

1

2

3

4 **Mitochondrial fission process 1 (MTFP1) controls bioenergetic efficiency and prevents**
5 **inflammatory cardiomyopathy and heart failure in mice**

6

7

8 Erminia DONNARUMMA¹, Michael KOHLHAAS², Elodie VIMONT¹, Etienne KORNOBIS^{3, 4},
9 Thibault CHAZE⁵, Quentin GIAI GIANETTO^{4,5}, Mariette MATONDO⁴, Maryse MOYA-NILGES⁵,
10 Christoph MAACK², Timothy WAI^{1,*}

11

12 *1-Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Paris, France*

13 *2-Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University*
14 *Clinic Würzburg, Würzburg, Germany*

15 *3- Plate-forme Technologique Biomics – Centre de Ressources et Recherches Technologiques*
16 *(C2RT), Institut Pasteur, Paris, France*

17 *4- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut*
18 *Pasteur, 75015 Paris, France*

19 *5- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000,*
20 *Paris, France*

21 *6-Institut Pasteur, UTechS Ultrastructural Bio Imaging, Paris, France*

22

23

24 *Correspondence: timothy.wai@pasteur.fr

25 **Keywords: mitochondria, cardiomyopathy, oxidative phosphorylation, uncoupling,**
26 **permeability transition pore**

27

28

Abstract

29

Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that
30 Mitochondrial Fission Process 1 (MTFP1) is essential for cardiac structure and function.
31 Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in adult-onset dilated
32 cardiomyopathy (DCM) characterized by sterile inflammation and cardiac fibrosis that progressed
33 to heart failure and middle-aged death. Failing hearts from cardiomyocyte-restricted knockout
34 mice displayed a general decline in mitochondrial gene expression and oxidative phosphorylation
35 (OXPHOS) activity. Pre-DCM, we observed no defects in mitochondrial morphology, content, gene
36 expression, OXPHOS assembly nor phosphorylation dependent respiration. However, knockout
37 cardiac mitochondria displayed reduced membrane potential and increased non-phosphorylation
38 dependent respiration, which could be rescued by pharmacological inhibition of the adenine
39 nucleotide translocase ANT. Primary cardiomyocytes from pre-symptomatic knockout mice
40 exhibited normal excitation-contraction coupling but increased sensitivity to programmed cell death
41 (PCD), which was accompanied by an opening of the mitochondrial permeability transition pore
42 (mPTP). Intriguingly, mouse embryonic fibroblasts deleted for *Mtfp1* recapitulated PCD sensitivity
43 and mPTP opening, both of which could be rescued by pharmacological or genetic inhibition of the
44 mPTP regulator Cyclophilin D. Collectively, our data demonstrate that contrary to previous in vitro
45 studies, the loss of the MTFP1 promotes mitochondrial uncoupling and increases cell death
46 sensitivity, causally mediating pathogenic cardiac remodeling.

47

48

49

Introduction

50

Mitochondria are multifaceted organelles that are essential in every tissue of the body and are most abundant in the heart, where they control the metabolism and survival of cardiac cells (Kolwicz et al., 2013). Mitochondria are double membrane-bound organelles, composed of an inner (IMM) and an outer mitochondrial membrane (OMM), which separate the intermembrane space (IMS) from the matrix. The IMM extends internally to form cristae, which harbor essential macromolecular complexes such as the machinery of oxidative phosphorylation (OXPHOS). The OXPHOS system is comprised of two functional entities: the electron transport chain (ETC) and the phosphorylation system, which includes the integral membrane ATP synthase and carriers such as the adenine nucleotide translocase (ANT), which imports ADP into the matrix and exports ATP (Chance and Williams, 1956). The ETC is composed of four macromolecular complexes (I, II, III, and IV) and of mobile electrons carriers as coenzyme Q (CoQ) and cytochrome-c (Cyt c). The energy available for ATP synthesis is directly derived from the membrane potential ($\Delta\Psi$) and proton motive force generated across the IMM by electron transfer from by the ETC, which is then harnessed by the ATP synthase (complex V) to generate ATP (Mitchell, 1961). Continuous generation of ATP is fundamental for the function of cardiomyocytes, enabling them to meet the enormous energy requirement for the contraction–relaxation cycles that drive their contractility (Kohlhaas et al., 2017). Defects that impair OXPHOS assembly and function can promote fatal cardiomyopathies (Antonicka et al., 2003a, 2003b; Graham et al., 1997; Hansson et al., 2004; Karamanlidis et al., 2013). The beating heart demands near-maximum OXPHOS capacity, with scant aerobic ATP reserves under normal conditions (Mootha et al., 1997). Consequently, even modest uncoupling of the ETC from ATP synthesis, which can occur when protons are diverted back across the IMM through uncoupling channels rather than being used by the ATP synthase, would be expected to yield fatal consequences for cardiac function and health, although this has never been tested.

74

While most famous for their role as the powerhouse of the cell, mitochondria have proven to be essential for cardiac homeostasis through the regulation of various biosynthetic and signaling functions beyond OXPHOS, such as calcium buffering, reactive oxygen species (ROS) generation and maintenance, programmed cell death (PCD) and innate immune responses (Zhou and Tian, 2018). Under stress conditions, extrinsic or intrinsic signals can lead to a permeabilization of the

79 outer membrane (MOMP) resulting in activation of caspases and PCD (Bock and Tait, 2020). At
80 the IMM, long-lasting opening of the mitochondrial permeability transition pore (mPTP) allows for
81 unselective diffusion of low molecular weight solutes and water (<1.5 kDa), causing an osmotic
82 pressure in the matrix that causes mitochondrial swelling (Carraro et al., 2020) and rupture,
83 thereby releasing pro-apoptotic and pro-inflammatory mitochondrial factors into the cytosol (Bock
84 and Tait, 2020). While the molecular identity of the mPTP is still the subject of feverous debate, to
85 date several factors have been identified to be unequivocally crucial for its activation. Cyclophilin D
86 (CypD, encoded by *Ppif*), a mitochondrial matrix isomerase which can be inhibited
87 pharmacologically by cyclosporin A (CsA), calcium overload and ROS are known to promote
88 mPTP opening and PCD induction (Baines et al., 2005; Carraro et al., 2020; Nakagawa et al.,
89 2005). Notably, ablation of CypD or treatment with CsA can protect animals from cardiomyocyte
90 death and cardiomyopathy induced by genetic (Song et al., 2015), infectious (Milduberger et al.,
91 2021), and surgical lesions (Nakagawa et al., 2005).

92 The maintenance of mitochondrial morphology and structure is of critical importance for
93 cardiac function (Sprenger and Langer, 2019). Mitochondrial morphology is regulated by opposing
94 forces of mitochondrial fusion and division, which must be tightly regulated to ensure organellar
95 function and quality control (Giacomello et al., 2020; Ng et al., 2021). Intrinsic (Ashrafian et al.,
96 2010; Chen et al., 2015; Kageyama et al., 2014; Song et al., 2015; Wai et al., 2015) or extrinsic
97 (Acin-Perez et al., 2018; Chen et al., 2009; Shirakabe et al., 2016) lesions that upset the balance
98 between mitochondrial fission and fusion have devastating consequences for cardiomyocyte
99 function and cardiac health. Mitochondrial dynamics is orchestrated by dynamin-like GTPases:
100 OPA1 and mitofusins (MFN1/2) execute inner and outer membrane fusion, respectively, while
101 DRP1 performs mitochondrial constriction and division once recruited to the OMM via interactions
102 that require integral membrane proteins and receptors, such as MFF, MiD49/51, and FIS1. DRP1
103 is the lynchpin of the mitochondrial fission apparatus, which is triggered to coalesce at contact
104 sites with the ER, lysosomes, trans-golgi network, and actin by signals that can originate both
105 outside (Cretin et al., 2021; Giacomello et al., 2020) and inside (Cho et al., 2017; Lewis et al.,
106 2016; Tonnerre, 2005) mitochondria.

107 While it is unclear how IMM fission is executed, the aptly-named inner membrane protein
108 Mitochondrial fission process 1 (MTFP1/MTP18), has emerged as a promising scaffold for the IMM

109 division apparatus, whose formal identification remains elusive (Ng et al., 2021). As per its
110 namesake, *Mtfp1* was initially identified as a gene whose ablation was reported to reduce
111 mitochondrial fission, as well as the proliferation and viability of cultured cells (Tondera, 2005;
112 Tondera et al., 2004). The pro-apoptotic effects of *Mtfp1* depletion have been replicated in various
113 cell lines (Duroux-Richard et al., 2016; Wang et al., 2017), however, more recent studies by the Li
114 group (Aung et al., 2017a, 2017b; Wang et al., 2017) have reported the contrary in cultured cells,
115 thus fueling the existing narrative that elongated mitochondria resulting from MTFP1 depletion
116 protects cells from PCD. Whether this paradigm holds true *in vivo* has never been explored.

117 In this study, we created a cardiomyocyte-specific *Mtfp1* knockout mouse model to
118 specifically investigate the role of this protein *in vivo*. Contrary to previous *in vitro* studies (Wang et
119 al., 2017), we show that MTFP1 plays an essential role in maintaining cardiac energy metabolism
120 as its deletion in post-natal cardiomyocytes drives a progressive dilated cardiomyopathy (DCM)
121 culminating in HF and middle-aged death in mice. Surprisingly, MTFP1 ablation does not
122 appreciably alter mitochondrial morphology in the heart and is entirely dispensable for
123 mitochondrial fission. Unexpectedly, we discovered that MTFP1 depletion reduces OXPHOS
124 efficiency in cardiac mitochondria by increasing proton leak through the adenine nucleotide
125 translocase (ANT). Finally, we show MTFP1 ablation increases mPTP opening and renders
126 cardiomyocytes and embryonic fibroblasts more sensitive to PCD. Altogether, our data reveal an
127 unexpected role of MTFP1 in mitochondrial bioenergetics and provide mechanistic insights into
128 how MTFP1 regulates the life and death of the cell.

129

130

Results

131 ***Mtfp1* deletion in cardiomyocytes causes dilated cardiomyopathy and middle-aged death**

132 MTFP1 is predicted to localize in mitochondrial inner membrane (Figure 1A), and *MTFP1* is highly

133 expressed in human cardiac tissue (GTEx plot, Figure S1A). To investigate the importance of

134 MTFP1 for cardiac function we began by confirming its expression and submitochondrial

135 localization in the mouse heart. Protease protection assays and alkaline carbonate extraction

136 experiments performed on isolated cardiac mitochondria allowed us to demonstrate the inner

137 membrane localization of MTFP1 in cardiac mitochondria (Figure S1B-C). To investigate its role in

138 vivo, we generated a conditional mouse model for *Mtfp1* (*Mtfp1*^{LoxP/LoxP}) on a C57Bl6/N

139 background. Conditional mice were crossed with transgenic mice expressing Cre recombinase

140 under the control of alpha myosin heavy chain promoter (Agah et al., 1997) (Myh6) to specifically

141 ablate MTFP1 in post-natal cardiomyocytes (Figure 1B, S1D). We previously showed that genetic

142 deletion mediated by Myh6-Cre occurs during the perinatal period (Wai et al., 2015) and by 8

143 weeks of age cardiomyocyte-specific *Mtfp1* KO mice (Myh6-Cre^{Tg/+} *Mtfp1*^{LoxP/LoxP}, cMKO mice)

144 exhibited a 7-fold reduction in *Mtfp1* mRNA (Figure 1C) and undetectable levels of MTFP1 protein

145 in cardiac lysates assessed by immunoblot analysis (Figure 1D) and shotgun proteomics (Figure

146 1E, Dataset EV1). Both male and female cMKO mice were generated according to Mendelian

147 proportions and were outwardly normal and viable. However, cMKO mice had significantly

148 shortened lifespans [median life span: 26.4 weeks (male), 37.5 weeks (female)] relative to wild

149 type (WT) littermates (Figure 1F, Figure S1E), demonstrating that MTFP1 is required to protect

150 against middle-aged death.

151

152

153

154

155

156

157

158

159

To directly assess the importance of MTFP1 for cardiac structure and function, we performed longitudinal echocardiographic (echo) studies in male and female mice (Figure 1G-L, S1F-K). Echo analyses beginning at 10 weeks of age revealed normal cardiac structure and function in cMKO mice. By 18 weeks, however, despite normal cardiac structure we observed a progressive decrease in systolic function, culminating in dilated cardiomyopathy (DCM) and left ventricle (LV) remodeling. By 34 weeks, cMKO mice exhibited all the hallmarks of DCM and heart failure (HF): significantly reduced LV ejection fraction [% EF, WT $60.31 \pm 5.4\%$ versus cMKO $25.87 \pm 11.8\%$; Figure 1H], thinning of the interventricular septum in systole [IVS (mm), WT 1.23 ± 0.097 versus cMKO 0.9 ± 0.092 ; Figure 1I], posterior wall during systole [PWs (mm), WT 1.39 \pm

160 0.10 *versus* cMKO 0.952 ± 0.17 ; Figure 1J), dilated LV chamber during the cardiac cycle of
161 diastole [LVDD (mm), WT 4.00 ± 0.15 *versus* cMKO 5.02 ± 0.65 , Figure 1K] and systole [LVSD
162 (mm), WT 2.72 ± 0.16 *versus* cMKO 4.43 ± 0.84 ; Figure 1L] with pulmonary congestion (Figure
163 S1L) and increased heart mass at severe HF (Figure S1M).

164 To determine whether the progressive cardiac contractile dysfunction observed in cMKO
165 mice was caused by primary defects in cardiomyocyte function, we assessed sarcomere length
166 and shortening (Figure S1N-P) coupled to intracellular Ca^{2+} levels $[\text{Ca}^{2+}]_c$ (Figure S1Q-S) in field-
167 stimulated cMKO cardiomyocytes isolated from pre-symptomatic mice (8-10 weeks of age).
168 Diastolic and systolic sarcomere length as well as $[\text{Ca}^{2+}]_c$ transients were similar between WT and
169 cMKO myocytes both at baseline (0.5 Hz stimulation frequency) and during β -adrenergic
170 stimulation (5 Hz stimulation frequency) despite a modest increase of sarcomere shortening of
171 cMKO myocytes under stress conditions and a normal sarcomere re-lengthening at baseline
172 conditions. Together, these data indicate that *Mtfp1* deletion does not impinge upon cardiomyocyte
173 excitation-contraction coupling before the onset of cardiomyopathy *in vivo*.

174 Histological analyses of cMKO hearts of mice at HF (34 weeks) confirmed defects in
175 cardiac structure: hematoxylin-eosin (H&E) staining of cardiac cross sections showed LV chamber
176 expansion and myocardial wall thinning, while Masson's trichrome and Picosirius Red staining
177 showed disruption of the myofibril architecture by dramatic fibrosis and collagen deposition at DCM
178 (Figure 1M). We also found increased serum levels of cardiac troponin I (cTNI, Figure 1N) and
179 myosin light chain 1 (MLC-1, Figure 1O) in cMKO mice sampled at 18 and 34 weeks, further
180 substantiating the ongoing cardiomyocyte damage and death. We did not observe gender
181 differences in the development of the cardiac dysfunction (Figure S1F-K), highlighting the essential
182 nature of MTFP1 for cardiac structure and function.

183

184 **Metabolic and inflammatory gene expression dysregulation in cMKO mice**

185 To gain further insights into the molecular and cellular mechanisms underlying cardiac pathology in
186 cMKO mice, we performed transcriptomic analyses by bulk RNA sequencing (RNAseq) of LVs
187 isolated from WT and cMKO mice at a pre-symptomatic stage (8 weeks of age) and at the onset of
188 DCM (18 weeks). We observed up-regulation of *Nppa* in pre-symptomatic cMKO mice, which was
189 associated to up-regulation of *Nppb* at the onset of DCM, prototypical cardiomyocyte stress-

190 response genes that are activated in response to hemodynamic load (Hohl et al., 2013) and
191 metabolic or contractile abnormalities (Houweling et al., 2005) (Figure 1P). At the pre-symptomatic
192 stage, we observed limited transcriptional remodeling in hearts from cMKO mice with differential
193 expression of only ~1% of 25815 genes: 137 genes were downregulated, and 122 genes were
194 upregulated in cMKO mice (Dataset EV2, Figure 1P), whereas at 18 weeks, we observed a much
195 broader transcriptional response with 3642 differentially expressed genes in cMKO mice
196 manifesting early signs of DCM (Dataset EV2, Figure 1P).

197 Functional enrichment analyses performed with g:Profiler (Reimand et al., 2019) and
198 Enrichr (Chen et al., 2013) revealed a number of dysregulated genes involved in various metabolic
199 processes (Figure 1Q, left). Among the downregulated genes with the gene ontology (GO) term
200 metabolic process (Dataset EV2) were genes required for OXPHOS, TCA cycle, fatty acid
201 oxidation and pyruvate metabolism, suggestive of cardiometabolic changes previously observed in
202 mitochondrial models of HF (Hansson et al., 2004; Liao et al., 2015; Wai et al., 2015; Zhou and
203 Tian, 2018). In fact, further examination revealed that half of all mitochondrial genes referenced on
204 MitoCarta (Rath et al., 2021) were downregulated (Figure 1Q, middle). On the other hand, we
205 observed a strong sterile inflammatory gene expression signature and innate immune engagement
206 (Figure 1Q, right), which together with dysregulated extracellular matrix-remodeling genes
207 [profibrotic cytokines such as TGFb, collagen precursor genes (*Col11a1*, *Col14a1*, *Col8a1*) and
208 matrix metalloproteinases (*Mmp-2*, *Mmp-14*, *Mmp-3*)] (Figure 1R) corroborates the cardiac fibrosis
209 revealed by histological analysis of cMKO hearts (Figure 1M). Notably, the suppression of
210 mitochondrial gene expression and the activation of sterile inflammation measured in cMKO mice
211 at 18 weeks was absent in pre-symptomatic cMKO mice, implying that these transcriptional
212 responses are downstream consequences *Mtfp1* deletion in adult cardiomyocytes.

213

214 ***Mtfp1* is required for bioenergetic efficiency in cardiac mitochondria**

215 To directly assess the effects of energy metabolism in cMKO mice, we measured mitochondrial
216 respiration in cardiac mitochondria from WT and cMKO mice (Figure 2A). High resolution
217 respirometry studies showed a general impairment of mitochondrial O₂ consumption in cMKO
218 hearts at both early and late stage of DCM: complex I-, complex II- and complex IV-driven
219 mitochondrial respiration were all significantly lower at either age (Figure 2B, C). Interestingly,

220 reduced mitochondrial respiration was not accompanied by reduced levels of mitochondrial
221 proteins, including those involved in OXPHOS (Figure S2A-B, Dataset EV1), demonstrating that
222 bioenergetic decline was not the result of increased wholesale mitophagy.

223 Since reduced mitochondrial content and/or OXPHOS activity has been observed in other
224 genetic models of cardiomyopathy (Burke et al., 2016), we wondered whether impaired
225 mitochondrial respiration observed in failing cMKO hearts reflected the consequences of cardiac
226 dysfunction and cardiac remodeling, rather than the ablation of an essential component or
227 regulator of OXPHOS. We observed no deficits of the mitochondrial Krebs cycle in intact field-
228 stimulated cMKO cardiomyocytes assessed by determining the autofluorescence of
229 NAD(P)H/NAD(P)⁺ and FADH₂/FAD, intrinsic biomarkers of mitochondrial metabolic activity.
230 NAD(P)H/FAD redox state was monitored during a protocol in which cells were exposed to an
231 increase in stimulation frequency and β -adrenergic stimulation (Bertero et al.), creating a typical
232 ADP-induced oxidation (“undershoot”) followed by Ca^{2+} -dependent regeneration (“recovery”)
233 behavior (Cortassa et al., 2003) (Figure S2C). This behavior was similar between cMKO and WT
234 myocytes (Figure S2C), ruling out gross alterations in Krebs cycle activity and Ca^{2+} -induced redox
235 adaptation.

236 To uncover the functional alterations of OXPHOS that potentiate the development of DCM,
237 we performed bioenergetic measurements in cardiac mitochondria isolated from pre-symptomatic
238 mice. Using a dual respirometer-fluorimeter (O2k, Orobos), simultaneous kinetic measurements
239 of oxygen consumption rates (JO_2) and mitochondrial membrane potential ($\Delta\Psi$) were performed in
240 cardiac mitochondria isolated from pre-symptomatic WT and cMKO mice (8-10 weeks). Active
241 mitochondria were pre-labeled with the potentiometric dye Rhodamine-123 (RH-123) and
242 energized with substrates whose metabolism promotes complex I- [state 2; pyruvate, glutamate,
243 and malate (PGM)] or complex II-linked respiration (state 2; succinate and rotenone), followed by
244 ADP to promote phosphorylating (state 3: ADP) respiration. Finally, the ATP synthase inhibitor
245 oligomycin (Omy) was applied to assess non-phosphorylating (state 4) respiration (Figure 2A).

246 We observed no differences in state 3 JO_2 rates between WT and cMKO cardiac
247 mitochondria fueled with either PGM, succinate with rotenone or palmitoyl-carnitine with malate,
248 respectively (Figure 2D (left), Figure S2D (left), F). However, respiration was ~30% higher in cMKO
249 mitochondria in state 2 (+27.4 %) and state 4 (+30.3 %) when complex I was fueled with PGM

250 (Figure 2D), significantly decreasing respiratory control ratios [State 3:2, State 3:4, Figure 2D
251 (middle, right)]. In addition, altered JO_2 rates in cMKO mitochondria were accompanied by
252 impaired RH-123 quenching in state 2 and state 4 (Figure 2E, S2E), indicating defective IMM
253 substrate-dependent hyperpolarization. Supporting the notion that MTFP1 ablation increases
254 proton leak, we consistently observed reduced respiratory control ratios when complex II was
255 energized (Figure S2D, middle-right) and lower mitochondrial membrane potential under both state
256 2 and state 4 conditions regardless of the respiratory substrates that were provided (Figure S2D-
257 E).

258 The elevated JO_2 rates and reduced RH-123 quenching in state 4 could be explained either
259 by a reduced sensitivity of the ATP synthase to Omy treatment or by uncoupling caused by proton
260 leak across the IMM. In the mouse heart, reduced Omy sensitivity can result from defects in the
261 assembly of the ATP synthase that alter the affinity of Omy binding to Complex V via OSCP
262 (Mourier et al., 2014). However, BN-PAGE analyses of cardiac mitochondria isolated from pre-
263 symptomatic cMKO mice revealed no defects in ATP synthase assembly/maintenance (Figure 2F),
264 leaving us with increased proton leak as the most parsimonious explanation for the observed state
265 4 respiration and membrane potential differences (Figure 2D, E; Figure S2D-E).

266 Next, we sought to corroborate our findings in cultured cells. To this end, we generated MTFP1-
267 deficient mouse embryonic fibroblasts (MEFs) (*Mtfp1*^{-/-}) and MTFP1-deficient human U2OS cells
268 by Crispr/Cas9 genome editing (*MTFP1*^{Crispr}) and corresponding WT (*MTFP1*^{+/+}) controls (Figure
269 S2H, I) and then assessed oxygen consumption by Seahorse FluxAnalyzer. Intriguingly, we
270 observed no changes in basal or maximal respiration rates nor any evidence of mitochondrial
271 uncoupling (Figure S2J-Q) suggesting that MTFP1-dependent proton leak may be cell type
272 specific.

273 Taken together, our data reveal an unappreciated and critical role of MTFP1 in bioenergetic
274 efficiency and mitochondrial uncoupling, particularly evident in metabolically active
275 cardiomyocytes, which precedes the manifestation of cardiac dysfunction and heart failure in
276 cMKO mice.

277

278 ***Mitochondrial uncoupling is mediated by the Adenine Nucleotide Translocase***

279 To uncover the mechanism responsible for the mild mitochondrial uncoupling caused by *Mtfp1*
280 deletion in cardiomyocytes, we turned our attention to known uncoupling proteins. Uncoupling
281 proteins (UCPs, UCP 1/2/3) and adenine nucleotide translocase (ANT) IMM proteins have been
282 reported to be the two main catalysts of futile proton leak in mammalian mitochondria (Brand et al.,
283 2004; Echtay et al., 2002). UCP1 is a bona fide uncoupler that is primarily expressed in brown
284 adipose tissue (Adams, 2000) and shares significant sequence similarity with UCP2 and 3, which
285 are expressed in other tissues (Woyda-Płoszczyca and Jarmuszkiewicz, 2014). ANT is an integral
286 IMM transporter that imports ADP and concomitantly exports ATP between the mitochondrial
287 matrix and IMS (Ruprecht and Kunji, 2021). ANT exists in four different tissue specific isoforms
288 (ANT1, 2, 3, and 4), with ANT1 being the most abundant protein in mitochondria (Lu YW et al,
289 2017, Brand MD et al, 2005; Karch et al., 2019; JE Kokoszka et al., 2016). ANT1 has long been
290 known for its namesake role as a nucleotide translocator, and recent studies have proven it to be
291 an essential transporter of protons across the IMM in mammals (Bertholet et al., 2019) and a rate-
292 liming factor for proton leak in *Drosophila* (Brand et al., 2005). While the steady state levels of
293 ANT in cardiac tissue of WT and cMKO mice were identical (Figure 2G), we nevertheless sought to
294 functionally assess the contribution of ANT to MTFP1-dependent proton leak in freshly isolated
295 cardiac mitochondria by using the ANT antagonist carboxyatractyloside (CATR), which binds
296 irreversibly to ANT on the IMS side of the IMM, blocking its activity (Todisco et al., 2016). The
297 addition of CATR alone or after Omy treatment rescued the reduced $\Delta\Psi$ and elevated JO_2 rates
298 back to WT levels (Figure 2H-I), normalizing the respiratory control ratio for state 3:4 (Figure 2J),
299 suggesting that *Mtfp1* deletion increases ANT-dependent proton leak.

