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ABSTRACT. In a series of publications McFarland and co-authors introduced the tug-of-war
model of evolution of cancer cell populations. The model is explaining the joint effect of
rare advantageous and frequent slightly deleterious mutations, which may be identifiable with
driver and passenger mutations in cancer. In this paper, we put the Tug-of-War model in
the framework of a denumerable-type Moran process and use mathematics and simulations
to understand its behavior. The model is associated with a time-continuous Markov Chain
(MC), with a generator that can be split into a sum of the drift and selection process part
and of the mutation process part. Operator semigroup theory is then employed to prove that
the MC does not explode, as well as to characterize a strong-drift limit version of the MC
which displays “instant fixation” effect, which was an assumption in the original McFarland’s
model. Mathematical results are fully confirmed by simulations of the complete and limit
versions. They also visualize complex stochastic transients and genealogies of clones arising in

the model.
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1. INTRODUCTION

The Tug-of-War model was developed in a series of papers of McFarland and co-authors [21],
23, 24] to account for existence of mutually counteracting rare advantageous driver mutations
and more frequent slightly deleterious passenger mutations in cancer. In its original version it is
a state-dependent branching process, analyzed by a range of simulation methods and analytical
approximations.

We adopt a different, simpler, approach, in which we reformulate McFarland’s original defi-
nition to put it into the framework of a Moran model, which we investigate by complementary
methods of mathematical analysis and simulation.

In the current study we are not primarily concerned with understanding the genealogies of
the individuals such as cancer cells present in the populations. We identify individuals with the
same counts of passenger and driver mutations and follow trajectories of the so-defined types.
As it will become clear in the sequel, process behavior is quite complicated. Nevertheless,
we demonstrate absorption properties of the process with no mutations (Section {4f) and use

operator semigroup theory to prove two limit cases (Section .

2. THE MODEL: A POPULATION UNDER SELECTION, DRIFT AND MUTATION

We consider a population of a fixed number N of individuals, each of them characterized by a
pair of integers (a, ), corresponding to the numbers of drivers and passengers in its genotype,

respectively. This pair determines the fitness f of the individual by the formula
(2.1) f=01+s)*1-d)7,

where s > 0 and d € (0,1) are certain parameters describing selective advantage of driver
mutations over passenger mutations. Thus, the entire population may be identified with the

vector
p= ((0517 61)7 R (&Na BN))
of N pairs of integers, with the accompanying vector

fz(flv"wa)

of fitnesses.
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The population is under drift and selection pressure: the individual of type (ay, ;) lives for

an exponential time with parameter

> (14s)%(1—d)

where the sum is over all j = 1,..., N such that (a;, 5;) # (a4, 5;), and then is replaced by
an individual of different type. More specifically, let n, 3 be the number of individuals of type
(a, B) and n be the number of different types of individuals in the population, then the time
to the death of each individual of type (o, 3;) is the minium of n — 1 exponential random
variables T, 5, where (o, B;) # (cu, 3;) and T, 5, has parameter n,, ,(1+ )% (1 —d)%. Upon

this individual’s death, conditional on the minimal time being equal to T, this individual

e
is replaced by one of the individuals of type (ag,fx), each if these individuals being equally
likely. This process then continues with p modified by replacing its ith coordinate (o, ;) by
its kth coordinate (ay, Bg).

In particular, if all individuals in p are pairwise different, the time to the first drift and

selection event for the entire population is exponential with parameter (N — 1)%f where

N

After this time is over, one individual dies and is replaced by an exact copy of one of the
remaining individuals, the probability that the ith individual dies and is replaced by the jth
(7 # i) being ﬁ If, on the other hand, all individuals are the same, nothing happens:
there are no drift and selection events.

Moreover, each individual may, after an independent exponential time with parameter, say A\,
and independently of other individuals, undergo a mutation event, changing its state to either
(o +1,5) or (e, 5 + 1) with (conditional) probabilities p € (0,1) and ¢, respectively. In other
words, all mutations occur at the epochs of a Poisson process with intensity A, occurrences
of driver mutations on each individual form a colored Poisson process, with probability of
coloring equal p, and the occurrences of passenger mutations form a colored Poisson process
with probability of coloring equal ¢g. It follows (see the Colouring Theorem on p. 53 in [17])

that driver and passenger mutations form Poisson processes with parameters

v=MAp and = Aq,
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respectively, and these processes are independent of each other, and independent of mutation
processes on other individuals. (Although technically we never use this assumption, what
we have in mind is the case where p is significantly smaller than 1 — p, so that long strings of
passenger mutations are interrupted by rare driver mutations.) In particular, given that initially
an individual’s fitness is f, after time ¢ its expected fitness is the product of f, e *Pte??(1+9) (the
contribution of driver mutations) and e~**e*(1~9? (the contribution of passenger mutations),

and thus equals
(2.2) f(t) =eMer=da >,

In a number of cells this expected fitness does not grow to infinity or decay to zero; such cells
are thus characterized by the following balance condition for the introduced parameters:

B d
Cos+d

(2.3) sp=dq, or p

In other words, the advantage gained by a driver mutation is balanced by the small probability
of such event.
In other cells, however, driver mutations, though rare may have a slight edge over the pas-

senger mutations caused by large s. Such cell populations are characterized by

d
s+d

(2.4) sp>dgq, or p>
In yet different populations, driver mutations will be so rare that the expected total fitness
diminishes in time. To characterize such populations, we reverse the inequalities in (2.4)).

3. A MARKOV CHAIN AND THE RELATED INTENSITY MATRIX

The population described in Section [ is modeled by a stochastic process
(3.1) p(t),t >0

with values in the state-space 3 of N ordered copies of the Cartesian product N x N, where N

is the set of natural numbers:
L= (N x N)V,

This is just to say that at each time ¢, the population is an N-tuple of pairs (a;(t), 5;(t)),i € N

of positive integers, where

N ={1,...,N}.
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Since B is a countable set, the process p(¢),¢ > 0 may be thought of as a time-continuous
Markov chain.

Such Markov chains are conveniently described by means of intensity (Kolmogorov) matrices
that gather information on rates (intensities) with which these processes leave a given state
and jump to other states (see e.g. [, 25]; see also our Section [L0). We will write the intensity
matrix for the process as the sum of two intensity matrices representing mutations and
drift and selection events, respectively.

To describe the first of these, call it @y, (‘M’ for ‘mutations’) let D and P (‘D’ for driver

and ‘P’ for passenger) be the following maps of N x N into itself:
(3.2) D(a, ) = (a+1,5) and  P(a,B) = (a,8+1).

Moreover, for each i = 1,..., N, let D; : 8 — B be the map in which the ith coordinate (o, 3;)
of a p € P is replaced by D(«y, ;). Similarly, let P; : 9 — P be the map in which the ith
coordinate (a;, 3;) of a p € P is replaced by P(c, f;). In these notations, the intensity g, 4 of
going from a state p € P to a state q € P in the mutation process is

(

Ap if ¢ = D;p for some i € N,

Aq if ¢ = P;p for some i € N,
(3.3) Toa =
—NX ifq=0p,

0 otherwise.
\

Similarly, for 7,5 = 1,..., N let R;; : ' — ‘B be the map that replaces the 7th coordinate

(ay, B;) of a p € P by its jth coordinate (o, 5;), leaving the remaining coordinates intact. For

example, it N = 37 Rl,3 maps ((alvﬂl)?(a27ﬁ2)7(@3753)) to ((Oé3?63)7(a2752)7<043763>)‘ The

intensity matrix describing drift and selection events, say ()s, has then the following entries:

njf; if ¢ = R, p for some i,j € N such that («;, ;) # (¢, 5;),
(3.4) Toa =
0 otherwise,

where n; is the number of individuals in p that are identical to the individual number j and

f = (fi)ien is the vector of fitnesses of individuals in p. More specifically,

(3.5) fi=(1+8)%1—d)f% icN.
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7
8o This formula does not cover the case where q = p because this case requires a bit of prepa-
90 ration. Namely, let n, g denote the number of individuals of type (a, 5) so that in particular
o1 > iennij = N. Then,
(3.6) Qpp = — Z Na.p Z nys(1+8)7(1 —d)°.

o,BEN 7,0€EN;(7,0)#(a, )
92 We note that in the case where all individuals in a population p are different, the formula for
93 ¢y, simplifies to:

QGp = —(N — 1)Xf.

