
Moran Process Version of the Tug-of-War Model:

Complex Behavior Revealed

by Mathematical Analysis and Simulation Studies

Adam Bobrowski1, Marek Kimmel2∗, Monika K. Kurpas3
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Abstract. In a series of publications McFarland and co-authors introduced the tug-of-war

model of evolution of cancer cell populations. The model is explaining the joint effect of

rare advantageous and frequent slightly deleterious mutations, which may be identifiable with

driver and passenger mutations in cancer. In this paper, we put the Tug-of-War model in

the framework of a denumerable-type Moran process and use mathematics and simulations

to understand its behavior. The model is associated with a time-continuous Markov Chain

(MC), with a generator that can be split into a sum of the drift and selection process part

and of the mutation process part. Operator semigroup theory is then employed to prove that

the MC does not explode, as well as to characterize a strong-drift limit version of the MC

which displays “instant fixation” effect, which was an assumption in the original McFarland’s

model. Mathematical results are fully confirmed by simulations of the complete and limit

versions. They also visualize complex stochastic transients and genealogies of clones arising in

the model.
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1. Introduction

The Tug-of-War model was developed in a series of papers of McFarland and co-authors [21,1

23, 24] to account for existence of mutually counteracting rare advantageous driver mutations2

and more frequent slightly deleterious passenger mutations in cancer. In its original version it is3

a state-dependent branching process, analyzed by a range of simulation methods and analytical4

approximations.5

We adopt a different, simpler, approach, in which we reformulate McFarland’s original defi-6

nition to put it into the framework of a Moran model, which we investigate by complementary7

methods of mathematical analysis and simulation.8

In the current study we are not primarily concerned with understanding the genealogies of9

the individuals such as cancer cells present in the populations. We identify individuals with the10

same counts of passenger and driver mutations and follow trajectories of the so-defined types.11

As it will become clear in the sequel, process behavior is quite complicated. Nevertheless,12

we demonstrate absorption properties of the process with no mutations (Section 4) and use13

operator semigroup theory to prove two limit cases (Section 7).14

2. The model: a population under selection, drift and mutation15

We consider a population of a fixed number N of individuals, each of them characterized by a16

pair of integers (α, β), corresponding to the numbers of drivers and passengers in its genotype,17

respectively. This pair determines the fitness f of the individual by the formula18

(2.1) f = (1 + s)α(1− d)β,

where s > 0 and d ∈ (0, 1) are certain parameters describing selective advantage of driver19

mutations over passenger mutations. Thus, the entire population may be identified with the20

vector21

p = ((α1, β1), . . . , (αN , βN))

of N pairs of integers, with the accompanying vector22

f = (f1, . . . , fN)

of fitnesses.23
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The population is under drift and selection pressure: the individual of type (αi, βi) lives for24

an exponential time with parameter25

∑
(1 + s)αj(1− d)βj

where the sum is over all j = 1, . . . , N such that (αj, βj) 6= (αi, βi), and then is replaced by26

an individual of different type. More specifically, let nα,β be the number of individuals of type27

(α, β) and n be the number of different types of individuals in the population, then the time28

to the death of each individual of type (αi, βi) is the minium of n − 1 exponential random29

variables Tαj ,βj where (αj, βj) 6= (αi, βi) and Tαj ,βj has parameter nαj ,βj(1+s)αj(1−d)βj . Upon30

this individual’s death, conditional on the minimal time being equal to Tαk,αk , this individual31

is replaced by one of the individuals of type (αk, βk), each if these individuals being equally32

likely. This process then continues with p modified by replacing its ith coordinate (αi, βi) by33

its kth coordinate (αk, βk).34

In particular, if all individuals in p are pairwise different, the time to the first drift and35

selection event for the entire population is exponential with parameter (N − 1)Σf where36

Σf =
N∑
k=1

fk.

After this time is over, one individual dies and is replaced by an exact copy of one of the37

remaining individuals, the probability that the ith individual dies and is replaced by the jth38

(j 6= i) being
fj

(N−1)Σf
. If, on the other hand, all individuals are the same, nothing happens:39

there are no drift and selection events.40

Moreover, each individual may, after an independent exponential time with parameter, say λ,41

and independently of other individuals, undergo a mutation event, changing its state to either42

(α + 1, β) or (α, β + 1) with (conditional) probabilities p ∈ (0, 1) and q, respectively. In other43

words, all mutations occur at the epochs of a Poisson process with intensity λ, occurrences44

of driver mutations on each individual form a colored Poisson process, with probability of45

coloring equal p, and the occurrences of passenger mutations form a colored Poisson process46

with probability of coloring equal q. It follows (see the Colouring Theorem on p. 53 in [17])47

that driver and passenger mutations form Poisson processes with parameters48

ν = λp and µ = λq,
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respectively, and these processes are independent of each other, and independent of mutation49

processes on other individuals. (Although technically we never use this assumption, what50

we have in mind is the case where p is significantly smaller than 1 − p, so that long strings of51

passenger mutations are interrupted by rare driver mutations.) In particular, given that initially52

an individual’s fitness is f , after time t its expected fitness is the product of f, e−λpteλp(1+s)t (the53

contribution of driver mutations) and e−λqteλq(1−d)t (the contribution of passenger mutations),54

and thus equals55

(2.2) f(t) = eλt(sp−dq)f, t ≥ 0.

In a number of cells this expected fitness does not grow to infinity or decay to zero; such cells56

are thus characterized by the following balance condition for the introduced parameters:57

(2.3) sp = dq, or p =
d

s+ d
.

In other words, the advantage gained by a driver mutation is balanced by the small probability58

of such event.59

In other cells, however, driver mutations, though rare may have a slight edge over the pas-60

senger mutations caused by large s. Such cell populations are characterized by61

(2.4) sp > dq, or p >
d

s+ d
.

In yet different populations, driver mutations will be so rare that the expected total fitness62

diminishes in time. To characterize such populations, we reverse the inequalities in (2.4).63

3. A Markov chain and the related intensity matrix64

The population described in Section 2 is modeled by a stochastic process65

(3.1) p(t), t ≥ 0

with values in the state-space P of N ordered copies of the Cartesian product N×N, where N66

is the set of natural numbers:67

P := (N× N)N .

This is just to say that at each time t, the population is an N -tuple of pairs (αi(t), βi(t)), i ∈ N68

of positive integers, where69

N := {1, . . . , N}.
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Since P is a countable set, the process p(t), t ≥ 0 may be thought of as a time-continuous70

Markov chain.71

Such Markov chains are conveniently described by means of intensity (Kolmogorov) matrices72

that gather information on rates (intensities) with which these processes leave a given state73

and jump to other states (see e.g. [4, 25]; see also our Section 10). We will write the intensity74

matrix for the process (3.1) as the sum of two intensity matrices representing mutations and75

drift and selection events, respectively.76

To describe the first of these, call it QM , (‘M ’ for ‘mutations’) let D and P (‘D’ for driver77

and ‘P ’ for passenger) be the following maps of N× N into itself:78

(3.2) D(α, β) = (α + 1, β) and P (α, β) = (α, β + 1).

Moreover, for each i = 1, . . . , N , let Di : P→ P be the map in which the ith coordinate (αi, βi)79

of a p ∈ P is replaced by D(αi, βi). Similarly, let Pi : P → P be the map in which the ith80

coordinate (αi, βi) of a p ∈ P is replaced by P (αi, βi). In these notations, the intensity qp,q of81

going from a state p ∈ P to a state q ∈ P in the mutation process is82

(3.3) qp,q =



λp if q = Dip for some i ∈ N ,

λq if q = Pip for some i ∈ N ,

−Nλ if q = p,

0 otherwise.