300 To exclude the unlikely possibility that other uncoupling proteins such as UCPs might
301 contribute to increased proton leak caused by *Mtfp1* ablation, we measured $\Delta\Psi$ of cardiac
302 mitochondria in the presence of GTP, a pyrimidine nucleotide previously demonstrated to potently
303 inhibit uncoupling in vitro (Macher et al., 2018; Woyda-Płoszczyca and Jarmuszkiewicz, 2014).
304 UCP inhibition with GTP was not able to rescue the defective membrane potential observed in
305 Omy-treated cMKO mitochondria (Figure 2K) suggesting that UCPs do not contribute to the futile
306 proton leak in cMKO cardiac mitochondria. Taken together, these data demonstrate that depletion
307 of MTFP1 in the IMM leads to an increased uncoupling activity of ANT, resulting in proton leak and
308 bioenergetic inefficiency preceding the development of cardiac dysfunction (Figure S2R).

309

310 **MTFP1 is dispensable for mitochondrial fission.**

311 Transient MTFP1 knock-down has previously been reported to promote mitochondrial elongation in
312 a variety of cultured cell types including neonatal cardiomyocytes (Duroux-Richard et al., 2016;
313 Morita and Terada, 2015; Tondera et al., 2009; Wang et al., 2017), yet the consequence in the
314 adult heart has never been explored. Therefore, to determine the impact of *Mtfp1* deletion on
315 mitochondrial morphology, we co-labeled primary WT and cMKO primary adult cardiomyocytes
316 (CMs) with tetramethylrhodamine ethyl ester (TMRE) and Mitotracker Deep Red (MTDR) to
317 visualize mitochondria. Contrary to previous reports purporting that *Mtfp1* depletion causes
318 mitochondrial elongation (Aung et al., 2017a, 2019), we failed to observe any obvious effects on
319 the morphology, distribution, or content of mitochondria in primary adult CMs deleted of *Mtfp1*
320 (Figure 3A-B). Similarly, transmission electron microscopy (TEM) analyses of pre-symptomatic
321 cMKO and WT hearts (LV) showed no indications of mitochondrial elongation (median
322 mitochondrial surface area: WT 3198 μm^2 versus cMKO 2954 μm^2) nor altered cristae organization
323 (Figure 3C-D). We also did not observe changes in mtDNA content (Figure 3E) or mitochondrial
324 shaping proteins in cardiac biopsies: the steady-state levels of fusion (MFN1, MFN2, OPA1) and
325 fission (DRP1, MID51, FIS1) proteins were no different between WT and cMKO mice (Figure 3F).
326 Thus, MTFP1 is dispensable for mitochondrial dynamics in the heart.

327 In light of these surprising findings, we decided to measure mitochondrial morphology in MEFs
328 depleted of MTFP1 under basal and stress conditions using a recent supervised machine learning
329 (ML) approach we developed for high-throughput image acquisition and analyses (Cretin et al.,
330 2021). In contrast to previous reports, MEFs depleted (siRNA *Mtfp1*) or deleted (*Mtfp1*^{-/-}) of *Mtfp1*
331 showed only modest elongation of the mitochondrial network: both transient (siRNA) or chronic
332 (knockout) ablation of MTFP1 resulted in ~15% increase in hypertubular mitochondria (Figure 3I-
333 J), and *Mtfp1*^{-/-} MEFs showed unaltered steady-state levels of mitochondrial fusion and fission
334 proteins (Figure S3A). Contrary to DRP1-deficient cells (Cretin et al., 2021), *Mtfp1*^{-/-} MEFs were
335 not protected from mitochondrial fragmentation induced by established pharmacological triggers of
336 mitochondrial fragmentation, such as oligomycin (Omy), Rotenone, hydrogen peroxide (H_2O_2), or
337 carbonyl cyanide m-chlorophenylhydrazone (CCCP) (Figure 3G-H). Similarly, *Mtfp1*^{-/-} MEFs were
338 not protected from genetic induction of mitochondrial fragmentation by depletion of *Yme1l* or *Opa1*

339 (Figure 3I-J). While we could confirm that MTFP1 overexpression is able to promote mitochondrial
340 fragmentation in MEFs, without affecting steady state level of fusion and fission proteins (Figure
341 S3B-C), our data collectively indicate that MTFP1, unlike DRP1, is not an essential fission protein.
342 Taken together, these results strongly argue that contrary to its namesake, MTFP1 is not an
343 essential fission factor either in vitro or in vivo.

344

345 ***MTFP1 deletion promotes mitochondrial permeability transition pore opening and***
346 ***programmed cell death.***

347 Cardiomyocyte death is catastrophic for adult cardiac function because of the limited regenerative
348 capacity of these post-mitotic cells. Given the appearance of cardiac cell damage and death in
349 cMKO mice during DCM (Figure 1N-O), we sought investigate whether MTFP1 loss specifically
350 increased cell death sensitivity. To this end, we isolated adult primary cardiac myocytes (CMs)
351 from WT and pre-symptomatic cMKO mice between 8-10 weeks of age and kinetically measured
352 cell survival in response to a variety of cell death triggers using supervised ML-assisted high-
353 throughput live-cell imaging (Cretin et al., 2021). We were able to isolate equally viable CMs from
354 both WT and cMKO mice, yet upon dissipation of the membrane potential with CCCP (Figure 4A-
355 B) or treatment with H₂O₂ (Figure 4C-D), *Mtfp1*^{-/-} CMs succumbed to cell death more rapidly than
356 WT CMs. Moreover, the induction of cell death with doxorubicin (DOXO, Figure 4E-F), a
357 cardiotoxic chemotherapeutic agent that triggers programmed cell death (PCD) (Christidi and
358 Brunham, 2021), induced a significant increase of death in *Mtfp1*^{-/-} compared to WT CMs,
359 indicating that MTFP1 is essential for cell survival.

360 Prolonged opening of mitochondrial permeability transition pore (mPTP) causes
361 mitochondria swelling, membrane potential dissipation and bioenergetic collapse, becoming a
362 determinant of cell death (Carraro et al., 2020). To test whether MTFP1 loss causes increased
363 susceptibility to mPTP opening, we assessed mitochondria swelling by exposing cardiac
364 mitochondria of pre-symptomatic WT and cMKO mice to a high concentration of Ca²⁺ and
365 kinetically measured the light scattering (Karch et al., 2013). Ca²⁺ overload induced an increased
366 mPTP dependent swelling of MTFP1-deficient cardiac mitochondria, which could be inhibited by
367 the mPTP inhibitor cyclosporin A (CsA), indicating that *Mtfp1* deletion sensitizes cardiac
368 mitochondria to mPTP opening (Figure 4G-H). These findings were corroborated in *Mtfp1*^{-/-} MEFs,

369 in which we observed increased mPTP sensitivity that could be suppressed by CsA treatment
370 (Figure S4A) or by knocking out Cyclophilin D (Cyp D, encoded by *Ppif*), the pharmacological
371 target of CsA in mitochondria (Figure 4I) (Halestrap and Davidson, 1990). Thus, these data clearly
372 indicate that loss of MTFP1 at the level of the IMM sensitizes mitochondria to mPTP opening.
373 To define the molecular mechanisms underlying the increased sensitivity PCD and mPTP opening
374 caused by MTFP1 ablation, we used WT and *Mtfp1*^{-/-} MEFs. We began by confirming that like
375 *Mtfp1*^{-/-} CMs, MEFs deleted of *Mtfp1* were more sensitive to PCD. As expected, *Mtfp1*^{-/-} MEFs
376 showed increased sensitivity to multiple cell death stimuli, as evidenced by more rapid kinetics of
377 caspase 3/7 activation and cell death monitored by ML-assisted live-cell imaging of CellEvent (CE)
378 and Propodium Iodide (PI) uptake, respectively (Cretin et al., 2021). Treatment with cell death
379 triggers actinomycin D (ActD) and ABT-737 (Figure 4J-O), staurosporine (STS, figure S4B-D) or
380 DOXO (Figure 4P-R) all promoted a more rapid and robust cell death response in *Mtfp1*^{-/-} MEFs
381 relative to WT MEFs, which could be blocked with the pan-caspase inhibitor Q-VD-OPh (qVD).
382 These effects were independent of cell proliferation or mitochondrial respiration, neither of which
383 were altered in *Mtfp1*^{-/-} MEFs (Figure S4E, S2J-M). Taken together, our data clearly demonstrate a
384 protective role of MTFP1 in maintaining cell integrity and survival.

385

386 **Doxorubicin induced-cardiotoxicity accelerates the onset of cardiomyopathy in cMKO mice**

387 To test whether MTFP1 protected against PCD induction *in vivo*, we injected pre-symptomatic
388 (aged 8 weeks) cMKO and WT mice with DOXO and assessed cardiac function at 14 days post
389 treatment by echo (Figure S4F-J). Consistent with the data obtained *in vitro*, we observed that
390 DOXO accelerated the onset of cardiac dysfunction in cMKO mice by lowering LVEF (WT 60.85 ±
391 6.2% vs cMKO 47.02 ± 9.1%), PW thickness during systole (WT 1.082 ± 0.099 mm vs cMKO 0.887
392 ± 0.062 mm), while increasing systolic LV diameter (WT 2.393 ± 0.27 mm vs cMKO 3.009 ± 0.36
393 mm) and diastolic LV diameter (WT 3.505 ± 0.20 mm vs cMKO 3.918 ± 0.25 mm). These results
394 clearly indicate that cMKO mice are more susceptible to DOXO induced cardiotoxicity, accelerating
395 the onset of cardiomyopathy.

396

397 ***Inhibition of mPTP rescues cell death sensitivity of MTFP1 deficient cells***

398 It has been previously reported that DOXO mediates mPTP opening and cell death in lung cancer
399 cells (Lu et al., 2014) and cardiac myocytes, and that H₂O₂ activates necrosis through the induction
400 of mPTP opening (Vaseva et al., 2012). We observed that H₂O₂-induced cell death was
401 accelerated in *Mtfp1*^{-/-} cells and was reduced, yet not totally abolished by caspase inhibition with
402 qVD, indicating that MTFP1 loss also renders cells more susceptible to caspase-independent cell
403 death (Figure 5A-C). Since MTFP1-deficient cardiac and MEF mitochondria were more susceptible
404 to mPTP opening (Figure 4G-I, S4A), we investigated whether prolonged mPTP opening
405 contributes to increased cell death sensitivity of MTFP1-deficient cells. To test the dependence of
406 PCD on Cyp D, we disrupted Cyp D in WT and *Mtfp1*^{-/-} MEFs by introducing a truncating,
407 homozygous frame shift mutation (p.Val65*) by Crispr/Cas9 genome editing (Figure 5D) and
408 subjected cells to H₂O₂ (Figure 5E-G) or DOXO treatment (Figure 5H-J). By tracking the kinetics of
409 PI or CE uptake respectively, we observed that Cyp D ablation in *Mtfp1*^{-/-} cells (*Mtfp1*^{-/-}*Ppif1*^{-/-}
410 MEFs) rescued the cell death sensitivity back to WT levels (Figure 5E-J). Consistent with a
411 cytoprotective effect of Cyp D ablation, we observed that the association of CsA to qVD treatment
412 had a synergic effect in suppressing cell death sensitivity of *Mtfp1*^{-/-} MEFs to WT levels (Figure 5A-
413 C). Taken together, these results clearly indicate that loss of MTFP1 promotes mPTP opening via
414 Cyp D to lower the resistance to programmed cell death. To gain insights into the molecular
415 regulation of the mPTP by MTFP1 we sought to define the cardiac interactome of MTFP1. We
416 expressed FLAG-MTFP1 at the Rosa26 locus in C57Bl6/N mouse hearts via targeted transgenesis
417 (Figure S5A) and confirmed that the modest level of over-expression did negatively impact cardiac
418 function in vivo (Figure S5B-C). Next, we performed a co-immunoprecipitation study coupled to
419 mass spectrometry (MS) for the analysis of cardiac MTFP1 interactome. We identified 60
420 mitochondrial proteins besides the bait protein (MTFP1) that were exclusively present in FLAG-
421 MTFP1 eluates or significantly enriched greater than two-fold (Dataset EV3, Figure S5D). Among
422 these interactors we found factors involved in OXPHOS function (Figure S5E), notably proteins
423 required for the assembly and functions of Complex I (Ndufa10, NDUFA7, NDUFS6, NDUFB4,
424 NDUFS6, Mtnd5), Complex IV (CMC2, COX4I1, COX6B1, COX7A1, SCO2), and Complex V
425 (ATP5L, USMG5). In addition, we identified a number of proteins that have previously been
426 implicated in mPTP regulation including the ADP/ATP translocase SLC25A4 (Karch et al., 2019),
427 the inorganic phosphate carrier SLC25A3 (Kwong et al., 2014), and the heat shock protein TRAP1

428 (Kang et al., 2007) (Figure S5D-E). Altogether, our data have uncovered a functional and physical
429 link between MTFP1 and the mPTP complex in the inner mitochondrial membrane.

430

431 ***Discussion***

432

433 We initially chose to focus studies on Mitochondrial Fission Process 1 (MTFP1) because we
434 viewed this protein as a promising entry point to study the hitherto molecularly undefined process
435 of inner membrane division (Wai and Langer, 2016), based largely on previous studies that had
436 purported a pro-fission role upon over-expression and an anti-fission role upon depletion (Aung et
437 al., 2017a, 2017b; Duroux-Richard et al., 2016; Morita et al., 2017; Wang et al., 2017). While we
438 demonstrate MTFP1 to be a bona fide inner membrane protein *in vivo* (Figure S1B-C), confirming
439 previous *in vitro* studies (Tonnera, 2005; Tonnera et al., 2004), careful, unbiased mitochondrial
440 morphology analyses unequivocally excluded this protein as an essential fission factor (Figure 3G-
441 J) for the following reasons: 1) acute or chronic depletion of MTFP1 *in vitro* (Figure 3G-J) or
442 deletion *in vivo* (Figure 3C-D) had little impact on the elongation of the mitochondrial network and
443 2) MTFP1-deficient cells were not protected against mitochondrial fragmentation caused either by
444 accelerated fission or impaired fusion induced either by genetic or pharmacological triggers (Figure
445 3G-J). Consistent with these findings, we did not identify MTFP1 as a regulator of mitochondrial
446 morphology in a recent, comprehensive siRNA-based phenotypic imaging screens of all
447 mitochondrial genes performed in human fibroblasts (Cretin et al., 2021), which did identify
448 essential fission proteins like DRP1 and receptors (Fonseca et al., 2019; Losón et al., 2013;
449 Osellame et al., 2016), forcing us to reconsider the existing models of mitochondrial fission we (Ng
450 et al., 2021; Wai and Langer, 2016) and others had proposed (Giacomello et al., 2020). In
451 contrast, other studies have reported that chemical inhibitors of mTOR (Morita et al., 2017), PI3K
452 (Tonnera et al., 2004), or miRNAs (Duroux-Richard et al., 2016; Wang et al., 2017) can deplete
453 MTFP1 protein levels and thus inhibit mitochondrial fragmentation, although the pleiotropic effects
454 of these molecules and the signaling cascades they regulate make it the interpretation of these
455 data very challenging. However, our *in vitro* studies confirmed that over-expression of MTFP1
456 does indeed promote mitochondrial fragmentation, which appears to be independent of stress-
457 induced OPA1 processing and alterations in the levels of the fission and fusion executors (Figure

458 S3B-C). In vivo, stable over-expression in cardiomyocytes does not appear to impact basal
459 cardiac function assessed by echocardiography (Figure S5C), although future studies will be
460 required to determine whether MTFP1 overexpression can impact cardiac physiology under stress
461 conditions.

462 If MTFP1 is dispensable for fission, what role, if any, does this metazoan-specific factor play in
463 mitochondria? Our in vivo studies revealed that cardiomyocyte-specific deletion of MTFP1 (cMKO)
464 drives the progressive development of dilated cardiomyopathy (DCM) beginning at 18 weeks of
465 age culminating in chronic heart failure and middle-aged death in both male and female mice.
466 Cardiac dysfunction was accompanied by a reduction in mitochondrial gene expression and
467 respiratory chain function, fibrotic remodeling (Figure 1P-R) and a general dysregulation of
468 metabolic genes (Figure 1Q), which are features that have been observed in other cardiomyocyte-
469 specific knockout mouse models of mitochondrial genes (Fernandez-Caggiano et al., 2020; Ghazal
470 et al., 2021; Hansson et al., 2004; Liao et al., 2015; Wai et al., 2015; Zhang et al., 2020b).
471 Similarly, accumulation of pathogenic mutations in mitochondrial DNA have recently been shown
472 to drive mitochondrial dysfunction and sterile inflammation in a number of different tissues
473 including the heart and genetic inhibition of the latter phenotype appears to resolve tissue
474 dysfunction, supporting a pathological role of cardiac inflammation triggered by mitochondrial
475 dysfunction (Lei et al., 2021). In cMKO mice, the aforementioned phenotypes were absent before
476 the onset of DCM, indicating that MTFP1 deletion in perinatal cardiomyocytes does not
477 compromise post-natal cardiac development nor function in mice. Thus, we hypothesize that the
478 metabolic and inflammatory remodeling that accompanies DCM manifests as downstream
479 response to cardiac dysfunction, which we are currently testing. Surprisingly, functional
480 characterization of field-stimulated primary adult cardiomyocytes from pre-symptomatic mice did
481 not reveal defects in contractile capacity, excitation contraction (EC) coupling, or sarcomere
482 integrity (Figure S1N-S), prompting us to search for other homeostatic dysfunctions of
483 cardiomyocytes that could account for the contractile defects of the beating heart caused by
484 MTFP1 deletion. Indeed, characterization of primary cardiomyocytes and cardiac mitochondria
485 from cMKO mice revealed an increased sensitivity to programmed cell death and increased
486 sensitivity to opening of the mitochondrial permeability transition pore (mPTP), respectively
487 (Baines et al., 2005; Carraro et al., 2020; Nakagawa et al., 2005). Accelerated opening of the

488 mPTP has been shown to control cardiomyocyte viability and cardiac function in genetic (Song et
489 al., 2015), infectious (Milduberger et al., 2021), and surgically-induced mouse models of
490 cardiomyopathy (Nakagawa et al., 2005). The identity of the mPTP has been hotly debated
491 (Carraro et al., 2020; Kwong and Molkentin, 2015; Morciano et al.) and a consensus has yet to be
492 achieved regarding its structure and molecular constitution, although compelling evidence from
493 knockout mice and in vitro reconstitution experiments have identified a number of mitochondrial
494 proteins associated with or integrated into the IMM subunits that are required for the efficient
495 opening of the mPTP including subunits of the ATP synthase, cyclophilin D (Cyp D, encoded by
496 the nuclear gene *Ppif*), and IMM carrier proteins of the SLC25 family (Baines et al., 2005; Basso et
497 al., 2008; Bernardi et al., 2015; Carraro et al., 2018, 2020; Karch et al., 2013, 2019; Kwong et al.,
498 2014; Nakagawa et al., 2005), several of which we identified by coimmunoprecipitation studies
499 performed on cardiac mitochondria to physically interact with FLAG-MTFP1, including SLC25A3
500 (Phosphate carrier), SLC25A4 (ANT1), TRAP1, ATP5L and USMG5 (Figure S5D-E).
501 Complexosome profiling of rat cardiac mitochondria revealed co-migration of MTFP1 with several
502 proteins we identified by coimmunoprecipitation (Heide et al., 2012), including SLC25A3,
503 SLC25A4, and Cyp D, implying that MTFP1 may act as a scaffold in the IMM to participate in the
504 maintenance, assembly or regulation of multi-protein complexes such as the mPTP complex. In
505 MTFP1-deficient cells, inhibiting mPTP opening by pharmacological inhibition with Cyclosporin A
506 (CsA) or genetic deletion of Cyp D rescues the sensitivity to mPTP opening and accelerated cell
507 death. Our discovery that the genetic deletion of *Mtfp1* sensitizes both post-mitotic cardiac cells
508 and mitotic epithelial cells to programmed cell death (PCD) without affecting cardiomyocyte
509 differentiation nor cell proliferation argues for a general role for MTFP1 in cell survival, which is
510 supported by studies in other cell lines (Duroux-Richard et al., 2016; Morita et al., 2017). Why
511 other groups have reported that MTFP1 depletion can protect gastric cancer and cardiomyocyte
512 cell lines from PCD induced by various cell death triggers including doxorubicin is unclear (Aung et
513 al., 2017a, 2017b; Wang et al., 2017). Although our in vivo data demonstrate that MTFP1 deletion
514 in cardiomyocytes accelerates, rather than retards, the cardiotoxic effects of doxorubicin (Figure
515 S4F-J), which is consistent with the PCD sensitivity we measured in MEFs and primary
516 cardiomyocytes, we cannot exclude that different cell lines and tissue may respond differently to
517 the loss of MTFP1.

518 Indeed, MTFP1 ablation significantly impacts mitochondrial respiration in cardiac cells but not in
519 highly glycolytic epithelial cells such as MEFs and human osteosarcoma cells (U2OS) (Figure S2J-
520 Q), in which the bioenergetic efficiency was unaffected.

521 Efficiently coupled oxidative phosphorylation requires proton gradient formed across the IMM by
522 the mitochondrial ETC, which is then harnessed by ATP synthase to generate ATP from ADP and
523 inorganic phosphate, imported into the matrix by the ADP/ATP translocase (ANT) and phosphate
524 carrier (SLC25A3), respectively. Mitochondrial uncoupling occurs when proton motive force is
525 dissipated by proton leak into the matrix and oxygen consumption is not coupled to ATP
526 generation. Maintenance of constant cellular ATP concentration is critical for cell survival and the
527 function, therefore, uncoupling of the ETC from ATP generation can have deleterious effects in
528 cardiac cells, whose constant energy supply is essential for the beating heart.

529 While the oxygen consumption rate (OCR) (Figure S2J-Q) and the maximal phosphorylating
530 respiration (Figure 2D, 2H, S2D, S2F), equivalent to state 3, were normal in cells and cardiac
531 mitochondria isolated from cMKO mice, MTFP1 loss significantly reduced the respiratory control
532 ratios (RCR) (Figure 2D, S2D) in cardiac mitochondria energized with complex I or complex II
533 substrates, suggesting a general mechanism of uncoupling of the respiration from the ATP
534 production as a result of increased proton leak through the IMM.

535 Proton leak has marked influence on energy metabolism. Enhancement of this process in various
536 tissues can counteract the deleterious effects of nutrient overload via UCP1-dependent and
537 independent pathways (Roesler and Kazak, 2020) and thus may be beneficial in some settings. In
538 the heart, whose bioenergetic efficiency has evolved to maximize ATP output, excessive proton
539 leak has been shown to drive age-related cardiomyocyte and cardiac dysfunction in mice (Chiao et
540 al., 2020; Zhang et al., 2020a). Studies performed by the Rabinovitch lab clearly demonstrated that
541 ANT-dependent proton leak is increased in cardiomyocytes from old, but not young mice and can
542 be rejuvenated by blocking ANT and reducing sensitivity to mPTP opening.

543 In line with the notion that increased proton leak is maladaptive for the heart, our study shows for
544 the first time that MTFP1 loss in cardiomyocytes reduces the mitochondrial membrane potential as
545 a result of increased proton leak through the IMM (Figure 2D-E, S2D-G) preceding the onset of
546 cardiomyopathy. We provide direct evidence that ANT is the most likely site of proton leak in
547 cardiac mitochondria, as its inhibition with carboxyatractyloside (CATR) suppresses proton leak

548 and re-establishes normal membrane potential and respiratory control ratios in MTFP1-deficient
549 mitochondria (Figure 2H-J). While we have clear evidence of uncoupling via ANT on one hand
550 and increased sensitivity to mPTP opening and mitochondria swelling on the other, future studies
551 are still required to decipher whether these mechanisms are interdependent and whether they
552 must synergize to drive cardiac decline and heart failure. While a number of genetic mouse
553 models of cardiomyopathy targeting mitochondrial genes have been generated over the last 20
554 years, to the best of our knowledge cMKO mice represent the first in which bioenergetic efficiency
555 is compromised without affecting maximal respiratory capacity (state 3), thus providing a novel
556 model to study the relevance of cardiac mitochondrial uncoupling and its progressive impact on
557 cardiac homeostasis.

558 In summary our study reveals new and essential roles of MTFP1 in cardiac homeostasis that are
559 distinct from its previously reported impact on mitochondrial fission, the latter of which our data
560 conclusively show is unaffected in vitro and in vivo. Thus, our work now positions MTFP1 as a
561 critical regulator of mitochondrial coupling through ANT in cardiomyocytes and its loss leads to
562 membrane potential dissipation associated to mPTP opening, cell death and progressive DCM that
563 leads to heart failure and middle-aged death. These findings advance our understanding of the
564 mitochondrial defects that can trigger the development of dilated cardiomyopathy and heart failure.
565 We propose that MTFP1 to be a valuable tool for the molecular dissection of mitochondrial
566 uncoupling and mPTP function and thus a promising target to mitigate the pathological events of
567 cardiac and metabolic remodeling in heart disease.

