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Abstract (150 words)

The genesis of broad neuronal classes from multipotential neural progenitor cells has
been extensively studied, but less is known about the diversification of a single neuronal
class into multiple types. We used single-cell RNA-seq to study how newly-born
(postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete
types. Computational analysis provides evidence that RGC type identity is not specified
at mitotic exit, but acquired by gradual, asynchronous fate restriction of postmitotic
multipotential precursors. Some types are not identifiable until a week after they are
generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to
the rest of the brain before their type identity has been determined. Optimal transport
inference identifies groups of RGC precursors with largely non-overlapping fates,
distinguished by selectively expressed transcription factors that could act as fate
determinants. Our study provides a framework for investigating the molecular

diversification of discrete types within a neuronal class.

Keywords: development, diversification, retina, retinal ganglion cell, single-cell RNA-seq,

optimal transport
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73 Introduction
74
75 A central question in developmental neurobiology is how the brain’s diverse neuronal

76  types arise from multipotential progenitors (Lodato & Arlotta, 2015; McConnell, 1991;
77 Wamsley & Fishell, 2017). The vertebrate retina has been a valuable model for
78 addressing this question: it is about as complicated as any other region of the brain, but
79 has several features that facilitate mechanistic analysis (Dowling, 2012). The retina
80 contains five classes of neurons — photoreceptors that sense light, three interneuronal
81 classes (horizontal, bipolar and amacrine cells) that process visual information, and
82 retinal ganglion cells (RGCs) that pass the information to the rest of the brain through the
83  optic nerve (Fig. 1a) (Masland, 2012). These classes can be divided into numerous types,
84 ~130 in mouse and chick, each of which has characteristic morphological, physiological
85 and molecular properties, and plays distinct roles in information processing (Baden et al.,
86 2016; Franke et al., 2017; Goetz et al., 2021; Macosko et al., 2015; Rheaume et al., 2018;
87  Shekhar etal., 2016; Shekhar & Sanes, 2021; Tran et al., 2019; Yamagata, Yan, & Sanes,
88 2021; Yan et al., 2020). Remarkably, nearly all types are distributed across the entire
89 retina (Kay, Chu, & Sanes, 2012; Keeley, Eglen, & Reese, 2020; Rockhill, Euler, &
90 Masland, 2000), so morphogen gradients, which play a critical role in other parts of the
91 central nervous system (e.g. (Sagner & Briscoe, 2019)), cannot provide an explanation
92 for retinal neuronal diversification (Marquardt & Gruss, 2002).
93
94  Seminal studies have provided deep insights into how retinal classes arise(Bassett &
95 Wallace, 2012; Cepko, 2014). First, lineage tracing in rodents and frogs showed that
96 single retinal progenitor cells (RPCs) can give rise to neurons of all classes as well as
97 (glia, and are therefore multipotential (Holt, Bertsch, Ellis, & Harris, 1988; Turner & Cepko,
98 1987; Turner, Snyder, & Cepko, 1990; Wetts & Fraser, 1988). Second, the competence
99 of multipotential RPCs to generate cells of particular classes changes over time,
100  accounting for their sequential (but overlapping) birth windows (Cepko, 2014; Livesey &
101 Cepko, 2001). Such segregation of birth windows is a hallmark of many neuronal systems
102 (Holguera & Desplan, 2018), and is believed to arise from the differential temporal

103  regulation of gene expression in RPCs (Blackshaw et al., 2004; Brown, Patel, Brzezinski,
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104 & Glaser, 2001; S. Chen et al., 1997; Clark et al., 2019; Trimarchi, Stadler, & Cepko,
105  2008). Third, competence is probabilistic rather than deterministic, with stochastic factors
106  accounting for variations in the distribution of cell classes generated by individual RPCs
107  (Boije, MacDonald, & Harris, 2014; Gomes et al., 2011; Johnston & Desplan, 2010).

108

109 In contrast to these well-established tenets of neuronal class generation, we know far less
110 about how immature postmitotic neurons (which we call neuronal precursors here)
111 committed to a specific class identity diversify into distinct types. We address this issue
112  here, focusing on RGCs. All RGCs are similar in many respects: for example, they all
113  elaborate dendrites that receive input from amacrine and bipolar interneurons, send
114  axons through the optic nerve, and use glutamate as a neurotransmitter (Sanes &
115 Masland, 2015). However, they differ in molecular, morphological and physiological
116  details, which have led to their division into ~45 distinct types in mice (Baden et al., 2016;
117  Bae et al., 2018; Goetz et al., 2021; Rheaume et al., 2018; Tran et al., 2019). Most of
118 these types appear to be feature detectors that collectively transmit a diverse set of highly
119  processed images of the visual world to the rest of the brain (Baden, Euler, & Berens,
120 2020; Sanes & Masland, 2015). Several genes have been implicated in maturation of a
121 few mouse RGC types (Clark et al., 2019; Kiyama et al., 2019; Liu et al., 2018; Lo Giudice,
122  Leleu, La Manno, & Fabre, 2019; Lyu & Mu, 2021; Peng et al., 2017; Sajgo et al., 2017),
123  but a comprehensive investigation of RGC diversification has been lacking.

124

125 To gain insight into how and when adult RGC types emerge, we used high-throughput
126  single-cell RNA-seq (scRNA-seq) to profile RGC precursors during embryonic and
127  postnatal life in mice. We find that the number and distinctiveness of molecularly defined
128  groups of precursors increases with developmental age, implying that types arise by a
129  gradual process rather than from ~45 committed precursor types. Using statistical
130 inference approaches, we identify fate associations among immature RGCs as
131  transcriptomically distinct types emerge. These analyses suggest a model in which types
132 arise from multipotential precursors by a process of restriction that we term fate
133  decoupling. The decoupling is gradual and asynchronous, resulting in different types

134  emerging at different times. We also use markers of RGCs that project to contralateral or
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135 ipsilateral retinorecipient areas to subdivide each type by its projection pattern, leading to
136  the conclusion that laterality may be specified prior to type identity is fixed. Together, our
137  results provide both a model of RGC diversification and a computational framework that
138 can be applied generally to analyze the diversification of closely related neuronal types
139  within a class.

140

141 Results
142

143  Transcriptomic atlas of developing mouse RGCs

144  Mouse RGCs are born between approximately embryonic days (E) 11 and 17 with new-
145  born RGCs exiting the mitotic cycle near the apical margin, then migrating basally to form
146  the ganglion cell layer (Drager, 1985; Marcucci, Soares, & Mason, 2019; Voinescu, Kay,
147 & Sanes, 2009) (Fig. 1b). Reported birthdates differ among publications, and are
148 complicated by naturally occurring cell death and the central-peripheral developmental
149  gradient, but a detailed analysis concludes that >95% of RGCs in adult mouse retina are
150 born after E12.8 and >85% before E16 (Farah & Easter, 2005). Shortly after they are
151  born, RGCs extend axons through the optic nerve, with some reaching retinorecipient
152  areas by E15 (Godement, Salaun, & Imbert, 1984; Osterhout et al., 2011) and forming
153  diverse projection patterns (Martersteck et al., 2017). During early postnatal life, they
154  extend dendrites apically into the inner plexiform layer of the retina, receiving synapses
155  from amacrine cells by postnatal day (P)4 and bipolar cells a few days later (Kim, Zhang,
156  Meister, & Sanes, 2010; Lefebvre, Sanes, & Kay, 2015). Light responses are detected in
157 RGCs by P10 but image-forming vision does not begin until eye-opening, around P14
158  (Hooks & Chen, 2020).

159

160 To determine when and how RGCs diversify, we used droplet-based scRNA-seq
161  (Macosko et al., 2015; Zheng et al., 2017) to profile them at 5 stages: E13 and E14 (during
162 the period of peak RGC genesis), E16 (by which time RGCs axons are reaching target
163  retinorecipient areas), PO (as dendrite elaboration begins), and P5 (shortly after RGCs
164  begin to receive synapses). As RGCs comprise 1% of retinal cells (Jeon, Strettoi, &

165 Masland, 1998), we enriched them with antibodies to two RGC-selective cell-surface


https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465277; this version posted October 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

166 markers, Thy1/CD90 (Barres, Silverstein, Corey, & Chun, 1988) and L1cam
167  (Demyanenko & Maness, 2003) (Supplementary Fig. 1a).

168

169  We obtained a total of 98,452 single-cell transcriptomes with acceptable quality metrics
170  (Methods). Of these, we identified 75,115 (76%) as RGCs based on their expression of
171 canonical RGC markers including Rbpms (an RNA-binding protein) and Sic717a6 (the
172  vesicular glutamate transporter VGLUT2) (Figs. 1c-e, Supplementary Figs. 1b-c). Non-
173 RGCs included amacrine cells (Tfap2a+Tfap2b+), cone photoreceptors (Otx2+Crx+),
174  microglia (P2ry12+C1qa+), anterior segment cells (Mgp+Bgn+), and retinal progenitor
175 cells (RPCs). Anterior segment cells were found only in E13 and E14 samples because
176  whole eyes were dissociated at these stages. RPCs formed a continuum, containing both
177  “primary” RPCs expressing cell-cycle related genes (e.g. Mki67, Ccnd5, Birc5) and
178  previously described RPC regulators (e.g. Sfrp2, Vsx2 and Fgf15), and “neurogenic”
179  RPCs expressing proneural transcription factors (e.g. Hes6, Ascl1, Neurog2)(Clark et al.,
180 2019). Importantly, these markers were not expressed in cells annotated as RGCs
181 (Supplementary Fig. 1d). These stringent criteria ensured that our dataset comprised
182  postmitotic committed RGCs, allowing us to focus on their diversification and maturation.
183

184  Overall, we recovered ~5,900 to 18,500 RGCs at each of the five time points. Of the two
185  surface markers used for enriching RGCs, Thy1 was effective at later stages as shown
186  previously (Kay et al., 2011; Rheaume et al., 2018; Tran et al., 2019), whereas L1cam
187  expression was more selective at E13 and E14 (Supplementary Figs. 1b,c). To evaluate
188 the effectiveness of our enrichment strategy at early stages, we compared our data with
189  two recent studies in which developing retinal cells were profiled using scRNA-seq without
190 any enrichment (Clark et al., 2019; Lo Giudice et al., 2019). A joint analysis of these
191  datasets at embryonic time points showed consistency in the transcriptional signatures of
192  major cell groups without discernible biases (Supplementary Figs. 1e-g). However, our
193  enrichment protocols increased the fractional yield of RGCs by >3X at E14 and E16 and
194 by >100X at PO (Supplementary Fig. 1h), which enabled us to resolve heterogeneity

195  within this class at immature stages. For the analysis that follows, we compared precursor
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196 RGCs (E13-P5) to a previously described dataset of 35,699 mature RGCs at P56(Tran
197 etal., 2019).

Figure 1
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199 Figure 1, Transcriptomic profiling of single postmitotic RGCs during embryonic and
200 postnatal development in mice.

201  a. Sketch of a section of the mouse retina showing major cell classes - photoreceptors (PRs; rods
202  and cones), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs), Mller glia (MGs)
203 and retinal ganglion cells (RGCs). PRs reside in the outer nuclear layer (ONL), while BCs, HCs
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204  and most ACs reside in the inner nuclear layer (INL). RGCs and some ACs reside in the ganglion
205 cell layer (GCL). Axons of RGCs project to higher visual areas via the optic nerve.

206 b. Retinal section of the indicated ages labeled for the cell-cycle marker MKI67 (red) and the RGC
207 marker RBPMS (green); nuclei are counterstained by the Hoeschst dye (blue). Micrographs are
208 orientated as the schematic in panel a.

209 c. Visualization of transcriptional diversity of 98,452 cells using Uniform Manifold Approximation
210  and Projection (UMAP), a nonlinear dimensionality reduction algorithm that assigns proximal x-y
211 coordinates to cells (dots) with similar transcriptional profiles(Becht et al., 2019).

212 d. Same as c, with cells colored by cell class, assigned based on transcriptional signatures
213  displayed in panel e. RPC, retinal progenitor cells; Ant. Seg., anterior segment cells.

214  e. Tracksplot showing expression patterns of cell-class specific marker genes (rows) across single
215  cells (columns). Cells are grouped by class as in d. For each class, we randomly sampled 20%
216  of total cells covering all immature time points (E13, E14, E16, PO, P5). For each gene, the scale
217  on the y-axis (right) corresponds to normalized, log-transformed transcript counts detected in
218  each cell.

219

220 Immature RGCs diversify postmitotically

221 One can envision two extreme models of RGC diversification. In one, RGC type would be
222  specified at or before mitotic exit, with each type arising from a distinct set of committed
223  precursors. At the other extreme, all precursor RGCs would be identical when they exit
224  mitosis, and gradually acquire distinct identities as they mature (Fig. 2a). Intermediate
225 models could involve multiple groups of precursor RGCs, each biased towards a distinct
226  set of terminal types.

227

228 To distinguish among these alternatives, we analyzed the transcriptomic diversity of
229 RGCs at each developmental stage using the same dimensionality reduction and graph
230 clustering approaches devised for analysis of adult RGCs (Tran et al., 2019) (see
231 Methods). This analysis led to three main results.

232

233  First, RGCs were already heterogeneous soon after mitotic exit. There were 10
234  transcriptionally defined precursor clusters at E13 (Fig. 2b), before or at the peak time of
235 RGC birth. The number of discrete clusters increased only slightly by E14 (from 10 to 12;
236 Fig. 2c), arguing against a model in which the number of precursor types extrapolated
237 back to one. No single cluster dominated the frequency distribution at either time, as
238 would be expected if a totipotent precursor RGC were to exist shortly after terminal
239  mitosis.

