

Moran Process Version of the Tug-of-War Model: Complex Behavior Revealed

by Mathematical Analysis and Simulation Studies

Adam Bobrowski¹, Marek Kimmel^{2*}, Monika K. Kurpas³
and Elżbieta Ratajczyk¹

¹Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland

²Rice University, Department of Statistics, 6100 Main St., Houston, TX 77005, USA

³Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

*Corresponding author: kimmel@rice.edu

ABSTRACT. In a series of publications McFarland and co-authors introduced the tug-of-war model of evolution of cancer cell populations. The model is explaining the joint effect of rare advantageous and frequent slightly deleterious mutations, which may be identifiable with driver and passenger mutations in cancer. In this paper, we put the Tug-of-War model in the framework of a denumerable-type Moran process and use mathematics and simulations to understand its behavior. The model is associated with a time-continuous Markov Chain (MC), with a generator that can be split into a sum of the drift and selection process part and of the mutation process part. Operator semigroup theory is then employed to prove that the MC does not explode, as well as to characterize a strong-drift limit version of the MC which displays “instant fixation” effect, which was an assumption in the original McFarland’s model. Mathematical results are fully confirmed by simulations of the complete and limit versions. They also visualize complex stochastic transients and genealogies of clones arising in the model.

1. INTRODUCTION

1 The Tug-of-War model was developed in a series of papers of McFarland and co-authors [21,
2 23, 24] to account for existence of mutually counteracting rare advantageous driver mutations
3 and more frequent slightly deleterious passenger mutations in cancer. In its original version it is
4 a state-dependent branching process, analyzed by a range of simulation methods and analytical
5 approximations.

6 We adopt a different, simpler, approach, in which we reformulate McFarland's original defi-
7 nition to put it into the framework of a Moran model, which we investigate by complementary
8 methods of mathematical analysis and simulation.

9 In the current study we are not primarily concerned with understanding the genealogies of
10 the individuals such as cancer cells present in the populations. We identify individuals with the
11 same counts of passenger and driver mutations and follow trajectories of the so-defined types.
12 As it will become clear in the sequel, process behavior is quite complicated. Nevertheless,
13 we demonstrate absorption properties of the process with no mutations (Section 4) and use
14 operator semigroup theory to prove two limit cases (Section 7).

15 2. THE MODEL: A POPULATION UNDER SELECTION, DRIFT AND MUTATION

16 We consider a population of a fixed number N of individuals, each of them characterized by a
17 pair of integers (α, β) , corresponding to the numbers of drivers and passengers in its genotype,
18 respectively. This pair determines the fitness f of the individual by the formula

$$(2.1) \quad f = (1 + s)^\alpha (1 - d)^\beta,$$

19 where $s > 0$ and $d \in (0, 1)$ are certain parameters describing selective advantage of driver
20 mutations over passenger mutations. Thus, the entire population may be identified with the
21 vector

$$\mathbf{p} = ((\alpha_1, \beta_1), \dots, (\alpha_N, \beta_N))$$

22 of N pairs of integers, with the accompanying vector

$$\mathbf{f} = (f_1, \dots, f_N)$$

23 of fitnesses.

4

24 The population is under drift and selection pressure: the individual of type (α_i, β_i) lives for
 25 an exponential time with parameter

$$\sum (1+s)^{\alpha_j} (1-d)^{\beta_j}$$

26 where the sum is over all $j = 1, \dots, N$ such that $(\alpha_j, \beta_j) \neq (\alpha_i, \beta_i)$, and then is replaced by
 27 an individual of different type. More specifically, let $n_{\alpha, \beta}$ be the number of individuals of type
 28 (α, β) and n be the number of different types of individuals in the population, then the time
 29 to the death of each individual of type (α_i, β_i) is the minimum of $n - 1$ exponential random
 30 variables T_{α_j, β_j} where $(\alpha_j, \beta_j) \neq (\alpha_i, \beta_i)$ and T_{α_j, β_j} has parameter $n_{\alpha_j, \beta_j} (1+s)^{\alpha_j} (1-d)^{\beta_j}$. Upon
 31 this individual's death, conditional on the minimal time being equal to T_{α_k, β_k} , this individual
 32 is replaced by one of the individuals of type (α_k, β_k) , each if these individuals being equally
 33 likely. This process then continues with \mathbf{p} modified by replacing its i th coordinate (α_i, β_i) by
 34 its k th coordinate (α_k, β_k) .

35 In particular, if all individuals in \mathbf{p} are pairwise different, the time to the first drift and
 36 selection event for the entire population is exponential with parameter $(N - 1)\Sigma f$ where

$$\Sigma f = \sum_{k=1}^N f_k.$$

37 After this time is over, one individual dies and is replaced by an exact copy of one of the
 38 remaining individuals, the probability that the i th individual dies and is replaced by the j th
 39 ($j \neq i$) being $\frac{f_j}{(N-1)\Sigma f}$. If, on the other hand, all individuals are the same, nothing happens:
 40 there are no drift and selection events.

41 Moreover, each individual may, after an independent exponential time with parameter, say λ ,
 42 and independently of other individuals, undergo a mutation event, changing its state to either
 43 $(\alpha + 1, \beta)$ or $(\alpha, \beta + 1)$ with (conditional) probabilities $p \in (0, 1)$ and q , respectively. In other
 44 words, all mutations occur at the epochs of a Poisson process with intensity λ , occurrences
 45 of driver mutations on each individual form a colored Poisson process, with probability of
 46 coloring equal p , and the occurrences of passenger mutations form a colored Poisson process
 47 with probability of coloring equal q . It follows (see the Colouring Theorem on p. 53 in [17])
 48 that driver and passenger mutations form Poisson processes with parameters

$$\nu = \lambda p \quad \text{and} \quad \mu = \lambda q,$$

49 respectively, and these processes are independent of each other, and independent of mutation
 50 processes on other individuals. (Although technically we never use this assumption, what
 51 we have in mind is the case where p is significantly smaller than $1 - p$, so that long strings of
 52 passenger mutations are interrupted by rare driver mutations.) In particular, given that initially
 53 an individual's fitness is f , after time t its expected fitness is the product of $f, e^{-\lambda p t} e^{\lambda p(1+s)t}$ (the
 54 contribution of driver mutations) and $e^{-\lambda q t} e^{\lambda q(1-d)t}$ (the contribution of passenger mutations),
 55 and thus equals

$$(2.2) \quad f(t) = e^{\lambda t(sp-dq)} f, \quad t \geq 0.$$

56 In a number of cells this expected fitness does not grow to infinity or decay to zero; such cells
 57 are thus characterized by the following balance condition for the introduced parameters:

$$(2.3) \quad sp = dq, \quad \text{or} \quad p = \frac{d}{s+d}.$$

58 In other words, the advantage gained by a driver mutation is balanced by the small probability
 59 of such event.

60 In other cells, however, driver mutations, though rare may have a slight edge over the pas-
 61 senger mutations caused by large s . Such cell populations are characterized by

$$(2.4) \quad sp > dq, \quad \text{or} \quad p > \frac{d}{s+d}.$$

62 In yet different populations, driver mutations will be so rare that the expected total fitness
 63 diminishes in time. To characterize such populations, we reverse the inequalities in (2.4).

64 3. A MARKOV CHAIN AND THE RELATED INTENSITY MATRIX

65 The population described in Section 2 is modeled by a stochastic process

$$(3.1) \quad \mathfrak{p}(t), t \geq 0$$

66 with values in the state-space \mathfrak{P} of N ordered copies of the Cartesian product $\mathbb{N} \times \mathbb{N}$, where \mathbb{N}
 67 is the set of natural numbers:

$$\mathfrak{P} := (\mathbb{N} \times \mathbb{N})^N.$$

68 This is just to say that at each time t , the population is an N -tuple of pairs $(\alpha_i(t), \beta_i(t))$, $i \in \mathcal{N}$
 69 of positive integers, where

$$\mathcal{N} := \{1, \dots, N\}.$$

70 Since \mathfrak{P} is a countable set, the process $\mathfrak{p}(t), t \geq 0$ may be thought of as a time-continuous
71 Markov chain.

72 Such Markov chains are conveniently described by means of intensity (Kolmogorov) matrices
73 that gather information on rates (intensities) with which these processes leave a given state
74 and jump to other states (see e.g. [4, 25]; see also our Section 10). We will write the intensity
75 matrix for the process (3.1) as the sum of two intensity matrices representing mutations and
76 drift and selection events, respectively.

77 To describe the first of these, call it Q_M , (' M ' for 'mutations') let D and P (' D ' for driver
78 and ' P ' for passenger) be the following maps of $\mathbb{N} \times \mathbb{N}$ into itself:

$$(3.2) \quad D(\alpha, \beta) = (\alpha + 1, \beta) \quad \text{and} \quad P(\alpha, \beta) = (\alpha, \beta + 1).$$

79 Moreover, for each $i = 1, \dots, N$, let $D_i : \mathfrak{P} \rightarrow \mathfrak{P}$ be the map in which the i th coordinate (α_i, β_i)
80 of a $\mathfrak{p} \in \mathfrak{P}$ is replaced by $D(\alpha_i, \beta_i)$. Similarly, let $P_i : \mathfrak{P} \rightarrow \mathfrak{P}$ be the map in which the i th
81 coordinate (α_i, β_i) of a $\mathfrak{p} \in \mathfrak{P}$ is replaced by $P(\alpha_i, \beta_i)$. In these notations, the intensity $q_{\mathfrak{p}, \mathfrak{q}}$ of
82 going from a state $\mathfrak{p} \in \mathfrak{P}$ to a state $\mathfrak{q} \in \mathfrak{P}$ in the mutation process is

$$(3.3) \quad q_{\mathfrak{p}, \mathfrak{q}} = \begin{cases} \lambda p & \text{if } \mathfrak{q} = D_i \mathfrak{p} \text{ for some } i \in \mathcal{N}, \\ \lambda q & \text{if } \mathfrak{q} = P_i \mathfrak{p} \text{ for some } i \in \mathcal{N}, \\ -N\lambda & \text{if } \mathfrak{q} = \mathfrak{p}, \\ 0 & \text{otherwise.} \end{cases}$$

83 Similarly, for $i, j = 1, \dots, N$ let $R_{ij} : \mathfrak{P} \rightarrow \mathfrak{P}$ be the map that replaces the i th coordinate
84 (α_i, β_i) of a $\mathfrak{p} \in \mathfrak{P}$ by its j th coordinate (α_j, β_j) , leaving the remaining coordinates intact. For
85 example, if $N = 3$, $R_{1,3}$ maps $((\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3))$ to $((\alpha_3, \beta_3), (\alpha_2, \beta_2), (\alpha_3, \beta_3))$. The
86 intensity matrix describing drift and selection events, say Q_S , has then the following entries:

$$(3.4) \quad q_{\mathfrak{p}, \mathfrak{q}} = \begin{cases} n_j f_j & \text{if } \mathfrak{q} = R_{i,j} \mathfrak{p} \text{ for some } i, j \in \mathcal{N} \text{ such that } (\alpha_i, \beta_i) \neq (\alpha_j, \beta_j), \\ 0 & \text{otherwise,} \end{cases}$$

87 where n_j is the number of individuals in \mathfrak{p} that are identical to the individual number j and
88 $\mathbf{f} = (f_i)_{i \in \mathcal{N}}$ is the vector of fitnesses of individuals in \mathfrak{p} . More specifically,

$$(3.5) \quad f_i = (1 + s)^{\alpha_i} (1 - d)^{\beta_i}, i \in \mathcal{N}.$$

89 This formula does not cover the case where $\mathbf{q} = \mathbf{p}$ because this case requires a bit of prepa-
 90 ration. Namely, let $n_{\alpha,\beta}$ denote the number of individuals of type (α, β) so that in particular
 91 $\sum_{i,j \in \mathbb{N}} n_{ij} = N$. Then,

$$(3.6) \quad q_{\mathbf{p},\mathbf{p}} = - \sum_{\alpha,\beta \in \mathbb{N}} n_{\alpha,\beta} \sum_{\gamma,\delta \in \mathbb{N}; (\gamma,\delta) \neq (\alpha,\beta)} n_{\gamma,\delta} (1+s)^\gamma (1-d)^\delta.$$

92 We note that in the case where all individuals in a population \mathbf{p} are different, the formula for
 93 $q_{\mathbf{p},\mathbf{p}}$ simplifies to:

$$q_{\mathbf{p},\mathbf{p}} = -(N-1)\Sigma f.$$

94 On the other hand, if all individuals in this population are of the same type, $q_{\mathbf{p},\mathbf{p}} = 0$.

95 Finally, the entries in the intensity matrix Q for the entire chain (3.1) are sums of the entries
 96 of matrices Q_M and Q_S :

$$(3.7) \quad Q = Q_M + Q_S.$$

97 4. PROPERTIES OF THE DRIFT AND SELECTION CHAIN

98 Consider the evolution of a population when mutations are absent, and only drift and selection
 99 events, as described above, are possible. This evolution is governed the intensity matrix Q_S
 100 with entries given in (3.4) and (3.6).

101 For definiteness, let $\mathbf{p} = ((\alpha_i, \beta_i))_{i \in \mathcal{N}}$ be the initial state of this population and assume that
 102 all its individuals have different characteristics, i.e. $(\alpha_i, \beta_i) \neq (\alpha_j, \beta_j)$ for $i \neq j$. It is rather
 103 easy to see first of all there is only a finite number of states that can be reached from the state
 104 \mathbf{p} : more precisely, there are at most N^N such states (including \mathbf{p} itself). For, since the chain is
 105 that of replacing coordinates of \mathbf{p} by copies of other coordinates, there are only N possibilities
 106 for the first coordinate of future states, N possibilities for the second coordinate, and so on.

107 Second, all these states, except for those with all coordinates equal, i.e. except for

$$\mathbf{p}_i := ((\alpha_i, \beta_i), (\alpha_i, \beta_i), \dots, (\alpha_i, \beta_i)), \quad i \in \mathcal{N}$$

108 are transient for this chain. Indeed, for any other state there is a non-zero probability that the
 109 number of different individuals in the population will decrease in the next drift and selection
 110 event. Since the rules of the chain do not allow jumps from the states with smaller number
 111 of different individuals to the states with larger number of different individuals, the process
 112 will never come back to the state under consideration. This shows that this state cannot
 113 be recurrent, and thus, by the well-known dichotomy (see e.g. [25], Section 3.4) it must be

114 transient. On the other hand, all the states $\mathbf{p}_i, i \in \mathcal{N}$ are absorbing. Hence, the process
115 starting at a \mathbf{p} must eventually end up at one of \mathbf{p}_i 's. Certainly, in the case where not all
116 individuals in the original population are different, the fate of the population is similar: it is
117 only the number of possibilities for the end population that is smaller. We summarize our
118 discussion in the following theorem.

