

1 Multi-hallmark long noncoding RNA maps reveal non-small cell 2 lung cancer vulnerabilities

3

4 Authors

5 Roberta Esposito^{1,2,3,*}, Taisia Polidori^{1,2,4,*}, Dominik F. Meise^{1,2}, Carlos Pulido-
6 Quetglas^{1,2,4}, Panagiotis Chouvardas^{1,2}, Stefan Forster^{1,2}, Paulina Schaeerer^{1,2}, Andrea
7 Kobel^{1,2}, Juliette Schlatter^{1,2}, Michaela Roemmele^{1,2}, Emily S. Westemeier⁵, Lina
8 Zhu^{6,7,8}, Andrés Lanzós^{1,2,4}, Hugo A. Guillen-Ramirez^{1,2}, Giulia Basile^{1,2}, Irene
9 Carrozzo^{1,2}, Adrienne Vancura^{1,2,3}, Sebastian Ullrich⁹, Alvaro Andrades^{10,11,12}, Dylan
10 Harvey¹⁴, Pedro P. Medina^{10,11,12}, Patrick C. Ma¹³, Simon Haefliger^{1,2}, Xin Wang^{6,7,8},
11 Ivan Martinez⁵, Adrian Ochsenbein^{1,2}, Carsten Riether^{1,2}, Rory Johnson^{1,2,14,15,16}

12 1. Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.

13 2. Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland.

14 3. Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' CNR, Naples, Italy

15 4. Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.

16 5. Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine,
17 West Virginia University, Morgantown, West Virginia.

18 6. Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong.

19 7. Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong.

20 8. Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of
21 Hong Kong, Shenzhen, Guangdong Province, China.

22 9. Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST),
23 Catalonia, Spain.

24 10. GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional
25 Government, Av. de la Ilustración 114, 18016 Granada, Spain.

26 11. Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain.

27 12. Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071
28 Granada, Spain.

29 13. Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University,
30 Hershey, Pennsylvania.

31 14. School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland.

32 15. Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland.

33

34 Author list footnotes

35 * These authors contributed equally and are listed in alphabetical order

36 ¹⁶ Correspondence: rory.johnson@ucd.ie, +353851840699

38 **Abstract**

39 Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their
40 functional roles in cellular disease hallmarks remain unclear. Here we employ pooled
41 CRISPR deletion to perturb all 831 lncRNAs in KRAS-mutant non-small cell lung
42 cancer (NSCLC), and measure their contribution to proliferation, chemoresistance and
43 migration across two cell backgrounds. Integrative analysis of this data outperforms
44 conventional “dropout” screens in identifying cancer genes, while prioritising disease-
45 relevant lncRNAs with pleiotropic and background-independent roles. Altogether 60
46 high-confidence oncogenic lncRNAs are active in NSCLC, the majority identified here
47 for the first time, and which tend to be amplified and overexpressed in tumours. A
48 follow-up antisense oligonucleotide (ASO) screen shortlisted two candidates, Cancer
49 Hallmarks in Lung LncRNA (CHiLL 1&2), whose knockdown consistently suppressed
50 cancer hallmarks in a variety of 2D and 3D tumour models. Molecular phenotyping
51 reveals that CHiLL 1&2 control cellular-level phenotypes via distinct transcriptional
52 networks converging on common oncogenic pathways. In summary, this work reveals
53 a multi-dimensional functional lncRNA landscape underlying NSCLC that contains
54 potential therapeutic vulnerabilities.

55

56 **Keywords:**

57 CRISPR; lncRNA; long noncoding RNA; cancer; non-small cell lung cancer; NSCLC;
58 RNA therapeutics; antisense oligonucleotides.

59 **Introduction**

60 Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths
61 worldwide (1), and available therapies face a combination of challenges in
62 undruggable mutations, toxicity and therapy resistance (2–4). The most common
63 subtype, carrying activating *KRAS* mutations (*KRAS*⁺), is routinely treated with
64 cytotoxic platinum chemotherapy, and newly-approved targeted therapies only extend
65 life by few months (5,6).

66 A fertile source for new therapeutic targets is long noncoding RNAs (lncRNAs),
67 with a population likely to exceed 100,000, of which >98% remain uncharacterised (7–
68 10). Hundreds of lncRNAs have been implicated in disease hallmarks across cancer
69 types via a variety of mechanisms (11–14). Examples such as SAMMSON
70 (melanoma) and lncGRS-1 (glioma) have attracted attention as drug targets, thanks
71 to tumour cells' potent and specific sensitivity to their inhibition via antisense
72 oligonucleotide (ASO) therapies (15,16). Nonetheless, the extent and nature of
73 lncRNAs promoting the interlocking pathological hallmarks in a given tumour remains
74 unclear.

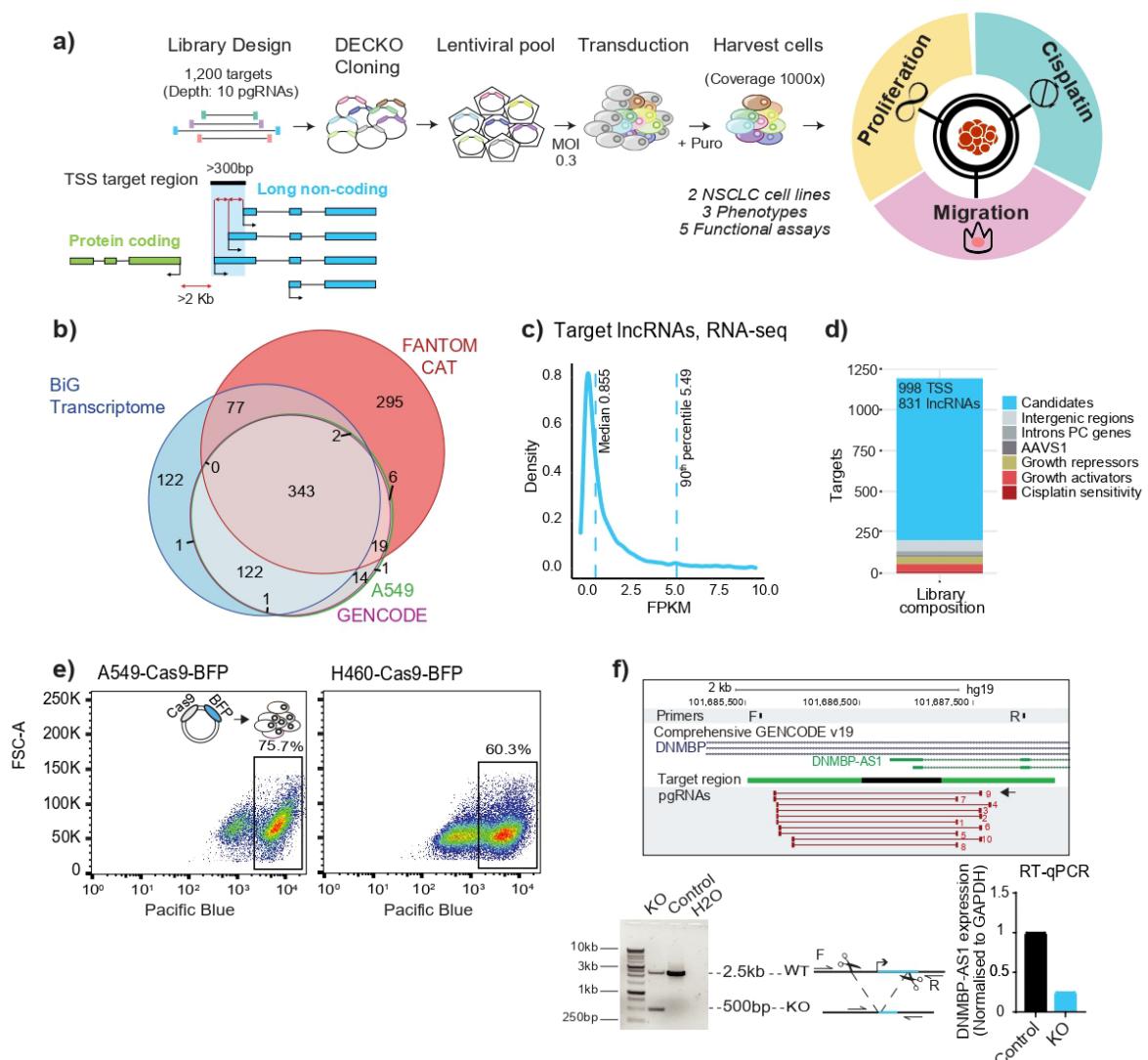
75 Efforts to identify lncRNA therapeutic targets have accelerated with the advent of
76 CRISPR-Cas genome-editing, which can be used to silence gene expression via
77 targeted genomic deletions or transcriptional inhibition, and is readily scaled
78 transcriptome-wide via pooling (17). CRISPR screens have revealed scores of
79 lncRNAs promoting disease hallmarks of cell proliferation, pathway activation and
80 therapy resistance (18–20).

