

Clonally expanded CD38^{hi} cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis

Running title: Expanded CD38^{hi} cytotoxic T cells in checkpoint inhibitor arthritis

Runci Wang^{1,2}, Anvita Singaraju³, Kathryne E. Marks¹, Lorien Shakib⁴, Garrett Dunlap^{1,5}, Amy Cunningham-Bussel¹, Lin Chen¹, Aidan Tirpack⁶, Miriam R. Fein⁷, Derrick J. Todd¹, Lindsey MacFarlane¹, Susan M. Goodman⁶, Edward F. DiCarlo⁸, Elena M. Massarotti¹, Jeffrey A. Sparks¹, Ole-Petter R. Hamnvik⁹, Le Min⁹, A. Helena Jonsson¹, Michael B. Brenner¹, Karmela K. Chan⁶, Anne R. Bass^{6*}, Laura T. Donlin^{4,7*}, Deepak A. Rao^{1*}.

* Equal contribution

Affiliations:

- 1) Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- 2) Shanghai Institute of Rheumatology / Department of Rheumatology and Immunology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- 3) Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
- 4) Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- 5) Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- 6) Division of Rheumatology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
- 7) HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA.
- 8) Division of Pathology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
- 9) Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA

*Corresponding authors

Deepak A. Rao
Hale Building for Transformative Medicine, Room 6002R
60 Fenwood Road
Boston MA 02115
darao@bwh.harvard.edu
617-525-1101

Laura T. Donlin
HSS Research Institute
515 East 71st Street
New York, NY 10021
donlinl@hss.edu
212-774-2743

Anne Bass
Hospital for Special Surgery
535 East 70th Street
New York, NY 10021
bassa@hss.edu
212-774-7043

Abstract

Immune checkpoint inhibitor (ICI) therapies that promote T cell activation have improved outcomes for advanced malignancies yet also elicit harmful autoimmune reactions. The T cell mechanisms mediating these iatrogenic autoimmune events remain unclear. Here we assayed T cells from joints of patients affected by ICI-induced inflammatory arthritis (ICI-arthritis), which can present clinically indistinguishable from rheumatoid arthritis (RA). Compared to the autoimmune arthritides RA and psoriatic arthritis (PsA), ICI-arthritis joints contained an expanded CD38^{hi} CD127⁻ CD8⁺ T cell subset that displays cytotoxic, effector, and interferon (IFN) response signatures. The abundance of CD38^{hi} CD8 T cells in ICI-arthritis resulted from a limited number of clones that could be found proliferating in the joint. Exposure of synovial T cells to Type I IFN, more so than IFN- γ , induces the CD38^{hi} cytotoxic phenotype. Relative to other CD8⁺ T cell subsets in the joints, the CD38^{hi} population is distinct from a dysfunctional population and clonally most related to TCF7⁺ memory populations. Examination of synovial tissue from bilateral knee arthroplasty demonstrated considerable sharing of TCR clonotypes in the CD38^{hi} CD8 T cell fraction from both knees. These results define a distinct CD8 T cell subset that may be directly activated by ICI therapy and mediate a tissue-specific autoimmune cellular reaction in patient joints.

Keywords

Immune checkpoint blockade, rheumatoid arthritis, immune related adverse event, PD-1, CD8 T cells, interferon

1 **Introduction**

2 Immune checkpoint inhibitors (ICI) augment T cell activation and have provided marked
3 improvement in the outcome of multiple advanced cancers. Blocking immune checkpoint
4 pathways such as PD-1/PD-L1 releases T cells from negative regulation and can induce potent
5 anti-tumor responses ⁽¹⁾. However, ICI therapy can also activate immune reactions against
6 healthy tissues, leading to immune related adverse events (irAEs) in >80% of patients ⁽¹⁻⁸⁾. These
7 irAEs permit the study of human autoimmune responses from the unprecedented perspective of a
8 defined inciting event—administration of ICI therapy. Defining the cellular events directly
9 induced by ICI therapy and the downstream immune cascades may provide insights into
10 mechanisms that maintain immune tolerance in the human immune system and prevent
11 autoimmunity.

12 Here we focus on the inflammatory arthritis that develops following anti-PD-1/PD-L1 and anti-
13 CTLA-4 therapies. This ICI-associated arthritis (ICI-arthritis) occurs in ~5% of treated patients
14 and often clinically resembles classic inflammatory arthritides, such as rheumatoid arthritis (RA)
15 and psoriatic arthritis (PsA), causing pain, swelling, and inflammatory joint effusions in both
16 small and large joints ^(1, 3-7). ICI-arthritis can present within weeks-to-months after administering
17 ICI therapy, but unlike most irAEs, can last years after therapy discontinuation. Joints affected
18 create considerable pain, limit mobility and can become permanently damaged necessitating joint
19 replacement surgery. ICI-arthritis is often treated with immunosuppressive therapies established
20 for RA and PsA; thus, understanding the shared and distinct immune pathways in ICI-arthritis is
21 critical for selecting effective therapies that target the adverse mechanisms. Further, an
22 understanding of how the adverse mechanisms relate to the anti-tumor responses are needed to
23 allow for opportunities to treat the adverse events and yet preserve cancer treatment.

24 The immune cell types active in the inflamed joints of ICI-arthritis are largely undefined, and the
25 extent to which pathologic T cell responses are shared between ICI-arthritis and RA or PsA is
26 unknown. Activated T cell infiltrates in RA and PsA joints identified through high dimensional
27 analyses have emerged as defining features of these diseases. For seropositive RA joints, this
28 includes the prominent expansion of CD4 T peripheral helper (Tph) cells, which provide local
29 help to B cells and are marked by high levels of PD-1 ⁽⁹⁾. RA and PsA synovial fluid and tissue
30 contain multiple subsets of activated CD4 and CD8 T cells ⁽¹⁰⁻¹²⁾, but lack large quantities of
31 dysfunctional CD8 T cells such as found in the tumor microenvironment ⁽¹³⁻¹⁷⁾.

32 Here we directly compared T cell states found in the joints of patients with ICI-arthritis, RA, and
33 PsA taking advantage of the ability to collect inflammatory joint fluid and isolate immune cells
34 therein. Using mass cytometry and RNA-seq analyses, we identified a CD38^{hi} CD127⁻ CD8⁺ T
35 cell population that is highly expanded in ICI-arthritis relative to the two classic idiopathic
36 arthritides. These cells appear clonally expanded and exhibit features of cytotoxicity,
37 proliferation, and activation. The T cell receptor (TCR) sequences are shared with a subset of
38 cells that express *TCF7* and *IL7R*—implicating a possible stem-like and central memory
39 progenitor for the ICI-induced autoimmune event. We further identified Type I interferons (IFN)
40 as potential inducers of this T cell phenotype in ICI-arthritis.

44

Results

45

Mass cytometry identification of expanded CD38^{hi} CD8⁺ T cells in ICI-arthritis synovial fluid

46

To investigate the inflammatory features of ICI-arthritis, we analyzed mononuclear cells from synovial fluid of 6 ICI-arthritis, 5 seropositive RA and 5 PsA patients (**Supplementary table 1**) by mass cytometry using a panel that incorporated immunophenotyping markers for multiple cell types and specific T cell activation and effector states (**Supplementary table 2**). To measure PD-1 surface expression, we used a detection antibody that retains the capacity to bind PD-1 protein even when PD-1 is bound by a therapeutic anti-PD-1 antibody (**Fig. S1a**).

53

Within synovial fluid mononuclear cells, T cells were the largest population, accounting for ~50% of cells, followed by monocytes, NK cells, and then B cells. Comparable cell proportions were found across the 3 arthritides (**Fig. 1a, S1b**). The frequency of CD4 and CD8 T cells was also similar across the diseases (**Fig. 1a**). For the checkpoint pathway mediators PD-L1 and PD-L2, we found an increase in the portion of T cells and monocytes expressing these proteins in ICI-arthritis samples (**Fig. S1c**). In the RA joints, we observed an abundant PD-1^{hi} CXCR5⁻ CD4 T cell population, consistent with the Tph population previously described in RA (**Fig. S1d**)⁽⁹⁾. The frequency of PD-1^{hi} Tph cells was substantially lower in ICI-arthritis, comparable to the frequencies seen in PsA joints (**Fig. S1d**).

63

To further explore differences in CD8 T cell phenotypes, we used FlowSOM to define metaclusters (*i.e.* populations) among synovial fluid CD8 T cells and compare their metacluster frequencies across arthritides (**Fig. S2a**). This analysis revealed a significant expansion of metaclusters 1-3 (MC 1-3) in ICI-arthritis samples compared to RA (5-fold increase) and PsA (3-fold increase) samples (**Fig. 1b,c**). Analysis of marker expression revealed a shared CD38^{hi} CD127⁻ expression pattern across MC1-3, which together comprised ~33% of CD8 T cells in ICI-arthritis samples (**Fig. 1d-f**). Biaxial gating on CD38^{hi} CD127⁻ cells validated the unbiased clustering result to confirm significant expansion of CD38^{hi} CD127⁻ cells in ICI-arthritis (**Fig. 1g**). Conversely, MC5, containing CD38⁻ cells, was substantially reduced in ICI-arthritis (42%) compared to RA (75%) and PsA (65%) (**Fig. 1c-e**). Among the smaller clusters, MC11 (2%, CD38⁺ CD127⁻ PD-1⁺ PD-L1⁺ PD-L2⁺) was increased in ICI-arthritis, while MC4 (2%, CD38⁺ CD127⁺ PD-1⁺ CD56⁺), MC13 (0.3%, CTLA-4⁺ CXCR5⁺), and MC14 (0.01%, PD-1^{hi} TIM-3⁺ TIGIT⁺) were decreased (**Fig. 1c,d**).

77

Cells in MC 1-3 shared expression of HLA-DR, CD45RO, CD27, CD28, TIGIT and ICOS (**Fig. 1d**). Among these 3 MCs, MC3 showed the highest expression of activation-associated markers, including CD69, CD25, PD-1, TIGIT, GITR, ICOS, CD96, CTLA-4 and TIM-3, whereas MC1 and MC2 were negative for GITR, CTLA-4 and TIM-3 and expressed lower levels of CD69, CD25, and PD-1 (**Fig. 1d, S2b**). These results suggest that a collection of CD38^{hi} CD127⁻ CD8 T cells with a range of activation marker expression is selectively expanded in ICI-arthritis.

84

CD38^{hi} CD127⁻ CD8 T cells in ICI-arthritis express cytotoxic effector and proliferative programs

85

To evaluate the transcriptional programs that characterize T cells from ICI-arthritis synovial fluid, we sorted 5 CD8 T cell populations from 7 ICI-arthritis joint samples for bulk RNA-seq, as well as the same T cell populations from 6 seropositive RA and 6 PsA samples for comparison

90 (Fig. 2a, S3a,b, **Supplementary table 1**). The CD8 populations included CD38^{hi} CD127⁻ PD-1^{int}
91 cells, as well as comparator populations including PD-1^{int} or PD-1⁻ CD38⁻ CD127⁺ cells (to
92 capture the largest comparator population), PD-1^{hi} cells (to capture dysfunctional cells), and
93 CD38⁻ CD127⁻ KLRG1⁺ cells (to capture cytotoxic cells). Consistent with mass cytometry
94 results, quantification of this flow cytometry data demonstrated that CD38^{hi} CD127⁻ cells were
95 the largest population in ICI-arthritis joints, followed by CD38⁻ CD127⁺ PD-1^{int} cells and CD38⁻
96 CD127⁺ PD-1⁻ cells (Fig. 2b).

97 From the ICI-arthritis samples, transcriptomic comparison across the 5 CD8 T cell populations
98 identified 1,809 genes differentially expressed (FDR q value<0.01, **Supplementary table 3**).
99 Evaluation of the top 100 most variable genes revealed distinct expression patterns, clearly
100 separating the CD38^{hi} CD127⁻ cells and PD-1^{hi} cells from the CD38⁻ CD127⁺ cells (Fig. 2c).
101 Upregulated in the CD38^{hi} CD127⁻ cells and PD-1^{hi} cells were genes expressed upon activation
102 (*IFNG, HLA-DRA, CD86, CD38, TNFRSF9*), dysfunction (*HAVCR2, CXCL13*), and
103 proliferation (*MCM10, BUB1B, KIF4A, MYO7A, BIRC5, MKI67, PKMYT1, ZWINT*). In contrast,
104 CD38⁻ CD127⁺ cells preferentially expressed genes associated with memory states (*IL7R, MAL,*
105 *CCR6*). KLRG1⁺ cells showed no strong enrichment for these memory associated genes.
106

107 To further investigate these differences, we compiled gene lists summarizing modules of
108 memory and effector states, cytotoxicity, dysfunction, and proliferation from published studies
109 and calculated scores based on the average expression for each cell population (**Supplementary**
110 **table 4**)⁽¹⁴⁻²¹⁾. These 5 modules were examined by 2 approaches. First, the full list was used for
111 scoring to evaluate broad expression patterns (module score, Fig. S4a). Second, the differentially
112 expressed genes identified by ANOVA were assigned to these modules and used for scoring to
113 evaluate the difference in expression among populations (DEG score, Fig. 2d). In both cases, the
114 CD38^{hi} CD127⁻ cells showed high expression of effector, cytotoxicity, dysfunction and
115 proliferation modules and low expression of the memory module. PD-1^{hi} cells showed a
116 similarly high expression of effector, dysfunction and proliferation modules but low cytotoxicity
117 relative to CD38^{hi} CD127⁻ cells. In contrast, CD38⁻ CD127⁺ populations showed a transcriptomic
118 pattern characteristic of central memory T cells, as opposed to effector memory T cells (Tem),
119 CD45RA⁺ effector memory T cells (Temra) or resident memory T cells (Trm) (Fig. S4a),
120 suggesting that even cells with intermediate PD-1 expression can appear primarily as central
121 memory cells by global transcriptomic analysis. CD38⁻ CD127⁺ cells also showed low effector,
122 cytotoxicity, dysfunction, and proliferation scores compared to CD38^{hi} CD127⁻ cells and
123 KLRG1⁺ cells, suggesting that downregulation of CD127 may help distinguish memory from
124 effector and dysfunctional states independently of CD38 level. Despite very different PD-1
125 expression, the CD38⁻ CD127⁺ PD-1^{int/-} cells showed lower cytotoxicity features similar to that
126 of PD-1^{hi} cells, setting these 3 populations apart from the more cytotoxic appearing CD38^{hi}
127 CD127⁻ and KLRG1⁺ cells (Fig. 2d, S4a).

128 We also conducted pairwise comparisons between each CD8 T cell population. These analyses
129 similarly demonstrated higher expression of genes associated with a Tem phenotype, including
130 *IL7R, TCF7, CCR7, and SELL*, in CD38⁻ CD127⁺ PD-1⁻ cells and CD38⁻ CD127⁺ PD-1^{int} cells,
131 higher expression of proliferation associated genes (*AURKB, CCNB2, CENPN, KIF2C/15/18B,*
132 *MCM5/10, ZWINT*) in CD38^{hi} CD127⁻ and PD-1^{hi} populations, and higher expression of
133 cytotoxicity associated genes (*GZMB, GZMH, FGFBP2*) in CD38^{hi} CD127⁻ and KLRG1⁺ cells
134
135

136 (S4b). These populations also exhibited differential expression of chemokines and chemokine
137 receptors, indicating potential differences in migratory capacity (Fig. S4c).
138

139 To further examine the difference in the two largest populations: the expanded CD38^{hi} CD127⁻
140 PD-1^{int} cells versus CD38⁻ CD127⁺ PD-1^{int} cells, gene set enrichment analysis was performed to
141 identify enriched MSigDB pathways. This analysis identified 250 pathways enriched in CD38^{hi}
142 CD127⁻ PD-1^{int} cells and 21 pathways enriched in CD38⁻ CD127⁺ PD-1^{int} cells (FDR <0.05).
143 Among these, multiple gene sets associated with proliferation were enriched in CD38^{hi} CD127⁻
144 PD-1^{int} cells (Supplementary table 5). In addition, multiple pathways associated with active T
145 cell effector functions were enriched in CD38^{hi} CD127⁻ cells, while pathways associated with
146 naïve or quiescent memory states were among those enriched in CD38⁻ CD127⁺ cells. As one
147 example, opposing signatures for effector (Goldrath Effector vs memory CD8 T cell UP) and
148 memory (GSE9650 effector vs memory CD8 T cell DN) were enriched in CD38^{hi} CD127⁻ cells
149 and CD38⁻ CD127⁺ cells respectively (Fig. 2e), confirming the findings identified by
150 differentially expressed genes.
151

152 To evaluate protein expression levels for cytotoxic mediators, cells subsets were sorted and
153 stained for intracellular granzyme B, perforin, IFN- γ , and TNF after stimulation with
154 PMA/ionomycin. Compared to CD38⁻ CD127⁺ cells, CD38^{hi} CD127⁻ cells more frequently
155 expressed granzyme B, perforin, and TNF, consistent with RNA-seq results (Fig. 2f). Further,
156 CD38^{hi} CD127⁻ cells more frequently expressed Ki67, consistent with increased proliferation
157 (Fig. 2g).
158

159 **CD38^{hi} CD8 T cells are clonally expanded and actively proliferating in ICI-arthritis joints**
160 To evaluate CD8 T cells within ICI-arthritis joints with higher resolution and in an unbiased
161 manner, we performed single-cell transcriptomic (scRNA-seq) and antigen receptor sequencing
162 on sorted CD8 T cells from synovial fluid from four ICI-arthritis patients and from synovial
163 tissue from both knees of an additional ICI-arthritis patient (Fig. S5a). From 18,472 CD8 T cells
164 that passed quality filtering (<3,000 total genes, <10% mitochondrial genes), we defined 8
165 transcriptionally distinct clusters (Fig. 3a, S5b,c). Cluster 0, the most abundant cluster, featured
166 high expression of *HLA-DRA*, *CD74*, *IFNG*, and multiple granzymes including *GZMA*, *GZMB*,
167 *GZMH* and *GZMK*. In contrast, Clusters 1, 2, and 4 showed higher expression of central memory
168 markers including *IL7R* (CD127), *TCF7*, *SELL*, and *CCR7*. Cluster 4 was further distinguished
169 by expression of *ZNF683*, a tissue-resident memory marker, and a strong IFN signature. Cluster
170 3 contained cells with *KLRB1*, *RORC*, *ZBTB16*, and TCR chains *TRAV1-2* and *TRBV6-4*,
171 consistent with a mucosal-associated invariant T (MAIT) cell phenotype. Cluster 5 contained a
172 mixture of gamma/delta T cells and CD8 T cells expressing a combination of effector markers
173 such as *KLRG1*, *KLRC1/2*, *KLRD1* and *XCL1/2*. Cluster 6 was distinguished by high expression
174 of genes associated with dysfunction, including *PCDC1*, *ENTPD1*, *CTLA4*, *HAVCR2*, and
175 *TIGIT*. Cluster 7 captured proliferating cells, marked by strong expression of cell-cycle genes
176 including *MKI67*, *ZWINT*, *CENPF*, and *PCNA* (Fig. 3b).
177

178 In Cluster 0, the high level of expression of *CD74*, *HLA-DRA*, *GZMB*, *GZMH*, and *GZMK*, and
179 the distinct absence of *IL7R* raised the possibility that these cells represented the CD38^{hi} CD127⁻
180 population initially identified by mass cytometry. The expression of the CD38 gene itself was
181 poorly detected in the scRNA-seq data, yet CD38 protein was detected during flow sorting on