240
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241 Second, the number of transcriptionally defined clusters increased gradually, between
242  E13 and adulthood, reaching 45 only after P5 (Figs. 2b-g). Several arguments indicate
243  that this increase is biologically significant rather than being an artifact of the data or
244  computational analysis. (1) We used the same clustering procedure at all ages. (2) The
245 qualitative trends were robust against variations in clustering parameters. (3) All
246  embryonic clusters contained cells isolated with both cell markers, L1cam and Thy1
247  (Supplementary Figs. 2a-c), indicating that lower cluster numbers at early stages did
248  not result from biased collection methods. (4) The increase in the number of effective
249  molecular types was robust as demonstrated by three diversity indices - Rao, Simpson
250 and Shannon - all of which buffer against artificial inflation of diversity due to small
251  clusters (Fig. 2h, Supplementary Fig. 2d; see Methods). (5) There was no systematic
252  dependence of the number of clusters on the number of cells. For example, we identified
253 12 clusters from 17,100 cells at E14 and 38 clusters from 17,386 cells at P5.

254

255  Third, the transcriptomic variation became increasingly discrete with age. We quantified
256 this increase in inter-cluster separation by calculating (1) the average cross-validation
257  error of a multi-class classifier, and (2) the ratio of mean cluster diameter to mean inter-
258 cluster distance in the low dimensional embedding (Methods). Both metrics decrease in
259 numerical value as the clusters are more-well defined. From these trends, we conclude
260 that the boundaries between RGC clusters become sharper as development proceeds
261  (Figs. 2i,j).

262

263  Taken together, our results show that transcriptomic clusters of RGCs increase in number
264  and distinctiveness over time, making it unlikely that RGC type identity is fully specified
265 at the progenitor stage.

266

267

268
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Figure 2. The number and discreteness of transcriptomic clusters of RGCs increases with

age.

a. Extreme models of RGC diversification. In one scenario (left) immature RGCs commit to one
of the terminal types by the time of birth (i.e. mitotic exit) or shortly after. Alternatively (right),
initially identical postmitotic RGC precursors acquire distinct molecular identities in a gradual
process of restriction.

10
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276  b-g. Visualization of transcriptomic diversity of immature RGCs at E13 (b), E14 (c), E16 (d), PO
277 (e), P5 (f) and P56 (g) using UMAP. Cells are colored by their cluster identity, determined
278 independently using dimensionality reduction and graph clustering (Methods). Clusters are
279 numbered based on decreasing size at each age. Data for adults (P56) are replotted from (Tran
280 etal., 2019). In that study 45 transcriptomic types were identified via unsupervised approaches,
281  one of which was mapped to 2 known functional types by supervised approaches. We do not
282  distinguish them in this study.

283  h. Transcriptional diversity of RGCs as measured by the Rao diversity index (y-axis) increases
284  with age (x-axis). The trend is insensitive to the number of genes used to compute inter-cluster
285 distance (colors). See Methods for details underlying the calculation.

286 i. Transcriptomic distinctions between RGC clusters become sharper with age as shown by
287  decreasing average per-cluster error of a multiclass-classifier with age. Gradient boosted decision
288 trees(T. Chen & Guestrin, 2016) were trained on a subset of the data, and applied on held out
289  samples to determine the test error.

290 j. RGC clusters also become better separated in the UMAP embedding, as shown by decreasing
291  values of the average relative cluster diameter with age.

292

293  Temporal relationships among immature RGC clusters

294  We next investigated the temporal relationships among precursor RGC clusters identified
295 at different ages. We again consider two extreme models. In a “specified” model, each
296 terminal type arises from a single cluster at every preceding developmental stage (Fig.
297  3a, left). In this model, distinct transcriptomic states among precursor RGCs correspond
298 to distinct groups of fates. At the other extreme, distinct clusters would share similar sets
299 of fates (Fig. 3a, right). In an intermediate model, fates of precursor clusters would exhibit

300 partial overlap.
301
302 As a first step in discriminating among these scenarios, we used transcriptome-wide

303 correspondence among clusters as a proxy for fate association. We identified mappings
304 Dbetween clusters across each pair of consecutive developmental stages (E13-E14, E14-
305 E16, E16-P0, PO-P5, and P5-P56) using gradient boosted trees (T. Chen & Guestrin,
306 2016), a supervised classification approach (Methods). In each case, a classifier trained
307 on transcriptional clusters at the older stage was used to assign older cluster labels to
308 cells at the younger stage (e.g. E16 labels assigned to E14 RGCs). Patterns expected for
309 the extreme models are schematized as “confusion matrices’(Stehman, 1997) in the

310 lower panels of Fig. 3a.
311
312  Correspondence fell between the two extremes (Figs. 3d-h and Supplementary Figs.

313 3a-d). We quantified the extent of correspondence using two metrics: Normalized

11
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314  Conditional Entropy (NCE) and the Adjusted Rand Index (ARI) (Methods). Both NCE and
315 ARl are restricted to the range (0,1), with lower values of NCE and higher values of ARI
316  consistent with a specified mode of diversification. Both metrics exhibited an increased
317  degree of specificity with age (Figs. 3b,c). Since NCE and ARI provide a single measure
318  of specificity for the entire datasets being compared, we also computed a “local metric”,
319 the Occupancy Fraction, which quantifies mapping specificity for each cluster (Methods).
320 Results based on this metric were consistent with increased specificity of correspondence
321 with age (Supplementary Fig. 3e). Overall, this analysis of transcriptomic
322 correspondence suggests that poorly specified relationships among transcriptomic
323 clusters at early stages are gradually refined to yield increasingly specific associations at

324 later stages.

12
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Figure 3. Incompletely specified temporal relationships among RGC clusters.

a.

Top: Specified (left) and non-specified (right) modes of diversification. Nodes denote
transcriptomic clusters of immature RGCs, and arrows denote fate relationships. Bottom:
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329 Confusion matrices depicting transcriptomic correspondence between late and early clusters
330 expected for the two modes. Circles and colors indicate the percentage of a given late cluster
331 (row) assigned to a corresponding early cluster (column) by transcriptome-based classifier trained
332 on early clusters. The number of late and early clusters have been set to eight and four for
333  illustration purposes.

334 b. Barplot showing values of the normalized conditional entropy (NCE) for each age calculated
335 using the transcriptional cluster IDs and the Xgboost-assigned cluster IDs corresponding to the
336 next age or to P56 (E.g. for E13, the NCE was calculated across E13 RGCs by comparing their
337  transcriptional cluster ID with assigned E14 cluster IDs based on a classifier trained on the E14
338 data). Lower values indicate specific mappings.

339 c¢. Same as b, but plotting values of the adjusted Rand Index (ARI), where larger values
340 correspond to higher specificity.

341 d-h. Confusion matrices (representation as in a), showing transcriptomic correspondence
342  between consecutive ages: E14-E13 (d), E16-E14 (e), PO-E16 (f), P5-PO0 (g), P56-P5 (h). In each
343 case, the classifier was trained on the late time point and applied to the early time point. Rows
344  sum to 100%.

345

346 Immature RGCs are multipotential

347 The analysis presented so far relied on comparing clusters between ages and was
348 therefore unable to link individual precursors to specific terminal fates. At one extreme,
349 individual precursor clusters might contain several groups of cells, each committed to a
350 distinct, small number of fates. Alternatively, individual cells might be as multipotential as
351 the clusters in which they reside (Fig. 4a).

352

353 Cluster-based classification frameworks do not afford a straightforward way to explore
354 variations in patterns of fate associations within clusters. We therefore turned to
355  Waddington-Optimal Transport (WOT), a computational method rooted in optimal
356 transport theory (Kantorovich, 1942; Monge, 1781) that utilizes scRNA-seq
357 measurements at multiple stages, to infer developmental relationships (Schiebinger et
358 al., 2019). Briefly, WOT computes a “transport matrix” [1 between each pair of consecutive
359 ages with elements II;; encoding fate associations between a single RGC / at the younger
360 age and RGC j at the older age (see Methods). Thus, WOT identifies fate associations
361 between individual cells without invoking clustering. We conducted extensive
362 computational tests to assess the numerical stability of associations reported by WOT
363 (Supplementary Fig. 4). We also determined that when collapsed to the level of clusters,
364 the WOT inferred transport maps strikingly mirrored the confusion matrices obtained from

365 multi-class classification (Supplementary Fig. 5).
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366

367 Based on the success of these tests, we applied WOT to compute the “terminal fate” for
368 each precursor RGC. We leveraged the fact that in WOT, fate associations between
369 RGCs at non-consecutive ages (e.g. E16 and P56) can be estimated in a principled way
370 by multiplying the intermediate transport matrices. This yielded a fate vector f for each
371 ofthe 75,115 immature RGCs, whose kth element f;, represents the predicted probability
372  of commitment to adult type k € (1,2,...,45) (Methods). A fully committed precursor
373 would have all but one element of f equal to zero, whereas a partially committed
374 precursor would have multiple non-zero elements in f. Since the elements of fare
375 interpreted as probabilities, they are normalized such that ), fi, = 1.

376

377  We quantified the commitment of each precursor by computing its “potential” P = Flsz
378 which is defined analogously to the “inverse participation ratio” in physics (Fyodorov &
379  Mirlin, 1992). In our case, the value of P for a given RGC ranges continuously between 1
380 and 45, with lower values implying a commitment to specific fates, and higher values
381 reflecting indeterminacy. Importantly, this measure of commitment does not rely on
382  arbitrary thresholding of the f; values to assign precursors to types.

383

384  Five results emerged from this analysis.

385

386 e Nearly all prenatal RGCs (i.e. on or before P0) were multipotential rather than
387 committed to a single terminal fate, with individual potentials distributed across a
388 range of values (Fig. 4b).

389

390 e Multipotentiality was a general feature of immature RGCs, being present in cells
391 of all clusters at E13, E14 and E16 (Figs. 4c-f).

392

393 e At early stages the average value of P varied among transcriptomic clusters,
394 reflecting asynchronous specification (Fig. 4c). The tempo of commitment is
395 further explored in the next section.

396

397 e Although they were multipotential, no precursor RGC was totipotential (i.e.
398 completely unspecified, corresponding to P=45). At E13 the average value of P
399 was 11.6 £ 4.9 which was 4-fold lower than the maximum possible value of 45, and
400 no precursor had P > 30.

401
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402 e Finally, inferred multipotentiality decreased gradually during development, and
403 some persisted postnatally, (average P=3.4 £ 2.1 at PO, and 1.6 £ 0.9 at P5; Figs.
404 4q,h).

405

406 From these results, we conclude that early postmitotic RGCs are multipotential but not
407 totipotential, and that type identity is specified gradually via progressive restriction.
408
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409

410 Figure 4. Multipotential fate associations between immature RGCs and terminal types
411 inferred via Optimal Transport
412  a. Extreme models of diversification at single-cell resolution. Multipotential fate associations in a
413  transcriptionally defined cluster (ellipse) could arise from a mixture of unipotential RGCs (left) or
414  from multipotential RGCs (right).
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415 b. Distributions of potential P across immature RGCs by age showing that restriction increases
416  with age.

417  c.Inter- and intra-cluster variation of potential by age. At each age, variation in the potential values
418 are shown for each transcriptomically defined cluster at that age. Dots denote the average
419 potential and dotted lines depict the standard deviation for cells within each cluster.

420 d-h. UMAP projections of E13 (d), E14 (e), E16 (f), PO (g) and P5 (h) RGCs as in Fig. 2, but with
421 individual cells colored by their inferred potential. Potential of all RGCs at P56 =1. The colorbar
422  on the lower right is common to all panels, and values are thresholded at P = 20.

423

424  Asynchronous specification of mouse RGC types via fate decoupling

425 As a first step in understanding the progressive restriction of RGC fate, we analyzed the
426 extent to which pairs of mature types were likely to have arisen from the same set of
427 immature precursors. To this end we computed a “fate coupling” value C(l,m; age) for
428 each pair of terminal RGC types (/ and m), defined as the Pearson correlation coefficient
429 between the values of f; and f,, across all precursors at a given age (Methods). f; and
430 f,, are fate probabilities corresponding to types /and m as defined in the previous section.
431  Values of C(l,m; age) in our data ranged from -0.11 to 0.95. Higher values of C (I, m; age)
432 indicate strong fate coupling between types / and m, implying the existence of common
433  postmitotic precursors, whereas low C(l, m; age) values suggest that types / and m arose
434  from largely nonoverlapping sets of precursors. We visualized the pattern of fate
435 couplings as network graphs, where the nodes represent types and the edge weights
436 represent values of C(l, m; age). The arrangement of nodes was determined at E13 using
437 aforce directed layout algorithm (Fruchterman & Reingold, 1991), with pairwise distances
438  being inversely proportional to values of C(l, m; E13), the fate coupling values at E13 (Fig.
439  5a). To visualize the temporal evolution of these fate couplings, we retained the same
440 layout of nodes while updating edge weights according to C(l, m; age) (Figs. 5b-e).

441

442  Types that were coupled in fate at the earliest time point gradually decoupled as
443  development proceed. For example, at E13, 118/990 pairs (12%) were strongly coupled
444  (threshold of C(l, m; age)>0.2 as determined by randomization tests; see Methods), while
445  at P5, only 8/990 (<1%) passed this criterion (Figs. 5a,e). Lowering this threshold for
446  coupling to 0.05 increased the number of strongly coupled pairs at P5 to only 2% (20/990).
447
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448  Different pairs of types decoupled at different rates (Fig. 5f). As they decoupled, RGC
449  precursors became increasingly restricted to a single type (i.e. fi > f;. for a precursor
450 favoring type k). This corresponded to a “localization” of precursors in transcriptomic
451 space, and is a proxy for specification (see Methods). We modeled the extent of
452  localization vs. age via a logistic function (Fig. 5g and Supplementary Fig. 6d), and used
453  this to calculate a specification time for each type (z,,) (see Methods for details). Based
454  on this analysis, 7/45 types are specified postnatally. The average 75, for RGCs was
455  E17.8, but individual RGC types exhibited a wide range from E13.9 to P5.2 (Fig. 5h). The
456 inferred specification time was not correlated to adult frequency (Fig. 5i).

