifier is retrained by artificially upsampling
cells from the high error-rate clusters. In the final classifiers, the cluster-specific error rates
were typically 1-4%, and in no case exceeded 10%.

∗https://xgboost.readthedocs.io/en/latest/parameter.html
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• The top 500 discriminatory features (genes) are identified based on average information gain
(using the function xgb.importance) for each of ClassR0 and ClassT0 . These gene sets are
denoted as as GR and GT , respectively.

• The common features G = GR ∩GT are used to train a third classifier ClassR on the reference
atlas AR. This ensures that inferred transcriptiomic correspondences are based on “core” gene
expression programs that underlie cell type identity rather than maturation-associated genes.

• Finally, ClassR is applied to each cell u ∈ AT to generate predicted labels cluster′(u). Global
transcriptional correspondence were visualized using confusion matrices between cluster IDs
cluster(u) ∈ {CT1 , CT2 , . . . , CTt } and reference assignments cluster′(u) ∈ {CR1 , CR2 , . . . , CRr }, and
their correspondence was quantified using metrics described below.

Quantifying cluster correspondence using global and local metrics

Let Nij denote the number of cells in AT that are part of transcriptomic cluster CTj , and are assigned
by CR to reference cluster CRi . Thus,

Nij = #{cluster′(u) = CRi , cluster(u) = CTj ∀ u ∈ AT } (4)

Nij defines a contingency table, whose marginal sums are defined as,

ai =
t∑

j=1

Nij

bi =

r∑
i=1

Nij

(5)

Let N =
∑

ij Nij = |AT |, the number of cells in AT . Then the Adjusted Rand index (ARI)
corresponding to the assignments can be evaluated using the following equation (Hubert and Arabie,
1985),

ARI =

∑
ij

(Nij
2

)
−
[∑

i

(
ai
2

)∑
j

(bj
2

)]
/
(
N
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(bj
2

)]
/
(
N
2

) (6)

The ARI ranges from 0 and 1, with extremes corresponding to random association and 1:1 corre-
spondences between AT and AR, respectively †.

As an alternative, we also used the Normalized Conditional Entropy (NCE), an information-
theoretic measure (Cover and Thomas, 1991). The NCE quantifies the extent to which knowledge
of the value of cluster′(u) reduces the uncertainty (measured in information bits) about the value
of cluster(u) for u ∈ AT .

We introduce probability weights qij and the corresponding marginals qi,. and q.,j as follows,

†The ARI can technically also take on negative values for certain scenarios, but these are not observed in our data
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qij =
Nij

N

qi,. =
ai
N

q.,j =
bi
N

(7)

The Conditional Entropy (CE) is then given by the expression (Cover and Thomas, 1991),

H(cluster(u) | cluster′(u)) = −
∑
ij

qij log
qij
qi,.

Note that CE is asymmetric, i.e. H(cluster(u) | cluster′(u)) 6= H(cluster′(u) | cluster(u)). One
notes that H = 0 if for each cluster i ∈ 1, . . . , r, qij = δi,ki , where δlm is the Kronecker delta defined
as,

δij = 1, if i = j

= 0, if i 6= j
(8)

Finally, NCE is defined as,

NCE =
H(cluster(u) | cluster′(u))

H(cluster(u))
(9)

where H(cluster(u)) = −
∑

j q.,j log q.,j is the Shannon entropy (Cover and Thomas, 1991). Due
to the normalization in equation (9), NCE values range from 0 to 1, with extremes corresponding
to fully specific mapping or random association, respectively between AT and AR. ARI (equation
(6)) and NCE (equation (9)) are inversely related. Unlike ARI, however, NCE is able to detect
specificity in both many:1 and 1:1 mappings. ARI returns a value lower than 1 for specific mappings
if the number of clusters in AT and AR are not equal
ARI and NCE quantify global correspondences between AT and AR. We also computed a local
metric, the Occupancy Fraction (OF) that quantified whether individual reference labels CRi
were distributed in a “localized” or “diffuse” manner between test clusters {CT1 , CT2 , . . . , CTt }

OF (CRi ) =
1

t

 1∑
j

(
qij
qi,.

)2

 (10)

Note that the term qij
qi,.

is simply the fraction of the total test cells belonging to test cluster CTj
that are assigned to reference cluster CRi by the classifier. Defined this way, the term in the square
brackets computes an occupation number that ranges from 1 to t and can be interpreted as the
number of test clusters that are specifically associated with CRi . Division by t, the number of test
clusters, therefore converts this number into a fraction.

Waddington Optimal Transport (Waddington-OT)

To identify fate relationships among maturing RGCs usedWaddington-OT (Schiebinger et al., 2019),
a recently developed framework that is rooted in Optimal Transport theory (Villani et al., 2008).
Waddington-OT does not rely on clustering, and therefore is able to identify ancestor-descendant
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relationships between any pair of temporally separated RGCs in our data.