94 On the other hand, if all individuals in this population are of the same type, g,, = 0.
95  Finally, the entries in the intensity matrix @) for the entire chain (3.1)) are sums of the entries

96 of matrices Q3 and Qg:

(3.7) Q=Qu+ Us.
97 4. PROPERTIES OF THE DRIFT AND SELECTION CHAIN
98 Consider the evolution of a population when mutations are absent, and only drift and selection

99 events, as described above, are possible. This evolution is governed the intensity matrix Qg
100 with entries given in and (3.6).

101 For definiteness, let p = ((c, 8i));cp be the initial state of this population and assume that
102 all its individuals have different characteristics, i.e. (o, 5;) # (aj, ;) for i # j. It is rather
103 easy to see first of all there is only a finite number of states that can be reached from the state
104 p: more precisely, there are at most N such states (including p itself). For, since the chain is
105 that of replacing coordinates of p by copies of other coordinates, there are only N possibilities
106 for the first coordinate of future states, N possibilities for the second coordinate, and so on.

107 Second, all these states, except for those with all coordinates equal, i.e. except for

pi = (v, B), (04, Bi), - ., (v, i), ieN

108 are transient for this chain. Indeed, for any other state there is a non-zero probability that the
100 number of different individuals in the population will decrease in the next drift and selection
110 event. Since the rules of the chain do not allow jumps from the states with smaller number
111 of different individuals to the states with larger number of different individuals, the process
112 will never come back to the state under consideration. This shows that this state cannot

113 be recurrent, and thus, by the well-known dichotomy (see e.g. [25], Section 3.4) it must be
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114 transient. On the other hand, all the states p;,7 € AN are absorbing. Hence, the process
115 starting at a p must eventually end up at one of p;’s. Certainly, in the case where not all
116 individuals in the original population are different, the fate of the population is similar: it is
117 only the number of possibilities for the end population that is smaller. We summarize our

118 discussion in the following theorem.

119 Theorem 4.1. Let p € P be a population and let M be the number of different variants in
120 p. Then, there is a set M C N such that (a) M = #M, and (b) i # j,i,7 € M implies
121 (04, 5;) # (aj,B). Fori € M let p; € B be the population in which all individuals are
122 identical to each other and to the ith individual in the original population p. Then, the drift

123 and selection chain starting at p will eventually end up at p; with certain probability p; = p;(p)

124 where Y, pi = 1.

125 We note in passing that whereas there could be many choices of M, the thesis of our theorem
126 remains the same for all of them.

127 This theorem is a reflection of the fact that drift and selection chain strives to reduce the
128 number of variants in the population by removing randomly selected variants and replacing
120 them by other variants; in the absence of other forces, and mutation in particular, the chain’s
130 operation in the long run leads to fixation of one the variants. What this theorem does not
131 express openly is that drift and selection chain favors variants with larger fitness. The latter
132 information, besides being visible in formula (3.4)), is hidden in the probabilities p; featuring
133 in Theorem roughly speaking, the larger the fitness of an individual, the larger is the
134 probability of fixation of its variant. Notably, even though selection favors variants with larger
135 fitness, it acts together with genetic drift which may ‘blindly’, by chance, remove better fit
136 variants from the population. Hence, the fact that a variant with larger fitness is favored by
137 selection results in a higher probability of its fixation, and not in the inevitability of its fixation.
138 In what follows we will see this principle expressed in explicit formulae for p;’s in the cases
139 N = 2 and N = 3, considered here for the sake of illustration. In our calculations it will be
140 convenient, for the sake of shortening our equations and making figures readable, to identify
141 a population p, which is an N-dimensional vector of pairs of integers, with the N-dimensional
142 vector of corresponding fitnesses calculated by formula , the latter vector being half as
143 long as the former. Although it is possible, by an appropriate choice of parameters, to have

144 two different individuals with the same fitnesses, i.e. to have (a;,3;) # (o, ;) and at the
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9
145 same time (1 + 8)% (1 — d)# = (1 + s)*(1 — d)%, such an identification should not lead to
146 misunderstandings.

147 For N = 2 the probabilities p; and ps are easily calculated explicitly: unless it is already

148 uniform, a population p with fitness (f1, fo), after an exponential time with parameter f; + f,

149 becomes p; with probability flil 7, O P2 with probability fIJ—E 5 This shows that p; = ﬁil 7 and
f2

150 pa=1—p = i

151 Somewhat surprisingly, already for N = 3 the formulae for p;’s are more complicated, and

152 do not follow the perhaps expected pattern p; = % Before we see that, however, we note
153 the following important property of the chain under consideration: Let us call two states
14 f=(f1,...,fn)and ' = (f],..., fx) associated if there is a permutation II of the set N such

155 that f/ = fu@),i € N. The property we want to note is as follows.
156 Theorem 4.2. The drift and selection processes starting at two associated states are analogous.

157 What we mean by that proposition is that (a) the times to the first drift and selection events
158 for either of two associated states f and f’ have the same distribution, (b) the probability that
150 in such an event the ¢th coordinate of f is replaced by the jth, is the same as the probability
160 that the I1(z)th coordinate of f” is replaced by the II(j)th, and (c) if in these drift and selection
161 events the ith coordinate of f is replaced by the jth, and the I1(i)th coordinate of f’ is replaced
162 by the I1(j)th then the states after these events are again associated. These statements are clear
163 from the description of the drift and selection chain, and combined together prove Theorem
164 4.2

165 We are now ready to find p;s for N = 3. We think of a process that starts at an f = (f1, fa, f3).
166 Figure (1| illustrates the fact that in order to reach the state f; = (fi, fi1, f1) this process must

167 go through (f1, f1, f3), (f1, f2, f1) or one of their associates. The first of these states is reached

i
25f

160 via (f1, fs, f3), with probability % flf‘: - Thus, the probability of reaching (fi, fi1, f3) or one of

168 directly with probability This state or one of its associates may also be reached indirectly,

170 1its associates is

£f1+2f3
25f fi+ f3

171 Then, before reaching f; from one of these associated states, the process may visit an associate
172 of (f1, f3, f3), and this may happen k£ > 0 times. Since the properties of the processes starting

173 from associated states are analogous, the probability of reaching f; from one of associates of
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(f1, f1, fs) is

fi fx:ﬁ Y( fi Y: fi 1
Ji+ [ Ji+ [ it fs f1+f31—(ffjrﬁ)z.

k=0

Therefore, the probability that f; will be reached through (f1, fi, f3) or its associate is Qf—gf%
1 3

and so
(4.1) b= fi { Ji+2f n Ji+2f3 }
25f | fE+ f3+ fife A+ Af]]
because the case where the process goes through associates of (fi, fa, f1) is symmetrical. Using

symmetry again, we obtain

_sz{ fa+2f L fo+2fs 1

PTSH R B RE BB R
and
3 f3+2f f3+2fs
Ps=o5c |72 12 T o e :
i+ B+ A L+ E+fafs
As remarked above, these formulae illustrate the fact that the drift and selection process,

besides striving to minimize the number of variants, tries also to maximize the total fitness of
the population by selecting against the variants with small fitness.