81 A critical challenge in drug discovery is the poor validation rate of preclinical
82 targets discovered *in vitro* (21). Highly-focussed single background / single hallmark
83 screen designs, including those above, are vulnerable to discovering lncRNAs
84 promoting cell-line specific phenotypes that do not generalise to the disease in
85 question (15). Supporting this, recent CRISPR-inhibition (CRISPRi) screens
86 demonstrated highly specific effects for lncRNAs in cell lines from six distinct cancer
87 types (18). However, the critical question of whether this also affects cell lines from
88 the same cancer type has not been addressed. Thus, to maximise the utility of
89 discovered hits, an ideal screen should prioritise lncRNA targets that are both
90 pleiotropic (impact multiple disease hallmarks) and background-independent (effective
91 regardless of cell model).

92 Here, we comprehensively map the functional lncRNA landscape of *KRAS*⁺
93 NSCLC. We perform 10 disease-specific CRISPR screens for lncRNAs promoting
94 three cancer hallmarks in two cell models. We reconstruct the functional lncRNA
95 landscape of NSCLC, revealing a catalogue of therapeutic vulnerabilities. These
96 lncRNAs connect to cancer hallmarks via complex transcriptional networks, and can
97 be targeted by potent, low toxicity and on-target ASOs, representing promising future
98 therapeutics (22).

99 **Results**

100 **A versatile CRISPR screening pipeline for long non-coding RNAs in NSCLC**


101 To identify lncRNAs promoting KRAS⁺ NSCLC, we adapted the DECKO (dual
102 excision CRISPR knock-out) CRISPR-deletion (CRISPR-del) system to high-
103 throughput pooled format (17,23) (Figure 1a). This approach achieves loss-of-function
104 perturbations by deleting target genes' transcription start site (TSS) via paired guide
105 RNAs (pgRNAs), and effectively inhibits gene expression (24–27).

106 We developed a screening library to comprehensively interrogate the NSCLC
107 lncRNA transcriptome. We integrated and filtered published (10,28,29) and in-house
108 annotations (30,31) (Figure 1b), for a final target set of 831 lncRNAs, corresponding
109 to 998 high-confidence TSSs, henceforth named "Candidate_1" and so on (Figure
110 S1a). (Figure 1c and 1d; see Methods). To these we added pgRNAs targeting neutral
111 control loci (not expected to influence cell phenotype) and positive control protein-
112 coding genes (PCGs) (with known roles in cell proliferation and cisplatin resistance)
113 (Figure 1d).

114 These targets form the basis for 'libDECKO-NSCLC1', a CRISPR-deletion library
115 with a depth of 10 unique pgRNAs per target, comprising altogether 12,000 pgRNAs
116 (Figure 1d and File S1). After cloning into the DECKO backbone (Figure S1b),
117 sequencing revealed high quality in terms of sequence identity (60.8% perfect match
118 across both spacers) and coverage (90th to 10th percentile count ratios: 4.6-fold) (32)
119 (Figure S1c).

120 To identify hits of general relevance to NSCLC, we performed parallel
121 experiments in two widely-used KRAS⁺ NSCLC models, A549 and H460(33,34). Non-
122 clonal cell lines were generated that stably express high-levels of Cas9 protein (35),
123 as evidenced by blue fluorescent protein (BFP) (Figure 1e). Targeting known NSCLC-
124 promoting lncRNA DNMBP-AS1 (Candidate_331) (36), resulted in deletion of its
125 promoter region and loss of expression (Figure 1f), supporting the effectiveness of the
126 CRISPR-del strategy.

Figure 1

127 **Figure 1. Multi-hallmark CRISPR discovery of lncRNAs promoting non-small cell lung**
128 **cancer. a)** CRISPR-deletion pooled screening strategy for lncRNAs promoting NSCLC
129 hallmarks. **b)** Gene annotations used for candidates' selection. Numbers indicate lncRNA
130 gene loci. **c)** Expression of targeted lncRNAs in A549 cells. **d)** Library composition, in terms
131 of targeted regions. Note that some lncRNA loci are represented by >1 targeted transcription
132 start site (TSS). **e)** Fluorescence activated cell sorting (FACS) was used to sort stable Cas9
133 expressing cells based on expression of a Blue Fluorescent Protein (BFP) marker. Boxes
134 indicated the sorted cell populations used in screens. **f)** One member of the screening library,
135 DNMBP-AS1, was targeted by CRISPR-deletion in A549 cells. The gene locus is shown in the
136 upper panel, including genotyping PCR primers (F, R), transcription start site (TSS) target
137 region (black), and library paired guide RNAs (pgRNAs, red bars). The pgRNA used here is
138 indicated by the arrow. Below left: PCR using indicated primers with template genomic DNA
139 (gDNA) from cells transfected with non-targeting pgRNA (Control) or DNMBP-AS1 TSS

140 pgRNA (KO). The expected lengths for wild-type and deletion amplicons are indicated. Below
141 right: Quantitative reverse transcriptase PCR (RT-PCR) measurement of DNMBP-AS1 RNA.