182 ~30% of CD8 T cells in these samples (**Fig. S5a**). To identify potential CD38^{hi} CD127⁻ cells in
183 the single-cell transcriptomic dataset, we adopted the following approach. Using our bulk RNA-
184 seq data, we first generated two gene modules: (i) genes with expression patterns that correlated
185 with CD38 expression across all CD8 populations (Pearson correlation coefficient $r > 0.6$)
186 (**Supplementary table 6**) and (ii) genes with an expression pattern in CD38^{hi} CD127⁻ cells that
187 distinguished these cells from the other CD8 T cell populations analyzed by bulk RNA-seq
188 (**Supplementary table 7**). We then calculated the module scores for each CD8 T cell in the
189 scRNA-seq data. In both instances, cells in Cluster 0 showed the highest score for CD38^{hi} cells,
190 as visualized on the UMAP (**Fig. 3c, S5d**). In contrast, Clusters 1 and 2 displayed the opposite
191 pattern, with low scores for CD38^{hi} CD127⁻ module and high scores for a CD38⁻ CD127⁺
192 module, and high levels of *IL7R* expression (**Fig. 3c, S5d, Supplementary table 7**). These
193 analyses support that the cells in Cluster 0 represent the CD38^{hi} CD127⁻ PD-1^{int} cells identified
194 by mass cytometry and bulk-sorted RNA-seq. Thus, across 3 distinct cellular analysis pipelines
195 and 17 ICI-arthritis patients, we consistently identified an enrichment of the CD38^{hi} CD127⁻
196 population in ICI-arthritis joints.
197

198 In the scRNA-seq analysis, Cluster 6 displayed the highest expression of genes associated with
199 the PD-1^{hi} sorted bulk T cell transcriptome (**Fig. S5d, Supplementary table 7**). Cluster 6 cells
200 also scored highest for a module of genes correlated with *PDCD1* expression, which was notably
201 lower in Cluster 0 cells (**Fig. 3c, Supplementary table 6**). Additionally, we probed the
202 expression of a CD8 T cell dysfunctional module derived in the context of a tumor
203 microenvironment (22) and found that Cluster 6 cells scored highest for this module as well (**Fig.**
204 **3c, Supplementary table 7**). Taken together, gene expression analysis at the single-cell
205 resolution supports a clear distinction between the CD38^{hi} CD127⁻ cells in Cluster 0 and
206 dysfunctional cells in Cluster 6, despite similar expression patterns for effector cell factors such
207 as *GZMB*, *GZMH*, *GZMK*, *GZMA* and *IFNG* (**Fig. 3b**). Relative to Cluster 0, the Cluster 6
208 dysfunctional cells represent a relatively small portion (4.8 %) of CD8 T cells in ICI-arthritis
209 synovial fluid.
210

211 We then used the T cell receptor (TCR) sequences from each CD8 T cell to examine clonal
212 distributions within and across the transcriptionally-defined clusters (**Fig. 3d**). The Cluster 2
213 memory population contained the highest number and frequency of cells with a unique TCR
214 sequence (~1,500, 60%). In contrast, despite having almost twice as many total cells, Cluster 0
215 CD38^{hi} contained fewer T cells with a unique TCR (~900, 20%) and instead exhibited extensive
216 clonal expansion of a smaller number of TCR clonotypes (~600 clonotypes found across ~4000
217 cells). The six largest clonotypes in Cluster 0 each contained over 100 T cell clones. Notably, the
218 frequency of shared clones in Cluster 0 surpassed even the semi-invariant TCR MAIT population
219 of Cluster 3. From the perspective of individual patients, the most expanded clonotypes for each
220 patient, that is, those accounting for >5% of all T cells, were concentrated primarily in Cluster 0,
221 with some representation in Cluster 1 as well (**Fig. 3e**). These observations are consistent with
222 Clusters 0 and 3 exhibiting the lowest score for repertoire diversity as measured by the Simpson
223 Index and Shannon Equitability metric, which account for variability in abundance and evenness
224 (**Fig. S5e**). Together these data indicate the large number of T cells with a CD38^{hi} signature
225 resulted from extensive clonal expansion.
226

227 We next sought to understand relationships between transcriptionally-defined clusters from the
228 TCR clonotype perspective. Cluster 0 CD38^{hi} cells were most highly related to Cluster 1 Tcm-
229 like, Cluster 5, and Cluster 7 proliferating cells; with ~30% of Cluster 0 TCR clonotypes shared
230 in each of these clusters (Fig. 3f). The dysfunctional CD8 T cells in Cluster 6 shared the highest
231 proportion of TCR clonotypes with the memory Cluster 4 population (10%). The actively
232 proliferating Cluster 7 cells had the highest frequency of TCR clonotypes in Cluster 0 and
233 Cluster 5 (7.2% and 6.7%, respectively). Cluster 2, a memory population, had a large number of
234 unique clones, yet had the highest frequency of TCR clone overlap with Cluster 0, 1, 5 and 7.
235 Cluster 2 expressed a central memory signature and had the highest expression of *TCF7*,
236 suggesting the potential for a stem cell memory population. As Cluster 2 and 1 are largely
237 transcriptionally similar, with notable differences in Cluster 1 including higher levels of
238 functional effector features such as *GZMK*, this may suggest a transitional state between the stem
239 cell memory-like Cluster 2 and the activated Clusters 0 and 5.
240

241 In summary, scRNA-seq of synovial CD8 T cells confirmed the presence of the unique,
242 expanded CD38^{hi} CD127⁻ effector population, both in the fluid and tissue in ICI-arthritis, which
243 appears oligoclonal and distinct from dysfunctional T cells.
244

245 **Considerable overlap of TCR clones across right and left knee in ICI-arthritis**

246 A patient requiring bilateral total knee replacements after ICI therapy provided the opportunity to
247 probe CD8 T cells in the synovium across both knees of the same individual. The aggressive
248 potential of ICI-arthritis was particularly notable in this patient, who had no underlying
249 autoimmune condition nor autoantibodies consistent with RA. Within 6 months of ICI therapy,
250 which cleared their metastatic melanoma, the patient experienced joint swelling and pain and,
251 within 2 years, they required replacement of both knees. Radiographs of the knees showed
252 symmetrical joint space narrowing of both medial and lateral compartments and periarticular
253 osteopenia, consistent with an inflammatory arthritis (Fig. 4a). Histologically, the synovium
254 from the left knee was scored as an acute and chronic inflammatory reaction, involving mostly
255 mononuclear cell and neutrophil infiltrates. The right knee, operated on 6 months after the left,
256 was histologically indistinguishable from RA with expansive lymphocyte aggregates and plasma
257 cell communities, Russel bodies and binucleate plasma cells (Fig. 4b,c) (23). At the single-cell
258 and molecular level, the synovial tissue CD8 T cells exhibited transcriptional phenotypes and
259 ratios comparable to that of ICI-arthritis synovial fluid, including a predominance of the CD38^{hi}
260 CD127⁻ effector population (Fig. 4d, S5a). Strikingly, TCR-sequencing demonstrated
261 considerable sharing of TCR clonotypes between the left and right knees, with a predominance
262 of shared clonotypes in Cluster 0 (16%) and Cluster 5 (12%), which contrasted minimal sharing
263 of memory cell clonotypes from Cluster 2 and 4 (3 and 1%, respectively) (Fig. 4e).
264

265 **Distinct activation of IFN-inducible genes in ICI-arthritis**

266 To identify transcriptomic features that distinguish T cells from ICI-arthritis samples as
267 compared to RA and PsA more broadly, we computationally combined bulk RNA-seq data from
268 all sorted populations from each disease and tested for altered pathways comparing ICI-arthritis
269 to RA+PsA. Nine reactome pathways were enriched and four pathways were decreased in ICI-
270 arthritis CD8 T cells as compared to CD8 T cells from RA and PsA (Supplementary table 8).
271 Among the pathways upregulated in ICI-arthritis samples were both Type I and Type II IFN
272 pathways. Consistent with this result, many IFN-inducible genes were detected among the list of

273 genes differentially expressed between ICI-arthritis T cells and combined RA+PsA T cells
274 (**Supplementary table 9**). When examined in pair-wise comparisons of ICI-arthritis vs RA and
275 ICI-arthritis vs PsA, IFN-inducible genes such as *OAS1/3*, *STAT1/2*, *IFIT1/3*, *CXCL9/10/11*,
276 *IFI35/44/44L*, *IRF1/7/9*, *ISG15*, and *MX1* were significantly upregulated in ICI-arthritis T cells
277 (**Fig. S6a**). To investigate the extent of IFN signaling, we calculated a score reflecting expression
278 of a set of 106 IFN-inducible genes (**Supplementary table 4**). ICI-arthritis samples showed
279 marked upregulation of this gene set, indicating a pattern of broad IFN activation in ICI-arthritis
280 (**Fig. 5a**).
281

282 To examine how each sorted T cell population contributed to the variance across diseases, we
283 performed principal component (PC) analysis on the genes differentially expressed by ICI-
284 arthritis, RA and PsA T cells (ANOVA with a q-value <0.05). PC1 accounted for 19% of the
285 variance, separating ICI-arthritis T cells from RA and PsA T cells. CD38^{hi} CD127⁻ PD-1^{int} and
286 PD-1^{hi} populations showed the largest spread, suggesting that these populations, rather than the
287 CD38⁻ CD127⁺ PD-1^{int/-} and CD38⁻ CD127⁻ PD-1^{int} KLRG1⁺ populations, were driving the
288 differences (**Fig. 5b**). To explore the extent of gene expression differences among the specific
289 cell subsets, we calculated gene module scores for each population across the diseases
290 (**Supplementary table 4**). Overall, higher IFN scores were observed in all the ICI-arthritis CD8
291 T cell populations over RA/PsA. Notably, the expanded CD38^{hi} CD127⁻ PD-1^{int} cell population
292 in ICI-arthritis showed a higher expression of activation and dysfunction modules than did the
293 same population in RA/PsA, while maintaining a similarly high expression of cytotoxicity and
294 proliferation modules (**Fig. 5c**). PD-1^{hi} cells in ICI-arthritis also expressed higher activation and
295 dysfunction scores, yet a lower cytotoxicity score, compared to those from RA/PsA.
296

297 Taken together, these transcriptomic findings suggested that CD38^{hi} CD127⁻ CD8 T cells in ICI-
298 arthritis are activated and inflammatory and express a strong IFN signature. We hypothesized
299 that IFN may directly contribute to the phenotypic and functional alterations distinguishing ICI-
300 arthritis from RA/PsA. To test this, we treated synovial fluid mononuclear cells from RA and
301 SpA patients with IFN- β or IFN- γ *in vitro*. IFN- β , but not IFN- γ , induced synovial fluid T cells
302 to acquire a CD38^{hi} CD127⁻ phenotype (**Fig. 5d**). These CD38^{hi} CD127⁻ cells expressed a higher
303 level of granzyme B, perforin and Ki67 compared to the CD38⁻ CD127⁺ cells, such that the
304 frequency of CD38^{hi} perforin⁺ cells was also increased by IFN- β (**Fig. 5d, S6b-e**). At the early
305 timepoint, IFN- β also increased the total number of perforin⁺ T cells among total CD8 T cells,
306 with no effect on granzyme B or Ki67 expression (**Fig. 5e, S6b-e**). These results support the
307 notion that Type I IFN contributes directly to the accumulation of cytotoxic CD38^{hi} CD127⁻ CD8
308 T cells in ICI-arthritis.
309

310 **Circulating CD38^{hi} CD8 T cells expand in ICI-arthritis**

311 To investigate whether the findings from synovial fluid were translatable to blood, we compared
312 peripheral blood mononuclear cells (PBMC) from individuals with ICI-arthritis to those from
313 non-inflammatory controls, individuals with ICI-associated thyroiditis (ICI-thyroiditis), RA, PsA
314 and systemic lupus erythematosus (SLE), a disease characterized by high IFN production⁽¹³⁾.
315 CD38^{hi} CD127⁻ CD8 T cells were most abundant in blood from SLE patients, a finding
316 consistent with a prior report on SLE⁽²⁴⁾. Across the arthritis conditions, the frequency of CD38^{hi}
317 CD127⁻ CD8 T cells was significantly higher in PBMC from ICI-arthritis patients compared to
318 RA and PsA patients. Notably, these cells were not expanded in ICI-thyroiditis patients (**Fig. 6a-**

319 **b).** The ICI-arthritis and ICI-thyroiditis patients were similar in their ICI-therapy duration and
320 irAE onset time, but differed in age and number of irAEs. Approximately 70% of ICI-arthritis
321 patients studied here experienced irAE involving other tissues and organs such as colitis,
322 hepatitis, pericarditis, skin rash, thyroiditis, peripheral neuropathy, and stroke, while only 40% of
323 the ICI-thyroiditis cohort reported other irAEs, including skin rash and colitis. These results
324 suggest that an increased level of circulating CD38^{hi} CD127⁻ CD8 T cells may be associated with
325 a systemically more aggressive inflammatory state in ICI-treated individuals.
326

327 Consistent with the phenotype of effector cells in synovial fluid, this CD38^{hi} CD127⁻ CD8 T cell
328 population in ICI-arthritis blood showed an enrichment of transcription factors Eomes and Tbet
329 over its CD38⁻ CD127⁻ counterpart (Fig. 6c). Unlike with synovial fluid cells, an IFN signature
330 was not consistently detected in PBMC from ICI-arthritis patients, suggesting that IFN may act
331 locally within the joints (Fig. 6d). Still, as with synovial fluid cells, IFN- β treatment *in vitro*
332 induced CD8 T cells from PBMCs, from RA, PsA and even controls to acquire a CD38^{hi} CD127⁻
333 phenotype (Fig. 6e). These results support the similarity of surface markers, effector function,
334 proliferating feature and cytokine signaling between CD38^{hi} CD127⁻ CD8 T cells in synovial
335 fluid and blood and provide a circulating cell population linked to phenotypically and
336 transcriptionally to a locally enriched T cell subset in ICI-arthritis.
337

338 Discussion

339 Here we have identified CD38^{hi} CD127⁻ CD8 T cells as a predominant T cell constituent found
340 within the target tissue of the immune adverse condition ICI-arthritis. Cytometric,
341 transcriptomic, TCR repertoire, and functional studies strongly implicate this CD8 T cell subset
342 as a cytotoxic effector population that is activated by ICI therapy and clonally expands within
343 joints to promote synovial inflammation and articular damage.
344

345 Efforts to understand T cell roles in autoimmune arthritis have often focused on CD4 T cells,
346 including the PD-1^{hi} Tph cell population in RA joints (9, 10). We find that ICI-arthritis caused by
347 PD-1 pathway blockade does not induce a large Tph cell population, similar to the low frequency
348 of Tph cells in seronegative arthritides (9). Rather, ICI-arthritis involves marked expansion of a
349 CD38^{hi} CD127⁻ CD8 population, which is infrequent in both RA and PsA. While RA, PsA, and
350 ICI-arthritis have comparably sized synovial CD8 T cell populations (10, 11), the unique expansion
351 of a CD38^{hi} CD127⁻ subset in ICI-arthritis suggests that the proximal T cell responses differ in
352 these three arthritides and implies that therapies developed to target pathologic T cell responses
353 in RA or PsA may not effectively target the most relevant pathways in ICI-arthritis.
354

355 Comparing T cells from RA and PsA highlighted the expression of IFN-inducible genes across
356 ICI-arthritis T cells. Our studies establish Type I IFN as sufficient to induce synovial T cells into
357 a CD38^{hi} perforin⁺ phenotype, implicating a unique role for Type I IFN in influencing T cell
358 responses in ICI-arthritis. This contrasts how Type I IFN has generally not been implicated in
359 PsA pathogenesis and is elevated only modestly in a subset of RA patients (25-27). Further, while
360 Type I IFN plays a major role in SLE, ICI therapy rarely results in SLE-like disease (6). Thus ICI-
361 arthritis has a unique immunopathology that does not mirror these paradigmatic spontaneous
362 autoimmune diseases. While blocking Type I IFN signaling, as done in SLE, could be considered
363 as a therapeutic strategy to treat irAEs; (28) this approach risks compromising the anti-tumor

364 response given the reported positive role of IFNs in ICI-induced anti-tumor T cell activation (29-
365 32).

366
367 The large population of CD38^{hi} CD127⁻ CD8 T cells in ICI-arthritis joints expresses cytotoxic,
368 effector, and proliferative gene programs and produces ample IFN- γ and TNF upon
369 restimulation, suggesting a robust inflammatory capacity. These results are consistent with the
370 features of activated CD8 T cells in the gut of patients with colitis after ICI therapy, which also
371 show cytotoxic and proliferative features (33). Infiltration of CD8 T cells has been noted in ICI-
372 induced immune injury in other organs as well, including liver (34), skin (35), heart (36, 37), and
373 thyroid (38), suggesting that cytotoxic CD8 T cell activation may be a common feature of irAE
374 immune responses, although cytotoxic CD4 T cells have also been implicated (39).
375

376 Our transcriptomic analyses suggest that the T cell infiltrate in ICI-arthritis does not contain a
377 large dysfunctional population, as has been demonstrated in infiltrating lymphocytes in multiple
378 tumor types (15, 40-43). The CD38^{hi} CD127⁻ population in ICI-arthritis joints does not display
379 classic dysfunctional features such as high PD-1 protein nor transcript levels, and scRNA-seq
380 clearly distinguish the CD38^{hi} CD127⁻ population from a smaller cluster of dysfunctional cells.
381 Further, we found limited clonal overlap between the CD38^{hi} CD127⁻ cluster and the
382 dysfunctional cluster. These results suggest that the predominant CD8 T cells within an active
383 irAE site differ from dysfunctional tumor infiltrating T cells. Notably, CD38⁺ CD8 T cells have
384 been identified in lung tumors (44, 45), tumors in murine models (46, 47) and in the blood of patients
385 with SLE. In some cases, these CD38⁺ cells show reduced function or susceptibility to inhibition
386 by adenosine (24, 46, 47), while in other cases they appear highly functional (43), as in our analyses
387 of ICI-arthritis. Comparing the functions and TCRs of CD38^{hi} T cells from ICI-arthritis joints
388 with those from tumors, particularly within the same patient, may clarify the functional and
389 clonal relationships of ICI mediated anti-tumor and irAE responses.
390

391 Repertoire analyses of T cell in colitis after ICI therapy indicated a relationship between
392 activated T cells and T resident memory cells, consistent with local activation of a resident
393 population (33). Our analysis of two different joints from the same patient, obtained 6 months
394 apart, revealed multiple shared expanded clones, in particular within the CD38^{hi} CD127⁻ cluster.
395 The presence of common clones in two separate joints indicates that the T cell response in ICI-
396 arthritis can be systemic, rather than a restricted local break in tolerance in a single joint. The
397 detection of expanded clones in the circulation prior to irAEs induced by ipilimumab (anti-
398 CTLA-4) are consistent with this idea that autoreactive clones are present systemically (48). It will
399 be of major interest to determine whether T cells in different irAE sites in the same patient
400 express the same TCRs, suggesting targeting of shared antigens in different tissues.
401

402 Consistent with a systemic response, we detected an increased frequency of CD38^{hi} CD127⁻ CD8
403 T cells in the circulation of patients with ICI-arthritis. We did not similarly detect a consistent
404 increase in IFN-induced genes in PBMC, suggesting that IFNs may act locally within tissues, in
405 contrast to the systemic IFN signature in SLE (49, 50). Expansion of CD38⁺ cells is consistent with
406 prior observations that in the peripheral blood of melanoma patients, ICI therapy increases the
407 frequency of Ki67⁺ CD38⁺ HLA-DR⁺ cells, which show clonal overlap with tumor infiltrating
408 lymphocytes (47, 51). Notably, we did not detect an increase in CD38^{hi} CD127⁻ cells in a cohort of
409 patients with ICI-thyroiditis, consistent with recent findings emphasizing CD4 T cell alterations

410 in ICI-thyroiditis⁽³⁹⁾. This suggests that PD-1 blockade does not universally expand CD38^{hi}
411 CD127⁻ CD8 cells in all patients. The ICI-arthritis cohort had higher frequency of other irAEs
412 compared to the ICI-thyroiditis cohort; thus, we hypothesize that expansion of CD38^{hi} cells
413 reflects the extent of T cell activation after PD-1 blockade. Determining whether circulating
414 CD38^{hi} cells share TCRs with those within irAE target tissue will be of interest, which if also
415 found prior to ICI therapy in the blood, could be studied as biomarkers for irAEs. Further,
416 evaluating the extent to which circulating CD38^{hi} cells associate with specific irAEs and their
417 relationship to anti-tumor responses will be important to explore with longitudinal study of a
418 larger cohort of patients.