At its heart, Waddington-OT models cellular transcriptomes {u} measured at a given age t as
a probability distribution in gene expression space Pt(u) ‡. This probability distribution evolves
with time, as cells differentiate and mature. Different temporal measurements collected at times
. . . , ti−1, ti, ti+1, . . . represent temporal snapshots of the corresponding cell distributions . . . ,Pti−1 ,
Pti , Pti+1 , . . .. Unfortunately, as each cell can only be measured once, the measurement at different
times are from different cells. Therefore, for a particular cell u at time ti, it is not clear which
cell(s) at time ti−1 is likely to be its ancestor(s) and which cell(s) at time ti+1 are likely to be
descendant(s). It is this problem at Waddington-OT addresses.

Overview of the inference procedure: Briefly, for a given pair of consecutive transcriptomic snap-
shopts Pti(u) and Pti+1(v), we wish to estimate the joint distribution Πti,ti+1(u,v), representing the
probability that a cell having an expression vector u at time ti transitions to a cell with an expression
vector v at time ti+1. Πti,ti+1(u,v) is also called the temporal coupling, which, owing to the destruc-
tive nature of scRNA-seq assays, is not directly observable. Under the assumption that cells move
short distances in transcriptomic space when ∆ti = ti+1 − ti is “reasonably close”, Waddington-OT
estimates Πti,ti+1(u,v) as the solution to the following convex optimization problem,

Π̂ti,ti+i = argmin
Π

∑
u∈Ati

∑
v∈Ati+1

c(u,v)Π(u,v)− ε
∫ ∫

Π(u,v) log Π(u,v)dudv

+ λ1KL

 ∑
u∈Ati

Π(u,v)‖dP̂ti+1(v)

+ λ2KL

 ∑
v∈Ati+1

Π(u,v)‖dQ̂ti(u)


In the above equation,

• P̂ti(v) is an empirical distribution constructed from Ati , which denotes the scRNA-seq atlas
at ti,

P̂ti(v) =
1

|Ati |
∑

xi∈Ati
δ(v − xi)

where δ(v−x) denotes the Dirac delta function, a probability distribution placing all its mass
at the location x.

• Q̂ti(u) is the cell distribution at ti rescaled by the relative growth rate to account for cell
division/death.

Q̂ti(u) = P̂ti(u)
g(u)ti+1−ti∫
g(u)ti+1−tidP̂ti

Here g(u) represents the relative growth rate of cell u in the time interval (ti, ti+1) and is
estimated within the framework of unbalanced optimal transport (Chizat et al., 2008). For
more details, we refer the reader to the supplementary information of Schiebinger et al., 2019.

• c(u,v) is a cost function defined as the euclidean distance ‖u − v‖2. The first term of the
objective function minimizes the cost function weighted by the temporal couplings, which may

‡Note that u may represnt the original gene expression space or a reduced dimensional embedding estimated via
Principal Component Analysis or Diffusion Maps.
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be interpreted as the transport distance between the distributions P̂ti and P̂ti+1 (also known
as the Wasserstein distance).

• The second term on the RHS represents entropic regularization, and ε is the corresponding
strength. Classic OT identifies “deterministic” couplings in that one cell at ti is transported
to a single cell at ti+1. Introduction of the entropic regularization term makes this problem
non-deterministic, capturing the notion that there may exist immature cells whose fate is not
completely determined. Our inferences of multipotentialy is directly a consequence of adding
this entropic regularization term. Additionally, entropic regularization also makes the problem
strongly convex, which is computationally beneficial.

• The third and the fourth terms are features of unbalanced optimal transport, where equality
constraints on the marginals (a consequence of mass conservation) are relaxed. λ1 and λ2 are
corresponding Lagrange multipliers.

We note that values of the hyperparameters ε, λ1 and λ2 are held fixed for all pairwise transport
map calculations (E13, E14), (E14, E16), . . . etc.

Application to RGC diversification and long-range couplings: We apply Waddington-OT to each pair
of consecutive ages ti and ti+1 to estimate the transport map Π̂ti,ti+i . Transport maps connecting
non-consecutive time points ti and ti+k are estimated through a simple matrix multiplication of
intermediate transport maps,

Π̂ti,ti+k = Π̂ti,ti+1Π̂ti+1,ti+2 . . . Π̂ti+k−1,ti+k

The transport matrices Π̂ti,tj encode fate relationships between cells at ti and cells at at a later
time tj (ti < tj). These relationships can be analyzed at the level of clusters at tj to associate each
cell u ∈ Ati with transcriptomically defined cluster. This is particularly useful in estimating the
terminal identity of immature RGCs.