Similarly, for i, j = 1, . . . , N let Rij : P → P be the map that replaces the ith coordinate83

(αi, βi) of a p ∈ P by its jth coordinate (αj, βj), leaving the remaining coordinates intact. For84

example, if N = 3, R1,3 maps ((α1, β1), (α2, β2), (α3, β3)) to ((α3, β3), (α2, β2), (α3, β3)). The85

intensity matrix describing drift and selection events, say QS, has then the following entries:86

(3.4) qp,q =

njfj if q = Ri,jp for some i, j ∈ N such that (αi, βi) 6= (αj, βj),

0 otherwise,

where nj is the number of individuals in p that are identical to the individual number j and87

f = (fi)i∈N is the vector of fitnesses of individuals in p. More specifically,88

(3.5) fi = (1 + s)αi(1− d)βi , i ∈ N .
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This formula does not cover the case where q = p because this case requires a bit of prepa-89

ration. Namely, let nα,β denote the number of individuals of type (α, β) so that in particular90 ∑
i,j∈N nij = N. Then,91

(3.6) qp,p = −
∑
α,β∈N

nα,β
∑

γ,δ∈N;(γ,δ) 6=(α,β)

nγ,δ(1 + s)γ(1− d)δ.

We note that in the case where all individuals in a population p are different, the formula for92

qp,p simplifies to:93

qp,p = −(N − 1)Σf.

On the other hand, if all individuals in this population are of the same type, qp,p = 0.94

Finally, the entries in the intensity matrix Q for the entire chain (3.1) are sums of the entries95

of matrices QM and QS:96

(3.7) Q = QM +QS.

4. Properties of the drift and selection chain97

Consider the evolution of a population when mutations are absent, and only drift and selection98

events, as described above, are possible. This evolution is governed the intensity matrix QS99

with entries given in (3.4) and (3.6).100

For definiteness, let p = ((αi, βi))i∈N be the initial state of this population and assume that101

all its individuals have different characteristics, i.e. (αi, βi) 6= (αj, βj) for i 6= j. It is rather102

easy to see first of all there is only a finite number of states that can be reached from the state103

p: more precisely, there are at most NN such states (including p itself). For, since the chain is104

that of replacing coordinates of p by copies of other coordinates, there are only N possibilities105

for the first coordinate of future states, N possibilities for the second coordinate, and so on.106

Second, all these states, except for those with all coordinates equal, i.e. except for107

pi := ((αi, βi), (αi, βi), . . . , (αi, βi)), i ∈ N

are transient for this chain. Indeed, for any other state there is a non-zero probability that the108

number of different individuals in the population will decrease in the next drift and selection109

event. Since the rules of the chain do not allow jumps from the states with smaller number110

of different individuals to the states with larger number of different individuals, the process111

will never come back to the state under consideration. This shows that this state cannot112

be recurrent, and thus, by the well-known dichotomy (see e.g. [25], Section 3.4) it must be113
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transient. On the other hand, all the states pi, i ∈ N are absorbing. Hence, the process114

starting at a p must eventually end up at one of pi’s. Certainly, in the case where not all115

individuals in the original population are different, the fate of the population is similar: it is116

only the number of possibilities for the end population that is smaller. We summarize our117

discussion in the following theorem.118

Theorem 4.1. Let p ∈ P be a population and let M be the number of different variants in119

p. Then, there is a set M ⊂ N such that (a) M = #M, and (b) i 6= j, i, j ∈ M implies120

(αi, βi) 6= (αj, βj). For i ∈ M let pi ∈ P be the population in which all individuals are121

identical to each other and to the ith individual in the original population p. Then, the drift122

and selection chain starting at p will eventually end up at pi with certain probability pi = pi(p)123

where
∑

i∈M pi = 1.124

We note in passing that whereas there could be many choices ofM, the thesis of our theorem125

remains the same for all of them.126

This theorem is a reflection of the fact that drift and selection chain strives to reduce the127

number of variants in the population by removing randomly selected variants and replacing128

them by other variants; in the absence of other forces, and mutation in particular, the chain’s129

operation in the long run leads to fixation of one the variants. What this theorem does not130

express openly is that drift and selection chain favors variants with larger fitness. The latter131

information, besides being visible in formula (3.4), is hidden in the probabilities pi featuring132

in Theorem 4.1; roughly speaking, the larger the fitness of an individual, the larger is the133

probability of fixation of its variant. Notably, even though selection favors variants with larger134

fitness, it acts together with genetic drift which may ‘blindly’, by chance, remove better fit135

variants from the population. Hence, the fact that a variant with larger fitness is favored by136

selection results in a higher probability of its fixation, and not in the inevitability of its fixation.137

In what follows we will see this principle expressed in explicit formulae for pi’s in the cases138

N = 2 and N = 3, considered here for the sake of illustration. In our calculations it will be139

convenient, for the sake of shortening our equations and making figures readable, to identify140

a population p, which is an N -dimensional vector of pairs of integers, with the N -dimensional141

vector of corresponding fitnesses calculated by formula (3.5), the latter vector being half as142

long as the former. Although it is possible, by an appropriate choice of parameters, to have143

two different individuals with the same fitnesses, i.e. to have (αi, βi) 6= (αj, βj) and at the144
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same time (1 + s)αi(1 − d)βi = (1 + s)αj(1 − d)βj , such an identification should not lead to145

misunderstandings.146

For N = 2 the probabilities p1 and p2 are easily calculated explicitly: unless it is already147

uniform, a population p with fitness (f1, f2), after an exponential time with parameter f1 + f2,148

becomes p1 with probability f1
f1+f2

or p2 with probability f2
f1+f2

. This shows that p1 = f1
f1+f2

and149

p2 = 1− p1 = f2
f1+f2

.150

Somewhat surprisingly, already for N = 3 the formulae for pi’s are more complicated, and151

do not follow the perhaps expected pattern pi = fi
Σf

. Before we see that, however, we note152

the following important property of the chain under consideration: Let us call two states153

f = (f1, . . . , fN) and f ′ = (f ′1, . . . , f
′
N) associated if there is a permutation Π of the set N such154

that f ′i = fΠ(i), i ∈ N . The property we want to note is as follows.155

Theorem 4.2. The drift and selection processes starting at two associated states are analogous.156

What we mean by that proposition is that (a) the times to the first drift and selection events157

for either of two associated states f and f ′ have the same distribution, (b) the probability that158

in such an event the ith coordinate of f is replaced by the jth, is the same as the probability159

that the Π(i)th coordinate of f ′ is replaced by the Π(j)th, and (c) if in these drift and selection160

events the ith coordinate of f is replaced by the jth, and the Π(i)th coordinate of f ′ is replaced161

by the Π(j)th then the states after these events are again associated. These statements are clear162

from the description of the drift and selection chain, and combined together prove Theorem163

4.2.164

We are now ready to find pis for N = 3. We think of a process that starts at an f = (f1, f2, f3).165

Figure 1 illustrates the fact that in order to reach the state f1 = (f1, f1, f1) this process must166

go through (f1, f1, f3), (f1, f2, f1) or one of their associates. The first of these states is reached167

directly with probability f1
2Σf

. This state or one of its associates may also be reached indirectly,168

via (f1, f3, f3), with probability f3
2Σf

f1
f1+f3

. Thus, the probability of reaching (f1, f1, f3) or one of169

its associates is170

f1

2Σf

f1 + 2f3

f1 + f3

.

Then, before reaching f1 from one of these associated states, the process may visit an associate171

of (f1, f3, f3), and this may happen k ≥ 0 times. Since the properties of the processes starting172

from associated states are analogous, the probability of reaching f1 from one of associates of173
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(f1, f1, f3) is174

f1

f1 + f3

∞∑
k=0

(
f3

f1 + f3

)k (
f1

f1 + f3

)k
=

f1

f1 + f3

1

1− f1f3
(f1+f3)2

.