142

143 **Multi-phenotype mapping of NSCLC lncRNAs**

144 Cancers thrive via a variety of phenotypic “hallmarks” (37). Previous CRISPR
145 screens have been limited to a single hallmark, either proliferation or drug resistance
146 (15,18,38–40), and usually focussed on a negative “drop-out” format, where pgRNAs
147 for genes of interest are depleted.

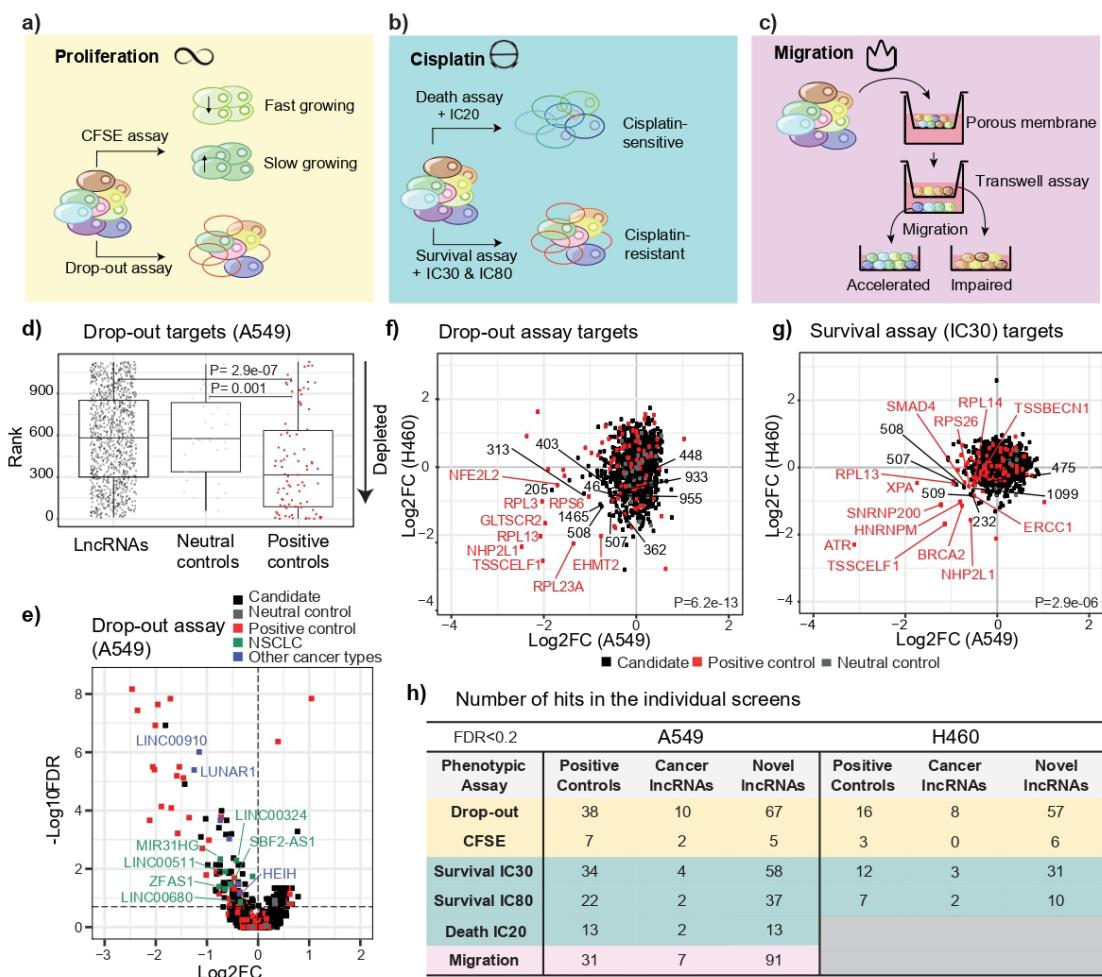
148 For more comprehensive and biomedically-relevant vista of NSCLC lncRNAs, we
149 adapted pooled screening to read out distinct hallmarks of proliferation, chemo-
150 resistance and invasion (Figures 2a-c). To boost sensitivity, we implemented
151 complementary “positive” screens, where pgRNAs of interest are enriched. Thus, to
152 identify lncRNAs promoting cell fitness and proliferation, we combined (i) a classical
153 drop-out, where targets’ pgRNAs become depleted, and (ii) a positive screen using
154 CFSE (Carboxyfluorescein succinimidyl ester) dye to identify growth-promoting
155 lncRNAs by their pgRNAs enrichment in slow-growing cells (Figure 2a) (41).

156 As expected, pgRNAs for positive-control genes were significantly depleted in
157 drop-out screens, while neutral controls were not (Figure 2d). To gauge the LOF
158 efficiency of promoter deletion, pgRNAs targeting positive-control protein-coding
159 genes had been split between two distinct modalities: (1) conventional open reading
160 frame (ORF) mutation, expected to yield maximal LOF; and (2) promoter-deletion,
161 similar to lncRNAs. Promoter-deletion pgRNAs displayed a detectable but lower
162 phenotypic impact, indicating that a CRISPR-del screens for lncRNAs face intrinsically
163 lower sensitivity compared to ORF-targeting screens for PCGs (Figure S2a).

164 Using biologically-replicated drop-out screens, 77 lncRNAs were identified as
165 necessary for proliferation of A549 cells. These include known NSCLC lncRNAs, such
166 as *LINC00324* (42), *ZFAS1* (43), *MIR31HG* (44), *SBF2-AS1* (45), *LINC00680* (46) and
167 *LINC00511* (47), that was also found in H460. In addition, lncRNAs identified in other
168 cancer types include *LUNAR1* (48), *HEIH* (49) and *LINC00910* (50) (Figure 2e).

169 The factors influencing pgRNA deletion efficiency are poorly understood. Using
170 growth phenotype as a proxy for deletion efficiency, we observed expected correlation
171 between observed and bioinformatically-predicted sgRNA efficiency (RuleSet2

172 algorithm) (Figure S1d). On the other hand, we found no relationship with pgRNA
173 orientation (Figure S1e), and a weak tendency for larger deletions to produce stronger
174 phenotypes, possibly due to greater impact on lncRNA expression (Figure S1f).


175 Next, we compared equivalent drop-out screens in the two NSCLC backgrounds.
176 There was a significant concordance amongst identified targets, driven mainly by
177 positive controls (Figure 2f). To strengthen these data, we performed complementary
178 CFSE screens in the same cells. As expected, these positive screens displayed anti-
179 correlation with drop-out results in H460 cells, although not in A549 cells, possibly for
180 technical reasons (Figure S2b).