Analogous formulae for the case N = 4 were also obtained, using Maple, but even after
simplification, they were too long to be informative; each of them occupied half a page. Hence,
in the absence of explicit formulae, we content ourselves with the following theorem which shows

that drift and selection events ‘on average’ increase the total fitness of population.

Theorem 4.3. Let f' be the state of the process right after drift and selection event of a popu-
lation f. Then
EXf' > 3f,

where E denotes expected value.

Proof. Each event of replacing the ith coordinate of f by its jth coordinate is paired by the
event in which the jth coordinate is replaced by the ith coordinate. The first of these events
takes place with probability f;/|gy,|, where g, , is the diagonal element of the generator matrix
in Equ. . Accordingly, Xf' — Xf = f; — f;, and the second event’s characteristics are
symmetrical. Therefore, E X" — Xf equals

S [(fj_fi)fj N (fz'—fﬁfi} =S - 20,

i< |gp.p |Gp 0]

completing the proof. 0
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11
196 Next, we turn our attention to the situation where in a homogeneous population a new,
197 possibly better fitted, variant shows up. In other words, the vector of fitnesses is of the form
198 (f1, fa, f2, ..., f2) where f; > fy. We are interested in the probability that variant with fitness
199 f; will take over the entire population, i.e. in the probability that the drift and selection process

200 will be absorbed in the state (fi, fi1,..., f1)-

201 Theorem 4.4. Let N > 2. The probability that the drift and selection process starting at

202 (f1, fa,.-., [2) € P is eventually absorbed at (f1, f1,..., f1) equals
1

N-—1
I f2 f2
(fl ) (fl )

203 Proof. Let X(t) be the number of individuals of fitness f; in the population p(¢). Because of

(4.2) hy =

204 Theorem[4.2] X (¢),¢ > 01is a time-continuous Markov chain with values in the set Ny := {0}UN,

205 and the elements of its intensity matrix are as follows:

(o it i e {0, N},

i(N — i) f ifj=i—1,i¢{0,N},
(4.3) Gij = —(f1+ fo)i(N—i) ifj=1i,i¢{0, N},

i(N —i)fy if j=i+1,i¢{0,N},

0 otherwise.

\
206 We are interested in the probability that X (¢),¢ > 0 will be absorbed at the state N, given
207 that X (0) = 1. This probability is the second coordinate in the vector (hy, ..., hy) of so-called
208 hitting probabilities for the absorbing state {N} which, by Theorem 3.3.1 in [25] satisfy the

200 following system of equations:

N
Zquhj = 0, Z g {O, N}
§=0
with ‘boundary conditions’ hg = 0, hy = 1. In other words
(44) hz = Chi_l + dhi+1,

_ _f _ _N - _
210 Wherec—fl+f2andd—fl+f2forz—1,...,N 1.

211 To solve this system, as in p. 16 of [25] or [1I] p. 192, we introduce u; = h;_y — h; for

212 i =1,...,N. Then the recurrence relation (4.4) becomes u;1 = Su; = %ui, 1=1,...,N—1.



https://doi.org/10.1101/2021.10.20.465201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465201; this version posted October 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12

213 Therefore, by induction,

(45) ui:<%>z_ Uy, 221,,N

N-1
214 It follows that Zf\;l u; = (1 + (%) + -t (%) ) u1. On the other hand, by the definition

215 of u;s and the boundary conditions for h;s, Zfil u; = hg — hy = —1. Hence we obtain that

hi = —u; = 1 - desired. O
216 hy Uy 1+(%)+“.+<%>N T, as desire

217 We complement this theorem with three remarks. First, we note that (4.5)) hides an explicit
218 formula for h; for any i € N, i.e. for the probability that a subpopulation of i individuals of
219 fitness f; will take over the entire population. For, since Z;Zl uj = hyg—h; = —h;, this formula,

220 when combined with (4.2)), renders

i1
L2 ce L2
() (8)
e f2 f2 N=L
L () ++ (B)
221 Second, observe that formula (4.2)) in the case N = 2 agrees with the formula for p;, and in
222 the case N = 3 can be obtained from (4.1)) by replacing f3 by fo.

ieN.

223 Third, in our proof of we never used the assumption that f; is larger than f,. However,
224 since N, being the size of the considered population, is typically rather large, for f; < f5, the
225 probability of is small. This means that new variants without sufficient selective advantage
226 are simply washed away from the population.

227 On the other hand, given r € (0, 1) (to play the role of a probability), think of f; as of chosen

228 so large as compared to fy that

(4.6) o <l-r.

h

N-1
220 Then 1+ (%) 4+ -+ (f—2> < : 1f2 < % Therefore, for such f; (and f5), hy > r. In other
T
230 words, by enlarging f; sufficiently, we 1may make the probability of mutant’s fixation as large

231 as we wish.

232 We complete this section with information on the expected time to allele’s fixation.
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233 Theorem 4.5. Let N > 2. The expected time for the drift and selection process starting at
234 (f1, fo,.--, f2) € to be eventually absorbed at (fi, f1,---,f1) or (fa, fa,.- ., f2) equals

(4.7) b= %N;l (; ](N;—]) (%)J)

235 where hy is defined by formula (4.2)).

236 Proof. The time of interest is the second coordinate in the vector (ky, ..., ky) of hitting times
237 for the absorbing set {0, N} which, by Theorem 3.3.3 in [25] satisfy the following system of

238 equations:
N
_ZQi,jkala i ¢{0,N}
§=0
with ‘boundary conditions’ kg = 0, ky = 0, where g; ;’s are defined in (4.3]). In other words
(48) kz = Cki—l + dk’i_;,_l + €5,

_ _f _ _f — 1  — _
239 where ¢ = flTsz’d = ﬁ and e; = T fori=1,...,N — 1.
To solve this system, as in the previous theorem, we introduce v; = k;_y —k; fore =1,... N.
Then the recurrence relation (4.8) becomes vi41 = v; + 5 = %vi + m, i=1,...,N—1.
It follows that

i—1 =l
01 [ CRES o
Uy (1_11: fi vt f14 1 j(N_j) i:l%

forv=2,..., N. We see that

N N i—1 i—1
U1 J2 1 1
Yosnen(G) g )

VSN =) (£

2t S (Y (%))

=1 J=1

On the other hand, by the definition of v;’s and the boundary conditions for k;’s, vazl v; =

ko — ky = 0. Hence
N-1 , i i—j
P2 (Sa(7) )
ki =—vy =— -~ | 7 ,
o fZ — j(N - )\ h

240 completing the proof. U
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241 5. ASYMPTOTIC BEHAVIOR OF {Ps(t),t > 0}

242 In the Supplement we demonstrated the existence of a Markov chain related to the
243 intensity matrix Q = Qy + Qg of , i.e. the chain encompassing the mutation and drift
244 “components” of the model we consider.