Therefore, the probability that f1 will be reached through (f1, f1, f3) or its associate is
f21
2Σf

f1+2f3
f21 +f23 +f1f3

175

and so176

(4.1) p1 =
f 2

1

2Σf

[
f1 + 2f2

f 2
1 + f 2

2 + f1f2

+
f1 + 2f3

f 2
1 + f 2

3 + f1f3

]
,

because the case where the process goes through associates of (f1, f2, f1) is symmetrical. Using177

symmetry again, we obtain178

p2 =
f 2

2

2Σf

[
f2 + 2f1

f 2
1 + f 2

2 + f1f2

+
f2 + 2f3

f 2
2 + f 2

3 + f2f3

]
and179

p3 =
f 2

3

2Σf

[
f3 + 2f1

f 2
1 + f 2

3 + f1f3

+
f3 + 2f2

f 2
2 + f 2

3 + f2f3

]
.

As remarked above, these formulae illustrate the fact that the drift and selection process,180

besides striving to minimize the number of variants, tries also to maximize the total fitness of181

the population by selecting against the variants with small fitness.182

Analogous formulae for the case N = 4 were also obtained, using Maple, but even after183

simplification, they were too long to be informative; each of them occupied half a page. Hence,184

in the absence of explicit formulae, we content ourselves with the following theorem which shows185

that drift and selection events ‘on average’ increase the total fitness of population.186

Theorem 4.3. Let f ′ be the state of the process right after drift and selection event of a popu-187

lation f. Then188

E Σf ′ ≥ Σf,

where E denotes expected value.189

Proof. Each event of replacing the ith coordinate of f by its jth coordinate is paired by the190

event in which the jth coordinate is replaced by the ith coordinate. The first of these events191

takes place with probability fj/|qp,p|, where qp,p is the diagonal element of the generator matrix192

in Equ. (3.6). Accordingly, Σf ′ − Σf = fj − fi, and the second event’s characteristics are193

symmetrical. Therefore, E Σf ′ − Σf equals194 ∑
i<j

[
(fj − fi)fj
|qp,p|

+
(fi − fj)fi
|qp,p|

]
=

1

|qp,p|
∑
i<j

(fi − fj)2 ≥ 0,

completing the proof. �195
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Next, we turn our attention to the situation where in a homogeneous population a new,196

possibly better fitted, variant shows up. In other words, the vector of fitnesses is of the form197

(f1, f2, f2, . . . , f2) where f1 � f2. We are interested in the probability that variant with fitness198

f1 will take over the entire population, i.e. in the probability that the drift and selection process199

will be absorbed in the state (f1, f1, . . . , f1).200

Theorem 4.4. Let N ≥ 2. The probability that the drift and selection process starting at201

(f1, f2, . . . , f2) ∈ P is eventually absorbed at (f1, f1, . . . , f1) equals202

(4.2) h1 =
1

1 +
(
f2
f1

)
+ · · ·+

(
f2
f1

)N−1
.

Proof. Let X(t) be the number of individuals of fitness f1 in the population p(t). Because of203

Theorem 4.2, X(t), t ≥ 0 is a time-continuous Markov chain with values in the setN0 := {0}∪N ,204

and the elements of its intensity matrix are as follows:205

(4.3) qi,j =



0 if i ∈ {0, N},

i(N − i)f2 if j = i− 1, i 6∈ {0, N},

−(f1 + f2)i(N − i) if j = i, i 6∈ {0, N},

i(N − i)f1 if j = i+ 1, i 6∈ {0, N},

0 otherwise.

We are interested in the probability that X(t), t ≥ 0 will be absorbed at the state N , given206

that X(0) = 1. This probability is the second coordinate in the vector (h0, . . . , hN) of so-called207

hitting probabilities for the absorbing state {N} which, by Theorem 3.3.1 in [25] satisfy the208

following system of equations:209

N∑
j=0

qi,jhj = 0, i 6∈ {0, N}

with ‘boundary conditions’ h0 = 0, hN = 1. In other words

hi = chi−1 + dhi+1,(4.4)

where c = f2
f1+f2

and d = f1
f1+f2

for i = 1, . . . , N − 1.210

To solve this system, as in p. 16 of [25] or [11] p. 192, we introduce ui = hi−1 − hi for211

i = 1, . . . , N . Then the recurrence relation (4.4) becomes ui+1 = c
d
ui = f2

f1
ui, i = 1, . . . , N − 1.212
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Therefore, by induction,213

(4.5) ui =

(
f2

f1

)i−1

u1, i = 1, . . . , N.

It follows that
∑N

i=1 ui =

(
1 +

(
f2
f1

)
+ · · ·+

(
f2
f1

)N−1
)
u1. On the other hand, by the definition214

of uis and the boundary conditions for his,
∑N

i=1 ui = h0 − hN = −1. Hence we obtain that215

h1 = −u1 = 1

1+
(
f2
f1

)
+···+

(
f2
f1

)N−1 , as desired. �216

We complement this theorem with three remarks. First, we note that (4.5) hides an explicit217

formula for hi for any i ∈ N , i.e. for the probability that a subpopulation of i individuals of218

fitness f1 will take over the entire population. For, since
∑i

j=1 uj = h0−hi = −hi, this formula,219

when combined with (4.2), renders220

hi =
1 +

(
f2
f1

)
+ · · ·+

(
f2
f1

)i−1

1 +
(
f2
f1

)
+ · · ·+

(
f2
f1

)N−1
, i ∈ N .

Second, observe that formula (4.2) in the case N = 2 agrees with the formula for p1, and in221

the case N = 3 can be obtained from (4.1) by replacing f3 by f2.222

Third, in our proof of (4.2) we never used the assumption that f1 is larger than f2. However,223

since N , being the size of the considered population, is typically rather large, for f1 ≤ f2, the224

probability of (4.2) is small. This means that new variants without sufficient selective advantage225

are simply washed away from the population.226

On the other hand, given r ∈ (0, 1) (to play the role of a probability), think of f1 as of chosen227

so large as compared to f2 that228

(4.6)
f2

f1

< 1− r.

Then 1 +
(
f2
f1

)
+ · · · +

(
f2
f1

)N−1

< 1

1− f2
f1

< 1
r
. Therefore, for such f1 (and f2), h1 > r. In other229

words, by enlarging f1 sufficiently, we may make the probability of mutant’s fixation as large230

as we wish.231

We complete this section with information on the expected time to allele’s fixation.232
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Theorem 4.5. Let N ≥ 2. The expected time for the drift and selection process starting at233

(f1, f2, . . . , f2) ∈ P to be eventually absorbed at (f1, f1, . . . , f1) or (f2, f2, . . . , f2) equals234

(4.7) k1 =
h1

f1

N−1∑
i=1

( i∑
j=1

1

j(N − j)

(
f2

f1

)i−j)
,

where h1 is defined by formula (4.2).235

Proof. The time of interest is the second coordinate in the vector (k0, . . . , kN) of hitting times236

for the absorbing set {0, N} which, by Theorem 3.3.3 in [25] satisfy the following system of237

equations:238

−
N∑
j=0

qi,jkj = 1, i 6∈ {0, N}

with ‘boundary conditions’ k0 = 0, kN = 0, where qi,j’s are defined in (4.3). In other words

ki = cki−1 + dki+1 + ei,(4.8)

where c = f2
f1+f2

, d = f1
f1+f2

and ei = 1
i(N−i)(f1+f2)

for i = 1, . . . , N − 1.239

To solve this system, as in the previous theorem, we introduce vi = ki−1−ki for i = 1, . . . , N .

Then the recurrence relation (4.8) becomes vi+1 = c
d
vi + ei

d
= f2

f1
vi + 1

i(N−i)f1 , i = 1, . . . , N − 1.

It follows that

vi =

( i−1∏
j=1

f2

f1

)(
v1 +

1

f1

i−1∑
j=1

1

j(N − j)
∏j

k=1
f2
f1

)
for i = 2, . . . , N . We see that

N∑
i=1

vi =
v1

h1

+
N∑
i=2

((
f2

f1

)i−1
1

f1

i−1∑
j=1

1

j(N − j)
(
f2
f1

)j)

=
v1

h1

+
1

f1

N−1∑
i=1

( i∑
j=1

1

jf(N − j)

(
f2

f1

)i−j)
.