181 Patients with KRAS⁺ tumours are usually treated with cytotoxic platinum-based
182 chemotherapeutics, but tumours frequently evolve resistance (51). To identify
183 lncRNAs promoting chemoresistance, we again employed complementary screens
184 (Figure 2B) at carefully chosen cisplatin concentrations (Figures S2d and S2e). As
185 before, correlated results were observed across cell backgrounds (Figure 2g), and
186 PCGs with known roles in cisplatin resistance were correctly identified (red points in
187 Figure 2g). As expected, complementary survival (negative) and death (positive)
188 screens were anti-correlated for high cisplatin dose (IC80) (Figure S2c).

189 Migration is a key hallmark underlying invasion and metastasis of tumour cells.
190 By isolating cells with rapid or slow migration through a porous membrane for 48h
191 (Figures 2c and S2f), we screened for migration-promoting lncRNAs. This yielded 98
192 lncRNAs, of which seven were already associated with migration and invasion in
193 numerous cancer types (11), including *NORAD*, *DANCR* and *SNHG29* (52–55).

194 These data, summarized in Figure 2h and File S2, represent a resource of
195 functional lncRNAs in NSCLC hallmarks.

Figure 2

196 **Figure 2. Adapting CRISPR screens to cancer hallmarks. a)** Proliferation: The strategy
197 employs complementary negative (drop-out) (growth-promoting lncRNAs' pgRNAs are
198 depleted) and positive (CFSE dye) (growth-promoting lncRNAs' pgRNAs are enriched)
199 formats. **b)** Cisplatin sensitivity: Another complementary strategy is employed. In the negative
200 (drop-out) "survival" screen, cells are exposed to high cisplatin doses (IC30, IC80).
201 Resistance-promoting lncRNAs' pgRNAs will be depleted in surviving cells. In the positive
202 "death" screen, cells that die in response to low cisplatin concentration (IC20) are collected,
203 and enriched pgRNAs identify resistance-promoting lncRNAs. **c)** Migration: Cells that are
204 capable / incapable of migrating through a porous membrane over a given time period are
205 separately collected. Migration-promoting lncRNAs are identified via their pgRNAs'
206 enrichment in migration-impaired cells. **d)** lncRNA candidates, neutral and positive controls,
207 ranked by P-value in A549 drop-out screen (statistical significance estimate using Wilcoxon
208 test). **e)** A549 drop-out screen. Horizontal line indicates cutoff for hits at FDR < 0.2. Previously
209 published lncRNAs in NSCLC and other cancers are labelled in green and blue, respectively.
210 **f)** Comparison of A549 and H460 drop-out screens (statistical significance estimated using

211 Pearson correlation). **g)** Comparison of A549 and H460 cisplatin survival screen (Pearson
212 correlation). **h)** Numbers of screen hits at FDR<0.2

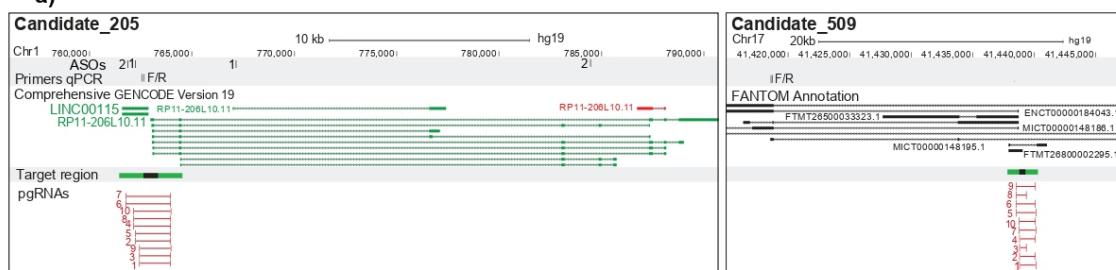
213

214 **Screen hits can be validated and function via RNA products**

215 We next tested the reliability of these results by selecting two lncRNA TSSs for
216 further validation, based on their top ranking and consistency between the two cell
217 lines: Candidate_205, identified as top hit in drop-out screens (A549: Log2FC=-1.81,
218 FDR=1.2e-07) and Candidate_509 in both proliferation and cisplatin (A549: Log2FC=-
219 1.15, FDR=9.78e-07).

220 Candidate_205 overlaps the TSS of bidirectional antisense GENCODE-
221 annotated genes, *LINC00115* and *RP11-206L10* (Figure 3a). Candidate_509 targets
222 a TSS shared by several BIGTranscriptome lncRNAs (Figure 3a). Supporting the
223 importance of this locus, it contains two additional hits, Candidate_507 (*LINC00910*)
224 and Candidate_508 (Figure S2g).

225 To validate the phenotypic effect of these deletions, we tested individual high-
226 scoring pgRNAs (Figure 3b, arrows). Candidate_205 pgRNA efficiently deleted the
227 targeted region (Figure S2h), and while difficulty in designing PCR primers prevented
228 direct testing of deletion by Candidate_509, it effectively decreased RNA levels (Figure
229 S2i). Both pgRNAs yielded potent effects on cell fitness: mCherry+ cells expressing
230 pgRNAs were out-competed by control cells (GFP+, expressing pgRNA for *AAVS1*),
231 with an effect comparable to inactivation of essential ribosomal gene *RPS5* (Figures
232 3c and S2j). Similar results were observed in a conventional assay (Figure S2k).
233 Furthermore, the pgRNA for Candidate_509 also sensitised cells to cisplatin,
234 consistent with screen results (Figure 3c).


235 It remained ambiguous which of the two genes overlapping the Candidate_205
236 region drives these effects. Furthermore, genomic deletion cannot distinguish between
237 a DNA-dependent (for example, enhancer) or RNA-dependent mechanism (mature
238 lncRNA, or its transcription). To address both questions, we used two gene-specific
239 ASOs to target each gene. This clearly implicated *LINC00115*, but not *RP11-206L10*,
240 in driving cell proliferation via an RNA-dependent mechanism (56) (Figure 3d). These
241 results were corroborated in a three-dimensional (3D) spheroid model (Figure S2i).

242 Similar high validation rates were observed for the migration screens. ASO-
243 knockdown of three hits, Candidate_215 (AC104024.3), Candidate_448 (*CECR7*) and
244 Candidate_489 (*MIR23AHG*) resulted in dramatic impairment of A549 migration
245 (Figures 3e and 3f).