Operationally we compute for each cell u ∈ Ati a “cell fate vector” ftj (β;u, ti), (β = 1, 2, . . .)

encoding the probabilities that u is associated with cluster Ctjβ at time tj ,

ftj (β;u, ti) =

∑
v∈C

tj
β

Π̂ti,tj (u,v)∑
β

∑
v∈C

tj
β

Π̂ti,tj (u,v)
(11)

It is easy to verify that. ∑
β

ftj (β;u, ti) = 1 ∀ u ∈ Ati

The cell fate vector ftj (β;u, ti) encodes probabilistic associations between the cell u and terminal
clusters at tj > ti indexed by β. The “cluster ancestry vector” at an earlier time ti of a cluster
C
tj
β at time tj > ti, denoted Γti(u;C

tj
β ), is defined as follows,

Γti(u;C
tj
β ) =

∑
v∈C

tj
β

Π̂ti,tj (u,v)∑
u∈Ati

∑
v∈C

tj
β

Π̂ti,tj (u,v)
(ti < tj) (12)
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In a similar vein, the “cluster descendant vector” at a later time to of a cluster Ctjβ at time
tj < to, denoted Γto(u;C

tj
β ), is defined as,

Γto(u;C
tj
β ) =

∑
v∈C

tj
β

Π̂tj ,to(v,w)∑
w∈Ato

∑
v∈C

tj
β

Π̂tj ,to(v,w)
(tj < to) (13)

Equations (12) and (13) can be used to compute the putative ancestral or descendent cells associ-
ated with a cluster Ctjβ at time tj .

Implementation details of WOT : RGC vectors from all ages were combined, median normalized and
log-transformed. 1761 HVGs were identified using the Gamma-Poisson model, and Waddington-OT
was run on this matrix as follows,

wot optimal_transport --matrix RGC_mat.mtx --cell_days cell_day.txt
--growth_iters 3 --epsilon 0.005 --out tmaps/RGC

Cell days were specified in cell_day.txt as 0, 1, 3, 6, 11 and 20 for E13, E14, E16, P0, P5 and
P56 respectively. We computed trajectories and fates for each age using the following command
illustrated for P0

wot trajectory --tmap tmaps/RGC --cell_set cell_sets.gmt --day 6
-out tmaps/traj_RGC_P0.txt

Fates were computed as,

wot fates --tmap tmaps/RGC --cell_set cell_sets.gmt --day 6
-out tmaps/fate_RGC_P0.txt

The above process was repeated for each age.

Multipotentiality of precursors: For each cell at ages E13− P5, we used equation (11) to compute
a terminal fate association fP56(β;u, t) (t ∈ {E13, E14, E16, P0, P5}) quantifying the probability
that it is a precursor of type β ∈ 1, . . . , 45. Note that fP56(β;u, t) is denoted as fβ for brevity in
the main text. We define,

P (u; t) =
1∑

β fP56(β;u, t)2
(14)

as the potential of precursor u at age t. Values of P range between 1 and 45, with lower values
indicating restriction of fate and higher values suggesting multipotentiality.

Network analysis of fate couplings

We define,

C(α, β; t) =

1
|At|

∑
u∈At

(
fP56(α;u, t)− fP56(α; t)

)(
fP56(β;u, t)− fP56(β; t)

)
√

1
|At|

∑
u∈At

(
fP56(α;u, t)− fP56(α; t)

)2
√

1
|At|

∑
v∈At

(
fP56(β;v, t)− fP56(β; t)

)2

(15)
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as the fate coupling between RGC types α and β at age t. Clearly, C(α, β; t) is simply the Pearson
correlation coefficient between fP56(α;u, t) and fP56(β;u, t), the probabilities that a cell u ∈ At is
a precursor of α or β precursor. In equation (15),

fP56(α; t) =
1

|At|
∑
u∈At

fP56(α;u, t) (16)

is the mean probability that a cell at age t is a precursor of type α. We computed C(α, β; t)
across all 990 pairs of RGC types at each immature age t ∈ {E13, E14, E16, P0, P5}. The values
C(α, β;E13) were used as edge weights to visualize the fate coupling network of RGC types using the
force-directed layout method (Fruchterman and Reingold, 1991) as implemented in the R package
igraph. The node layout were computed using C(α, β;E13) values. For other ages, the node layout
at E13 was retained but the edges were replotted based on C(α, β; t) values at the corresponding age.

We computed a null distribution of C(α, β; t) by randomizing the values of fP56(α;u, t) within each
cell u across types. Null values of C(α, β; t) rarely exceeded 0.1 and never exceeded 0.2, so only
edges with larger weights were visualized in Figure 5.

Decay of pairwise couplings

For each pair of RGC types α and β, we fitted a logistic equation to model the decay of pairwise
couplings as,

C(α, β; t) =
1

1 + exp(β0 + β1t)
(17)

The values of t corresponding to E13, E14, E16, P0 and P5 were t = 0, 1, 3, 6, 11, with C(α, β; t)
computed using equation (15). We also assumed that C(α, β; t) = 0 at t = 36, corresponding to
P30. Thus, six data-points were used to estimate two parameters for each of the 180 pairs of RGC
types that had non-zero values of C(α, β; t). The nls function from the R package stats was used
to estimate β0 and β1. The results are plotted in Fig. 5f.