457

458  We illustrate this range by considering three pairs of RGC types in Supplementary Fig.
459 6. C12 and C22 (numbered as in Tran et al., 2019; see Fig. 2g) exhibit low fate coupling
460 at all ages profiled (Supplementary Fig. 6a), indicative of separate precursor
461  populations. In contrast, C19 and C20 decouple only at PO, implying the existence of a
462 common precursor throughout embryogenesis (Supplementary Fig. 6b). C21 and C34
463 display an intermediate pattern, decoupling around E16 (Supplementary Fig. 6c). Taken
464  together, these results suggest that RGC types emerge by asynchronous fate decoupling

465 of multipotential precursors.
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468 Figure 5. Fate decoupling of RGC types

469 a. Force-directed layout visualization of fate couplings at E13, with nodes representing RGC types
470  (numbered asin Tran, 2019) and the thickness of edges representing values of C(I,m;E13). Edges
471  with C(I,m; E13) < 0.2 are not shown. Number of edges with C(I,m; E13) > 0.2 are indicated on
472  top.

473  b-e. Visualization of fate couplings at E14 (B), E16 (C), PO (D) and P5 (E). The positions of the
474  nodes are maintained as in panel a, but the edges are redrawn based on values of C(l,m;age) at
475 each age. As in panel a, we only show edges C(I,m; age) > 0.2.

476 f. The decay of pairwise fate couplings (y-axis) with age (x-axis). Each line corresponds shows
477  the temporal decay of C(I,m) for RGC pair | and m estimated via a logistic model (Methods). For
478  each pair, couplings at each age were fit to a model C(I,m; age) = 1/(1 + ePoth1*age) with B, B,
479  representing fitted parameters. The fitting was performed using data for ages E13, E14, E16, PO
480 and P5. The shaded portions correspond to the periods E8-E13 and P5- represent extrapolations
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481  of the model. Black lines highlight the decay of all non-zero pairwise couplings for RGC type C8
482  as an example.

483 9. Schematic showing logistic modeling to estimate specification time 7, for a particular type. The
484  y-axis is a measure of the extent to which precursors biased towards the type are present in a
485  single transcriptomically defined cluster (i.e. localization, see Methods for details). Localization
486 is defined as a numerical value in the range (0, 1) with higher values consistent with increasing
487  specification. Individual triangles represent the localization values computed using WOT inferred
488 fate couplings at each age, while the curve represents the fit using the logistic model. Dotted line
489  shows the minimum threshold a type to be specified at each age. Its curved shape arises due to
490 theincrease in the number of clusters with age.

491 h. Localization curves (as in panel g) for the 38 RGC types showing the range of inferred
492  specification times. 7 low frequency types have been excluded from display (see Supplementary
493 Fig. 6d).

494  i. Scatter plot showing poor correlation between adult frequency of a type (from (Tran et al., 2019))
495 and its predicated specification time (calculated from h).
496

497  Fate decoupled groups of RGC types defined by transcription factors

498 Because fate coupling is a metric of inferred overlap of developmental history, it is likely
499 that tightly coupled types share common precursors. This relationship implies that tightly
500 coupled types might also be specified by common transcriptional programs. As a step
501 towards identifying candidate fate determinants, we identified 8 transcription factors (TFs)
502 that are expressed by distinct groups of mature RGC types (Fig.6a, Supplementary Fig.
503 7a). Three of these are well-characterized RGC-selective TFs: Foxp2, expressed by 5 F-
504 RGC types (Rousso et al., 2016); Tbr1, expressed by 5 T-RGC types (Liu et al., 2018);
505 and Eomes (also known as Tbr2), expressed by 7 types (C.-A. Mao et al., 2020; Tran et
506 al.,, 2019). The 7 Eomes/Tbr2 types include the melanopsin expressing intrinsically
507 photosensitive (ip) RGC types (Berson, Dunn, & Takao, 2002). The remaining five were
508  Neurod2, Irx3, Mafb, Tfap2d, and Bnc2 that label 8, 5, 4, 6, and 3 types respectively.
509 Eomes types also co-expressed Tbx20 and Dmrbt1 while Neurod?2 types also co-express
510 Satb2. Together, 40/45 mature types expressed at least one of these TFs in a manner
511  that was, with few exceptions, mutually exclusive. In many cases, the fate proximity of
512  types that shared TF expression was obvious (Fig. 6a).

513

514  We refer to these TF-based groups as fate-restricted RGC subclasses — an intermediate
515 taxonomic level between class and type based on inferred fate relationships. Consistent
516  with their definition, the pairwise fate coupling among types from different subclasses was

517  significantly lower than among types from the same subclass (Fig. 6b). Thus, precursor
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518 RGC states associated with any two subclasses are more distinct than those associated
519  with any two types. This is evident by the significant separation at E13 and negligible
520 overlap at P5 for precursors favoring the Eomes, Mafb and Neurod2 subclasses
521  respectively, as shown in Fig. 6¢c-e.

522

523 We also asked whether the TF-based subclasses differed in inferred transcriptomic
524  specification time t,,, as defined in Fig. 5g. As shown in Figs. 6f-h, and Supplementary
525 Figs. 7b-e, four subclasses were specified within a narrow interval (E16.8-E17.2), but
526 three others differed substantially. The average specification time for the Eomes group
527 was E14.6 (p < 0.0001, Student’s t-test, compared to the mean for all types), while that
528 for the Mafb and Neurod2 groups were E16.9 (p < 0.001) and E18.5 (p < 0.0001),
529 respectively. The early specification of the Eomes group is consistent with birthdating
530 studies showing the average earlier birthdate of ipRGCs compared to all RGCs (McNeill
531 etal., 2011).

532

533 In summary, our results suggest the existence of fate-restricted RGC subclasses that
534  arise from distinct sets of precursors and diversify into individual types. This method of
535 defining RGC groups, which relies on inferred proximity of precursors in transcriptomic
536  space, is distinct from previous definitions of RGC subclass based on shared patterns of
537  adult morphology, physiology or gene expression (see Discussion). Accordingly, the fate
538 couplings at E13 were only weakly correlated with transcriptomic proximity in the adult
539 retina (Supplementary Fig. 7f). Further, while TF-based groups align with some
540 previously defined subclasses (e.g. ipRGCs or Thr1+ RGCs), they do not map to others
541  subclasses such as alpha-RGCs (4 types) or T5-RGCs (9 types) (Supplementary Fig.
542 T7g).

543
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544

545  Figure 6. Temporal dynamics of RGC subsets expressing specific TFs

546 a. E13 network graph of fate couplings from Fig. 5a, with RGC types colored based on their
547  selective expression of TFs at P56. Asterisks denote 3/45 types that express more than 1 TF
548 (also see Supplementary Fig. 7a).

549 b. Box-and-whisker plots showing that pairwise fate couplings are higher between types within
550 the same TF subclass than between types in different TF subclasses at all immature ages. Black
551 horizontal line, median; bars, interquartile range; vertical lines, 1% and 99" percentile; dots,

22


https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465277; this version posted October 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

552  outliers. Stars indicate significant p-values based on a two-sided t-test (****, p < 107; ***, p < 10°
553 % ** p<107).

554 c¢. Eomes+ types. Top: UMAP representation of E13 RGCs with cells colored based on their
555 cumulative fate association towards the 7 Eomes+ types. Bottom: UMAP representation of P5
556  RGCs with cells colored based on their cumulative fate association towards the 7 Eomes+ types.
557 The value corresponding to the color of each cell (colorbar, right) can be interpreted as the
558  probability of commitment towards the corresponding subclass.

559 d. Same as c for Mafb+ types

560 e. Same as c for Neurod2+ types

561 f-h. Localization curves (as in Fig. 5g) for Eomes+ types (f), Mafb+ types (g) and Neurod2+ types
562  (h). The mean inferred specification time 7, for each group is indicated on top of each panel.

563

564  Transcriptomic profiles of ipsilateral and contralateral RGCs

565 Finally, we considered the origin of two RGC groups defined by their projections: those
566  with axons that remain ipsilateral at the optic chiasm (I-RGCs) and those that cross the
567 midline to innervate contralateral brain structures (C-RGCs). The proportion of I-RGCs
568 varies among vertebrates, in rough correspondence to the extent of binocular vision,
569 ranging from none in most lower vertebrates to ~50% in primates. In mice, 3-5% of RGC
570 axons remain ipsilateral, with most I-RGCs residing in the ventrotemporal (VT) retinal
571  crescent (Mason & Slavi, 2020). While some [-RGCs have been observed to project from
572  the dorsocentral retina during embryonic stages, these are rapidly eliminated so-called
573  “transient” I-RGCs (Soares & Mason, 2015). Thus, in adulthood, C-RGCs are present
574  throughout the retina while “permanent” I-RGCs are confined to the VT crescent.

575

576  The zinc-finger transcription factor Zic2 is expressed in a subset of postmitotic RGCs in
577 VT retina, and is both necessary and sufficient for establishing their ipsilateral identity
578 (Herrera et al., 2003); transient dorsolateral I-RGCs do not express Zic2 (Pak, Hindges,
579 Lim, Pfaff, & O'Leary, 2004). /sI2 marks a subset of C-RGCs throughout the retina and
580 appears to specify a contralateral identity in part by repressing Zic2 (Pak et al., 2004).
581  These two transcription factors were expressed in a mutually exclusive fashion in RGC
582  precursors between E13 and E16 (Fig. 7a); Zic2 was down-regulated at later ages
583 (Supplementary Fig. 8a). Furthermore, Zic2 expression at E13 correlated with Igfbp5
584 and Zic1, and anti-correlated with Igf1 and Fgf12, consistent with recent reports (Wang,
585  Marcucci, Cerullo, & Mason, 2016) (Fig. 7b and Supplementary Figs. 8b,c). We scored

586 each cell at E13 based on its expression of ipsilateral genes (Methods), confirming that
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587  expression of ipsilateral and contralateral gene signatures were anticorrelated (Fig. 7c).
588 Together, these observations support the idea that at E13 Zic2+ cells represent I-RGCs,
589 and /s/2+ cells represent some but not all C-RGCs.

590

591  Using WOT, we then identified the descendants of presumptive I-RGCs at later ages. We
592  found that I-RGCs comprised 4.3% of adult RGCs, consistent with the range of 3-5%
593 noted above. We queried these cells to identify genes that distinguished putative I-RGCs
594 and C-RGCs throughout the developmental time course. At a fold-change of 21.5 we
595 found 59 DE genes at E13 and 89 at E14 (Figs. 7e,f). In addition to Zic2, Igfbp5, Isl2 and
596 Igf1, which had been used to define I-RGCs and C-RGCs at E13, they included Igfbpl1,
597  Pou3f1 and Cntn2 enriched in I-RGCs, and Lmo2, Pcsk1n and Syt4 enriched in C-RGCs.
598 The number of genes DE between I- and C-RGCs decreased after E14, with 20, 9 and 0
599 significant genes at E16, PO and PS5, respectively (Supplementary Figs. 8d,e),
600 presumably reflecting the downregulation of axon guidance programs once
601  retinorecipient targets have been reached (see Discussion).

602

603  We also asked which RGC types included I-RGCs. At E13, putative I-RGCs were highly
604  enriched in 2 of 10 clusters, comprising 38-40% of clusters 2 and 9, 9-14% of clusters 3
605 and 5, and <2% of the other 6 clusters (Fig. 7d). In adults, RGCs expressing Tbr1, Mafb,
606 Foxp2 and Neurod?2 contained 3-4X more I-RGCs than RGCs expressing Eomes, Irx3 or
607 Tfap2d. These results are consistent with previous observations that I-RGCs are
608 morphologically and physiologically heterogenous but not uniformly distributed across
609 types(Hong, Kim, & Sanes, 2011; Johnson et al., 2021). Lastly, the WOT-predicted
610 relationship between E13 precursor RGC clusters and I-RGC-rich or -poor terminal types
611  were consistent with these patterns. The top six I-RGC-rich types (C4, C15, C19, C20,
612 C38, C45) derived 14% and 4% of their relative fate association from E13 clusters 2 and
613 9, while the top six I-RGC-poor types (C8, C14, C18, C22, C31 and C41) derived only 3.8
614 and 0.2 % of their relative fate association from E13 clusters 2 and 9. Thus, E13 clusters
615 2 and 9 are preferred precursors of adult types that are relatively rich in I-RGCs.

616

617
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Figure 7. Transcriptomic identification of ipsilaterally projecting RGCs
a. Zic2, an I-RGC marker and Is/2, a C-RGC marker, are expressed in a mutually exclusive pattern
at E13 (left), E14 (middle) and E16 (right). Zic2 is undetectable after E16 (Supplementary Fig.
8a). Cells are colored based on a bivariate color scale representing co-expression of two markers

(colorbar, right).

b. Zic2 and Igfbp5, two I-RGC markers, are co-expressed at E13 (left) and E14 (middle).
Representation as in panel a.
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627  c. Scatter-plot of gene signatures used to identify -RGCs (y-axis) and C-RGCs (x-axis) at E13
628  are negatively correlated (Pearson R =-0.61). Each dot corresponds to a cell, the color represents
629 the number of cells located at a particular (x,y) location (see colorbar, right).

630 d. Barplot showing % of putative I-RGCs (y-axis) within each of the 45 adult RGC types, estimated
631 by computing the descendants of E13 [-RGCs using WOT. RGC types are arranged along the x-
632  axis based on their membership of TF-groups shown in Fig. 6a (annotation matrix, bottom).

633  e. Volcano plot showing DE genes (MAST test, p < 10°) between predicted I-RGCs and C-RGCs
634 at E13. The x- and the y-axes show the fold-change and the p-value in log2- and log10- units,
635 respectively. Dots represent genes, with red and blue dots highlighting I- and C-RGC enriched
636 genes respectively at fold-change > 1.5 and Bonferroni corrected p-value < 5x10°. The two
637  vertical bars correspond to a fold-change of 1.5 in either direction. Select I-RGC and C-RGC
638 enriched genes are labeled.

639 f. Same as panel e, for E14.