419
420 Our study is limited by relatively small number of patients studied, by the lack of paired tumor
421 and blood samples, and by the absence of therapeutic response data, which we expect will be
422 spurred by the findings described here. In sum, our study defines characteristic differences
423 between the T cell response in ICI-arthritis and that in two common forms of spontaneous
424 arthritis. These comparative analyses raise caution about the ability to coopt treatment paradigms
425 from spontaneous autoimmunity to treat irAEs and here nominate an IFN-induced CD38^{hi}
426 CD127⁻ CD8 cells as a likely pathologic driver of irAEs following ICI therapy that may be
427 targetable therapeutically.

428

Methods

429

Human subjects research

430

Human subjects research was performed according to the Institutional Review Boards at Mass General Brigham (IRB protocol 2014P002558) or Hospital for Special Surgery (IRB protocols 2017-1898 and 2014-233) via approved protocols with informed consent as required. Synovial fluid samples were collected from patients with ICI-arthritis, RA or PsA as discarded fluid from clinically-indicated arthrocenteses. Patients with ICI-arthritis developed arthritis after receiving checkpoint inhibitor therapy to treat a malignancy and were diagnosed by experienced rheumatologists. Type and status of cancer, type and duration of CI therapy, tender or swollen joint counts (mono-, oligo- or poly- arthritis), other irAE, prior history of rheumatologic conditions, serum rheumatoid factor (RF) and anti-CCP antibody status, C-reactive protein level, and medication usage were obtained by review of electronic medical records. Seropositive (RF+ and/or anti-CCP+) RA patients fulfilled 2010 ACR/EULAR classification criteria. PsA patients were diagnosed with PsA by their treating rheumatologist. Blood samples were obtained from individuals with ICI-arthritis, ICI-thyroiditis, seropositive RA, PsA, SLE as well as individuals without inflammatory arthritis. Mononuclear cells from synovial fluid and peripheral blood were isolated by density centrifugation using Ficoll-Paque Plus (GE healthcare) and cryopreserved in FBS + 10% DMSO by slow freeze, followed by storage in liquid nitrogen for batched analyses. For experimental analyses, cryopreserved samples were thawed into RPMI medium + 10% FBS.

447

448

Mass cytometry staining

449

Cryopreserved synovial fluid cells were thawed and trypan blue negative viable cells were counted by hemocytometry. Approximately 1 million live cells per sample were used for mass cytometry staining. All antibodies were obtained from the Longwood Medical Area CyTOF Core except for anti-PD-1 antibody (MIH4), which was conjugated with heavy-metal isotope (Fluidigm kit) and validated in house. Buffers were from Fluidigm unless otherwise specified. Cells were stained with cisplatin (Fluidigm) for viability then washed. Surface antibody cocktail was prepared in cell staining buffer (Fluidigm) and added to all samples equally after Fc block (BD). Cells were washed then fixed and permeabilized using eBioscience Transcription Factor Fix/Perm Buffer followed by barcoding (Fluidigm). Barcoded samples were pooled together and stained with the intracellular antibody cocktail in intracellular staining buffer (Fluidigm). Cells were re-fixed in 4% formalin (Sigma-Aldrich). Intercalator-Ir was diluted in CyTOF PBS and applied to cells. Cells were then washed and resuspended with cell acquisition solution (Fluidigm) containing 1:10 diluted EQ beads (Fluidigm). Acquisition was performed on a CyTOF-Helios mass cytometer (Fluidigm).

463

464

Mass cytometry data analysis

465

Cytometry data were normalized and debarcoded as previously described⁽⁵²⁾. Live cells (DNA⁺ 195_Pt 140_Beads⁻) were first gated prior to gating for specific cell populations using the following scheme: monocytes (CD3⁻ CD14⁺), B cells (CD14⁻ CD19⁺), and T cells (CD3⁺ CD14⁻). Gated populations from 6 ICI-arthritis, 5 RA and 5 SpA were concatenated for high-dimensional analyses using the implementations on Cytobank (www.cytobank.org). For donors with more than 10,000 cells, we randomly selected 10,000 cells to ensure that samples were equally represented. In this way, we created downsampled datasets of 160,000 viable cells or 42,144 CD8⁺ T cells from 16 samples for analysis. Dimensional reduction was performed using tSNE algorithm⁽⁵³⁾ using 2000 iterations with a perplexity = 30 and a theta = 0.5. Hierarchical

474 consensus clustering was performed using FlowSOM algorithm to generate 15 metaclusters and
475 225 clusters using 100 iterations⁽⁵⁴⁾. Antibody channels excluding gating markers were used for
476 analyses. Heatmaps of row-normalized median expression of representing markers in the
477 metaclusters are shown, in which the metaclusters were arranged by hierarchical consensus
478 clustering. Metaclusters and markers of interest were overlaid on tSNE plot for visualization.
479 Manual biaxial gating was performed using FlowJo v.10.4.2 for quality control and independent
480 examination of the expression of markers and frequencies of populations.
481

482 **Flow cytometry staining**

483 Cryopreserved cells were thawed, washed and counted. Cells were stained in PBS with Aqua
484 fixable live/dead dye (Invitrogen) for 15 minutes at room temperature and washed.
485 For surface staining, cells were then stained in PBS with 1% BSA with the following antibodies
486 for 30 minutes at 4 °C: anti-CD14-BV510-dump (M5E2), anti-CD25-FITC (M-A251), anti-
487 CD8-BUV395 (RPA-T8), anti-CD4-BV605 (RPA-T4), anti-CD38-PercpCy5.5 (HIT2), anti-
488 CD45RA-BV711 (HI100), anti-PD-1-PE-Cy7 (MIH4), anti-CD3-AF700 (UCHT1), anti-CD127-
489 APC (A019D5) and anti-KLRG1-BV421 (SA231A2) from BioLegend. Cells were washed in
490 cold PBS, passed through a 70-micron filter, and data acquired on a BD Fortessa analyzer using
491 FACSDiva software. Data were analyzed using FlowJo 10.4.2. For intracellular staining of
492 transcription factors, cells were processed and stained for viability and indicated surface markers
493 as described above. Cells were washed and incubated with 1x eBioscience Transcription Factor
494 Fixation/Permeabilization Buffer at room temperature for 1 hour. Cells were then washed in 1x
495 eBioscience Permeabilization Buffer twice and incubated with indicated intracellular antibodies
496 including anti-T-bet-BV785 (4B10, BD Biosciences), anti-EOMES-PerCP-ef710 (X4-83, BD
497 Biosciences), anti-granzyme B-AF647 (GB11, Invitrogen), anti-granzyme K-FITC (GM26E7,
498 Invitrogen), anti-perforin-BV421 (dG9, Invitrogen) and anti-Ki-67-BV605 (Ki67, BioLegend) at
499 room temperature for 1 hour. Cells were washed twice in 1x eBioscience Permeabilization
500 Buffer, passed through a 70-micron filter, and data acquired on a BD Fortessa analyzer. For
501 intracellular detection of TNF and IFN-γ, sorted cells were stimulated with 1x PMA/ionomycin +
502 Brefeldin A/Monesin (Invitrogen) at 37 °C for 2 hours. Cells were stained for viability and
503 indicated surface markers as described above. Cells were washed and incubated with 1x
504 eBioscience Transcription Factor Fixation/Permeabilization Buffer at room temperature for 1
505 hour. Cells were then washed in 1x eBioscience Permeabilization Buffer twice and incubated
506 with indicated intracellular antibodies including anti-TNF-PE (MAb1) and anti-IFN-γ-APC
507 (4S.B3) from BioLegend at room temperature for 1 hour. Cells were washed twice in 1x
508 eBioscience Permeabilization Buffer, passed through a 70-micron filter, and data acquired on a
509 BD Fortessa analyzer.
510

511 **Flow cytometric cell sorting**

512 An 8-color flow cytometry panel was developed to identify CD8 T cell populations within
513 SFMC. Antibodies include anti-CD14-BV510 (M5E2), anti-3-Alexa Fluor 700 (UCHT1), anti-
514 CD8-BV510 (RPA-T8), anti-PD-1-PE-Cy7 (MIH4), anti-CD127-APC (A019D5), anti-CD38-PE
515 (HIT2), anti-KLRG1-BV421 (SA231A2) and propidium iodide (all from BioLegend). SFMC
516 were incubated at 4 °C with antibodies in HBSS/1% BSA for 30 min. Cells were washed once in
517 HBSS/1% BSA, centrifuged and passed through a 70-μm filter and propidium iodide was added
518 immediately prior to sorting. Cells were sorted on a 4-laser BD FACSaria Fusion cell sorter.
519 Intact cells were gated according to forward scatter and side scatter area (FSC-A and SSC-A).

520 Doublets were excluded by serial FSC-H/FSC-W and SSC-H/SSC-W gates (H, height; W, width). Non-viable cells were excluded based on propidium iodide uptake. Cells were sorted through a 70- μ m nozzle at 70 psi. Cell purity was routinely >98%. For functional analyses, approximately 200,000 cells were sorted from each population into cold RPMI/10% FBS. For RNA-seq, up to 1,500 cells were collected from each cell subset directly into buffer TCL (Qiagen) with 1% β -mercaptoethanol (Sigma). Flow cytometric quantification of cell populations was performed using FlowJo v.10.0.7.

527

528 **Sample preparation for low-input bulk RNA-seq**

529 RNA was isolated from 1,500 cells from sorted T cell subpopulations. 5uL of total RNA were
530 placed in wells of a 96-well plate and RNA-seq libraries were prepared at Broad Technology
531 Labs at the Broad Institute of Harvard and MIT using the Illumina SmartSeq2 platform. Libraries
532 were sequenced to generate 38 base paired-end reads.

533

534 **Low-input bulk RNA-seq analysis**

535 Sequencing samples were examined with FastQC for quality control and trimmed with
536 trimmomatic. Samples with low sequencing quality were removed and 86 samples were used for
537 downstream analysis (Fig. S3a). Reads were mapped to GRCh38 (Ensembl release 96) using
538 STAR alignment software. Lowly expressed genes ($\log_2 \text{FPKM} < 2$) were filtered, and the
539 expression of 17,779 genes were used for downstream analysis (Fig. S3b). TMM normalized
540 read counts were generated and data was \log_2 transformed, batched corrected and scaling was
541 applied (mean=0, variation=1) when appropriate. Differential expression analysis and gene set
542 enrichment analysis was performed in Qlucore software. In comparisons between two specific
543 cell populations by t-test, genes with log fold change >1.5 and FDR <5% were considered
544 differentially expressed. In comparisons among more than two cell populations by ANOVA,
545 genes with an FDR <1% were considered differentially expressed.

546

547 **Analysis of gene module score and IFN response score**

548 Module scores based on specific gene sets (memory, effector, proliferation, IFN-inducible genes
549 etc.) were calculated for each population as the average of the scaled (Z-normalized) expression
550 of the genes in the list. A similar approach was used when calculating gene set-based scores in
551 bulk RNA-seq data.

552 Module gene lists were compiled from published studies and molecular signature databases.
553 (MSigDB v7.4 from UC San Diego and Broad Institute)

554 Memory module genes (Tcm, Tem, Trm and Temra) were from Zhang et al, Nature 2018⁽¹⁴⁾.
555 Dysfunction module genes were from Zhang et al, Nature 2018⁽¹⁴⁾ and Li et al, Cell 2019⁽¹⁵⁾.
556 Cytotoxicity module genes were from Li et al, Cell 2019⁽¹⁵⁾, and MSigDB gene sets M16355
557 (BIOCARTA_NK cells pathway), M13247 (BIOCARTA_T Cytotoxic Cell Surface Molecules)
558 and M5669 (KEGG_Natural killer cell mediated cytotoxicity) Proliferation module genes were
559 from Gene Ontology gene sets (GO_G1_S_TRANSITION_OFMITOTIC_CELL_CYCLE,
560 GO_G2_M_TRANSITION_OFMITOTIC_CELL_CYCLE) and Reactome MSigDB gene sets
561 M1017 (DNA_REPLICATION), M1080 (G2_M_DNA_DAMAGE_CHECKPOINT), M27662
562 (M_PHASE), M17283 (MITOTIC_G1_PHASE_AND_G1_S_TRANSITION), M27673
563 (MITOTIC_SPINDLE_CHECKPOINT) and M3158 (S_PHASE) Effector module genes were
564 from MSigDB gene sets M3044 (GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_DN),
565 M3041 (GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_UP), M5834

566 (GSE9650_EFFECTOR_VS_EXHAUSTED_CD8_TCELL_DN), M5837
567 (GSE9650_EFFECTOR_VS_MEMORY_CD8_TCELL_DN), M3073
568 (GSE10239_MEMORY_VS_DAY4.5_EFF_CD8_TCELL_UP), M4407
569 (GSE22886_NAIVE_CD8_TCELL_VS_MEMORY_TCELL_DN), M8435
570 (GSE23321_CENTRAL_MEMORY_VS_NAIVE_CD8_TCELL_UP), M9490
571 (GSE41867_DAY6_EFFECTOR_VS_DAY30_EXHAUSTED_CD8_TCELL_LCMV_CLONE
572 13_DN), M9492
573 (GSE41867_DAY8_EFFECTOR_VS_DAY30_EXHAUSTED_CD8_TCELL_LCMV_CLONE
574 13_DN), M9480
575 (GSE41867_MEMORY_VS_EXHAUSTED_CD8_TCELL_DAY30_LCMV_UP) and M3027
576 (KAECH_DAY8_EFF_VS_MEMORY_CD8_TCELL_UP) IFN-inducible genes were from
577 Arazi, et al, Nat Immunol, 2019⁽²⁰⁾. The compiling processes were based on 2 principles: 1).
578 integration: the collection of genes from gene sets of the same module were merged; 2).
579 discrimination: genes shared by memory-effector-dysfunction categories were excluded from
580 memory and dysfunction module and considered effector, (as an intermediate state between
581 memory-dysfunction) while genes shared by cytotoxicity, proliferation or IFN-inducible genes
582 were not excluded from other modules. Differentially expressed module genes were obtained
583 from the intersection of each of the above module genes and the ANOVA-tested, batch-corrected
584 DEGs (q < 0.01) among the sorted bulk populations (**Supplementary table 3**).
585

586 Sample preparation for single cell RNA-seq

587 Synovial fluid: Mononuclear cells from synovial fluid were isolated using Ficoll-Paque Plus (GE
588 healthcare) and cryopreserved in Cryostor10 (BioLife) in liquid nitrogen. For experimental
589 analyses, cryopreserved samples were thawed into RPMI medium (Corning) + 10% FBS
590 (HyClone) + 1% L-glutamine (Gibco), referred to as RPMI++.

591 Synovial tissue: Fresh synovial tissues were cut into 3-mm³ fragments and preserved in Cryostor
592 (BioLife). For experimental processing, tissues were thawed into RPMI++. Following two
593 subsequent washes in RPMI, the tissues were finely chopped and transferred into 5ml
594 polystyrene tubes () containing digestion buffer (5ml/sample) made with RPMI medium +
595 Liberase TL (100µg/ml; Roche) + DNaseI (100µg/ml; Roche). The tubes were placed securely in
596 a MACSmix tube rotator (Miltenyi Biotec) and placed in an incubator at 37°C, 5% CO₂ for 30
597 minutes. The digested tissue was filtered over 70µM cell strainer (BD) and subjected to further
598 mechanical dissociation using a syringe plunger. The eluate was washed with RMPI++ and
599 centrifuged at 1500 rpm for 4 minutes at 4°C. The cells were resuspended in RPMI++ and
600 passed through a second filtration using 40µM cell strainer (BD).
601 Cells were then counted and used for downstream applications.

602 Single cell suspensions from fluid and tissue were subjected to Human TruStain FcX
603 (Biolegend) in FACS buffer (PBS supplemented with 5% FBS (HyClone)) prior to staining. The
604 antibodies used for identification of CD8 T-cells were anti-CD3 (APC, clone UCHT1,
605 Biolegend) and CD8 (PerCP/Cyanine5.5, clone RPA-T8, Biolegend). Cells were sorted on a
606 three-laser BD FACSAria Fusion cell sorter at the Flow Cytometry Core Facility at Weill
607 Cornell Medicine (WCM). Intact cells were gated according to forward scatter and side scatter
608 area (FSC-A and SSC-A). Doublets were excluded by serial FSC-H/FSC-W and SSC-H/SSC-W
609 gates (H, height; W, width). Non-viable cells were excluded based on DAPI uptake. Cells were
610

611 further selected for CD3 and CD8 surface expression and sorted through a 70- μ m nozzle at 70
612 psi.
613

614 **Single cell RNA-seq library preparation**

615 5' gene expression (GEX) and paired TCR libraries for single cell RNA-seq were prepared using
616 the 5' Chromium Next GEM Single Cell v2 (Dual Index) reagents and protocol provided by 10X
617 Genomics. The pooled 5' GEX and TCR libraries at 10nM concentration were sequenced using
618 NovaSeq6000 S1 Flow Cell by the Illumina platform at Genomics Research Core Facility at
619 WCM.