Logistic modeling of specification and calculation of τsp

We hypothesized that the specification of a type β corresponds to the localization of its precursors
in transcriptomic space. The extent of localization for a RGC type β at across the time course was
calculated as follows. At each age t, we identified the set of precursor RGCs Prec(β; t) showing the
highest fate probability corresponding to type β,

Prec(β; t) = {u ∈ At | fP56(β;u, t) > fP56(α 6= β;u, t)} (18)

Next, we calculated how the precursors of β were distributed across clusters at time t. We computed
the occupancy fractions of precursor cells for type β across all cluster Ck, k = 1, 2, . . . , N(t) at a
particular time t (N(t) is the number of transcriptomically defined clusters at time t),

pk(β; t) =
#{cluster(u) = Ck ∀ u ∈ Prec(β; t)}

#{u ∈ Prec(β; t)}
(19)

The localization score for each type β at a given time t was defined as,

Localization(β; t) = 1−
∑N(t)

k=1
1

pk(β;t)2∑N(t)
k=1 1

(20)
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where the index k ranges over the number of clusters at time t. As defined Localization(β; t) is
restricted to be between 0 to 1, with higher values representing a greater specification. We used a
logistic model to approximate the localization of each type as,

Localization(β; t) =
exp(γ0 + γ1t)

1 + exp(γ0 + γ1t)
(21)

As in the previous section the nls function was used to estimate the logistic parameters γ0 and
γ1. We consider a type β as specific if it crosses the line y(t) = 0.95

(
1− 1/

∑N(t)
k=1 1

)
. Thus the

specification time for a type β is defined as,

τsp(β) = arg min
t

Localization(β; t) ≥ y(t) (22)

Note that as defined, τsp can be any time point in the interval (E13, P30) corresponding to t ∈ (0, 36).