On the other hand, by the definition of vi’s and the boundary conditions for ki’s,
∑N

i=1 vi =

k0 − kN = 0. Hence

k1 = −v1 =
h1

f1

N−1∑
i=1

( i∑
j=1

1

j(N − j)

(
f2

f1

)i−j)
,

completing the proof. �240
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5. Asymptotic behavior of {PS(t), t ≥ 0}241

In the Supplement 10, we demonstrated the existence of a Markov chain related to the242

intensity matrix Q = QM + QS of (3.7), i.e. the chain encompassing the mutation and drift243

“components” of the model we consider.244

Before embarking on the study of limit versions of the semigroup {P (t), t ≥ 0} related to245

this chain, let us rephrase the results of Section 4 to find the limit246

lim
t→∞

PS(t).

To this end, given p ∈ P, consider247

(5.1) ep ∈ `1

defined by ep(q) = 0, q 6= p, ep(p) = 1. Then PS(t)ep is the pth row of transition probability248

matrix PS(t), composed of probabilities pp,q(t) that drift and selection chain starting at p will be249

at q at time t ≥ 0. As explained in Section 4 at most NN probabilities in this row are non-zero,250

and as t → ∞ even all of these at most NN probabilities tend to zero, save for M ≤ N of251

them corresponding to populations where all individuals are identical to each other and to one252

of the members of the original population, where M = M(p) is the number of variants in the253

population p. Each of the latter M probabilities, on the other hand, converges to one of the254

probabilities pi(p) described in Theorem 4.1. Since
∑

i∈M pi = 1, by Scheffés’ Theorem (see255

e.g. [4]), PS(t)ep converges to the vector with probabilities pi(p), in the norm of `1. Here is a256

consequence of this remark.257

Theorem 5.1. Let the matrix Π = (πp,q)p,q∈P be defined as follows. For each p we choose a258

subset M⊂ N as described in Theorem 4.1, and let259

πp,q =

pi(p) if q = pi for an i ∈M,

0 otherwise

(where pi(p)s are defined in Theorem 4.1). Then, for any x ∈ `1,260

(5.2) lim
t→∞

PS(t)x = Πx (:= x · Π).

Proof. By the reasoning presented above, (5.2) holds for x = ep, p ∈ P. By linearity, this261

formula extends to all combinations of ep’s. Since such combinations are dense in `1, a three262

epsilon argument based on ‖PS(t)‖ = 1, t ≥ 0 completes the proof. �263
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6. Asymptotic behavior of {P (t), t ≥ 0}: intuitions264

The semigroup {P (t), t ≥ 0} describes the chain in which both mutations and drift and265

selection events take place. As such, it describes not only a tug-of-war between driver and266

passenger mutations but also a competition between selections and mutations, these population267

genetic forces counteracting each other. But, it is one of the main characteristics of drift and268

selection chain (see (3.4) and (3.6)) that the rate at which new drift and selection events come269

about grows with the total fitness of the population. It follows that in some regions of P the270

rate of mutation is larger than the rate of drift and selection events and in other regions the271

former is smaller than the latter. Hence, in some regions selection will be more expressed, and272

in other regions effects of mutations will be more apparent.273

There are no clear boundaries between these regions, no man’s lands lie between them, and274

random forces may lead via these no man’s lands from one region to another. Nevertheless, the275

three main regions, denoted R0, Rl and Ru, may be characterized as follows.276

6.1. R0 region. The central region R0 contains populations in which drift and selection events277

occur at a rate that is of the same order as the rate of mutations. By suitable scaling of278

parameters, this is the region where279

(N − 1)Σf ≈ Nλ.

The expression above is inaccurate, since on the left-hand side, instead of the exact expression280

for the intensity of time to the drift and selection event, we placed a simplified one, true only281

when all individuals are different. However, this is sufficient for the present purposes which is to282

define a region in which mutations have force comparable to drift and selection. We will carry283

out a more accurate analysis using the limit process (see Lemma 9.1 and the text preceding284

and following it).285

An individual member of a population in this region collects new driver and passenger mu-286

tations over time: being characterized initially, at time t = 0, by (α, β), by the time t > 0287

it becomes of the type (α + m,β + n) (provided it is still alive), but if assumption (2.3) is288

satisfied, the quotient new fitness
old fitness

= (1 + s)m(1− d)n is roughly 1. In other words, between drift289

and selection events, all individuals travel the path where n ≈ − log(1+s)
log(1−d)

m; individual fitness290

does not change much in time. Travels along such paths are of course interrupted by deaths291

of individuals which are replaced by copies of other individuals. Genetic drift may thus sweep292
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away rare variants, but some kind of statistical equilibrium is obtained between mutations293

introducing new variants and drift that continually reduces variability (see e.g. [5, 6, 7, 8]).294

However, random fluctuations may force a population out of this region of balanced genetic295

forces to one of the following two regions, where one force prevails against the other. A popu-296

lation may, even the more, be forced out of this region by a temporary or permanent change of297

parameters a, d and p, so that e.g. condition (2.4) rather than (2.3) is satisfied.298

6.2. Rl region. In the lower region Rl we have299

(N − 1)Σf � Nλ.

Because of that assumption, drift and selection events are very seldom as compared to mutation300

events. This means that individuals live for relatively long times, and over periods of their lives301

accumulate mutations that distinguish them more and more from other individuals. In other302

words, the members of the population are rather loosely linked, and evolve quite independently303

of each other.304

6.3. Ru region. The upper region Ru is characterized by305

(N − 1)Σf � Nλ.

Here the situation is quite different: these are the mutations that are relatively rare as compared306

to the drift and selection events. Each individual lives for a short time and before it is able307

to collect a significant number of mutations distinguishing it from other individuals, dies and308

is replaced by another individual. As a result, very quickly the population becomes uniform:309

there is practically only one variant in it (i.e., one variant is fixed) as in Theorems 4.1 and 5.1,310

members of this population could be descendants of a rare but strong variant or of a week but311

frequent one in the initial population (see Theorem 4.4). In the next two sections we will be312

able to say more on how mutation process looks like in such populations.313

7. Asymptotic behavior of {P (t), t ≥ 0} in the upper and lower regions314

In this section, we provide a more rigorous mathematical argument, based on the theory of315

convergence of semigroups, for the intuitions of Sections 6.2 and 6.3. However, this argument316

still needs to be preceded by the following heuristic reasoning.317
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Let us consider a subregion S of Ru where total fitness of populations, in addition to being318

‘much larger’ than Nλ, is approximately constant: there is a κ > 0 such that319

(7.1)
Σf(p)

Nλ
≈ κ� 1, p ∈ S,

where f = f(p) is the fitness vector for p. Assume also that for each p in S with the fitness vector320

f = (f1, . . . , fN) one may find a p′ ∈ P with fitness vector f ′ = (f ′1, . . . , f
′
N) where f ′i ≈

fi
Σf
≈ fi

κ
.321

Then p′ belongs to R0 and the intensities qp,q of the drift and selection chain (see (3.4) and322

(3.6)) in the region S are related to the intensities qp′,q′ of the corresponding points p′, q′ ∈ R0323

as follows:324

qp,q ≈ κqp′,q′ , p, q ∈ S.

At the same time, intensities of the mutation chain (see (3.3)) do not change in the transfer325

from p to p′.326

It follows that instead of thinking of the chain in S governed by A = S + M we may think327

of the chain in R0 governed by328

(7.2) Aκ := κS + M.