620 **scRNA-seq data analysis**

621 scRNA-seq data processing and alignment: 10x FASTQ files were processed with the Cellranger
622 count 4.0 pipeline with default parameters. Reads were aligned to the human reference sequence
623 GRCh38. Seurat package (v.4.0.0) was used to perform unbiased clustering of the CD8⁺ sorted T
624 cells from our patient samples. QC was performed to remove cells that had less than 50 genes,
625 more than 3000 genes, or >10% mitochondrial gene expression, resulting in a total of 18,472
626 cells and 19,406 genes. The dataset was then log-normalized using a scale factor of 10,000.
627 Potential confounders such as percent mitochondrial gene expression and number of UMI per
628 cell was regressed out during scaling (mean of 0 and variance of 1) and before principal
629 component analysis, which used the top 2000 highly variable genes. Elbow plot was used to
630 determine the statistically significant principal components, where then we used the first 21 PCs
631 for follow-up analysis. Harmony (v1.0) was performed to improve integration and correct for
632 batch effects on our samples, with parameters of max.iter.cluster = 30, and
633 max.iter.harmony = 20 and sample as the only covariate. Eight clusters were found at 0.5
634 resolution, and their identity were annotated based on the expression of differentially expressed
635 genes (DEG) using FindAllMarkers function using default parameters, where only genes
636 detected in at least 25% of the cells in the two comparison sets are used. The AddModuleScore
637 function in Seurat was used to calculate module scores, where the average expression level of
638 genes of interest are subtracted from a randomly aggregated expression of control features, to
639 distinguish clusters.
640

641 **TCR analyses**

642 Cellranger vdj 4.0 pipeline was used to generate clonotype information from 10x 5' VDJ FASTQ
643 files, with default parameters. Reads were aligned to the human reference sequence GRCh38.
644 Clonotype information was then manually inputted into our Seurat object as metadata
645 information, using the cell barcodes to match the clonotype information to our cells. The
646 integration resulted in 6843 unique clonotypes, where all cells within a clonotype share the same
647 CDR3 alpha and CDR3 beta sequences. This allowed us to explore the relationship between
648 TCR sequence and its phenotype.
649

650 **Measures of diversity**

651 Simpson's diversity index:

652
$$D_s = 1 - \sum_{i=1}^c \frac{n_i(n_i-1)}{n(n-1)}$$
; where n_i is the number of cells within the i th clonotype, c is the total
653 number of unique clonotypes in our cluster, and n is the total number of cells with clonotypes

656 within our cluster. Simpson Diversity Index ranges from 0 to 1, with 0 being a community with no
657 diversity and 1 being a community of the highest diversity.
658

659 **Shannon Equitability:**

660 E = H / S; where H is the Shannon's diversity index value and S is the number of clonotypes in
661 that sample. Shannon Equitability ranges from 0 to 100 and is based on the Shannon Diversity
662 Index but takes into account the actual number of unique clonotypes present within each cluster to
663 assign a value that can be directly compared across all clusters. As the value approaches 100, the
664 community is approaching maximum diversity.
665

666 **RNA extraction, reverse transcription and real-time PCR (qPCR)**

667 RNA isolated using RNeasy Micro Kits (Qiagen). cDNA was prepared using Quantitect RT-
668 PCR (Qiagen) and PCR performed with Brilliant III SYBRGreen on a Stratagene Mx3000.
669 Primers used were as follows: 18S forward: GGGAGCCTGAGAAACGGC, reverse:
670 GGGTCGGGAGTGGTAATT. IFI27 forward: GAATCGCCTCGTCCTCCATAG, reverse:
671 CGCCAGGATACTTACCCAGTG. IFI44 forward: CTGAGACGAATGCTATGGGCT,
672 reverse: GACAGAGAGCTGCCAGGTATT. IFI44L forward:
673 CAGATTGGAACTGGACCCC, reverse: AGGGCCAGATTACCAGTTCC. ISG15
674 forward: CGCAGATCACCCAGAAGATCG, reverse: TTCGTCGCATTGTCCACCA. IFIT1
675 forward: TTGATGACGATGAAATGCCTGA, reverse: CAGGTCAACCAGACTCCTCAC.
676 IFIT3 forward: TCAGAAAGTCTAGTCACTTGGGG, reverse:
677 ACACCTTCGCCCTTCATTTC. IRF7 forward: CCCACGCTATACCATCTACCT, reverse:
678 GATGTCGTCATAGAGGCTGTTG. RASD2 forward: GAGCGCCACAAAGAAGTGTGTC,
679 reverse: ACAATGTGTGGGGTCCTTGG.
680

681 **Cell culture with IFN stimulation**

682 Cryopreserved mononuclear cells from synovial fluid or peripheral blood were thawed and
683 counted as usual. Cells were plated at 2.5×10^6 cells/mL in 1mL per well in a 12-well plate and
684 cultured with or without IFN- β (1kU/mL) or IFN- γ (50ng/mL) for 18 hours or 72 hours. At the
685 time of harvest, cells were washed and stained with surface markers and intracellular markers as
686 described above.
687

688 **Statistics**

689 Statistical analysis was performed as described in each section and figure legends using Prism 8
690 software. Unless otherwise stated, data are presented as mean \pm SD from data obtained from at
691 least two independent experiments. Parametric and non-parametric analyses were used where
692 appropriate based on testing for a normal distribution using the D'Agostino-Pearson normality
693 test or Shapiro-Wilk normality test. Two-tailed Student's t test was used for two-group
694 comparisons (Mann-Whitney test was used for nonparametric data). One-way analysis of
695 variation (ANOVA) followed by the Holm-Sidak test was used for multiple comparisons
696 (Kruskal-Wallis test was used for nonparametric data). P-values < 0.05 were considered
697 significant after adjusting for multiple testing where appropriate.
698

699 **Data Availability**

700 Bulk and single cell RNA-seq data will be shared through Immport upon publication.

701

Acknowledgements

702

This work has been supported in part by funding from the Rheumatology Research Foundation (to DAR, LTD, ARB), Burroughs Wellcome Fund Career Award in Medical Sciences, NIAMS K08 AR072791, P30 AR070253 (to DAR), NIAMS R01 (to MBB), NIAID R01 AI148435 (LTD). We thank Adam Chicoine and the BWH Human Immunology Center Flow Cytometry Core for cell sorting assistance.

703

704

705

706

707

708

709

Author contribution

710

R. Wang, L. Donlin, A.R. Bass, and D.A. Rao conceived the overall project. K.K. Chan, A.R. Bass, A. Cunningham-Bussel, L. Chen, D.J. Todd, L. MacFarlane, E.M. Massarotti, J.A. Sparks, O.R. Hamnvik, L. Min and A. Tirpack collected human subject data and helped analyze clinical data. R. Wang, K. Marks, and A.H. Jonsson, performed mass cytometry and flow cytometry phenotyping analyses. R. Wang generated and analyzed bulk RNA-seq data, and R. Wang and G. Dunlap analyzed bulk RNA-seq data. K. Marks performed and analyzed cell culture experiments. A. Singaraju and L. Shakib generated scRNA-seq and TCR data, and A. Singaraju, L. Shakib, and G. Dunlap analyzed scRNA-seq/TCR data. M.R. Fein and M.B. Brenner provided experimental advice and assisted with interpretation of T cell data. L.T. Donlin, R. Wang, and D.A. Rao wrote the initial manuscript, and all authors participated in revising the manuscript.

711

712

713

714

715

716

717

718

719

720 **List of Supplementary Tables:**
721 **Supplementary table 1.** Clinical characteristics of ICI arthritis patients with samples studied.
722
723 **Supplementary table 2.** Mass cytometry panel for analysis of synovial fluid cells.
724
725 **Supplementary table 3.** Genes differentially expressed across CD8 T cell populations from ICI-
726 arthritis samples.
727
728 **Supplementary table 4.** Genes used for calculation of module scores.
729
730 **Supplementary table 5.** GSEA pathways altered in CD38^{hi} CD127⁻ cells and CD38⁻ CD127⁺
731 cells.
732
733 **Supplementary table 6.** Top genes correlated with CD38, IL7R, and PDCD1 in bulk RNA-seq
734 data.
735
736 **Supplementary table 7.** Signature genes for indicated CD8 T cell populations based on
737 differential gene expression in bulk RNA-seq data
738
739 **Supplementary table 8.** Reactome pathways differentially expressed between ICI-arthritis T
740 cells and RA+PsA T cells.
741
742 **Supplementary table 9.** Genes differentially expressed between ICI-arthritis T cells and
743 RA+PsA T cells.

744

References

745

1. Dougan M, Luoma AM, Dougan SK, Wucherpfennig KW. 2021. Understanding and treating the inflammatory adverse events of cancer immunotherapy. *Cell* 184: 1575-88
2. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, Massard C, Fuerea A, Ribrag V, Gazzah A, Armand JP, Amellal N, Angevin E, Noel N, Boutros C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O. 2016. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. *Eur J Cancer* 54: 139-48
3. Pundole X, Abdel-Wahab N, Suarez-Almazor ME. 2019. Arthritis risk with immune checkpoint inhibitor therapy for cancer. *Curr Opin Rheumatol* 31: 293-9
4. Braaten TJ, Brahmer JR, Forde PM, Le D, Lipson EJ, Naidoo J, Schollenberger M, Zheng L, Bingham CO, Shah AA, Cappelli LC. 2020. Immune checkpoint inhibitor-induced inflammatory arthritis persists after immunotherapy cessation. *Ann Rheum Dis* 79: 332-8
5. Cappelli LC, Thomas MA, Bingham CO, 3rd, Shah AA, Darrah E. 2020. Immune checkpoint inhibitor-induced inflammatory arthritis as a model of autoimmune arthritis. *Immunol Rev* 294: 106-23
6. Chan KK, Bass AR. 2020. Autoimmune complications of immunotherapy: pathophysiology and management. *BMJ* 369: m736
7. Jeurling S, Cappelli LC. 2020. Treatment of immune checkpoint inhibitor-induced inflammatory arthritis. *Curr Opin Rheumatol* 32: 315-20
8. Postow MA, Sidlow R, Hellmann MD. 2018. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. *N Engl J Med* 378: 158-68
9. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, Donlin LT, Henderson LA, Wei K, Mizoguchi F, Teslovich NC, Weinblatt ME, Massarotti EM, Coblyn JS, Helfgott SM, Lee YC, Todd DJ, Bykerk VP, Goodman SM, Pernis AB, Ivashkiv LB, Karlson EW, Nigrovic PA, Filer A, Buckley CD, Lederer JA, Raychaudhuri S, Brenner MB. 2017. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. *Nature* 542: 110-4
10. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, Goodman SM, Tabechian D, Hughes LB, Salomon-Escoto K, Watts GFM, Jonsson AH, Rangel-Moreno J, Meednu N, Rozo C, Apruzzese W, Eisenhaure TM, Lieb DJ, Boyle DL, Mandelin AM, 2nd, Accelerating Medicines Partnership Rheumatoid A, Systemic Lupus Erythematosus C, Boyce BF, DiCarlo E, Gravallese EM, Gregersen PK, Moreland L, Firestein GS, Hacohen N, Nusbaum C, Lederer JA, Perlman H, Pitzalis C, Filer A, Holers VM, Bykerk VP, Donlin LT, Anolik JH, Brenner MB, Raychaudhuri S. 2019. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. *Nat Immunol* 20: 928-42
11. Penkava F, Velasco-Herrera MDC, Young MD, Yager N, Nwosu LN, Pratt AG, Lara AL, Guzzo C, Maroof A, Mamanova L, Cole S, Efremova M, Simone D, Filer A, Brown CC, Croxford AL, Isaacs JD, Teichmann S, Bowness P, Behjati S, Hussein Al-Mossawi M. 2020. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. *Nat Commun* 11: 4767

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789 12. Maschmeyer P, Heinz GA, Skopnik CM, Lutter L, Mazzoni A, Heinrich F, von Stuckrad
790 SL, Wirth LE, Tran CL, Riedel R, Lehmann K, Sakwa I, Cimaz R, Giudici F, Mall MA,
791 Enghard P, Vastert B, Chang HD, Durek P, Annunziato F, van Wijk F, Radbruch A,
792 Kallinich T, Mashreghi MF. 2021. Antigen-driven PD-1(+) TOX(+) BHLHE40(+) and
793 PD-1(+) TOX(+) EOMES(+) T lymphocytes regulate juvenile idiopathic arthritis in situ.
794 *Eur J Immunol* 51: 915-29

795 13. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ,
796 Chen JH, Frederick DT, Barzily-Rokni M, Freeman SS, Reuben A, Hoover PJ, Villani
797 AC, Ivanova E, Portell A, Lizotte PH, Aref AR, Eliane JP, Hammond MR, Vitzthum H,
798 Blackmon SM, Li B, Gopalakrishnan V, Reddy SM, Cooper ZA, Paweletz CP, Barbie
799 DA, Stemmer-Rachamimov A, Flaherty KT, Wargo JA, Boland GM, Sullivan RJ, Getz
800 G, Hacohen N. 2018. Defining T Cell States Associated with Response to Checkpoint
801 Immunotherapy in Melanoma. *Cell* 175: 998-1013 e20

802 14. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY,
803 Konno H, Guo X, Ye Y, Gao S, Wang S, Hu X, Ren X, Shen Z, Ouyang W, Zhang Z.
804 2018. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.
805 *Nature* 564: 268-72

806 15. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, van
807 den Braber M, Rozeman EA, Haanen J, Blank CU, Horlings HM, David E, Baran Y,
808 Bercovich A, Lifshitz A, Schumacher TN, Tanay A, Amit I. 2019. Dysfunctional CD8 T
809 Cells Form a Proliferative, Dynamically Regulated Compartment within Human
810 Melanoma. *Cell* 176: 775-89 e18

811 16. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind
812 D, Peet GW, Zhong G, Lu S, Zhu W, Mao Y, Xiao M, Bergmann M, Hu X, Kerkar SP,
813 Vogt AB, Pflanz S, Liu K, Peng J, Ren X, Zhang Z. 2019. Landscape and Dynamics of
814 Single Immune Cells in Hepatocellular Carcinoma. *Cell* 179: 829-45 e20

815 17. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A,
816 Felt K, Naik GS, Manos M, Gjini E, Kuchroo JR, Ishizuka JJ, Collier JL, Griffin GK,
817 Maleri S, Comstock DE, Weiss SA, Brown FD, Panda A, Zimmer MD, Manguso RT,
818 Hodi FS, Rodig SJ, Sharpe AH, Haining WN. 2019. Subsets of exhausted CD8(+) T cells
819 differentially mediate tumor control and respond to checkpoint blockade. *Nat Immunol*
820 20: 326-36

821 18. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H,
822 Trajanoski Z. 2017. Pan-cancer Immunogenomic Analyses Reveal Genotype-
823 Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.
824 *Cell Rep* 18: 248-62

825 19. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo
826 ZL, Dushyanthen S, Byrne A, Wein L, Luen SJ, Poliness C, Nightingale SS, Skandarajah
827 AS, Gyorki DE, Thornton CM, Beavis PA, Fox SB, Kathleen Cunningham Foundation
828 Consortium for Research into Familial Breast C, Darcy PK, Speed TP, Mackay LK,
829 Neeson PJ, Loi S. 2018. Single-cell profiling of breast cancer T cells reveals a tissue-
830 resident memory subset associated with improved prognosis. *Nat Med* 24: 986-93

831 20. Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, Chicoine A, Eisenhaure
832 TM, Jonsson AH, Li S, Lieb DJ, Zhang F, Slowikowski K, Browne EP, Noma A,
833 Sutherby D, Steelman S, Smilek DE, Tosta P, Apruzzese W, Massarotti E, Dall'Era M,
834 Park M, Kamen DL, Furie RA, Payan-Schober F, Pendergraft WF, 3rd, McInnis EA,

835 Buyon JP, Petri MA, Putterman C, Kalunian KC, Woodle ES, Lederer JA, Hildeman DA,
836 Nusbaum C, Raychaudhuri S, Kretzler M, Anolik JH, Brenner MB, Wofsy D, Hacohen
837 N, Diamond B, Accelerating Medicines Partnership in SLEn. 2019. The immune cell
838 landscape in kidneys of patients with lupus nephritis. *Nat Immunol* 20: 902-14

839 21. Jing Y, Liu J, Ye Y, Pan L, Deng H, Wang Y, Yang Y, Diao L, Lin SH, Mills GB,
840 Zhuang G, Xue X, Han L. 2020. Multi-omics prediction of immune-related adverse
841 events during checkpoint immunotherapy. *Nat Commun* 11: 4946

842 22. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R,
843 Gao R, Zhang L, Dong M, Hu X, Ren X, Kirchhoff D, Roider HG, Yan T, Zhang Z.
844 2018. Global characterization of T cells in non-small-cell lung cancer by single-cell
845 sequencing. *Nat Med* 24: 978-85

846 23. Orange DE, Agius P, DiCarlo EF, Robine N, Geiger H, Szymonifka J, McNamara M,
847 Cummings R, Andersen KM, Mirza S, Figgie M, Ivashkiv LB, Pernis AB, Jiang CS,
848 Frank MO, Darnell RB, Lingampali N, Robinson WH, Gravallese E, Accelerating
849 Medicines Partnership in Rheumatoid A, Lupus N, Bykerk VP, Goodman SM, Donlin
850 LT. 2018. Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine
851 Learning Integration of Synovial Histologic Features and RNA Sequencing Data.
852 *Arthritis Rheumatol* 70: 690-701

853 24. Katsuyama E, Suarez-Fueyo A, Bradley SJ, Mizui M, Marin AV, Mulki L, Krishfield S,
854 Malavasi F, Yoon J, Sui SJH, Kyttaris VC, Tsokos GC. 2020. The
855 CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and
856 Identifies Patients with SLE Prone to Infections. *Cell Rep* 30: 112-23 e4

857 25. Rodriguez-Carrio J, Alperi-Lopez M, Lopez P, Ballina-Garcia FJ, Suarez A. 2017.
858 Heterogeneity of the Type I Interferon Signature in Rheumatoid Arthritis: A Potential
859 Limitation for Its Use As a Clinical Biomarker. *Front Immunol* 8: 2007

860 26. van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Rustenburg F,
861 Baggen JM, Ibrahim SM, Fero M, Dijkmans BA, Tak PP, Verweij CL. 2007. Rheumatoid
862 arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of
863 a type I interferon signature in a subpopulation of patients. *Ann Rheum Dis* 66: 1008-14

864 27. Veale DJ, Fearon U. 2018. The pathogenesis of psoriatic arthritis. *Lancet* 391: 2273-84

865 28. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, Bae SC, Brohawn
866 PZ, Pineda L, Berglind A, Tummala R, Investigators T-T. 2020. Trial of Anifrolumab in
867 Active Systemic Lupus Erythematosus. *N Engl J Med* 382: 211-21

868 29. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee
869 H, Arthur CD, White JM, Kalinke U, Murphy KM, Schreiber RD. 2011. Type I
870 interferon is selectively required by dendritic cells for immune rejection of tumors. *J Exp
871 Med* 208: 1989-2003

872 30. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS,
873 Koebel CM, Arthur C, White JM, Schreiber RD. 2005. A critical function for type I
874 interferons in cancer immunoediting. *Nat Immunol* 6: 722-9

875 31. Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS, Nayak-Kapoor A, Zhou G, Liu K.
876 2019. Type I interferon suppresses tumor growth through activating the STAT3-
877 granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. *J Immunother
878 Cancer* 7: 157

879 32. Li W, Lu L, Lu J, Wang X, Yang C, Jin J, Wu L, Hong X, Li F, Cao D, Yang Y, Wu M,
880 Su B, Cheng J, Yang X, Di W, Deng L. 2020. cGAS-STING-mediated DNA sensing

881 maintains CD8(+) T cell stemness and promotes antitumor T cell therapy. *Sci Transl Med*
882 12

883 33. Luoma AM, Suo S, Williams HL, Sharova T, Sullivan K, Manos M, Bowling P, Hodi FS,
884 Rahma O, Sullivan RJ, Boland GM, Nowak JA, Dougan SK, Dougan M, Yuan GC,
885 Wucherpfennig KW. 2020. Molecular Pathways of Colon Inflammation Induced by
886 Cancer Immunotherapy. *Cell* 182: 655-71 e22

887 34. Zen Y, Yeh MM. 2019. Checkpoint inhibitor-induced liver injury: A novel form of liver
888 disease emerging in the era of cancer immunotherapy. *Semin Diagn Pathol* 36: 434-40

889 35. Berner F, Bomze D, Diem S, Ali OH, Fassler M, Ring S, Niederer R, Ackermann CJ,
890 Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, Laubli H,
891 Zippelius A, Hartmann F, Cheng HW, Honger G, Recher M, Goldman J, Cozzio A, Fruh
892 M, Neefjes J, Driessen C, Ludewig B, Hegazy AN, Jochum W, Speiser DE, Flatz L.
893 2019. Association of Checkpoint Inhibitor-Induced Toxic Effects With Shared Cancer
894 and Tissue Antigens in Non-Small Cell Lung Cancer. *JAMA Oncol* 5: 1043-7