Inference of laterality in RGC types

To identify putative ipsilateral and contralateral specified-RGC precursors at E13, we scored each
precursor RGC based on their expression of bonafide ipsilateral genes (Zic2, Zic1 and Igfbp5 ) and
bonafide contralateral genes (Isl2, Fgf12, Igf1 ) as in (Wang et al., 2016). We refer to these as
I-RGC and C-RGC scores. Putative I-RGCs were those cells that expressed the I-RGC score at 1.5
standard deviations higher than the mean across all cells, and those that express the C-RGC score
at 1.5 standard deviations lower than the mean across all cells. C-RGCs were defined analogously.
Many cells did not express either of these marker sets as shown in Fig. 7c. These are likely to be
RGCs that have not declared their laterality, or C-RGCs that are not defined by the expression of
Isl2, Fgf12, and Igf1.
WOT was then used to compute the descendants of E13 I-RGCs at all subsequent ages through P56
using the wot fates command introduced above. These descendants were used for two purposes.
First, we assessed the proportion of putative I-RGCs across types as in Fig. 7d. We also performed
a differential gene expression test between putative I-RGCs and the remaining RGCs at all ages, as
shown in Figs. 7e,f and Supplementary Figs. 8d,e.
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Figure 1, Transcriptomic profiling of single postmitotic RGCs during embryonic 
and postnatal development in mice. 
a. Sketch of a section of the mouse retina showing major cell classes - photoreceptors 
(PRs; rods and cones), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs), 
Müller glia (MGs) and retinal ganglion cells (RGCs). PRs reside in the outer nuclear layer 
(ONL), while BCs, HCs and most ACs reside in the inner nuclear layer (INL). RGCs and 
some ACs reside in the ganglion cell layer (GCL). Axons of RGCs project to higher visual 
areas via the optic nerve. 
b. Retinal section of the indicated ages labeled for the cell-cycle marker MKI67 (red) and 
the RGC marker RBPMS (green); nuclei are counterstained by the Hoeschst dye (blue). 
Micrographs are orientated as the schematic in panel a. 
c. Visualization of transcriptional diversity of 98,452 cells using Uniform Manifold 
Approximation and Projection (UMAP), a nonlinear dimensionality reduction algorithm 
that assigns proximal x-y coordinates to cells (dots) with similar transcriptional profiles61.  
d. Same as c, with cells colored by cell class, assigned based on transcriptional 
signatures displayed in panel e. RPC, retinal progenitor cells; Ant. Seg., anterior segment 
cells. 
e. Tracksplot showing expression patterns of cell-class specific marker genes (rows) 
across single cells (columns). Cells are grouped by class as in d. For each class, we 
randomly sampled 20% of total cells covering all immature time points (E13, E14, E16, 
P0, P5). For each gene, the scale on the y-axis (right) corresponds to normalized, log-
transformed transcript counts detected in each cell. 
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Figure 2. The number and discreteness of transcriptomic clusters of RGCs 
increases with age.  
a. Extreme models of RGC diversification. In one scenario (left) immature RGCs commit 
to one of the terminal types by the time of birth (i.e. mitotic exit) or shortly after. 
Alternatively (right), initially identical postmitotic RGC precursors acquire distinct 
molecular identities in a gradual process of restriction.   
b-g. Visualization of transcriptomic diversity of immature RGCs at E13 (b), E14 (c), E16 
(d), P0 (e), P5 (f) and P56 (g) using UMAP. Cells are colored by their cluster identity, 
determined independently using dimensionality reduction and graph clustering 
(Methods). Clusters are numbered based on decreasing size at each age. Data for adults 
(P56) are replotted from ref. 10. In that study 45 transcriptomic types were identified via 
unsupervised approaches, one of which was mapped to 2 known functional types by 
supervised approaches. We do not distinguish them in this study.   
h. Transcriptional diversity of RGCs as measured by the Rao diversity index (y-axis) 
increases with age (x-axis). The trend is insensitive to the number of genes used to 
compute inter-cluster distance (colors). See Methods for details underlying the 
calculation.    
i. Transcriptomic distinctions between RGC clusters become sharper with age as shown 
by decreasing average per-cluster error of a multiclass-classifier with age. Gradient 
boosted decision trees62 were trained on a subset of the data, and applied on held out 
samples to determine the test error.   
j. RGC clusters also become better separated in the UMAP embedding, as shown by 
decreasing values of the average relative cluster diameter with age. 
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Figure 3. Incompletely specified temporal relationships among RGC clusters. 
a.  Top: Specified (left) and non-specified (right) modes of diversification. Nodes denote 
transcriptomic clusters of immature RGCs, and arrows denote fate relationships. Bottom: 
Confusion matrices depicting transcriptomic correspondence between late and early 
clusters expected for the two modes. Circles and colors indicate the percentage of a given 
late cluster (row) assigned to a corresponding early cluster (column) by transcriptome-
based classifier trained on early clusters. The number of late and early clusters have been 
set to eight and four for illustration purposes.  
b. Barplot showing values of the normalized conditional entropy (NCE) for each age 
calculated using the transcriptional cluster IDs and the Xgboost-assigned cluster IDs 
corresponding to the next age or to P56 (E.g. for E13, the NCE was calculated across 
E13 RGCs by comparing their transcriptional cluster ID with assigned E14 cluster IDs 
based on a classifier trained on the E14 data). Lower values indicate specific mappings.  