119 **Theorem 4.1.** *Let $\mathbf{p} \in \mathfrak{P}$ be a population and let M be the number of different variants in
120 \mathbf{p} . Then, there is a set $\mathcal{M} \subset \mathcal{N}$ such that (a) $M = \#\mathcal{M}$, and (b) $i \neq j, i, j \in \mathcal{M}$ implies
121 $(\alpha_i, \beta_i) \neq (\alpha_j, \beta_j)$. For $i \in \mathcal{M}$ let $\mathbf{p}_i \in \mathfrak{P}$ be the population in which all individuals are
122 identical to each other and to the i th individual in the original population \mathbf{p} . Then, the drift
123 and selection chain starting at \mathbf{p} will eventually end up at \mathbf{p}_i with certain probability $p_i = p_i(\mathbf{p})$
124 where $\sum_{i \in \mathcal{M}} p_i = 1$.*

125 We note in passing that whereas there could be many choices of \mathcal{M} , the thesis of our theorem
126 remains the same for all of them.

127 This theorem is a reflection of the fact that drift and selection chain strives to reduce the
128 number of variants in the population by removing randomly selected variants and replacing
129 them by other variants; in the absence of other forces, and mutation in particular, the chain's
130 operation in the long run leads to fixation of one the variants. What this theorem does not
131 express openly is that drift and selection chain favors variants with larger fitness. The latter
132 information, besides being visible in formula (3.4), is hidden in the probabilities p_i featuring
133 in Theorem 4.1; roughly speaking, the larger the fitness of an individual, the larger is the
134 probability of fixation of its variant. Notably, even though selection favors variants with larger
135 fitness, it acts together with genetic drift which may 'blindly', by chance, remove better fit
136 variants from the population. Hence, the fact that a variant with larger fitness is favored by
137 selection results in a higher probability of its fixation, and not in the inevitability of its fixation.

138 In what follows we will see this principle expressed in explicit formulae for p_i 's in the cases
139 $N = 2$ and $N = 3$, considered here for the sake of illustration. In our calculations it will be
140 convenient, for the sake of shortening our equations and making figures readable, to identify
141 a population \mathbf{p} , which is an N -dimensional vector of pairs of integers, with the N -dimensional
142 vector of corresponding fitnesses calculated by formula (3.5), the latter vector being half as
143 long as the former. Although it is possible, by an appropriate choice of parameters, to have
144 two different individuals with the same fitnesses, i.e. to have $(\alpha_i, \beta_i) \neq (\alpha_j, \beta_j)$ and at the

145 same time $(1+s)^{\alpha_i}(1-d)^{\beta_i} = (1+s)^{\alpha_j}(1-d)^{\beta_j}$, such an identification should not lead to
 146 misunderstandings.

147 For $N = 2$ the probabilities p_1 and p_2 are easily calculated explicitly: unless it is already
 148 uniform, a population \mathbf{p} with fitness (f_1, f_2) , after an exponential time with parameter $f_1 + f_2$,
 149 becomes \mathbf{p}_1 with probability $\frac{f_1}{f_1+f_2}$ or \mathbf{p}_2 with probability $\frac{f_2}{f_1+f_2}$. This shows that $p_1 = \frac{f_1}{f_1+f_2}$ and
 150 $p_2 = 1 - p_1 = \frac{f_2}{f_1+f_2}$.

151 Somewhat surprisingly, already for $N = 3$ the formulae for p_i 's are more complicated, and
 152 do not follow the perhaps expected pattern $p_i = \frac{f_i}{\Sigma f}$. Before we see that, however, we note
 153 the following important property of the chain under consideration: Let us call two states
 154 $\mathbf{f} = (f_1, \dots, f_N)$ and $\mathbf{f}' = (f'_1, \dots, f'_N)$ *associated* if there is a permutation Π of the set \mathcal{N} such
 155 that $f'_i = f_{\Pi(i)}$, $i \in \mathcal{N}$. The property we want to note is as follows.

156 **Theorem 4.2.** *The drift and selection processes starting at two associated states are analogous.*

157 What we mean by that proposition is that (a) the times to the first drift and selection events
 158 for either of two associated states \mathbf{f} and \mathbf{f}' have the same distribution, (b) the probability that
 159 in such an event the i th coordinate of \mathbf{f} is replaced by the j th, is the same as the probability
 160 that the $\Pi(i)$ th coordinate of \mathbf{f}' is replaced by the $\Pi(j)$ th, and (c) if in these drift and selection
 161 events the i th coordinate of \mathbf{f} is replaced by the j th, and the $\Pi(i)$ th coordinate of \mathbf{f}' is replaced
 162 by the $\Pi(j)$ th then the states after these events are again associated. These statements are clear
 163 from the description of the drift and selection chain, and combined together prove Theorem
 164 4.2.

165 We are now ready to find p_i 's for $N = 3$. We think of a process that starts at an $\mathbf{f} = (f_1, f_2, f_3)$.
 166 Figure 1 illustrates the fact that in order to reach the state $\mathbf{f}_1 = (f_1, f_1, f_1)$ this process must
 167 go through (f_1, f_1, f_3) , (f_1, f_2, f_1) or one of their associates. The first of these states is reached
 168 directly with probability $\frac{f_1}{2\Sigma f}$. This state or one of its associates may also be reached indirectly,
 169 via (f_1, f_3, f_3) , with probability $\frac{f_3}{2\Sigma f} \frac{f_1}{f_1+f_3}$. Thus, the probability of reaching (f_1, f_1, f_3) or one of
 170 its associates is

$$\frac{f_1}{2\Sigma f} \frac{f_1 + 2f_3}{f_1 + f_3}.$$

171 Then, before reaching \mathbf{f}_1 from one of these associated states, the process may visit an associate
 172 of (f_1, f_3, f_3) , and this may happen $k \geq 0$ times. Since the properties of the processes starting
 173 from associated states are analogous, the probability of reaching \mathbf{f}_1 from one of associates of

10

174 (f_1, f_1, f_3) is

$$\frac{f_1}{f_1 + f_3} \sum_{k=0}^{\infty} \left(\frac{f_3}{f_1 + f_3} \right)^k \left(\frac{f_1}{f_1 + f_3} \right)^k = \frac{f_1}{f_1 + f_3} \frac{1}{1 - \frac{f_1 f_3}{(f_1 + f_3)^2}}.$$

175 Therefore, the probability that f_1 will be reached through (f_1, f_1, f_3) or its associate is $\frac{f_1^2}{2\Sigma f} \frac{f_1 + 2f_3}{f_1^2 + f_3^2 + f_1 f_3}$

176 and so

$$(4.1) \quad p_1 = \frac{f_1^2}{2\Sigma f} \left[\frac{f_1 + 2f_2}{f_1^2 + f_2^2 + f_1 f_2} + \frac{f_1 + 2f_3}{f_1^2 + f_3^2 + f_1 f_3} \right],$$

177 because the case where the process goes through associates of (f_1, f_2, f_1) is symmetrical. Using
178 symmetry again, we obtain

$$p_2 = \frac{f_2^2}{2\Sigma f} \left[\frac{f_2 + 2f_1}{f_1^2 + f_2^2 + f_1 f_2} + \frac{f_2 + 2f_3}{f_2^2 + f_3^2 + f_2 f_3} \right]$$

179 and

$$p_3 = \frac{f_3^2}{2\Sigma f} \left[\frac{f_3 + 2f_1}{f_1^2 + f_3^2 + f_1 f_3} + \frac{f_3 + 2f_2}{f_2^2 + f_3^2 + f_2 f_3} \right].$$

180 As remarked above, these formulae illustrate the fact that the drift and selection process,
181 besides striving to minimize the number of variants, tries also to maximize the total fitness of
182 the population by selecting against the variants with small fitness.

183 Analogous formulae for the case $N = 4$ were also obtained, using Maple, but even after
184 simplification, they were too long to be informative; each of them occupied half a page. Hence,
185 in the absence of explicit formulae, we content ourselves with the following theorem which shows
186 that drift and selection events ‘on average’ increase the total fitness of population.

187 **Theorem 4.3.** *Let f' be the state of the process right after drift and selection event of a popu-
188 lation f . Then*

$$E \Sigma f' \geq \Sigma f,$$

189 where E denotes expected value.

190 *Proof.* Each event of replacing the i th coordinate of f by its j th coordinate is paired by the
191 event in which the j th coordinate is replaced by the i th coordinate. The first of these events
192 takes place with probability $f_j/|q_{p,p}|$, where $q_{p,p}$ is the diagonal element of the generator matrix
193 in Equ. (3.6). Accordingly, $\Sigma f' - \Sigma f = f_j - f_i$, and the second event’s characteristics are
194 symmetrical. Therefore, $E \Sigma f' - \Sigma f$ equals

$$\sum_{i < j} \left[\frac{(f_j - f_i)f_j}{|q_{p,p}|} + \frac{(f_i - f_j)f_i}{|q_{p,p}|} \right] = \frac{1}{|q_{p,p}|} \sum_{i < j} (f_i - f_j)^2 \geq 0,$$

195 completing the proof. □

196 Next, we turn our attention to the situation where in a homogeneous population a new,
 197 possibly better fitted, variant shows up. In other words, the vector of fitnesses is of the form
 198 $(f_1, f_2, f_2, \dots, f_2)$ where $f_1 \gg f_2$. We are interested in the probability that variant with fitness
 199 f_1 will take over the entire population, i.e. in the probability that the drift and selection process
 200 will be absorbed in the state (f_1, f_1, \dots, f_1) .

201 **Theorem 4.4.** *Let $N \geq 2$. The probability that the drift and selection process starting at
 202 $(f_1, f_2, \dots, f_2) \in \mathfrak{P}$ is eventually absorbed at (f_1, f_1, \dots, f_1) equals*

$$(4.2) \quad h_1 = \frac{1}{1 + \left(\frac{f_2}{f_1}\right) + \dots + \left(\frac{f_2}{f_1}\right)^{N-1}}.$$

203 *Proof.* Let $X(t)$ be the number of individuals of fitness f_1 in the population $\mathfrak{p}(t)$. Because of
 204 Theorem 4.2, $X(t), t \geq 0$ is a time-continuous Markov chain with values in the set $\mathcal{N}_0 := \{0\} \cup \mathcal{N}$,
 205 and the elements of its intensity matrix are as follows:

$$(4.3) \quad q_{i,j} = \begin{cases} 0 & \text{if } i \in \{0, N\}, \\ i(N-i)f_2 & \text{if } j = i-1, i \notin \{0, N\}, \\ -(f_1 + f_2)i(N-i) & \text{if } j = i, i \notin \{0, N\}, \\ i(N-i)f_1 & \text{if } j = i+1, i \notin \{0, N\}, \\ 0 & \text{otherwise.} \end{cases}$$

206 We are interested in the probability that $X(t), t \geq 0$ will be absorbed at the state N , given
 207 that $X(0) = 1$. This probability is the second coordinate in the vector (h_0, \dots, h_N) of so-called
 208 hitting probabilities for the absorbing state $\{N\}$ which, by Theorem 3.3.1 in [25] satisfy the
 209 following system of equations:

$$\sum_{j=0}^N q_{i,j} h_j = 0, \quad i \notin \{0, N\}$$

with ‘boundary conditions’ $h_0 = 0, h_N = 1$. In other words

$$(4.4) \quad h_i = ch_{i-1} + dh_{i+1},$$

210 where $c = \frac{f_2}{f_1 + f_2}$ and $d = \frac{f_1}{f_1 + f_2}$ for $i = 1, \dots, N-1$.

211 To solve this system, as in p. 16 of [25] or [11] p. 192, we introduce $u_i = h_{i-1} - h_i$ for
 212 $i = 1, \dots, N$. Then the recurrence relation (4.4) becomes $u_{i+1} = \frac{c}{d}u_i = \frac{f_2}{f_1}u_i$, $i = 1, \dots, N-1$.

12

213 Therefore, by induction,

$$(4.5) \quad u_i = \left(\frac{f_2}{f_1} \right)^{i-1} u_1, \quad i = 1, \dots, N.$$

214 It follows that $\sum_{i=1}^N u_i = \left(1 + \left(\frac{f_2}{f_1} \right) + \dots + \left(\frac{f_2}{f_1} \right)^{N-1} \right) u_1$. On the other hand, by the definition
 215 of u_i s and the boundary conditions for h_i s, $\sum_{i=1}^N u_i = h_0 - h_N = -1$. Hence we obtain that
 216 $h_1 = -u_1 = \frac{1}{1 + \left(\frac{f_2}{f_1} \right) + \dots + \left(\frac{f_2}{f_1} \right)^{N-1}}$, as desired. \square

217 We complement this theorem with three remarks. First, we note that (4.5) hides an explicit
 218 formula for h_i for any $i \in \mathcal{N}$, i.e. for the probability that a subpopulation of i individuals of
 219 fitness f_1 will take over the entire population. For, since $\sum_{j=1}^i u_j = h_0 - h_i = -h_i$, this formula,
 220 when combined with (4.2), renders

$$h_i = \frac{1 + \left(\frac{f_2}{f_1} \right) + \dots + \left(\frac{f_2}{f_1} \right)^{i-1}}{1 + \left(\frac{f_2}{f_1} \right) + \dots + \left(\frac{f_2}{f_1} \right)^{N-1}}, \quad i \in \mathcal{N}.$$

221 Second, observe that formula (4.2) in the case $N = 2$ agrees with the formula for p_1 , and in
 222 the case $N = 3$ can be obtained from (4.1) by replacing f_3 by f_2 .

223 Third, in our proof of (4.2) we never used the assumption that f_1 is larger than f_2 . However,
 224 since N , being the size of the considered population, is typically rather large, for $f_1 \leq f_2$, the
 225 probability of (4.2) is small. This means that new variants without sufficient selective advantage
 226 are simply washed away from the population.

227 On the other hand, given $r \in (0, 1)$ (to play the role of a probability), think of f_1 as of chosen
 228 so large as compared to f_2 that

$$(4.6) \quad \frac{f_2}{f_1} < 1 - r.$$

229 Then $1 + \left(\frac{f_2}{f_1} \right) + \dots + \left(\frac{f_2}{f_1} \right)^{N-1} < \frac{1}{1 - \frac{f_2}{f_1}} < \frac{1}{r}$. Therefore, for such f_1 (and f_2), $h_1 > r$. In other
 230 words, by enlarging f_1 sufficiently, we may make the probability of mutant's fixation as large
 231 as we wish.