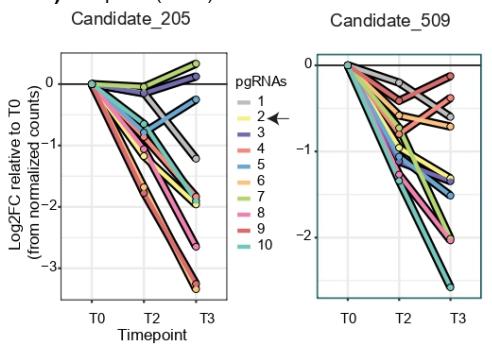
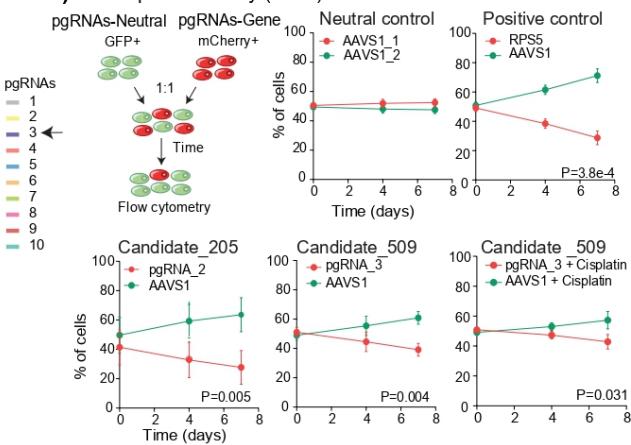
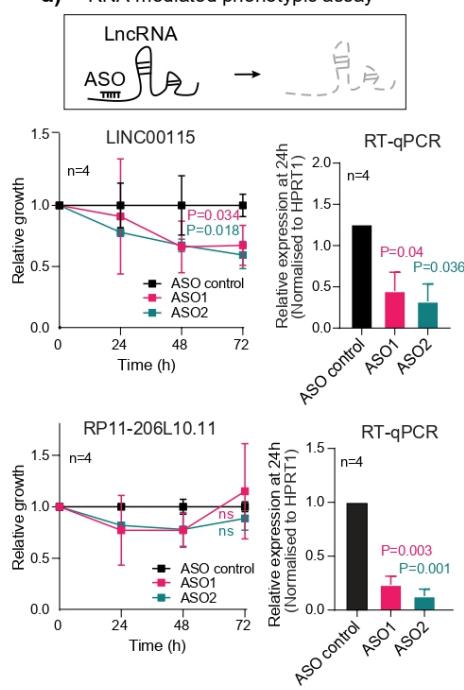
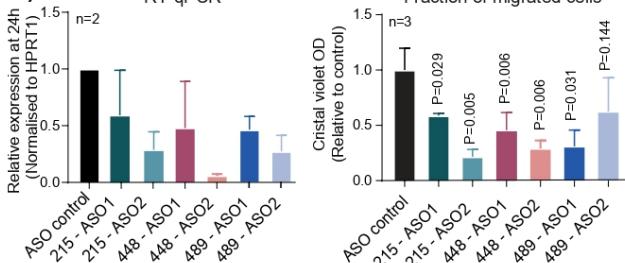

246 In summary, these findings support the ability of CRISPR-deletion screens to
247 identify lncRNA genes that promote cancer hallmarks via RNA-dependent
248 mechanisms.

Figure 3


a)


b) Drop-out (A549)

c) Competition assay (A549)


d) RNA-mediated phenotypic assay

e) Migration assay (A549)

f) RT-qPCR

249 **Figure 3. Validation of screen hits shows reproducible phenotypes. a)** Candidate_205
 250 (left panel) and Candidate_509 (right panel) loci. Primers and ASO sites are indicated above.
 251 The TSS target region and the 10 pgRNAs from the screening library are indicated below. **b)**
 252 Normalised pgRNA counts over the course of the drop-out screen in A549. Arrows indicate
 253 pgRNAs that were cloned here for validation. **c)** Competition assay. Fluorescently-labelled
 254 cells carrying pgRNAs for control AAVS1 locus (green, GFP) or indicated targets (red,

255 mCherry) were measured by flow cytometry. pgRNAs targeting the ORF of essential ribosomal
256 protein *RPS5* were used as positive control. N=3, error bars indicate standard deviation;
257 statistical significance was estimated by Student's *t* test at the last timepoint. **d)** ASOs were
258 used to separately target the two lncRNAs sharing the TSS at Candidate_205. For each, two
259 different ASOs were employed (1 and 2) in A549 cells. Upper panels: *LINC00115*; Lower
260 panels: *RP11-206L10.11*. Left: cell population; right: RNA expression measured by RT-qPCR.
261 N=4; error bars indicate standard deviation; significance was estimated by one-tailed
262 Student's *t* test. **e)** Left: Normalised counts of pgRNAs in migrated and non-migrated cell
263 populations from A549 migration screen. Right: Validation experiments with A549 cell
264 migration across transwell supports over 24 h. Cells were treated with ASOs targeting
265 indicated lncRNAs or a non-targeting control. **f)** Left: RT-qPCR in A549 cells treated with two
266 distinct ASOs each for Candidate_215, 448 and 489. Expression was normalised to a non-
267 targeting ASO. Right: Crystal violet quantification normalised to non-targeting ASO. Data are
268 plotted as mean \pm SD from three independent biological replicates. Statistical significance was
269 estimated by one-tailed Student's *t* test.

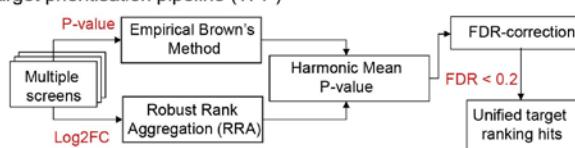
270

271 **Multi-hallmark screen integration for target discovery**

272 We next integrated these data into quantitative and comprehensive map of
273 lncRNAs driving NSCLC hallmarks. To combine diverse screen results while balancing
274 effect size and significance, we created an integrative target prioritisation pipeline
275 (TPP) (Figure 4a). TPP can either be run on all screens for a “pan-hallmark” target
276 ranking, or for individual hallmarks (“hallmark-specific”; see Methods). The pan-
277 hallmark ranking outperforms common integration methods and individual screens in
278 correctly classifying positive and neutral controls (Figure 4b).

279 The hallmark-specific values provide a signature for each lncRNA in three
280 functional dimensions, in the context of overall confidence defined by pan-hallmark
281 ranking (Figure 4c). The union of hits from both approaches (FDR<0.2) yielded 111
282 lncRNAs (Figure 4c). Pan-hallmark analysis alone identified altogether 60 lncRNA hits
283 (~6% of those screened; File S3) (FDR<0.2), of which 49 were not previously linked
284 to NSCLC (Figure 4d). As expected, growth-promoting PCG positive controls and
285 known lung cancer lncRNAs, but not neutral controls, are enriched amongst hits. This
286 is supported by independent Enrichment Score Analysis (Figure S3a). Attesting to
287 their value, hits are significantly enriched for disease-associated lncRNAs (Figure
288 S3b), and consistent with previous reports (57), they are more expressed in healthy

289 tissues and marginally more evolutionarily conserved (Figure S3c). Hallmark-specific
290 integration yielded 96 hits (~10% of those screened) in at least one hallmark, of which
291 14 are found in two hallmarks, and none in three (Figure S3d).