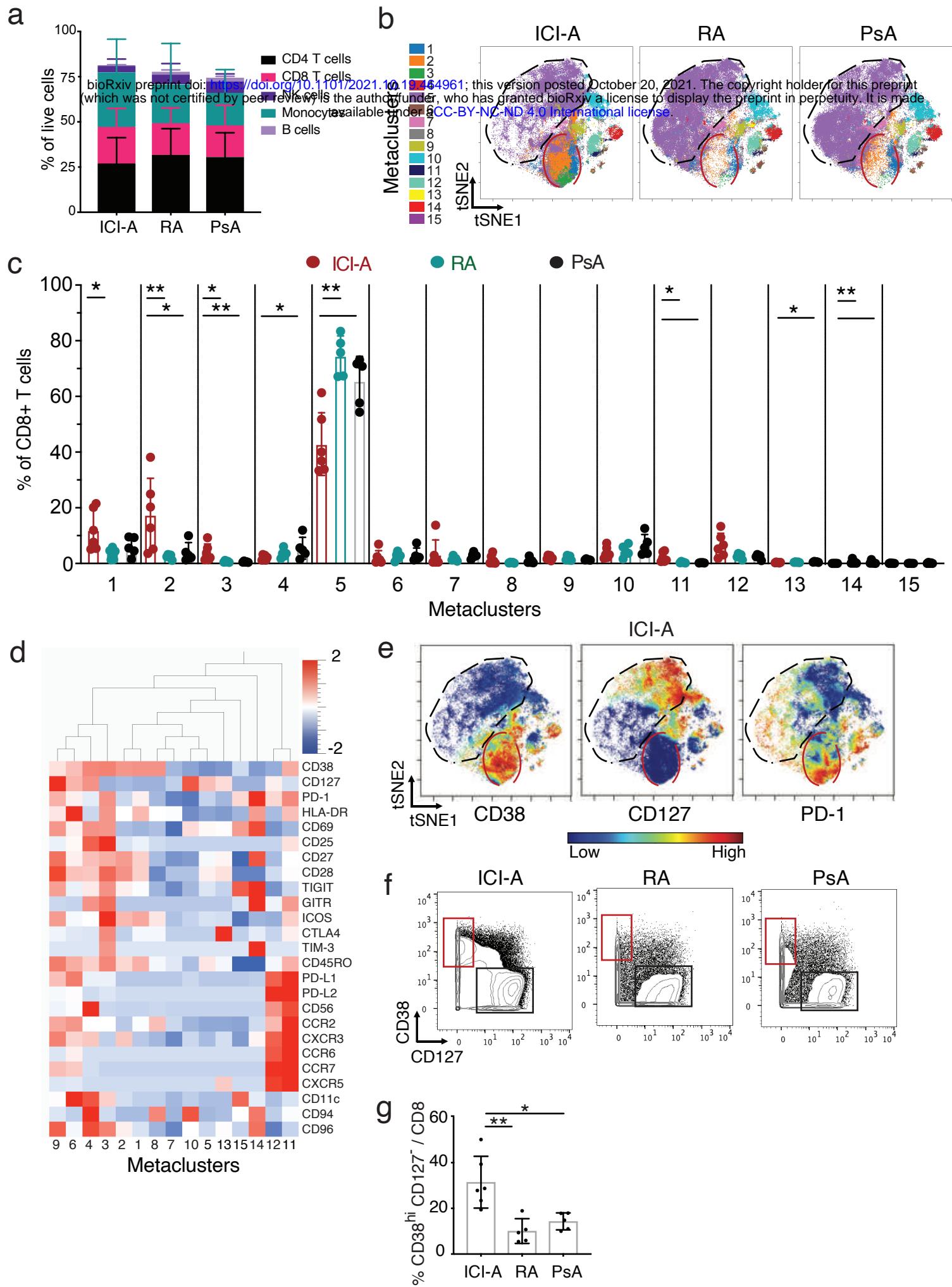
895 36. Tadokoro T, Keshino E, Makiyama A, Sasaguri T, Ohshima K, Katano H, Mohri M.
896 2016. Acute Lymphocytic Myocarditis With Anti-PD-1 Antibody Nivolumab. *Circ Heart
897 Fail* 9

898 37. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I,
899 Alexander MR, Bloomer TL, Becker JR, Slosky DA, Phillips EJ, Pilkinton MA, Craig-
900 Owens L, Kola N, Plautz G, Reshef DS, Deutsch JS, Deering RP, Olenchock BA,
901 Lichtman AH, Roden DM, Seidman CE, Koralnik IJ, Seidman JG, Hoffman RD, Taube
902 JM, Diaz LA, Jr., Anders RA, Sosman JA, Moslehi JJ. 2016. Fulminant Myocarditis with
903 Combination Immune Checkpoint Blockade. *N Engl J Med* 375: 1749-55

904 38. Kotwal A, Gustafson MP, Bornschlegl S, Kottschade L, Delivanis DA, Dietz AB, Gandhi
905 M, Ryder M. 2020. Immune Checkpoint Inhibitor-Induced Thyroiditis Is Associated with
906 Increased Intrathyroidal T Lymphocyte Subpopulations. *Thyroid* 30: 1440-50

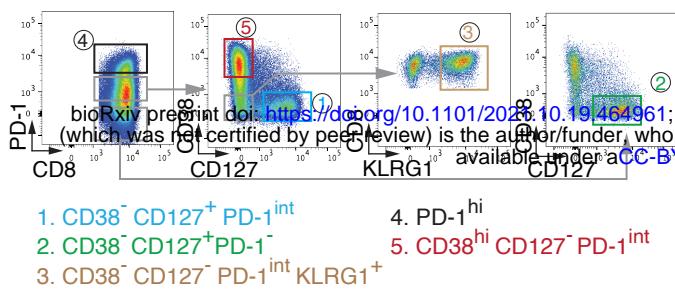
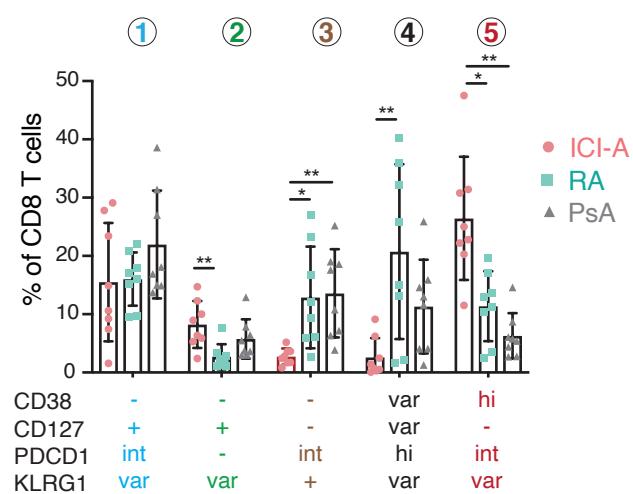
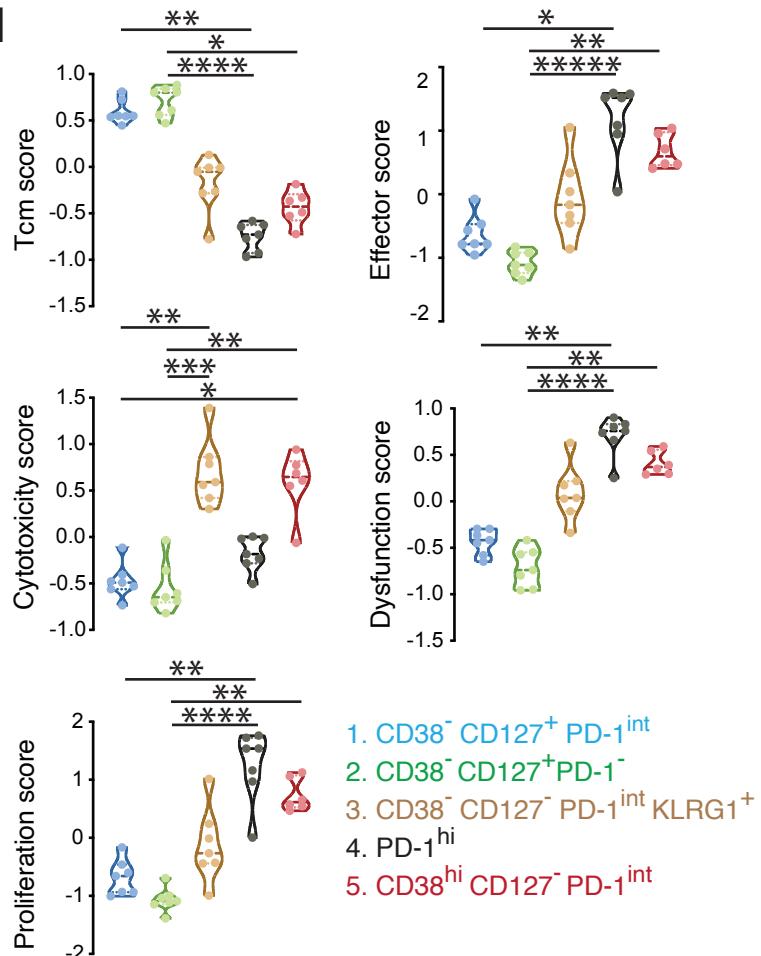
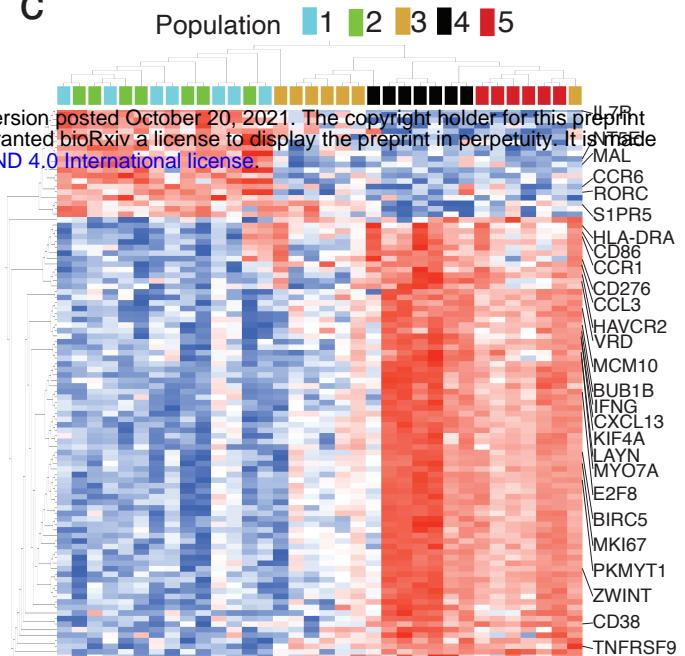
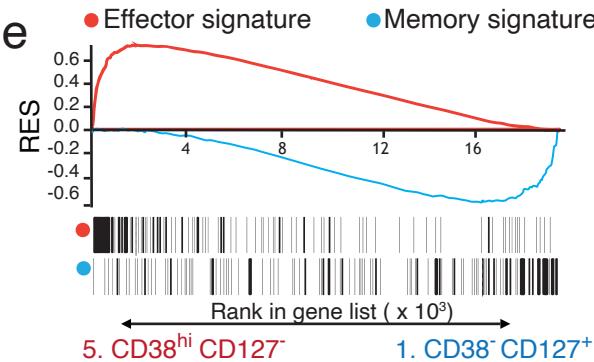
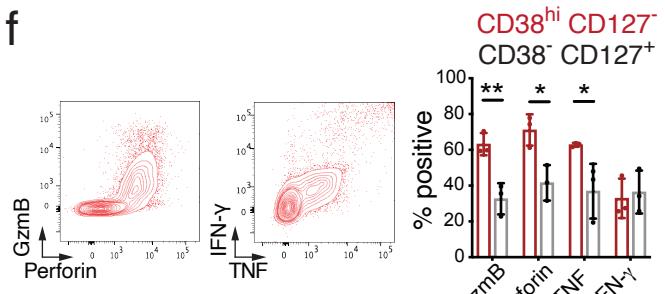
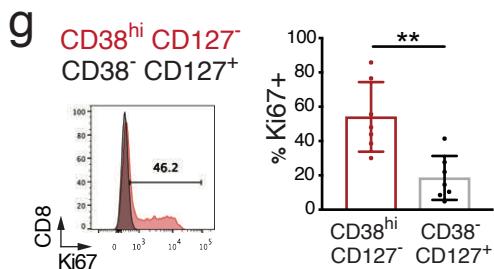
907 39. Yasuda Y, Iwama S, Sugiyama D, Okuji T, Kobayashi T, Ito M, Okada N, Enomoto A,
908 Ito S, Yan Y, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Goto
909 M, Suga H, Banno R, Takahashi M, Nishikawa H, Arima H. 2021. CD4(+) T cells are
910 essential for the development of destructive thyroiditis induced by anti-PD-1 antibody in
911 thyroglobulin-immunized mice. *Sci Transl Med* 13

912 40. Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF. 2009.
913 Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-
914 cell exhaustion and disease progression. *Blood* 114: 1528-36


915 41. Zhang Y, Huang S, Gong D, Qin Y, Shen Q. 2010. Programmed death-1 upregulation is
916 correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-
917 small cell lung cancer. *Cell Mol Immunol* 7: 389-95

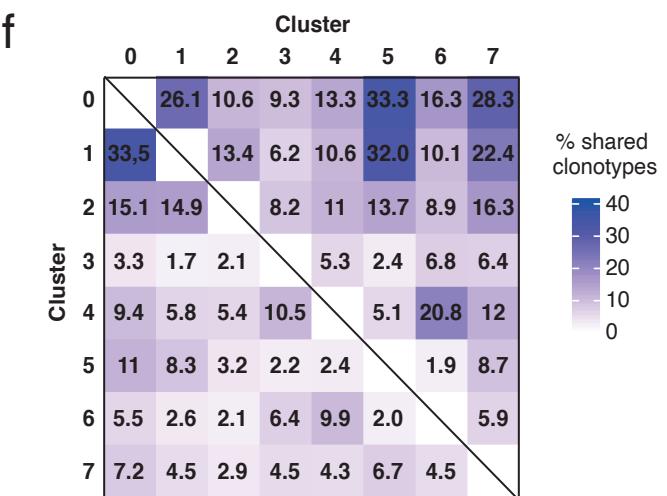
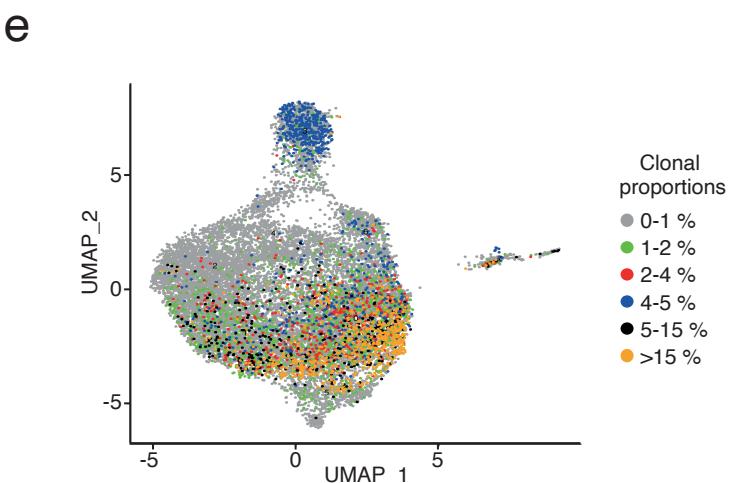
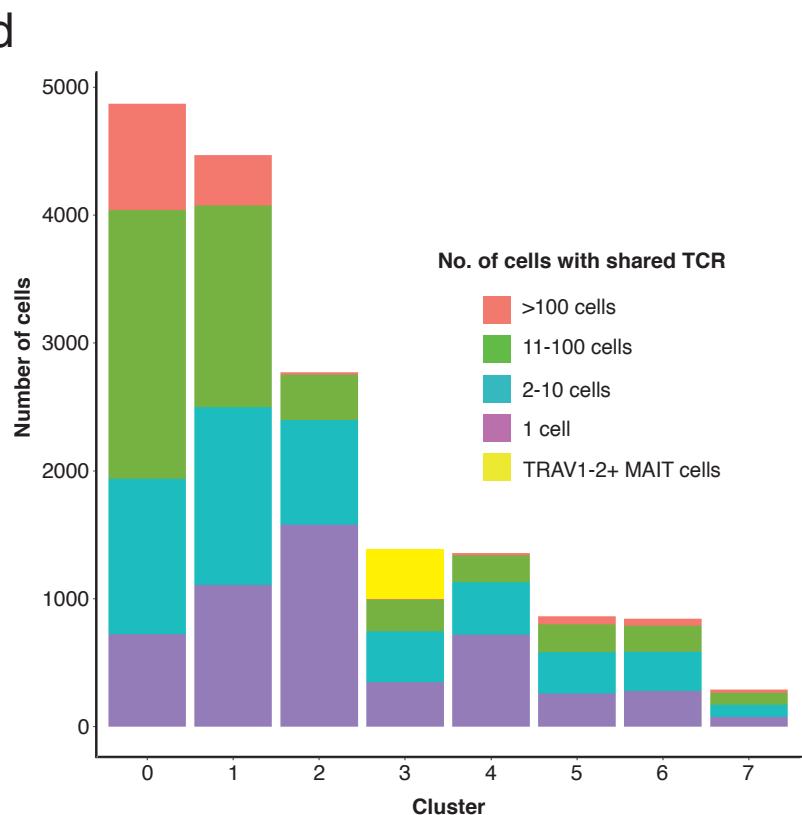
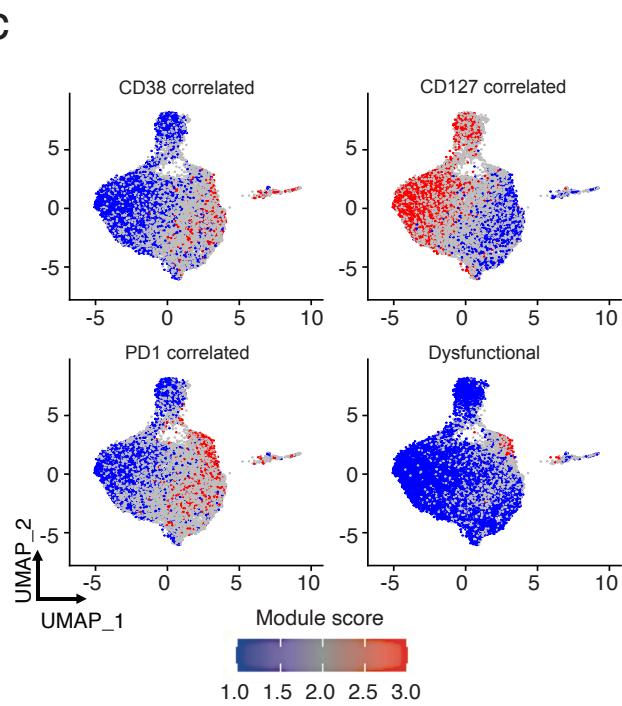
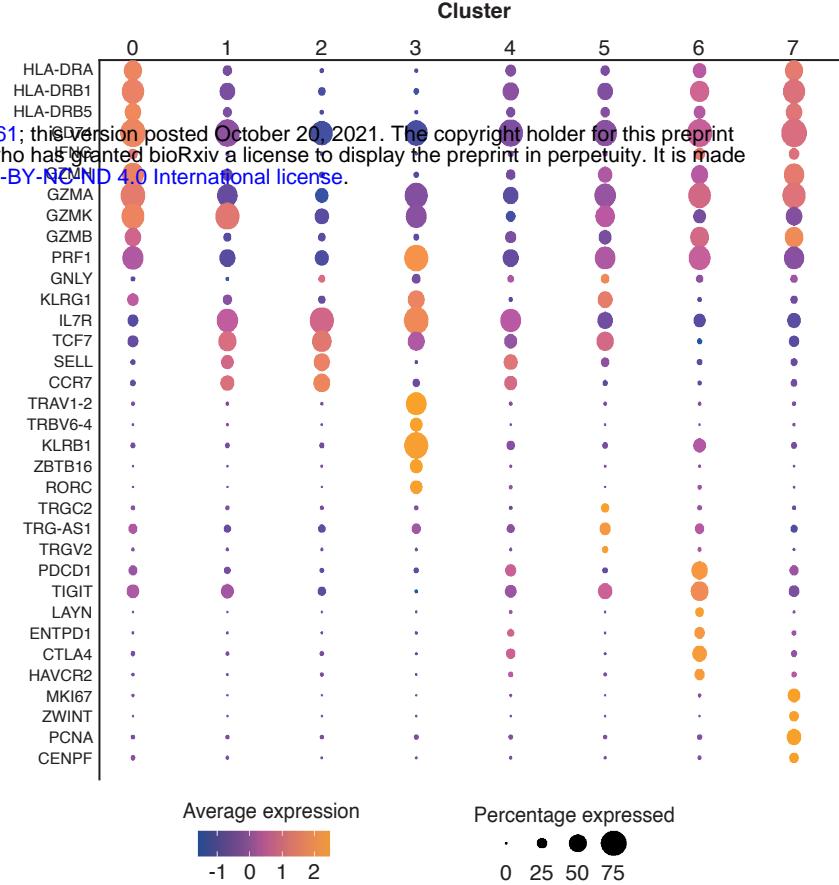
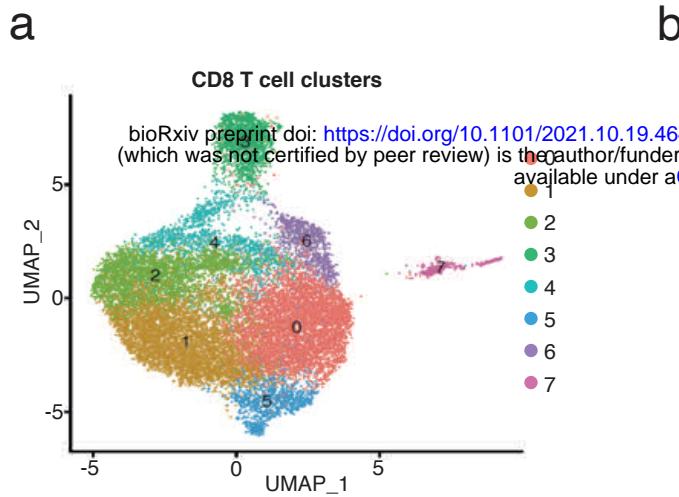
918 42. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang
919 Q, Liu Z, Dong M, Hu X, Ouyang W, Peng J, Zhang Z. 2017. Landscape of Infiltrating T
920 Cells in Liver Cancer Revealed by Single-Cell Sequencing. *Cell* 169: 1342-56 e16