232 We complete this section with information on the expected time to allele's fixation.

233 **Theorem 4.5.** *Let $N \geq 2$. The expected time for the drift and selection process starting at
234 $(f_1, f_2, \dots, f_2) \in \mathfrak{P}$ to be eventually absorbed at (f_1, f_1, \dots, f_1) or (f_2, f_2, \dots, f_2) equals*

$$(4.7) \quad k_1 = \frac{h_1}{f_1} \sum_{i=1}^{N-1} \left(\sum_{j=1}^i \frac{1}{j(N-j)} \left(\frac{f_2}{f_1} \right)^{i-j} \right),$$

235 where h_1 is defined by formula (4.2).

236 *Proof.* The time of interest is the second coordinate in the vector (k_0, \dots, k_N) of hitting times
237 for the absorbing set $\{0, N\}$ which, by Theorem 3.3.3 in [25] satisfy the following system of
238 equations:

$$-\sum_{j=0}^N q_{i,j} k_j = 1, \quad i \notin \{0, N\}$$

with ‘boundary conditions’ $k_0 = 0, k_N = 0$, where $q_{i,j}$ ’s are defined in (4.3). In other words

$$(4.8) \quad k_i = ck_{i-1} + dk_{i+1} + e_i,$$

239 where $c = \frac{f_2}{f_1+f_2}, d = \frac{f_1}{f_1+f_2}$ and $e_i = \frac{1}{i(N-i)(f_1+f_2)}$ for $i = 1, \dots, N-1$.

To solve this system, as in the previous theorem, we introduce $v_i = k_{i-1} - k_i$ for $i = 1, \dots, N$.
Then the recurrence relation (4.8) becomes $v_{i+1} = \frac{c}{d}v_i + \frac{e_i}{d} = \frac{f_2}{f_1}v_i + \frac{1}{i(N-i)f_1}, i = 1, \dots, N-1$.
It follows that

$$v_i = \left(\prod_{j=1}^{i-1} \frac{f_2}{f_1} \right) \left(v_1 + \frac{1}{f_1} \sum_{j=1}^{i-1} \frac{1}{j(N-j) \prod_{k=1}^j \frac{f_2}{f_1}} \right)$$

for $i = 2, \dots, N$. We see that

$$\begin{aligned} \sum_{i=1}^N v_i &= \frac{v_1}{h_1} + \sum_{i=2}^N \left(\left(\frac{f_2}{f_1} \right)^{i-1} \frac{1}{f_1} \sum_{j=1}^{i-1} \frac{1}{j(N-j) \left(\frac{f_2}{f_1} \right)^j} \right) \\ &= \frac{v_1}{h_1} + \frac{1}{f_1} \sum_{i=1}^{N-1} \left(\sum_{j=1}^i \frac{1}{j f(N-j)} \left(\frac{f_2}{f_1} \right)^{i-j} \right). \end{aligned}$$

On the other hand, by the definition of v_i ’s and the boundary conditions for k_i ’s, $\sum_{i=1}^N v_i = k_0 - k_N = 0$. Hence

$$k_1 = -v_1 = \frac{h_1}{f_1} \sum_{i=1}^{N-1} \left(\sum_{j=1}^i \frac{1}{j(N-j)} \left(\frac{f_2}{f_1} \right)^{i-j} \right),$$

240 completing the proof. □

241 5. ASYMPTOTIC BEHAVIOR OF $\{P_S(t), t \geq 0\}$

242 In the Supplement 10, we demonstrated the existence of a Markov chain related to the
 243 intensity matrix $Q = Q_M + Q_S$ of (3.7), i.e. the chain encompassing the mutation and drift
 244 “components” of the model we consider.

245 Before embarking on the study of limit versions of the semigroup $\{P(t), t \geq 0\}$ related to
 246 this chain, let us rephrase the results of Section 4 to find the limit

$$\lim_{t \rightarrow \infty} P_S(t).$$

247 To this end, given $\mathfrak{p} \in \mathfrak{P}$, consider

$$(5.1) \quad e_{\mathfrak{p}} \in \ell^1$$

248 defined by $e_{\mathfrak{p}}(\mathfrak{q}) = 0, \mathfrak{q} \neq \mathfrak{p}, e_{\mathfrak{p}}(\mathfrak{p}) = 1$. Then $P_S(t)e_{\mathfrak{p}}$ is the \mathfrak{p} th row of transition probability
 249 matrix $P_S(t)$, composed of probabilities $p_{\mathfrak{p},\mathfrak{q}}(t)$ that drift and selection chain starting at \mathfrak{p} will be
 250 at \mathfrak{q} at time $t \geq 0$. As explained in Section 4 at most N^N probabilities in this row are non-zero,
 251 and as $t \rightarrow \infty$ even all of these at most N^N probabilities tend to zero, save for $M \leq N$ of
 252 them corresponding to populations where all individuals are identical to each other and to one
 253 of the members of the original population, where $M = M(\mathfrak{p})$ is the number of variants in the
 254 population \mathfrak{p} . Each of the latter M probabilities, on the other hand, converges to one of the
 255 probabilities $p_i(\mathfrak{p})$ described in Theorem 4.1. Since $\sum_{i \in \mathcal{M}} p_i = 1$, by Scheffé's Theorem (see
 256 e.g. [4]), $P_S(t)e_{\mathfrak{p}}$ converges to the vector with probabilities $p_i(\mathfrak{p})$, in the norm of ℓ^1 . Here is a
 257 consequence of this remark.

258 **Theorem 5.1.** *Let the matrix $\Pi = (\pi_{\mathfrak{p},\mathfrak{q}})_{\mathfrak{p},\mathfrak{q} \in \mathfrak{P}}$ be defined as follows. For each \mathfrak{p} we choose a
 259 subset $\mathcal{M} \subset \mathcal{N}$ as described in Theorem 4.1, and let*

$$\pi_{\mathfrak{p},\mathfrak{q}} = \begin{cases} p_i(\mathfrak{p}) & \text{if } \mathfrak{q} = \mathfrak{p}_i \text{ for an } i \in \mathcal{M}, \\ 0 & \text{otherwise} \end{cases}$$

260 (where $p_i(\mathfrak{p})$ s are defined in Theorem 4.1). Then, for any $x \in \ell^1$,

$$(5.2) \quad \lim_{t \rightarrow \infty} P_S(t)x = \Pi x \quad (:= x \cdot \Pi).$$

261 *Proof.* By the reasoning presented above, (5.2) holds for $x = e_{\mathfrak{p}}, \mathfrak{p} \in \mathfrak{P}$. By linearity, this
 262 formula extends to all combinations of $e_{\mathfrak{p}}$'s. Since such combinations are dense in ℓ^1 , a three
 263 epsilon argument based on $\|P_S(t)\| = 1, t \geq 0$ completes the proof. \square

264

6. ASYMPTOTIC BEHAVIOR OF $\{P(t), t \geq 0\}$: INTUITIONS

265 The semigroup $\{P(t), t \geq 0\}$ describes the chain in which both mutations and drift and
266 selection events take place. As such, it describes not only a tug-of-war between driver and
267 passenger mutations but also a competition between selections and mutations, these population
268 genetic forces counteracting each other. But, it is one of the main characteristics of drift and
269 selection chain (see (3.4) and (3.6)) that the rate at which new drift and selection events come
270 about grows with the total fitness of the population. It follows that in some regions of \mathfrak{P} the
271 rate of mutation is larger than the rate of drift and selection events and in other regions the
272 former is smaller than the latter. Hence, in some regions selection will be more expressed, and
273 in other regions effects of mutations will be more apparent.

274 There are no clear boundaries between these regions, no man's lands lie between them, and
275 random forces may lead via these no man's lands from one region to another. Nevertheless, the
276 three main regions, denoted R_0, R_l and R_u , may be characterized as follows.

277 **6.1. R_0 region.** The central region R_0 contains populations in which drift and selection events
278 occur at a rate that is of the same order as the rate of mutations. By suitable scaling of
279 parameters, this is the region where

$$(N - 1)\Sigma f \approx N\lambda.$$

280 The expression above is inaccurate, since on the left-hand side, instead of the exact expression
281 for the intensity of time to the drift and selection event, we placed a simplified one, true only
282 when all individuals are different. However, this is sufficient for the present purposes which is to
283 define a region in which mutations have force comparable to drift and selection. We will carry
284 out a more accurate analysis using the limit process (see Lemma 9.1 and the text preceding
285 and following it).

286 An individual member of a population in this region collects new driver and passenger mu-
287 tations over time: being characterized initially, at time $t = 0$, by (α, β) , by the time $t > 0$
288 it becomes of the type $(\alpha + m, \beta + n)$ (provided it is still alive), but if assumption (2.3) is
289 satisfied, the quotient $\frac{\text{new fitness}}{\text{old fitness}} = (1 + s)^m(1 - d)^n$ is roughly 1. In other words, between drift
290 and selection events, all individuals travel the path where $n \approx -\frac{\log(1+s)}{\log(1-d)}m$; individual fitness
291 does not change much in time. Travels along such paths are of course interrupted by deaths
292 of individuals which are replaced by copies of other individuals. Genetic drift may thus sweep

16

293 away rare variants, but some kind of statistical equilibrium is obtained between mutations
294 introducing new variants and drift that continually reduces variability (see e.g. [5, 6, 7, 8]).

295 However, random fluctuations may force a population out of this region of balanced genetic
296 forces to one of the following two regions, where one force prevails against the other. A popu-
297 lation may, even the more, be forced out of this region by a temporary or permanent change of
298 parameters a, d and p , so that e.g. condition (2.4) rather than (2.3) is satisfied.

299 6.2. R_l region. In the lower region R_l we have

$$(N - 1)\Sigma f \ll N\lambda.$$

300 Because of that assumption, drift and selection events are very seldom as compared to mutation
301 events. This means that individuals live for relatively long times, and over periods of their lives
302 accumulate mutations that distinguish them more and more from other individuals. In other
303 words, the members of the population are rather loosely linked, and evolve quite independently
304 of each other.

305 6.3. R_u region. The upper region R_u is characterized by

$$(N - 1)\Sigma f \gg N\lambda.$$

306 Here the situation is quite different: these are the mutations that are relatively rare as compared
307 to the drift and selection events. Each individual lives for a short time and before it is able
308 to collect a significant number of mutations distinguishing it from other individuals, dies and
309 is replaced by another individual. As a result, very quickly the population becomes uniform:
310 there is practically only one variant in it (i.e., one variant is fixed) as in Theorems 4.1 and 5.1,
311 members of this population could be descendants of a rare but strong variant or of a weak but
312 frequent one in the initial population (see Theorem 4.4). In the next two sections we will be
313 able to say more on how mutation process looks like in such populations.

314 7. ASYMPTOTIC BEHAVIOR OF $\{P(t), t \geq 0\}$ IN THE UPPER AND LOWER REGIONS

315 In this section, we provide a more rigorous mathematical argument, based on the theory of
316 convergence of semigroups, for the intuitions of Sections 6.2 and 6.3. However, this argument
317 still needs to be preceded by the following heuristic reasoning.

318 Let us consider a subregion S of R_u where total fitness of populations, in addition to being
 319 ‘much larger’ than $N\lambda$, is approximately constant: there is a $\kappa > 0$ such that

$$(7.1) \quad \frac{\Sigma f(\mathbf{p})}{N\lambda} \approx \kappa \gg 1, \quad \mathbf{p} \in S,$$

320 where $\mathbf{f} = f(\mathbf{p})$ is the fitness vector for \mathbf{p} . Assume also that for each \mathbf{p} in S with the fitness vector
 321 $\mathbf{f} = (f_1, \dots, f_N)$ one may find a $\mathbf{p}' \in \mathfrak{P}$ with fitness vector $\mathbf{f}' = (f'_1, \dots, f'_N)$ where $f'_i \approx \frac{f_i}{\Sigma f} \approx \frac{f_i}{\kappa}$.
 322 Then \mathbf{p}' belongs to R_0 and the intensities $q_{\mathbf{p}, \mathbf{q}}$ of the drift and selection chain (see (3.4) and
 323 (3.6)) in the region S are related to the intensities $q_{\mathbf{p}', \mathbf{q}'}$ of the corresponding points $\mathbf{p}', \mathbf{q}' \in R_0$
 324 as follows:

$$q_{\mathbf{p}, \mathbf{q}} \approx \kappa q_{\mathbf{p}', \mathbf{q}'}, \quad \mathbf{p}, \mathbf{q} \in S.$$

325 At the same time, intensities of the mutation chain (see (3.3)) do not change in the transfer
 326 from \mathbf{p} to \mathbf{p}' .

327 It follows that instead of thinking of the chain in S governed by $\mathfrak{A} = \mathfrak{S} + \mathfrak{M}$ we may think
 328 of the chain in R_0 governed by

$$(7.2) \quad \mathfrak{A}_\kappa := \kappa \mathfrak{S} + \mathfrak{M}.$$

329 Arguing as at the end of Section 10, we check that for each $\kappa > 0$, \mathfrak{A}_κ is the generator of a
 330 semigroup, say $\{P_\kappa(t), t \geq 0\}$, of Markov operators. Thus, our task is that of characterizing
 331 the limit

$$\lim_{\kappa \rightarrow \infty} P_\kappa(t)x$$

332 where $x \in \ell^1$ is a distribution concentrated in R_0 .

333 This can be done effectively via Kurtz’s singular perturbation theorem [12, 19, 20] or Chapter
 334 42 in [3], and the analysis does not require assuming that x is concentrated in R_0 . In a simple
 335 case needed in our situation Kurtz’s theorem says that the limit above exists for all $x \in \ell^1$ and
 336 $t > 0$ provided the following two conditions are met:

337 (i) $\lim_{t \rightarrow \infty} P_S(t)x =: \Pi x$ exists for all $x \in \ell^1$.

338 (ii) $\Pi \mathfrak{M}$ with domain equal to ℓ_0^1 is a generator in ℓ_0^1 , where $\ell_0^1 := \text{Range } \Pi$.

339 To deduce this statement from Theorem 42.2 in [3] note that for $x \in \text{Ker } \mathfrak{S} = \text{Range } \Pi$,
 340 $\mathfrak{A}_\kappa x = \mathfrak{M}x$ and that for $y \in \mathcal{D}(\mathfrak{S})$, $\kappa^{-1} \mathfrak{S}_\kappa \rightarrow \mathfrak{S}y$. As proved in Theorem 5.1, the first of these
 341 two conditions is satisfied, and the second is clear since $\Pi \mathfrak{M}$ is bounded; this establishes the

18

342 desired convergence. Moreover, Kurtz's theorem states that in such a case,

$$(7.3) \quad \lim_{\kappa \rightarrow \infty} P_\kappa(t)x = e^{t\Pi\mathfrak{M}}\Pi x, \quad t > 0.$$

343

344 An analogous reasoning shows that instead of thinking about the chain generated by $\mathfrak{S} + \mathfrak{M}$
345 in the lower region R_l , one may think of the chain in R_0 governed by (compare (7.2))

$$\mathfrak{A}_\varepsilon = \kappa\mathfrak{S} + \mathfrak{M},$$

346 where now $\kappa \ll 1$.