640

641

642 Discussion

643  The staggering diversity of its neurons underlies the computational power of the nervous
644  system. Accordingly, a major quest in developmental neurobiology is to understand the
645 mechanisms that diversify progenitors. A generally accepted way to deal with this
646 diversity is to divide neurons into classes, and then subdivide classes into subclasses
647 and subclasses into types (Zeng & Sanes, 2017). While much has been learned about
648 how neural progenitors give rise to distinct neuronal classes, little is known about how
649 classes diversify into subclasses and types.

650

651 Here, we used mouse RGCs to address this issue. We recently generated a molecular
652 atlas that divided RGCs into ~45 distinct types based on their patterns of gene expression
653 (Tran et al., 2019). We used this atlas here as a foundation to ask how these types are
654 specified during development. We conclude that the earliest precursor RGCs are
655 multipotential and exhibit continuous variation in transcriptomic identity, then diversify into
656 definitive types by a gradual process of fate restriction. Interestingly, these features
657 resemble those that have been discovered to control the generation of retinal cell classes
658 from cycling progenitors (RPCs): multipotentiality, progressive restriction of fate, and
659 stochastic rather than deterministic fate choice (see Introduction). We suggest that, at
660 least in this case, similar strategies are used to generate cell classes from mitotically
661  active progenitors and cell types from postmitotic precursors.

662
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663 Classes, subclasses and types

664  Definitions of neuronal class, subclass and type have been contentious (Yuste et al.,
665 2020). In general, classes share general features of structure, function, molecular
666  architecture and location, whereas types comprise the smallest groups within classes that
667 can be qualitatively distinguished from other groups based on these and other criteria.
668 Subclasses lie in-between. For RGCs, class identity has been clear for a century, but
669 inventories of subclasses and types have emerged only over the last few decades, as
670 high-throughput methods have been implemented for quantifying structural (primarily
671  dendritic morphology), functional (responses to an array of visual stimuli) and molecular
672 properties (gene and transgene expression) of large numbers of RGCs. Fortunately, to
673 the extent that they have been compared, there is excellent concordance among types
674 defined by molecular, structural and physiological criteria (Bae et al., 2018; Goetz et al.,
675 2021; Tran et al., 2019) (see www.rgctypes.org). Moreover, RGCs of a single type exhibit
676 aregular spacing, called a mosaic arrangement, in that they tend to avoid other members
677 of the same cell type whereas their association with members of other types is random
678 (Kay et al., 2012; Keeley et al., 2020; Rockhill et al., 2000). The molecular basis of this
679 property is poorly understood, but it provides an additional criterion for defining a type.
680 Thus, while no two RGCs are identical, and variation may be continuous in some other
681  structures (Cembrowski & Spruston, 2019), there is strong reason to believe that RGC
682 types are discrete.

683

684 The adult RGC atlas

685 Developmental trajectories of cell types cannot be better than the adult types at which
686 they are aimed. We have two reasons to believe that our adult RGC atlas (Tran et al.,
687 2019) is accurate and complete.

688

689  First, the atlas is based on detailed analysis of 35,699 cells, and is therefore powered to
690 detect types occurring at ~0.1% frequency (>40 cells per type;
691  https://satijalab.org/howmanycells/). Results were stable over a variety of parameters

692 (Tran et al., 2019). Moreover, in the course of studies on responses of RGCs to injury,
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693  we recently profiled an additional ~120,000 cells (A. Jacobi, N. Tran, W Yan and J.R.S,
694 in preparation), without identifying additional types.

695

696 Second, RGCs have now been classified by functional and structural properties, based
697 on physiological responses to visual stimuli (Baden et al., 2016; Goetz et al., 2021) and
698  serial section electron microscopy (Bae et al., 2018). The numbers of types defined in
699 these ways (47 in (Bae et al., 2018), 42 in (Goetz et al., 2021) and > 32 in (Baden et al.,
700 2016)) match well to the 45-46 defined molecularly (Tran et al., 2019).

701

702  Multipotentiality of precursor RGCs

703  The multipotentiality of dividing progenitor cells can be demonstrated by indelibly labeling
704  a progenitor and then examining its progeny at a later stage. For mammals, this was
705 initially done by infecting single cells with a recombinant retrovirus encoding a reporter
706 gene that could be detected following multiple cell divisions (Price, Turner, & Cepko,
707  1987; Sanes, Rubenstein, & Nicolas, 1986; Turner & Cepko, 1987). More recently, it has
708 become possible to greatly increase throughput by tracking scars or barcodes introduced
709 by CRISPR/Cas9 (Baron & van Oudenaarden, 2019; Espinosa-Medina, Garcia-Marques,
710 Cepko, & Lee, 2019; McKenna et al., 2016). In sharp contrast, conclusively
711 demonstrating that a single postmitotic cell is multipotential would require following a cell
712  from an unspecified to a specified state, then turning back time, watching it again, and
713 asking if it acquired the same mature identity. Since this is impossible, we used
714  computational inference to draw tentative conclusions about the extent to which newly
715  postmitotic RGCs are committed to mature into a particular type.

716

717  Our analysis proceeded in three steps. First, to ask whether RGCs were committed to a
718 particular fate before or shortly after they were born, we assessed transcriptomic
719  heterogeneity at a time when a large fraction was newly postmitotic (E13 and E14). We
720 found that heterogeneity was present but limited: 10 transcriptomic clusters were
721 distinguishable at E13 and 12 at E14. Thus, some heterogeneity is present in precursor
722  RGCs, but far less than would be required to specify type identity before or immediately
723  after their birth.
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724

725 Second, we used a supervised classification approach to ask whether precursor RGC
726  clusters mature into mutually exclusive sets of adult types. This model would imply an
727 orderly, step-wise restriction of cell fates. However, our results indicate substantial
728 overlap in the types derived from cells in different immature clusters. This result argues
729 against a deterministic model of diversification, and suggests that precursor RGCs are
730 incompletely committed to a specific type for a substantial period after they are generated.
731

732  Third, we used optimal transport inference (WOT) to ask whether the multipotentiality
733  observed at the level of groups was also a property of individual cells. WOT utilizes time
734  course scRNA-seq snapshots to infer fate associations between individual cells sampled
735  at different time points, without reference to the clusters in which they reside(Schiebinger
736 et al,, 2019). While being consistent with supervised classification results at the cluster
737 level, WOT indicated that the majority of individual RGCs were multipotential at E13 and
738 E14. Of equal importance, immature RGCs were not totipotential: the average predicted
739 potential (P) was 11.6 at E13, or ~25% of the maximum possible value of 45, and no
740 RGCs had P >30. We conclude that single multipotential immature RGCs are biased in
741 favor of particular groups of adult RGC types.

742

743  Progressive restriction of RGC fate

744  Further analysis provided insight into the structure of multipotentiality among RGCs. The
745 adult RGC types associated with a precursor RGC were not a randomly chosen subset;
746  rather some were more likely to arise from a common precursor state (“fate coupled”)
747 than others. This suggests a model in which RGC types arise via a progressive
748  decoupling of fates within multipotential precursors. Decoupling is asynchronously, with
749  different types emerging at different times. By modeling the temporal kinetics of fate
750 decoupling, we were able to estimate a tentative specification time for each type — that is,
751  the time at which precursors become irrevocably committed to a particular fate. Analysis
752  of transcriptomic changes that occur during this process, and the effects of visual
753  experience on maturation, will be presented elsewhere (K.S., .LE.W., S.B. and J.R.S., in

754  preparation).
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755

756  Fate-restricted RGC subclasses

757 For RGCs, class identity has been clear for a century, and type identity has been solidified
758 during over the last few decades, but criteria for defining subclasses remain unclear.
759  Tentative classifications have used molecular, physiological and morphological criteria
760 (Sanes & Masland, 2015; Tran et al., 2019); In general, these criteria correlate imperfectly
761  with each other, the main exception being that ON and OFF RGCs (responding
762  preferentially to increases and decreases in illumination, respectively) have dendrites that
763 arborize in the inner and outer portion of the inner plexiform layer (Famiglietti & Kolb,
764  1976).

765

766  The pattern of fate couplings between RGC types at E13-14 provides an alternative way
767 to define RGC subclasses — groups of RGC types that arise from the restriction of a
768 common transcriptionally defined precursor state. We identified transcription factors
769  selectively expressed within these subclasses. Our rationale was that among them would
770  be fate determinants, an idea that could be tested by conventional genetic manipulations.
771 Support for this idea is that there is already strong evidence that one such factor is a fate
772  determinant in mouse: Eomes is selectively expressed by ipRGCs (and a few other
773  types), and Eomes mutants fail to form ipRGCs although their retinas are normal in many
774  respects (C. A. Mao et al., 2014). This encourages the hope that some of the other
775 transcription factors in this set are also fate determinants. It will also be interesting to
776  determine whether members of fate-restricted subclasses share structural or functional
777  properties.

778

779 Laterality

780 The transcription factors Isl2 and Zic2 selective markers of embryonic RGCs that project
781  contralaterally or ipsilaterally, respectively, and are critical determinants of this choice
782  (Herrera et al., 2003; Pak et al., 2004). We found that their expression was largely
783  nonoverlapping in RGCs at E13, that they were co-expressed with previously reported
784  markers of contralaterally and ipsilaterally projecting RGCs, respectively. Because few

785 RGC axons reach the optic chiasm before E14, our results are consistent with genetic
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786 evidence that this differential expression is a cause rather than a consequence of the
787  divergent choices the axons make at the chiasm. Among many genes co-expressed with
788  Isl2 or Zic2 may be others that play roles in this choice.

789

790 Zic2 is downregulated later in embryogenesis, so we used WOT to infer the fates of
791  putative I-RGCs. We found that they give rise to many types, consistent with previous
792  results (Hong et al., 2011; Johnson et al., 2021). Surprisingly, however, there were few if
793 any genes differentially expressed between the putative mature |- and C-RGCs.
794  Assuming that WOT results are valid — an assertion that can be tested directly in the
795  future — this result suggests a model in which newborn RGCs are doubly specified — by
796 laterality and by type — but that once axonal choice has been made the laterality program
797  is shut down.

798

799 Beyond the retina

800 Generation of neuronal classes has been analyzed in many parts of the vertebrate
801  nervous system but we are aware of few reports on how classes diversify into types. A
802 recent study addressed this issue for primary sensory neurons and reached the
803  conclusion that newborn neurons in dorsal root ganglia are transcriptionally unspecialized
804 and become type-restricted as development proceeds (Sharma et al., 2020). Similarly,
805 both excitatory neuronal subclasses appear to diversify postmitotically in the mouse
806 cerebral cortex (Di Bella et al., 2021; Lodato & Arlotta, 2015), and there is suggestive
807 evidence that the same is true for interneuronal subclasses (Wamsley & Fishell, 2017).
808 Inall of these cases, itis attractive to speculate that diversification may occur by a process
809 of fate decoupling in subpopulations of distinct multipotential precursors, akin to that
810 documented here for RGCs. Our study provides a computational framework for
811 investigating this issue.
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Materials and Methods

Mice

All animal experiments were approved by the Institutional Animal Care and Use Committees
(IACUC) at Harvard University. Mice were maintained in pathogen-free facilities under standard
housing conditions with continuous access to food and water. Animals used in this study include
both males and females. A meta-analysis (not shown) did not show any systematic sex-related ef-
fects in either differentially expressed genes or cell-type proportions. For scRNA-seq and histology,
we used C57Bl/6J (JAX #000664). Embryonic and early post-natal C57Bl/6J mice were acquired
either from Jackson Laboratories (JAX) from time-mated female mice or time-mated in-house. For
timed-matings, a male was placed with a female overnight and removed the following morning (with
the corresponding time recorded as day E0.5).

Cell preparation

RGCs were enriched from dissociated retinal cells as previously described with minor modifications
(Tran et al., 2019). All solutions were prepared using Ames’ Medium with L-glutamine and sodium
bicarbonate (equilibriated with 95% O3 /5% COz), and all spin steps were done at 450g for 8 minutes.
Retinas were dissected out in their entirety immediately after enucleation and digested in ~80U of
papain at 37°C, with the exception of some E13 and E14 eyes which were digested whole, followed
by manual trituration in ovomucoid solution. Clumps were removed using a 40um cell strainer
and the cell suspension was spun down and re-suspended in Ames + 4% BSA at a concentration
of 10 million cells per 100ul. Cells from E13, E14, E16, and PO were incubated for 15 minutes
at room temperature with antibodies to Thy1l (also known as CD90) and L1ICAM pre-conjugated
to the fluorophores APC (ThermoFisher Scientific#17-0902-82) and PE (Miltenyi Biotec 130-102-
243), respectively. Cells were washed with 6ml of Ames + 4% BSA, spun down and resuspended at
a concentration of ~7 million cells/ml, and calcein blue was added to label metabolically active cells.

Viable Thy1 or LICAM positive cells were sorted using a MoFlo Astrios sorter into ~100ul of AMES
+ 4% BSA. Sorted cells were spun down a final time and resuspended in PBS + 0.1% BSA at a
concentration of 500-2000 cells/ul. P5 RGCs were enriched using only CD90, with either magnetic-
activated cell sorting (MACS) using large cell columns and CD90 pre-conjugated to microbeads
(#130-042-202 and #130-049-101, Miltenyi Biotec), fluorescence activated cell sorting (FACS) with
CD90 pre-conjugated to PE/Cy7 (ThermoFisher Scientific #25-0902-81), or both.