568
569
570
571
572

573

Figure Legends

574

Figure 1. *Mtfp1* deletion in cardiomyocytes causes dilated cardiomyopathy and middle-aged death in mice

576

A) AlphaFold prediction of MTFP1 as integral protein of the inner mitochondrial membrane (IMM) associated with mitochondrial fission. DRP1 binds to its receptors MFF or MiD49/51 to initiate mitochondrial constriction. IMM fission occurs coincidentally with mtDNA replication mediated by TFAM and POLG2. S-OPA1 accumulation generated by OMA1 accelerates fission.

580

B) Generation of a cardiomyocyte-specific *Mtfp1* KO (cMKO) mouse model.

581

C) *Mtfp1* mRNA expression measured by bulk RNAseq (arbitrary units; AU) in heart tissue of WT (n=5) and cMKO (n=5) mice at 8 weeks (Dataset EV2). Data represent mean \pm SD; 2-tailed unpaired Student's t-test, ****p<0.0001.

584

D) Densitometric quantification of immunoblot analysis of cardiac lysates from WT (n=5) and cMKO (n=5) mice at 8 weeks using the indicated antibodies. Data represent mean \pm SD; Unpaired t-test, **p<0.01.

587

E) MTFP1 protein expression in cardiac tissue of WT (n=4) and cMKO (n=4) at 18 weeks measured by label free quantification (LFQ) mass spectrometry (MS) (Dataset EV1). Data represent mean \pm SD; 2-tailed unpaired Student's t-test, ***p<0.001.

590

F) Kaplan-Meier survival curve of WT (n=9) and cMKO (n=15) male mice. Median lifespan of cMKO mice is 26.4 weeks. Log-rank (Mantel-Cox) test, ****p < 0.0001.

592

G-L) Longitudinal echocardiography of WT and cMKO mice from 10 to 34 weeks of age.

593

G) Representative M-Mode echocardiographic images of left ventricles from WT (left) and cMKO (right) of male mice at 34 weeks.

595

H) Quantification of left ventricular ejection fraction (% LVEF) of WT and cMKO mice at indicated ages. Data represent mean \pm SD; 2way Anova - Sidak's multiple comparison test: 10 week WT (n=13) vs cMKO (n=18); 14 week WT (n=4) vs cMKO (n=6); 18 week WT (n=10) vs cMKO (n=13) ***p<0.001; 22 week WT (n=4) vs cMKO (n=6) **p<0.01; 30 week WT (n=3) vs cMKO (n=7) **p<0.01; 34 week WT (n=4) vs cMKO (n=10) ****p<0.0001.

600

I) Quantification of systolic interventricular septum thickness (IVSs, mm) of WT and cMKO mice at indicated ages. Data represent mean \pm SD; 2way Anova - Sidak's multiple comparison test, 18 weeks ***p<0.001; 22 weeks *p<0.05; 34 weeks ***p<0.001.

603 **J)** Quantification of left ventricle posterior wall thickness at systole (LVPWs, mm) of WT and
604 cMKO mice at indicated ages. Data represent mean \pm SD; 2way Anova - Sidak's multiple
605 comparison test, 18 weeks **p<0.01; 22 weeks *p<0.05; 30 weeks ***p<0.001, 34 weeks
606 ****p<0.0001.

607 **K)** Quantification of left ventricle end diastolic diameter (LVDD, mm) of WT and cMKO mice at
608 indicated ages. Data represent mean \pm SD; 2way Anova - Sidak's multiple comparison test, 34
609 week ****p<0.0001.

610 **L)** Quantification of left ventricle end systolic diameter (LVSD, mm) of WT and cMKO mice at
611 indicated ages. Data represent mean \pm SD; 2way Anova - Sidak's multiple comparison test, 30
612 weeks *p<0.05; 34 weeks ***p<0.001.

613 **M)** Representative histological images of cardiac short axis view of WT (n=4) and cMKO (n=4) at
614 34 weeks. H&E (left), Massons's Trichrome (middle) and Picosirius red (right) staining show
615 cardiac remodeling and collagen deposition within the myocardium of cMKO mice. Scale bar 500
616 μ M.

617 **N)** Circulating levels of cardiac troponin-I (cTNI) measured in serum of WT and cMKO mice at 18
618 [WT (n=6) vs cMKO (n=6)] and 34 weeks [WT (n=11) vs cMKO (n=20)]. Data represent mean \pm
619 SD; 2-tailed unpaired Student's t-test at 18 weeks and 34 weeks (w); ***p<0.001.

620 **O)** Myosin light chain 1 (MLC-1) levels measured in serum of WT and cMKO mice at 18 [WT (n=5)
621 vs cMKO (n=6)] and 34 weeks (w) [WT (n=11) vs cMKO (n=17)]. Data represent mean \pm SD; 2-
622 tailed unpaired Student's t-test at 18w and 34w; **p<0.01 and ***p<0.001.

623 **P)** Volcano plots generated from the RNAseq analysis (Dataset EV2) of the differentially expressed
624 genes in cardiac tissue of WT and cMKO mice at 8 (left) and 18 weeks (right).

625 **Q)** Number of genes up-regulated and down-regulated in cMKO mice at 8 (blue) and 18 (pink)
626 weeks (w) within the gene ontology (GO) term: metabolic process (left), mitochondrial genes
627 (MitoCarta, middle) and inflammation (right) obtained from RNAseq analysis (Dataset EV2).

628 **R)** mRNA expression measured by bulk RNAseq (arbitrary units; AU) of the indicated profibrotic
629 genes in heart tissue of WT (n=6) and cMKO (n=6) mice at 18 weeks. Data represent mean \pm SD;
630 2-tailed unpaired Student's t-test.

631
632 **Figure 2. Mtfp1 is required for bioenergetic efficiency in cardiac mitochondria**

633 **A)** Substrates from fatty acid oxidation (mustard) and glycolysis (purple, blue) are metabolized in
634 the TCA cycle which delivers fuels the electron transport chain (ETC) complexes located in
635 the inner mitochondrial membrane by providing NADH and FADH to complexes I (purple) and II
636 (blue), respectively. Complexes I, III and IV extrude protons from matrix into the intermembranous
637 space creating an electrochemical gradient driving the phosphorylation of ADP at the ATP
638 synthase (complex V). The electron flow is limited by the availability of oxygen, a terminal acceptor
639 of the energy depleted electron at the complex IV (cytochrome oxidase). Uncoupling proteins such
640 as ANT promote a proton leak, playing an important role in regulation of membrane potential and
641 oxidative phosphorylation efficiency. Specific inhibitors of complex I (rotenone), complex V
642 (oligomycin), and ANT (carboxyatractyloside, CATR).

643 **B)** Oxygen consumption rates (JO_2) measured by high-resolution respirometry of cardiac
644 mitochondria from WT (n=5) and cMKO (n=5) male mice at 18 weeks. Complex I driven respiration
645 (left) was measured in presence of pyruvate, malate, glutamate (PGM) and ADP followed by the
646 addition of rotenone and succinate to assess complex II driven respiration (middle) and antimycin
647 A, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), and N,N,N',N'-Tetramethyl-p-
648 phenylenediamine (TMPD) and ascorbate to measure complex IV driven respiration (right). Data
649 represent mean \pm SD; unpaired Student's t-test, *p<0.05.

650 **C)** Oxygen consumption rates (JO_2) measured by high-resolution respirometry of cardiac
651 mitochondria from WT (n=5) and cMKO (n=5) male mice at 34 weeks (w). Complex I driven
652 respiration (left) was measured in presence of pyruvate, malate, glutamate (PGM) and ADP
653 followed by the addition of rotenone and succinate to assess complex II driven respiration (middle)
654 and antimycin A, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), and N,N,N',N'-Tetramethyl-
655 p-phenylenediamine (TMPD) and ascorbate to measure complex IV driven respiration (right). Data
656 represent mean \pm SD; unpaired Student's t-test, *p<0.05.

657 **D)** Oxygen consumption rates (JO_2) measured by high-resolution respirometry of cardiac
658 mitochondria isolated from WT (n=11) and cMKO (n=11) mice between 8-10 weeks (left).
659 Respiration was measured in presence of pyruvate, malate, and glutamate (PGM) (state 2)
660 followed by the addition of ADP (state 3) and Oligomycin (Omy- state 4). Data represent mean \pm
661 SD. Multiple t-test, state 2 ***p<0.001, state 4 *p<0.05. Respiratory control ratios (RCR) of state

662 3:2 (middle: JO_2 ADP/PGM) and respiratory control ratios (RCR) of state 3:4 (right: JO_2 ADP/Omy).

663 Data represent mean \pm SD; 2-tailed unpaired Student's t-test, ***p<0.001.

664 **E)** Mitochondrial membrane potential ($\Delta\Psi$) measured by quenching of Rhodamine 123 (RH123)
665 fluorescence in cardiac mitochondria isolated from WT (n=11) and cMKO (n=11) mice between 8-
666 10 weeks. $\Delta\Psi$ was measured in presence of pyruvate, malate, and glutamate (PGM) (state 2)
667 followed by the addition of ADP (state 3) and Oligomycin (state 4). Data represent mean \pm SD;
668 Multiple t-test, ****p<0.0001.

669 **F)** Representative BN-PAGE immunoblot analysis of cardiac OXPHOS complexes isolated from
670 WT and cMKO mice at 8-10 weeks using the indicated antibodies.

671 **G)** Equal amounts of protein extracted from WT (n=5) and cMKO (n=5) hearts between 8-10
672 weeks were separated by SDS-PAGE and immunoblotted with the indicated antibodies and
673 quantified by densitometry using VINCULIN as a loading control. Data represent mean \pm SD.

674 **H)** Oxygen consumption rates measured by high-resolution respirometry (left; JO_2) and
675 mitochondrial membrane potential (right; $\Delta\Psi$) measured by quenching of Rhodamine 123 (RH123)
676 fluorescence in cardiac mitochondria of WT (n=4) and cMKO (n=4) mice between 8-10 week of
677 age. JO_2 and $\Delta\Psi$ were measured in presence of pyruvate, malate, and glutamate (state 2) followed
678 by the addition of ADP (state 3) and carboxyatractyloside (CATR) (state 4). Data represent mean
679 \pm SD; Multiple t-test, ***p<0.001.

680 **I)** Oxygen consumption rates measured by high-resolution respirometry (left; JO_2) and
681 mitochondrial membrane potential (right; $\Delta\Psi$) measured by quenching of Rhodamine 123 (RH123)
682 fluorescence in cardiac mitochondria of WT and cMKO mice between 8-10 week of age.
683 Respiration was measured in presence of pyruvate, malate, and glutamate (PGM) (state 2)
684 followed by the addition of ADP (state 3), Oligomycin (state 4) and carboxyatractyloside (state 4-
685 CATR) [WT (n=3) cMKO (n=3)]. Data represent mean \pm SD. Multiple t-test, state 2 ***p<0.001,
686 state 4 *p<0.05.

687 **J)** Respiratory control ratio (RCR) of state 3:4 (ADP/CATR) between WT (n=4) and cMKO (n=4)
688 calculated from H). Data represent mean \pm SD.

689 **K)** Mitochondrial membrane potential ($\Delta\Psi$) measured by quenching of Rhodamine 123 (RH123)
690 fluorescence in cardiac mitochondria of WT and cMKO mice between 8-10 week of age. $\Delta\Psi$ was
691 measured in presence of pyruvate, malate, and glutamate (state 2) followed by the addition of ADP

692 (state 3), oligomycin (state 4) and GTP (state 4 - GTP) [WT (n=3), cMKO (n=3)]. Data represent
693 mean \pm SD; Multiple t-test, *p<0.05, ***p<0.001, ****p<0.0001.

694

695 **Figure 3. MTFP1 is dispensable for mitochondrial fission.**

696 **A)** Representative confocal images of primary adult cardiomyocytes isolated from WT and cMKO
697 mice at 8 weeks. Mitochondria were stained with MitoTracker Deep Red (MTDR) and
698 tetramethylrhodamine, ethyl ester (TMRE), nuclei were stained with NucBlue (NB). Scale bar=50
699 μ m.

700 **B)** Violin plot of mitochondrial content (MTDR Intensity/Area) of WT (n=6085) and cMKO CMs
701 (n=3647) measured in A).

702 **C)** Representative transmission electron micrographs of cardiac posterior walls of WT (top, n=3)
703 and cMKO (bottom, n=3) mice at 8-10 weeks. Scale bar: 500 nm.

704 **D)** Violin plot of mitochondrial surface area (μ m²) within cardiac posterior wall measured in C (WT
705 mitochondria n=659; cMKO mitochondria n=966). Dotted line represents quartiles and dashed line
706 represents median; **p<0.01 Mann-Whitney test.

707 **E)** Mitochondrial DNA (mtDNA) content in WT (n=5) and cMKO (n=5) heart tissue quantified by
708 amplification of the mitochondrial *Mttl1* gene relative to nuclear gene *b-Actin*. Data represent mean
709 \pm SD.

710 **F)** Immunoblot of mitochondrial fission and fusion proteins. Equal amounts of protein from cardiac
711 WT and cMKO (8-10 week) extracts were separated by SDS-PAGE and immunoblotted with the
712 indicated antibodies (horizontal line denotes different membranes). VINCULIN or ACTIN are used
713 as loading controls.

714 **G)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs treated with the fission inducing
715 drugs: oligomycin (Omy), Rotenone, H₂O₂ and carbonyl cyanide m-chlorophenyl hydrazine
716 (CCCP). Mitochondria were stained with MitoTracker Deep Red (MTDR, green) and nuclei with
717 NucBlue (NB, blue). Scale bar=100 μ m.

718 **H)** Quantification of mitochondrial morphology in G) by supervised ML using WT cells with normal
719 (UT), fragmented (CCCP-treated) or hypertubular (cycloheximide-treated) mitochondria as ground
720 truths. Data are means \pm SEM of 4 independent replicates. 2way-ANOVA, Dunnet's multiple
721 comparison test: % fragmentation ****p<0.0001 treatment vs WT UT or *Mtfp1*^{-/-} UT.

722 **I)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs treated with indicated siRNAs (20 nM)
723 for 72 h. Mitochondria were stained with MitoTracker Deep Red (MTDR, green) and nuclei with
724 NucBlue (NB, blue). Scale bar=100 μ m.
725 **J)** Quantification of mitochondrial morphology in I) by supervised machine learning (ML) using WT
726 cells with normal (non-targeting NT siRNA), fragmented (*Opa1* siRNA) or hypertubular (*Dnm1l*
727 siRNA) mitochondria as ground truths. Data are means \pm SEM of 4-8 technical replicates. 2way-
728 ANOVA, Dunnet's multiple comparison test: % hypertubular * p<0.05; ***p<0.001 versus WT NT
729 siRNA; % fragmented ****p<0.0001 versus *Mtfp1*^{-/-} NT siRNA.
730

731 **Figure 4. MTFP1 protects against mitochondrial PTP opening and cell death**

732 **A)** Representative confocal images of adult cardiomyocytes (CMs) isolated from WT and cMKO at
733 8 weeks stained with tetramethylrhodamine, ethyl ester (TMRE) treated with or without cyanide m-
734 chlorophenyl hydrazine treatment (CCCP) for 15 minutes. Rod-shaped CMs: live cells, round-
735 shaped CMs: dead cells. Scale bar: 500 μ m.

736 **B)** Quantification of number of live cells (% survival) in A) by supervised machine learning. Data
737 are means \pm SD of n=3 independent experiments. Unpaired Student's t-test; *p<0.05.

738 **C)** Representative confocal images of adult cardiomyocytes (CMs) isolated from WT and cMKO at
739 8 weeks stained with tetramethylrhodamine, ethyl ester (TMRE) and subjected to H₂O₂ treatment
740 for 1 hour. Rod-shaped CMs: live cells, round-shaped CMs: dead cells. Scale bar: 500 μ m.

741 **D)** Quantification of number of live cells (% survival) over time measured in C) by supervised
742 machine learning. Data are means \pm SD of 2-3 culture replicates and representative of n=3
743 experiments. 2wayANOVA, Tukey's multiple comparison test, ***p<0.001, ****p<0.0001 vs WT
744 H₂O₂.

745 **E)** Representative confocal images of adult cardiomyocytes (CMs) isolated from WT and cMKO at
746 8 weeks stained with tetramethylrhodamine, ethyl ester (TMRE) and subjected to Doxorubicin
747 (DOXO). Scale bar: 500 μ m.

748 **F)** Quantification of number of live cells (% survival) in E) by supervised machine learning. Data
749 are means \pm SD of 2-3 culture replicates and representative of n=3 experiments. 2wayANOVA,
750 Tukey's multiple comparison test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 vs WT DOXO.
751 Scale bar: 1 mm.

752 **G)** Mitochondrial permeability transition pore (mPTP) opening. Swelling assay performed on
753 cardiac mitochondria extracted from hearts of WT (n=3) and cMKO (n=3) mice at 8-10 weeks.
754 Light scattering (absorbance 540 nm, % relative to T_0) was measured every 20 s before and after
755 addition of a single pulse of CaCl_2 (arrowhead). Cyclosporin A (CsA) was added prior CaCl_2 pulse
756 to inhibit mPTP-induced mitochondrial swelling. Data are means \pm SD.

757 **H)** one-way ANOVA of maximal absorbance_{540 nm} (% relative to T_0) change in G) *p<0.05,
758 ****p<0.0001.

759 **I)** Mitochondrial permeability transition pore (mPTP) opening. Swelling assay performed on
760 mitochondria purified from WT and *Mtfp1*^{-/-}, *Ppif*^{-/-} and *Mtfp1*^{-/-}*Ppif*^{-/-} MEFs. Mitochondrial
761 absorbance changes (absorbance 540 nm, % relative to T_0) are measured every 20 s prior and
762 after addition of a single pulse of CaCl_2 (arrowhead). Cyclosporin A (CsA) was added prior Ca^{2+} to
763 inhibit mPTP-dependent swelling. Data are means \pm SD.

764 **J)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs subjected to actinomycin D (ActD)
765 plus ABT-737 treatment in the presence or absence of the pan-caspase inhibitor q-VD-OPh
766 hydrate (qVD). Cell death was monitored by using nuclear Propidium Iodide uptake (PI, orange)
767 and imaging cells every hour (h) for 20h. Scale bar = 100 μm .

768 **K)** Kinetics of PI uptake was determined by counting the number of PI⁺ positive cells (orange) over
769 total number cells nuclear stained with NucBlue (NB, blue) and expressed as % PI⁺/NucBlue. Data
770 are means \pm SD of n=4 independent experiments.

771 **L)** one-way ANOVA of K) at 18h, ****p<0.0001.

772 **M)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs subjected to actinomycin D (ActD)
773 plus ABT-737 treatment in the presence or absence of the pan-caspase inhibitor q-VD-OPh
774 hydrate (qVD). Live induction of the caspase 3/7 activation was monitored by using the CellEvent
775 (CE, green) reagent and imaging cells every hour (h) for 20h. Scale bar = 100 μm .

776 **N)** Kinetics of caspase 3/7 activation was determined by counting the number of CE⁺ positive cells
777 (green) over total number cells nuclear stained with NucBlue (NB, blue) and expressed as %
778 CE⁺/NucBlue. Data are means \pm SD of n=4 independent experiments.

779 **O)** one-way ANOVA of N) at 12h, ****p<0.0001.

780 **P)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs subjected to doxorubicin treatment in
781 the presence or absence of the pan-caspase inhibitor q-VD-OPh hydrate (qVD). Live induction of

782 the caspase 3/7 activation was monitored by using the CellEvent (CE, green) reagent and imaging
783 cells every hour (h) for 18h. Scale bar = 100 μ m.

784 **Q)** Kinetics of caspase 3/7 activation was determined by counting the number of CE⁺ positive cells
785 (green) over total number cells nuclear stained with NucBlue (NB, blue) and expressed as %
786 CE⁺/NucBlue. Data are means \pm SD and representative of at least n=3 independent experiments.

787 **R)** one-way ANOVA of Q) at 12h, p<0.0001.

788

789 **Figure 5. mPTP accounts for cell death sensitivity in MTFP1 deficient cells**

790 **A)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs subjected to H₂O₂ treatment. The
791 pan-caspase and cyclophilin D inhibitors, q-VD-OPh hydrate (qVD) and cyclosporin A (CsA)
792 respectively, were used to block both caspase and mPTP dependent cell death. Cell death was
793 monitored by Propidium Iodide uptake (PI, orange) and imaging cells every hour (h) for 18h. Scale
794 bar = 100 μ m.

795 **B)** Kinetics of PI uptake was determined by counting the number of PI⁺ positive cells (orange) over
796 total number cells nuclear stained with NucBlue (NB, blue) and expressed as % PI⁺/NucBlue. Data
797 are means \pm SD of n=6 independent experiments.

798 **C)** one-way ANOVA of B) at 18h, *p<0.05

799 **D)** Validation of Cyclophilin D (CYP D) deletion by Crispr/Cas9 genome editing in WT and *Mtfp1*^{-/-}
800 MEFs. Equal amounts of protein extracted from WT, *Mtfp1*^{-/-}, *Ppif*^{-/-}, *Mtfp1*^{-/-} *Ppif*^{-/-} MEFs were
801 separated by SDS-PAGE and immunoblotted with the indicated antibodies. SDHA was used as
802 mitochondrial marker and loading control.

803 **E)** Representative confocal images of WT, *Mtfp1*^{-/-}, *Ppif*^{-/-}, *Mtfp1*^{-/-} *Ppif*^{-/-} MEFs subjected to H₂O₂
804 treatment. Cell death was monitored by Propidium Iodide uptake (PI, orange) and imaging cells
805 every hour (h) for 18h. Scale bar = 100 μ m.

806 **F)** Kinetics of PI uptake was determined by counting the number of PI⁺ positive cells (orange) over
807 total number cells nuclear stained with NucBlue (NB, blue) and expressed as % PI⁺/NucBlue. Data
808 are means \pm SD of n=3 independent experiments.

809 **G)** one-way ANOVA of F) at 18h; **p<0.01, ****p<0.0001.

810 **H)** Representative confocal images of WT, *Mtfp1*^{-/-}, *Ppif*^{-/-}, *Mtfp1*^{-/-} *Ppif*^{-/-} MEFs subjected to
811 doxorubicin (DOXO) treatment. Live induction of the caspase 3/7 activation was monitored by

812 using the CellEvent (CE, green). CellEvent positive cells (CE⁺, green) over total number over cells
813 NucBlue labeled (blue) were imaged every hour (h) for 18h. Scale bar = 100 μ m.
814
815 **I)** Kinetics of caspase 3/7 activation was determined by counting the number of CE⁺ positive cells
816 (green) over total number cells nuclear stained with NucBlue (NB, blue) and expressed as %
817 CE⁺/NucBlue. Data are means \pm SD and representative of n=3 independent experiments.
818
819

820 **J)** one-way ANOVA of I) at 16h, ****p<0.0001.
821
822

823 **Figure 6. Model for the regulation of mitochondrial and cardiac function by MTFP1**

824 *Mtfp1* deletion in cardiomyocytes occurs at birth (cMKO) and sensitizes cardiac myocytes to
825 mitochondrial permeability transition pore (mPTP) opening, cell death and increases mitochondria
826 uncoupling of the inner membrane. At the adult age of 8-10 weeks heart of cMKO mice have
827 normal structure and function but undergoes to the development of a progressive dilated
828 cardiomyopathy (DCM) at 18 weeks which progresses to severe heart failure and middle-aged
829 death by 34 weeks. At onset of DCM, cMKO mice exhibit increased cardiac cell death, reduced
830 mitochondrial respiration, and induction of a sterile inflammatory response.
831
832

833 **Figure S1. *Mtfp1* deletion in cardiomyocytes causes dilated cardiomyopathy and middle- 834 aged death in mice**

835 **A)** Genotype tissue expression plot (GTEx) of MTFP1 in human tissues.
836
837

838 **B)** Alkaline carbonate extraction assay demonstrating solubility of MTFP1 similar to other multi-
839 pass integral membrane proteins. Immunoblot analysis of soluble (S) and insoluble (pellet, P)
840 fractions of wild type (WT) cardiac mitochondria extracted with Na₂CO₃ at the indicated pH. SDHA,
841 SDHB and MT-CO2, ANT1, NDUFA9 were used as markers for soluble and integral membrane
842 proteins, respectively.
843
844

845 **C)** Determination of sub-mitochondrial localization of MTFP1 in cardiac mitochondria by protease K
846 protection assay. TOMM40 and MFN2, were used as OMM markers, CYT C as an IMS marker,
847 and ANT1, ATP5B and SDHA as IMM markers.
848
849

850 **D)** Targeting strategy for conditional inactivation of mouse *Mtfp1*. To allow deletion of *Mtfp1* exons
851 2 and 3 were flanked in both cases by LoxP sites (blue arrowheads). Flox denotes NeoR cassette
852
853

842 containing LoxP targeted locus. LoxP denotes NeoR cassette-deleted targeted locus. Δ denotes
843 deletion induced by Cre-recombinase. FRT sites (green) initially flank NeoR cassette (yellow).