245 Before embarking on the study of limit versions of the semigroup {P(t),t > 0} related to

246 this chain, let us rephrase the results of Section 4| to find the limit

lim Ps(t).
t—o0
247 'To this end, given p € B, consider
(5.1) ey € 01

248 defined by e,(q) = 0,9 # p,ey(p) = 1. Then Pg(t)e, is the pth row of transition probability
249 matrix Pg(t), composed of probabilities p, 4(¢) that drift and selection chain starting at p will be
250 at q at time ¢ > 0. As explained in Section 4] at most NV probabilities in this row are non-zero,
251 and as t — oo even all of these at most NV probabilities tend to zero, save for M < N of
252 them corresponding to populations where all individuals are identical to each other and to one
253 of the members of the original population, where M = M (p) is the number of variants in the
254 population p. Each of the latter M probabilities, on the other hand, converges to one of the
255 probabilities p;(p) described in Theorem Since ).\, pi = 1, by Scheffés’ Theorem (see
256 e.g. [4]), Ps(t)e, converges to the vector with probabilities p;(p), in the norm of ¢*. Here is a

257 consequence of this remark.

258 Theorem 5.1. Let the matriz II = (7?,,70,)p qep € defined as follows. For each p we choose a

250 subset M C N as described in Theorem [[.1], and let

pi(p)  if q=yp; for ani e M,

Tpg =
0 otherwise

260 (where p;(p)s are defined in Theorem |4.1). Then, for any x € (*,

(5.2) lim Pg(t)x = lz (== x - II).

t—o00

261 Proof. By the reasoning presented above, (5.2)) holds for x = e,,p € B. By linearity, this
262 formula extends to all combinations of e,’s. Since such combinations are dense in ¢!, a three

263 epsilon argument based on ||Ps(t)|| = 1, > 0 completes the proof. O
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264 6. ASYMPTOTIC BEHAVIOR OF {P(t),t > 0}: INTUITIONS

265 The semigroup {P(t),t > 0} describes the chain in which both mutations and drift and
266 selection events take place. As such, it describes not only a tug-of-war between driver and
267 Ppassenger mutations but also a competition between selections and mutations, these population
268 genetic forces counteracting each other. But, it is one of the main characteristics of drift and
269 selection chain (see and (3.6))) that the rate at which new drift and selection events come
270 about grows with the total fitness of the population. It follows that in some regions of & the
271 rate of mutation is larger than the rate of drift and selection events and in other regions the
272 former is smaller than the latter. Hence, in some regions selection will be more expressed, and
273 in other regions effects of mutations will be more apparent.

274 There are no clear boundaries between these regions, no man’s lands lie between them, and
275 random forces may lead via these no man’s lands from one region to another. Nevertheless, the

276 three main regions, denoted Ry, R; and R,, may be characterized as follows.

217 6.1. Ry region. The central region R, contains populations in which drift and selection events
278 occur at a rate that is of the same order as the rate of mutations. By suitable scaling of

279 parameters, this is the region where
(N —1)Xf =~ N

280 The expression above is inaccurate, since on the left-hand side, instead of the exact expression
281 for the intensity of time to the drift and selection event, we placed a simplified one, true only
282 when all individuals are different. However, this is sufficient for the present purposes which is to
283 define a region in which mutations have force comparable to drift and selection. We will carry
284 out a more accurate analysis using the limit process (see Lemma and the text preceding
285 and following it).

286 An individual member of a population in this region collects new driver and passenger mu-
287 tations over time: being characterized initially, at time ¢ = 0, by («, 3), by the time ¢ > 0
288 it becomes of the type (o + m, [ + n) (provided it is still alive), but if assumption is

280 satisfied, the quotient Zewfitness — (1 4 gym(1 _ d) i roughly 1. In other words, between drift

old fitness
log(1+s)

T log(i=a) % individual fitness

200 and selection events, all individuals travel the path where n ~

291 does not change much in time. Travels along such paths are of course interrupted by deaths

292 of individuals which are replaced by copies of other individuals. Genetic drift may thus sweep
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203 away rare variants, but some kind of statistical equilibrium is obtained between mutations
204 introducing new variants and drift that continually reduces variability (see e.g. [5], [6, [7) [§]).

295 However, random fluctuations may force a population out of this region of balanced genetic
206 forces to one of the following two regions, where one force prevails against the other. A popu-
297 lation may, even the more, be forced out of this region by a temporary or permanent change of

208 parameters a,d and p, so that e.g. condition (2.4) rather than ({2.3)) is satisfied.
299 6.2. R; region. In the lower region R; we have
(N —1)3f < NA.

300 Because of that assumption, drift and selection events are very seldom as compared to mutation
301 events. This means that individuals live for relatively long times, and over periods of their lives
302 accumulate mutations that distinguish them more and more from other individuals. In other
303 words, the members of the population are rather loosely linked, and evolve quite independently

304 of each other.

305 6.3. R, region. The upper region R, is characterized by
(N —-1)%f > NA

306 Here the situation is quite different: these are the mutations that are relatively rare as compared
307 to the drift and selection events. Each individual lives for a short time and before it is able
308 to collect a significant number of mutations distinguishing it from other individuals, dies and
300 is replaced by another individual. As a result, very quickly the population becomes uniform:
310 there is practically only one variant in it (i.e., one variant is fixed) as in Theorems and ,
311 members of this population could be descendants of a rare but strong variant or of a week but
312 frequent one in the initial population (see Theorem . In the next two sections we will be

313 able to say more on how mutation process looks like in such populations.

314 7. ASYMPTOTIC BEHAVIOR OF {P(t),t > 0} IN THE UPPER AND LOWER REGIONS

315 In this section, we provide a more rigorous mathematical argument, based on the theory of
316 convergence of semigroups, for the intuitions of Sections [6.2] and [6.3] However, this argument

317 still needs to be preceded by the following heuristic reasoning.
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318 Let us consider a subregion S of R, where total fitness of populations, in addition to being
319 ‘much larger’ than N\, is approximately constant: there is a x > 0 such that

Xf(p)

(7.1) v

~ k>, pes,

320 where f = f(p) is the fitness vector for p. Assume also that for each p in S with the fitness vector
321 f=(f1,...,fn) one may find a p’ € P with fitness vector f' = (f],..., fy) where f/ ~ % ~ f;
322 Then p’ belongs to Ry and the intensities g, , of the drift and selection chain (see and
323 (3.6)) in the region S are related to the intensities gy o of the corresponding points p’, q' € Ry

324 as follows:
Qpq = KQy g, p,q € S.

325 At the same time, intensities of the mutation chain (see (3.3))) do not change in the transfer
326 from p to p'.
327 It follows that instead of thinking of the chain in S governed by 2 = & + 91 we may think

328 of the chain in Ry governed by
(7.2) A, = rG + M.

329 Arguing as at the end of Section we check that for each x > 0, 2, is the generator of a
330 semigroup, say {P.(t),t > 0}, of Markov operators. Thus, our task is that of characterizing

331 the limit

lim P.(t)z

K—00

332 where x € ¢! is a distribution concentrated in R,.

333 This can be done effectively via Kurtz’s singular perturbation theorem [12| 19, 20] or Chapter
334 42 in [3], and the analysis does not require assuming that z is concentrated in Ry. In a simple
335 case needed in our situation Kurtz’s theorem says that the limit above exists for all z € ¢! and

336 t > 0 provided the following two conditions are met:
337 (i) limy_o Ps(t)z =: Iz exists for all z € ¢1.
338 (i) TI9M with domain equal to £} is a generator in £}, where £} := RangeII.

339 To deduce this statement from Theorem 42.2 in [3] note that for x € Ker & = Rangell,
340 A,z = Mz and that for y € D(S), k1S, — Sy. As proved in Theorem , the first of these

341 two conditions is satisfied, and the second is clear since I is bounded; this establishes the
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342 desired convergence. Moreover, Kurtz’s theorem states that in such a case,

(7.3) lim P,(t)xr =™z,  t>0.