Droplet based single-cell (sc) RNA-seq

Statement on replicates: We profiled immature RGCs using scRNA-seq at five developmental time
points: E13, E14, E16, PO and P5. At each age, data was collected from four replicate experiments.
Experiments at E13, E14, E16 and PO involved two biological replicates (distinct mice). Each of
these biological replicates were further subdivided into two equal pools and the cells were subjected
to two different enrichment methods (anti-Thyl and anti-Llcam). Thus, each of these time points
consisted of four replicate experiments. RGC enrichment at P5 exclusively utilized anti-Thyl, but
four biological replicate experiments were performed. One of these was profiled using 10X and three
of these were profiled using Drop-seq.
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Drop-seq: A subset of P5 RGC dataset was collected using Drop-seq (Macosko et al., 2015), per-
formed largely as described previously (Shekhar et al., 2016). Briefly, cells were diluted to an
estimated final droplet occupancy of 0.05, and co-encapsulated in droplets with barcoded beads,
which were diluted to an estimated final droplet occupancy of 0.06. The beads were purchased from
ChemGenes Corporation, Wilmington MA (# Macosko201110). Individual droplet aliquots of 2 ml
of aqueous volume (1 ml each of cells and beads) were broken by perfluorooctanol, following which
beads were harvested, and hybridized RNA was reverse transcribed. Populations of 2,000 beads
(~100 cells) were separately amplified for 14 cycles of PCR (primers, chemistry, and cycle condi-
tions identical to those previously described) and pairs of PCR products were co-purified by the
addition of 0.6x AMPure XP beads (Agencourt).Fifteen experimental replicates were sequenced in
total from 5 biological replicates using an Illumina NextSeq 500. Read 1 was 20bp; read 2 (paired-
end) was 60bp.

10X Genomics: Single cell libraries were prepared using the Single-cell gene expression 3’ kit on
the Chromium platform (10X Genomics, Pleasanton, CA) following the manufacturer’s protocol.
As our datasets were collected over a long period of time, we used a combination of v1 (a single
channel of P5 RGCs), v2 (E13, E14, E16, P0). Briefly, single cells were partitioned into Gel beads
in EMulsion (GEMs) in the 10X Chromium instrument followed by cell lysis and barcoded reverse
transcription of RNA, amplification, enzymatic fragmentation, 5’ adaptor attachment and sample
indexing. On average, approximately 8,000-12,000 single cells were loaded on each channel and
approximately 3,000-7,000 cells were recovered. Libraries were sequenced on the Illumina HiSeq
2500 platforms at the Broad institute (Paired end reads: Read 1, 26 bases, Read 2, 98 bases).

Statement on power analysis: An important question in all single-cell experiments is that of the
number of cells to profile. A widely used approach is the power analysis tool published by the Satija
lab (https://satijalab.org/howmanycells/). Fortunately, in this study we were also guided by
our previous study of adult RGCs, where we had knowledge of the frequency distribution of adult
RGC types, with the rarest type being approximately 0.2% (Tran et al., 2019). In that study, we
also found that when classification is performed in a supervised fashion based on an existing atlas,
approximately ~8000 RGCs were sufficient to recover the accurate relative frequency distribution
of 45 RGC types. We therefore aimed to profile ~ 8000 cell at each time point as our analysis
involved mapping immature RGCs to the adult atlas. With the exception of K13, all time points
contain 1.5-2X more cells than this target value.

Histology

Tissue Fization: Adult (P56) mice were intracardially perfused with 2-5ml of PBS followed by 15ml
of 4% PFA, followed by additional fixation of eyes for 15 minutes in 4% PFA, with the exception
of XXXX. PO and P5 mice were not perfused, rather eyes were fixed in 4% PFA for 30 minutes.
At E13, 14, and 16 embryos were fixed whole for 30 minutes in 4% PFA, following which eyes were
removed. Following fixation eyes from all time points were transferred to PBS and stored at 4°C
until subsequent use.

Sectioning: Cross sections for immunohistochemistry (IHC) were generated using a Leica CM1850
cryostat. For some early developmental time points eyes were kept whole for IHC, otherwise retinas
were either (1) dissected out in their entirety from eyes, or (2) the cornea, iris and lens was removed
leaving the sclera and retina intact. Tissues were sunk in 30% sucrose overnight at 4°C, embedded
in tissue freezing medium, and cryo-sectioned into 25mm slices. Slides with tissue sections were air
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dried for ~3 hours and stored at -80°C until staining.

Immunohistochemistry (IHC): All IHC solutions were made up in PBS + 0.3% Triton-X, and all
incubation steps were carried out in a humidified chamber. Following a 1 hour protein block in 5%
Normal Donkey Serum at room temperature, slides were incubated overnight at 4°C with primary
antibodies, washed twice for 5 minutes each in PBS, incubated for 2 hours at room temperature with
secondary antibodies conjugated to various fluorophores (1:1000, Jackson Immunological Research)
and Hoechst (1:10000, Life Technologies), and washed again twice for 5 minutes each in PBS before
coverslipping with Fluoro-Gel (#17985, Electron Microscopy Sciences). Primary antibodies used
include: guinea pig anti-RBPMS (1:1000, #1832-RBPMS, PhosphoSolutions), rabbit anti-KI67
(1:250, #MAB-14520, ThermoFisher Scientific), rat anti-LICAM (1:10, #130-102-243, Miltenyi
Biotec), rabbit anti-TBX20 (1:500, #A04704, Boster Bio), chicken anti-EOMES (1:500, #AB15894,
Millipore Sigma), rabbit anti-NEUROD2 (1:500, #ab104430, Abcam), guinea pig anti-PRDMS8
(1:2000, kind gift from Sarah E. Ross; Ross et al., 2012), mouse anti-POU4F3 (1:500, #MAB1585,
Millipore Sigma), goat anti-VSX2 (1:200, #sc-21690, Santa Cruz Biotechnology), rabbit anti-SOX9
(1:1000, #AB5535, Millipore Sigma), and chicken anti-GFP (1:1000, #ab13970, Abcam).

Imaging

All images were acquired using an Olympus Fluoview 1000 scanning laser confocal microscope, with
a 20Xx oil immersion objective and 2x optical zoom. Optical slices were taken at 1um steps. Fiji
(Schindelin et al., 2012) was used to pseudocolor each channel and generate a maximum projection
from image stacks. Brightness and contrast was adjusted in Adobe Photoshop.

Alignment and quantification of gene expression in single cells

All single-cell libraries were aligned to the UCSC mm10 transcriptomic reference (M. musculus)
and gene expression matrices were quantified using standard protocols described previously. For
the single-cell libraries generated using the 10X platform (E13, E14, E16, PO and P5), these steps
were performed using cellranger v2.1.0 (10X Genomics). For the single-cell libraries generated using
Drop-seq (P5), we used Drop-seq tools (v1.12; Macosko et al., 2015), following procedures described
earlier (Shekhar et al., 2016). Alignment and quantification was done for each sample library sep-
arately to generate a genes X cells expression matrix of transcript counts. These matrices were
column-concatenated for further analysis.

We retained cells that expressed at least 700 genes, resulting in 98,452 cells. We also removed genes
expressed in fewer than 10 cells. The resulting M genes x N cells matrix of UMI counts C,,,, was
normalized along each column (cell) to sum to 8,340, the median of the column sums resulting in
a normalized matrix X,,,. This was followed by the transformation Xonn — log(Xmn + 1).

Overview of batch correction, dimensionality reduction and clustering

The following procedure was adopted to perform batch correction, dimensionality reduction and
clustering throughout the paper. The procedure was first applied on the entire dataset to separate
RGCs from other cell classes, and then to RGCs at each age to identify transcriptomically distinct
groups.

1. Identification of highly variable genes (HVGs): We used the Gamma-Poisson framework de-
scribed previously to identify HVGs (Pandey et al., 2018). Briefly, we compute for each gene
the mean (i) and the coefficient of variation (C'V},,) for the UMI counts Cy,p,
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Mm:]i]-;Cmn

1
U?n = N Z(Cmn - Um)Q (1)
v, = Im
M

For a given fi,,, the Gamma-Poisson model predicts a “null” coefficient of variation (CV;7u!)
arising from a combination of Poisson “shot" noise and large variations in library size, assumed
to be due to technical reasons,

1 1
Cvnull - - )
= @)
Here, « is the shape parameter of a Gamma-distribution fit to the distribution of normalized
library sizes T), (using the R package MASS),

T, = 2 Cmn (3)

- me Cmn

In practice, C’V,Z“” serves as a tight lower-bound for empirically observed values of CV,,
across the full range of u,,,. This enables us to compute for each gene m, a deviation score
dy = log %, quantifying the extent to which its observed coeflicient of variation exceeds

the predicted null model. Highly-variable genes (HVGs) are selected if they satisfy d,,, >
Mean(d,,) + 0.8 x std(dy,).

2. Batch correction and Dimensionality Reduction: We subsetted the rows of the expression
matrix X,,, to the HVGs identified in Step 1. As our data comprised cells sampled at different
developmental ages as well as multiple biological replicates within each age, we used Liger,
a non-negative matrix factorization technique, to embed the data in a reduced dimensional
latent space of shared factors (Welch et al., 2019). Liger computes a factorized representation
for each matrix that separate “shared” and “dataset-specific” gene expression modules (factors).
We use Liger’s normalized H factor loadings for cells to build a nearest neighbor graph and
define clusters.

As in any matrix factorization technique, Liger requires the user to choose k, the dimension-
ality of the latent space. To find k, we use a Random Matrix Theory approach (outlined
in Peng et al., 2019). Briefly, k£ is estimated as as the number of eigenvalues of the sample
gene-gene correlation matrix that exceed the 99" percentile of the distribution of the largest
eigenvalue of a random Hermitian matrix of the same dimensions. This is given by the Tracy
Widom distribution (Tracy and Widom, 1993). For these calculations, we used the R package
RMTstat.

3. Clustering and 2D Visualization: To cluster cells based on transcriptomic similarity, we first
built a nearest-neighbor graph on the cells based on their normalized H factor coordinates
computed using Liger. The number of nearest neighbors was chosen to be 30. The edges were
weighted based on the Jaccard overlap metric, as described previously (Shekhar et al., 2016).
The graph was clustered using the Louvain method (Blondel et al., 2008). The normalized
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H factor coordinates were also used as input to project cells on to a nonlinear 2D space
using the Uniform Manifold Approximation and Projection algorithm (UMAP; Becht et al.,
2019). Graph-construction, clustering and the UMAP projection were performed using the R
packages FNN, igraph and umap, respectively.

Separation of major cell classes

We began by clustering the full dataset combining all ages using the procedure outlined above. For
applying Liger, each age was regarded as a separate “batch” but replicates within an age were not
distinguished at this stage.

Approximately 40 clusters were distinguished at this stage. For each cluster, we computed a signa-
ture expression vector by averaging the expression levels of HVGs across the cells. These expression
vectors were used to perform hierarchical clustering, which enabled us to visualize the transcriptional
interrelationships between these clusters as a dendrogram. Hierarchical clustering was implemented
in the R package hclust (correlation distance, average linkage method). Major clades in the re-
sulting dendrogram corresponded to well known retinal classes and this was confirmed by their
expression of known class-specific markers. Each cluster was therefore assigned to its class, which
included retinal ganglion cells (RGCs; Rbpms, Slc17a6, Sncg, Nefl), microglia (P2ry12, Clqa-c,
Tmem119), photoreceptors (Otz2, Gngt2, Gnb3), amacrine cells (Tfap2a, Tfap2b, Onecut?), ante-
rior segment cells (Mgp, Col3al,Igfbp7), cycling progenitors (Ccnd1, Fgf15, Hes5) and neurogenic
progenitors (Hes6, Ascll, Neurog2). Deeper annotation (e.g. of RGC type) was not done at this
stage.

No other cellular classes were identified. 3 clusters comprising fewer than 1.2% of the cells expressed
markers of more than one class. These were flagged as doublets and removed from further analyses.

Clustering RGCs at each time point

RGCs identified in step “Separation of Major Cell Classes” were segregated by age, and each group
was separately analyzed following the clustering pipeline outlined previously. When implementing
Liger, each biological replicate was regarded as a separate batch. The nominal clusters identified
by the Louvain algorithm were refined as follows:

1. Removing contaminants: Clusters were flagged for further examination if they did not exclu-
sively express RGC-specific markers (e.g. Rbpms, Slc17a6, Sncg, Nefl). These clusters were
small (typically < 1-2% of cells) and in all cases expressed non-RGC markers (e.g. P2ry12
or Tfap2b). These cells, which likely reflect trace contaminants, were discarded from further
analysis.

2. Merging prozimal clusters: Transcriptomic relationships between nominated clusters were
visualized on a dendrogram computed using hierarchical clustering, as noted above above.
Neighboring clusters on the dendrogram, which were leaves in a terminal branch, were assessed
for differential expression using the MAST differential expression (DE) test (Finak et al.,
2016). A gene g was regarded as significantly DE between clusters C, and C, if it satisfied
llogFCy(Cq, Cp)| > 0.5 and MAST p value was less than 107> (FDR corrected), where:

Xgn
logFCy(Ca,Cp) = In (ICb!Zneca p )

|Ca’ Znecb Xgn
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is defined to be the log-fold change in expression. Clusters that showed fewer than 10 signifi-
cant DE genes were merged.

In this manner, we identified 10 RGC clusters at E13, 12 at E14, 19 at E16, 27 at PO, and 38 at P5.
Using MAST, we identified DE genes that distinguished each cluster against the rest at any given
age.

Joint analysis with whole-retina scRN A-seq datasets

We compared our data with two scRNA-seq studies that profiled the whole retina during develop-
ment:

1. Clark et al., Neuron, 2019: Count matrices and cell/gene level annotations were downloaded
from the author’s public repository https://github. com/gofflab/developing_mouse_retina_
scRNASeq. This dataset contains whole retinal cells sampled at 10 time points (E11, E12, E14,
E16, E18, PO, P2, P5, P8, P14) with four of these (E14, E16, PO, P5) common with our study.
We excluded P5 from our analysis as only N = 11 RGCs were identified by the authors at
this time point.

2. Giudice et al., Development, 2019: Count matrix corresponding to E15.5 retinal cells was
kindly provided by the authors.

For consistency with our filtering parameters, we extracted cells based on a cutoff of 700 genes/cell
from each of the above datasets. For the Clark et al. dataset, this selected 17,827 cells at E14, 1,674
cells at E16 and 8,343 cells at PO respectively (N=27,844 cells). In these samples, RGCs comprised
19%, 28% and 0.45%. For the Giudice et al. dataset, this selected 5218 cells, of which 23% were
RGCs.