844 **E)** Kaplan-Meier survival curve of WT (n=11) and cMKO (n=14) female mice. Median lifespan of
845 cMKO mice is 37.5 weeks. Log-rank (Mantel-Cox) test, ***p<0.001.

846 **F)** M-Mode echocardiography images of WT (top) and cMKO (bottom) female mice at 34 weeks.

847 **G)** Quantification of left ventricular ejection fraction (% LVEF) of WT (n=7) and cMKO (n=6) female
848 mice at 34 weeks. Data represent mean \pm SD. 2-tailed unpaired Student's t-test, ****p<0.0001.

849 **H)** Quantification of systolic interventricular septum thickness (IVSs, mm) of WT (n=7) and cMKO
850 (n=6) female mice at 34 weeks. Data represent mean \pm SD. 2-tailed unpaired Student's t-test,
851 *p<0.05.

852 **I)** Quantification of systolic left ventricular posterior wall thickness (LVPWs, mm) of WT (n=7) and
853 cMKO (n=6) female mice at 34 weeks. Data represent mean \pm SD. 2-tailed unpaired Student's t-
854 test, ***p<0.001.

855 **J)** Quantification of left ventricle end systolic diameter (LVSD, mm) of WT (n=7) and cMKO (n=6)
856 female mice at 34 weeks. Data represent mean \pm SD. 2-tailed unpaired Student's t-test,
857 ***p<0.001.

858 **K)** Quantification of left ventricle end diastolic diameter (LVDD, mm) of WT (n=7) and cMKO (n=6)
859 female mice at 34 weeks. Data represent mean \pm SD. 2-tailed unpaired Student's t-test,
860 ***p<0.001.

861 **L)** Quantification of pulmonary edema. Wet Lung/Body Weight (BW) of WT (n=8) and cMKO (n= 8)
862 at 34 weeks. Data represent mean \pm SD; 2-tailed unpaired Student's t-test, *p<0.05.

863 **M)** Representative images (left) of WT (top) and cMKO (bottom) hearts isolated from female mice
864 at 34 weeks; (right) quantification of ratio of heart mass to tibia length (mg/mm). Data represent
865 mean \pm SD, 2-tailed unpaired Student's t-test, ***p<0.001.

866 **N-S)** Isolated primary adult cardiomyocytes from WT (n=51) and cMKO (n=52) mice at 8 weeks
867 were i) field-stimulated at 0.5 Hz, ii) exposed to the β -adrenergic agonist isoproterenol and iii)
868 stimulated at frequency of 5 Hz, iv) and then stepped back to 0.5 Hz washing out (wo)
869 isoproterenol. **N)** Diastolic and systolic sarcomere length (μ m) of WT and cMKO; **O)** fractional
870 sarcomere shortening; **P)** Time to 50% or 90% decay of sarcomere shortening in WT or cMKO
871 myocytes, ***p<0.001.

872 **Q-S)** Isolated primary adult cardiomyocytes from WT (n=29) and cMKO (n=52) mice at 8 weeks
873 were i) field-stimulated at 0.5 Hz, ii) exposed to the β -adrenergic agonist isoproterenol and iii)
874 stimulated at frequency of 5 Hz, iv) and then stepped back to 0.5 Hz washing out (wo)
875 isoproterenol. Intracellular Ca^{2+} concentrations ($[\text{Ca}^{2+}]_c$) were assessed by loading cells with Indo-1
876 AM and recording calcium transients at 405 nm/485 nm. **Q)** $[\text{Ca}^{2+}]_c$ at diastole or systole; **R)**
877 amplitude of $[\text{Ca}^{2+}]_c$ transients; **S)** Time to 50% or 90% decay (RT) of $[\text{Ca}^{2+}]_c$ in WT and cMKO
878 myocytes, **p<0.01, ****p<0.0001.

879

880 **Figure S2. Mtfp1 is required for bioenergetic efficiency in cardiac mitochondria**

881 **A)** Equal amounts of protein extracted from WT (n=4) and cMKO (n=6) hearts at 18 weeks were
882 separated by SDS-PAGE and immunoblotted with the indicated antibodies.

883 **B)** Volcano plot of the Label Free Quantification of the cardiac proteome in WT and cMKO mice
884 (18 weeks) listed in Dataset EV1.

885 **C)** Ratio of NAD(P)H/FAD of the redox states of NAD(P)H/NAD(P)⁺ and FADH₂/FAD assessed in
886 field-stimulated WT (n=51) and cMKO (n=51) cardiomyocytes isolated from 8-10 weeks old mice
887 (n=3).

888 **D)** Oxygen consumption rates (left; JO_2) measured by high-resolution respirometry of cardiac
889 mitochondria isolated from WT (n=5) and cMKO (n=5) mice between 8-10 weeks. Respiration was
890 measured in presence of succinate and rotenone (state 2) followed by the addition of ADP (state 3)
891 and Oligomycin (Omy- state 4). Data represent mean \pm SD. Multiple t-test, state 2 ***p<0.001,
892 state 4 *p<0.05. Respiratory control ratios (RCR) of state 3:2 (middle; ADP/Succinate (SUCC)) and
893 state 3:4 (right; ADP/Omy) under complex-II driven respiration. Data represent mean \pm SD;
894 multiple t-test, *p<0.05.

895 **E)** Mitochondrial membrane potential ($\Delta\Psi$) measured by quenching of Rhodamine 123 (RH123)
896 fluorescence in cardiac mitochondria from WT (n=8) and cMKO (n=8) mice between 8-10 weeks.
897 $\Delta\Psi$ was measured in presence of rotenone and succinate (state 2) followed by the addition of ADP
898 (state 3) and Oligomycin (state 4). Data represent mean \pm SD; Multiple t-test, *p<0.05, ***p<0.001.

899 **F)** Oxygen consumption rates (JO_2) measured by high-resolution respirometry of cardiac
900 mitochondria isolated from WT (n=6) and cMKO (n=6) mice between 8-10 weeks. Respiration was

901 measured in presence of malate (state 2) followed by the addition of ADP (state 3) and palmitoyl-
902 carnitine (PC). Data represent mean \pm SD.

903 **G)** Mitochondrial membrane potential ($\Delta\Psi$) measured by quenching of Rhodamine 123 (RH123)
904 fluorescence in cardiac mitochondria isolated from WT (n=6) and cMKO (n=6) mice between 8-10
905 weeks. $\Delta\Psi$ sustained by fatty acid oxidation was measured in presence of malate (state 2) followed
906 by the addition of ADP (state 3) and palmitoyl-carnitine (PC). Data represent mean \pm SD; Multiple
907 t-test, ***p<0.001.

908 **H)** PCR genotyping of *Mtfp1* alleles in mice. Deletion of exons 2 and 3 was obtained by crossing
909 *Mtfp1*^{LoxP/LoxP} mice with CMV-Cre recombinase mice to generate heterozygous knockout *Mtfp1*^{+/−}
910 offspring. Agarose gel of PCR amplicons of genomic DNA. The wild type (387 bp) and the deleted
911 (737 bp) alleles are shown for *Mtfp1*^{+/−} and *Mtfp1*^{−/−} cells.

912 **I)** Equal amounts of protein extracted from WT and *MTFP1*^{Crispr} U2OS cells separated by SDS–
913 PAGE and immunoblotted with antibodies against MTFP1 and normalized against Stain Free as a
914 loading control.

915 **J–M)** Mitochondrial respiration measured in adherent wild type (WT) and *Mtfp1*^{−/−} immortalized
916 mouse embryonic fibroblasts (MEFs) cells using the Seahorse Flux Analyzer. **J)** Oxygen
917 consumption rate (OCR) normalized to protein concentration under **K)** Basal **L)** Maximal (FCCP)
918 and **M)** non-phosphorylating (state 4) respiration (Oligomycin treated - Omy). Data are means \pm
919 SD of n=4 independent experiments measured on different days. Each point represents the mean
920 of 7-12 technical OCR measurements replicates of each independent experiment.

921 **N–Q)** Mitochondrial respiration measured in adherent wild type (WT) and *MTFP1*^{Crispr} human U2OS
922 osteosarcoma cells using the Seahorse Flux Analyzer. **N)** Oxygen consumption rate (OCR)
923 normalized to protein concentration under **O)** Basal **P)** Maximal (FCCP) and **Q)** non-
924 phosphorylating (state 4) respiration (Oligomycin treated - Omy). Data are means \pm SD of 7-12
925 technical replicates.

926 **R)** Inhibition of proton leak by MTFP1. Proposed model of the regulation of ANT-dependent proton
927 leak by MTFP1 (red). Proton gradient generated by the electron transport chain (ETC) is
928 harnessed by ATP synthase in WT cells to generate ATP from ADP and Pi. Upon *Mtfp1* ablation
929 (*Mtfp1*^{−/−}), ANT-mediated proton leak increases thus compromising bioenergetic efficiency.

931 **Figure S3. MTFP1 is dispensable for mitochondrial fission.**

932 **A)** Immunoblot of mitochondrial fission and fusion proteins in WT and *Mtfp1*^{-/-} MEFs. Equal
933 amounts of protein extracted from WT and *Mtfp1*^{-/-} MEFs were separated by SDS-PAGE and
934 immunoblotted with the indicated antibodies (horizontal line denotes different
935 membranes). VINCULIN was used as loading control.

936 **B)** Representative confocal images of fragmented mitochondria morphology in MEFs stably
937 expressing FLAG-MTFP1 (mitoYFP, green). EV (empty vector, top), FLAG-MTFP1 (bottom).
938 Scale bar=100 μ m.

939 **C)** Representative immunoblot of mitochondrial fission (red) and fusion (green) proteins in WT and
940 FLAG-MTFP1 stably overexpressing MEFs. Equal amounts of protein were separated by SDS-
941 PAGE and immunoblotted with the indicated antibodies (horizontal line denotes different
942 membranes).

943

944 **Figure S4. MTFP1 protects against mitochondrial PTP opening and cell death**

945 **A)** Mitochondrial permeability transition pore (mPTP) opening. Swelling assay performed on
946 mitochondria purified from WT and *Mtfp1*^{-/-} MEFs. Mitochondrial absorbance changes (absorbance
947 540 nm, % relative to T_0) are measured every 20 s prior and after addition of a single pulse of
948 CaCl_2 (arrowhead). Cyclosporin A (CsA) was added prior Ca^{2+} to inhibit mPTP-dependent swelling.
949 Data are means \pm SD.

950 **B)** Representative confocal images of WT and *Mtfp1*^{-/-} MEFs subjected to staurosporine (STS)
951 treatment in the presence or absence of the pan-caspase inhibitor q-VD-OPh hydrate (qVD). Cell
952 death was monitored by measuring Propidium Iodide uptake (PI) and imaging cells every hour (h)
953 for 18 h. Scale bar = 100 μ m.

954 **C)** Kinetics of PI uptake was determined by counting the number of PI⁺ positive cells (orange) over
955 total number cells nuclear stained with NucBlue (NB, blue) and expressed as % PI⁺/NucBlue. Data
956 are means \pm SD of n=4 independent experiments.

957 **D)** one-way ANOVA of C) at 12h, ****p<0.0001.

958 **E)** Cell proliferation curves of WT and *Mtfp1*^{-/-} MEFs in glucose (4.5 g/L) containing medium.
959 Number of cells was determined by counting the number of NucBlue (NB) labeled nuclei every 24
960 h.

961 **F)** Representative M-Mode echocardiographic images of left ventricles of WT (left) and cMKO
962 (right) mice treated with doxorubicin (Doxo, cumulative 20 mg/kg) at 10 weeks.

963 **G)** Quantification of left ventricular ejection fraction (% LVEF) of WT (n=5) and cMKO (n=5) after 2
964 weeks of Doxo administration. Data represent mean \pm SD. 2-tailed unpaired Student's t-test,
965 *p<0.05.

966 **H)** Quantification of systolic left ventricular diameter (LVSD, mm) of WT (n=5) and cMKO (n=5)
967 mice after Doxo treatment. Data represent mean \pm SD. 2-tailed unpaired Student's t test, *p<0.05.

968 **I)** Quantification of diastolic left ventricular diameter (LVDD, mm) of WT (n=5) and cMKO (n=5)
969 mice after Doxo treatment. Data represent mean \pm SD. 2-tailed unpaired Student's t test, *p<0.05.

970 **J)** Quantification of systolic left ventricular posterior wall thickness (LVPWs, mm) of WT (n=5) and
971 cMKO (n=5) mice after Doxo treatment. Data represent mean \pm SD. 2-tailed unpaired Student's t
972 test, *p<0.05.

973

974 **Figure S5. Generation of FLAG-MTFP1 mouse model to define the cardiac interactome**

975 **A)** For inducible overexpression of mCherry-P2A-Flag-Mtp18, two mouse models were generated
976 from one construct. The first (upper pane) allowing inducible expression from the CAG-promoter,
977 the second (lower panel) from the mouse Rosa26 promoter. To do so, the construct in the upper
978 panel is generated and recombined into the mouse Rosa26 locus. The genuine Rosa26 promoter
979 is further upstream, and its transcript is spliced into the splice acceptor of exon 2 ("s.acc.", purple).
980 In the native state, transcription is aborted at the insulator site (H19, black), and instead started at
981 the CAG promoter (pCAG, yellow arrow). The loxP-flanked (lox, blue arrow heads) neo-STOP
982 cassette for conditional activation has a stop site that is a large region of SV40 intron plus late
983 polyA (neo, green arrow; STOP, blue box). The cDNA is inserted downstream of the neo/stop
984 cassette. Both, Rosa26-driven and CAG-driven expression, is polyadenylated at a bovine growth
985 hormone polyA site (bGH pA, small black box). For exchange of the promoters, the CAG-cassette
986 is flanked by FRT-sites. This cassette will be excised by Flp-mediated deletion in vivo, leaving
987 mCherry-P2A-Flag-Mtp18 expression under control of the Rosa26 promoter. Upon Cre mediated
988 deletion, the mCherry-P2A-Flag-Mtp18 cDNA is expressed from the CAG promoter (upper panel)
989 or the intrinsic Rosa26 promoter (lower panel).

990 **B)** Representative immunoblot of the expression of Flag-MTFP1 compared to endogenous MTFP1

991 levels in KI mice.

992 **C)** Quantification of left ventricular ejection fraction (% LVEF) of WT (n=4) and KI (n=3) mice at 20
993 weeks. Data represent mean \pm SD.

994 **D)** Volcano plot of the FLAG-MTFP1 interactome analyzed by mass spectrometry. Mitochondrial
995 proteins exclusively present in FLAG-MTFP1 eluates or significantly enriched greater than two-
996 fold, listed in Dataset EV3.

997 **E)** Functional classification of 60 mitochondrial proteins identified in Co-IP eluates in C) (Dataset
998 EV3).

999

1000

1001

1002

1003 **Material and Methods**

1004 **Animals**

1005 Animals were handled according to the European legislation for animal welfare (Directive
1006 2010/63/EU). All animal protocols were reviewed and approved by the local and national
1007 authorities. Mice were housed within a specific pathogen free facility and maintained under
1008 standard housing conditions of a 14-10h light-dark cycle, 50-70% humidity, 19-21°C with free
1009 access to food and water in cages enriched with bedding material and gnawing sticks. *Mtfp1*
1010 conditional mice (*Mtfp1*^{LoxP/LoxP}) were generated by PolyGene AG (Switzerland) on a C57Bl6/N
1011 background. Cardiomyocyte specific *Mtfp1* KO mice (cMKO; *Myh6-Cre*^{tg/+}*Mtfp1*^{LoxP/LoxP}) were
1012 generated by crossing *Mtfp1* conditional mice (*Mtfp1*^{LoxP/LoxP}) with transgenic (Tg) mice expressing
1013 the Cre recombinase under the control of the cardiac alpha myosin heavy chain 6 promoter (*Myh6-*
1014 *Cre*)(Agah et al., 1997). Littermates that were homozygous for the conditional allele and negative
1015 for *Myh6-Cre* were used as controls (WT; *Myh6-Cre*^{tg/+}*Mtfp1*^{LoxP/LoxP}). Heterozygous whole-body
1016 *Mtfp1* KO mice (*Mtfp1*^{+/−}) were generated by crossing *Mtfp1* conditional mice (*Mtfp1*^{LoxP/LoxP}) with
1017 transgenic (Tg) mice expressing the Cre recombinase under the control of the CMV promoter
1018 (CMV-*Cre*)(Schwenk et al., 1995) and backcrossing to C57Bl6/N wild type (WT) mice.
1019 Cardiomyocyte specific FLAG-MTFP1 Knock-In (KI) mice (*Myh6-Cre*^{tg/+}*Mtfp1*^{+/+}, CAG^{tg/+}) were
1020 generated by crossing an inducible mouse model for mCherry-P2A-FLAG-MTFP1 generated by
1021 PolyGene AG (Switzerland) on a C57Bl6/N background expression under the CAG promoter with
1022 mice expressing the Cre recombinase under the control of the cardiac alpha-(α) myosin heavy
1023 chain 6 promoter (*Myh6-Cre*).

1024

1025 **Cell Lines**

1026 WT (*Mtfp1*^{+/+}) and knockout (KO) *Mtfp1*^{−/−} embryos were isolated at E13.5 following F1
1027 heterozygous intercrosses of *Mtfp1*^{+/−} whole-body KO mice. Immortalization of WT (*Mtfp1*^{+/+}) and
1028 *Mtfp1*^{−/−} primary mouse embryonic fibroblasts (MEFs) was performed as previously
1029 described(Cretin et al., 2021, 2021) using a plasmid encoding SV40 large T antigen. MEFs cells
1030 were maintained in Dulbecco's modified Eagle's medium (DMEM + GlutaMAX, 4.5 g/L D-Glucose,
1031 pyruvate) supplemented with 5% FBS and 1% penicillin/streptomycin (P/S, 50 µg/ml) in a 5% CO₂
1032 atmosphere at 37°C.

1033 Genetic disruption of *Ppif* in WT and *Mtfp1*^{-/-} MEFs was performed via CRISPR-Cas9 gene editing
1034 targeting Exon 1 of *Ppif* (sgRNA: forward: aaacCCGGGAACCGCTCGTGTAC and reverse:
1035 CACCGTACACGAGCGGGTTCCCGG. sgDNA oligonucleotides were annealed and cloned into
1036 pSpCas9(BB)-2A-GFP PX458 to generate pTW363 (pSpCas9(BB)-2A-GFP PPIFsgDNA). WT
1037 (*Mtfp1*^{+/+}) and *Mtfp1*^{-/-} immortalized MEFs were transfected with 2.5 µg of plasmid pTW363 using
1038 Lipofectamine 2000 (Life Technologies). After 48h incubation, cells were individually isolated in 96
1039 well plates by FACS. Clones were then expanded and validated by Sanger sequencing and
1040 western blotting. Both single *Ppif* KO MEFs (*Ppif*^{-/-}) and double KO *Mtfp1*^{-/-}*Ppif*^{-/-} cells carry the
1041 same homozygous c.126delG insertion that is predicted to yield a truncated polypeptide product at
1042 amino acid position 65 (1-64 protein) p.Val65*. Immunoblot analysis was used to confirm the
1043 absence of PPIF protein.

1044 MEFs expressing mitochondrially targeted YFP (mitoYFP) were generated from
1045 Gt(ROSA26)Sor^{mitoYFP/+} embryos on a C57Bl6/N genetic background at E13.5 and immortalized
1046 using a plasmid encoding SV40 large T antigen as previously described(Cretin et al., 2021). MEFs
1047 stably expressing FLAG-MTFP1 were generated by lentiviral transduction with pTW142 (pLVX-
1048 EF1 α -MTFP1) containing a puromycin resistant marker. The empty vector (EV) pLVX-EF1 α
1049 (pTW122) was used to generate control cells.

1050 Human U2OS osteosarcoma cells were depleted for MTFP1 by CRISPR-Cas9 gene editing. The
1051 single-guide RNAs (sgRNAs) were designed using the CRISPR-Cas9 design tool (benchling.com)
1052 to target Exon 1 of *MTFP1*. sgDNA oligonucleotides (forward: 5'-
1053 caccgGCGCAGAGCGCGATCTCTAC -3' and reverse: 5'-aaacGTAGAGATCGCGCTCTGCGC-
1054 3') were annealed and cloned into the BbsI digested pSpCas9(BB)-2A-GFP vector (SpCas9(BB)-
1055 2A-GFP (PX458) which was a gift from Feng Zhang (Addgene plasmid # 48138). U2OS cells were
1056 transfected in 6-well dishes with 2ug of pSpCas9(BB)-2A-GFP plasmid containing the respective
1057 sgRNA using Lipofectamine 2000 (Life Technologies, 11668027). After 24h incubation, GFP
1058 positive cells were individually isolated by fluorescence-activated cell sorting. Clones were
1059 expanded and were validated by western blotting and DNA sequencing.

1060
1061 **SDS-PAGE immunoblot analysis**

1062 Immunoblot analysis was used to assess steady-state protein levels in cardiac tissue and cell
1063 lysates. For tissue lysates, mice were sacrificed by cervical dislocation, the chests were opened,
1064 and the hearts were excised, weighed, flash frozen in liquid nitrogen, and stored at -80°C until use.
1065 The LV tissue or MEFs cellular pellet was homogenized in cold RIPA buffer [1 mg/ 20 µL, 1%
1066 Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 50 mM Tris-HCl (pH 7.8), 1 mM
1067 EDTA, and 1 mM EGTA] in presence of protease and phosphatase inhibitors and kept on ice for
1068 30 minutes. The homogenate was then centrifuged for 15 min at 16,000g, 4°C. The protein
1069 concentration was determined by Bradford assay (Bio-Rad) using a BSA standard curve. The
1070 protein absorbance was measured at 595 nm by using a microplate reader Infinite M2000 (Tecan).
1071 Equal amounts of protein were reconstituted in 4x Laemmli Sample Buffer [355 mM, 2-
1072 mercaptoethanol, 62.5 mM Tris-HCl pH 6.8, 10% (v/v) glycerol, 1% (w/v) SDS, 0.005% (v/v)
1073 Bromophenol Blue] and heated at 95°C for 5 min. Samples (10 µg) were resolved on 4-20%
1074 polyacrylamide gels (Mini Protean TGX Stain-Free gels, BioRad) and transferred to nitrocellulose
1075 membrane with Trans-Blot® Turbo™ Transfer system (Bio-Rad). Equal protein amount across
1076 membrane lanes were checked by Ponceau S staining or Stain-free detection. Membranes were
1077 blocked for at least 1h with 5% (w/v) semi-skimmed dry milk dissolved in Tris-buffered saline
1078 Tween 0.1% (TBST), incubated overnight at 4°C with primary antibodies dissolved 1:1,000 in 2%
1079 (w/v) Bovine Serum Albumin (BSA), 0.1% TBST. The next day membranes were incubated in
1080 secondary antibodies conjugated to horseradish peroxidase (HRP) at room temperature for 2h
1081 (diluted 1:10,000 in BSA 2% TBST 0.1%). Finally, membranes were incubated in Clarity™ Western
1082 ECL Substrate (Bio-Rad) for 2 min and luminescence was detected using the ChemiDoc® Gel
1083 Imaging System. Densitometric analysis of the immunoblots was performed using Image Lab
1084 Software (Bio-Rad).
1085

1086 **Mitochondrial isolation**

1087 Isolated cardiac mitochondria were freshly isolated as previously described (Mourier et al., 2014)
1088 with some modifications. Briefly, the heart was washed in ice-cold PBS solution. Ventricles were
1089 separated from atria and non-myocardial tissue, cut in small pieces, and then transferred to an ice-
1090 cold 2-ml homogenizer (Teflon pestle) and manually homogenized in IB buffer (sucrose 275 mM,
1091 Tris 20 mM, EGTA-KOH 1 mM, pH 7.2) containing Trypsin-EDTA (0.05%). Trypsin activity was

1092 then inhibited by adding to the homogenate bovine serum albumin (BSA) fatty acid free (0.25
1093 mg/mL) and protease inhibitor cocktail (PIC, Roche).

1094 Mitochondria isolation from MEFs was performed starting from 10 x 150 mm dishes at 100%
1095 confluence. Cells were collected into 10 mL of IB Buffer containing BSA fatty acid free (0.25
1096 mg/mL) and PIC and homogenized with 30 stokes of the plunger at 1500 rpm on ice.

1097 Cardiac and/or cellular homogenates were then centrifuged at low speed (1000 g, 10 min, 4 °C) to
1098 discard nuclei and debris, and further centrifuged (3200 g, 15 min, 4°C) to obtain the crude
1099 mitochondrial pellet and the cytosolic fraction. The crude mitochondrial pellet was finally
1100 resuspended in IB buffer containing BSA and PIC and protein concentration was determined by
1101 using the Bradford assay.

1102

1103 **Protease Protection Assay**

1104 Crude mitochondria isolated from WT mouse hearts was subjected to protease protection assay as
1105 previously described (Anand et al., 2014). 50 µg of crude mitochondria were resuspended into the
1106 following buffers without protease inhibitors: 1) Mitochondrial isolation IB buffer 2) Mitochondrial
1107 isolation buffer with Proteinase K (100 µg/mL) 3) Swelling buffer (EDTA 1 mM, HEPES 40 mM) 4)
1108 Swelling buffer + Proteinase K (100 µg/mL) 5) Swelling buffer + Proteinase K (100 µg/ml) + Triton
1109 X-100 0.5% and incubated at 37°C for 30 minutes at 750 rpm. Mitochondrial proteins were then
1110 precipitated in trichloric acid buffer (14% TCA , 40 mM HEPES, 0.02% Triton X-100) for 3 hours at
1111 -20°C and centrifugated for 20 min. Pellets were washed twice with ice-cold acetone and air-dried
1112 prior to re-suspension in 1x Laemilli sample buffer (Bio-Rad) for SDS-PAGE and immunoblot
1113 analysis.