347 The limit

$$\lim_{\kappa \rightarrow 0} P_\kappa(t)x$$

348 where $x \in \ell^1$ may be found with the help of the Sova-Kurtz version of the Trotter-Kato
349 convergence theorem for semigroups (see [3, 12, 18]): since for each $x \in \mathcal{D}(\mathfrak{S}) \lim_{\kappa \rightarrow 0} \mathfrak{A}_\kappa x = \mathfrak{M}x$,
350 and the set $\mathcal{D}(\mathfrak{S})$ is dense in ℓ^1 , we have

$$(7.4) \quad \lim_{\kappa \rightarrow 0} P_\kappa(t)x = P_M(t)x.$$

351

352 Proofs of the two results are deferred to the supplement. The first one seems to be less
353 intuitive, but we may provide an elementary derivation for the finite dimensional case in which
354 it is sufficient to use Laplace transform and matrix calculus.

Conjecture: Given matrix exponent

$$\Phi(t) = e^{(M+\kappa D)t}$$

such that

$$e^{Dt} \rightarrow \Pi, \quad t \rightarrow \infty$$

we have

$$e^{(M+\kappa D)t} \rightarrow e^{\Pi M t} \Pi, \quad \kappa \rightarrow \infty$$

Proof: Consider the Laplace transform of $\Phi(t)$

$$\hat{\Phi}(s) = (sI - (M + \kappa D))^{-1}$$

We find that

$$\Pi = \lim_{t \rightarrow \infty} e^{Dt} = \lim_{s \downarrow 0} s(sI - D)^{-1} = \lim_{\kappa \rightarrow \infty} (I - \kappa D)^{-1}$$

and then

$$\hat{\Phi}(s) = (sI - (M + \kappa D))^{-1} = [sI + (s-1)(I - \kappa D)^{-1}\kappa D - (I - \kappa D)^{-1}M]^{-1}(I - \kappa D)^{-1}$$

and since

$$(I - \kappa D)^{-1}\kappa D = (I - \kappa D)^{-1} - I$$

this converges as $\kappa \rightarrow \infty$ to

$$(s\Pi - \Pi + I - \Pi M)^{-1}\Pi.$$

355 Since $\Pi^2 = \Pi$ the above is equal to $(sI - \Pi M)^{-1}\Pi$, which is the Laplace transform of $e^{\Pi M t} \Pi$,
 356 as desired.

357 **8. INTERPRETATION OF (7.3) AND (7.4)**

358 This section is devoted to interpreting the limit theorems just obtained.

359 **8.1. Interpretation of (7.3).** Let us start by characterizing the space ℓ_0^1 of point (ii) of the
 360 previous section. To this end, for $\alpha, \beta \in \mathbb{N}$, let

$$\mathbf{p}_{\alpha, \beta} \in \mathfrak{P}$$

361 be the population of N identical individuals, each of type (α, β) , and let $\mathbb{Y} \subset \ell^1$ be the subspace
 362 spanned by $e_{\mathbf{p}_{\alpha, \beta}}$, $\alpha, \beta \in \mathbb{N}$ (recall (5.1)). In other words, \mathbb{Y} is composed of vectors of the form

$$x = \sum_{\alpha, \beta \in \mathbb{N}} \xi_{\alpha, \beta} e_{\mathbf{p}_{\alpha, \beta}}$$

363 where $\sum_{\alpha, \beta} |\xi_{\alpha, \beta}| < \infty$.

364 **Lemma 8.1.** *We have*

$$\ell_0^1 = \mathbb{Y}.$$

365 *Proof.* Each $e_{\mathbf{p}_{\alpha, \beta}}$ obeys $P_S(t)e_{\mathbf{p}_{\alpha, \beta}} = e_{\mathbf{p}_{\alpha, \beta}}$, because $\mathbf{p}_{\alpha, \beta}$ is an absorbing state for the se-
 366 lection/mutation chain. By the definition of Π it follows that $\Pi e_{\mathbf{p}_{\alpha, \beta}} = e_{\mathbf{p}_{\alpha, \beta}}$, i.e. that
 367 $e_{\mathbf{p}_{\alpha, \beta}} \in \ell_0^1$, $\alpha, \beta \in \mathbb{N}$. Conversely, in the argument preceding Theorem (5.1) we have shown
 368 that for any $\mathbf{p} \in \mathfrak{P}$, $\Pi e_{\mathbf{p}}$ is a convex combination of (a finite number of) vectors $\mathbf{p}_{\alpha, \beta}$, hence is
 369 a member of \mathbb{Y} . Since $e_{\mathbf{p}}$'s span the entire ℓ^1 , this completes the proof. \square

20

370 This lemma shows that the state-space of the limit process (which mimics the selection/mu-
 371 tation/drift process in the regions of high total fitness) is composed of populations in which all
 372 individuals are identical: this state-space is

$$\mathfrak{U}\mathfrak{P} := \{\mathfrak{p} \in \mathfrak{P}; \mathfrak{p} = \mathfrak{p}_{\alpha,\beta} \text{ for some } \alpha, \beta \in N\}.$$

373 The generator, $\Pi\mathfrak{M}$, of this process is of interesting form. The value of \mathfrak{M} on $x \in \ell_0^1$ usually
 374 does not belong to ℓ_0^1 . This is because \mathfrak{M} describes mutations: since each and every member
 375 of a uniform population may increase the number of driver and/or passenger mutations, after
 376 some time the population may contain different variants. However, the generator of the process
 377 under consideration is a composition of \mathfrak{M} and Π , and the latter operator maps $\mathfrak{M}x$ back to
 378 ℓ_0^1 . This corresponds to immediate intervening of drift and selection force, which makes the
 379 population uniform again, although possibly not quite the same as previously.

380 Referring back to (3.3) we see $\Pi\mathfrak{M}$ is the generator of a Markov chain in $\mathfrak{U}\mathfrak{P}$ which may
 381 be described as follows. Starting at a $\mathfrak{p}_{\alpha,\beta}$ the process stays there for an exponential time with
 382 parameter $N\lambda$. After this time is over, a randomly selected individual (each individual being
 383 chosen equally likely) changes its type to $(\alpha + 1, \beta)$ with probability p , or to $(\alpha, \beta + 1)$ with
 384 probability q . Then drift and selection either eliminates the new variant or allows it to take
 385 over the entire population. According to Theorem 4.4, the variant with new driver mutation is
 386 fixed with probability

$$p_{\text{driv}} = \frac{1}{1 + \frac{1}{1+s} + \cdots + \frac{1}{(1+s)^{N-1}}} = \frac{s}{1+s} \left(1 - \left(\frac{1}{1+s}\right)^N\right)^{-1},$$

387 Similarly, the variant with new passenger mutation is fixed with probability

$$p_{\text{pass}} = \frac{d}{1-d} \left(\left(\frac{1}{1-d}\right)^N - 1\right)^{-1}.$$

388 If the new variant is eliminated from the population, everything goes back to the state from
 389 before mutation. Thus, the time to effective change is exponential with parameter

$$N\lambda(pp_{\text{driv}} + qp_{\text{pass}}),$$

390 and after this time $\mathfrak{p}_{\alpha,\beta}$ becomes $\mathfrak{p}_{\alpha+1,\beta}$ with conditional probability $\frac{pp_{\text{driv}}}{pp_{\text{driv}} + qp_{\text{pass}}}$ or $\mathfrak{p}_{\alpha,\beta+1}$ with
 391 conditional probability $\frac{qp_{\text{pass}}}{pp_{\text{driv}} + qp_{\text{pass}}}$.

392 If $\mathfrak{U}\mathfrak{P}$ is identified with $\mathbb{N} \times \mathbb{N}$, i.e. if each population $\mathfrak{p}_{\alpha,\beta} \in \mathfrak{U}\mathfrak{P}$ is identified with its type
 393 (α, β) , the process described above is seen to be the pair of two independent Poisson processes

394 on $\mathbb{N} \times \mathbb{N}$: the driver Poisson process with intensity $N\lambda pp_{\text{driv}}$ (increasing the α -coordinate) and
395 the passenger Poisson process with intensity $N\lambda qp_{\text{pass}}$ (increasing the β -coordinate).

396 Notably, in contrast to the processes of mutations in single individuals, where intensity of
397 driver mutations is much smaller than that of passenger mutations, here the situation is quite
398 the opposite: these are the driver mutations that are typically more frequent than the passenger
399 mutations. For, we have $p_{\text{pass}} \leq N^{-1}$; on the other hand, arguing as in the vicinity of (4.6), we
400 see that it suffices to take s so large that

$$\frac{1}{1+s} < 1-r$$

401 to have

$$p_{\text{driv}} > r$$

402 where $r \in (0, 1)$ is given in advance.

403 The latter phenomenon has its source in the intervening selection process, described above,
404 which eliminates the vast majority of passenger mutations from the population.

405 Before completing this section, we take a last look at (7.3) and note that this formula informs
406 us also that even though the ‘true’ initial distribution is a member of ℓ^1 and needs not belong
407 to ℓ_0^1 , the drift and selection process intervenes so rapidly that before the process of mutations
408 starts the population becomes uniform (this is described by the vector Πx). Again, if, for
409 example, in the initial population there is one dominant variant and a single new variant with
410 larger fitness then the latter variant may be fixed with probability given in Theorem 4.4.

411 **8.2. Interpretation of (7.4).** Interpretation of (7.4) is much simpler. This formula simply says
412 that in the lower region drift and selection events are so rare that in fact may be disregarded:
413 the chain behaves nearly as if there were no selection or drift. As a result each individual
414 evolves independently of the others, in agreement with intuitions set forth in Section 6.2.

415

9. SIMULATIONS

416 As stated in the Introduction, we consider a population of a fixed number N of individuals,
417 each of them characterized by a pair of integers (α, β) , corresponding to the numbers of drivers
418 and passengers in its genotype, respectively. This pair determines the fitness f of the individual
419 by the formula

$$f = (1+s)^\alpha (1-d)^\beta,$$

22

420 where $s > 0$ and $d \in (0, 1)$ are parameters describing selective advantage of driver mutations
 421 over passenger mutations. Thus, the entire population may be identified with the vector

$$\mathbf{p} = ((\alpha_1, \beta_1), \dots, (\alpha_N, \beta_N))$$

422 of N pairs of integers, with the accompanying vector

$$\mathbf{f} = (f_1, \dots, f_N)$$

423 of fitnesses.

In each step of simulation, the decision is made whether the next event is the death and replacement or mutation event. Let us denote by T_m and T_s the exponentially distributed and independent random times to the mutation event and to a death/replacement event, respectively. We simulate both times and the next event occurs at time $t + \min(T_m, T_s)$, where t is the current time. According to the rules of our process, with mutation rate per cell λ

$$T_m \sim \exp(N\lambda)$$

while, following Equ. (3.6)

$$T_s \sim \exp \left(\sum_{\alpha, \beta \in \mathbb{N}} n_{\alpha, \beta} \sum_{\gamma, \delta \in \mathbb{N}: (\gamma, \delta) \neq (\alpha, \beta)} n_{\gamma, \delta} (1 + s)^\gamma (1 - d)^\delta \right)$$

424 where $n_{\alpha, \beta}$ denote the number of individuals of type (α, β) , so that $\sum_{i, j \in \mathbb{N}} n_{ij} = N$.

425 **Mutation** If $T_m < T_s$, the next event is mutation. Given this, the index of individual un-
 426 dergoing mutation is drawn from discrete uniform distribution on $\{1, \dots, N\}$ and the event
 427 changes the state of the individual to either $(\alpha+1, \beta)$ or $(\alpha, \beta+1)$ with probabilities $p \in (0, 1)$
 428 and $q = 1 - p$ respectively. Fitness of the mutated individual is recalculated accordingly.

429 **Death and replacement** If $T_m \geq T_s$, the next event is death and replacement. Suppose
 430 that K types of individuals are present, with respective counts $n(k)$, $k = 1, \dots, K$, summing
 431 up to N . Following Equ. (3.4), individual i with state (α_i, β_i) is replaced by individual j
 432 with state (α_j, β_j) , such that $(\alpha_j, \beta_j) \neq (\alpha_i, \beta_i)$ with probability proportional to fitness of
 433 j , $f_i = (1 + s)^{\alpha_j} (1 - d)^{\beta_j}$. The replaced individual inherits the state and fitness from the
 434 replacement.

435 **Trends in fitness** We present a set of stochastic simulations illustrating the richness of possible
 436 behaviors of the Tug-of-War process, in its complete and limit versions. One of the issues that

437 we attend to is *criticality*, understood here as the trend of the fitness trajectories, upward,
438 downward or neutral. There are two mathematical facts that provide guidance:

439 ● Mutation vs. selection coefficient balance Equ. (2.4), which indicates the trend in fitness
440 absent drift is determined by the sign of $ps - qd$.
441 ● Theorem 4.3, which states that the death and replacement events absent mutation lead
442 to a positive trend in fitness.

443 Fitness trajectory in the complete process is the result of the interaction of the two trends. If
444 $ps > qd$, then the influx of advantageous mutations prevails and in addition, the drift works
445 towards their fixation. As a result the fitness increases rather fast. The effect is subtler when
446 $ps \leq qd$. If the influx of disadvantageous mutations prevails but is not too strong, drift affords
447 to purge the deleterious mutants before they may be fixed. A strong influx is needed to flip
448 this trend.

449 **Complete process** We follow the interplay between the fluxes ps of advantageous and qd
450 of deleterious mutations, but also between mutation and drift. The latter can be varied for
451 example by adjusting the parameter $L = N\lambda$. Figure 2 depicts distribution of individual fitness
452 averaged over N individuals, in 30 independent runs of the model with a range of parameters.
453 Panel A depicts the case with a $ps \gg qd$ (for exact parameter values, see the Figure legend),
454 resulting exponential-like growth of fitness. Panel B shows the case $ps = qd$, with the effect
455 being a slow increase of fitness for most runs and a very slow decrease for some. Panel C
456 shows the case of slightly negative trend in mutations $ps < qd$. Panel D demonstrates that if
457 $ps = 0$, then drift may efficiently keep purging recurrent deleterious mutants. Panels E and F
458 are showing that in case of increased flux of mutants (large L) small changes in the value of s
459 parameter, from $s=0.01$ in Fig. 2E to $s=0.05$ in Fig. 2F, may cause a fraction of average fitness
460 trajectories display an upward trend despite large amount of highly deleterious mutations.