These were combined with the retinal cells profiled in this study at corresponding time points (25,685
cells at E14; 21,274 cells at E16; and 23,251 cells at P0). Together this resulted in a 14,350 genes
x 103,272 cells expression matrix that was analyzed following steps outlined previously. In the
alignment step, cells from each combination of age and study was considered as a separate “batch”.

We visualized the transcriptional heterogeneity of the full dataset using UMAP, and used the ex-
pression of canonical markers to confirm the co-clustering of cell-classes in Figure S2 (Rbpms for

RGCs, Tfap2b for ACs, Fgf15 for RPCs and Gngt2 for RPCs).

Diversity Indices

We quantified the molecular diversity of RGCs based on clusters at each stage using 3 measures
of population diversity - The Rao index (Figure 2), the Shannon index, and the Simpson index
(Figure S2). For N clusters with relative frequencies pi,pa,...,pn, these indices are defined as
follows,

e Let d;; be a distance measure between clusters i and j (0 < d;; < 1). The Rao index is defined
as,
R=>di;pip,
i#]
We used varying number of genes (=~ 1200-3000) to calculate d;;. The computed Rao index
was insensitive to these variations.
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e The Shannon index is defined as,

H=-> pilogp
7

e The Simpson index is defined as

S=) »

While the Rao and Shannon indices increase with diversity, the Simpson index decreases with
diversity.

Analysis of cluster distinctiveness
We quantified the mutual separation of clusters at each age using two approaches:

Multi-class classification: We trained a multi-class classifier (R package xgboost) at each age on
50% of the cells using their cluster IDs. The remaining 50% of the cells were used to test the learned
classifier and estimate a classification error per cluster, which were averaged at each age. As clusters
become better separated, the average classification error decreases.

Relative positions in PCA: At each age, the top 20 PCA coordinates were first standardized by
z-scoring. For each cluster C' at a given age, we computed two quantities:

e ¢, the median of euclidean distances of each cell from the cluster centroid in the standardized
PCA coordinates.

e do, the median of euclidean distances of each cell from the centroid of the nearest external
cluster.

For a cluster C, a low of value r¢/d¢ indicates a higher degree of separatedness. Averaging this
metric across all the clusters at a given age quantifies the degree to which clusters are separated in
the UMAP representation.

Relating clusters across ages using XGBoost

Analysis Overview: To distinguish between “specified” and “non-specified” modes of diversification
(Figure 3), we first used a supervised classification approach to associate immature RGC clusters
at young ages (tests) to cluster IDs determined at a older ages (references). We used XGBoost,
a decision-tree based ensemble learning algorithm (Chen and Guestrin, 2016), to train multi-class
classifiers on reference clusters, and used these to assign labels to individual test RGCs.

Two kinds of references were used: (1) Classifiers trained on the adult (P56) clusters were used
to assign immature RGCs at each of the five developmental ages (five separate analyses) to adult
labels. (2) Classifiers trained on E14, E16, P0, and P5 clusters were used to assign E13, E14, E16,
and PO RGCs to labels corresponding to the previous age, respectively (four separate analyses).
The correspondence between classifier assigned labels and cluster IDs of test RGCs were visualized
using confusion matrices (e.g. Figure 3D-H) and quantified using two metrics - the Adjusted Rand
Index (ARI) and Normalized Conditional Entropy (NCE) metrics, described below.

Classification Overview: To describe our classification analysis, we introduce some notation to fa-
cilitate a description in general terms. Let A and AT denote the reference and the test atlases for
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the purpose of supervised classification. The number of cells (i.e. RGCs) contained in the reference
and test atlases are denoted |AF| and |AT|, respectively. AF and AT could be any pair of ages
as described above. Without loss of generality, let us assume that A® contains r transcriptomic
clusters denoted denoted {sz, C&,...,CE}. Similarly, the A7 is assumed to contain ¢ transcriptom-
ically defined clusters denoted {C{,CT, ..., CI}.

Each cell in our dataset is the member of a particular atlas, and is assigned to a single cluster
within the atlas based on its transcriptome. The transcriptome of each cell is a vector (denoted
using lowercase boldface symbols, e.g. u or v) with number of elements equal to the number of
HVGs (the features used for classification). Let cluster(u) denote the transcriptionally assigned of
cell u. For example, the following statement,

u € AT cluster(u) = C}

translates to “Cell u in atlas A” is a member of cluster Cg.” Our goal is to assign each cell u € A7
a second ID cluster’(u) based on its transcriptomic correspondence to the reference atlas A%, We
accomplish this via an XGBoost classifier trained on A® and applied it to every cell in A7, allowing
us to infer transcriptomic correspondences between the two sets of clusters. The main steps are as
follows,

e The expression matrices in Af and A" are z-scored along each feature. The initial set of
features are chosen as the common HVGs in the two atlases. Parameters are adjusted to
select the common top ~2000-3000 HVGs.

e Classifiers Class)’ and Class] are trained on A® and AT independently. For training, we
randomly sample 60% of cells in each cluster up to a maximum of 300 cells. The remaining
“held-out" cells are used for validation. We ran the training routine for xgboost with the
following parameter specification *,

xgb_params <- list("objective" = "multi:softprob",
"eval_metric" = "mlogloss",
"num_class" = nClusters,

"eta" = 0.2,"max_depth"=6, subsample = 0.6)

e When applied to a cell vector u, the classifier CIassOR (or CIassOT) returns a vector of p =
(p1,p2,...) of length r (or ¢) with entries representing probability values of predicted cluster
memberships in the corresponding atlas. We use these values to compute the “softmax”
assignment of u, so that cluster’(u) = arg max; p;.

e Post training, Classy’ and Classi are evaluated on the respective validation sets. Using the
predicted cluster assignments of the “held out” cells, we compute for each cluster in A® and
AT the error-rate, defined as the fraction of held-out cells that were misclassified. If the error-
rate for any cluster was higher than 10%, the classifier is retrained by artificially upsampling
cells from the high error-rate clusters. In the final classifiers, the cluster-specific error rates
were typically 1-4%, and in no case exceeded 10%.

*https://xgboost.readthedocs.io/en/latest /parameter.html
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e The top 500 discriminatory features (genes) are identified based on average information gain
(using the function xgb.importance) for each of Classy and Class]. These gene sets are
denoted as as G® and G, respectively.

e The common features G = G N GT are used to train a third classifier Class™ on the reference
atlas A®. This ensures that inferred transcriptiomic correspondences are based on “core” gene
expression programs that underlie cell type identity rather than maturation-associated genes.

e Finally, Class™ is applied to each cell u € AT to generate predicted labels cluster’(u). Global
transcriptional correspondence were visualized using confusion matrices between cluster IDs
cluster(u) € {CI,cl,... ,Cl'} and reference assignments cluster’(u) € {CF,CL, ... CE}, and
their correspondence was quantified using metrics described below.

Quantifying cluster correspondence using global and local metrics
Let NN;; denote the number of cells in AT that are part of transcriptomic cluster CJT, and are assigned

by Cr to reference cluster Cft. Thus,

Nij = #{cluster’(u) = C, cluster(u) = CjT Vue AT} (4)

]

N;j defines a contingency table, whose marginal sums are defined as,

t

a; = Z Nij
7j=1
r

bi =Y Ni
i=1

Let N = > .. Nij = | AT, the number of cells in A”. Then the Adjusted Rand index (ARI)
corresponding to the assignments can be evaluated using the following equation (Hubert and Arabie,
1985),

>y () - (2@ 2 )] /6)
L@+, 0] - [Z@ sG] /G)

The ARI ranges from 0 and 1, with extremes corresponding to random association and 1:1 corre-
spondences between AT and AR, respectively .

ARI = (6)

As an alternative, we also used the Normalized Conditional Entropy (NCE), an information-
theoretic measure (Cover and Thomas, 1991). The NCE quantifies the extent to which knowledge
of the value of cluster’(u) reduces the uncertainty (measured in information bits) about the value
of cluster(u) for u € A”.

We introduce probability weights ¢;; and the corresponding marginals ¢;  and ¢ ; as follows,

TThe ARI can technically also take on negative values for certain scenarios, but these are not observed in our data
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_ N
qij = N
.
5= @
b;
4.5 = N

The Conditional Entropy (CE) is then given by the expression (Cover and Thomas, 1991),
H (cluster(u) | cluster’(u)) = — quj log iz}
y q;,.
ij

Note that CE is asymmetric, i.e. H(cluster(u) | cluster’(u)) # H(cluster’(u) | cluster(u)). One
notes that H = 0 if for each cluster ¢ € 1,...,r, g;; = d; 1,, where 0y, is the Kronecker delta defined
as,

§ij=1, ifi=j
=0, ifi#j

Finally, NCE is defined as,

H (cluster(u) | cluster’(u))
H (cluster(u)) )

where H (cluster(u)) = — 3>, ¢ ;jlogq ; is the Shannon entropy (Cover and Thomas, 1991). Due
to the normalization in equation (9), NCE values range from 0 to 1, with extremes corresponding
to fully specific mapping or random association, respectively between AT and A®. ARI (equation
(6)) and NCE (equation (9)) are inversely related. Unlike ARI, however, NCE is able to detect
specificity in both many:1 and 1:1 mappings. ARI returns a value lower than 1 for specific mappings
if the number of clusters in A7 and A" are not equal

ARI and NCE quantify global correspondences between AT and AF. We also computed a local
metric, the Occupancy Fraction (OF) that quantified whether individual reference labels C'ipL
were distributed in a “localized” or “diffuse” manner between test clusters {C{,CT ... ,Cl'}

NCFE =

op(ch) =+ |—L (10)

t Z 9ij 2
J qi,.

Note that the term Z:j is simply the fraction of the total test cells belonging to test cluster CjT

that are assigned to reference cluster CZR by the classifier. Defined this way, the term in the square
brackets computes an occupation number that ranges from 1 to ¢ and can be interpreted as the
number of test clusters that are specifically associated with C . Division by ¢, the number of test
clusters, therefore converts this number into a fraction.

Waddington Optimal Transport (Waddington-OT)

To identify fate relationships among maturing RGCs used Waddington-OT (Schiebinger et al., 2019),
a recently developed framework that is rooted in Optimal Transport theory (Villani et al., 2008).
Waddington-OT does not rely on clustering, and therefore is able to identify ancestor-descendant
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relationships between any pair of temporally separated RGCs in our data.

At its heart, Waddington-OT models cellular transcriptomes {u} measured at a given age ¢ as
a probability distribution in gene expression space P;(u) . This probability distribution evolves
with time, as cells differentiate and mature. Different temporal measurements collected at times

., ti—1, ti, tiy1, ... represent temporal snapshots of the corresponding cell distributions ...,P;, |,
Py, Py, .... Unfortunately, as each cell can only be measured once, the measurement at different
times are from different cells. Therefore, for a particular cell u at time ¢;, it is not clear which
cell(s) at time ¢, is likely to be its ancestor(s) and which cell(s) at time ¢;;; are likely to be
descendant(s). It is this problem at Waddington-OT addresses.

Overview of the inference procedure: Briefly, for a given pair of consecutive transcriptomic snap-
shopts P, (u) and Py, 1(v), we wish to estimate the joint distribution I, ¢, , (u, v), representing the
probability that a cell having an expression vector u at time ¢; transitions to a cell with an expression
vector v at time ¢; ;1. Iy, 4, , (u, v) is also called the temporal coupling, which, owing to the destruc-
tive nature of scRNA-seq assays, is not directly observable. Under the assumption that cells move
short distances in transcriptomic space when At; = ;41 — t; is “reasonably close”, Waddington-OT
estimates IIy, 4, ., (u, v) as the solution to the following convex optimization problem,

00 = argmm Z Z c(u, v)II(u,v) — e// u, v) logII(u, v)dudv

ucAti ye Ati+1

+MKL | Y T, v)[[dPy,, (v) | +AKL | YT T(u, v)[[dQy, (u)

ucAti veAti+1

In the above equation,

e P, (v) is an empirical distribution constructed from A%, which denotes the scRNA-seq atlas
at ti,

Ptl ]At Z5V X;)

x; €At

where 6(v —x) denotes the Dirac delta function, a probability distribution placing all its mass
at the location x.

° @ti(u) is the cell distribution at ¢; rescaled by the relative growth rate to account for cell
division/death.
R . u)bi+1i—t
Oy, (u) = Py (u 9( )' -
fg(u)tz+1—tzd1|?)ti

Here g(u) represents the relative growth rate of cell u in the time interval (¢;,t;4+1) and is
estimated within the framework of unbalanced optimal transport (Chizat et al., 2008). For
more details, we refer the reader to the supplementary information of Schiebinger et al., 2019.

e c(u,v) is a cost function defined as the euclidean distance ||u — v||?. The first term of the
objective function minimizes the cost function weighted by the temporal couplings, which may

Note that u may represnt the original gene expression space or a reduced dimensional embedding estimated via
Principal Component Analysis or Diffusion Maps.
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be interpreted as the transport distance between the distributions Py, and P, 41 (also known
as the Wasserstein distance).

e The second term on the RHS represents entropic regularization, and € is the corresponding
strength. Classic OT identifies “deterministic” couplings in that one cell at t; is transported
to a single cell at t;41. Introduction of the entropic regularization term makes this problem
non-deterministic, capturing the notion that there may exist immature cells whose fate is not
completely determined. Our inferences of multipotentialy is directly a consequence of adding
this entropic regularization term. Additionally, entropic regularization also makes the problem
strongly convex, which is computationally beneficial.

e The third and the fourth terms are features of unbalanced optimal transport, where equality
constraints on the marginals (a consequence of mass conservation) are relaxed. A; and A\ are
corresponding Lagrange multipliers.

We note that values of the hyperparameters €, Ay and As are held fixed for all pairwise transport
map calculations (E13, E14), (E14, E16), ... etc.