1114

1115 **Alkaline Carbonate Extraction**

1116 Alkaline carbonate extraction of membrane proteins was performed as previously described
1117 (Anand et al., 2014). Crude mitochondria isolated from WT mouse hearts were resuspended and
1118 incubated for 30 min on ice with 0.1 M Na₂CO₃ at the following pH: 12.5, 11.5, 10.5, or 9.5. The
1119 suspensions were ultra-centrifuged at 4°C for 30 min at 90,000 g in Beckman polycarbonate tubes
1120 in a TLA 110 rotor. Supernatants and pellets were then incubated in trichloric acid buffer (14%
1121 TCA, 40 mM HEPES, 0.02% Triton X-100) for 15 min on ice, followed by centrifugation for 20 min

1122 at 28,000 g at 4°C. The samples were washed 3x with 100% acetone, subsequently dried for 30
1123 min at RT. The dried pellet was then resuspended with 1x Laemilli sample buffer (Bio-Rad) for
1124 SDS-PAGE and western blot analysis.

1125

1126 **siRNA transfection**

1127 Silencing of the indicated genes was performed using forward transfection: 20 nM of the indicated
1128 SmartPool siRNAs listed in Dataset EV4 were mixed with Lipofectamine RNAiMax (Invitrogen),
1129 added on top of cells seeded in 6-well dishes (300,000 cells/well) and incubated at 37°C in a CO₂
1130 incubator. For live imaging experiments, cells were seeded in 96 well plates (Cell Carrier Ultra,
1131 Perkin Elmer) 48h after transfection to perform live imaging after 72h post-transfection.

1132

1133 **Cardiac RNA sequencing and RT-qPCR**

1134 WT and cMKO mice aged 8 and 18 weeks were sacrificed by cervical dislocation and hearts were
1135 quickly excised and rinsed with cold sterile PBS. Left ventricle posterior walls were collected and
1136 snap frozen in liquid nitrogen and stored at -80°C until use. Total RNA was extracted by using
1137 TRIzol (Invitrogen, NY, USA) according to standard procedures. The Trizol/chloroform mixture was
1138 centrifuged at 12000g for 15 min at 4°C, the supernatant corresponding to the aqueous phase was
1139 transferred to a new tube, mixed with ethanol 70%, and then applied to an RNA mini-column
1140 extraction kit (NucleoSpin RNA kit, MACHEREY-NAGEL) according to the manufacturer's
1141 recommendations. After DNA digestion, total RNA was eluted with RNase-free water and stored in
1142 liquid nitrogen. RNA was quantified by using the Bioanalyzer 2100 (Agilent) and only RNA samples
1143 ($\geq 50 \text{ ng}/\mu\text{L}$) with an RNA integrity value (RIN) ≥ 6.8 , $\text{OD}^{260/280} \geq 2$, $\text{OD}^{260/230} \geq 2$ were considered
1144 for the transcriptome profiling. For RNA sequencing, libraries were built using a TruSeq Stranded
1145 mRNA library Preparation Kit (Illumina, USA) following the manufacturer's protocol. Two runs of
1146 RNA sequencing were performed for each library on an Illumina NextSeq 500 platform using
1147 single-end 75bp. The RNA-seq analysis was performed with Sequana 0.8.5(Cokelaer et al., 2017)
1148 using an RNA-seq pipeline 0.9.13 (https://github.com/sequana/sequana_rnaseq) built on top of
1149 Snakemake 5.8.1(Köster and Rahmann, 2012). Reads were trimmed from adapters using
1150 Cutadapt 2.10(Martin, 2011) then mapped to the mouse reference genome GRCm38 using STAR
1151 2.7.3a(Dobin et al., 2013). FeatureCounts 2.0.0 was used to produce the count matrix, assigning

1152 reads to features using annotation from Ensembl GRCm38_92 with strand-specificity
1153 information(Liao et al., 2014). Quality control statistics were summarized using MultiQC 1.8(Ewels
1154 et al., 2016). Statistical analysis on the count matrix was performed to identify differentially
1155 expressed genes (DEGs), comparing WT and cMKO. Clustering of transcriptomic profiles were
1156 assessed using a Principal Component Analysis (PCA). Differential expression testing was
1157 conducted using DESeq2 library 1.24.0 scripts based on SARTools 1.7.0(Varet et al., 2016)
1158 indicating the significance (Benjamini-Hochberg adjusted p-values, false discovery rate FDR <
1159 0.05) and the effect size (fold-change) for each comparison.

1160 For RT-qPCR, 1 µg of total RNA was converted into cDNA using the iScript Reverse Transcription
1161 Supermix (Bio-Rad). RT-qPCR was performed using the CFX384 Touch Real-Time PCR Detection
1162 System (Bio-Rad) and SYBR® Green Master Mix (Bio-Rad) using the primers listed in Dataset
1163 EV1. Gapdh was amplified as internal standard. Data were analyzed according to the 2- $\Delta\Delta CT$
1164 method(Livak and Schmittgen, 2001).

1165

1166 **Proteomics**

1167 Heart extract proteins were extracted and denatured in RIPA buffer. Samples were sonicated using
1168 a Vibracell 75186 and a miniprobe 2 mm (Amp 80% // Pulse 10 off 0.8, 3 cycles) and further
1169 centrifuged. Protein assay was performed on supernatant (Pierce 660 nm, according to
1170 manufacturer instructions) and 100 µg of each extract was delipidated and cleaned using a
1171 Chloroform / Methanol / Water precipitation method. Briefly, 4 volume of ice-cold methanol were
1172 added to the sample and vortex, 2 volume of ice-cold chloroform were added and vortex and 3
1173 volume of ice-cold water was added and vortex. Samples were centrifuged 5 min at 5000 g. The
1174 upper layer was removed and proteins at the interface were kept. Tubes were filled with ice-cold
1175 methanol and centrifuged at max speed for 5 min. Resulting protein pellet was air-dried and then
1176 dissolved in 130 µl of 100mM NaOH before adding 170 µl of Tris 50 mM pH 8.0, tris (2-
1177 carboxyethyl)phosphine (TCEP) 5 mM and chloroacetamide (CAA) 20 mM. The mixture was
1178 heated 5 min at 95 °C and then cooled on ice. Endoprotease LysC (1µg) was use for a 8h
1179 digestion step at (37° C) followed with a trypsin digestion (1 µg) at 37°C for 4 h. Digestion was
1180 stopped adding 0.1% final of trifluoroacetic acid (TFA). Resulting peptides were desalted using a
1181 C18 stage tips strategy (Elution at 80% Acetonitrile (ACN) on Empore C18 discs stacked in a P200

1182 tips) and 30 µg of peptides were further fractionated in 4 fractions using
1183 poly(styrenedivinylbenzene) reverse phase sulfonate (SDB-RPS) stage-tips method as previously
1184 described(Kulak et al., 2014; Rappaport et al., 2007). Four serial elutions were applied as
1185 following: elution 1 (80 mM Ammonium formate (AmF), 20% (v/v) ACN, 0.5% (v/v) formic acid
1186 (FA)), elution 2 (110 mM AmF, 35% (v/v) ACN, 0.5% (v/v) FA), elution 3 (150 mM AmF, 50%
1187 (v/v) ACN, 0.5% (v/v) FA) and elution 4 (80% (v/v) ACN, 5 % (v/v) ammonium hydroxide). All
1188 fractions were dried and resuspended in 0.1% FA before injection.

1189 **NanoLC-MS/MS**

1190 LC-MS/MS analysis of digested peptides was performed on an Orbitrap Q Exactive Plus mass
1191 spectrometer (Thermo Fisher Scientific, Bremen) coupled to an EASY-nLC 1200 (Thermo Fisher
1192 Scientific). A home-made column was used for peptide separation (C₁₈ 50 cm capillary column
1193 picotip silica emitter tip (75 µm diameter filled with 1.9 µm Reprosil-Pur Basic C₁₈-HD resin, (Dr.
1194 Maisch GmbH, Ammerbuch-Entringen, Germany)). It was equilibrated and peptide were loaded in
1195 solvent A (0.1 % FA) at 900 bars. Peptides were separated at 250 nl·min⁻¹. Peptides were eluted
1196 using a gradient of solvent B (ACN, 0.1 % FA) from 3% to 7% in 8 min, 7% to 23% in 95 min, 23%
1197 to 45% in 45 min (total length of the chromatographic run was 170 min including high ACN level
1198 step and column regeneration). Mass spectra were acquired in data-dependent acquisition mode
1199 with the XCalibur 2.2 software (Thermo Fisher Scientific, Bremen) with automatic switching
1200 between MS and MS/MS scans using a top 12 method. MS spectra were acquired at a resolution
1201 of 35000 (at *m/z* 400) with a target value of 3×10^6 ions. The scan range was limited from 300 to
1202 1700 *m/z*. Peptide fragmentation was performed using higher-energy collision dissociation (HCD)
1203 with the energy set at 27 NCE. Intensity threshold for ions selection was set at 1×10^6 ions with
1204 charge exclusion of *z* = 1 and *z* > 7. The MS/MS spectra were acquired at a resolution of 17500 (at
1205 *m/z* 400). Isolation window was set at 1.6 Th. Dynamic exclusion was employed within 45 s.

1206 **Data Processing**

1207 Data were searched using MaxQuant (version 1.5.3.8) using the Andromeda search
1208 engine(Tyanova et al., 2016) against a reference proteome of *Mus musculus* (53449 entries,
1209 downloaded from Uniprot the 24th of July 2018). The following search parameters were applied:
1210 carbamidomethylation of cysteines was set as a fixed modification, oxidation of methionine and
1211 protein N-terminal acetylation were set as variable modifications. The mass tolerances in MS and

1212 MS/MS were set to 5 ppm and 20 ppm respectively. Maximum peptide charge was set to 7 and 5
1213 amino acids were required as minimum peptide length. A false discovery rate of 1% was set up for
1214 both protein and peptide levels. All 4 fractions per sample were gathered and the iBAQ intensity
1215 was used to estimate the protein abundance within a sample(Schwanhäusser et al., 2011). The
1216 match between runs features was allowed for biological replicate only.

1217 For this large-scale proteome analysis part, the mass spectrometry data have been deposited at
1218 the ProteomeXchange Consortium (<http://www.proteomexchange.org>) via the PRIDE partner
1219 repository(Perez-Riverol et al., 2019; Vizcaíno et al., 2014) with the dataset identifier PXD028516
1220

1221 **mtDNA content quantification**

1222 Genomic DNA was extracted using the NucleoSpin Tissue (MACHEREY-NAGEL) and quantified
1223 with NanoQuant Plate™ (Infinite M200, TECAN). RT-qPCR was performed using the Real-Time
1224 PCR Detection System (Applied Biosystems StepOnePlus), 20 ng of total DNA and the SYBR®
1225 Green Master Mix (Bio-Rad). *b-Actin* was amplified as an internal, nuclear gene standard as
1226 previously described(Cretin et al., 2021). PCR primer sequences are listed in Dataset EV4. Data
1227 were analyzed according to the 2^{ΔΔCT} method(Livak and Schmittgen, 2001).

1228 1229 **Mitochondrial imaging and quantification in MEFs**

1230 MEFs cells were seeded on 96-well or 384-well CellCarrier Ultra imaging plates (Perkin Elmer) 24h
1231 before imaging. Nuclei were stained with NucBlue™ Live ReadyProbes™ Reagent (ThermoFisher
1232 Scientific) at 1 drop per 10 mL of media. Fluorescent labeling of mitochondria was achieved using
1233 MitoTracker DeepRed (MTDR) at 100 nM for 30 min at 37°C, 5% CO₂. Cells were then washed
1234 with regular medium and images were acquired using the Operetta CLS or Opera Phenix High-
1235 Content Analysis systems (Perkin Elmer), with 20x Water/1.0 NA, 40x Air/0.6 NA, 40x Water/1.1
1236 NA or 63x Water/1.15 NA. MTDR (615-645 nm) and NucBlue (355-385 nm) were excited the
1237 appropriate LEDs (Operetta CLS) or lasers (Opera Phenix). Automatic single-cell classification of
1238 non-training samples (i.e. unknowns) was carried out by the supervised machine-learning (ML)
1239 module using Harmony Analysis Software (PerkinElmer) as previously described(Cretin et al.,
1240 2021).

1242

Analysis of oxygen consumption

1243

Oxygen consumption of intact cells or crude mitochondria was measured with the XFe96 Analyzer (Seahorse Biosciences) and High Resolution Respirometry (O2k-Fluorespirometer, Oroboros, AT), respectively. For Seahorse experiments, cells (experimentally optimized density of 20,000 cells/well for MEFs and U2OS cells) were seeded onto 96-well XFe96 cell culture plates. On the following day, cells were washed and incubated with Seahorse XF Base Medium completed with 1 mM Pyruvate, 2 mM Glutamine and 10 mM Glucose. Cells were washed with the Seahorse XF Base Medium and incubated for 45 min in a 37°C non-CO₂ incubator before starting the assay. Following basal respiration, cells were treated sequentially with: oligomycin 1 µM, CCCP 2 µM and antimycin A plus rotenone (1 µM each) (Sigma). Measurements were taken over 2-min intervals, proceeded by a 1-min mixing and a 30s incubation. Three measurements were taken for the resting OCR, three for the non-phosphorylating OCR, three for the maximal OCR and three for the extramitochondrial OCR. After measurement, the XFe96 plate was washed with Phosphate-Buffered Saline (PBS) and protein was extracted with RIPA for 10 min at RT. Protein quantity in each well was then quantified by Bicinchoninic acid assay (BCA) by measuring absorbance at 562 nm and used to normalize OCR measurements as previously described(Cretin et al., 2021).

1258

For O2k respirometry, isolated cardiac mitochondria were freshly isolated from adult WT and cMKO mice (8, 18 or 34 weeks) as described above. Simultaneous measurement of mitochondrial respiration and membrane potential ($\Delta\psi$) was assessed by O2K-Fluorometry using a O2K-Fluorescence LED2-Module operated through the amperometric channel of the O2K. Briefly, 25 or 50 µg of cardiac mitochondria were resuspended in Mir05 buffer [MgCl₂-6H₂O 3 mM, Lactobionic Acid 60 mM, Taurine 20 mM, KH₂PO₄ 10 mM, Hepes-KOH 20 mM, Sucrose 110 mM, EGTA-KOH 0.5 mM, BSA (1g/L)] in presence of Rhodamine 123 (RH-123) (0.66 µM). Maximal mitochondrial respiration capacity (OXPHOS) was determined under consecutive administrations of PGM [pyruvate 10 mM, glutamate 5 mM, malate 5 mM, state 2] or malate (2 mM) and palmitoyl-carnitine (10 µM) in presence of ADP (1 mM, state 3) to assess complex I-driven respiration; rotenone (0.5 µM) and succinate (10 mM, state 2) for the measurement of complex II-driven respiration; antimycin A (2.5 µM), ascorbate (2 mM), N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD, 0.5 mM) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 2 µM) for the determination of the complex IV-driven respiration. The addition of oligomycin (Omy, 25 nM) or carboxyatractyloside

1272 (CATR, 1 μ M) was used to determine the non-phosphorylating respiration (state 4). Cytochrome c
1273 (2 μ M) – mediated O₂ flux was used to evaluate the integrity of the OMM following the
1274 mitochondria isolation. Respiratory control ratios (RCR) of state 3: state 4 were used to evaluate
1275 the integrity of the IMM. RH-123 fluorescence quenching (Δ fluorescence) in energized
1276 mitochondria was used as a direct measurement of $\Delta\psi$.

1277

1278 **Echocardiography**

1279 Transthoracic echocardiographic acquisitions were performed by using a Vevo 3100 Imaging
1280 System coupled to a 25-55 MHz linear-frequency transducer (MX550D, FUJIFILM VisualSonics).
1281 Randomized WT and cMKO mice [10 to 34 weeks of age (male), 34 weeks (female) were
1282 anesthetized and maintained with 2% isofluorane in oxygen, placed in a supine position on a 37°C
1283 warmed pad. Limb electrodes and a rectal probe were used to monitor define (ECG) and body
1284 temperature. Before echocardiography and the addition of the pre-warmed ultrasound gel, thorax
1285 fur was removed using hair-removal cream. To assess the overall left ventricle (LV) size and LV
1286 function, B- and M-Mode images were acquired in parasternal long axis view (PLAX) between 400-
1287 500 bpm. The systolic and diastolic LV dimensions [interventricular septum thickness (IVS; mm),
1288 LV diameter (LVD; mm), LV posterior wall thickness (LVPW; mm)] and cardiac output [ejection
1289 fraction (% EF)] were determined by acquiring and analyzing at least 3 independent cardiac cycles
1290 within at least 3 M-Mode images.

1291

1292 **Doxorubicin Treatment**

1293 WT and cMKO mice aged 8 weeks received a cumulative dose of 20 mg/kg of doxorubicin (Doxo,
1294 2 intra-peritoneal injections of 10 mg/kg/saline, given at 3-day intervals; control mice received
1295 saline injections). Transthoracic echocardiography was performed at day 14 post treatment. Body
1296 weight was recorded every 3 days and a loss higher than 20% was considered as endpoint of the
1297 study.

1298

1299 **Determination of serum levels of cardiac troponin I and cardiac MLC1**

1300 A mouse ELISA kit was used to compare serum levels of cardiac troponin I (cTnI, Life Diagnostics)
1301 and cardiac myosin light chain 1 (MLC1, Life Diagnostic) in WT and cMKO male mice aged 18 and

1302 34 weeks. Blood was collected via submandibular vein puncture from non-anesthetized mice, left
1303 for 30 min at RT and then centrifuged at 5,000 g at 4°C for 10 min then snap-frozen into liquid
1304 nitrogen. Serum was stored at -80°C until next use. The assays to determine cTnI and MLC1
1305 levels were performed following the exact manufacturer's instructions.

1306

1307 **Histology**

1308 WT and cMKO mice aged 34 weeks were sacrificed by cervical dislocation and the hearts excised
1309 post-mortem. The whole hearts were then fixed with Formol 4 % (VWR chemicals) overnight and
1310 then fully dehydrated by a series of ethanol gradients. Tissues were then paraffin-embedded and
1311 sectioned in a short view at a thickness of 4 µm on a microtome. The sections were de-paraffinized
1312 in xylene and rehydrated followed by hematoxylin and eosin (H&E), Masson's trichrome or
1313 Picrosirius Red staining according to the standard protocols.

1314

1315 **Transmission Electron Microscopy**

1316 Transmission electron microscopy was performed on cardiac tissue from WT and cMKO mice
1317 aged 8-10 weeks. Small pieces (1x1x1 mm) from the left ventricle posterior wall were fixed in a
1318 37°C prewarmed mix of PHEM 1x buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM
1319 MgCl₂; pH 7.3), 2.5% glutaraldehyde and 2% PFA for 30 min, followed by an overnight fixation at
1320 4°C. Specimens were then rinsed 3 times with PHEM 2X buffer. Samples were incubated with 1 %
1321 osmium tetroxide (Merck) and 1.5 % ferrocyanide (Sigma Aldrich) in 0.1M PHEM. After
1322 dehydration by a graded series of ethanol, samples were gradually infiltrated at RT with epoxy
1323 resin and after heat polymerization, sections with a thickness of 70 nm were cut with a Leica UCT
1324 microtome and collected on carbon, formvar coated copper grids. Sections were contrasted with
1325 4% aqueous uranylacetate and Reynold's lead citrate. Generation of ultra-large electron
1326 microscopy montages at a magnification of 14500x (pixel size = 6.194 nm, bin 1, US4000
1327 Ultrascan camera) were acquired using a TECNAI F20 Transmission Electron Microscope (FEI)
1328 with a field emission gun (FEG) as an electron source, operated at 200kV. The SerialEM
1329 software(Mastronarde and Held, 2017; Schorb et al., 2019) was used for multi-scale mapping as
1330 previously described(Cretin et al., 2021). The 'Align Serial Sections/Blend Montages' interface of
1331 IMOD16 was used for blending the stacks of micrographs collected to single large images.

1332 Quantification of mitochondrial cross- sectional area was determined by tracing the perimeter of
1333 individual mitochondria with the use of 3dmod software.

1334

1335 Primary adult cardiomyocytes isolation

1336 Primary adult ventricular cardiomyocytes (CMs) were isolated from WT (*Myh6-Cre*^{+/+}, *Mtfp1*^{LoxP/LoxP})
1337 and *Mtfp1* KO mice (cMKO, *Myh6-Cre*^{Tg/+}, *Mtfp1*^{LoxP/LoxP}) mice aged 8-10 weeks to perform live-
1338 cell imaging experiments by using the simplified Langendorff-free method as previously published
1339 (Ackers-Johnson et al., 2016) with some modifications. Briefly, mice were weighed, injected
1340 intraperitoneally with ketamine/xylazine (ketamine: 3 x 80 mg/kg/bw; xylazine 3 x 10 mg/kg/bw).
1341 Once the thorax was opened, the descending aorta was cut and the heart exposed and flushed
1342 into the right ventricle with EDTA buffer pH 7.8 (NaCl 130 mM, KCl 5 mM, NaH₂PO₄ 0.5 mM,
1343 HEPES 10 mM, Glucose 10 mM, 2,3-butanedione monoxime (BDM) 10 mM, Taurine 10 mM,
1344 EDTA 5 mM). The heart was then excised, transferred into a dish containing EDTA buffer, where
1345 the ascending aorta was clamped. Tissue digestion was performed by sequential injection of EDTA
1346 buffer, perfusion buffer (NaCl 130 mM, KCl 5 mM, NaH₂PO₄ 0.5 mM, HEPES 10 mM, Glucose 10
1347 mM, BDM 10 mM, Taurine 10 mM, MgCl₂ 1 mM, pH 7.8) and collagenase buffer (Collagenase II
1348 0.5 mg/mL, Collagenase 4 0.5 mg/mL, Protease XIV 0.05 mg/mL) into the left ventricle (LV)
1349 through the apex. To control the flow of the digestion buffer the LV was perfused via a flexible
1350 linker using an automated infusion pump (Graseby 3200). After digestion, ventricles were then
1351 separated from the atria and ultimately dissociated by gentle pipetting. The digestion process was
1352 then inhibited by the addition of the stop buffer (perfusion buffer containing FBS 10%). Cellular
1353 suspension was filtered using a 100 µm pore size strainer to remove undigested debris. CMs were
1354 then collected by gravity settling (15 min) while resuspended sequentially in 3 calcium
1355 reintroduction buffers to gradually restore calcium levels (0.34 mM, 0.68 mM, and 1.02 mM Ca²⁺).
1356 CMs yields were quantified using a hemocytometer. CMs were resuspended in prewarmed culture
1357 media (M199 Medium, BSA 0.1%, Insulin-Transferrin-Selenium (ITS) 1x, BDM 10 mmol/l, CD lipid
1358 1x, P/S 1x), and plated into laminin (10 µg/mL) precoated Cell Carrier Ultra-96 well (Perkin Elmer)
1359 plates, in a humidified tissue culture incubator (37°C, 5% CO₂) for at least 1 hour before
1360 proceeding to live imaging.

1362 **Cell death assay**

1363 CMs isolated from WT and cMKO mice (8-10 weeks) labelled with NucBlue™ Live ReadyProbes™
1364 Reagent (ThermoFisher Scientific) and Tetramethylrhodamine Ethyl Ester Perchlorate (TMRE; 50
1365 nM) for 20 min at 37°C, 5% CO₂. Supervised machine learning (Harmony 4.9, Perkin Elmer) using
1366 TMRE intensity, cell geometry (rod- shape, area, length) and nuclei number as read-outs enabled
1367 the on-the-fly detection, imaging, and quantification of healthy CMs from dead and dying CMs and
1368 non-myocytes. Live-cell imaging was performed in the presence or absence of a cell death stimuli:
1369 H₂O₂ (25 µM), or doxorubicin (Doxo, 60 µM,) or carbonyl cyanide m-chlorophenyl hydrazine
1370 (CCCP, 10 µM). Image acquisition was performed using the Operetta CLS High-Content Analysis
1371 system (Perkin Elmer) with a 5x air objective.

1372 WT, *Mtfp1*^{-/-}, *Ppif*^{-/-} and *Mtfp1*^{-/-}*Ppif*^{-/-} MEFs were plated in Cell Carrier Ultra-96 well (Perkin Elmer)
1373 and incubated 24h with regular media. Cells were then stained with NucBlue™ Live
1374 ReadyProbes™ to visualize nuclei. CellEvent Caspase 3/7 Green (CE) was added (1 drop per 1
1375 mL of media) to visualize the activation of caspases 3/7 in cells undergoing to apoptosis.
1376 Propidium Iodide (PI, 1:500) was added to visualize dead cells. Cell death was induced with
1377 actinomycin D (1.5 µM) alone, or in association with ABT-737 (10 µM), an inhibitor of the Bcl-2
1378 family proteins, or doxorubicin hydrochloride (DOXO, 1.5 µM), or staurosporine (1 µM) or hydrogen
1379 peroxide H₂O₂ (500 µM). The pan-caspase inhibitor Q-VD-OPh (qVD, 20 µM) and cyclophilin D
1380 inhibitor cyclosporin A (CsA, 2 µM), were added where indicated. Image acquisition was performed
1381 using the Operetta CLS High-Content Analysis system (Perkin Elmer) with a 20x air objective. CE
1382 or PI positive nuclei number were automatically counted by using Harmony 4.9 software.