K—r 00O
343
344 An analogous reasoning shows that instead of thinking about the chain generated by & + 9t

345 in the lower region R, one may think of the chain in Ry governed by (compare (7.2)))
A. = kS + M,

346 where now xk < 1.
347 The limit
’lﬁgr(l) P.(t)x
348 where z € (! may be found with the help of the Sova-Kurtz version of the Trotter—Kato

349 convergence theorem for semigroups (see [3,[12,18]): since for each x € D(&) lim,_,o A,z = Mz,

350 and the set D(G) is dense in ', we have
(7.4) lim P, (t)x = Py (t)z.
k—0

351
352 Proofs of the two results are deferred to the supplement. The first one seems to be less
353 intuitive, but we may provide an elementary derivation for the finite dimensional case in which

354 it is sufficient to use Laplace transform and matrix calculus.

Conjecture: Given matrix exponent
O(t) = e(M+rD)t
such that
PP S II, t— o0

we have

M+kD)t

el — MM — o0

Proof: Consider the Laplace transform of ®(t)
O(s) = (sI — (M + D))"

We find that
I1 = lim e?" =lims(sI — D)™!' = lim ( — kD)™

t—o0 540 K—>00
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and then
®(s) = (sI — (M + kD))" = [sI+ (s —1)(I — kD) 'xD — (I — kD) *M]"Y(I — kD)™
and since
(I —kD)'vkD=(I—-kD)"—1
this converges as k — 0o to
(sIT— 11+ I — IIM) 1.
355 Since 112 = II the above is equal to (sI — IIM)~!II, which is the Laplace transform of e™™¢ II,

356 as desired.

357 8. INTERPRETATION OF ([7.3) AND ([7.4))

358 This section is devoted to interpreting the limit theorems just obtained.

350 8.1. Interpretation of (7.3)). Let us start by characterizing the space £} of point (ii) of the

360 previous section. To this end, for a, 5 € N, let

poz,ﬁ € ‘B

361 be the population of N identical individuals, each of type (c, 3), and let Y C ¢! be the subspace
362 spanned by e, ,,a, € N (recall (5.1))). In other words, Y is composed of vectors of the form

T = Z §a,8€pa 5

a,BEN
363 where _ 5[a] < 00.
364 Lemma 8.1. We have
=Y.
365 Proof. Each e, , obeys Ps(t)e,, , = e, ,, because p, s is an absorbing state for the se-
366 lection/mutation chain. By the definition of II it follows that Ile,, , = e, ,, i.e. that

367 €y, , € (3, a, 8 € N. Conversely, in the argument preceding Theorem ([5.1)) we have shown
368 that for any p € B, Ile, is a convex combination of (a finite number of) vectors p, g, hence is

360 a member of Y. Since e,’s span the entire ¢!, this completes the proof. O
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370 This lemma shows that the state-space of the limit process (which mimics the selection/mu-
371 tation/drift process in the regions of high total fitness) is composed of populations in which all

372 individuals are identical: this state-space is

UP = {p € P;p = pop for some o, f € N}.

373 The generator, IO, of this process is of interesting form. The value of 9 on z € £} usually
374 does not belong to 5. This is because 9 describes mutations: since each and every member
375 of a uniform population may increase the number of driver and/or passenger mutations, after
376 some time the population may contain different variants. However, the generator of the process
377 under consideration is a composition of 2 and II, and the latter operator maps 9x back to
s7s (). This corresponds to immediate intervening of drift and selection force, which makes the
379 population uniform again, although possibly not quite the same as previously.

380 Referring back to we see I is the generator of a Markov chain in 8 which may
381 be described as follows. Staring at a p, g the process stays there for an exponential time with
382 parameter NA. After this time is over, a randomly selected individual (each individual being
383 chosen equally likely) changes its type to (a + 1, ) with probability p, or to («, 5 + 1) with
384 probability q. Then drift and selection either eliminates the new variant or allows it to take
385 over the entire population. According to Theorem [4.4] the variant with new driver mutation is

386 fixed with probability

-1
1 s 1Y
pdl‘iV: 1 1 - 1_ y
1+m+“‘+w 1+s 1+s

387 Similarly, the variant with new passenger mutation is fixed with probability

_d LY,
Pross =70 \\1 =4

388 If the new variant is eliminated from the population, everything goes back to the state from

-1

389 before mutation. Thus, the time to effective change is exponential with parameter

N )\(ppdriv + qppass),

300 and after this time po g becomes pai1,s with conditional probability ——PPUu— or p, 541 with
riv pass

dPpass
ppdriv+Qppass :

392 If I is identified with N x N, i.e. if each population p, s € P is identified with its type

391 conditional probability

303 (a, ), the process described above is seen to be the pair of two independent Poisson processes
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304 on N x N: the driver Poisson process with intensity NAppayiy (increasing the a-coordinate) and
305 the passenger Poisson process with intensity NAgppass (increasing the S-coordinate).

396 Notably, in contrast to the processes of mutations in single individuals, where intensity of
397 driver mutations is much smaller than that of passenger mutations, here the situation is quite
398 the opposite: these are the driver mutations that are typically more frequent than the passenger
399 mutations. For, we have py.ss < N7'; on the other hand, arguing as in the vicinity of , we

400 see that it suffices to take s so large that

401 to have
Pdriv >r

402 where r € (0, 1) is given in advance.

403 The latter phenomenon has its source in the intervening selection process, described above,
404 which eliminates the vast majority of passenger mutations from the population.

405 Before completing this section, we take a last look at and note that this formula informs
406 us also that even though the ‘true’ initial distribution is a member of ¢! and needs not belong
a07 to £}, the drift and selection process intervenes so rapidly that before the process of mutations
408 starts the population becomes uniform (this is described by the vector Ilz). Again, if, for
409 example, in the initial population there is one dominant variant and a single new variant with

410 larger fitness then the latter variant may be fixed with probability given in Theorem [4.4]

411 8.2. Intepretation of ([7.4). Interpretation of ([7.4) is much simpler. This formula simply says
412 that in the lower region drift and selection events are so rare that in fact may be disregarded:
413 the chain behaves nearly as if there were no selection or drift. As a result each individual

414 evolves independently of the others, in agreement with intuitions set forth in Section [6.2]

415 9. SIMULATIONS

416 As stated in the Introduction, we consider a population of a fixed number N of individuals,
417 each of them characterized by a pair of integers (a, ), corresponding to the numbers of drivers
418 and passengers in its genotype, respectively. This pair determines the fitness f of the individual

419 by the formula

f=0+9)"1-a)7,
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420 where s > 0 and d € (0, 1) are parameters describing selective advantage of driver mutations

421 over passenger mutations. Thus, the entire population may be identified with the vector

p=((a1,B1),.,(an,Bn))

422 of N pairs of integers, with the accompanying vector

f=(fi,.... fv)

423 of fitnesses.

In each step of simulation, the decision is made whether the next event is the death and
replacement or mutation event. Let us denote by 7,, and 7§ the exponentially distributed and
independent random times to the mutation event and to a death/replacement event, respec-
tively. We simulate both times and the next event occurs at time ¢ + min(7,,, Ts), where ¢ is

the current time. According to the rules of our process, with mutation rate per cell A
T ~ exp(NX)

while, following Equ. (3.6)

T, ~ exp Z Mg Z nys(1+s)(1—d)°

a,BeN 7,0€N: (7,0)#(a,B)

424 where n, g denote the number of individuals of type (a, ), so that ) ni; = N.

i,jeN
425 Mutation If T,, < T, the next event is mutation. Given this, the index of individual un-
426 dergoing mutation is drawn from discrete uniform distribution on {1,..., N} and the event
427 changes the state of the individual to either (a+1, ) or (a, f+1) with probabilities p € (0, 1)
428 and q¢ = 1 — p respectively. Fitness of the mutated individual is recalculated accordingly.