Arguing as at the end of Section 10, we check that for each κ > 0, Aκ is the generator of a329

semigroup, say {Pκ(t), t ≥ 0}, of Markov operators. Thus, our task is that of characterizing330

the limit331

lim
κ→∞

Pκ(t)x

where x ∈ `1 is a distribution concentrated in R0.332

This can be done effectively via Kurtz’s singular perturbation theorem [12, 19, 20] or Chapter333

42 in [3], and the analysis does not require assuming that x is concentrated in R0. In a simple334

case needed in our situation Kurtz’s theorem says that the limit above exists for all x ∈ `1 and335

t > 0 provided the following two conditions are met:336

(i) limt→∞ PS(t)x =: Πx exists for all x ∈ `1.337

(ii) ΠM with domain equal to `1
0 is a generator in `1

0, where `1
0 := RangeΠ.338

To deduce this statement from Theorem 42.2 in [3] note that for x ∈ KerS = RangeΠ,339

Aκx = Mx and that for y ∈ D(S), κ−1Sκ → Sy. As proved in Theorem 5.1, the first of these340

two conditions is satisfied, and the second is clear since ΠM is bounded; this establishes the341
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desired convergence. Moreover, Kurtz’s theorem states that in such a case,342

(7.3) lim
κ→∞

Pκ(t)x = etΠMΠx, t > 0.

343

An analogous reasoning shows that instead of thinking about the chain generated by S+M344

in the lower region Rl, one may think of the chain in R0 governed by (compare (7.2))345

Aε = κS + M,

where now κ� 1.346

The limit347

lim
κ→0

Pκ(t)x

where x ∈ `1 may be found with the help of the Sova-Kurtz version of the Trotter–Kato348

convergence theorem for semigroups (see [3, 12, 18]): since for each x ∈ D(S) limκ→0 Aκx = Mx,349

and the set D(S) is dense in l1, we have350

(7.4) lim
κ→0

Pκ(t)x = PM(t)x.

351

Proofs of the two results are deferred to the supplement. The first one seems to be less352

intuitive, but we may provide an elementary derivation for the finite dimensional case in which353

it is sufficient to use Laplace transform and matrix calculus.354

Conjecture: Given matrix exponent

Φ(t) = e(M+κD)t

such that

eDt → Π, t→∞

we have

e(M+κD)t → eΠMt Π, κ→∞

Proof: Consider the Laplace transform of Φ(t)

Φ̂(s) = (sI − (M + κD))−1

We find that

Π = lim
t→∞

eDt = lim
s↓0

s(sI −D)−1 = lim
κ→∞

(I − κD)−1
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and then

Φ̂(s) = (sI − (M + κD))−1 = [sI + (s− 1)(I − κD)−1κD − (I − κD)−1M ]−1(I − κD)−1

and since

(I − κD)−1κD = (I − κD)−1 − I

this converges as κ→∞ to

(sΠ− Π + I − ΠM)−1Π.

Since Π2 = Π the above is equal to (sI − ΠM)−1Π, which is the Laplace transform of eΠMt Π,355

as desired.356

8. Interpretation of (7.3) and (7.4)357

This section is devoted to interpreting the limit theorems just obtained.358

8.1. Interpretation of (7.3). Let us start by characterizing the space `1
0 of point (ii) of the359

previous section. To this end, for α, β ∈ N, let360

pα,β ∈ P

be the population of N identical individuals, each of type (α, β), and let Y ⊂ `1 be the subspace361

spanned by epα,β , α, β ∈ N (recall (5.1)). In other words, Y is composed of vectors of the form362

x =
∑
α,β∈N

ξα,βepα,β

where
∑

α,β |ξα,β| <∞.363

Lemma 8.1. We have364

`1
0 = Y.

Proof. Each epα,β obeys PS(t)epα,β = epα,β , because pα,β is an absorbing state for the se-365

lection/mutation chain. By the definition of Π it follows that Πepα,β = epα,β , i.e. that366

epα,β ∈ `1
0, α, β ∈ N. Conversely, in the argument preceding Theorem (5.1) we have shown367

that for any p ∈ P, Πep is a convex combination of (a finite number of) vectors pα,β, hence is368

a member of Y. Since ep’s span the entire `1, this completes the proof. �369
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This lemma shows that the state-space of the limit process (which mimics the selection/mu-370

tation/drift process in the regions of high total fitness) is composed of populations in which all371

individuals are identical: this state-space is372

UP := {p ∈ P; p = pα,β for some α, β ∈ N}.

The generator, ΠM, of this process is of interesting form. The value of M on x ∈ `1
0 usually373

does not belong to `1
0. This is because M describes mutations: since each and every member374

of a uniform population may increase the number of driver and/or passenger mutations, after375

some time the population may contain different variants. However, the generator of the process376

under consideration is a composition of M and Π, and the latter operator maps Mx back to377

`1
0. This corresponds to immediate intervening of drift and selection force, which makes the378

population uniform again, although possibly not quite the same as previously.379

Referring back to (3.3) we see ΠM is the generator of a Markov chain in UP which may380

be described as follows. Staring at a pα,β the process stays there for an exponential time with381

parameter Nλ. After this time is over, a randomly selected individual (each individual being382

chosen equally likely) changes its type to (α + 1, β) with probability p, or to (α, β + 1) with383

probability q. Then drift and selection either eliminates the new variant or allows it to take384

over the entire population. According to Theorem 4.4, the variant with new driver mutation is385

fixed with probability386

pdriv =
1

1 + 1
1+s

+ · · ·+ 1
(1+s)N−1

=
s

1 + s

(
1−

(
1

1 + s

)N)−1

,

Similarly, the variant with new passenger mutation is fixed with probability387

ppass =
d

1− d

((
1

1− d

)N
− 1

)−1

.

If the new variant is eliminated from the population, everything goes back to the state from388

before mutation. Thus, the time to effective change is exponential with parameter389

Nλ(ppdriv + qppass),

and after this time pα,β becomes pα+1,β with conditional probability ppdriv
ppdriv+qppass

or pα,β+1 with390

conditional probability qppass
ppdriv+qppass

.391

If UP is identified with N × N, i.e. if each population pα,β ∈ UP is identified with its type392

(α, β), the process described above is seen to be the pair of two independent Poisson processes393
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on N×N: the driver Poisson process with intensity Nλppdriv (increasing the α-coordinate) and394

the passenger Poisson process with intensity Nλqppass (increasing the β-coordinate).395

Notably, in contrast to the processes of mutations in single individuals, where intensity of396

driver mutations is much smaller than that of passenger mutations, here the situation is quite397

the opposite: these are the driver mutations that are typically more frequent than the passenger398

mutations. For, we have ppass ≤ N−1; on the other hand, arguing as in the vicinity of (4.6), we399

see that it suffices to take s so large that400

1

1 + s
< 1− r

to have401

pdriv > r

where r ∈ (0, 1) is given in advance.402

The latter phenomenon has its source in the intervening selection process, described above,403

which eliminates the vast majority of passenger mutations from the population.404

Before completing this section, we take a last look at (7.3) and note that this formula informs405

us also that even though the ‘true’ initial distribution is a member of `1 and needs not belong406

to `1
0, the drift and selection process intervenes so rapidly that before the process of mutations407

starts the population becomes uniform (this is described by the vector Πx). Again, if, for408

example, in the initial population there is one dominant variant and a single new variant with409

larger fitness then the latter variant may be fixed with probability given in Theorem 4.4.410

8.2. Intepretation of (7.4). Interpretation of (7.4) is much simpler. This formula simply says411

that in the lower region drift and selection events are so rare that in fact may be disregarded:412

the chain behaves nearly as if there were no selection or drift. As a result each individual413

evolves independently of the others, in agreement with intuitions set forth in Section 6.2.414