c. Same as b, but plotting values of the adjusted Rand Index (ARI), where larger values 
correspond to higher specificity. 
d-h. Confusion matrices (representation as in a), showing transcriptomic correspondence 
between consecutive ages: E14-E13 (d), E16-E14 (e), P0-E16 (f), P5-P0 (g), P56-P5 (h). 
In each case, the classifier was trained on the late time point and applied to the early time 
point. Rows sum to 100%.  
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Figure 4. Multipotential fate associations between immature RGCs and terminal 
types inferred via Optimal Transport 
a. Extreme models of diversification at single-cell resolution. Multipotential fate 
associations in a transcriptionally defined cluster (ellipse) could arise from a mixture of 
unipotential RGCs (left) or from multipotential RGCs (right). 
b. Distributions of potential P across immature RGCs by age showing that restriction 
increases with age.  
c. Inter- and intra-cluster variation of potential by age. At each age, variation in the 
potential values are shown for each transcriptomically defined cluster at that age. Dots 
denote the average potential and dotted lines depict the standard deviation for cells within 
each cluster.   
d-h. UMAP projections of E13 (d), E14 (e), E16 (f), P0 (g) and P5 (h) RGCs as in Fig. 2, 
but with individual cells colored by their inferred potential. Potential of all RGCs at P56 
=1. The colorbar on the lower right is common to all panels, and values are thresholded 
at P = 20. 
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Figure 5. Fate decoupling of RGC types 
a. Force-directed layout visualization of fate couplings at E13, with nodes representing 
RGC types (numbered as in Tran, 2019) and the thickness of edges representing values 
of C(l,m;E13). Edges with C(l,m; E13) < 0.2 are not shown. Number of edges with C(l,m; 
E13) > 0.2 are indicated on top.  
b-e. Visualization of fate couplings at E14 (B), E16 (C), P0 (D) and P5 (E). The positions 
of the nodes are maintained as in panel a, but the edges are redrawn based on values of 
C(l,m;age) at each age. As in panel a, we only show edges C(l,m; age) > 0.2. 
f. The decay of pairwise fate couplings (y-axis) with age (x-axis). Each line corresponds 
shows the temporal decay of C(l,m) for RGC pair l and m estimated via a logistic model 
(Methods). For each pair, couplings at each age were fit to a model 𝐶(𝑙, 𝑚; 𝑎𝑔𝑒) = 1/(1 +
𝑒/01/2∗456) with 𝛽8, 𝛽9 representing fitted parameters. The fitting was performed using 
data for ages E13, E14, E16, P0 and P5. The shaded portions correspond to the periods 
E8-E13 and P5- represent extrapolations of the model. Black lines highlight the decay of 
all non-zero pairwise couplings for RGC type C8 as an example. 
g. Schematic showing logistic modeling to estimate specification time 𝜏;< for a particular 
type. The y-axis is a measure of the extent to which precursors biased towards the type 
are present in a single transcriptomically defined cluster (i.e. localization, see Methods 
for details). Localization is defined as a numerical value in the range (0, 1) with higher 
values consistent with increasing specification. Individual triangles represent the 
localization values computed using WOT inferred fate couplings at each age, while the 
curve represents the fit using the logistic model. Dotted line shows the minimum threshold 
a type to be specified at each age. Its curved shape arises due to the increase in the 
number of clusters with age.  
h. Localization curves (as in panel g) for the 38 RGC types showing the range of inferred 
specification times. 7 low frequency types have been excluded from display (see 
Supplementary Fig. 6d).  
i. Scatter plot showing poor correlation between adult frequency of a type (from ref. 9) 
and its predicated specification time (calculated from H). 
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Figure 6. Temporal dynamics of RGC subsets expressing specific TFs 
a. E13 network graph of fate couplings from Fig. 5a, with RGC types colored based on 
their selective expression of TFs at P56. Asterisks denote 3/45 types that express more 
than 1 TF (also see Supplementary Fig. 7a).  
b.  Box-and-whisker plots showing that pairwise fate couplings are higher between types 
within the same TF subclass than between types in different TF subclasses at all 
immature ages. Black horizontal line, median; bars, interquartile range; vertical lines, 1st 
and 99th percentile; dots, outliers. Stars indicate significant p-values based on a two-sided 
t-test (****, p < 10-7; ***, p < 10-5; **, p < 10-2).  
c.  Eomes+ types. Top: UMAP representation of E13 RGCs with cells colored based on 
their cumulative fate association towards the 7 Eomes+ types. Bottom: UMAP 
representation of P5 RGCs with cells colored based on their cumulative fate association 
towards the 7 Eomes+ types. The value corresponding to the color of each cell (colorbar, 
right) can be interpreted as the probability of commitment towards the corresponding 
subclass.  
d.  Same as c for Mafb+ types 
e.  Same as c for Neurod2+ types 
f-h. Localization curves (as in Fig. 5g) for Eomes+ types (f), Mafb+ types (g) and 
Neurod2+ types (h). The mean inferred specification time 𝜏;<	for each group is indicated 
on top of each panel. 
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Figure 7. Transcriptomic identification of ipsilaterally projecting RGCs 
a. Zic2, an I-RGC marker and Isl2, a C-RGC marker, are expressed in a mutually 
exclusive pattern at E13 (left), E14 (middle) and E16 (right). Zic2 is undetectable after 
E16 (Supplementary Fig. 8a). Cells are colored based on a bivariate color scale 
representing co-expression of two markers (colorbar, right). 
b. Zic2 and Igfbp5, two I-RGC markers, are co-expressed at E13 (left) and E14 (middle). 
Representation as in panel a. 