461 Subsequent figures depict runs of a single trajectory of fitness in the process with a range
462 of parameters. Figure 3 depicts one of the average trajectories of Fig. 2A. Panel A depicts
463 the average fitness of population. Mutation events are marked with red (driver) and blue
464 (passenger) asterisks. Let us notice that major jumps in population fitness arise as a result
465 of death-replacement events, more so than of the mutational events, since new arising mu-
466 tants are frequently purged by death-replacement. Panel B depicts time succession patterns of
467 clones started by driver mutations colored according to fitness of given clone. Panel C depicts

24

468 genealogies of the clones initiated by drivers and passengers. Lines between nodes represent
 469 driver (red) and passenger (blue) mutations. Green circles mark clones alive at the end of
 470 simulation ($t = 20$). The vertical axis in panel C does not coincide with the time or even with
 471 the strict order of clone appearance. However, it is consistent with the ancestor-descendant
 472 relationship.

473 Figures 4, 5, 6, 7, 8 and 9 depict single-trajectory plots corresponding all other cases in
 474 Fig. 3. Figures corresponding to cases with high mutation rates lack the third panel, since the
 475 genealogies of clones become too dense to follow with an increased mutation rate.

476 **Limiting process**

477 Suppose that all individuals have the same fitness $(1 + s)^\alpha(1 - d)^\beta$. The difference between
 478 expected fitness right after mutation/drift event and the fitness before this event equals

$$(9.1) \quad (1 + s)^\alpha(1 - d)^\beta(p_{\text{pass}} - q_{\text{driv}}).$$

479 In interpreting this relation we encounter an apparent paradox: in a certain range of parameters,
 480 an increase of d , that is, a decrease of fitness of passenger mutants, leads to a decrease of the
 481 studied difference. In order to explain this paradox we need to consider the function

$$(9.2) \quad e(d) = d p_{\text{pass}}.$$

482 **Lemma 9.1.** *The function e initially increases and then decreases with d .*

Proof. As d increases from 0 to 1, $x := \frac{1}{1-d}$ increases from 1 to ∞ . Hence, it suffices to check
 monotonicity of

$$g(x) := \frac{(x-1)^2}{x^{N+1} - x}, \quad x \in [0, \infty).$$

483 Since

$$(9.3) \quad g'(x) = \frac{(x-1)((1-N)x^{N+1} + (N+1)x^N - x - 1)}{(x^{N+1} - x)^2}$$

484 monotonicity of g is determined by the sign of

$$(9.4) \quad h(x) := (1-N)x^{N+1} + (N+1)x^N - x - 1, \quad x \geq 1.$$

485 Here $h(1) = 0$ and

$$(9.5) \quad h'(x) = (1-N)(N+1)x^N + N(N+1)x^{N-1} - 1,$$

486 so that in particular $h'(1) = N > 0$. Moreover,

$$(9.6) \quad h''(x) = (N-1)N(N+1)x^{N-2}(1-x) < 0, \quad x > 0,$$

487 proving that $h'(x)$ strictly decreases from N to $-\infty$ in the interval $[1, \infty)$. Hence, h increases
488 from $h(1) = 0$ to a maximum point, and then starts to decrease. Since $\lim_{x \rightarrow \infty} h(x) = -\infty$,
489 we conclude that h is initially positive, and then, beyond a certain points, say x_0 becomes
490 negative and stays negative for all $x > x_0$. It follows that g increases up to x_0 and then starts
491 to decrease, as claimed. \square

492 Consider first the scenario in which e decreases with the increase of d , and thus the difference
493 (9.1) increases. Here, everything seems to agree with our intuition: A decrease in fitness of
494 passenger mutants causes the probability of their fixation to drop and thus if the fitness of
495 driver mutations is the same, the overall population fitness grows faster, because the influence
496 of passenger mutations is smaller.

497 However, in a certain range of d , an increase of d (a decrease of fitness of passenger mutations)
498 causes an increase of e , and thus a decrease of (9.1). This is because an increase in d causes a
499 decrease of p_{pass} but this is accompanied by an increase of the first factor in (9.2). It is possible
500 that a change in d causes a much smaller change in p_{pass} than in d itself, and thus may result in
501 the overall growth of e . In other words, even though the probability of fixation of a passenger
502 mutation is lower, if such a variant is fixed fitness will drop radically. From this point of view,
503 the observation that a decrease in the fitness of passenger mutants may lead to a decrease of
504 (9.1) is not surprising.

505 To summarize, analysis of e , the expected drop of the population fitness given that a passenger
506 mutant was fixed, is the key to understanding of the apparent paradox we encountered. It is
507 more informative than the probability p_{pass} alone.

508 The influence of the function

$$s \mapsto sp_{\text{driv}}$$

509 is monotonous; the larger is the fitness of driver mutants, the faster is the growth of the fitness
510 of the entire population.

511 **10. DISCUSSION**

512 Following the earlier work of McFarland et al. [21, 22, 23, 24] we build a model of early
513 cancer development which accounts for the influence of two types of mutations: rare drivers

26

514 with higher fitness, and more frequent passengers with smaller fitness. Mathematically, the
515 model is a continuous-time Markov chain with state-space composed of N -tuples of pairs of
516 non-negative integers. Here, N is the number of individuals (cells) in the population under
517 study, and is assumed constant; the first coordinate of each pair (individual/cell) is the number
518 of accumulated driver mutations, whereas the second is the number of mutations of passenger
519 type; the resulting individual's fitness is given by (2.1).

520 The model may be seen as describing competition of two population genetic forces: selection
521 combined with drift, on one side, and mutations, on the other. Interestingly, the mathemat-
522 ical theory of semigroups of operators, our main tool, allows analysing consequences of these
523 two forces separately, and to infer properties of the full model from the properties of its two
524 components.

525 The main effect of the first of these components, related to selection combined with drift,
526 is that a population that may initially be heterogeneous, becomes increasingly homogeneous
527 with time. For the associated Markov chain this means that after a random time the process
528 reaches an absorbing state in which all individuals have the same counts of passenger and driver
529 mutations. The corresponding probabilities of fixation of a mutant and the expected times to
530 fixation are calculated in Section 4.

531 Mutations, on the other hand, introduce new variants to the data at the epochs of a Poisson
532 process; either selectively advantageous drivers, or disadvantageous passengers.

533 Mathematical analysis of analytical and stochastic properties of the processes related to the
534 two main factors described above allows concluding that they may be combined, and that the
535 new Markov chain that encompasses mutation and selection, on one had, as well as mutations,
536 on the other, is non-explosive. In other words, the underlying stochastic process is a well-defined
537 honest Markov chain.

538 The resulting process is difficult to analyze. Insights can be obtained using a simpler limit
539 model, presented in Sections 7 and 8, and simulations, see Section 9.

540 The limit theorem is obtained using the theory of convergence of semigroups of operators
541 [3], and corresponds to the scenario in which the total fitness of the population exceeds certain
542 threshold. The model then predicts that drift and selection events are much more frequent than
543 mutation events. Under such scenario, when a new mutant arises, regardless of whether it is a
544 driver or a passenger, it is almost instantly fixed in the population or completely removed from
545 it. It is the action of the drift and selection chain that causes fixation or removal and favors

546 driver mutations. Therefore, the probability of instantaneous fixation of a passenger mutant is
547 usually smaller than that of a driver mutant. However, because the passengers may arise more
548 often than drivers, the possibility of fixation of passenger mutant is not negligible (see Section
549 7 for details).

550 In summary, the limit model state-space is composed of pairs of non-negative integers; this
551 is because each individual is fully characterized by such a pair, and the entire population is
552 composed of identical individuals. At a time a new mutant arises, it is instantly fixed or removed
553 from the population, with probabilities depending on its fitness, and so the population is again
554 homogeneous. Such model seems to account for the influence of driver and passenger mutations.
555 It is interesting that it clearly displays the non-monotonous dependence on the parameter d of
556 passenger fitness (Lemma 9.1). Simulations in Figure 10 fully corroborate theoretical analysis.

557 In addition, simulations show a similar effect in the complete model, as depicted in consecutive
558 panels of Figure 2. In the complete model, the non-monotonicity of the $e(d)$ corresponds to
559 the balance between downward and upward trends of subsets of trajectories in Figure 2F. The
560 balance is delicate: if the influx of deleterious passenger mutants is limited, drift and selection
561 purge the mutants and population fitness keeps increasing. Only when the influx is sufficiently
562 large, population fitness decreases in part of realization of the process.

563 We studied by simulation a range of special cases of fitness trajectories and pedigrees of
564 clones originating from driver mutations. A theory of such clones in the Tug-of-war process is
565 still missing. Simulations show how rich is the behavior of this process (Figures 3-9).

566 With all the reservations, present paper places McFarland's Tug of War model into the
567 rigorous framework of Moran Model, which allows analyzing it using the well-developed toolbox
568 of time-continuous Markov chains and theory of operator semigroups. Let us notice that our
569 formulation is different from McFarland's original model as spelled out in [21, 22, 23]. The
570 model there is a state-dependent branching process. To our best knowledge, these models
571 were not rigorously explored. One of the subsequent papers from McFarland's group [24]
572 explores experimentally the dependence of fitness on the rate of deleterious passenger mutations.
573 However, the references to the mathematical model are only qualitative.

574 SUPPLEMENT: THE RELATED SEMIGROUP OF MARKOV OPERATORS

575 In Section 4, we have studied in detail the Markov chain related to the intensity matrix Q_S .
576 Since in this chain only a finite number of states can be reached from any given starting point,
577 existence of such chain is an elementary matter. Existence of the chain of mutations (i.e. that
578 related to Q_M) is also clear, as this chain consists of two independent Poisson processes (one
579 for drivers and one for passengers). The question we have never answered is whether there is a
580 Markov chain related to the intensity matrix Q of (3.7).

581 This question is non-trivial because there are so-called *explosive* intensity matrices that are
582 so ‘poorly designed’ that they do not determine the related Markov chain: additional rules
583 need to be specified to describe the chain after the random time of *explosion* (see [4, 9, 25] and
584 references given there). According to the theorem of Kato [16] (discussed e.g. in [1] Chapter
585 5, [2] pp. 334–338, [3] pp. 74–80, [4] Chapter 3 and [15] pp. 642–647; see also Section 4 in [13]
586 for W. Feller’s proof of this result), for any intensity matrix, whether explosive or not, there is
587 a related minimal Markov chain which, however, is undefined after explosion.

588 Therefore, in this section we show that Q of (3.7) is non-explosive and our argument boils
589 down to the statement that the sum of two intensity matrices, one of which is non-explosive and
590 the other is bounded, is non-explosive. This statement is most naturally proved in the language
591 of semigroups of Markov operators, as we will now explain. Such semigroups are analytical tools
592 for treating Markov chains, and in the later chapters we will use them extensively.

593 The analysis involves the space $\ell^1 = \ell^1(\mathfrak{P})$ of functions $x : \mathfrak{P} \rightarrow \mathbb{R}$ which, because \mathfrak{P} is a
594 countable set, can be considered sequences $x = (\xi_{\mathfrak{p}})_{\mathfrak{p} \in \mathfrak{P}}$ where $\xi_{\mathfrak{p}} = x(\mathfrak{p})$ is the value of x at
595 $\mathfrak{p} \in \mathfrak{P}$. Elements $(\xi_{\mathfrak{p}})_{\mathfrak{p} \in \mathfrak{P}}$ of ℓ^1 such that $\xi_{\mathfrak{p}} \geq 0$, $\mathfrak{p} \in \mathfrak{P}$ and $\sum_{\mathfrak{p} \in \mathfrak{P}} \xi_{\mathfrak{p}} = 1$ are termed *distributions*.

596 With each time-continuous Markov chain with values in \mathfrak{P} one may associate the probabilities
597 $p_{\mathfrak{p},\mathfrak{q}}(t)$ that the chain starting at a $\mathfrak{p} \in \mathfrak{P}$ will be at a $\mathfrak{q} \in \mathfrak{P}$ at time $t \geq 0$. These so-called
598 transition probabilities are conveniently gathered in the matrices

$$P(t) = (p_{\mathfrak{p},\mathfrak{q}}(t))_{\mathfrak{p},\mathfrak{q} \in \mathfrak{P}},$$

599 which in turn may be identified (see [4], Chapter 2 for details) with the operators in ℓ^1 defined
600 by the formula

$$P(t)x = x \cdot P(t), \quad x \in \ell^1, t \geq 0,$$

601 where $x \cdot P(t)$ is the product of a row-vector x and the matrix $P(t)$. All $P(t)$'s are Markov
 602 operators in that they leave the set of densities invariant: if x is an initial distribution of the
 603 chain, then $P(t)x$ is its distribution at time $t \geq 0$. Moreover, the Markov property of the chain
 604 is expressed in the semigroup property:

$$P(t)P(s) = P(s+t), \quad s, t \geq 0.$$

605 Under mild, natural assumptions on transition probabilities we also have

$$\lim_{t \rightarrow 0^+} \|P(t)x - x\| = 0, \quad x \in \ell^1.$$

606 These properties are summarized in the statement that $\{P(t), t \geq 0\}$ is a *strongly continuous*
 607 *semigroup of operators* in ℓ^1 .

608 Thus, with each Markov chain we have the associated (uniquely determined) strongly continuous
 609 semigroup of Markov operators. Conversely, if all Markov chains with the same transition
 610 probabilities are identified, one may speak of *the* Markov chain related to a strongly continuous
 611 semigroup of Markov operators.

612 There are two commonly used infinitesimal descriptions of strongly continuous semigroups of
 613 Markov operators in ℓ^1 . First, (see e.g. [2, 12, 15]) a strongly continuous semigroup determines
 614 and is determined by its generator \mathfrak{A} , defined by

$$\mathfrak{A}x = \lim_{t \rightarrow 0} t^{-1}(P(t)x - x),$$

on the domain $\mathcal{D}(\mathfrak{A})$ composed of x such that the limit on the right-hand side exists. Second,
 as proved by Doob [10] (see [4, 14]) the limits, called intensities,

$$\begin{aligned} q_{\mathfrak{p}, \mathfrak{p}} &:= \lim_{t \rightarrow 0} \frac{p_{\mathfrak{p}, \mathfrak{p}}(t) - 1}{t}, \quad \mathfrak{p} \in \mathfrak{P}, \\ q_{\mathfrak{p}, \mathfrak{q}} &:= \lim_{t \rightarrow 0} \frac{p_{\mathfrak{p}, \mathfrak{q}}(t)}{t}, \quad \mathfrak{p}, \mathfrak{q} \in \mathfrak{P}, \mathfrak{p} \neq \mathfrak{q} \end{aligned}$$

615 exist, and $q_{\mathfrak{p}, \mathfrak{q}}, \mathfrak{p} \neq \mathfrak{q}$ are finite. However, even if all intensities are finite, knowing the entire
 616 intensity matrix $Q := (q_{\mathfrak{p}, \mathfrak{q}})_{\mathfrak{p}, \mathfrak{q} \in \mathfrak{P}}$ is not equivalent to knowing \mathfrak{A} . For, whereas \mathfrak{A} contains
 617 the entire information on the semigroup $\{P(t), t \geq 0\}$, the matrix Q in general does not.
 618 Nevertheless, if Q is non-explosive, Q and \mathfrak{A} may be somewhat identified: for a typical $x \in \mathcal{D}(\mathfrak{A})$,
 619 the product $x \cdot Q$ can be computed, and $\mathfrak{A}x$ turns out to be equal to this product. For explosive
 620 intensity matrices this is not the case; see e.g. the already cited [1, 4], and in particular Chapter

30

621 3 in [4]. In fact, for an explosive matrix there are many different Markov chains, many different
 622 semigroups of Markov operators and many different generators related to this matrix.