921 43. Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees
922 M, Ramaswamy A, Muenst S, Soysal SD, Jacobs A, Windhager J, Silina K, van den
923 Broek M, Dedes KJ, Rodriguez Martinez M, Weber WP, Bodenmiller B. 2019. A Single-
924 Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. *Cell* 177:
925 1330-45 e18








926 44. Wu P, Zhao L, Chen Y, Xin Z, Lin M, Hao Z, Chen X, Chen D, Wu D, Chai Y. 2021.
927 CD38 identifies pre-activated CD8+ T cells which can be reinvigorated by anti-PD-1
928 blockade in human lung cancer. *Cancer Immunol Immunother*
929 45. Wei SC, Anang NAS, Sharma R, Andrews MC, Reuben A, Levine JH, Cogdill AP,
930 Mancuso JJ, Wargo JA, Pe'er D, Allison JP. 2019. Combination anti-CTLA-4 plus anti-
931 PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from
932 monotherapies. *Proc Natl Acad Sci U S A* 116: 22699-709
933 46. Verma V, Shrimali RK, Ahmad S, Dai W, Wang H, Lu S, Nandre R, Gaur P, Lopez J,
934 Sade-Feldman M, Yizhak K, Bjorgaard SL, Flaherty KT, Wargo JA, Boland GM,
935 Sullivan RJ, Getz G, Hammond SA, Tan M, Qi J, Wong P, Merghoub T, Wolchok J,
936 Hacohen N, Janik JE, Mkrtchyan M, Gupta S, Khleif SN. 2019. PD-1 blockade in
937 subprimed CD8 cells induces dysfunctional PD-1(+)CD38(hi) cells and anti-PD-1
938 resistance. *Nat Immunol* 20: 1231-43
939 47. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, Villalobos PA, Cascone T, Liu X,
940 Tan L, Lorenzi PL, Huang A, Zhao Q, Peng D, Fradette JJ, Peng DH, Ungewiss C,
941 Roybal J, Tong P, Oba J, Skoulidis F, Peng W, Carter BW, Gay CM, Fan Y, Class CA,
942 Zhu J, Rodriguez-Canales J, Kawakami M, Byers LA, Woodman SE,
943 Papadimitrakopoulou VA, Dmitrovsky E, Wang J, Ullrich SE, Wistuba, II, Heymach JV,
944 Qin FX, Gibbons DL. 2018. CD38-Mediated Immunosuppression as a Mechanism of
945 Tumor Cell Escape from PD-1/PD-L1 Blockade. *Cancer Discov* 8: 1156-75
946 48. Subudhi SK, Aparicio A, Gao J, Zurita AJ, Araujo JC, Logothetis CJ, Tahir SA, Korivi
947 BR, Slack RS, Vence L, Emerson RO, Yusko E, Vignali M, Robins HS, Sun J, Allison
948 JP, Sharma P. 2016. Clonal expansion of CD8 T cells in the systemic circulation precedes
949 development of ipilimumab-induced toxicities. *Proc Natl Acad Sci U S A* 113: 11919-24
950 49. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V. 2003.
951 Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. *J Exp
952 Med* 197: 711-23
953 50. Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B, Ranabothu S, Izmirly P,
954 Clancy R, Belmont HM, Koenigsberg M, Mokrzycki M, Rominieki H, Graham JA,
955 Rocca JP, Bornkamp N, Jordan N, Schulte E, Wu M, Pullman J, Slowikowski K,
956 Raychaudhuri S, Guthridge J, James J, Buyon J, Tuschl T, Puttermann C, Accelerating
957 Medicines Partnership Rheumatoid A, Systemic Lupus Erythematosus C. 2019. Tubular
958 cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I
959 IFN and fibrosis relevant pathways. *Nat Immunol* 20: 915-27
960 51. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S,
961 Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello
962 F, Wubbenhorst B, D'Andrea K, Pauken KE, Herati RS, Staude RP, Schenkel JM,
963 McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC,
964 Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ. 2017. T-
965 cell invigoration to tumour burden ratio associated with anti-PD-1 response. *Nature* 545:
966 60-5
967 52. Bocharnikov AV, Keegan J, Wacleche VS, Cao Y, Fonseka CY, Wang G, Muise ES,
968 Zhang KX, Arazi A, Keras G, Li ZJ, Qu Y, Gurish MF, Petri M, Buyon JP, Puttermann C,
969 Wofsy D, James JA, Guthridge JM, Diamond B, Anolik JH, Mackey MF, Alves SE,
970 Nigrovic PA, Costenbader KH, Brenner MB, Lederer JA, Rao DA, Accelerating

971 Medicines Partnership RASLEN. 2019. PD-1hiCXCR5- T peripheral helper cells
972 promote B cell responses in lupus via MAF and IL-21. *JCI Insight* 4
973 53. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK,
974 Krishnaswamy S, Nolan GP, Pe'er D. 2013. viSNE enables visualization of high
975 dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. *Nat
976 Biotechnol* 31: 545-52
977 54. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T,
978 Saeys Y. 2015. FlowSOM: Using self-organizing maps for visualization and
979 interpretation of cytometry data. *Cytometry A* 87: 636-45
980

Figure 1. Expansion of CD38^{hi}CD127⁻ CD8 T cells in ICI-arthritis (ICI-A).







a) Frequency of CD8 T cells, CD4 T cell, B cells, monocytes, NK cells and T cells in ICI-A (n=6), RA (n=5) and PsA (n=5) synovial fluid. **b)** t-SNE visualization of synovial fluid cells from ICI-A, RA, and PsA. The vector was posted October 20, 2011. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/). **c)** Frequency of FlowSOM metaclusters of CD8 T cells from ICI-A, RA and PsA synovial fluid. **d)** Heatmap of marker expression in CD8 T cell metaclusters. **e)** t-SNE plots of mass cytometry data showing expression of indicated markers on CD8 T cells from ICI-A, RA and PsA synovial fluid. Red and black circles are shown as in (b). **f,g)** Biaxial gating (f) and quantification (g) of CD38^{hi} CD127⁻ cells among CD8 T cells from ICI-A, RA and PsA synovial fluid detected by mass cytometry. Mean \pm SD shown. * p<0.05, **p<0.001, *** p<0.0001 by Kruskal-Wallis test in (c) and (g).

a**b****d****c****e****f****g**

Figure 2. Transcriptomic features of CD8 T cells in ICI-arthritis synovial fluid.

a) Sorting scheme to isolate 5 CD8 T cell populations of interest. **b)** Frequency of sorted CD8 T cell populations in ICI-arthritis synovial fluid. bioRxiv preprint doi: <https://doi.org/10.1101/101101>; this version posted October 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND-ND4.0 International license.

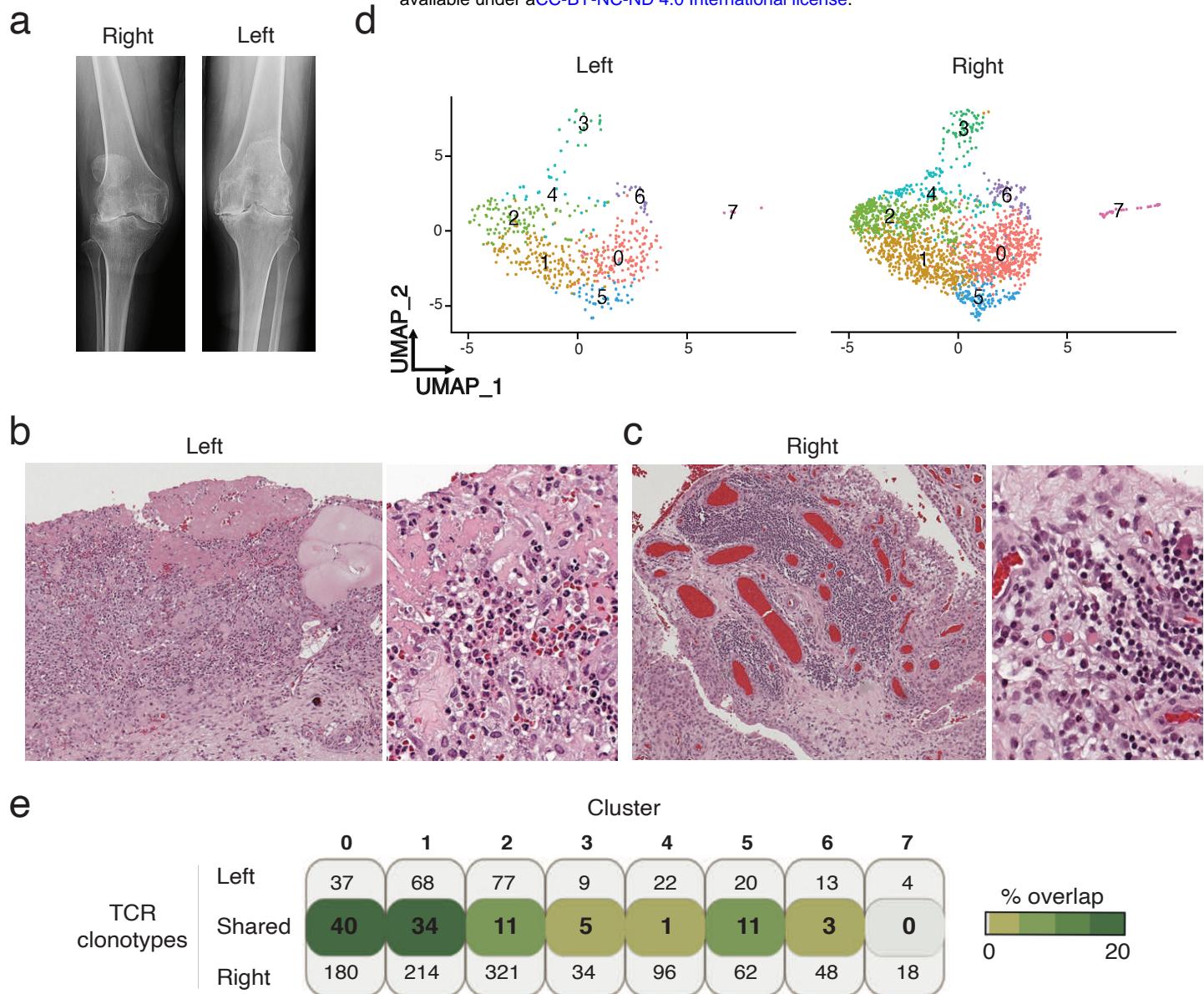
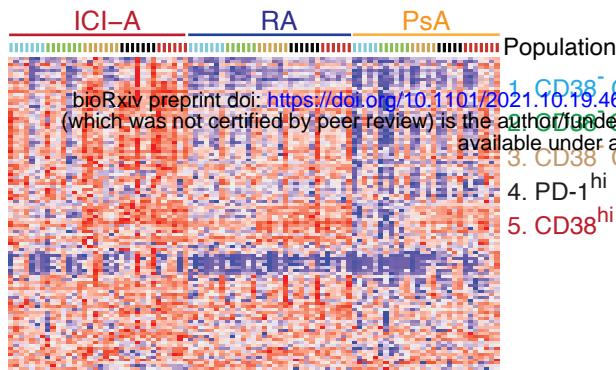
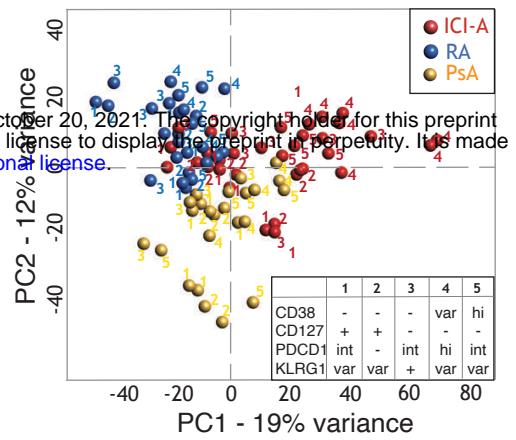

c) Mean expression of top 1000 variable genes by RNA-seq. Colors indicate cell populations as in (a). **d)** Gene module scores of CD8 T cell populations as in a) from CI-A synovial fluid, calculated based on differentially expressed genes. **e)** Distribution of genes in the effector signature gene set (red line, GOLDRATH EFF_VS_MEM_CD8_TCELL_UP) and memory signature gene set (blue line, GSE9650_EFFECTOR_VS_MEMORY_CD8_TCELL_DN) in sorted CD38^{hi} CD127⁻ and CD38⁻ CD127⁺ populations from CI-A synovial fluid, plotted with running enrichment score (RES) and ranks in gene list detected by RNA-seq. **f)** Representative flow cytometric plots and summarized frequency of intracellular granzyme B, perforin, IFN- γ , and TNF in CD38^{hi} CD127⁻ and CD38⁻ CD127⁺ populations sorted from ICI-A synovial fluid, detected after PMA/ionomycin stimulation (n=3 donors). **g)** Representative flow cytometric plot and frequency of intracellular Ki67 in sorted CD38^{hi} CD127⁻ and CD38⁻ CD127⁺ populations from ICI-A synovial fluid (n=7). Mean \pm SD shown. * p<0.05, **p<0.001, *** p<0.0001 by Kruskal-Wallis test in (b), (d), (f) and (g).

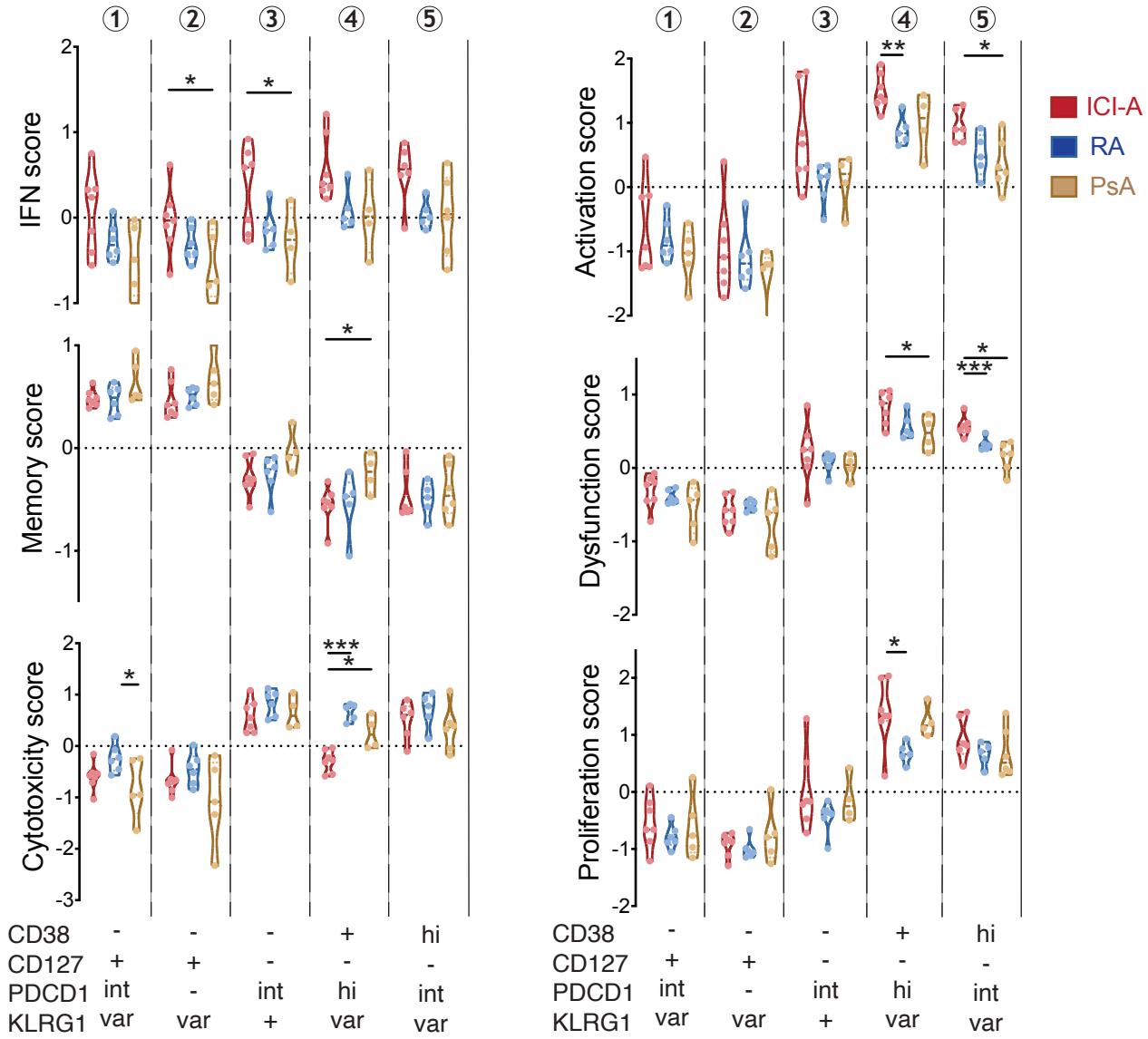
Figure 3. Extensive clonal expansion of synovial CD38^{hi} CD127⁻ CD8 T cells in ICI-arthritis.