c. Scatter-plot of gene signatures used to identify I-RGCs (y-axis) and C-RGCs (x-axis) 
at E13 are negatively correlated (Pearson R = -0.61). Each dot corresponds to a cell, the 
color represents the number of cells located at a particular (x,y) location (see colorbar, 
right). 
d. Barplot showing % of putative I-RGCs (y-axis) within each of the 45 adult RGC types, 
estimated by computing the descendants of E13 I-RGCs using WOT. RGC types are 
arranged along the x-axis based on their membership of TF-groups shown in Fig. 6a 
(annotation matrix, bottom).  
e. Volcano plot showing DE genes (MAST test, p < 10-6) between predicted I-RGCs and 
C-RGCs at E13. The x- and the y-axes show the fold-change and the p-value in log2- and 
log10- units, respectively. Dots represent genes, with red and blue dots highlighting I- and 
C-RGC enriched genes respectively at fold-change > 1.5 and Bonferroni corrected p-
value < 5x10-5. The two vertical bars correspond to a fold-change of 1.5 in either direction. 
Select I-RGC and C-RGC enriched genes are labeled. 
f. Same as panel e, for E14.      
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SUPPLEMENTARY FIGURES AND LEGENDS 
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Supplementary Figure 1. Separation of major transcriptomic groups and 
assessment of immature RGCs at E13-P5. 
a. Retinal sections stained with L1CAM (red), which was used to enrich for RGCs at early 
stages, and the pan-RGC marker RBPMS, (green) at E13, E14, E16 and P0. Nuclei are 
counterstained by the Hoeschst dye (blue). 
b.  Relative proportions (y-axis) of major cell classes shown in Fig. 1c-e at each 
combination of age and enrichment method. Both anti-Thy1 and anti-L1cam were used 
to enrich RGCs at E13, E14, E16 and P0, but only anti-Thy1 was used at P5, because 
L1cam becomes localized to axons postnatally. AC, Amacrine Cells; RPC, retinal 
progenitor cells. 
c. Box and whisker plots show gene expression levels of key markers by RGCs as a 
function of age and enrichment method. Markers shown shown are two pan-RGC 
markers, Rbpms, Nefl, and the two cell-surface proteins used for enrichment, Thy1 and 
L1cam. Note that Thy1 expression is poor at E13, consistent with low RGC yield in anti-
Thy1 enriched cells (panel B).  Black horizontal line, median; bars, interquartile range; 
vertical lines, range; dots, outliers. 
d. Dotplot showing genes (columns) that are selectively expressed in RGCs and RPCs. 
The size of each circle is proportional to the percentage of cells expressing the gene, and 
the color depicts the average log-normalized expression.     
e. Co-embedding analysis of E14, E16 and P0 data collected in this study with whole 
retina single-cell transcriptomes in independent studies: E14, E16 and P0 data from31 and 
E15.5 data from43. Cells (points) are visualized in UMAP and colored by study of origin.  
f. Same as e, with cells colored by the expression level of Nefl, an RGC marker. This 
shows the higher enrichment of RGCs in our study compared to31 and43. 
g. Same as d, with cells colored by expression level of Fgf15, an RPC marker. 
h. Relative proportions of major cell classes across different datasets analyzed in panel 
e separated by age. T, this study. 
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Supplementary Figure 2. Transcriptomic diversity of immature RGCs by age. 
a-c. UMAP embedding for RGCs at E14 (a, same as Fig. 2c), E16 (b, same as Fig. 2d) 
and P0 (c, same as Fig. 2e) with cells colored by enrichment method showing comparable 
transcriptomic diversity of immature RGCs enriched by L1cam or Thy1. 
d. Simpson and Shannon diversity indices (see Methods) associated with clustering 
decrease and increase with age respectively, consistent with increasing transcriptomic 
diversity.  
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Supplementary Figure 3. Temporal correspondences between transcriptomic 
clusters evaluated using supervised classification. 
a-d. Confusion matrices, showing transcriptomic correspondence between adult RGC 
types at P56 (rows) and immature RGC clusters (columns) at ages E13 (a), E14 (b), E16 
(c) and P0 (d). In each case, immature RGCs were assigned adult labels using an 
Xgboost classifier trained on adult RGCs. The P56 to P5 mapping is shown in Fig. 2h.  
e. Line plots showing occupancy fraction (OF) of mapping of an early cluster to cluster 
IDs at later ages. OF values quantifies the specificity of mapping of an early cluster to late 
clusters, with lower values denoting higher specificity. The average occupancy fraction 
across clusters decreases steadily with age consistent with the decrease and increase in 
NCE and ARI respectively (Figs. 3b,c). Error bars indicate standard deviation computed 
across clusters. Also, as expected, the occupancy fraction values are lower for mapping 
to adjacent time points than to P56.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 4. Variations in WOT inferred temporal couplings and tests 
across variations in hyperparameters. 
a. Variations in WOT inferred temporal couplings (𝛱?@) at the level of cells and clusters to 
changes in the set of highly variable genes (HVGs) used for computing transport maps. 
Four sets of features were tested corresponding to the top 800, 1100, 1400 and 1800 
HVGs based on our previously described Poisson-Gamma model (Pandey et al., 2018). 
Using these sets, we inferred four corresponding transport maps at each of the 5 age 
pairs E13-E14, E14-E16, E16-P0, P0-P5 and P5-P56. The entropic regularization 
hyperparameter 𝜖 (see panels b, c) was held constant at a value 2-7 in these tests. At 
each age pair, we computed the Pearson correlation coefficient (PCC) between estimated 
temporal couplings for every older cell (column of the transport map Π) across each 
pairwise combination of the four transport maps, towards a total of 6 combinations. These 