429 Death and replacement If 7,, > T, the next event is death and replacement. Suppose
430 that K types of individuals are present, with respective counts n(k), kK = 1,..., K, summing
431 up to N. Following Equ. (3.4), individual ¢ with state («;, 3;) is replaced by individual j
432 with state («j,f;), such that (o, ;) # (i, ;) with probability proportional to fitness of
33 j, fi = (1 +5)%(1 —d)%. The replaced individual inherits the state and fitness from the
434 replacement.

435 Trends in fitness We present a set of stochastic simulations illustrating the richness of possible

436 behaviors of the Tug-of-War process, in its complete and limit versions. One of the issues that
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437 we attend to is criticality, understood here as the trend of the fitness trajectories, upward,

438 downward or neutral. There are two mathematical facts that provide guidance:

439 e Mutation vs. selection coefficient balance Equ. , which indicates the trend in fitness
440 absent drift is determined by the sign of ps — qd.

441 e Theorem [4.3] which states that the death and replacement events absent mutation lead
442 to a positive trend in fitness.

443 Fitness trajectory in the complete process is the result of the interaction of the two trends. If
444 ps > qd, then the influx of advantageous mutations prevails and in addition, the drift works
445 towards their fixation. As a result the fitness increases rather fast. The effect is subtler when
446 ps < qd. If the influx of disadvantagous mutations prevails but is not too strong, drift affords
447 to purge the deleterious mutants before they may be fixed. A strong influx is needed to flip
448 this trend.

449 Complete process We follow the interplay between the fluxes ps of advantageous and qd
450 of deleterious mutations, but also between mutation and drift. The latter can be varied for
451 example by adjusting the parameter L = NA. Figure 2| depicts distribution of individual fitness
452 averaged over N individuals, in 30 independent runs of the model with a range of parameters.
453 Panel A depicts the case with a ps > qd (for exact parameter values, see the Figure legend),
454 resulting exponential-like growth of fitness. Panel B shows the case ps = qd, with the effect
455 being a slow increase of fitness for most runs and a very slow decrease for some. Panel C
456 shows the case of slightly negative trend in mutations ps < gd. Panel D demonstrates that if
457 ps = 0, then drift may efficiently keep purging recurrent deleterious mutants. Panels E and F
as8 are showing that in case of increased flux of mutants (large L) small changes in the value of s
459 parameter, from s=0.01 in Fig. to s=0.05 in Fig. 2F] may cause a fraction of average fitness
460 trajectories display an upward trend despite large amount of highly deleterious mutations.

461 Subsequent figures depict runs of a single trajectory of fitness in the process with a range
a62 of parameters. Figure [3] depicts one of the average trajectories of Fig. [2A] Panel A depicts
463 the average fitness of population. Mutation events are marked with red (driver) and blue
a64 (passenger) asterisks. Let us notice that major jumps in population fitness arise as a result
465 of death-replacement events, more so than of the mutational events, since new arising mu-
466 tants are frequently purged by death-replacement. Panel B depicts time succession patterns of

467 clones started by driver mutations colored according to fitness of given clone. Panel C depicts
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468 genealogies of the clones initiated by drivers and passengers. Lines between nodes represent
469 driver (red) and passenger (blue) mutations. Green circles mark clones alive at the end of
470 simulation (¢t = 20). The vertical axis in panel C does not coincide with the time or even with
471 the strict order of clone appearance. However, it is consistent with the ancestor-descendant
472 relationship.

413 Figures [ ] [6] [7, [§ and [9] depict single-trajectory plots corresponding all other cases in
474 Fig. 3 Figures corresponding to cases with high mutation rates lack the third panel, since the
475 genealogies of clones become to dense to follow with an increased mutation rate.

476 Limiting process

477 Suppose that all individuals have the same fitness (1 + s)*(1 — d)?. The difference between

a8 expected fitness right after mutation/drift event and the fitness before this event equals

(9.1) (1+s5)*(1— d)ﬁ(pspdriv — qdppass) -

479 In interpreting this relation we encounter an apparent paradox: in a certain range of parameters,
480 an increase of d, that is, a decrease of fitness of passenger mutants, leads to a decrease of the

481 studied difference. In order to explain this paradox we need to consider the function
(9.2) e(d) = dppass-

482 Lemma 9.1. The function e initially increases and then decreases with d.

Proof. As d increases from 0 to 1, z == ﬁ increases from 1 to oo. Hence, it suffices to check
monotonicity of
(z —1)°
9(2) = g, 2 €[0,00).
483 Since
(9.3) () = (z—1)((1= Nz +(N+ 1)z —z—1)
) g - (xN+1 _ 3:)2

484 monotonicity of g is determined by the sign of
(9.4) h(z) =1 —-N)z" '+ (N+1DaN —2 -1,  z>1.
ags Here h(1) = 0 and

(9.5) R'(z)=(1—-N)N+ D2V + N(N+ 1)Vt —1,
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age so that in particular A/(1) = N > 0. Moreover,
(9.6) R'(z) = (N —1)N(N + 1221 —-2) <0, x>0,

ag7  proving that h'(z) strictly decreases from N to —oo in the interval [1,00). Hence, h increases
agg from h(1) = 0 to a maximum point, and then starts to decrease. Since lim, . h(x) = —o0,
489 we conclude that h is initially positive, and then, beyond a certain points, say xo becomes
400 mnegative and stays negative for all > xq. It follows that ¢ increases up to zy and then starts

401 to decrease, as claimed. 0

492 Consider first the scenario in which e decreases with the increase of d, and thus the difference
493 (9.1) increases. Here, everything seems to agree with our intuition: A decrease in fitness of
404 passenger mutants causes the probability of their fixation to drop and thus if the fitness of
495 driver mutations is the same, the overall population fitness grows faster, because the influence
496 of passenger mutations is smaller.
497 However, in a certain range of d, an increase of d (a decrease of fitness of passenger mutations)
498 causes an increase of e, and thus a decrease of . This is because an increase in d causes a
499 decrease of ppass but this is accompanied by an increase of the first factor in . It is possible
500 that a change in d causes a much smaller change in ppa.ss than in d itself, and thus may result in
501 the overall growth of e. In other words, even though the probability of fixation of a passenger
502 mutation is lower, if such a variant is fixed fitness will drop radically. From this point of view,
503 the observation that a decrease in the fitness of passenger mutants may lead to a decrease of
504 is not surprising.
505 To summarize, analysis of e, the expected drop of the population fitness given that a passenger
s06 mutant was fixed, is the key to understanding of the apparent paradox we encountered. It is
507 more informative than the probability ppass alone.
508 The influence of the function

S = SPdriv
509 is monotonous; the larger is the fitness of driver mutants, the faster is the growth of the fitness

510 of the entire population.

511 10. DISCUSSION

512 Following the earlier work of McFarland et al. [21], 22 23, 24] we build a model of early

513 cancer development which accounts for the influence of two types of mutations: rare drivers
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514 with higher fitness, and more frequent passengers with smaller fitness. Mathematically, the
515 model is a continuous-time Markov chain with state-space composed of N-tuples of pairs of
516 non-negative integers. Here, N is the number of individuals (cells) in the population under
517 study, and is assumed constant; the first coordinate of each pair (individual/cell) is the number
518 of accumulated driver mutations, whereas the second is the number of mutations of passenger
519 type; the resulting individual’s fitness is given by .