1383

1384 **Field-stimulated cardiomyocytes**

1385 Adult ventricular cardiomyocytes (CMs) from WT and cMKO mice (8-10 weeks) were isolated with
1386 a Langendorff system as previously described (Chen et al., 2012; Nickel et al., 2015) and paced by
1387 electrical field stimulation at 37°C using a customized IonOptix system. CMs were exposed to a
1388 protocol that simulates a physiological workload increase by first pacing cells at 0.5 Hz in Normal
1389 Tyrode´s solution pH 7.4 [NT; NaCl 130 mM, KCl 5 mM, MgCl₂ 1 mM, CaCl₂ 1 mM, Na-HEPES 10
1390 mM, glucose 10 mM, sodium pyruvate 2 mM and ascorbic acid 0.3 mM]. The β-adrenergic receptor
1391 agonist isoproterenol (30 nM) was then washed in for 1 min and then the stimulation rate was

1392 increased to 5 Hz for 3 min. After this time, stimulation rate was set back to the initial 0.5 Hz, and
1393 isoproterenol washed out. During the measurements of sarcomere length and contraction, the
1394 system detection was combined to recordings of the autofluorescence of NAD(P)H/NAD(P)⁺ and
1395 FADH₂/FAD by alternately exciting cells at wavelengths (λ_{exc}) of 340 and 485 nm and collecting
1396 emission (λ_{em}) at 450 and 525 nm for NAD(P)H and FAD⁺, respectively. Calibration was performed
1397 inducing maximal oxidation and reduction of NAD(P)H/FADH₂ with FCCP (5 $\mu\text{mol/L}$) and cyanide
1398 (4 mmol/L), respectively.

1399

1400 **Intracellular Calcium measurement**

1401 LV cardiac myocytes were isolated by enzymatic digestion and were paced by electrical field
1402 stimulation at 37°C using a customized IonOptix system as described previously(Kohlhaas and
1403 Maack, 2010; Kohlhaas et al., 2010). $[\text{Ca}^{2+}]_{\text{c}}$ was measured by incubating cells with indo-1 AM (5
1404 $\mu\text{mol/L}$) for 20 min at 25°C ($\lambda_{\text{exc}}=340$ nm, $\lambda_{\text{em}}=405/485$ nm). The bath solution contains (mM):
1405 130 NaCl; 5 KCl; 1 MgCl₂; 10 sodium HEPES; 2 sodium pyruvate; 0.3 ascorbic acid; 10 glucose
1406 and was adjust at pH 7.4 at 37°C; Isoproterenol was used at 3×10^{-8} M. The Ca^{2+} transients were
1407 analysed with the IONWIZRD software from IonOptix. Data were collected and statistically
1408 analysed using paired or unpaired tTest or 2way ANOVA & Bonferroni's Multiple Comparison Test.
1409

1410 **Mitochondrial swelling and mPTP opening**

1411 Calcium-induced mitochondrial permeability transition pore (mPTP) opening was determined in
1412 freshly isolated cardiac mitochondria from WT and cMKO mice aged 8-10 weeks as previously
1413 described (Palmeira CM, 2018) . Mitochondria were suspended in Ca^{2+} uptake buffer pH 7.4 (120
1414 mM KCl, 5 mM MOPS, 5 mM KH₂PO₄, 10 mM Glutamate, 5 mM Malate *plus* cComplete™, EDTA-
1415 free Protease Inhibitor Cocktail (Roche) at a concentration of 0.5 mg/mL and stimulated by the
1416 addition of a single pulse of 120 μM CaCl₂.

1417 mPTP opening was assessed in mitochondria of WT, *Mtfp1*^{-/-}, *Ppif*^{-/-} and *Mtfp1*^{-/-}*Ppif*^{-/-} MEFs as
1418 previously described (Karch et al., 2013) at a concentration of 1 mg/mL in mitochondrial swelling
1419 buffer (120 mM KCl, 10 mM Tris pH 7.4, 5 mM KH₂PO₄, 7 mM pyruvate, 1 mM malate, and 10 μM
1420 EDTA). Swelling was induced by pulsing mitochondria with 250 μM CaCl₂ in EDTA-free buffer.

1421 The absorbance (540 nm) was measured at intervals of ~20 seconds at 37°C using the microplate
1422 reader Infinite® M Plex (Tecan). Cyclosporin A (CsA, 1 µM Sigma) was used as a control to inhibit
1423 mPTP-dependent mitochondrial swelling.

1424

1425 **BN-PAGE of cardiac mitochondria**

1426 BN-PAGE was performed as described previously (Wittig et al., 2006) with some modifications.
1427 Briefly, cardiac mitochondria were isolated from WT and cMKO mice at 8-10 weeks and solubilized
1428 with sample buffer (30 mM HEPES, 150 mM Potassium Acetate, 12% glycerol, 2 mM acid 6-
1429 aminohexanoic, 1 mM disodium EDTA) containing digitonin 6% (w/w). Lysates were incubated for
1430 1h at 4°C and then centrifuged at 30,000 g for 20 minutes. Supernatants were then mixed with
1431 G250 sample additive 1% (Invitrogen, BN2004) and resolved on 3-12% Bis-Tris Gels (1.0 mm)
1432 (Invitrogen, BN2011BX10) using the anode running buffer (Invitrogen, BN2001) and Cathode
1433 Buffer Additive added to the anode buffer (InVitroGen, BN2002). Gels were then subjected to a
1434 semi-dry transfer using PVDF membranes (GE, 10600023). Membranes were washed with
1435 methanol and then blocked for at least 1h with 5% (w/v) semi-skimmed dry milk dissolved in Tris-
1436 buffered saline Tween 0.1% (TBST), incubated overnight at 4°C with primary antibodies dissolved
1437 1:1,000 in 2% (w/v) Bovine Serum Albumin (BSA), 0.1% TBST. The next day membranes were
1438 incubated in secondary antibodies conjugated to horseradish peroxidase (HRP) at room
1439 temperature for 2h (diluted 1:10,000 in BSA 2% TBST 0.1%). Finally, membranes were incubated
1440 in Clarity™ Western ECL Substrate (Bio-Rad) for 2 min and luminescence was detected using the
1441 ChemiDoc® Gel Imaging System. Primary antibodies are listed in Dataset EV4.

1442

1443 **Co-Immunoprecipitation assay**

1444 500 µg of cardiac crude mitochondria were freshly isolated from heart tissue of cardiomyocyte
1445 specific Flag-MTFP1 Knock-In (KI) mice (*Myh6-Cre*^{tg/+}*Mtfp1*^{+/+}, CAG^{tg/+}) and WT mice (*Myh6*
1446 *Cre*^{+/+}*Mtfp1*^{+/+}, CAG^{tg/+}) as described above. Mitochondria were lysed in IP buffer (20 mM HEPES-
1447 KOH pH 7.5, 150 mM NaCl, 0.25% Triton X-100, protease inhibitor cocktail) on ice for 20 min and
1448 then centrifuged at 10000 g, 4°C for 15 min. Supernatant obtained by centrifugation was then
1449 incubated with 20 µL of anti-FLAG magnetic beads (Sigma M8823) for 2 hours at 4°C. The
1450 immunocomplexes were then washed with IP buffer without Triton X-100 and eluted with Laemmli

1451 Sample Buffer 2x at 95°C for 5 min. Protein were stacked in a 15 % SDS-PAGE gel with a 10 min
1452 long migration at 80 V. Proteins were fixed in gel and migration was visualized using the Instant
1453 Blue stain (Expedeon). Bands were excised for digestion. Gel bands were washed twice in
1454 Ammonium bicarbonate (AmBi) 50 mM, once with AmBi 50 mM / ACN 50 % and once with 100%
1455 ANC. Gel band were incubated for 30 min at 56°C in 5 mM dithiothreitol (DTT) solution for
1456 reduction. Gel bands were washed in AmBi 50 mM and then in 100% ACN. Alkylation was
1457 performed at room temp in the dark by incubation of the gel bands in Iodocateamide 55 mM
1458 solution. Gel bands were washed twice in AmBi 50mM and in 100% ACN. 600 ng of trypsin were
1459 added for a 8h digestion at 37°C. Peptides were extracted by collecting 3 washes of the gel bands
1460 using AmBi 50 mM / 50 % ACN and 5 % FA. Peptides clean up and desalting was done using
1461 Stage tips (2 disc Empore C18 discs stacked in a P200 tip).

1462 LC-MS/SM analysis of digested peptides was performed on an Orbitrap Q Exactive HF mass
1463 spectrometer (Thermo Fisher Scientific, Bremen) coupled to an EASY-nLC 1200 (Thermo Fisher
1464 Scientific). A home-made column was used for peptide separation (C₁₈ 30 cm capillary column
1465 picotip silica emitter tip (75 µm diameter filled with 1.9 µm Reprosil-Pur Basic C₁₈-HD resin, (Dr.
1466 Maisch GmbH, Ammerbuch-Entringen, Germany)). It was equilibrated and peptide were loaded in
1467 solvent A (0.1 % FA) at 900 bars. Peptides were separated at 250 nl·min⁻¹. Peptides were eluted
1468 using a gradient of solvent B (ACN, 0.1 % FA) from 3% to 26% in 105 min, 26% to 48% in 20 min
1469 (total length of the chromatographic run was 145 min including high ACN level step and column
1470 regeneration). Mass spectra were acquired in data-dependent acquisition mode with the XCalibur
1471 2.2 software (Thermo Fisher Scientific, Bremen) with automatic switching between MS and MS/MS
1472 scans using a top 12 method. MS spectra were acquired at a resolution of 60000 (at *m/z* 400) with
1473 a target value of 3×10^6 ions. The scan range was limited from 400 to 1700 *m/z*. Peptide
1474 fragmentation was performed using HCD with the energy set at 26 NCE. Intensity threshold for
1475 ions selection was set at 1×10^5 ions with charge exclusion of *z* = 1 and *z* > 7. The MS/MS spectra
1476 were acquired at a resolution of 15000 (at *m/z* 400). Isolation window was set at 1.6 Th. Dynamic
1477 exclusion was employed within 30 s.

1478 Data Processing

1479 Data were searched using MaxQuant (version 1.6.6.0) [1,2] using the Andromeda search engine
1480 [3] against a reference proteome of *Mus musculus* (53449 entries, downloaded from Uniprot the

1481 24th of July 2018). A modified sequence of the protein MTP18 with a Flag tag in its N-ter part was
1482 also searched.

1483 The following search parameters were applied: carbamidomethylation of cysteines was set as a
1484 fixed modification, oxidation of methionine and protein N-terminal acetylation were set as variable
1485 modifications. The mass tolerances in MS and MS/MS were set to 5 ppm and 20 ppm respectively.
1486 Maximum peptide charge was set to 7 and 5 amino acids were required as minimum peptide
1487 length. A false discovery rate of 1% was set up for both protein and peptide levels. The iBAQ
1488 intensity was used to estimate the protein abundance within a sample. The match between runs
1489 features was allowed for biological replicate only.

1490 For this Affinity Purification Mass Spectrometry analysis part, the mass spectrometry data have
1491 been deposited at the ProteomeXchange Consortium (<http://www.proteomexchange.org>) via the
1492 PRIDE partner repository(Perez-Riverol et al., 2019; Vizcaíno et al., 2014) with the dataset
1493 identifier PXD028529

1494 Data analysis

1495 Quantitative analysis was based on pairwise comparison of intensities. Values were log-
1496 transformed (log2). Reverse hits and potential contaminant were removed from the analysis.
1497 Proteins with at least 2 peptides (including one unique peptide) were kept for further statistics.
1498 Intensities values were normalized by median centering within conditions (normalizeD function of
1499 the R package DAPAR). Remaining proteins without any iBAQ value in one of both conditions
1500 have been considered as proteins quantitatively present in a condition and absent in the other.
1501 They have therefore been set aside and considered as differentially abundant proteins. Next,
1502 missing values were imputed using the impute.MLE function of the R package [imp4p](#). Statistical
1503 testing was conducted using a limma t-test thanks to the R package limma(Pounds and Cheng,
1504 2006). An adaptive Benjamini-Hochberg procedure was applied on the resulting p-values thanks to
1505 the function adjust.p of R package cp4p(Smyth, 2004) using the robust method previously
1506 described(Giai Gianetto et al., 2016) to estimate the proportion of true null hypotheses among the
1507 set of statistical tests. The proteins associated to an adjusted p-value inferior to a FDR level of 1%
1508 have been considered as significantly differentially abundant proteins.

1509 **Statistical Analyses**

1510 Experiments were repeated at least three times and quantitative analyses were conducted blindly.
1511 Randomization of groups (e.g., different genotypes) was performed when simultaneous, parallel
1512 measurements were not performed (e.g., Oroboros, CM isolation). For high-throughput
1513 measurements (e.g., mitochondrial morphology, cell death), all groups were measured in parallel
1514 to reduce experimental bias. Statistical analyses were performed using GraphPad Prism 9
1515 software. Data are presented as mean \pm SD or SEM where indicated. The statistical tests used,
1516 and value of experiment replicates are described in the figure legends. Comparisons between two
1517 groups were performed by unpaired two-tailed T test. To compare more than two groups or groups
1518 at multiple time points 1-way ANOVA or 2-way ANOVA was applied. Tests were considered
1519 significant at p-value < 0.05 (*p< 0.05; **p< 0.01; ***p < 0.001; ****p< 0.0001).

1520

1521 **Acknowledgements**

1522 We thank Pierre-Henri Commere and Sandrine Schmutz for flow cytometry services at the Institut
1523 Pasteur and Anastasia Gazi for electron microscopy services. We thank Corinne Lesaffre at the
1524 Paris Cardiovascular Research Center for the histology services and Anu Susan Kurian and
1525 Priscilla Lopes for technical assistance. We thank Sylvie Fabrega of the Viral Vector for Gene
1526 Transfer core facility of Structure Fédérative de Recherche Necker, Université de Paris for lentiviral
1527 particle synthesis and Nils-Göran Larsson for providing mitoYFP mice. We thank Arnaud Mourier
1528 for inciteful discussions on bioenergetics and Marie Lemesle for excellent administrative
1529 assistance. T.W. is supported by the European Research Council (ERC) Starting Grant No.
1530 714472 (Acronym “*Mitomorphosis*”), Fondation pour la Recherche Medicale (MND202003011475),
1531 and the Agence Nationale pour la Recherche (ANR-20-CE14-0039-02). C. M. is supported by the
1532 German Research Foundation (DFG; SFB 894, TRR-219; Ma 2528/7-1) and the German Federal
1533 Ministry of Education and Research (BMBF; 01EO1504).

1536

References

1537 Acin-Perez, R., Lechuga-Vieco, A.V., Muñoz, M. del M., Nieto-Arellano, R., Torroja, C., Sánchez-
1538 Cabo, F., Jiménez, C., González-Guerra, A., Carrascoso, I., Benincá, C., et al. (2018). Ablation of
1539 the stress protease OMA1 protects against heart failure in mice. *Science Translational Medicine*
1540 10.

1541 Ackers-Johnson, M., Li, P.Y., and Holmes, A.P. (2016). A Simplified, Langendorff-Free Method for
1542 Concomitant Isolation of Viable Cardiac Myocytes and Non-Myocytes from the Adult Mouse Heart.
1543 *Circulation*.

1544 Adams, S.H. (2000). Uncoupling protein homologs: emerging views of physiological function. *J.*
1545 *Nutr.* 130, 711–714.

1546 Agah, R., Frenkel, P.A., French, B.A., Michael, L.H., Overbeek, P.A., and Schneider, M.D. (1997).
1547 Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes
1548 cardiac-restricted, site-specific rearrangement in adult ventricular muscle *in vivo*. *J. Clin. Invest.*
1549 100, 169–179.

1550 Anand, R., Wai, T., Baker, M.J., Kladt, N., Schauss, A.C., Rugarli, E., and Langer, T. (2014). The i-
1551 AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. *The*
1552 *Journal of Cell Biology* 204, 919–929.

1553 Antonicka, H., Leary, S.C., Guercin, G.-H., Agar, J.N., Horvath, R., Kennaway, N.G., Harding,
1554 C.O., Jaksch, M., and Shoubridge, E.A. (2003a). Mutations in COX10 result in a defect in
1555 mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes
1556 associated with isolated COX deficiency. *Hum. Mol. Genet.* 12, 2693–2702.

1557 Antonicka, H., Mattman, A., Carlson, C.G., Glerum, D.M., Hoffbuhr, K.C., Leary, S.C., Kennaway,
1558 N.G., and Shoubridge, E.A. (2003b). Mutations in COX15 Produce a Defect in the Mitochondrial
1559 Heme Biosynthetic Pathway, Causing Early-Onset Fatal Hypertrophic Cardiomyopathy. *The*
1560 *American Journal of Human Genetics* 72, 101–114.

1561 Ashrafian, H., Docherty, L., Leo, V., Towson, C., Neilan, M., Steeples, V., Lygate, C.A., Hough, T.,
1562 Townsend, S., Williams, D., et al. (2010). A Mutation in the Mitochondrial Fission Gene Dnm1l
1563 Leads to Cardiomyopathy. *PLOS Genetics* 6, e1001000.

1564 Aung, L.H.H., Li, R., Prabhakar, B.S., and Li, P. (2017a). Knockdown of Mtfp1 can minimize
1565 doxorubicin cardiotoxicity by inhibiting Dnm1l-mediated mitochondrial fission. *Journal of Cellular*
1566 *and Molecular Medicine* 21, 3394–3404.

1567 Aung, L.H.H., Li, R., Prabhakar, B.S., Maker, A.V., and Li, P. (2017b). Mitochondrial protein 18
1568 (MTP18) plays a pro-apoptotic role in chemotherapy-induced gastric cancer cell apoptosis.
1569 *Oncotarget*.

1570 Aung, L.H.H., Li, Y.-Z., Yu, H., Chen, X., Yu, Z., Gao, J., and Li, P. (2019). Mitochondrial protein 18
1571 is a positive apoptotic regulator in cardiomyocytes under oxidative stress. *Clin. Sci.* 133, 1067–
1572 1084.

1573 Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W.,
1574 Sayen, M.R., Gottlieb, R.A., Dorn, G.W., et al. (2005). Loss of cyclophilin D reveals a critical role
1575 for mitochondrial permeability transition in cell death. *Nature* 434, 658–662.

1576 Basso, E., Petronilli, V., Forte, M.A., and Bernardi, P. (2008). Phosphate is essential for inhibition
1577 of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. *J.*
1578 *Biol. Chem.* 283, 26307–26311.

1579 Bernardi, P., Rasola, A., Forte, M., and Lippe, G. (2015). The Mitochondrial Permeability Transition
1580 Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in
1581 Pathophysiology. *Physiol. Rev.* 95, 1111–1155.

1582 Bertero, E., Nickel, A., Kohlhaas, M., Hohl, M., Sequeira, V., Brune, C., Schwemmlein, J., Abeßer,
1583 M., Schuh, K., Kutschka, I., et al. Loss of Mitochondrial Ca²⁺ Uniporter Limits Inotropic Reserve
1584 and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy.
1585 *Circulation* 0.

1586 Bertholet, A.M., Chouchani, E.T., Kazak, L., Angelin, A., Fedorenko, A., Long, J.Z., Vidoni, S.,
1587 Garrity, R., Cho, J., Terada, N., et al. (2019). H⁺ transport is an integral function of the
1588 mitochondrial ADP/ATP carrier. *Nature* 571, 515–520.

1589 Bock, F.J., and Tait, S.W.G. (2020). Mitochondria as multifaceted regulators of cell death. *Nature*
1590 *Reviews Molecular Cell Biology* 21, 85–100.

1591 Brand, M.D., Affourtit, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L., and
1592 Parker, N. (2004). Mitochondrial superoxide: production, biological effects, and activation of
1593 uncoupling proteins. *Free Radic. Biol. Med.* 37, 755–767.

1594 Brand, M.D., Pakay, J.L., Ocloo, A., Kokoszka, J., Wallace, D.C., Brookes, P.S., and Cornwall, E.J.
1595 (2005). The basal proton conductance of mitochondria depends on adenine nucleotide translocase
1596 content. *Biochemical Journal* 392, 353–362.

1597 Burke, M.A., Chang, S., Wakimoto, H., Gorham, J.M., Conner, D.A., Christodoulou, D.C.,
1598 Parfenov, M.G., DePalma, S.R., Eminaga, S., Konno, T., et al. (2016). Molecular profiling of dilated
1599 cardiomyopathy that progresses to heart failure. *JCI Insight* 1.

1600 Carraro, M., Checchetto, V., Sartori, G., Kucharczyk, R., di Rago, J.-P., Minervini, G., Franchin, C.,
1601 Arrigoni, G., Giorgio, V., Petronilli, V., et al. (2018). High-Conductance Channel Formation in Yeast
1602 Mitochondria is Mediated by F-ATP Synthase e and g Subunits. *Cell. Physiol. Biochem.* 50, 1840–
1603 1855.

1604 Carraro, M., Carrer, A., Urbani, A., and Bernardi, P. (2020). Molecular nature and regulation of the
1605 mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. *Journal of*
1606 *Molecular and Cellular Cardiology* 144, 76–86.

1607 Chance, B., and Williams, G.R. (1956). The Respiratory Chain and Oxidative Phosphorylation. In
1608 Advances in Enzymology and Related Areas of Molecular Biology, (John Wiley & Sons, Ltd), pp.
1609 65–134.

1610 Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan, A.
1611 (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC*
1612 *Bioinformatics* 14, 128.

1613 Chen, H., Ren, S., Clish, C., Jain, M., Mootha, V., McCaffery, J.M., and Chan, D.C. (2015).
1614 Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. *J. Cell Biol.* 211, 795–805.

1615 Chen, L., Gong, Q., Stice, J.P., and Knowlton, A.A. (2009). Mitochondrial OPA1, apoptosis, and
1616 heart failure. *Cardiovascular Research* 84, 91–99.

1617 Chen, Y., Csordás, G., Jowdy, C., Schneider, T.G., Csordás, N., Wang, W., Liu, Y., Kohlhaas, M.,
1618 Meiser, M., Bergem, S., et al. (2012). Mitofusin 2-containing mitochondrial-reticular microdomains
1619 direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk. *Circ. Res.*
1620 111, 863–875.

1621 Chiao, Y.A., Zhang, H., Sweetwyne, M., Whitson, J., Ting, Y.S., Basisty, N., Pino, L.K., Quarles,
1622 E., Nguyen, N.-H., Campbell, M.D., et al. (2020). Late-life restoration of mitochondrial function
1623 reverses cardiac dysfunction in old mice. *ELife* 9, e55513.

1624 Cho, B., Cho, H.M., Jo, Y., Kim, H.D., Song, M., Moon, C., Kim, H., Kim, K., Sesaki, H., Rhyu, I.J.,
1625 et al. (2017). Constriction of the mitochondrial inner compartment is a priming event for
1626 mitochondrial division. *Nature Communications* 8, 15754.

1627 Christidi, E., and Brunham, L.R. (2021). Regulated cell death pathways in doxorubicin-induced
1628 cardiotoxicity. *Cell Death Dis* 12, 1–15.

1629 Cokelaer, T., Desvillechabrol, D., Legendre, R., and Cardon, M. (2017). “Sequana”: a Set of
1630 Snakemake NGS pipelines. *JOSS* 2, 352.

1631 Cortassa, S., Aon, M.A., Marbán, E., Winslow, R.L., and O’Rourke, B. (2003). An Integrated Model
1632 of Cardiac Mitochondrial Energy Metabolism and Calcium Dynamics. *Biophysical Journal* 84,
1633 2734–2755.

1634 Cretin, E., Lopes, P., Vimont, E., Tatsuta, T., Langer, T., Gazi, A., Sachse, M., Yu-Wai-Man, P.,
1635 Reynier, P., and Wai, T. (2021). High-throughput screening identifies suppressors of mitochondrial
1636 fragmentation in OPA1 fibroblasts. *EMBO Molecular Medicine* n/a, e13579.

1637 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M.,
1638 and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21.

1639 Duroux-Richard, I., Roubert, C., Ammari, M., Présumey, J., Grün, J.R., Häupl, T., Grützkau, A.,
1640 Lecellier, C.-H., Boitez, V., Codogno, P., et al. (2016). miR-125b controls monocyte adaptation to
1641 inflammation through mitochondrial metabolism and dynamics. *Blood* 128, 3125–3136.

1642 Echtay, K.S., Roussel, D., St-Pierre, J., Jekabsons, M.B., Cadenas, S., Stuart, J.A., Harper, J.A.,
1643 Roebuck, S.J., Morrison, A., Pickering, S., et al. (2002). Superoxide activates mitochondrial
1644 uncoupling proteins. *Nature* 415, 96–99.

1645 Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis results
1646 for multiple tools and samples in a single report. *Bioinformatics* 32, 3047–3048.