292 Previous CRISPR screens have demonstrated highly background-specific roles
293 in proliferation for cell lines from distinct cancer types(18). However, the degree of
294 similarity between such roles between cell models from a given cancer type is not
295 known. Indeed, comparing lncRNA hits from conventional drop-out analysis in A549
296 and H460 backgrounds revealed a low degree of correlation (Figure 4e left panel). In
297 contrast, pan-hallmark hits display relatively background-independent activity (Figure
298 4e right panel), supporting the usefulness of an integrative screening strategy for
299 discovering therapeutic targets.

300 Cancer-promoting lncRNAs are expected to be upregulated in tumours (58,59).
301 Consistent with this, pan-hallmark hits are significantly higher expressed than non-hits
302 in KRAS⁺ lung tumours (Figure 4f), and are upregulated in tumours compared to
303 adjacent tissue (Figure 4g). Screen hits tend to be amplified, but not depleted, in DNA
304 from tumours (Figures 4h and S3e) and cell lines (Figure S3f).

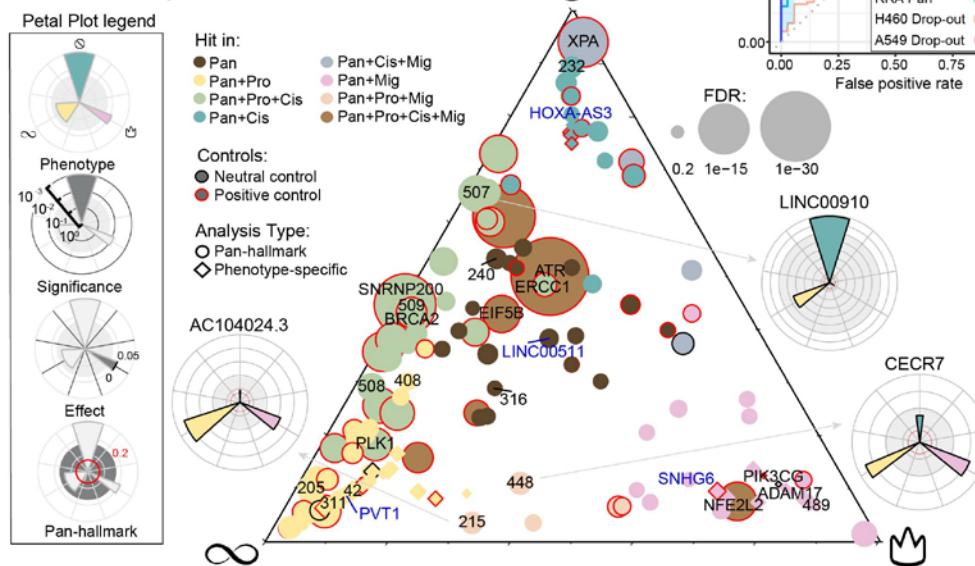
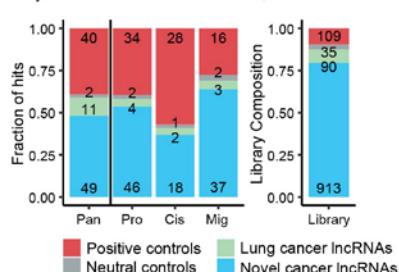
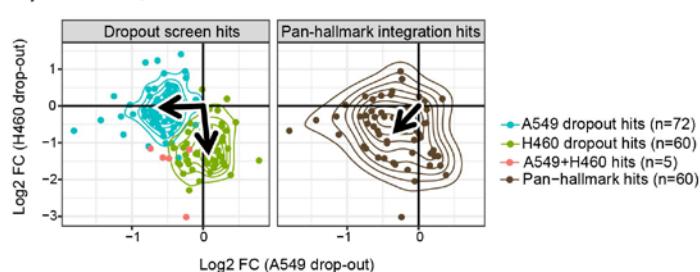
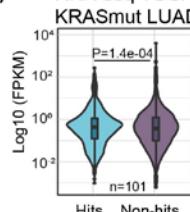
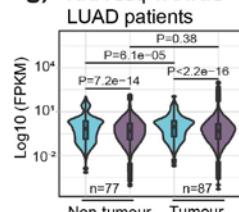

305 In summary, integration of diverse screens yields accurate maps of functional
306 lncRNAs that are enriched for meaningful clinical features and display cell
307 background-independent activity.

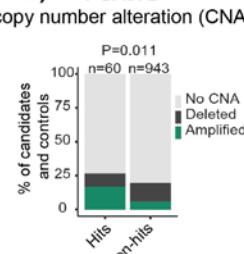
Figure 4


a) Target prioritisation pipeline (TPP)


c) Pan-hallmark analysis


d) Pan-hallmark hits composition


e) Cell line specific effects


f) RNA-seq TCGA KRASmut LUAD

g) RNA-seq TANRIC LUAD patients

h) PCAWG copy number alteration (CNA)

308 **Figure 4. Functional landscape of lncRNAs in NSCLC.** a) Target prioritisation pipeline
 309 (TPP) integrates multiple screens to generate a unified hit ranking. TPP employs both effect
 310 size (Robust Rank Aggregation; RRA) and statistical significance (empirical Brown's method).
 311 b) Comparing performance of screens and integration methods. Performance is measured as
 312 the area under the ROC curve (AUC) based on correctly recalling/rejecting library controls
 313 (positive and neutral controls, respectively). c) Ternary plot contains all significant hits
 314 (FDR<0.2) in pan-hallmark analysis (circles) or individual hallmarks (diamonds). The three

315 corners represent the hallmarks, indicated by symbols. The proximity to each corner is driven
316 by the TPP significance calculated for each individual hallmark. The candidates selected for
317 further validations and protein-coding controls are indicated by candidate number or gene
318 name, respectively. Selected lncRNAs previously associated with LUAD are labelled in blue.
319 Petal plots display the hallmark contributions of selected lncRNAs. **d)** The number of hits
320 discovered in pan-hallmark and individual hallmark screens. Right: The target composition of
321 the screening library for comparison. "Lung cancer lncRNAs" indicate previously-published,
322 functionally-validated lncRNAs in lung cancer(11) **e)** Scatter plot showing the correlation of
323 the drop-out assay hits (left panel) and the pan-hallmark hits (right panel) in H460 and A549.
324 The arrows point to the geometric median of the respective group. **f)** Expression of pan-
325 hallmark hits compared to all other screened lncRNAs (non-hits) in the KRAS⁺ samples from
326 the TCGA LUAD cohort (n=101). Statistical significance was estimated by Welch's *t*-test, one-
327 tailed. **g)** Expression of pan-hallmark hits compared to non-hits in an independent cohort of
328 LUAD samples and healthy tissues (87 tumour; 77 normal)(60). Statistical significance:
329 pairwise two-tailed Student's *t*-test. **h)** Pan-cancer recurrent amplifications and deletions,
330 estimated in PCAWG cohort. Statistical significance was estimated by Fisher's exact test.