520 The model may be seen as describing competition of two population genetic forces: selection
521 combined with drift, on one side, and mutations, on the other. Interestingly, the mathemat-
522 ical theory of semigroups of operators, our main tool, allows analysing consequences of these
523 two forces separately, and to infer properties of the full model from the properties of its two
524 components.

525 The main effect of the first of these components, related to selection combined with drift,
526 is that a population that may initially be heterogeneous, becomes increasingly homogeneous
527 with time. For the associated Markov chain this means that after a random time the process
528 reaches an absorbing state in which all individuals have the same counts of passenger and driver
520 mutations. The corresponding probabilities of fixation of a mutant and the expected times to
530 fixation are calculated in Section [l

531 Mutations, on the other hand, introduce new variants to the data at the epochs of a Poisson
532 process; either selectively advantageous drivers, or disadvantageous passengers.

533 Mathematical analysis of analytical and stochastic properties of the processes related to the
534 two main factors described above allows concluding that they may be combined, and that the
535 new Markov chain that encompasses mutation and selection, on one had, as well as mutations,
536 on the other, is non-explosive. In other words, the underlying stochastic process is a well-defined
537 honest Markov chain.

538 The resulting process is difficult to analyze. Insights can be obtained using a simpler limit
539 model, presented in Sections [7] and [§ and simulations, see Section [0

540 The limit theorem is obtained using the theory of convergence of semigroups of operators
541 [3], and corresponds to the scenario in which the total fitness of the population exceeds certain
542 threshold. The model then predicts that drift and selection events are much more frequent than
543 mutation events. Under such scenario, when a new mutant arises, regardless of whether it is a
544 driver or a passenger, it is almost instantly fixed in the population or completely removed from

545 1t. It is the action of the drift and selection chain that causes fixation or removal and favors
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sa6 driver mutations. Therefore, the probability of instantaneous fixation of a passenger mutant is
547 usually smaller than that of a driver mutant. However, because the passengers may arise more
548 often than drivers, the possibility of fixation of passenger mutant is not negligible (see Section
549 [7] for details).

550 In summary, the limit model state-space is composed of pairs of non-negative integers; this
551 is because each individual is fully characterized by such a pair, and the entire population is
552 composed of identical individuals. At a time a new mutant arises, it is instantly fixed or removed
553 from the population, with probabilities depending on its fitness, and so the population is again
554 homogeneous. Such model seems to account for the influence of driver and passenger mutations.
555 It is interesting that it clearly displays the non-monotonous dependence on the parameter d of
556 passenger fitness (Lemma . Simulations in Figure |10| fully corroborate theoretical analysis.
557 In addition, simulations show a similar effect in the complete model, as depicted in consecutive
558 panels of Figure . In the complete model, the non-monotonicity of the e(d) corresponds to
550 the balance between downward and upward trends of subsets of trajectories in Figure 2F. The
560 balance is delicate: if the influx of deleterious passenger mutants is limited, drift and selection
561 purge the mutants and population fitness keeps increasing. Only when the influx is sufficiently
s62 large, population fitness decreases in part of realization of the process.

563 We studied by simulation a range of special cases of fitness trajectories and pedigrees of
564 clones originating from driver mutations. A theory of such clones in the Tug-of-war process is
565 still missing. Simulations show how rich is the behavior of this process (Figures 3-9).

566 With all the reservations, present paper places McFarland’s Tug of War model into the
567 rigorous framework of Moran Model, which allows analyzing it using the well-developed toolbox
s68 of time-continuous Markov chains and theory of operator semigroups. Let us notice that our
569 formulation is different from McFarland’s original model as spelled out in [21], 22 23]. The
570 model there is a state-dependent branching process. To our best knowledge, these models
571 were not rigorously explored. One of the subsequent papers from McFarland’s group [24]
572 explores experimentally the dependence of fitness on the rate of deleterious passenger mutations.

573 However, the references to the mathematical model are only qualitative.
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574 SUPPLEMENT: THE RELATED SEMIGROUP OF MARKOV OPERATORS

575 In Section {4, we have studied in detail the Markov chain related to the intensity matrix Qg.
576 Since in this chain only a finite number of states can be reached from any given starting point,
577 existence of such chain is an elementary matter. Existence of the chain of mutations (i.e. that
578 related to (Qpy) is also clear, as this chain consists of two independent Poisson processes (one
579 for drivers and one for passengers). The question we have never answered is whether there is a
580 Markov chain related to the intensity matrix ) of .

581 This question is non-trivial because there are so-called ezplosive intensity matrices that are
582 so ‘poorly designed’ that they do not determine the related Markov chain: additional rules
583 need to be specified to describe the chain after the random time of explosion (see [4, [0, 25] and
584 references given there). According to the theorem of Kato [16] (discussed e.g. in [I] Chapter
585 5, [2] pp. 334-338, [3] pp. 74-80, [4] Chapter 3 and [I5] pp. 642-647; see also Section 4 in [13]
s86 for W. Feller’s proof of this result), for any intensity matrix, whether explosive or not, there is
587 a related minimal Markov chain which, however, is undefined after explosion.

588 Therefore, in this section we show that ) of is non-explosive and our argument boils
589 down to the statement that the sum of two intensity matrices, one of which is non-explosive and
500 the other is bounded, is non-explosive. This statement is most naturally proved in the language
501 of semigroups of Markov operators, as we will now explain. Such semigroups are analytical tools
502 for treating Markov chains, and in the later chapters we will use them extensively.

593 The analysis involves the space ¢! = ¢}(B) of functions x : P8 — R which, because 9 is a
so4 countable set, can be considered sequences x = (&), oy Where § = x(p) is the value of z at

595 p € P. Elements (&), o 0f ¢* such that & > 0,p € P and > peyp & = 1 are termed distributions.

peP
596 With each time-continuous Markov chain with values in 8 one may associate the probabilities
597 Dy q(t) that the chain starting at a p € P will be at a q € P at time ¢ > 0. These so-called

598 transition probabilities are conveniently gathered in the matrices

P(t) = (Ppa(t))pqemp

599 which in turn may be identified (see [4], Chapter 2 for details) with the operators in ¢! defined

600 by the formula

P(t)z = x - P(t), el t>0,


https://doi.org/10.1101/2021.10.20.465201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465201; this version posted October 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

29

601 where x - P(t) is the product of a row-vector x and the matrix P(t). All P(t)’s are Markov
602 operators in that they leave the set of densities invariant: if x is an initial distribution of the
603 chain, then P(t)z is its distribution at time ¢t > 0. Moreover, the Markov property of the chain

604 is expressed in the semigroup property:
P(t)P(s) = P(s+1), 5,1 > 0.