are indicated as red dots and lines (mean ± SD). We then grouped (summed) the rows 
of the transport map by transcriptomic cluster at the younger age, such that each element 
of the new matrix indicates cell (column)-cluster (row) couplings. The PCC of these 
couplings were computed for each older cell (column) within each pairwise combination 
of the four transport maps and are indicated as green dots and lines (mean ± SD). Finally, 
we grouped (summed) both the rows and columns of the transport map by transcriptomic 
cluster at either age to obtain a matrix of cluster-cluster couplings. The PCC values of 
these couplings were computed for each older cluster within each pairwise combination 
of the four transport maps and are indicated as blue dots and lines (mean ± SD).  We 
find that the cell-cell couplings increase in robustness at later ages, but the cell-cluster 
and cluster-cluster couplings are quite robust (correlation > 0.6).  
b. Variations in WOT inferred temporal couplings at the level of cells and clusters as in 
panel A, but to changes in the entropic regularization 𝜖. Six values were used -  (2-8 , 2-7 
, 2-6, 2-5, 2-4, 2-3) with increasing values corresponding to more transport maps with 
decreasingly localized (or increasingly distributed) couplings. At each age pair, 6 transport 
maps are computed and PCC values for cell-cell, cell-cluster and cluster-cluster couplings 
are computed as in panel A for each of 15 transport map pairs. Here too, the cluster-
cluster and cell-cluster couplings show higher stability, although at later stages higher 
values of 𝜖 exhibit loss of stability even at the cluster-cluster level (see panel c). 
c. Heatmap showing cluster-cluster PCC values for P5-P56 transport maps inferred using 
different values of the entropic regularization parameter, epsilon (rows and columns). 
Loss of stability occurs at higher values of the entropic regularization, consistent with 
panel B. Based on this we used epsilon = 2-7  to calculate results shown in Fig. 4. 
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Supplementary Figure 5. Temporal correspondences between transcriptomic 
clusters evaluated using Waddington Optimal Transport, related to Figure 4 
a-e. Average temporal couplings at the level of clusters. Panels correspond to the pairs 
E14-E13 (a), E16-E14 (b), P0-E16 (c), P5-P0 (d), P56-P5 (e), respectively. In each case, 
the WOT inferred transport map was grouped along rows and columns based on 
transcriptomic cluster, and the elements were summed within each group. The resulting 
matrix was normalized such that each row sums to 100%. These matrices strongly 
resemble those in Figs. 3d-h, as confirmed by the high values of the Pearson correlation 
coefficient (top, all p≥0.92). 
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Supplementary Figure 6. Fate decoupling and temporal specification of RGC types. 
a-c. Examples of fate decoupling. Panels from left to right correspond to ages E13-P5 
with precursor RGCs shown on a reduced dimensional UMAP representation as in Figs. 
2c-g. Each RGC is colored using a biaxial color scale (legend) based on its predicted fate 
values. C12 and C22 are transcriptomically distinct as early as E13 (a).  C19 and C20 
exhibit high fate coupling at all embryonic ages and are only decoupled at P5 (b). C21 
and C34 decouple around E16 (c). 
d. Same as Fig. 6h showing specification curves for RGC types, but in this case each 
curve is colored based on adult frequency (colorbar, right). The 7 curves marked by 
asterisks correspond to late-specified types. As can be seen from their colors, they are 
also among the types with the lowest frequency (<0.3%), which may result in the dropout 
of the corresponding precursors because of sampling fluctuations. Such dropouts at 
earlier time points give the appearance of late specification. Because of this issue, we 
exclude them from our analysis.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 7. Transcription factor (TF) based subgroups. 
a. Dotplot showing mutually exclusive patterns of expression of TFs that mark groups of 
RGC types. In addition to the 8 TFs shown in Fig. 6a, we highlight Zic1, which selectively 
labels C6. Selectively expressed TFs could not be identified for 4 types (C1, C2, C11, 
and C15).  
b-e. Localization curves (as in Fig. 5g) for Tbr1+ types (b), Tfap2d+ types (c), Foxp2+ 
types (d) and Bnc2+ types (e), Note that the “low frequency” types labeled in 
Supplementary Fig. 6d are not shown. The mean specification time 𝜏;< for each group 
is shown above the graphs. 
f. Correlation of fate coupling at E13 with transcriptomic correlation at P56. 
g. Same as Fig. 6a, with nodes corresponding to subclasses defined in Tran et al., 
2019, which includes ipRGCs, alpha-RGCs and T5-RGCs. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.21.465277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 8. Transcriptomic analysis of RGC laterality. 
a. RGCs at E13, E14, E16, P0, and P5 colored by their expression of Zic2, an I-RGC 
marker. Zic2 is expressed in a localized fashion until E16 and becomes undetectable 
beyond this age. 
b. Zic2, an I-RGC marker and Igf1, a C-RGC marker, are expressed in mutually exclusive 
patterns at E13-E16.  
c. Zic2 and Zic1, two I-RGC markers, are co-expressed in subsets of RGCs at E13-E16.  
d. Volcano plot showing DE genes (MAST test, p < 10-6) between predicted I-RGCs and 
C-RGCs at E16. The x- and the y-axes show the fold-change and the p-value in log2- and 
log10- units, respectively. Dots represent genes, with red and dots highlighting I- and C-
RGC enriched genes respectively at fold-change > 1.5 and Bonferroni corrected p-value 
< 5e-5. The two vertical bars correspond to a fold-change of 1.5 in either direction.  
e. Same as d, for P0 
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