9. Simulations415

As stated in the Introduction, we consider a population of a fixed number N of individuals,416

each of them characterized by a pair of integers (α, β), corresponding to the numbers of drivers417

and passengers in its genotype, respectively. This pair determines the fitness f of the individual418

by the formula419

f = (1 + s)α(1− d)β,
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where s > 0 and d ∈ (0, 1) are parameters describing selective advantage of driver mutations420

over passenger mutations. Thus, the entire population may be identified with the vector421

p = ((α1, β1), . . . , (αN , βN))

of N pairs of integers, with the accompanying vector422

f = (f1, . . . , fN)

of fitnesses.423

In each step of simulation, the decision is made whether the next event is the death and

replacement or mutation event. Let us denote by Tm and Ts the exponentially distributed and

independent random times to the mutation event and to a death/replacement event, respec-

tively. We simulate both times and the next event occurs at time t + min(Tm, Ts), where t is

the current time. According to the rules of our process, with mutation rate per cell λ

Tm ∼ exp(Nλ)

while, following Equ. (3.6)

Ts ∼ exp

∑
α,β∈N

nα,β
∑

γ,δ∈N: (γ,δ) 6=(α,β)

nγ,δ(1 + s)γ(1− d)δ


where nα,β denote the number of individuals of type (α, β), so that

∑
i,j∈N nij = N.424

Mutation If Tm < Ts, the next event is mutation. Given this, the index of individual un-425

dergoing mutation is drawn from discrete uniform distribution on {1, . . . , N} and the event426

changes the state of the individual to either (α+1,β) or (α,β+1) with probabilities p ∈ (0, 1)427

and q = 1− p respectively. Fitness of the mutated individual is recalculated accordingly.428

Death and replacement If Tm ≥ Ts, the next event is death and replacement. Suppose429

that K types of individuals are present, with respective counts n(k), k = 1, . . . , K, summing430

up to N . Following Equ. (3.4), individual i with state (αi, βi) is replaced by individual j431

with state (αj, βj), such that (αj, βj) 6= (αi, βi) with probability proportional to fitness of432

j, fi = (1 + s)αj(1 − d)βj . The replaced individual inherits the state and fitness from the433

replacement.434

Trends in fitness We present a set of stochastic simulations illustrating the richness of possible435

behaviors of the Tug-of-War process, in its complete and limit versions. One of the issues that436
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we attend to is criticality, understood here as the trend of the fitness trajectories, upward,437

downward or neutral. There are two mathematical facts that provide guidance:438

• Mutation vs. selection coefficient balance Equ. (2.4), which indicates the trend in fitness439

absent drift is determined by the sign of ps− qd.440

• Theorem 4.3, which states that the death and replacement events absent mutation lead441

to a positive trend in fitness.442

Fitness trajectory in the complete process is the result of the interaction of the two trends. If443

ps > qd, then the influx of advantageous mutations prevails and in addition, the drift works444

towards their fixation. As a result the fitness increases rather fast. The effect is subtler when445

ps ≤ qd. If the influx of disadvantagous mutations prevails but is not too strong, drift affords446

to purge the deleterious mutants before they may be fixed. A strong influx is needed to flip447

this trend.448

Complete process We follow the interplay between the fluxes ps of advantageous and qd449

of deleterious mutations, but also between mutation and drift. The latter can be varied for450

example by adjusting the parameter L = Nλ. Figure 2 depicts distribution of individual fitness451

averaged over N individuals, in 30 independent runs of the model with a range of parameters.452

Panel A depicts the case with a ps � qd (for exact parameter values, see the Figure legend),453

resulting exponential-like growth of fitness. Panel B shows the case ps = qd, with the effect454

being a slow increase of fitness for most runs and a very slow decrease for some. Panel C455

shows the case of slightly negative trend in mutations ps < qd. Panel D demonstrates that if456

ps = 0, then drift may efficiently keep purging recurrent deleterious mutants. Panels E and F457

are showing that in case of increased flux of mutants (large L) small changes in the value of s458

parameter, from s=0.01 in Fig. 2E to s=0.05 in Fig. 2F, may cause a fraction of average fitness459

trajectories display an upward trend despite large amount of highly deleterious mutations.460

Subsequent figures depict runs of a single trajectory of fitness in the process with a range461

of parameters. Figure 3 depicts one of the average trajectories of Fig. 2A. Panel A depicts462

the average fitness of population. Mutation events are marked with red (driver) and blue463

(passenger) asterisks. Let us notice that major jumps in population fitness arise as a result464

of death-replacement events, more so than of the mutational events, since new arising mu-465

tants are frequently purged by death-replacement. Panel B depicts time succession patterns of466

clones started by driver mutations colored according to fitness of given clone. Panel C depicts467
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genealogies of the clones initiated by drivers and passengers. Lines between nodes represent468

driver (red) and passenger (blue) mutations. Green circles mark clones alive at the end of469

simulation (t = 20). The vertical axis in panel C does not coincide with the time or even with470

the strict order of clone appearance. However, it is consistent with the ancestor-descendant471

relationship.472

Figures 4, 5, 6, 7, 8 and 9 depict single-trajectory plots corresponding all other cases in473

Fig. 3. Figures corresponding to cases with high mutation rates lack the third panel, since the474

genealogies of clones become to dense to follow with an increased mutation rate.475

Limiting process476

Suppose that all individuals have the same fitness (1 + s)α(1− d)β. The difference between477

expected fitness right after mutation/drift event and the fitness before this event equals478

(9.1) (1 + s)α(1− d)β(pspdriv − qdppass).

In interpreting this relation we encounter an apparent paradox: in a certain range of parameters,479

an increase of d, that is, a decrease of fitness of passenger mutants, leads to a decrease of the480

studied difference. In order to explain this paradox we need to consider the function481

(9.2) e(d) = dppass.

Lemma 9.1. The function e initially increases and then decreases with d.482

Proof. As d increases from 0 to 1, x := 1
1−d increases from 1 to ∞. Hence, it suffices to check

monotonicity of

g(x) :=
(x− 1)2

xN+1 − x
, x ∈ [0,∞).

Since483

(9.3) g′(x) =
(x− 1)((1−N)xN+1 + (N + 1)xN − x− 1)

(xN+1 − x)2

monotonicity of g is determined by the sign of484

(9.4) h(x) := (1−N)xN+1 + (N + 1)xN − x− 1, x ≥ 1.

Here h(1) = 0 and485

(9.5) h′(x) = (1−N)(N + 1)xN +N(N + 1)xN−1 − 1,
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so that in particular h′(1) = N > 0. Moreover,486

(9.6) h′′(x) = (N − 1)N(N + 1)xN−2(1− x) < 0, x > 0,

proving that h′(x) strictly decreases from N to −∞ in the interval [1,∞). Hence, h increases487

from h(1) = 0 to a maximum point, and then starts to decrease. Since limx→∞ h(x) = −∞,488

we conclude that h is initially positive, and then, beyond a certain points, say x0 becomes489

negative and stays negative for all x > x0. It follows that g increases up to x0 and then starts490

to decrease, as claimed. �491

Consider first the scenario in which e decreases with the increase of d, and thus the difference492

(9.1) increases. Here, everything seems to agree with our intuition: A decrease in fitness of493

passenger mutants causes the probability of their fixation to drop and thus if the fitness of494

driver mutations is the same, the overall population fitness grows faster, because the influence495

of passenger mutations is smaller.496

However, in a certain range of d, an increase of d (a decrease of fitness of passenger mutations)497

causes an increase of e, and thus a decrease of (9.1). This is because an increase in d causes a498

decrease of ppass but this is accompanied by an increase of the first factor in (9.2). It is possible499

that a change in d causes a much smaller change in ppass than in d itself, and thus may result in500

the overall growth of e. In other words, even though the probability of fixation of a passenger501

mutation is lower, if such a variant is fixed fitness will drop radically. From this point of view,502

the observation that a decrease in the fitness of passenger mutants may lead to a decrease of503