Application to RGC diversification and long-range couplings: We apply Waddington-OT to each pair
of consecutive ages t; and ¢;11 to estimate the transport map Il s, ,. Transport maps connecting
non-consecutive time points ¢; and ¢, are estimated through a simple matrix multiplication of
intermediate transport maps,
Wity = et Mgyt - Hti+k—l:ti+k

itk it+1

The transport matrices ﬂti’tj encode fate relationships between cells at ¢; and cells at at a later
time ¢; (¢; < t;). These relationships can be analyzed at the level of clusters at t; to associate each
cell u € A% with transcriptomically defined cluster. This is particularly useful in estimating the
terminal identity of immature RGCs.

Operationally we compute for each cell u € A% a “cell fate vector” Tt (Bsu,ty), (B=1,2,...)

encoding the probabilities that u is associated with cluster C;j at time t;,

f Gt Zvecg Iy, (4, v) "
t; \PsW,li) = ~
’ Zﬁ Zvecgj Hti,tj (uv V)

It is easy to verify that.
S h(Brut) =1 Vue A
B

The cell fate vector fi (B;u,t;) encodes probabilistic associations between the cell u and terminal
clusters at t; > ?; indexed by 8. The “cluster ancestry vector” at an earlier time ¢; of a cluster

C;j at time t; > t;, denoted I'y, (u; C;j ), is defined as follows,

N

Evec;j Hti,tj (ua V)

D ueAti Zvecgj Iy, ¢, (u, v)

Ty, (u; C) = (t; < t;) (12)


https://doi.org/10.1101/2021.10.21.465277
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465277; this version posted October 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In a similar vein, the “cluster descendant vector” at a later time t, of a cluster C’;j at time

tj < to, denoted I', (u; C;j), is defined as,

. ZVGC J th to (V7 W)
Ly, (u; O ) = (tj <to) (13)
LoweAto Loy It 1, (v, W)

Equations (12) and (13) can be used to compute the putative ancestral or descendent cells associ-

ated with a cluster ng at time ¢;.

Implementation details of WOT: RGC vectors from all ages were combined, median normalized and
log-transformed. 1761 HVGs were identified using the Gamma-Poisson model, and Waddington-OT
was run on this matrix as follows,

wot optimal_transport --matrix RGC_mat.mtx --cell_days cell_day.txt
--growth_iters 3 --epsilon 0.005 --out tmaps/RGC

Cell days were specified in cell_day.txt as 0, 1, 3, 6, 11 and 20 for E13, E14, E16, PO, P5 and
P56 respectively. We computed trajectories and fates for each age using the following command
illustrated for PO

wot trajectory --tmap tmaps/RGC --cell_set cell_sets.gmt --day 6
-out tmaps/traj_RGC_PO.txt

Fates were computed as,

wot fates --tmap tmaps/RGC --cell_set cell_sets.gmt --day 6
-out tmaps/fate_RGC_PO.txt

The above process was repeated for each age.

Multipotentiality of precursors: For each cell at ages F13 — P5, we used equation (11) to compute
a terminal fate association fpse(B;u,t) (t € {E13, E14, E16, PO, P5}) quantifying the probability
that it is a precursor of type 5 € 1,...,45. Note that fpss(5;u,t) is denoted as fsz for brevity in
the main text. We define,

1
> [prse(Biu,1)?

as the potential of precursor u at age t. Values of P range between 1 and 45, with lower values
indicating restriction of fate and higher values suggesting multipotentiality.

P(u;t) = (14)

Network analysis of fate couplings

We define,

oty = PAT Euen (Frmles ) — Frsoloi)) (froa(Bi 1) — Frl5i0)

1 N2 1 N2
AT 2_ue Al (fP56 (asu,t) — fpse(a; 75)) AT 2ovedt (fP56(5;V,t) - fP56(5;t)>
(15)
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as the fate coupling between RGC types e and 3 at age t. Clearly, C'(a, 8;t) is simply the Pearson
correlation coefficient between fpsg(;u,t) and fpss(S;u,t), the probabilities that a cell u € A? is
a precursor of o or 3 precursor. In equation (15),

fp56 ('S t |.At| Z fp56 a;u, t (16)
ucAt

is the mean probability that a cell at age t is a precursor of type a. We computed C(«, ;)
across all 990 pairs of RGC types at each immature age t € {E13, E14, E16, PO, P5}. The values
C(a, B; E13) were used as edge weights to visualize the fate coupling network of RGC types using the
force-directed layout method (Fruchterman and Reingold, 1991) as implemented in the R package
igraph. The node layout were computed using C'(«, 8; E13) values. For other ages, the node layout
at F13 was retained but the edges were replotted based on C(«, §;t) values at the corresponding age.

We computed a null distribution of C'(«, §;t) by randomizing the values of fpsg(c;u,t) within each
cell u across types. Null values of C(a, ;t) rarely exceeded 0.1 and never exceeded 0.2, so only
edges with larger weights were visualized in Figure 5.

Decay of pairwise couplings

For each pair of RGC types a and 3, we fitted a logistic equation to model the decay of pairwise
couplings as,

1
Clofit) =13 exp(Bo + Bit)
The values of ¢ corresponding to E13, E14, E16, PO and P5 were ¢t = 0,1, 3,6, 11, with C(«, ;)
computed using equation (15). We also assumed that C(a, 8;t) = 0 at ¢ = 36, corresponding to
P30. Thus, six data-points were used to estimate two parameters for each of the 180 pairs of RGC
types that had non-zero values of C(«, 8;t). The nls function from the R package stats was used
to estimate By and B;. The results are plotted in Fig. 5f.

(17)

Logistic modeling of specification and calculation of 7,

We hypothesized that the specification of a type 8 corresponds to the localization of its precursors
in transcriptomic space. The extent of localization for a RGC type 8 at across the time course was
calculated as follows. At each age t, we identified the set of precursor RGCs Prec(3;t) showing the
highest fate probability corresponding to type 3,

Prec(B;t) = {ue A" | fpsc(Biu,t) > fpss(a # Biu,t)} (18)
Next, we calculated how the precursors of 5 were distributed across clusters at time t. We computed
the occupancy fractions of precursor cells for type 8 across all cluster Ci,k = 1,2,...,N(t) at a

particular time ¢ (N(t) is the number of transcriptomically defined clusters at time ¢),

#{cluster(u) = C, V¥ u € Prec(f;t)}
pr(Bit) = #{u € Prec(p;t)}

The localization score for each type 8 at a given time t was defined as,

Zkl

Localization(g;t) = 1 — % (20)

Ek:l

(19)
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where the index k ranges over the number of clusters at time t. As defined Localization(f;t) is
restricted to be between 0 to 1, with higher values representing a greater specification. We used a
logistic model to approximate the localization of each type as,

exp(yo + 71t)
1+ exp(yo0 + 71t)
As in the previous section the nls function was used to estimate the logistic parameters vy and
1. We consider a type [ as specific if it crosses the line y(¢) = 0.95 (1 -1/ chvz(tl) 1). Thus the

specification time for a type 3 is defined as,

Localization(8;t) = (21)

Top(B) = argtmin Localization(5;t) > y(t) (22)

Note that as defined, 74, can be any time point in the interval (E13, P30) corresponding to ¢t € (0, 36).

Inference of laterality in RGC types

To identify putative ipsilateral and contralateral specified-RGC precursors at K13, we scored each
precursor RGC based on their expression of bonafide ipsilateral genes (Zic2, Zicl and Igfbp5) and
bonafide contralateral genes (Isl2, Fgf12, Igfl) as in (Wang et al., 2016). We refer to these as
I-RGC and C-RGC scores. Putative I-RGCs were those cells that expressed the I-RGC score at 1.5
standard deviations higher than the mean across all cells, and those that express the C-RGC score
at 1.5 standard deviations lower than the mean across all cells. C-RGCs were defined analogously.
Many cells did not express either of these marker sets as shown in Fig. 7c. These are likely to be
RGCs that have not declared their laterality, or C-RGCs that are not defined by the expression of
Isl2, Fgf12, and Igf1.

WOT was then used to compute the descendants of E13 I-RGCs at all subsequent ages through P56
using the wot fates command introduced above. These descendants were used for two purposes.
First, we assessed the proportion of putative - RGCs across types as in Fig. 7d. We also performed
a differential gene expression test between putative [-RGCs and the remaining RGCs at all ages, as
shown in Figs. 7e,f and Supplementary Figs. 8d,e.
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Figure 1, Transcriptomic profiling of single postmitotic RGCs during embryonic
and postnatal development in mice.

a. Sketch of a section of the mouse retina showing major cell classes - photoreceptors
(PRs; rods and cones), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs),
Muller glia (MGs) and retinal ganglion cells (RGCs). PRs reside in the outer nuclear layer
(ONL), while BCs, HCs and most ACs reside in the inner nuclear layer (INL). RGCs and
some ACs reside in the ganglion cell layer (GCL). Axons of RGCs project to higher visual
areas via the optic nerve.

b. Retinal section of the indicated ages labeled for the cell-cycle marker MKI67 (red) and
the RGC marker RBPMS (green); nuclei are counterstained by the Hoeschst dye (blue).
Micrographs are orientated as the schematic in panel a.

c. Visualization of transcriptional diversity of 98,452 cells using Uniform Manifold
Approximation and Projection (UMAP), a nonlinear dimensionality reduction algorithm
that assigns proximal x-y coordinates to cells (dots) with similar transcriptional profiles®’.
d. Same as c, with cells colored by cell class, assigned based on transcriptional
signatures displayed in panel e. RPC, retinal progenitor cells; Ant. Seg., anterior segment
cells.

e. Tracksplot showing expression patterns of cell-class specific marker genes (rows)
across single cells (columns). Cells are grouped by class as in d. For each class, we
randomly sampled 20% of total cells covering all immature time points (E13, E14, E16,
PO, P5). For each gene, the scale on the y-axis (right) corresponds to normalized, log-
transformed transcript counts detected in each cell.
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Figure 2. The number and discreteness of transcriptomic clusters of RGCs
increases with age.

a. Extreme models of RGC diversification. In one scenario (left) immature RGCs commit
to one of the terminal types by the time of birth (i.e. mitotic exit) or shortly after.
Alternatively (right), initially identical postmitotic RGC precursors acquire distinct
molecular identities in a gradual process of restriction.

b-g. Visualization of transcriptomic diversity of immature RGCs at E13 (b), E14 (c), E16
(d), PO (e), P5 (f) and P56 (g) using UMAP. Cells are colored by their cluster identity,
determined independently using dimensionality reduction and graph clustering
(Methods). Clusters are numbered based on decreasing size at each age. Data for adults
(P56) are replotted from ref. 10. In that study 45 transcriptomic types were identified via
unsupervised approaches, one of which was mapped to 2 known functional types by
supervised approaches. We do not distinguish them in this study.

h. Transcriptional diversity of RGCs as measured by the Rao diversity index (y-axis)
increases with age (x-axis). The trend is insensitive to the number of genes used to
compute inter-cluster distance (colors). See Methods for details underlying the
calculation.

i. Transcriptomic distinctions between RGC clusters become sharper with age as shown
by decreasing average per-cluster error of a multiclass-classifier with age. Gradient
boosted decision trees® were trained on a subset of the data, and applied on held out
samples to determine the test error.

j- RGC clusters also become better separated in the UMAP embedding, as shown by
decreasing values of the average relative cluster diameter with age.
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Figure 3. Incompletely specified temporal relationships among RGC clusters.

a. Top: Specified (leff) and non-specified (right) modes of diversification. Nodes denote
transcriptomic clusters of immature RGCs, and arrows denote fate relationships. Botfom:
Confusion matrices depicting transcriptomic correspondence between late and early
clusters expected for the two modes. Circles and colors indicate the percentage of a given
late cluster (row) assigned to a corresponding early cluster (column) by transcriptome-
based classifier trained on early clusters. The number of late and early clusters have been
set to eight and four for illustration purposes.

b. Barplot showing values of the normalized conditional entropy (NCE) for each age
calculated using the transcriptional cluster IDs and the Xgboost-assigned cluster IDs
corresponding to the next age or to P56 (E.g. for E13, the NCE was calculated across
E13 RGCs by comparing their transcriptional cluster ID with assigned E14 cluster IDs
based on a classifier trained on the E14 data). Lower values indicate specific mappings.
c. Same as b, but plotting values of the adjusted Rand Index (ARI), where larger values
correspond to higher specificity.

d-h. Confusion matrices (representation as in a), showing transcriptomic correspondence
between consecutive ages: E14-E13 (d), E16-E14 (e), PO-E16 (f), P5-P0 (g), P56-P5 (h).
In each case, the classifier was trained on the late time point and applied to the early time
point. Rows sum to 100%.
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Figure 4. Multipotential fate associations between immature RGCs and terminal
types inferred via Optimal Transport

a. Extreme models of diversification at single-cell resolution. Multipotential fate
associations in a transcriptionally defined cluster (ellipse) could arise from a mixture of
unipotential RGCs (left) or from multipotential RGCs (right).

b. Distributions of potential P across immature RGCs by age showing that restriction
increases with age.

c. Inter- and intra-cluster variation of potential by age. At each age, variation in the
potential values are shown for each transcriptomically defined cluster at that age. Dots
denote the average potential and dotted lines depict the standard deviation for cells within
each cluster.

d-h. UMAP projections of E13 (d), E14 (e), E16 (f), PO (g) and P5 (h) RGCs as in Fig. 2,
but with individual cells colored by their inferred potential. Potential of all RGCs at P56
=1. The colorbar on the lower right is common to all panels, and values are thresholded
at P = 20.
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Figure 5. Fate decoupling of RGC types

a. Force-directed layout visualization of fate couplings at E13, with nodes representing
RGC types (numbered as in Tran, 2019) and the thickness of edges representing values
of C(I,m;E13). Edges with C(l,m; E13) < 0.2 are not shown. Number of edges with C(I,m;
E13) > 0.2 are indicated on top.