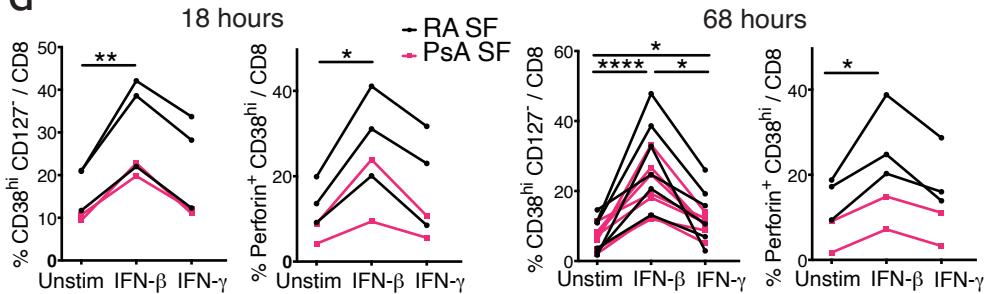
a) Synovial fluid (n=4) and tissue (bilateral knee explants from n=1) CD8 T cells analyzed by scRNAseq and plotted in clusters in tSNE. <https://doi.org/10.1101/2021.06.16.451021>; this version posted October 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

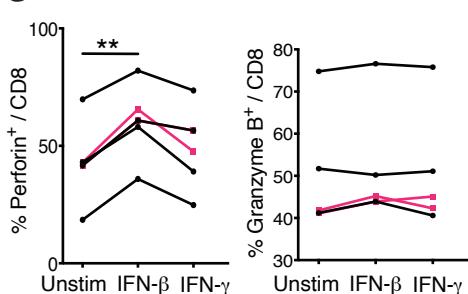

Color of the dot represents the average expression of CD38 in the cluster. Size of the dot represents the percentage of cells in the cluster with that gene detected. **c)** UMAP overlay of signature scores for gene sets that correlate with CD38, IL7R (CD127) or PDCD1 (PD-1) expression derived from bulk RNA-seq data, and a CD8 T cell dysfunctional module. **d)** The number of cells in each cluster that either contains a unique TCR (purple) or a shared TCR (all other colors, for which the total number of clones from the sample is represented by the specific color). Yellow in Cluster 3 represents TRAV1-2+ invariant MAIT cells. **e)** Highly expanded TCR clones (>1%) from each patient depicted onto the transcriptionally-defined UMAP clustering. **f)** The percentage of clonotypes shared between clusters. The row identity represents the denominator.


Figure 4. Bilateral knee ICI-arthritis with extensive inflammation and matching TCR clonotypes.

a) Left and right knee radiographs in preparation for joint replacement surgery. **b**) Left knee synovial tissue H&E histology with extensive neutrophil and mononuclear infiltration, as well as fibrin exudate into synovial cavity. **c**) Right knee synovial tissue with extensive lymphocyte aggregate formation with plasma cell communities and Russel bodies. **d**) Synovial tissue CD8 T cell scRNA-seq clusters from the left and right knee. **e**) Number of distinct CD8 TCR clonotypes in left and right knee from each transcriptionally-defined cluster. The percent of overlap of the total cells from each cluster is depicted in shades of green with the darkest color indicating the highest frequency of overlap.


a


b


c

d

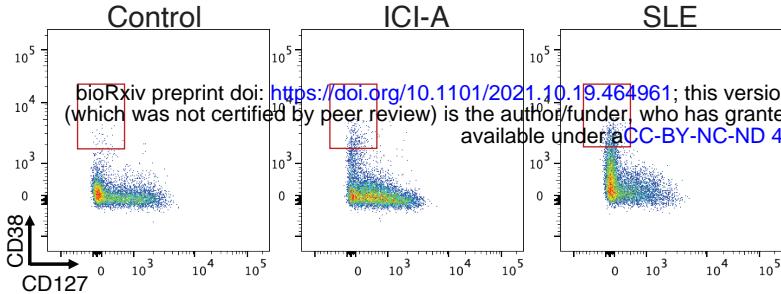
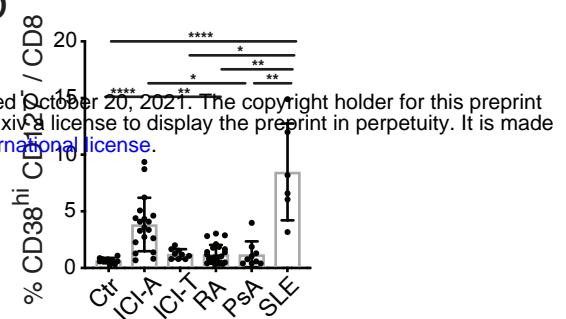
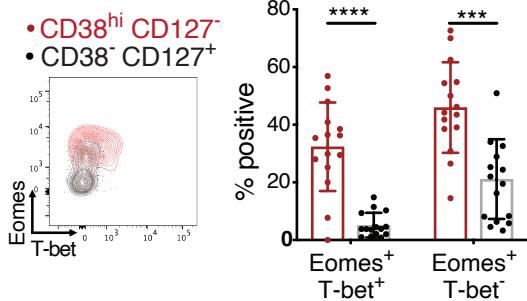
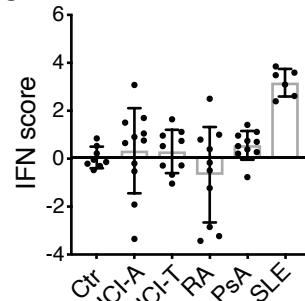
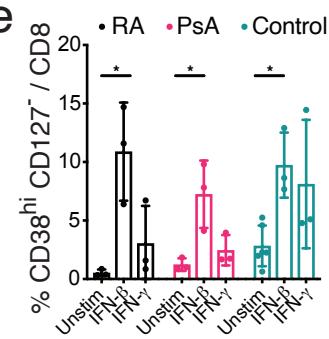





e

Figure 5. A Type I IFN signature in CD8 T cells in ICI-arthritis.

a) Heatmap showing the expression of 106 IFN-inducible genes across the sorted populations ordered by diseases. b) PCA plot showing populations <https://doi/10.1101/164981> (this version posted October 20, 2021). The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

numbers indicating 5 sorted populations colored by disease. c) Gene module scores of the sorted CD8 T cell populations as in c-d) from ICI-A, PsA and RA synovial fluid, calculated based on differentially expressed genes. **d,e)** Frequency of CD38^{hi} CD127⁻ cells and CD38^{hi} perforin+ cells (d), and perforin⁺ cells and granzyme B+ cells (e) in CD8 T cells from RA or PsA SFMC cultured with IFN- β or IFN- γ for indicated times. Lines link the same patient sample under the different conditions. Mean \pm SD shown. * p<0.05, **p<0.001, *** p<0.0001 by Kruskal-Wallis test in (c) and Wilcoxon matched-pair test in (d,e).

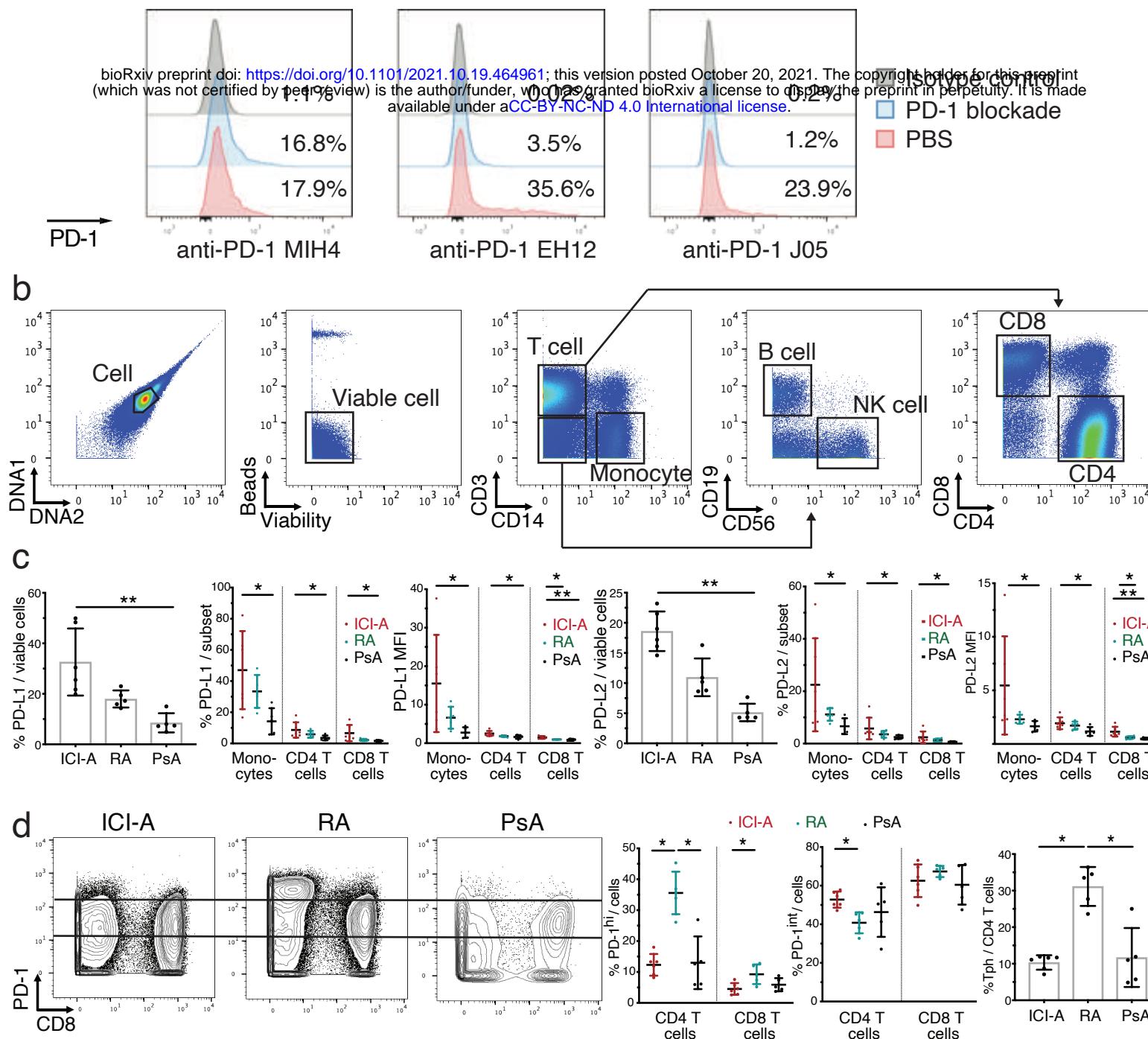
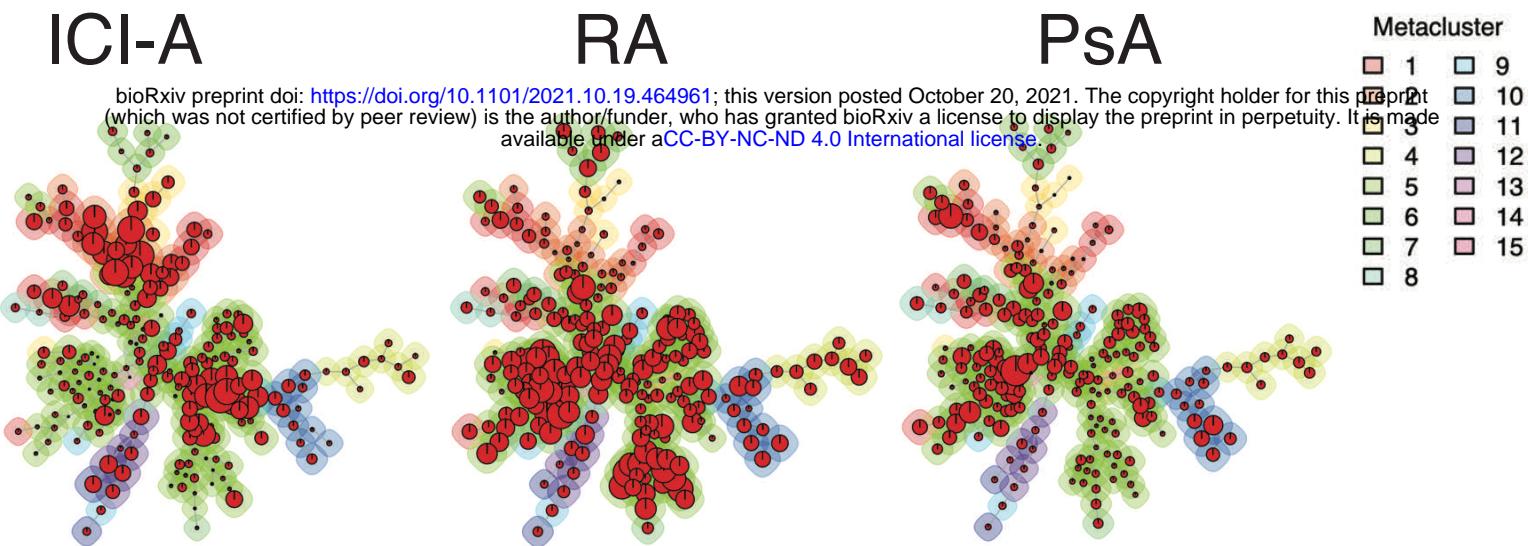
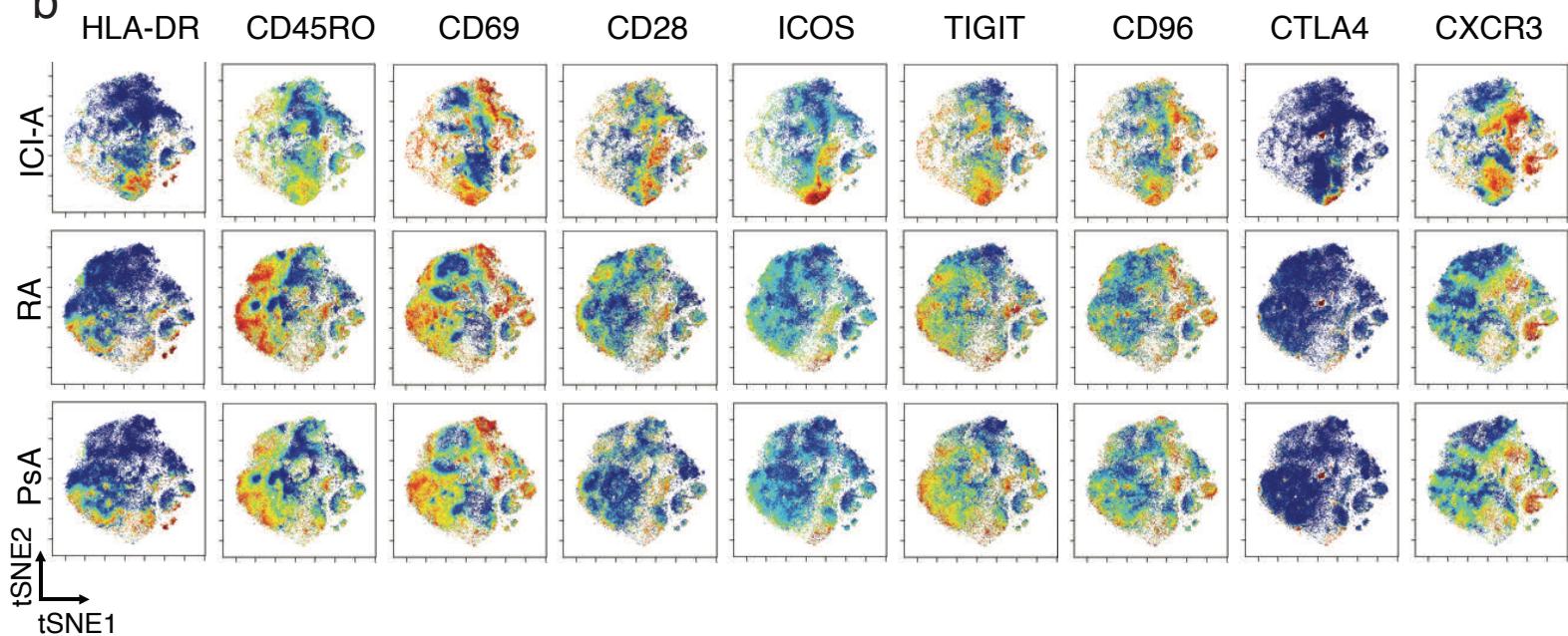

a**b****c****d****e**

Figure 6. Expanded circulating CD38^{hi} CD127⁻ CD8 T cells in ICI arthritis patients.

a) Representative flow cytometric plots of CD38 and CD127 expression on gated CD8 T cells from PBMC from non-inflammatory control, ICI-arthritis (ICI-A), and SLE patients. **b)** Frequency of CD38^{hi} CD127⁻ cells among CD8 T cells from PBMC from control (n=10), ICI-A (n=25), ICI-thyroiditis (ICI-T) (n=9), RA (n=22), PsA (n=9), and SLE (n=56) patients. **c)** Representative flow cytometric plot and summarized frequency of intracellular Eomes and T-bet in CD38^{hi} CD127⁻ and CD38⁻ CD127⁺ CD8 T cells from ICI-A PBMC (n=15). **d)** 8 gene-derived IFN score of PBMC from controls (n=8), ICI-A (n=11), ICI-T (n=11), RA (n=10), PsA (n=10), and SLE (n=6) patients. **e)** Frequency of CD38^{hi} CD127⁻ cells among CD8 T cells from RA, PsA or control PBMC cultured with IFN-β or IFN-γ for 3 days (n=3-5). Mean ± SD shown. *p < 0.05, **p < 0.001, ***p < 0.0001, ****p < 0.00001 by Kruskal-Wallis test in (b), (c), (d) and (e).

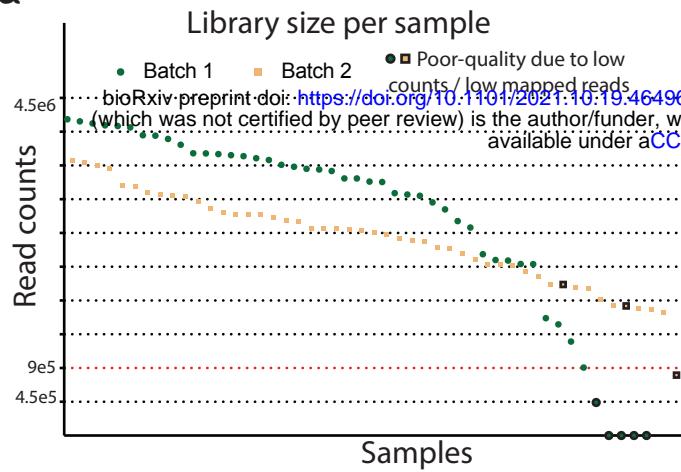
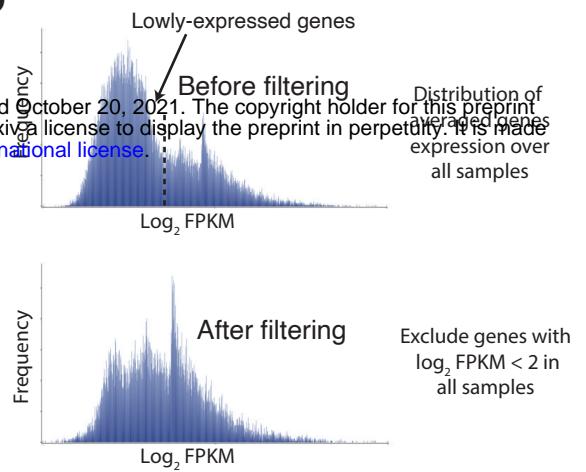
a


bioRxiv preprint doi: <https://doi.org/10.1101/2021.10.19.464961>; this version posted October 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