1647 Fernandez-Caggiano, M., Kamynina, A., Francois, A.A., Prysiazna, O., Eykyn, T.R., Krasemann,
1648 S., Crespo-Leiro, M.G., Vieites, M.G., Bianchi, K., Morales, V., et al. (2020). Mitochondrial pyruvate
1649 carrier abundance mediates pathological cardiac hypertrophy. *Nat Metab* 2, 1223–1231.

1650 Fonseca, T.B., Sánchez-Guerrero, Á., Milosevic, I., and Raimundo, N. (2019). Mitochondrial fission
1651 requires DRP1 but not dynamins. *Nature* 570, E34–E42.

1652 Ghazal, N., Peoples, J.N., Mohiuddin, T.A., and Kwong, J.Q. (2021). Mitochondrial functional
1653 resilience after TFAM ablation in the adult heart. *Am. J. Physiol. Cell Physiol.*

1654 Giacomello, M., Pyakurel, A., Glytsou, C., and Scorrano, L. (2020). The cell biology of
1655 mitochondrial membrane dynamics. *Nature Reviews Molecular Cell Biology*.

1656 Giai Gianetto, Q., Combes, F., Ramus, C., Bruley, C., Couté, Y., and Burger, T. (2016). Calibration
1657 plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in
1658 quantitative experiments. *PROTEOMICS* 16, 29–32.

1659 Graham, B.H., Waymire, K.G., Cottrell, B., Trounce, I.A., MacGregor, G.R., and Wallace, D.C.
1660 (1997). A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a
1661 deficiency in the heart/muscle isoform of the adenine nucleotide translocator. *Nat Genet* 16, 226–
1662 234.

1663 Halestrap, A.P., and Davidson, A.M. (1990). Inhibition of Ca²⁺-induced large-amplitude swelling of
1664 liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to
1665 mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the
1666 adenine nucleotide translocase. *Biochemical Journal* 268, 153–160.

1667 Hansson, A., Hance, N., Dufour, E., Rantanen, A., Hultenby, K., Clayton, D.A., Wibom, R., and
1668 Larsson, N.-G. (2004). A switch in metabolism precedes increased mitochondrial biogenesis in
1669 respiratory chain-deficient mouse hearts. *Proc. Natl. Acad. Sci. U. S. A.* 101, 3136–3141.

1670 Heide, H., Bleier, L., Steger, M., Ackermann, J., Dröse, S., Schwamb, B., Zörnig, M., Reichert,
1671 A.S., Koch, I., Wittig, I., et al. (2012). Complexome profiling identifies TMEM126B as a component
1672 of the mitochondrial complex I assembly complex. *Cell Metab.* 16, 538–549.

1673 Hohl, M., Wagner, M., Reil, J.-C., Müller, S.-A., Tauchnitz, M., Zimmer, A.M., Lehmann, L.H., Thiel,
1674 G., Böhm, M., Backs, J., et al. (2013). HDAC4 controls histone methylation in response to elevated
1675 cardiac load. *J Clin Invest* 123, 1359–1370.

1676 Houweling, A.C., van Borren, M.M., Moorman, A.F.M., and Christoffels, V.M. (2005). Expression
1677 and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease.
1678 *Cardiovasc Res* 67, 583–593.

1679 Kageyama, Y., Hoshijima, M., Seo, K., Bedja, D., Sysa-Shah, P., Andrabi, S.A., Chen, W., Höke,
1680 A., Dawson, V.L., Dawson, T.M., et al. (2014). Parkin-independent mitophagy requires Drp1 and
1681 maintains the integrity of mammalian heart and brain. *The EMBO Journal* 33, 2798–2813.

1682 Kang, B.H., Plescia, J., Dohi, T., Rosa, J., Doxsey, S.J., and Altieri, D.C. (2007). Regulation of
1683 Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network. *Cell*
1684 131, 257–270.

1685 Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C., Suthammarak, W., Gong, G.,
1686 Sedensky, M.M., Morgan, P.G., Wang, W., and Tian, R. (2013). Mitochondrial Complex I
1687 Deficiency Increases Protein Acetylation and Accelerates Heart Failure. *Cell Metabolism* 18, 239–
1688 250.

1689 Karch, J., Kwong, J.Q., Burr, A.R., Sargent, M.A., Elrod, J.W., Peixoto, P.M., Martinez-Caballero,
1690 S., Osinska, H., Cheng, E.H.-Y., Robbins, J., et al. (2013). Bax and Bak function as the outer
1691 membrane component of the mitochondrial permeability pore in regulating necrotic cell death in
1692 mice. *Elife* 2, e00772.

1693 Karch, J., Bound, M.J., Khalil, H., Sargent, M.A., Latchman, N., Terada, N., Peixoto, P.M., and
1694 Molkentin, J.D. (2019). Inhibition of mitochondrial permeability transition by deletion of the ANT
1695 family and CypD. *Sci Adv* 5, eaaw4597.

1696 Kohlhaas, M., and Maack, C. (2010). Adverse Bioenergetic Consequences of Na⁺-Ca²⁺
1697 Exchanger–Mediated Ca²⁺ Influx in Cardiac Myocytes. *Circulation* 122, 2273–2280.

1698 Kohlhaas, M., Liu, T., Knopp, A., Zeller, T., Ong, M.F., Böhm, M., O'Rourke, B., and Maack, C.
1699 (2010). Elevated Cytosolic Na⁺ Increases Mitochondrial Formation of Reactive Oxygen Species in
1700 Failing Cardiac Myocytes. *Circulation* 121, 1606–1613.

1701 Kohlhaas, M., Nickel, A.G., and Maack, C. (2017). Mitochondrial energetics and calcium coupling
1702 in the heart. *The Journal of Physiology* 595, 3753–3763.

1703 Kolwicz, S.C., Jr, Purohit, S., and Tian, R. (2013). Cardiac metabolism and its interactions with
1704 contraction, growth, and survival of cardiomyocytes. *Circ. Res.* 113, 603–616.

1705 Köster, J., and Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow engine.
1706 *Bioinformatics* 28, 2520–2522.

1707 Kulak, N.A., Pichler, G., Paron, I., Nagaraj, N., and Mann, M. (2014). Minimal, encapsulated
1708 proteomic-sample processing applied to copy-number estimation in eukaryotic cells. *Nat Methods*
1709 11, 319–324.

1710 Kwong, J.Q., and Molkentin, J.D. (2015). Physiological and Pathological Roles of the Mitochondrial
1711 Permeability Transition Pore in the Heart. *Cell Metabolism* 21, 206–214.

1712 Kwong, J.Q., Davis, J., Baines, C.P., Sargent, M.A., Karch, J., Wang, X., Huang, T., and
1713 Molkentin, J.D. (2014). Genetic deletion of the mitochondrial phosphate carrier desensitizes the
1714 mitochondrial permeability transition pore and causes cardiomyopathy. *Cell Death Differ.* 21,
1715 1209–1217.

1716
1717
1718
1719
Lei, Y., Guerra Martinez, C., Torres-Odio, S., Bell, S.L., Birdwell, C.E., Bryant, J.D., Tong, C.W.,
Watson, R.O., West, L.C., and West, A.P. (2021). Elevated type I interferon responses potentiate
metabolic dysfunction, inflammation, and accelerated aging in mtDNA mutator mice. *Sci. Adv.* 7,
eabe7548.

1720
1721
Lewis, S.C., Uchiyama, L.F., and Nunnari, J. (2016). ER-mitochondria contacts couple mtDNA
synthesis with mitochondrial division in human cells. *Science* 353, aaf5549–aaf5549.

1722
1723
1724
Liao, X., Zhang, R., Lu, Y., Prosdocimo, D.A., Sangwung, P., Zhang, L., Zhou, G., Anand, P., Lai,
L., Leone, T.C., et al. (2015). Kruppel-like factor 4 is critical for transcriptional control of cardiac
mitochondrial homeostasis. *J. Clin. Invest.* 125, 3461–3476.

1725
1726
Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for
assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930.

1727
1728
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data Using Real-
Time Quantitative PCR and the 2- $\Delta\Delta CT$ Method. *Methods* 25, 402–408.

1729
1730
Losón, O.C., Song, Z., Chen, H., and Chan, D.C. (2013). Fis1, Mff, MiD49, and MiD51 mediate
Drp1 recruitment in mitochondrial fission. *Mol. Biol. Cell* 24, 659–667.

1731
1732
Lu, J.-H., Shi, Z.-F., and Xu, H. (2014). The mitochondrial cyclophilin D/p53 complexation mediates
doxorubicin-induced non-apoptotic death of A549 lung cancer cells. *Mol Cell Biochem* 389, 17–24.

1733
1734
1735
Macher, G., Koehler, M., Rupprecht, A., Kreiter, J., Hinterdorfer, P., and Pohl, E.E. (2018).
Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. *Biochim.
Biophys. Acta Biomembr.* 1860, 664–672.

1736
1737
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.Journal 17, 10–12.

1738
1739
Mastronarde, D.N., and Held, S.R. (2017). Automated tilt series alignment and tomographic
reconstruction in IMOD. *Journal of Structural Biology* 197, 102–113.

1740
1741
Milduberger, N., Bustos, P.L., González, C., Perrone, A.E., Postan, M., and Bua, J. (2021).
Trypanosoma cruzi infection in Cyclophilin D deficient mice. *Exp. Parasitol.* 220, 108044.

1742
1743
Mitchell, P. (1961). Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-
Osmotic type of Mechanism. *Nature* 191, 144–148.

1744
1745
1746
Mootha, V.K., Arai, A.E., and Balaban, R.S. (1997). Maximum oxidative phosphorylation capacity
of the mammalian heart. *American Journal of Physiology-Heart and Circulatory Physiology* 272,
H769–H775.

1747
1748
1749
Morciano, G., Naumova, N., Koprowski, P., Valente, S., Sardão, V.A., Potes, Y., Rimessi, A.,
Wieckowski, M.R., and Oliveira, P.J. The mitochondrial permeability transition pore: an evolving
concept critical for cell life and death. *Biological Reviews* n/a.

1750
1751
Morita, S.-Y., and Terada, T. (2015). Enzymatic measurement of phosphatidylglycerol and
cardiolipin in cultured cells and mitochondria. *Sci. Rep.* 5, 11737.

1752
1753
1754
Morita, M., Prudent, J., Basu, K., Goyon, V., Katsumura, S., Hulea, L., Pearl, D., Siddiqui, N.,
Strack, S., McGuirk, S., et al. (2017). mTOR Controls Mitochondrial Dynamics and Cell Survival via
MTFP1. *Mol Cell* 67, 922–935.e5.

1755
1756
Mourier, A., Ruzzenente, B., Brandt, T., Kuhlbrandt, W., and Larsson, N.-G. (2014). Loss of
LRPPRC causes ATP synthase deficiency. *Human Molecular Genetics* 23, 2580–2592.

1757
1758
1759
Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H.,
Kubo, T., and Tsujimoto, Y. (2005). Cyclophilin D-dependent mitochondrial permeability transition
regulates some necrotic but not apoptotic cell death. *Nature* 434, 652–658.

1760 1761 Ng, M.Y.W., Wai, T., and Simonsen, A. (2021). Quality control of the mitochondrion.
Developmental Cell.

1762 1763 Nickel, A.G., von Hardenberg, A., Hohl, M., Löffler, J.R., Kohlhaas, M., Becker, J., Reil, J.-C.,
Kazakov, A., Bonnekoh, J., Stadelmaier, M., et al. (2015). Reversal of Mitochondrial
1764 Transhydrogenase Causes Oxidative Stress in Heart Failure. *Cell Metabolism* 22, 472–484.

1765 1766 1767 Osellame, L.D., Singh, A.P., Stroud, D.A., Palmer, C.S., Stojanovski, D., Ramachandran, R., and
Ryan, M.T. (2016). Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and
MiD51 in mitochondrial fission. *J. Cell Sci.* 129, 2170–2181.

1768 1769 1770 1771 Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J.,
Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The PRIDE database and related
tools and resources in 2019: improving support for quantification data. *Nucleic Acids Research* 47,
D442–D450.

1772 1773 Pounds, S., and Cheng, C. (2006). Robust estimation of the false discovery rate. *Bioinformatics*
22, 1979–1987.

1774 1775 Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, enrichment, pre-
fractionation and storage of peptides for proteomics using StageTips. *Nat Protoc* 2, 1896–1906.

1776 1777 1778 Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T.J., Goodman, R.P., Grabarek, Z.,
Haas, M.E., Hung, W.H.W., et al. (2021). MitoCarta3.0: an updated mitochondrial proteome now
with sub-organelle localization and pathway annotations. *Nucleic Acids Res.* 49, D1541–D1547.

1779 1780 1781 Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar, A., Wadi, L.,
Meyer, M., Wong, J., Xu, C., et al. (2019). Pathway enrichment analysis and visualization of omics
data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. *Nat Protoc* 14, 482–517.

1782 1783 Roesler, A., and Kazak, L. (2020). UCP1-independent thermogenesis. *Biochemical Journal* 477,
709–725.

1784 1785 Ruprecht, J.J., and Kunji, E.R.S. (2021). Structural Mechanism of Transport of Mitochondrial
Carriers. *Annu. Rev. Biochem.* 90, 535–558.

1786 1787 Schorb, M., Haberbosch, I., Hagen, W.J.H., Schwab, Y., and Mastronarde, D.N. (2019). Software
tools for automated transmission electron microscopy. *Nature Methods* 16, 471–477.

1788 1789 1790 Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and
Selbach, M. (2011). Global quantification of mammalian gene expression control. *Nature* 473,
337–342.

1791 1792 1793 Schwenk, F., Baron, U., and Rajewsky, K. (1995). A cre -transgenic mouse strain for the
ubiquitous deletion of loxP -flanked gene segments including deletion in germ cells. *Nucleic Acids
Research* 23, 5080–5081.

1794 1795 1796 1797 Shirakabe, A., Zhai, P., Ikeda, Y., Saito, T., Maejima, Y., Hsu, C.-P., Nomura, M., Egashira, K.,
Levine, B., and Sadoshima, J. (2016). Drp1-Dependent Mitochondrial Autophagy Plays a
Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.
Circulation 133, 1249–1263.

1798 1799 1800 Smyth, G.K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential
Expression in Microarray Experiments. *Statistical Applications in Genetics and Molecular Biology*
3.

1801 1802 1803 Song, M., Mihara, K., Chen, Y., Scorrano, L., and Dorn II, G.W. (2015). Mitochondrial Fission and
Fusion Factors Reciprocally Orchestrate Mitophagic Culling in Mouse Hearts and Cultured
Fibroblasts. *Cell Metabolism*.

1804 1805 Sprenger, H.-G., and Langer, T. (2019). The Good and the Bad of Mitochondrial Breakups. *Trends in Cell Biology* 29, 888–900.

1806 1807 1808 Todisco, S., Di Noia, M.A., Onofrio, A., Parisi, G., Punzi, G., Redavid, G., De Grassi, A., and Pierri, C.L. (2016). Identification of new highly selective inhibitors of the human ADP/ATP carriers by molecular docking and in vitro transport assays. *Biochem. Pharmacol.* 100, 112–132.

1809 1810 Tondera, D. (2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. *J Cell Sci* 118, 3049–3059.

1811 1812 1813 Tondera, D., Santel, A., Schwarzer, R., Dames, S., Giese, K., Klippe, A., and Kaufmann, J. (2004). Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. *J. Biol. Chem.* 279, 31544–31555.

1814 1815 1816 Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., Merkwirth, C., et al. (2009). SLP-2 is required for stress-induced mitochondrial hyperfusion. *EMBO J.* 28, 1589–1600.

1817 1818 Tyanova, S., Temu, T., and Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. *Nat Protoc* 11, 2301–2319.

1819 1820 1821 Varet, H., Brillet-Guéguen, L., Coppée, J.-Y., and Dillies, M.-A. (2016). SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. *PLOS ONE* 11, e0157022.

1822 1823 Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S., and Moll, U.M. (2012). p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis. *Cell* 149, 1536–1548.

1824 1825 1826 Vizcaíno, J.A., Deutsch, E.W., Wang, R., Csordas, A., Reisinger, F., Ríos, D., Dianes, J.A., Sun, Z., Farrah, T., Bandeira, N., et al. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nat Biotechnol* 32, 223–226.

1827 1828 Wai, T., and Langer, T. (2016). Mitochondrial Dynamics and Metabolic Regulation. *Trends Endocrinol. Metab.* 27, 105–117.

1829 1830 1831 Wai, T., Garcia-Prieto, J., Baker, M.J., Merkwirth, C., Benit, P., Rustin, P., Ruperez, F.J., Barbas, C., Ibanez, B., and Langer, T. (2015). Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. *Science* 350, aad0116–aad0116.

1832 1833 1834 Wang, K., Gan, T.-Y., Li, N., Liu, C.-Y., Zhou, L.-Y., Gao, J.-N., Chen, C., Yan, K.-W., Ponnusamy, M., Zhang, Y.-H., et al. (2017). Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. *Cell Death Differ.* 24, 1111–1120.

1835 Wittig, I., Braun, H.-P., and Schägger, H. (2006). Blue native PAGE. *Nat. Protoc.* 1, 418–428.

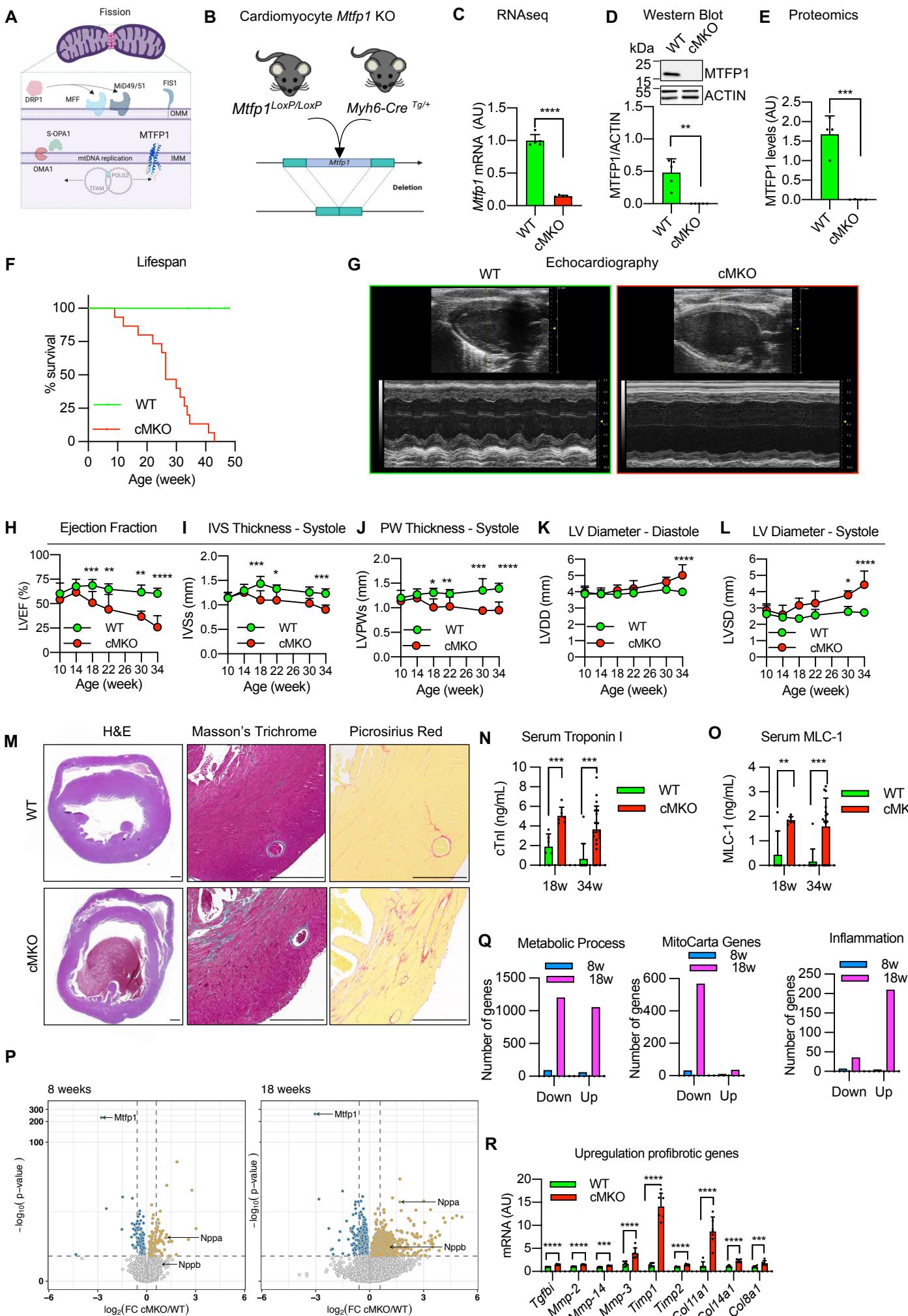
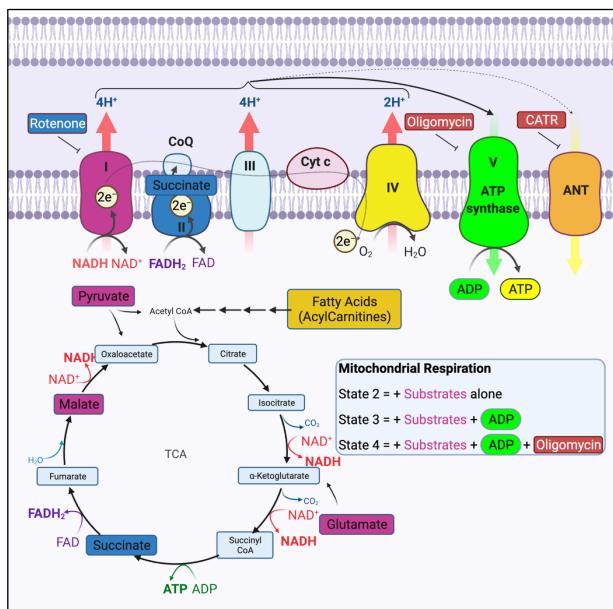
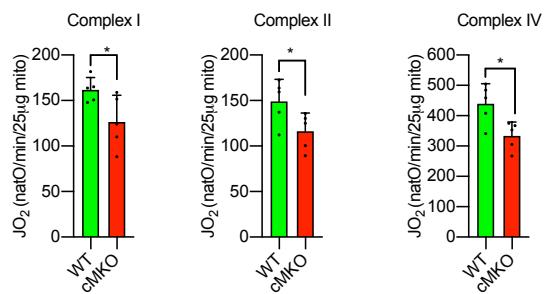
1836 1837 Woyda-Płoszczyca, A.M., and Jarmuszkiewicz, W. (2014). Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. *PLoS One* 9, e98969.

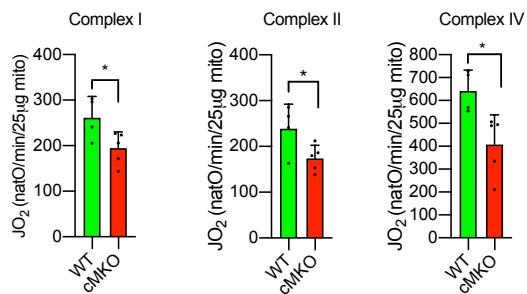
1838 1839 1840 Zhang, H., Alder, N.N., Wang, W., Szeto, H., Marcinek, D.J., and Rabinovitch, P.S. (2020a). Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. *ELife* 9, e60827.

1841 1842 1843 Zhang, Y., Taufalele, P.V., Cochran, J.D., Robillard-Frayne, I., Marx, J.M., Soto, J., Rauckhorst, A.J., Tayyari, F., Pева, A.D., Gray, L.R., et al. (2020b). Mitochondrial pyruvate carriers are required for myocardial stress adaptation. *Nat Metab* 2, 1248–1264.

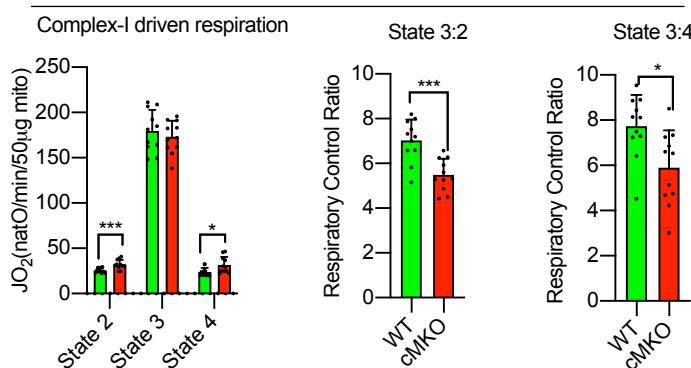
1844 1845 Zhou, B., and Tian, R. (2018). Mitochondrial dysfunction in pathophysiology of heart failure. *J. Clin. Invest.* 128, 3716–3726.