b-e. Visualization of fate couplings at E14 (B), E16 (C), PO (D) and P5 (E). The positions
of the nodes are maintained as in panel a, but the edges are redrawn based on values of
C(,m;age) at each age. As in panel a, we only show edges C(I,m; age) > 0.2.

f. The decay of pairwise fate couplings (y-axis) with age (x-axis). Each line corresponds
shows the temporal decay of C(l,m) for RGC pair | and m estimated via a logistic model
(Methods). For each pair, couplings at each age were fit to a model C(l, m; age) = 1/(1 +
ePotbiragey with B, B, representing fitted parameters. The fitting was performed using
data for ages E13, E14, E16, PO and P5. The shaded portions correspond to the periods
E8-E13 and P5- represent extrapolations of the model. Black lines highlight the decay of
all non-zero pairwise couplings for RGC type C8 as an example.

g. Schematic showing logistic modeling to estimate specification time z,, for a particular
type. The y-axis is a measure of the extent to which precursors biased towards the type
are present in a single transcriptomically defined cluster (i.e. localization, see Methods
for details). Localization is defined as a numerical value in the range (0, 1) with higher
values consistent with increasing specification. Individual triangles represent the
localization values computed using WOT inferred fate couplings at each age, while the
curve represents the fit using the logistic model. Dotted line shows the minimum threshold
a type to be specified at each age. Its curved shape arises due to the increase in the
number of clusters with age.

h. Localization curves (as in panel g) for the 38 RGC types showing the range of inferred
specification times. 7 low frequency types have been excluded from display (see
Supplementary Fig. 6d).

i. Scatter plot showing poor correlation between adult frequency of a type (from ref. 9)
and its predicated specification time (calculated from H).
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Figure 6. Temporal dynamics of RGC subsets expressing specific TFs

a. E13 network graph of fate couplings from Fig. 5a, with RGC types colored based on
their selective expression of TFs at P56. Asterisks denote 3/45 types that express more
than 1 TF (also see Supplementary Fig. 7a).

b. Box-and-whisker plots showing that pairwise fate couplings are higher between types
within the same TF subclass than between types in different TF subclasses at all
immature ages. Black horizontal line, median; bars, interquartile range; vertical lines, 15t
and 99" percentile; dots, outliers. Stars indicate significant p-values based on a two-sided
t-test (****, p < 107; ***, p < 105, ** p < 102).

c. Eomes+ types. Top: UMAP representation of E13 RGCs with cells colored based on
their cumulative fate association towards the 7 Eomes+ types. Bottom: UMAP
representation of P5 RGCs with cells colored based on their cumulative fate association
towards the 7 Eomes+ types. The value corresponding to the color of each cell (colorbar,
right) can be interpreted as the probability of commitment towards the corresponding
subclass.

d. Same as c for Mafb+ types

e. Same as c for Neurod2+ types

f-h. Localization curves (as in Fig. 5g) for Eomes+ types (f), Mafb+ types (g) and
Neurod2+ types (h). The mean inferred specification time 7, for each group is indicated
on top of each panel.
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Figure 7. Transcriptomic identification of ipsilaterally projecting RGCs

a. Zic2, an I-RGC marker and /sl2, a C-RGC marker, are expressed in a mutually
exclusive pattern at E13 (left), E14 (middle) and E16 (right). Zic2 is undetectable after
E16 (Supplementary Fig. 8a). Cells are colored based on a bivariate color scale
representing co-expression of two markers (colorbar, right).

b. Zic2 and Igfbp5, two I-RGC markers, are co-expressed at E13 (left) and E14 (middle).
Representation as in panel a.

c. Scatter-plot of gene signatures used to identify I-RGCs (y-axis) and C-RGCs (x-axis)
at E13 are negatively correlated (Pearson R =-0.61). Each dot corresponds to a cell, the
color represents the number of cells located at a particular (x,y) location (see colorbar,
right).

d. Barplot showing % of putative I-RGCs (y-axis) within each of the 45 adult RGC types,
estimated by computing the descendants of E13 I-RGCs using WOT. RGC types are
arranged along the x-axis based on their membership of TF-groups shown in Fig. 6a
(annotation matrix, bottom).

e. Volcano plot showing DE genes (MAST test, p < 10) between predicted I-RGCs and
C-RGCs at E13. The x- and the y-axes show the fold-change and the p-value in log2- and
log10- units, respectively. Dots represent genes, with red and blue dots highlighting |- and
C-RGC enriched genes respectively at fold-change > 1.5 and Bonferroni corrected p-
value < 5x10°. The two vertical bars correspond to a fold-change of 1.5 in either direction.
Select I-RGC and C-RGC enriched genes are labeled.

f. Same as panel e, for E14.
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SUPPLEMENTARY FIGURES AND LEGENDS
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Supplementary Figure 1. Separation of major transcriptomic groups and
assessment of immature RGCs at E13-P5.

a. Retinal sections stained with L71CAM (red), which was used to enrich for RGCs at early
stages, and the pan-RGC marker RBPMS, (green) at E13, E14, E16 and PO. Nuclei are
counterstained by the Hoeschst dye (blue).

b. Relative proportions (y-axis) of major cell classes shown in Fig. 1c-e at each
combination of age and enrichment method. Both anti-Thy1 and anti-L1cam were used
to enrich RGCs at E13, E14, E16 and PO, but only anti-Thy1 was used at P5, because
L1cam becomes localized to axons postnatally. AC, Amacrine Cells; RPC, retinal
progenitor cells.

c. Box and whisker plots show gene expression levels of key markers by RGCs as a
function of age and enrichment method. Markers shown shown are two pan-RGC
markers, Rbpms, Nefl, and the two cell-surface proteins used for enrichment, Thy7 and
L1cam. Note that Thy1 expression is poor at E13, consistent with low RGC yield in anti-
Thy1 enriched cells (panel B). Black horizontal line, median; bars, interquartile range;
vertical lines, range; dots, outliers.

d. Dotplot showing genes (columns) that are selectively expressed in RGCs and RPCs.
The size of each circle is proportional to the percentage of cells expressing the gene, and
the color depicts the average log-normalized expression.

e. Co-embedding analysis of E14, E16 and PO data collected in this study with whole
retina single-cell transcriptomes in independent studies: E14, E16 and PO data from3' and
E15.5 data from“*3. Cells (points) are visualized in UMAP and colored by study of origin.
f. Same as e, with cells colored by the expression level of Nefl, an RGC marker. This
shows the higher enrichment of RGCs in our study compared to3' and*3.

g. Same as d, with cells colored by expression level of Fgf15, an RPC marker.

h. Relative proportions of major cell classes across different datasets analyzed in panel
e separated by age. T, this study.
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Supplementary Figure 2. Transcriptomic diversity of immature RGCs by age.

a-c. UMAP embedding for RGCs at E14 (a, same as Fig. 2c¢), E16 (b, same as Fig. 2d)
and PO (c, same as Fig. 2e) with cells colored by enrichment method showing comparable
transcriptomic diversity of immature RGCs enriched by L1cam or Thy1.

d. Simpson and Shannon diversity indices (see Methods) associated with clustering
decrease and increase with age respectively, consistent with increasing transcriptomic
diversity.
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Supplementary Figure 3. Temporal correspondences between transcriptomic
clusters evaluated using supervised classification.

a-d. Confusion matrices, showing transcriptomic correspondence between adult RGC
types at P56 (rows) and immature RGC clusters (columns) at ages E13 (a), E14 (b), E16
(c) and PO (d). In each case, immature RGCs were assigned adult labels using an
Xgboost classifier trained on adult RGCs. The P56 to P5 mapping is shown in Fig. 2h.
e. Line plots showing occupancy fraction (OF) of mapping of an early cluster to cluster
IDs at later ages. OF values quantifies the specificity of mapping of an early cluster to late
clusters, with lower values denoting higher specificity. The average occupancy fraction
across clusters decreases steadily with age consistent with the decrease and increase in
NCE and ARI respectively (Figs. 3b,c). Error bars indicate standard deviation computed
across clusters. Also, as expected, the occupancy fraction values are lower for mapping
to adjacent time points than to P56.
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Supplementary Figure 4. Variations in WOT inferred temporal couplings and tests
across variations in hyperparameters.

a. Variations in WOT inferred temporal couplings (I1;;) at the level of cells and clusters to
changes in the set of highly variable genes (HVGs) used for computing transport maps.
Four sets of features were tested corresponding to the top 800, 1100, 1400 and 1800
HVGs based on our previously described Poisson-Gamma model (Pandey et al., 2018).
Using these sets, we inferred four corresponding transport maps at each of the 5 age
pairs E13-E14, E14-E16, E16-P0, P0-P5 and P5-P56. The entropic regularization
hyperparameter € (see panels b, c) was held constant at a value 27 in these tests. At
each age pair, we computed the Pearson correlation coefficient (PCC) between estimated
temporal couplings for every older cell (column of the transport map I1) across each
pairwise combination of the four transport maps, towards a total of 6 combinations. These
are indicated as red dots and lines (mean + SD). We then grouped (summed) the rows
of the transport map by transcriptomic cluster at the younger age, such that each element
of the new matrix indicates cell (column)-cluster (row) couplings. The PCC of these
couplings were computed for each older cell (column) within each pairwise combination
of the four transport maps and are indicated as green dots and lines (mean + SD). Finally,
we grouped (summed) both the rows and columns of the transport map by transcriptomic
cluster at either age to obtain a matrix of cluster-cluster couplings. The PCC values of
these couplings were computed for each older cluster within each pairwise combination
of the four transport maps and are indicated as blue dots and lines (mean + SD). We
find that the cell-cell couplings increase in robustness at later ages, but the cell-cluster
and cluster-cluster couplings are quite robust (correlation > 0.6).

b. Variations in WOT inferred temporal couplings at the level of cells and clusters as in
panel A, but to changes in the entropic regularization e. Six values were used - (28, 27
, 26, 25 24 2-3) with increasing values corresponding to more transport maps with
decreasingly localized (or increasingly distributed) couplings. At each age pair, 6 transport
maps are computed and PCC values for cell-cell, cell-cluster and cluster-cluster couplings
are computed as in panel A for each of 15 transport map pairs. Here too, the cluster-
cluster and cell-cluster couplings show higher stability, although at later stages higher
values of e exhibit loss of stability even at the cluster-cluster level (see panel c).

c. Heatmap showing cluster-cluster PCC values for P5-P56 transport maps inferred using
different values of the entropic regularization parameter, epsilon (rows and columns).
Loss of stability occurs at higher values of the entropic regularization, consistent with
panel B. Based on this we used epsilon =27 to calculate results shown in Fig. 4.
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Supplementary Figure 5. Temporal correspondences between transcriptomic
clusters evaluated using Waddington Optimal Transport, related to Figure 4

a-e. Average temporal couplings at the level of clusters. Panels correspond to the pairs
E14-E13 (a), E16-E14 (b), PO-E16 (c), P5-P0 (d), P56-P5 (e), respectively. In each case,
the WOT inferred transport map was grouped along rows and columns based on
transcriptomic cluster, and the elements were summed within each group. The resulting
matrix was normalized such that each row sums to 100%. These matrices strongly
resemble those in Figs. 3d-h, as confirmed by the high values of the Pearson correlation
coefficient (top, all p=0.92).
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Supplementary Figure 6. Fate decoupling and temporal specification of RGC types.
a-c. Examples of fate decoupling. Panels from left to right correspond to ages E13-P5
with precursor RGCs shown on a reduced dimensional UMAP representation as in Figs.
2c-g. Each RGC is colored using a biaxial color scale (legend) based on its predicted fate
values. C12 and C22 are transcriptomically distinct as early as E13 (a). C19 and C20
exhibit high fate coupling at all embryonic ages and are only decoupled at P5 (b). C21
and C34 decouple around E16 (c).

d. Same as Fig. 6h showing specification curves for RGC types, but in this case each
curve is colored based on adult frequency (colorbar, right). The 7 curves marked by
asterisks correspond to late-specified types. As can be seen from their colors, they are
also among the types with the lowest frequency (<0.3%), which may result in the dropout
of the corresponding precursors because of sampling fluctuations. Such dropouts at
earlier time points give the appearance of late specification. Because of this issue, we
exclude them from our analysis.
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Supplementary Figure 7. Transcription factor (TF) based subgroups.

a. Dotplot showing mutually exclusive patterns of expression of TFs that mark groups of
RGC types. In addition to the 8 TFs shown in Fig. 6a, we highlight Zic1, which selectively
labels C6. Selectively expressed TFs could not be identified for 4 types (C1, C2, C11,
and C15).

b-e. Localization curves (as in Fig. 5g) for Tbr1+ types (b), Tfap2d+ types (c), Foxp2+
types (d) and Bnc2+ types (e), Note that the “low frequency” types labeled in
Supplementary Fig. 6d are not shown. The mean specification time z,, for each group
is shown above the graphs.

f. Correlation of fate coupling at E13 with transcriptomic correlation at P56.

g. Same as Fig. 6a, with nodes corresponding to subclasses defined in Tran et al.,
2019, which includes ipRGCs, alpha-RGCs and T5-RGCs.
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Supplementary Figure 8. Transcriptomic analysis of RGC laterality.

a. RGCs at E13, E14, E16, PO, and P5 colored by their expression of Zic2, an I-RGC
marker. Zic2 is expressed in a localized fashion until E16 and becomes undetectable
beyond this age.

b. Zic2, an I-RGC marker and Igf1, a C-RGC marker, are expressed in mutually exclusive
patterns at E13-E16.

c. Zic2 and Zic1, two I-RGC markers, are co-expressed in subsets of RGCs at E13-E16.
d. Volcano plot showing DE genes (MAST test, p < 10) between predicted I-RGCs and
C-RGCs at E16. The x- and the y-axes show the fold-change and the p-value in log2- and
log10- units, respectively. Dots represent genes, with red and dots highlighting I- and C-
RGC enriched genes respectively at fold-change > 1.5 and Bonferroni corrected p-value
< 5e-5. The two vertical bars correspond to a fold-change of 1.5 in either direction.

e. Same as d, for PO
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