623 Coming back to the chain of interest, Section 4, and specifically Theorem 4.1 imply that there
 624 exists a Markov chain related to the intensity matrix Q_S of (3.4) and (3.6) which is well-defined
 625 for all $t \geq 0$. In particular, Q_S is non-explosive. This is because the related chain reaches
 626 an absorbing state by passing through a finite number of transient states. This rules out the
 627 possibility of explosion, since an exploding chain is passing through an infinite number of states
 628 in a finite time. Therefore, by Kato' Theorem (see the references earlier on), there is a unique
 629 strongly continuous semigroup of Markov operators $\{P_S(t), t \geq 0\}$ in ℓ^1 with the generator, say
 630 \mathfrak{S} , identified with Q_S .

631 The case of intensity matrix Q_M of (3.3) is simpler, because all its entries are bounded in
 632 absolute value by $N\lambda$, while a bound does not exits for the matrix (3.4)–(3.6). It follows that
 633 for *any* $x \in \ell^1$ the product $x \cdot Q_M$ may be computed and belongs to ℓ^1 , where x is a row-vector,
 634 and the map

$$\ell^1 \ni x \mapsto \mathfrak{M}x := x \cdot Q_M$$

635 is bounded. Hence, Q_M may be identified with a bounded linear operator \mathfrak{M} and the semigroup
 636 of Markov operators related to Q_M may be defined as the exponent of this operator:

$$P_M(t) = \sum_{n=0}^{\infty} \frac{t^n \mathfrak{M}^n}{n!}, \quad t \geq 0.$$

637 (See e.g. [4] Section 2.3 for details.). Further, operator \mathfrak{M} is the generator of semigroup
 638 $\{P_M(t), t \geq 0\}$.

639 Boundedness of the operator \mathfrak{M} guarantees that the operator

$$\mathfrak{A} := \mathfrak{S} + \mathfrak{M}$$

640 is well-defined on $\mathcal{D}(\mathfrak{A}) := \mathcal{D}(\mathfrak{S})$ and, in view of the Phillips Perturbation Theorem (see e.g.
 641 [2, 4, 12, 15]), is a generator of a strongly continuous semigroup, say $\{P(t), t \geq 0\}$. On the
 642 other hand, using the Trotter Product Formula, which says (see the monographs cited above)
 643 that

$$P(t)x = \lim_{n \rightarrow \infty} \left[P_S \left(\frac{t}{n} \right) P_M \left(\frac{t}{n} \right) \right]^n x, \quad t \geq 0, x \in \ell^1,$$

644 we check that this semigroup is composed of Markov operators, because so are $\{P_S(t), t \geq 0\}$
 645 and $\{P_M(t), t \geq 0\}$. It can be argued that this semigroup describes the minimal Markov chain
 646 related to Q . But, by Kato's Theorem, if Q were explosive, this semigroup could not be

647 composed of Markov operators. This shows that Q is non-explosive, and thus that the minimal
648 chain is well-defined for all times $t \geq 0$. It is this minimal chain related to Q that models
649 the evolution of our population under selection, drift and mutations. In other words, by *the*
650 Markov chain related to Q we mean the unique minimal chain related to this matrix: since Q
651 is non-explosive this chain is well-defined for all $t \geq 0$.

652

DATA AVAILABILITY

653 The authors affirm that all data necessary for confirming the conclusions of the article are
654 present within the article, figures, and tables.

655

ACKNOWLEDGMENTS

656 AB was supported by the National Science Centre (Poland) grant 2017/25/B/ST1/01804. MK
657 and MKK were supported by the National Science Centre (Poland) grant 2018/29/B/ST7/02550.

658

REFERENCES

659 [1] J. Banasiak and L. Arlotti. Perturbations of Positive Semigroups with Applications.
660 Springer, 2006.

661 [2] A. Bobrowski. Functional Analysis for Probability and Stochastic Processes. An
662 Introduction. Cambridge University Press, Cambridge, 2005.

663 [3] A. Bobrowski. Convergence of One-parameter Operator Semigroups. In Models of
664 Mathematical Biology and Elsewhere, volume 30 of New Mathematical Monographs. Cam-
665 bridge University Press, Cambridge, 2016.

666 [4] A. Bobrowski. Generators of Markov Chains. From a Walk in the Interior to a Dance on
667 the Boundary. Cambridge University Press, Cambridge, 2020.

668 [5] A. Bobrowski and M. Kimmel. Asymptotic behavior of joint distributions of characteris-
669 tics of a pair of randomly chosen individuals in discrete-time Fisher–Wright models with
670 mutations and drift. Theor. Popul. Biol., 66(4):355–367, 2004.

671 [6] A. Bobrowski and M. Kimmel. An Operator Semigroup in Mathematical Genetics. Springer
672 Briefs in Applied Sciences and Technology. Mathematical Methods. Springer, 2015.

673 [7] A. Bobrowski, M. Kimmel, R. Chakraborty, and O. Arino. A semigroup representation and
674 asymptotic behavior of the Fisher–Wright–Moran coalescent. In “Handbook of Statistics
675 19: Stochastic Processes: Theory and Methods”, Chapter 8, C.R. Rao and D.N. Shanbhag,
676 eds. Elsevier Science, Amsterdam, 2001.

677 [8] A. Bobrowski, N. Wang, R. Chakraborty, and M. Kimmel. Non-homogeneous infinite sites
678 model under demographic change: Mathematical description and asymptotic behavior of
679 pairwise distributions. Math. Biosci., 175(2):83–115, 2002.

680 [9] K. L. Chung. Lectures on boundary theory for Markov chains. With the cooperation of
681 Paul-André Meyer. Annals of Mathematics Studies, No. 65. Princeton University Press,
682 Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.

683 [10] J. L. Doob. Stochastic Processes. Wiley, 1953.

684 [11] R. Durrett. Probability Models for DNA Sequence Evolution. Springer, New York, Second
685 Edition, 2008.

686 [12] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley,
687 New York, 1986.

688 [13] W. Feller. On boundaries and lateral conditions for the Kolmogorov differential equations.
689 *Ann. of Math.* (2), 65:527–570, 1957.

690 [14] D. Freedman. *Markov Chains*. Holden-Day, Inc., 1971.

691 [15] E. Hille and R. S. Phillips. *Functional Analysis and Semi-Groups*. Amer. Math. Soc.
692 Colloq. Publ. 31. Amer. Math. Soc., Providence, R. I., 1957.

693 [16] T. Kato. On the semi-groups generated by Kolmogoroff's differential equations. *J. Math.*
694 *Soc. Japan*, 6(1):1–15, 03 1954.

695 [17] J. F. C. Kingman. *Poisson Processes*. The Clarendon Press, Oxford University Press, New
696 York, 1993.

697 [18] T. G. Kurtz. Extensions of Trotter's operator semigroup approximation theorems. *J.*
698 *Functional Analysis*, 3:354–375, 1969.

699 [19] T. G. Kurtz. A limit theorem for perturbed operator semigroups with applications to
700 random evolutions. *J. Functional Analysis*, 12:55–67, 1973.

701 [20] T. G. Kurtz. Applications of an abstract perturbation theorem to ordinary differential
702 equations. *Houston J. Math.*, 3(1):67–82, 1977.

703 [21] C. D. McFarland. *The role of deleterious passengers in cancer*. PhD thesis, 2014.

704 [22] C. D. McFarland, K. S. Korolev, G. V. Kryukov, S. R. Sunyaev, and L. A. Mirny. Impact
705 of deleterious passenger mutations on cancer progression. *Proceedings of the National*
706 *Academy of Sciences*, 110(8):2910–2915, 2013.

707 [23] C. D. McFarland, L. A. Mirny, and K. S. Korolev. Tug-of-war between driver and passenger
708 mutations in cancer and other adaptive processes. *Proceedings of the National Academy*
709 *of Sciences*, 111(42):15138–15143, 2014.

710 [24] C. D. McFarland, J. A. Yaglom, J. W. Wojtkowiak, J. G. Scott, D. L. Morse, M. Y. Sher-
711 man, and L. A. Mirny. The damaging effect of passenger mutations on cancer progression.
712 *Cancer Research*, 77(18):4763–4772, 2017.

713 [25] J. R. Norris. *Markov Chains*. Cambridge University Press, Cambridge, 1997.

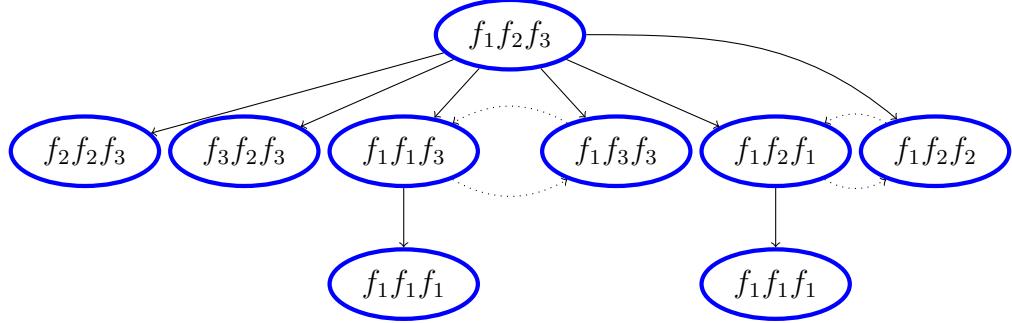


FIGURE 1. Calculating probability p_1 in the case $N = 3$. Dotted lines denote communication between events associated with (f_1, f_1, f_3) and (f_1, f_3, f_3) , and (f_1, f_2, f_1) and (f_1, f_2, f_2) .

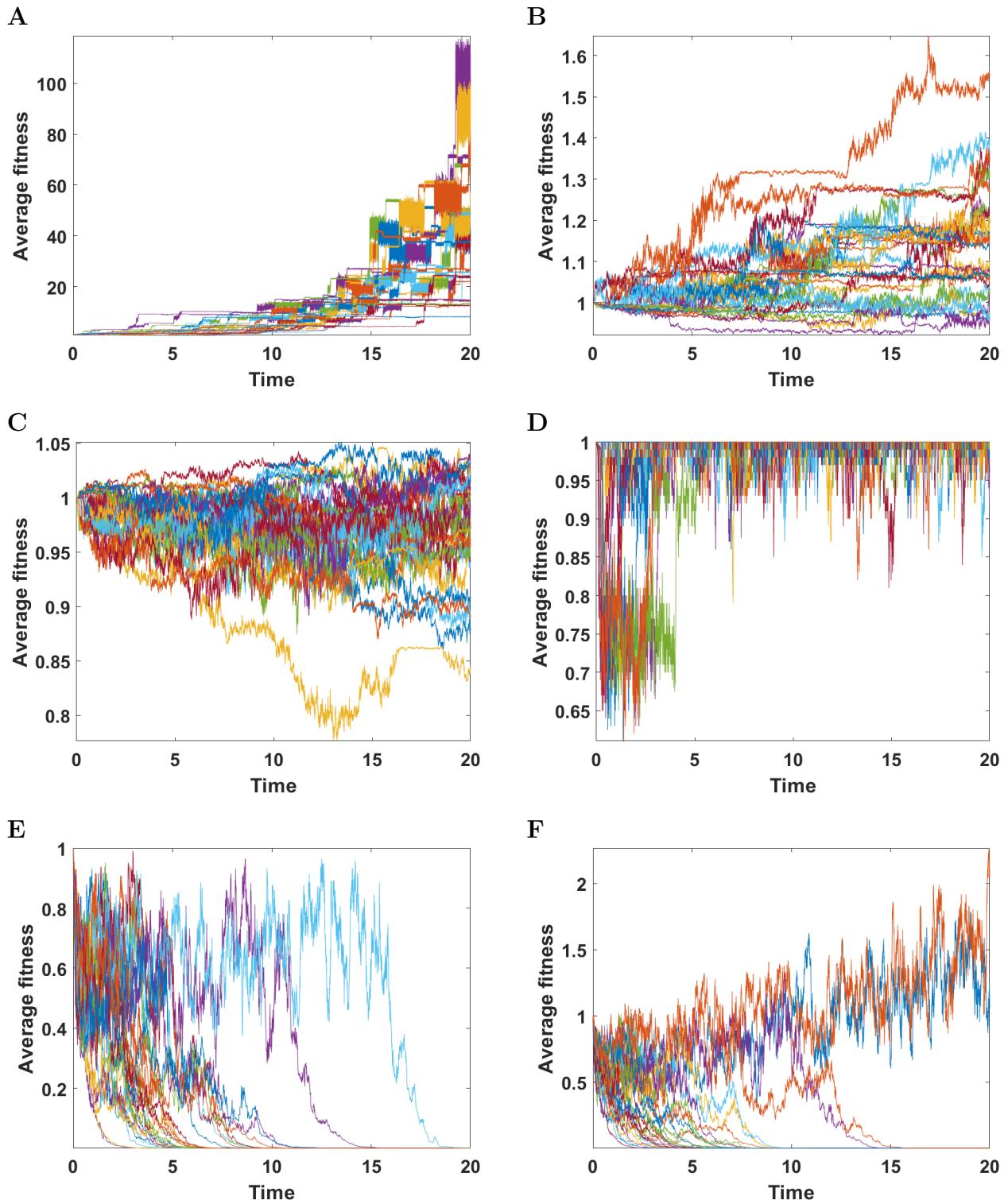
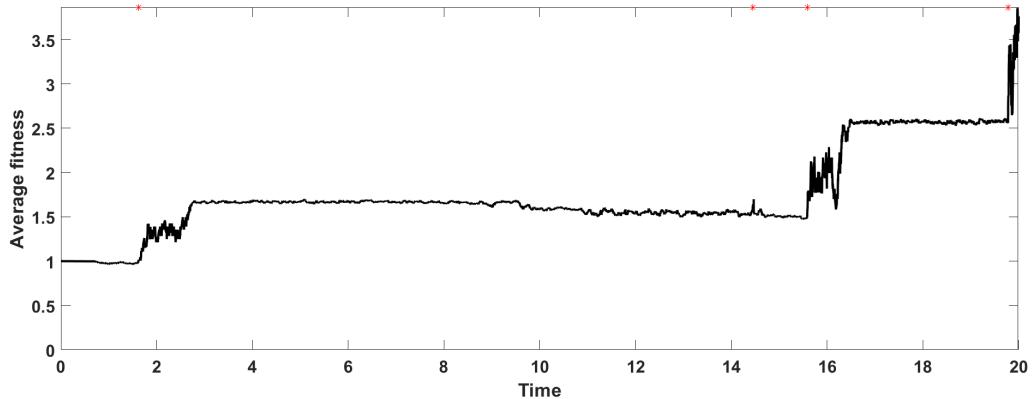
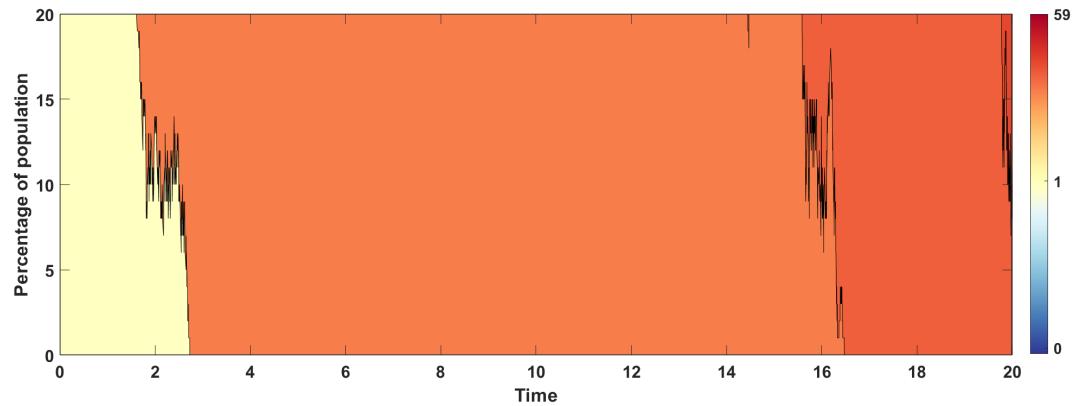