1846

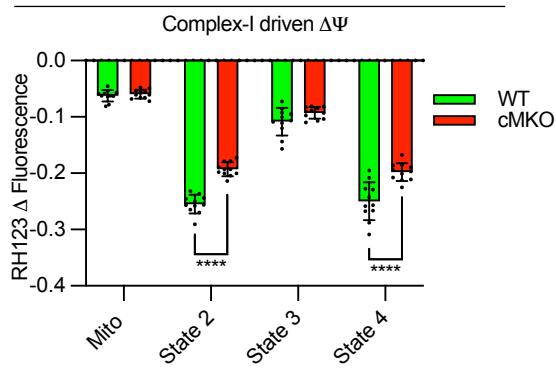
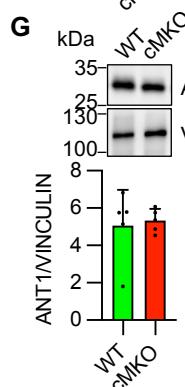
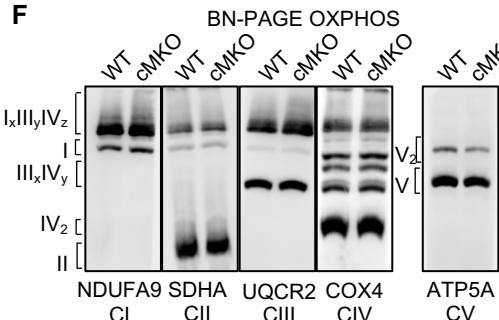





Figure 1

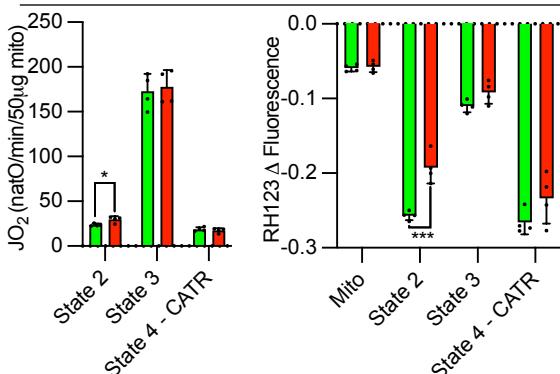
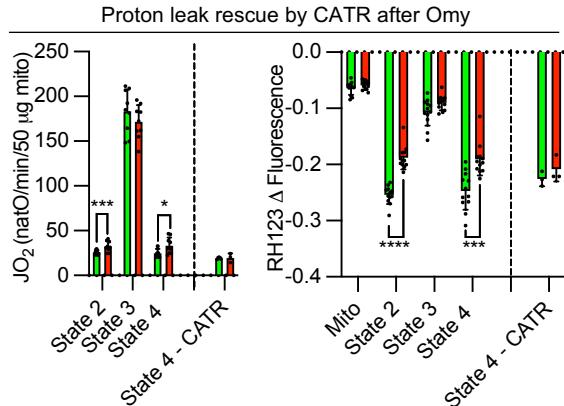
A**B**

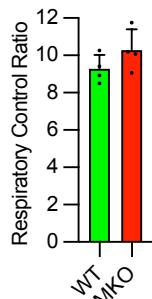

18w - DCM Onset

C

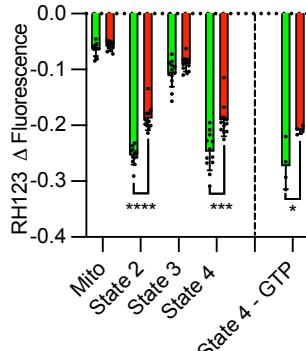



34w - Heart Failure

D



8-10w - Pre-symptomatic

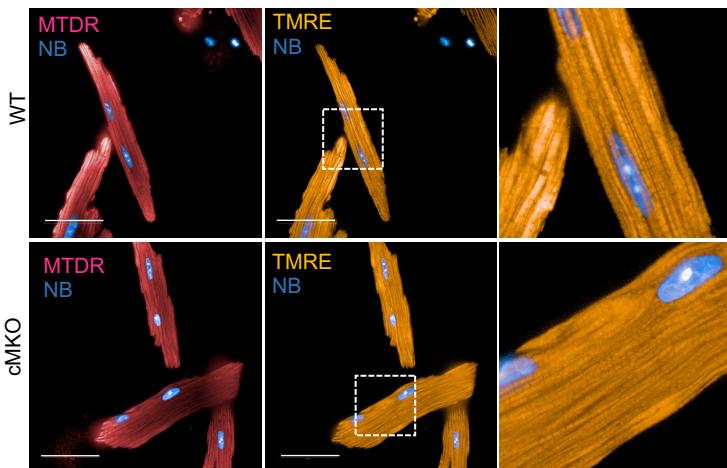
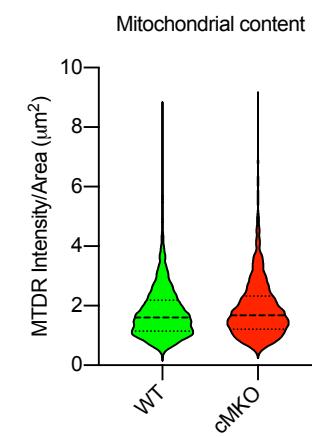
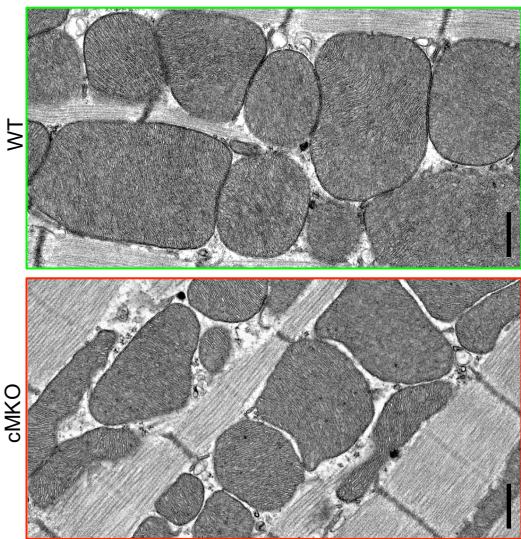

8-10w - Pre-symptomatic

F**H**

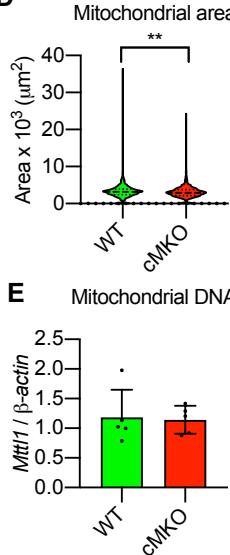

Proton leak rescue by CATR

I

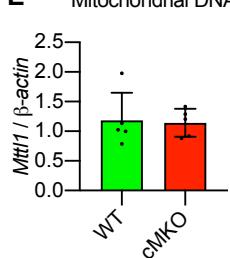
State 3:4 (ADP:CATR)




K

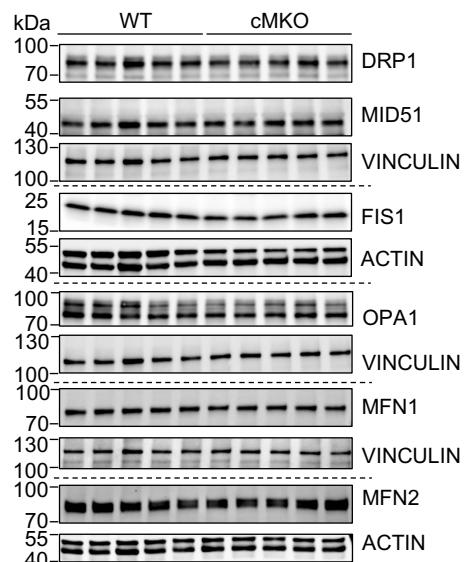
ΔΨ - UCP inhibition

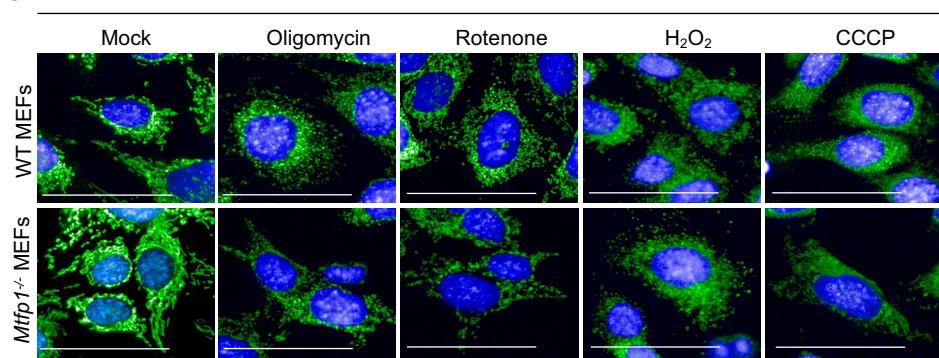
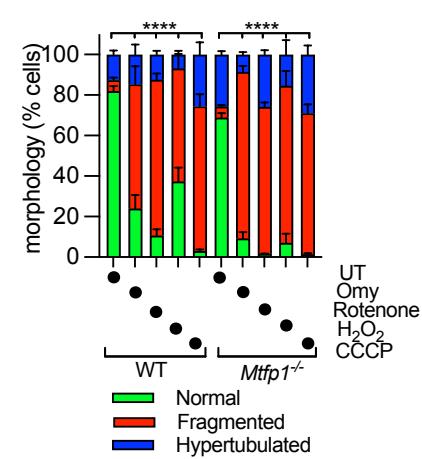


A


Primary adult cardiomyocytes

B**C**


Mitochondrial area



Mitochondrial DNA

Cardiac tissue

G

Stress-induced mitochondrial fission

H**I**

Mitochondrial morphology in MEFs

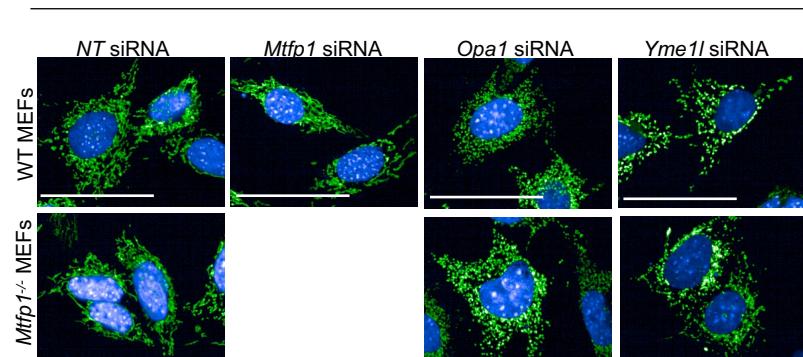
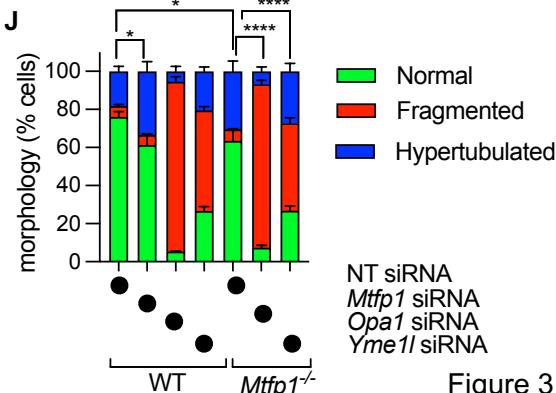


J

Figure 3

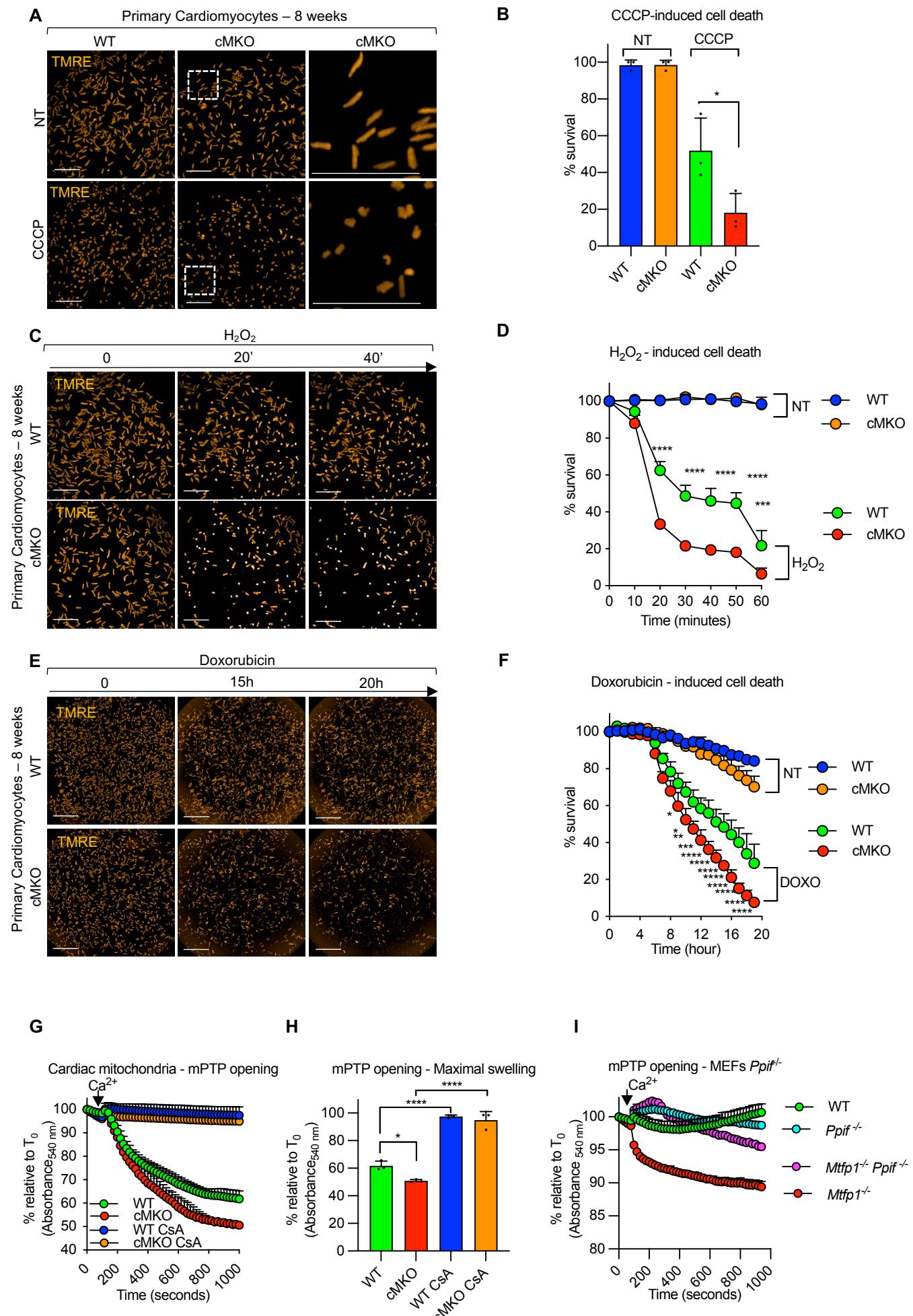


Figure 4

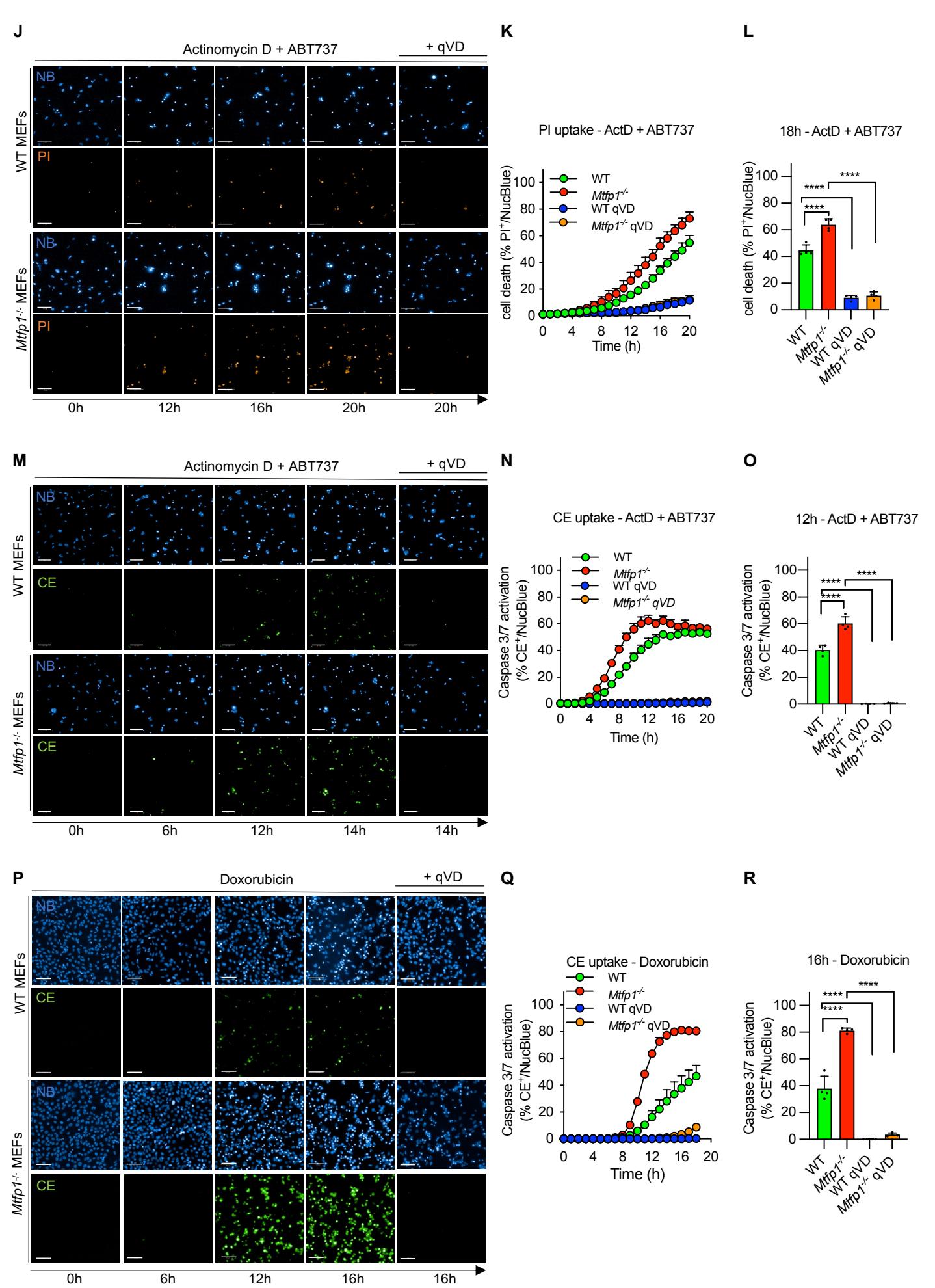


Figure 4 cont

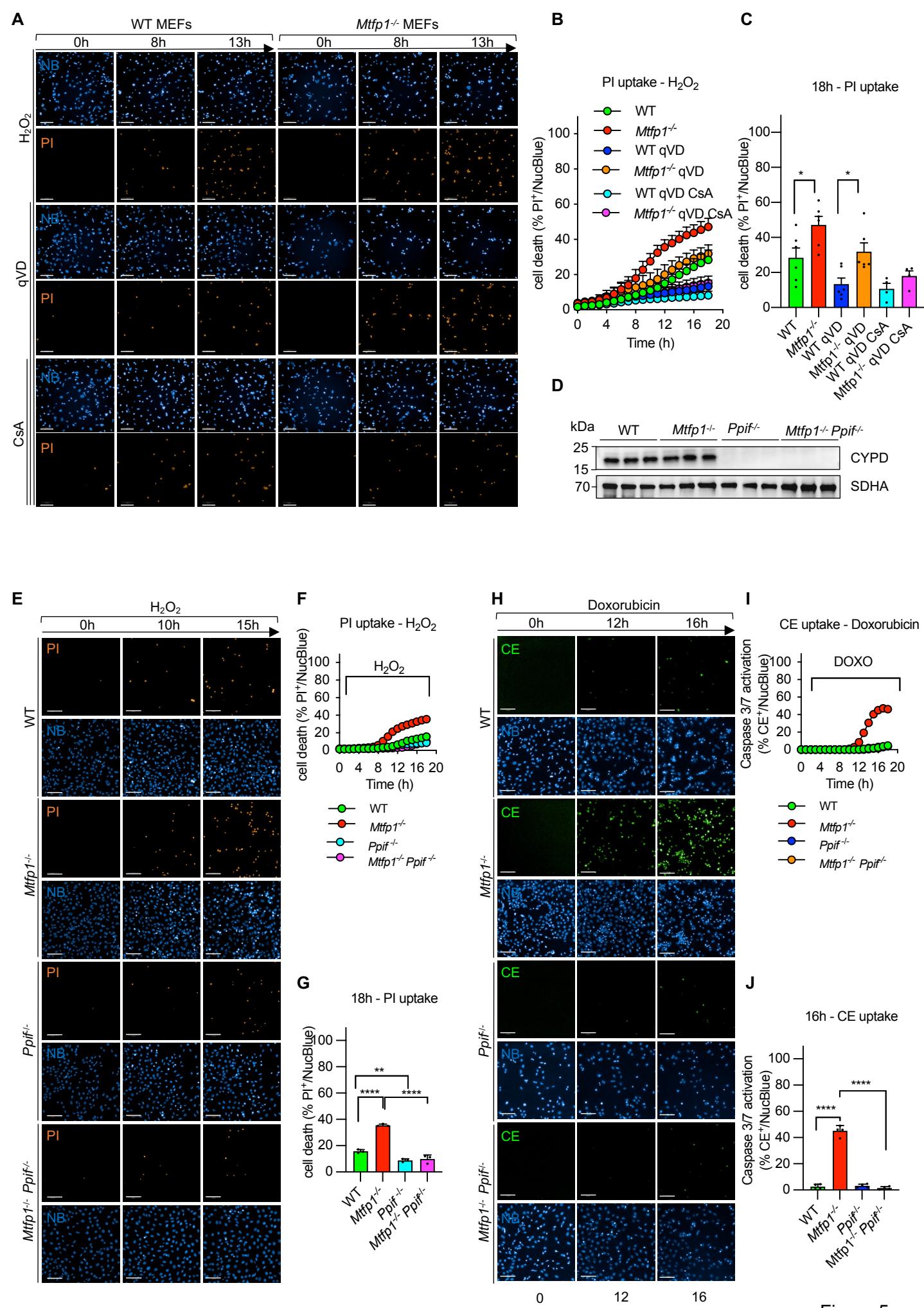


Figure 5

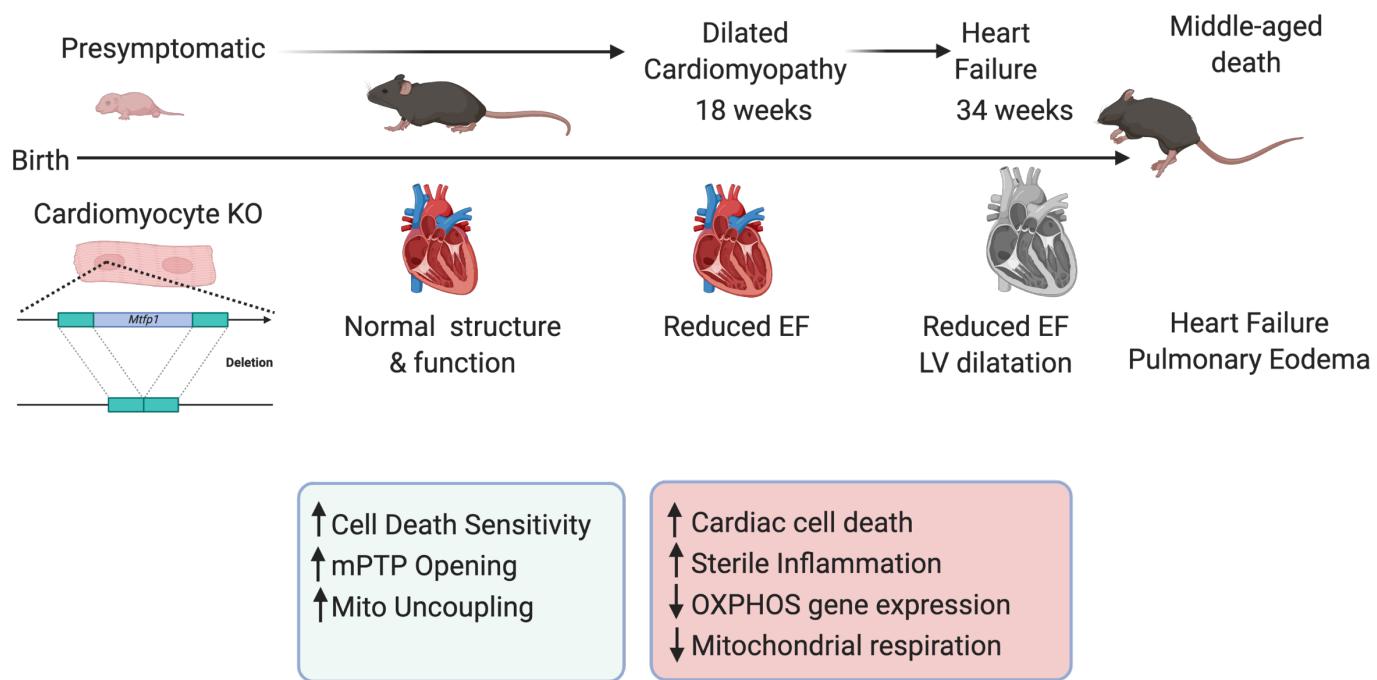


Figure 6