331

332 **RNA therapeutics targeting NSCLC lncRNAs**

333 Multi-hallmark lncRNA maps are a resource of targets for therapeutic ASOs(61–
334 63). We manually selected ten lncRNAs from top-ranked hits, based on criteria of
335 novelty and lack of protein-coding evidence, and henceforth referred to as "Tier 1".
336 Eight are annotated by GENCODE, and two by either FANTOM CAT or
337 BIGTranscriptome (File S5, Table1). For each candidate, we designed a series of
338 ASOs and managed to identify at least two independent ASOs with ≥40% knockdown
339 potency (Figure S4a).

340 Next, we tested ASOs' phenotypic effects, in terms of proliferation and cisplatin
341 sensitivity (Figure 5a). For five lncRNAs (Tier 2), we observed reproducible loss of cell
342 proliferation with two distinct ASO sequences, indicating on-target activity(64). To
343 check how broadly applicable these effects are, we re-tested the ASOs in two other
344 KRAS⁺ NSCLC cell lines, H460 and H441 (derived from a pericardial effusion
345 metastasis), and observed similar results (Figure 5a). Consistent with their effects on
346 cisplatin sensitivity, Tier 2 genes' expression is upregulated in response to cisplatin
347 treatment (Figure S4b). Using the expression data from TCGA dataset we noted that

348 Tier 2 lncRNAs are over-expressed in NSCLC tumours, despite this not being a
349 selection criterion (Figure 5b).

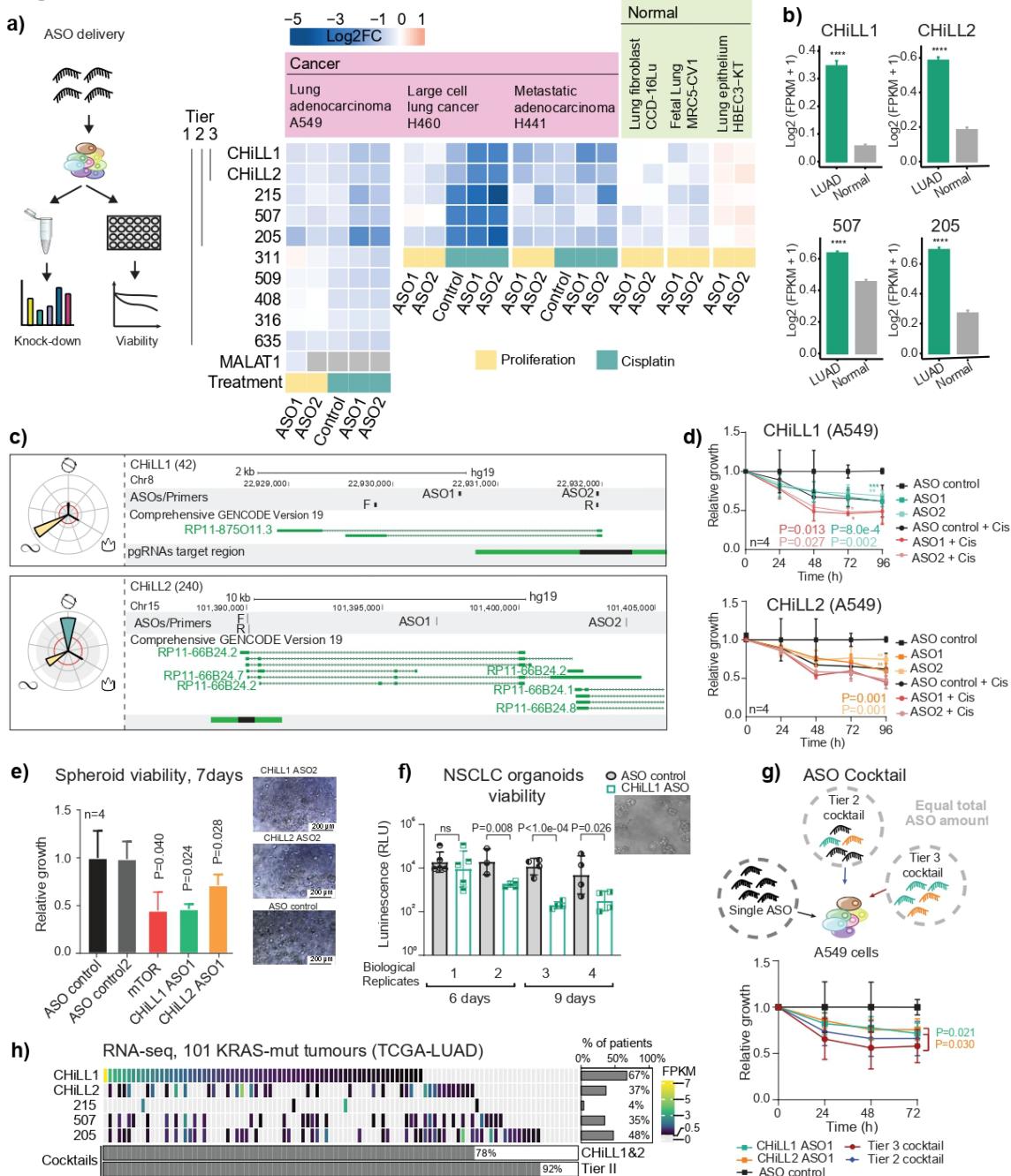
350 It has been proposed that targeting lncRNAs could cause lower side-effects in
351 healthy tissue, although few studies have tested this(15). We evaluated Tier 2 ASOs'
352 effects on a panel of non-transformed lung-derived cells: HBEC3-KT, MRC5-CV1
353 (both immortalised) and CCD-12Lu (primary). These cells displayed diminished or
354 absent response, particularly for the first two candidate lncRNAs (Figure 5a).
355 Consequently, we narrowed our focus to these "Tier 3" lncRNAs: Candidate_42
356 (*ENSG00000253616*) and Candidate_240 (*ENSG00000272808*), henceforth
357 renamed *Cancer Hallmark in Lung LncRNA* (CHiLL) 1 and 2, respectively. Both have
358 low protein-coding potential (Figures 5c and S4d). Replication experiments confirmed
359 the knockdown potency and phenotypic impacts of both ASOs for each gene (Figures
360 5d, S4c and S4e). ASOs displayed activity in additional KRAS⁺ and EGFR-mutant cell
361 lines, suggesting subtype-independent activity (Figure S4f).

362 CHiLL1 has, to our knowledge, never previously been implicated in cancer. It is
363 located on Chr8 and consists of two annotated isoforms, sharing the first exon (Figure
364 5c, upper panel) It is localized upstream and on the same strand of the protein-coding
365 gene *TNFRSF10B*, previously associated with NSCLC(65) although we find no
366 evidence for read through transcription between the two loci (Figures S5a and S5b).
367 Its sequence lacks obvious functional elements (Figure S5c). Supporting its relevance,
368 high expression of CHiLL1 correlates with poor overall survival (Figure S4g).