(9.1) is not surprising.504

To summarize, analysis of e, the expected drop of the population fitness given that a passenger505

mutant was fixed, is the key to understanding of the apparent paradox we encountered. It is506

more informative than the probability ppass alone.507

The influence of the function508

s 7→ spdriv

is monotonous; the larger is the fitness of driver mutants, the faster is the growth of the fitness509

of the entire population.510

10. Discussion511

Following the earlier work of McFarland et al. [21, 22, 23, 24] we build a model of early512

cancer development which accounts for the influence of two types of mutations: rare drivers513
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with higher fitness, and more frequent passengers with smaller fitness. Mathematically, the514

model is a continuous-time Markov chain with state-space composed of N -tuples of pairs of515

non-negative integers. Here, N is the number of individuals (cells) in the population under516

study, and is assumed constant; the first coordinate of each pair (individual/cell) is the number517

of accumulated driver mutations, whereas the second is the number of mutations of passenger518

type; the resulting individual’s fitness is given by (2.1).519

The model may be seen as describing competition of two population genetic forces: selection520

combined with drift, on one side, and mutations, on the other. Interestingly, the mathemat-521

ical theory of semigroups of operators, our main tool, allows analysing consequences of these522

two forces separately, and to infer properties of the full model from the properties of its two523

components.524

The main effect of the first of these components, related to selection combined with drift,525

is that a population that may initially be heterogeneous, becomes increasingly homogeneous526

with time. For the associated Markov chain this means that after a random time the process527

reaches an absorbing state in which all individuals have the same counts of passenger and driver528

mutations. The corresponding probabilities of fixation of a mutant and the expected times to529

fixation are calculated in Section 4.530

Mutations, on the other hand, introduce new variants to the data at the epochs of a Poisson531

process; either selectively advantageous drivers, or disadvantageous passengers.532

Mathematical analysis of analytical and stochastic properties of the processes related to the533

two main factors described above allows concluding that they may be combined, and that the534

new Markov chain that encompasses mutation and selection, on one had, as well as mutations,535

on the other, is non-explosive. In other words, the underlying stochastic process is a well-defined536

honest Markov chain.537

The resulting process is difficult to analyze. Insights can be obtained using a simpler limit538

model, presented in Sections 7 and 8, and simulations, see Section 9.539

The limit theorem is obtained using the theory of convergence of semigroups of operators540

[3], and corresponds to the scenario in which the total fitness of the population exceeds certain541

threshold. The model then predicts that drift and selection events are much more frequent than542

mutation events. Under such scenario, when a new mutant arises, regardless of whether it is a543

driver or a passenger, it is almost instantly fixed in the population or completely removed from544

it. It is the action of the drift and selection chain that causes fixation or removal and favors545
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driver mutations. Therefore, the probability of instantaneous fixation of a passenger mutant is546

usually smaller than that of a driver mutant. However, because the passengers may arise more547

often than drivers, the possibility of fixation of passenger mutant is not negligible (see Section548

7 for details).549

In summary, the limit model state-space is composed of pairs of non-negative integers; this550

is because each individual is fully characterized by such a pair, and the entire population is551

composed of identical individuals. At a time a new mutant arises, it is instantly fixed or removed552

from the population, with probabilities depending on its fitness, and so the population is again553

homogeneous. Such model seems to account for the influence of driver and passenger mutations.554

It is interesting that it clearly displays the non-monotonous dependence on the parameter d of555

passenger fitness (Lemma 9.1). Simulations in Figure 10 fully corroborate theoretical analysis.556

In addition, simulations show a similar effect in the complete model, as depicted in consecutive557

panels of Figure 2. In the complete model, the non-monotonicity of the e(d) corresponds to558

the balance between downward and upward trends of subsets of trajectories in Figure 2F. The559

balance is delicate: if the influx of deleterious passenger mutants is limited, drift and selection560

purge the mutants and population fitness keeps increasing. Only when the influx is sufficiently561

large, population fitness decreases in part of realization of the process.562

We studied by simulation a range of special cases of fitness trajectories and pedigrees of563

clones originating from driver mutations. A theory of such clones in the Tug-of-war process is564

still missing. Simulations show how rich is the behavior of this process (Figures 3-9).565

With all the reservations, present paper places McFarland’s Tug of War model into the566

rigorous framework of Moran Model, which allows analyzing it using the well-developed toolbox567

of time-continuous Markov chains and theory of operator semigroups. Let us notice that our568

formulation is different from McFarland’s original model as spelled out in [21, 22, 23]. The569

model there is a state-dependent branching process. To our best knowledge, these models570

were not rigorously explored. One of the subsequent papers from McFarland’s group [24]571

explores experimentally the dependence of fitness on the rate of deleterious passenger mutations.572

However, the references to the mathematical model are only qualitative.573
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Supplement: The related semigroup of Markov operators574

In Section 4, we have studied in detail the Markov chain related to the intensity matrix QS.575

Since in this chain only a finite number of states can be reached from any given starting point,576

existence of such chain is an elementary matter. Existence of the chain of mutations (i.e. that577

related to QM) is also clear, as this chain consists of two independent Poisson processes (one578

for drivers and one for passengers). The question we have never answered is whether there is a579

Markov chain related to the intensity matrix Q of (3.7).580

This question is non-trivial because there are so-called explosive intensity matrices that are581

so ‘poorly designed’ that they do not determine the related Markov chain: additional rules582

need to be specified to describe the chain after the random time of explosion (see [4, 9, 25] and583

references given there). According to the theorem of Kato [16] (discussed e.g. in [1] Chapter584

5, [2] pp. 334–338, [3] pp. 74-80, [4] Chapter 3 and [15] pp. 642–647; see also Section 4 in [13]585

for W. Feller’s proof of this result), for any intensity matrix, whether explosive or not, there is586

a related minimal Markov chain which, however, is undefined after explosion.587

Therefore, in this section we show that Q of (3.7) is non-explosive and our argument boils588

down to the statement that the sum of two intensity matrices, one of which is non-explosive and589

the other is bounded, is non-explosive. This statement is most naturally proved in the language590

of semigroups of Markov operators, as we will now explain. Such semigroups are analytical tools591

for treating Markov chains, and in the later chapters we will use them extensively.592

The analysis involves the space `1 = `1(P) of functions x : P → R which, because P is a593

countable set, can be considered sequences x = (ξp)p∈P where ξp = x(p) is the value of x at594

p ∈ P. Elements (ξp)p∈P of `1 such that ξp ≥ 0, p ∈ P and
∑

p∈P ξp = 1 are termed distributions.595

With each time-continuous Markov chain with values in P one may associate the probabilities596

pp,q(t) that the chain starting at a p ∈ P will be at a q ∈ P at time t ≥ 0. These so-called597

transition probabilities are conveniently gathered in the matrices598

P (t) = (pp,q(t))p,q∈P ,

which in turn may be identified (see [4], Chapter 2 for details) with the operators in `1 defined599

by the formula600

P (t)x = x · P (t), x ∈ `1, t ≥ 0,
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where x · P (t) is the product of a row-vector x and the matrix P (t). All P (t)’s are Markov601

operators in that they leave the set of densities invariant: if x is an initial distribution of the602

chain, then P (t)x is its distribution at time t ≥ 0. Moreover, the Markov property of the chain603

is expressed in the semigroup property:604

P (t)P (s) = P (s+ t), s, t ≥ 0.

Under mild, natural assumptions on transition probabilities we also have605

lim
t→0+

‖P (t)x− x‖ = 0, x ∈ `1.