FIGURE 2. Average fitness of individuals. Results for 30 simulations with parameters: **A:** $s = 0.8$, $d = 0.05$, $p = 0.1$, $L = 5$, $N = 50$ (strong positive selection); **B:** $s = 0.1$, $d = 0.01111$, $p = 0.1$, $L = 5$, $N = 50$ (equilibrium); **C:** $s = 0.01$, $d = 0.05$, $p = 0.5$, $L = 5$, $N = 50$ (negative selection); **D:** $s = 0$, $d = 0.5$, $p = 0.5$, $L = 5$, $N = 50$ (lack of impact of driver mutations); **E:** $s = 0.01$, $d = 0.5$, $p = 0.1$, $L = 100$, $N = 20$; **F:** $s = 0.05$, $d = 0.5$, $p = 0.1$, $L = 100$, $N = 20$ (large mutation rate, passengers prevailing).

A



B



C

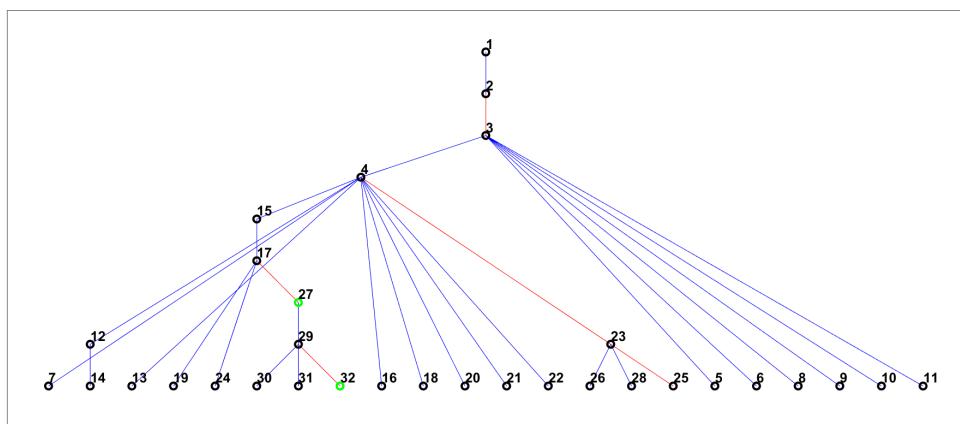


FIGURE 3. Results for one simulation on $N = 20$ individuals with parameters: $s = 0.8$, $d = 0.05$, $p = 0.1$, $L = 2$ (strong positive selection). **A:** Average fitness of population. Mutation events are marked with red (driver) and blue (passenger) asterisks; **B:** Time succession patterns of clones started with driver mutations colored according to fitness of given clone; **C:** Genealogies of the clones initiated by drivers and passengers. Lines between nodes represent driver (red) and passenger (blue) mutations. Green circles mark are clones alive at the end of simulation ($t = 20$).

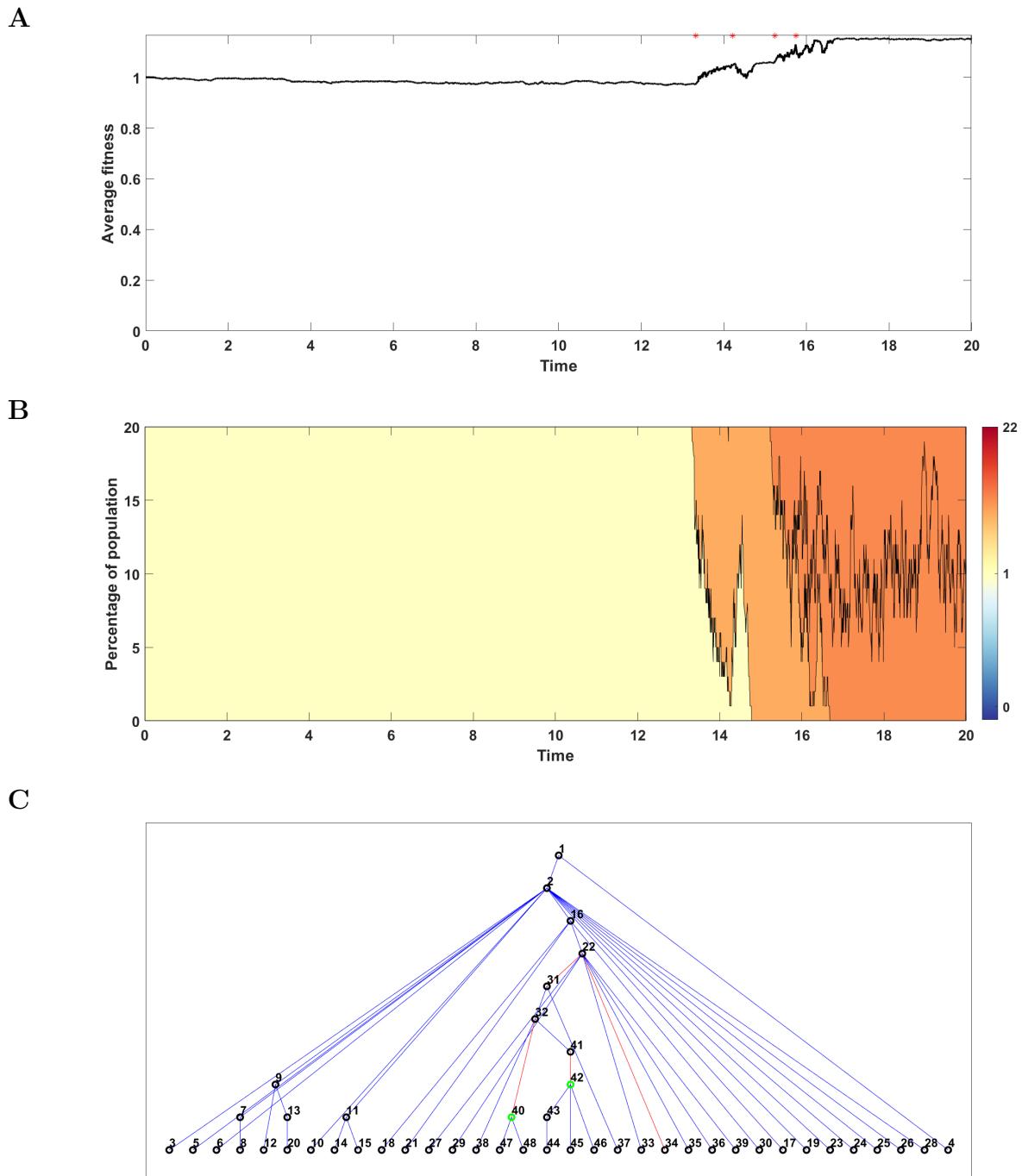


FIGURE 4. Results for one simulation on $N = 20$ individuals with parameters: $s = 0.1$, $d = 0.01111$, $p = 0.1$, $L = 2$ (equilibrium). **A:** Average fitness of population. Mutation events are marked with red (driver) and blue (passenger) asterisks; **B:** Time succession patterns of clones started with driver mutations colored according to fitness of given clone; **C:** Genealogies of the clones initiated by drivers and passengers. Lines between nodes represent driver (red) and passenger (blue) mutations. Green circles mark clones alive at the end of simulation ($t = 20$).

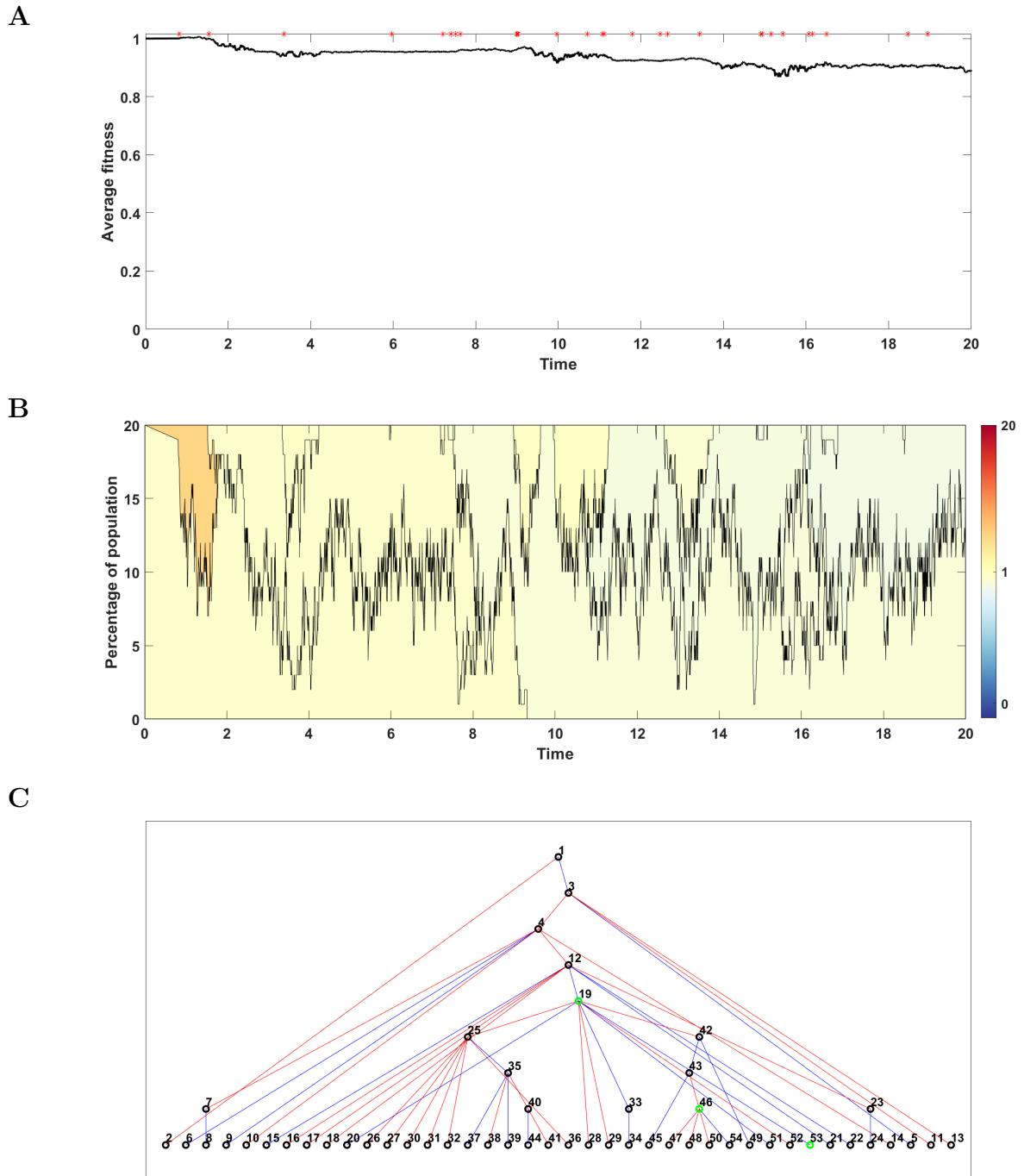
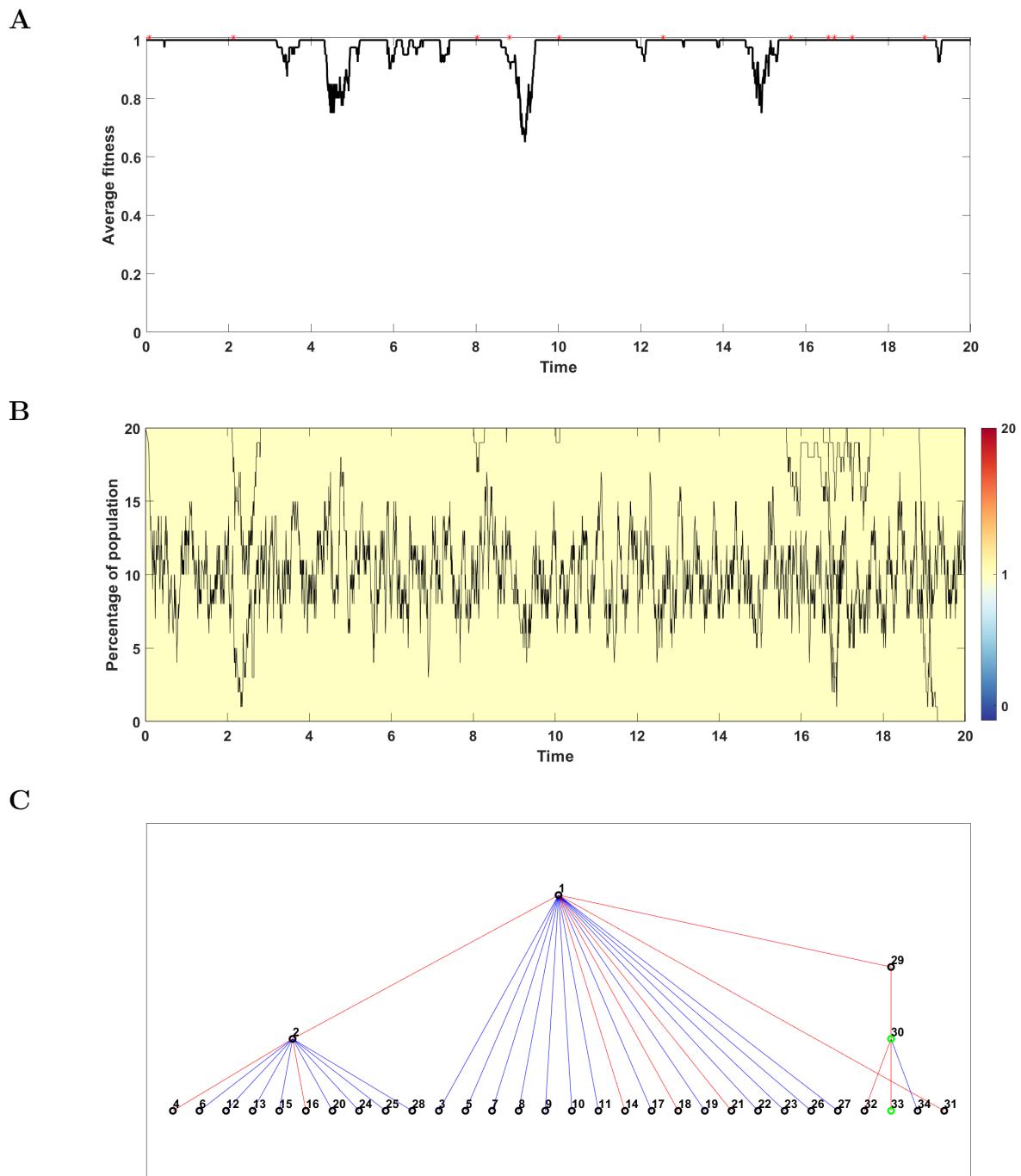
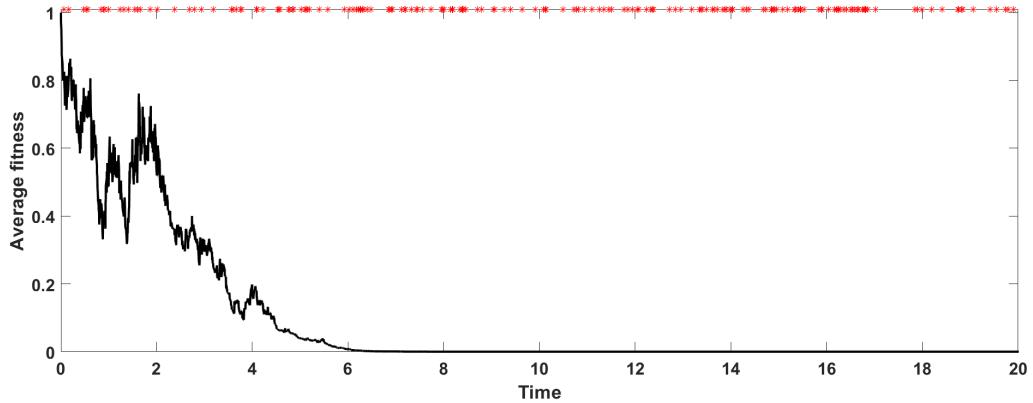