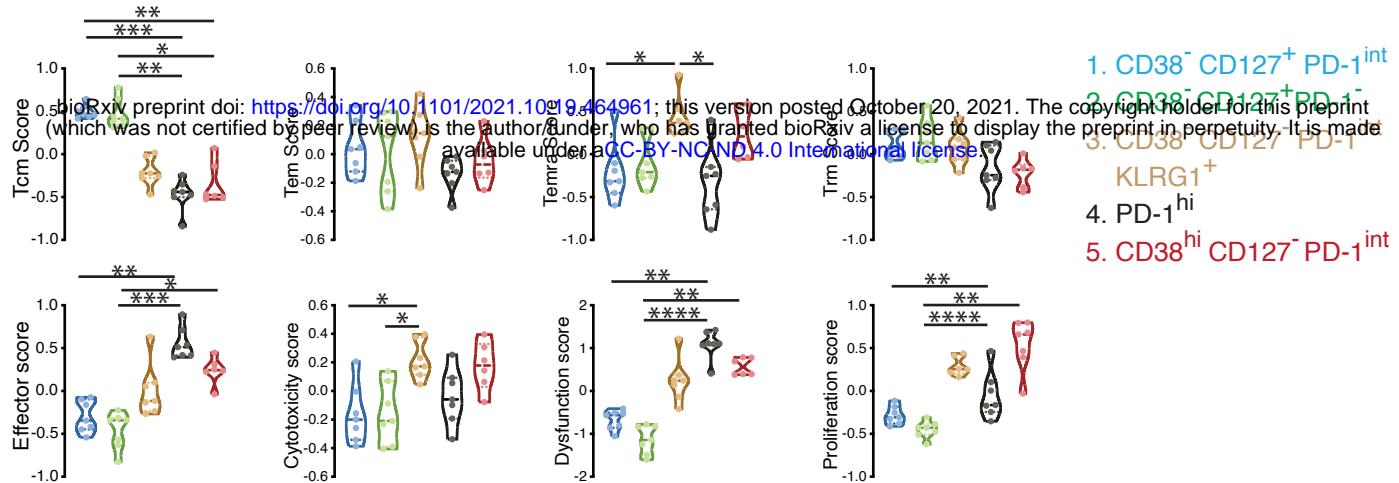
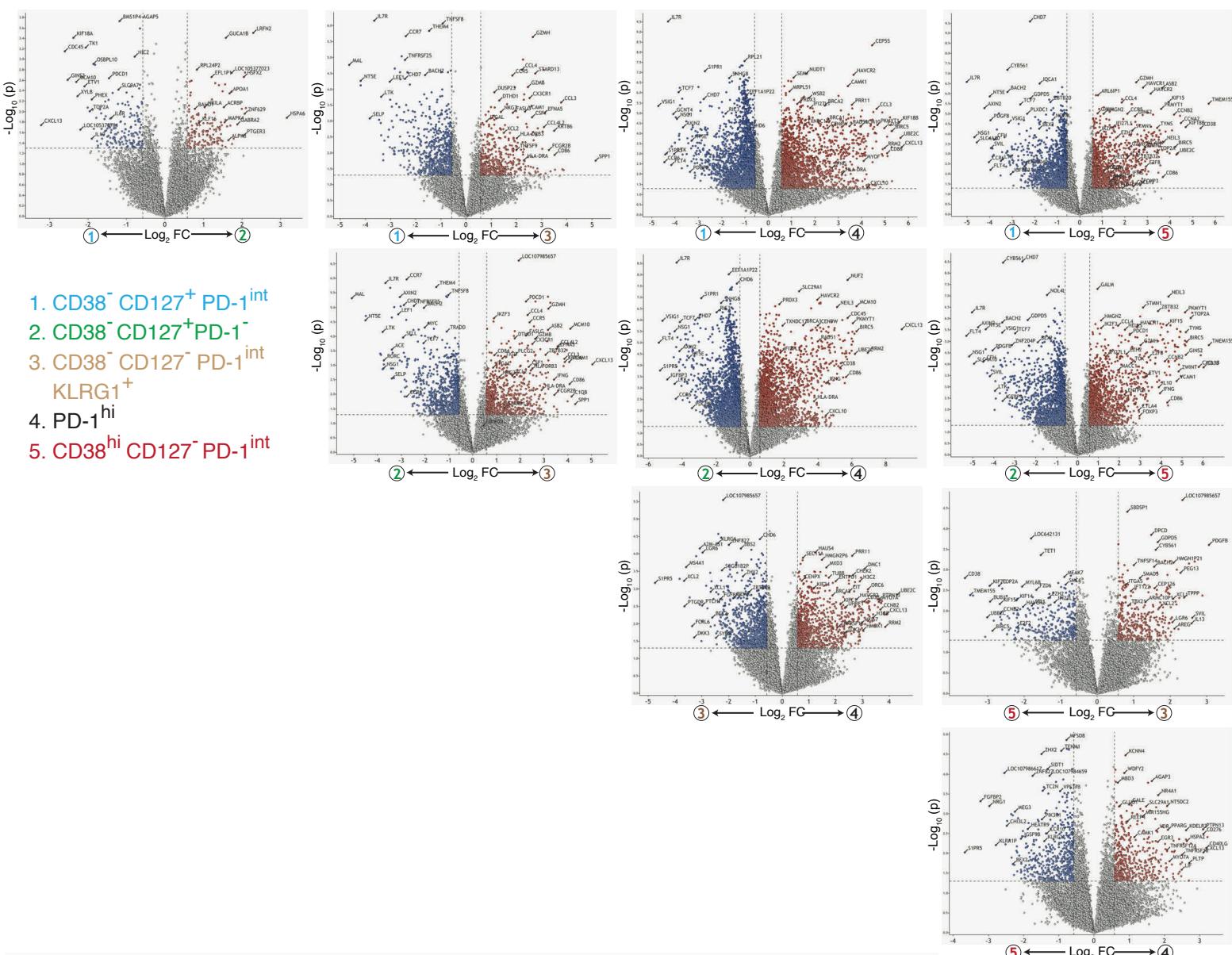
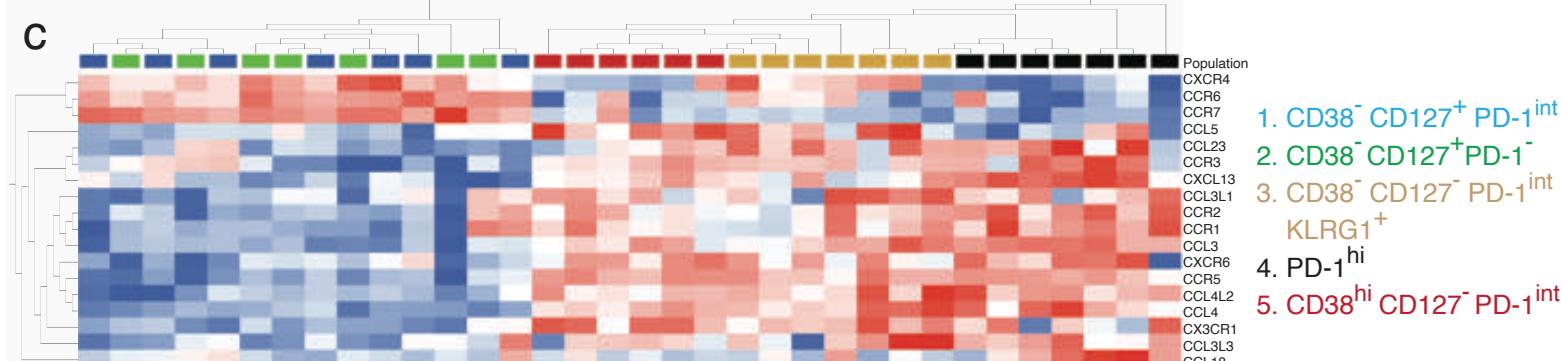

Supplementary figure 1. Basic analysis of mass cytometry of ICI-A, RA and PsA synovial fluid.

a) Flow cytometric detection of PD-1 on T cells using indicated detection antibody clones with or without prior incubation with pembrolizumab blockade in vitro. **b)** Example gating of mass cytometry data. **c)** PD-L1 and PD-L2 expression by percentage and mean fluorescence intensity (MFI) on indicated cell types from ICI-A (n=6), RA (n=5) and PsA (n=5) synovial fluid detected by mass cytometry. **d)** Example gating of high, intermediate and low PD-1 expression levels on T cells from ICI-A, RA and PsA synovial fluid detected by mass cytometry. Quantification of PD-1^{hi} cells, PD-1^{int} cells and PD-1^{hi}CXCR5⁻ CD4 Tph cells are shown. Mean \pm SD shown. * $p < 0.05$, ** $p < 0.001$ by Kruskal-Wallis test in (c) and (d).

a

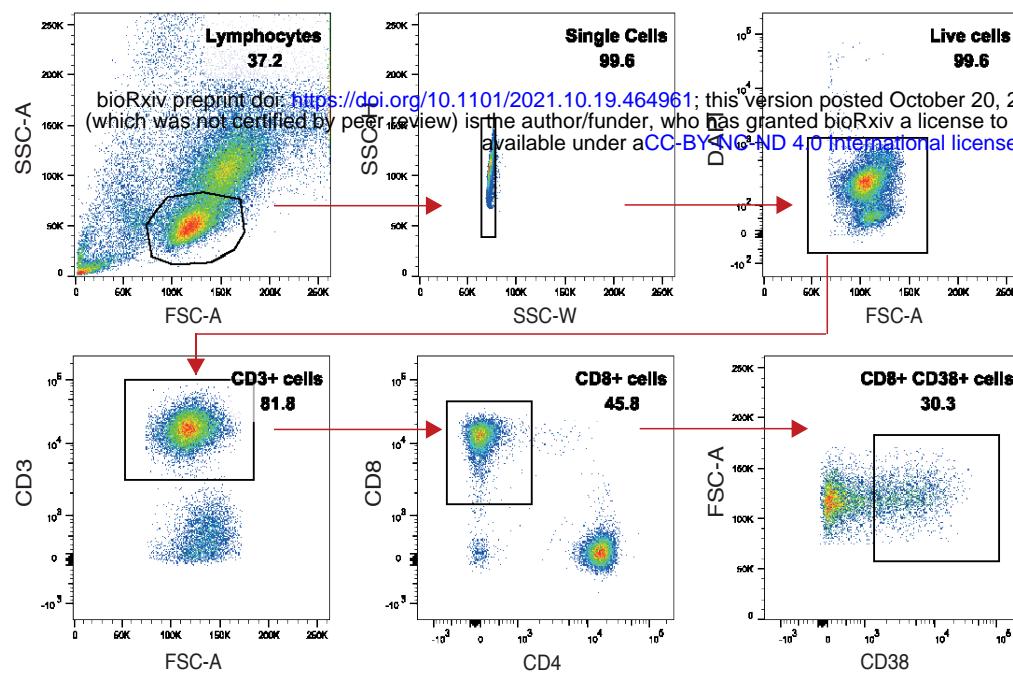
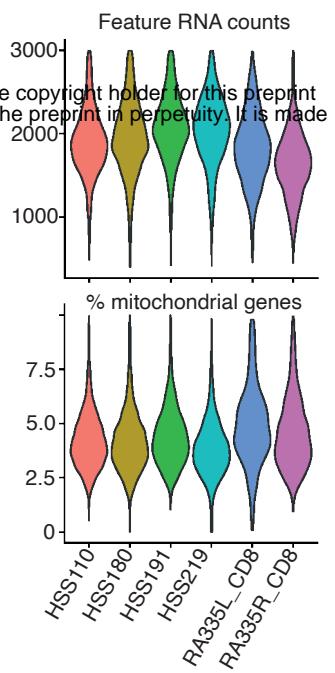
b




Supplementary figure 2. Unsupervised analysis of mass cytometry of ICI-A, RA and PsA synovial fluid.

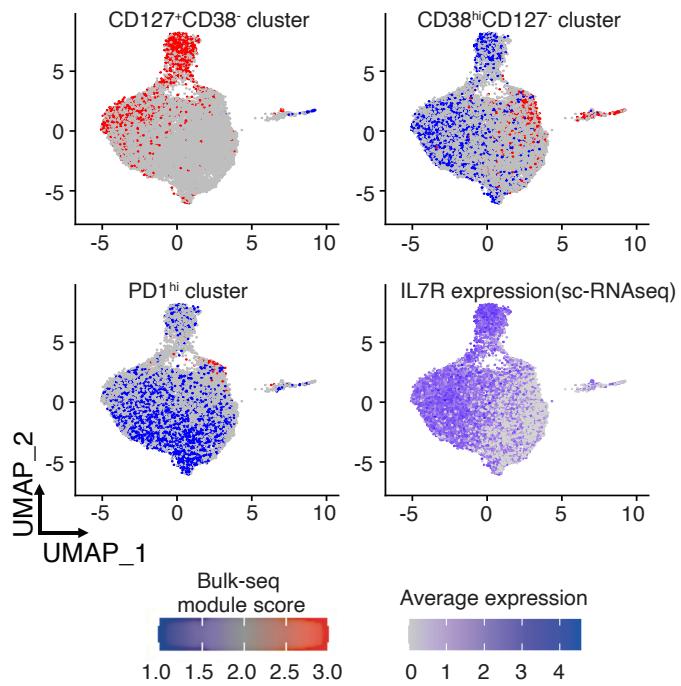
a) FlowSOM minimus spanning tree showing metaclusters on CD8 T cells from ICI-A, RA and PsA synovial fluid detected by mass cytometry. **b)** tSNE plots showing expression of indicated markers on CD8 T cells from ICI-A, RA and PsA synovial fluid detected by mass cytometry.

a**b**

Supplementary figure 3. Quality of bulk RNA sequencing data.

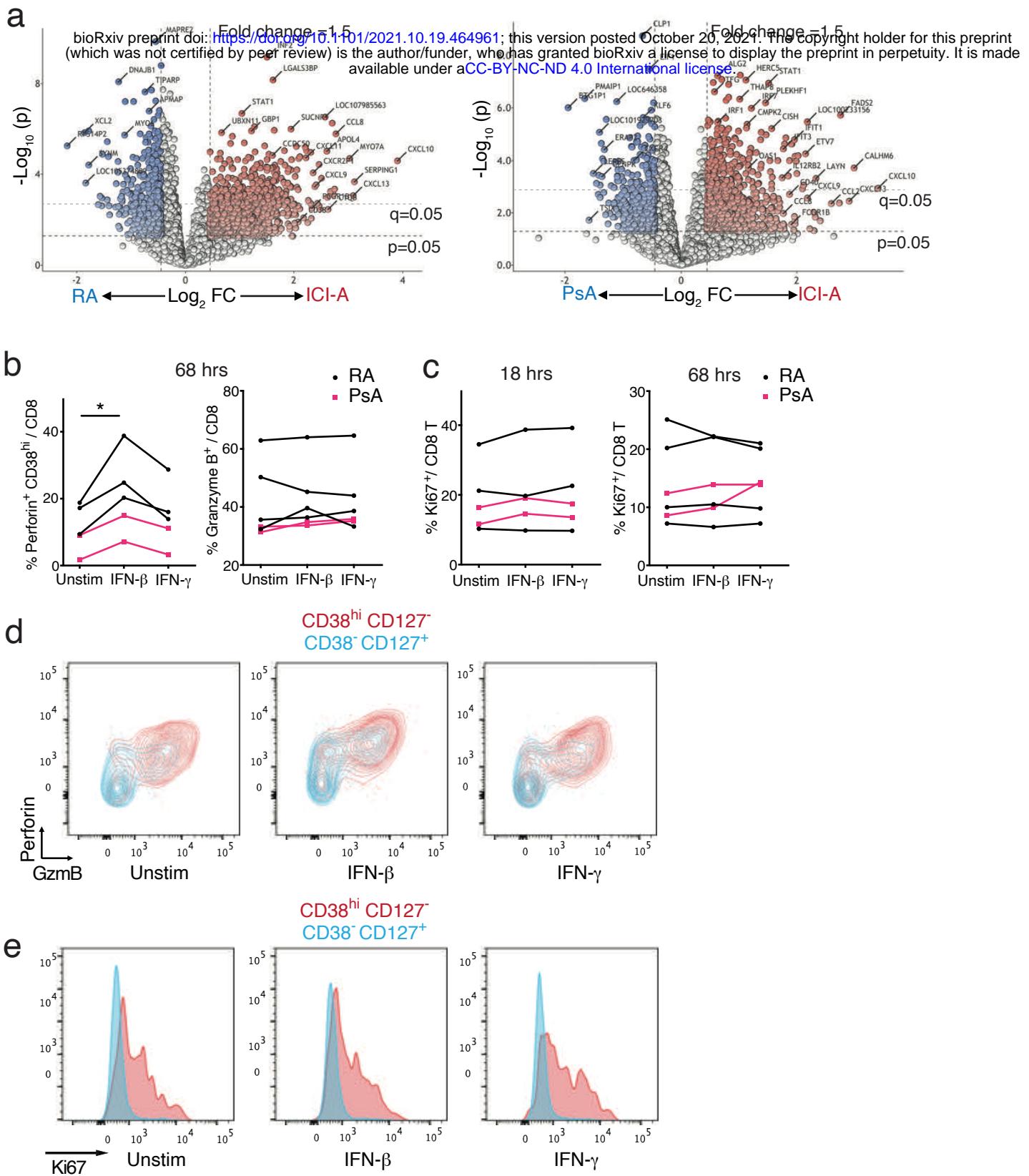


a) Distribution of read counts per sample colored by batch. 6 samples with less than 9x10⁵ reads and 2 samples with poor unique mapping to reference genome were removed. **b)** Distribution of averaged gene expression over all samples before and after filtering.

a**b****c**


Supplementary figure 4. Transcriptomic distinctions between CD8 T populations in ICI-arthritis synovial fluid.

a) Gene module scores of sorted CD8 T cell populations from ICI-A synovial fluid, calculated based on total module genes. **b)** Volcano plots showing genes differentially expressed between pairs of the 5 sorted CD8 T cell populations from ICI-A. Number of DEGs ($q < 0.05$) are summarized. **c)** Hierarchical clustering of CD8 T cell populations from ICI-A synovial fluid based on row-normalized mean expression of differentially expressed chemokines and chemokine receptors measured by RNA-seq. Mean \pm SD shown. * $p < 0.05$, ** $p < 0.001$, *** $p < 0.0001$ **** $p < 0.00001$ by Kruskal-Wallis test in (a) and (b).

bioRxiv preprint doi: <https://doi.org/10.1101/262140>; this version posted October 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


a**b****c**

Sample ID	Cluster								Total
	0	1	2	3	4	5	6	7	
HSS 110	1430	889	531	810	218	225	219	56	4378
HSS 180	1328	1248	763	172	442	182	176	164	4475
HSS 191	1042	1031	512	218	370	180	324	55	3732
HSS 219	856	970	688	295	277	228	98	38	3450
RA 335L_CD8	157	169	104	18	30	42	21	4	545
RA 335R_CD8	535	517	422	62	120	144	64	28	1892

d**e**

Measure of diversity	Cluster							
	0	1	2	3	4	5	6	7
Simpson	0.989	0.996	1.000	0.959	0.999	0.994	0.995	0.997
Shannon equitability	83.75	89.50	97.93	79.81	97.76	92.93	93.77	97.34

Supplementary figure 5. Single-cell analysis of CD8 T cells from ICI-arthritis synovial fluid and tissue.
a) Gating scheme of CD8 T cell isolation from ICI-arthritis synovium for single cell RNA sequencing. **b)** Distribution of cells that passed quality control having <3,000 total genes (feature RNA counts) and <10% mitochondrial genes. **c)** Tabulation of QC filtered CD8 T cell numbers contributing to 8 transcriptomically distinct clusters from every individual patient. **d)** Overlay of signature scores for gene sets expressed in CD38^{hi} CD127⁻, CD38⁻ CD127⁺ and PD-1^{hi} populations from bulk RNA-sequencing and UMAP visualization of *IL7R* (CD127) expression across synovial CD8 T cells. **e)** Simpson and Shannon equitability indices calculated for the eight CD8 T cell clusters.

Supplementary figure 6. Expression of intracellular markers in RA and PsA SFMC with or without IFN treatment.

a) Volcano plots showing genes differentially expressed by CD8 T cells from ICI-A versus RA or PsA. **b,c)** Frequency of perforin⁺ cells, granzyme B⁺ cells (b) and Ki67⁺ cells (c) in CD8 T cells from RA or PsA SFMC cultured with IFN- β or IFN- γ for 16 hours or 72 hours. **d,e)** Representative flow cytometric plots showing expression of perforin and granzyme B (d) and Ki67 (e) in CD38^{hi} CD127⁻ (red) and CD38⁻ CD127⁺ (blue) CD8 T cell populations. * p<0.05 by Wilcoxon matched-pair test in (b,c).