These properties are summarized in the statement that {P (t), t ≥ 0} is a strongly continuous606

semigroup of operators in `1.607

Thus, with each Markov chain we have the associated (uniquely determined) strongly contin-608

uous semigroup of Markov operators. Conversely, if all Markov chains with the same transition609

probabilities are identified, one may speak of the Markov chain related to a strongly continuous610

semigroup of Markov operators.611

There are two commonly used infinitesimal descriptions of strongly continuous semigroups of612

Markov operators in `1. First, (see e.g. [2, 12, 15]) a strongly continuous semigroup determines613

and is determined by its generator A, defined by614

Ax = lim
t→0

t−1(P (t)x− x),

on the domain D(A) composed of x such that the limit on the right-hand side exists. Second,

as proved by Doob [10] (see [4, 14]) the limits, called intensities,

qp,p := lim
t→0

pp,p(t)− 1

t
, p ∈ P,

qp,q := lim
t→0

pp,q(t)

t
, p, q ∈ P, p 6= q

exist, and qp,q, p 6= q are finite. However, even if all intensities are finite, knowing the entire615

intensity matrix Q := (qp,q)p,q∈P is not equivalent to knowing A. For, whereas A contains616

the entire information on the semigroup {P (t), t ≥ 0}, the matrix Q in general does not.617

Nevertheless, ifQ is non-explosive, Q and A may be somewhat identified: for a typical x ∈ D(A),618

the product x ·Q can be computed, and Ax turns out to be equal to this product. For explosive619

intensity matrices this is not the case; see e.g. the already cited [1, 4], and in particular Chapter620
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3 in [4]. In fact, for an explosive matrix there are many different Markov chains, many different621

semigroups of Markov operators and many different generators related to this matrix.622

Coming back to the chain of interest, Section 4, and specifically Theorem 4.1 imply that there623

exists a Markov chain related to the intensity matrix QS of (3.4) and (3.6) which is well-defined624

for all t ≥ 0. In particular, QS is non-explosive. This is because the related chain reaches625

an absorbing state by passing through a finite number of transient states. This rules out the626

possibility of explosion, since an exploding chain is passing through an infinite number of states627

in a finite time. Therefore, by Kato’ Theorem (see the references earlier on), there is a unique628

strongly continuous semigroup of Markov operators {PS(t), t ≥ 0} in `1 with the generator, say629

S, identified with QS.630

The case of intensity matrix QM of (3.3) is simpler, because all its entries are bounded in631

absolute value by Nλ, while a bound does not exits for the matrix (3.4)–(3.6). It follows that632

for any x ∈ `1 the product x ·QM may be computed and belongs to `1, where x is a row-vector,633

and the map634

`1 3 x 7→Mx := x ·QM

is bounded. Hence, QM may be identified with a bounded linear operator M and the semigroup635

of Markov operators related to QM may be defined as the exponent of this operator:636

PM(t) =
∞∑
n=0

tnMn

n!
, t ≥ 0.

(See e.g. [4] Section 2.3 for details.). Further, operator M is the generator of semigroup637

{PM(t), t ≥ 0}.638

Boundedness of the operator M guarantees that the operator639

A := S + M

is well-defined on D(A) := D(S) and, in view of the Phillips Perturbation Theorem (see e.g.640

[2, 4, 12, 15]), is a generator of a strongly continuous semigroup, say {P (t), t ≥ 0}. On the641

other hand, using the Trotter Product Formula, which says (see the monographs cited above)642

that643

P (t)x = lim
n→∞

[
PS

(
t

n

)
PM

(
t

n

)]n
x, t ≥ 0, x ∈ `1,

we check that this semigroup is composed of Markov operators, because so are {PS(t), t ≥ 0}644

and {PM(t), t ≥ 0}. It can be argued that this semigroup describes the minimal Markov chain645

related to Q. But, by Kato’s Theorem, if Q were explosive, this semigroup could not be646
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composed of Markov operators. This shows that Q is non-explosive, and thus that the minimal647

chain is well-defined for all times t ≥ 0. It is this minimal chain related to Q that models648

the evolution of our population under selection, drift and mutations. In other words, by the649

Markov chain related to Q we mean the unique minimal chain related to this matrix: since Q650

is non-explosive this chain is well-defined for all t ≥ 0.651
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Figure 1. Calculating probability p1 in the case N = 3. Dotted lines denote

communication between events associated with (f1, f1, f3) and (f1, f3, f3), and

(f1, f2, f1) and (f1, f2, f2).
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Figure 2. Average fitness of individuals. Results for 30 simulations with param-

eters: A: s = 0.8, d = 0.05, p = 0.1, L = 5, N = 50 (strong positive selection);

B: s = 0.1, d = 0.01111, p = 0.1, L = 5, N = 50 (equilibrium); C: s = 0.01,

d = 0.05, p = 0.5, L = 5, N = 50 (negative selection); D: s = 0, d = 0.5, p = 0.5,

L = 5, N = 50 (lack of impact of driver mutations); E: s = 0.01, d = 0.5, p = 0.1,

L = 100, N = 20; F: s = 0.05, d = 0.5, p = 0.1, L = 100, N = 20 (large mutation

rate, passengers prevailing).
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Figure 3. Results for one simulation on N = 20 individuals with parameters:

s = 0.8, d = 0.05, p = 0.1, L = 2 (strong positive selection). A: Average

fitness of population. Mutation events are marked with red (driver) and blue

(passenger) asterisks; B: Time succession patterns of clones started with driver

mutations colored according to fitness of given clone; C: Genealogies of the clones

initiated by drivers and passengers. Lines between nodes represent driver (red)

and passenger (blue) mutations. Green circles mark are clones alive at the end

of simulation (t = 20).
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Figure 4. Results for one simulation on N = 20 individuals with parameters:

s = 0.1, d = 0.01111, p = 0.1, L = 2 (equilibrium). A: Average fitness of

population. Mutation events are marked with red (driver) and blue (passenger)

asterisks; B: Time succession patterns of clones started with driver mutations

colored according to fitness of given clone; C: Genealogies of the clones initiated

by drivers and passengers. Lines between nodes represent driver (red) and pas-

senger (blue) mutations. Green circles mark clones alive at the end of simulation

(t = 20).
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Figure 5. Results for one simulation on N = 20 individuals with parameters:

s = 0.01, d = 0.05, p = 0.5, L = 2 (negative selection). A: Average fitness of

population. Mutation events are marked with red (driver) and blue (passenger)

asterisks; B: Time succession patterns of clones started with driver mutations

colored according to fitness of given clone; C: Genealogies of the clones initiated

by drivers and passengers. Lines between nodes represent driver (red) and pas-

senger (blue) mutations. Green circles mark clones alive at the end of simulation

(t = 20).
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Figure 6. Results for one simulation on N = 20 individuals with parameters:

s = 0, d = 0.5, p = 0.5, L = 2 (lack of impact of driver mutations). A: Average

fitness of population. Mutation events are marked with red (driver) and blue

(passenger) asterisks; B: Time succession patterns of clones started with driver

mutations colored according to fitness of given clone; C: Genealogies of the clones

initiated by drivers and passengers. Lines between nodes represent driver (red)

and passenger (blue) mutations. Green circles mark clones alive at the end of

simulation (t = 20).
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Figure 7. Results for one simulation on N = 20 individuals with parameters:

s = 0.01, d = 0.5, p = 0.1, L = 100 (large mutation rate, passengers prevailing).

A: Average fitness of population. Driver mutation events are marked with red

asterisks; B: Time succession patterns of clones started with driver mutations

colored according to fitness of given clone.
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Figure 8. Results for one simulation on N = 20 individuals with parameters:

s = 0.05, d = 0.5, p = 0.1, L = 100 (large mutation rate, passengers prevailing,

case with decreasing fitness). A: Average fitness of population. Driver muta-

tion events are marked with red asterisks; B: Time succession patterns of clones

started with driver mutations colored according to fitness of given clone.
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Figure 9. Results for one simulation on N = 20 individuals with parameters:

s = 0.05, d = 0.5, p = 0.1, L = 100 (large mutation rate, passengers prevailing,

case with increasing fitness). A: Average fitness of population. Driver muta-

tion events are marked with red asterisks; B: Time succession patterns of clones

started with driver mutations colored according to fitness of given clone.
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Figure 10. Results for 10 simulations of reduced process with N = 20 and

remaining parameters: A: s = 0.1, d = 0.01, p = 0.5 (sp > dq); B: s = 0.01,

d = 0.1, p = 0.5 (sp < dq); C: s = 0.01, d = 0.5, p = 0.5 (sp < dq). In all cases

L = 2.)
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