FIGURE 5. Results for one simulation on $N = 20$ individuals with parameters: $s = 0.01$, $d = 0.05$, $p = 0.5$, $L = 2$ (negative selection). **A:** Average fitness of population. Mutation events are marked with red (driver) and blue (passenger) asterisks; **B:** Time succession patterns of clones started with driver mutations colored according to fitness of given clone; **C:** Genealogies of the clones initiated by drivers and passengers. Lines between nodes represent driver (red) and passenger (blue) mutations. Green circles mark clones alive at the end of simulation ($t = 20$).



40

A



B

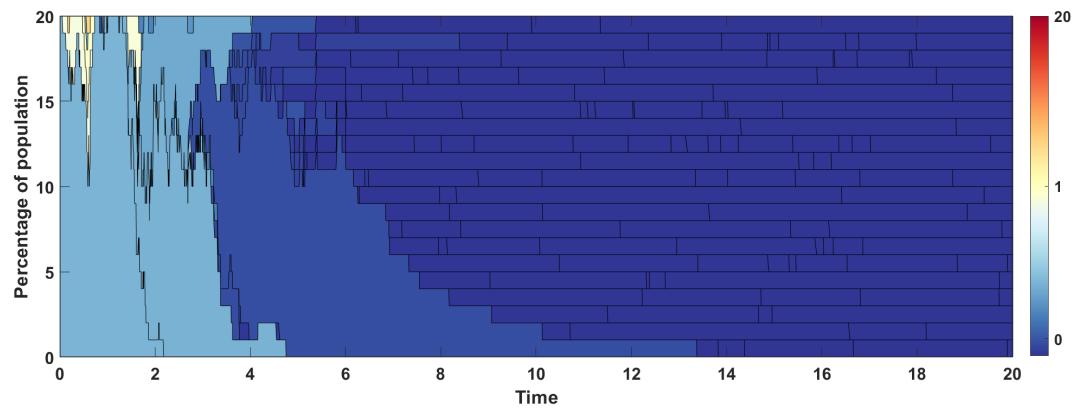


FIGURE 7. Results for one simulation on $N = 20$ individuals with parameters: $s = 0.01$, $d = 0.5$, $p = 0.1$, $L = 100$ (large mutation rate, passengers prevailing).

A: Average fitness of population. Driver mutation events are marked with red asterisks; **B:** Time succession patterns of clones started with driver mutations colored according to fitness of given clone.

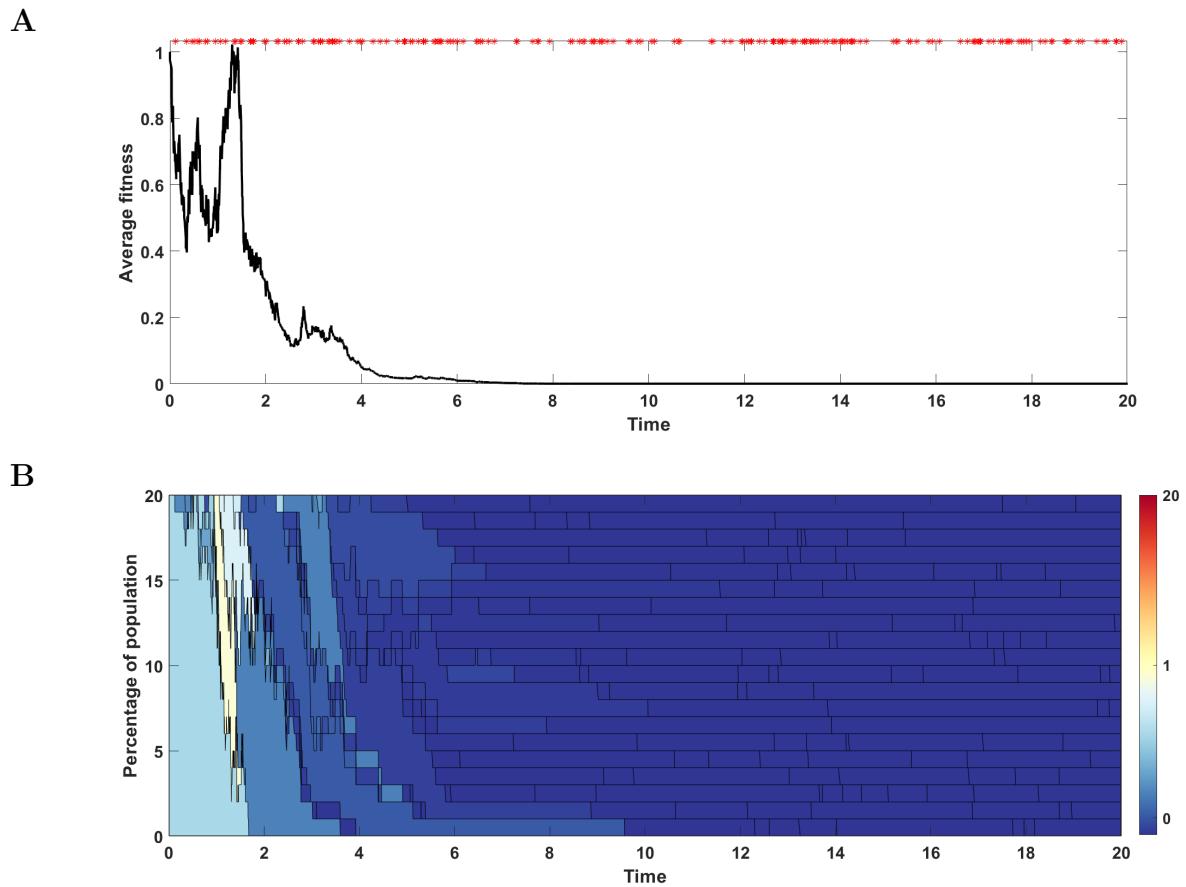
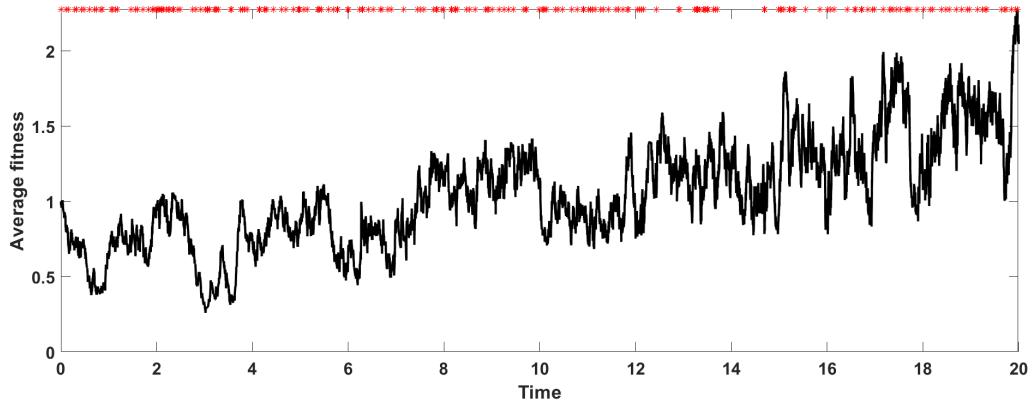


FIGURE 8. Results for one simulation on $N = 20$ individuals with parameters: $s = 0.05$, $d = 0.5$, $p = 0.1$, $L = 100$ (large mutation rate, passengers prevailing, case with decreasing fitness). **A:** Average fitness of population. Driver mutation events are marked with red asterisks; **B:** Time succession patterns of clones started with driver mutations colored according to fitness of given clone.

42

A



B

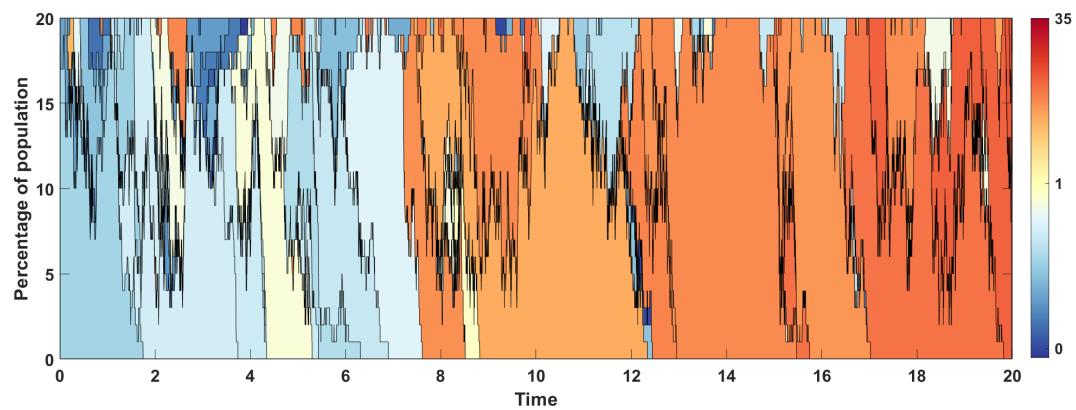


FIGURE 9. Results for one simulation on $N = 20$ individuals with parameters: $s = 0.05$, $d = 0.5$, $p = 0.1$, $L = 100$ (large mutation rate, passengers prevailing, case with increasing fitness). **A:** Average fitness of population. Driver mutation events are marked with red asterisks; **B:** Time succession patterns of clones started with driver mutations colored according to fitness of given clone.

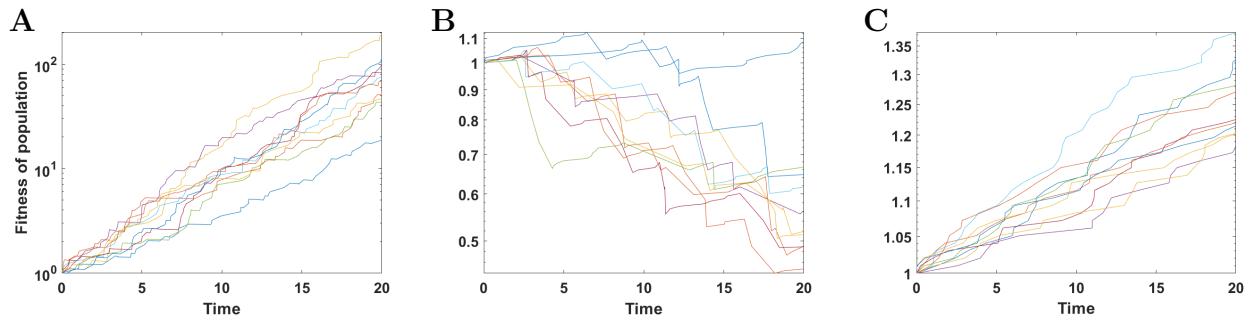


FIGURE 10. Results for 10 simulations of reduced process with $N = 20$ and remaining parameters: **A**: $s = 0.1$, $d = 0.01$, $p = 0.5$ ($sp > dq$); **B**: $s = 0.01$, $d = 0.1$, $p = 0.5$ ($sp < dq$); **C**: $s = 0.01$, $d = 0.5$, $p = 0.5$ ($sp < dq$). In all cases $L = 2$.)