605 Under mild, natural assumptions on transition probabilities we also have
tl_i)r& |P(t)z — x| =0, z el

606 These properties are summarized in the statement that {P(t),t > 0} is a strongly continuous
607 semigroup of operators in (1.
608 Thus, with each Markov chain we have the associated (uniquely determined) strongly contin-
609 uous semigroup of Markov operators. Conversely, if all Markov chains with the same transition
610 probabilities are identified, one may speak of the Markov chain related to a strongly continuous
611 semigroup of Markov operators.
612 There are two commonly used infinitesimal descriptions of strongly continuous semigroups of
613 Markov operators in (. First, (see e.g. [2,[12, [15]) a strongly continuous semigroup determines
614 and is determined by its generator 2, defined by

Az = limt H(P(t)r — x),

t—0

on the domain D(2A) composed of x such that the limit on the right-hand side exists. Second,
as proved by Doob [10] (see [4, [14]) the limits, called intensities,

13 pp’P(t) - ]'
Gpp = il A peP,
— Jim Pea()
qp,q _1151_{% t 9 paqemap#q

615 exist, and gy q,p 7# q are finite. However, even if all intensities are finite, knowing the entire
616 intensity matrix ) = (qp,q)Mqu is not equivalent to knowing 2. For, whereas 2 contains
617 the entire information on the semigroup {P(t),t > 0}, the matrix ) in general does not.
618 Nevertheless, if () is non-explosive, () and 2 may be somewhat identified: for a typical z € D(21),
619 the product z- () can be computed, and 2z turns out to be equal to this product. For explosive

620 intensity matrices this is not the case; see e.g. the already cited [I}, 4], and in particular Chapter
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621 3 in [4]. In fact, for an explosive matrix there are many different Markov chains, many different
622 semigroups of Markov operators and many different generators related to this matrix.
623 Coming back to the chain of interest, Section[d] and specifically Theorem [4.1]imply that there
624 exists a Markov chain related to the intensity matrix Qg of and which is well-defined
625 for all £ > 0. In particular, Q)g is non-explosive. This is because the related chain reaches
626 an absorbing state by passing through a finite number of transient states. This rules out the
627 possibility of explosion, since an exploding chain is passing through an infinite number of states
628 1in a finite time. Therefore, by Kato’ Theorem (see the references earlier on), there is a unique
620 strongly continuous semigroup of Markov operators { Ps(t),t > 0} in ¢! with the generator, say
630 O, identified with Q.
631 The case of intensity matrix ()y; of is simpler, because all its entries are bounded in
632 absolute value by N\, while a bound does not exits for the matrix f. It follows that
633 for any x € (' the product = - Qs may be computed and belongs to ¢!, where z is a row-vector,
634 and the map

oz Me=2-Qu
635 is bounded. Hence, Qs may be identified with a bounded linear operator 99t and the semigroup

636 of Markov operators related to () may be defined as the exponent of this operator:

= M
Py(t) = Z T t>0.
n=0 ’

637 (See e.g. [4] Section 2.3 for details.). Further, operator 9t is the generator of semigroup
638 {Pp(t),t > 0}.

639 Boundedness of the operator 91 guarantees that the operator
A=6+M

640 is well-defined on D(2) := D(G) and, in view of the Phillips Perturbation Theorem (see e.g.
641 [2, 4 12| [15]), is a generator of a strongly continuous semigroup, say {P(t),t > 0}. On the

642 other hand, using the Trotter Product Formula, which says (see the monographs cited above)

P(t)a::hm {Pg(t)PM(g)} Z, t20,x€€1,

643 that
n—00 5
644 we check that this semigroup is composed of Markov operators, because so are {Ps(t),t > 0}

645 and {Py(t),t > 0}. It can be argued that this semigroup describes the minimal Markov chain

646 related to (). But, by Kato’s Theorem, if () were explosive, this semigroup could not be
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647 composed of Markov operators. This shows that () is non-explosive, and thus that the minimal
648 chain is well-defined for all times ¢ > 0. It is this minimal chain related to () that models
649 the evolution of our population under selection, drift and mutations. In other words, by the
650 Markov chain related to () we mean the unique minimal chain related to this matrix: since @)

651 is non-explosive this chain is well-defined for all ¢t > 0.

652 DATA AVAILABILITY

653 The authors affirm that all data necessary for confirming the conclusions of the article are
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hifafi

F1cURE 1. Calculating probability p; in the case N = 3. Dotted lines denote

communication between events associated with (f1, f1, f3) and (f1, f3, f3), and

(f17 f27f1) and (f17 f27f2)~
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FIGURE 2. Average fitness of individuals. Results for 30 simulations with param-
eters: A: s =0.8, d =0.05, p=0.1, L =5, N = 50 (strong positive selection);
B: s = 0.1, d = 0.01111, p = 0.1, L = 5, N = 50 (equilibrium); C: s = 0.01,
d=0.05,p=0.5, L =5, N =50 (negative selection); D: s =0, d = 0.5, p = 0.5,
L =5, N =50 (lack of impact of driver mutations); E: s = 0.01, d = 0.5, p = 0.1,
L =100, N =20; F: s =0.05,d =0.5,p=0.1, L = 100, N = 20 (large mutation

rate, passengers prevailing).
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s =08, d = 0.05, p = 0.1, L = 2 (strong positive selection). A: Average
fitness of population. Mutation events are marked with red (driver) and blue
(passenger) asterisks; B: Time succession patterns of clones started with driver
mutations colored according to fitness of given clone; C: Genealogies of the clones
initiated by drivers and passengers. Lines between nodes represent driver (red)
and passenger (blue) mutations. Green circles mark are clones alive at the end

of simulation (¢ = 20).
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FIGURE 4. Results for one simulation on N = 20 individuals with parameters:
s = 0.1, d = 0.01111, p = 0.1, L = 2 (equilibrium). A: Average fitness of
population. Mutation events are marked with red (driver) and blue (passenger)
asterisks; B: Time succession patterns of clones started with driver mutations
colored according to fitness of given clone; C: Genealogies of the clones initiated
by drivers and passengers. Lines between nodes represent driver (red) and pas-
senger (blue) mutations. Green circles mark clones alive at the end of simulation

(t = 20).
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F1GURE 5. Results for one simulation on N = 20 individuals with parameters:
s = 0.01, d = 0.05, p = 0.5, L = 2 (negative selection). A: Average fitness of
population. Mutation events are marked with red (driver) and blue (passenger)
asterisks; B: Time succession patterns of clones started with driver mutations
colored according to fitness of given clone; C: Genealogies of the clones initiated
by drivers and passengers. Lines between nodes represent driver (red) and pas-
senger (blue) mutations. Green circles mark clones alive at the end of simulation

(t = 20).
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F1GURE 6. Results for one simulation on N = 20 individuals with parameters:
s=0,d=0.5,p=0.5, L =2 (lack of impact of driver mutations). A: Average
fitness of population. Mutation events are marked with red (driver) and blue
(passenger) asterisks; B: Time succession patterns of clones started with driver
mutations colored according to fitness of given clone; C: Genealogies of the clones
initiated by drivers and passengers. Lines between nodes represent driver (red)
and passenger (blue) mutations. Green circles mark clones alive at the end of

simulation (¢ = 20).
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FI1GURE 7. Results for one simulation on N = 20 individuals with parameters:
s=0.01, d=0.5, p=0.1, L = 100 (large mutation rate, passengers prevailing).
A: Average fitness of population. Driver mutation events are marked with red
asterisks; B: Time succession patterns of clones started with driver mutations

colored according to fitness of given clone.
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F1GURE 8. Results for one simulation on N = 20 individuals with parameters:
s =0.05,d = 0.5, p=0.1, L = 100 (large mutation rate, passengers prevailing,
case with decreasing fitness). A: Average fitness of population. Driver muta-
tion events are marked with red asterisks; B: Time succession patterns of clones

started with driver mutations colored according to fitness of given clone.
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F1GURE 9. Results for one simulation on N = 20 individuals with parameters:
s =0.05,d=10.5,p=0.1, L =100 (large mutation rate, passengers prevailing,
case with increasing fitness). A: Average fitness of population. Driver muta-
tion events are marked with red asterisks; B: Time succession patterns of clones

started with driver mutations colored according to fitness of given clone.
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FiGURE 10. Results for 10 simulations of reduced process with N = 20 and
remaining parameters: A: s = 0.1, d = 0.01, p = 0.5 (sp > dq); B: s = 0.01,
d=0.1,p=0.5 (sp <dq); C: s=0.01,d =05, p=0.5 (sp < dq). In all cases
L=2)
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