369 CHiLL2 (Chr15) comprises four isoforms sharing a common TSS (Figure 5c,
370 lower panel). It is associated with poor prognosis in colon cancer(66), and during
371 preparation of this manuscript, was reported to be an oncogene in gastric cancer(67).
372 It has a likely orthologue in mouse, the uncharacterised Gm44753 (Figure S5f). In
373 contrast to CHiLL1, CHiLL2 exons contain numerous conserved sequences and
374 structures (Figure 6a), and its locus is frequently amplified in cancer genomes (Figure
375 S5d). In TCGA samples, CHiLL2 expression is upregulated in the proximal
376 inflammatory (PI) tumour subtype, which is associated with poorer prognosis (Figures
377 S4h and S4i; PI vs. PP - P=4e-05; PI vs. TRU - P = 0.008).

378 Three-dimensional (3D) *in vitro* models represent a more faithful tumour model
379 compared to monolayer cultures(68,69). We delivered CHiLL1&2 ASOs to spheroid

380 cultures of H441 cells, and observed a reduction in viability approaching that of the
381 positive control, mTOR (Figures 5e and S4j).


382 Organoids derived from patient-derived xenografts (PDX) recapitulate the
383 therapy response of individual patients(70). Delivery of CHiLL1 ASOs resulted in
384 significant reduction in cell viability of the KRAS⁺ human NSCLC organoid BE874
385 (Figure 5f).

386 We were curious whether simultaneous targeting of two or more distinct
387 vulnerabilities, via “cocktails” of ASOs, might offer synergistic benefits. Indeed, a 50:50
388 cocktail of CHiLL1 / CHiLL2 ASOs (Tier 3 cocktail) displayed a greater effect on cell
389 viability, compared to an equal dose of either ASO alone (Figures 5g and S4k). A five-
390 ASO cocktail for Tier 2 lncRNAs yielded a similar benefit (Figure 5g). Interestingly,
391 cocktails resulted in no additional toxicity for non-cancerous cells (Figure S4l).

392 Finally, we asked what fraction of patients might benefit from ASO treatment.
393 RNA-sequencing (RNA-seq) data for TCGA tumours indicates that 78% express at
394 least one of CHiLL1 and CHiLL2 and might be treated by the Tier 3 cocktail, rising to
395 92% for Tier 2.

396 Together these results demonstrate that Tier 3 lncRNAs can be targeted by
397 potent and low-toxicity ASOs, which may be beneficial alone or in combination for the
398 majority of NSCLC cases (Figure 5h).

Figure 5

399 **Figure 5. Therapeutic targeting of oncogenic lncRNAs CHiLL1 and CHiLL2. a)** Left:
400 Experimental workflow to test knockdown efficiency and phenotypic effect of ASO transfection.
401 Right: Summary of all ASO/cell line results. Rows: Targeted lncRNAs; Columns: ASOs and
402 cell lines. Values reflect the mean log2 fold change in viability following ASO transfection, with
403 respect to a control non-targeting ASO, n>2. Numbers to the left indicate library candidate
404 identifiers, and are grouped into Tiers. Each lncRNA is targeted by two independent ASO
405 sequences (1&2, below). MALAT1 lncRNA is used as positive control. “Normal” cells are non-
406 transformed cells of lung origin. **b)** Expression of Tier 2 lncRNAs - CHiLL1, CHiLL2,

407 Candidate_205 (*LINC001150*), Candidate_507 (*LINC00910*) – in TCGA RNA-seq. LUAD: 513
408 samples, Normal: 59 samples. Statistical significance estimated by *t*-test; **** P<0.0001. Data
409 was not available for Candidate_215 in the TCGA dataset. **c)** Genomic loci encoding CHiLL1
410 (upper panel) and CHiLL2 (lower panel). **d)** A549 cell growth upon transfection with two
411 independent ASOs. Results are normalised to non-targeting control ASO (n=4 biological
412 replicates; error bars: standard deviation; statistical significance: two-tailed Student's *t* test).
413 **e)** Left: Viability of H441 spheroid cultures seven days after ASOs transfection (25nM). mTOR
414 ASO was used as positive control (n=4 biological replicates; error bars: standard deviation;
415 one-tailed Student's *t* test). Right: Representative images (Leica DM IL LED Tissue Culture
416 Microscope). **f)** Viability of BE874 organoids grown from a KRAS⁺ patient-derived xenograft
417 after CHiLL1 ASO transfection (n=4 biological replicates; n>3 technical replicates; error bars:
418 standard deviation; one-tailed Student's *t* test). **g)** ASO cocktails. Above: For all experiments,
419 the total amount of ASO did not vary (25 nM). Cocktails were composed of equal proportions
420 of indicated ASOs. Below: A549 cell populations, normalised to non-targeting ASO (n=4
421 biological replicates; error bars: standard deviation; statistical significance: one-tailed Mann
422 Whitney test). **h)** Expression of Tier 2 lncRNAs in KRAS⁺ LUAD tumours (TCGA). Each cell
423 represents a patient, and is coloured to reflect expression as estimated by RNA-seq
424 (expression defined as >0.5 FPKM). Below, the percentage of patients with at least one
425 lncRNA from the indicated cocktails.

426

427 **CHiLL1&2 ASOs regulated cancer hallmarks via distinct modes of action**

428 We next investigated the modes of action linking CHiLL1&2 to NSCLC hallmarks.
429 Subcellular localisation yields important mechanistic clues for lncRNAs (71).
430 Surprisingly, despite their similar oncogenic roles, fluorescence *in situ* hybridisation
431 (FISH) revealed contrasting localisation patterns: CHiLL1 is located principally in the
432 cytoplasm, and CHiLL2 in the nucleus (Figure 6b). Specificity was validated by
433 knockdown (Figure S5e), and results were further corroborated by cell fractionation
434 (Figure 6c).

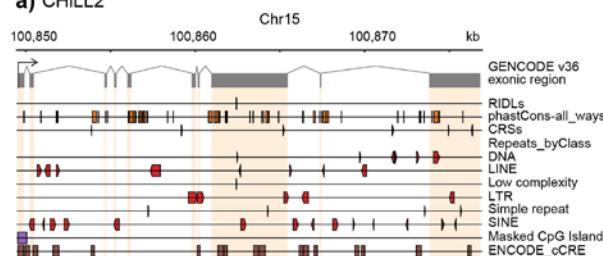
435 To gain more detailed mechanistic insights, we used molecular phenotyping by
436 RNA-seq to quantify the transcriptome of A549 cells perturbed by CHiLL1 ASOs(72).
437 CHiLL1 expression in control cells was 8.3 TPM (transcripts per million), equivalent to
438 ~4 molecules per cell and consistent with FISH(73). RNA-seq confirmed ASO
439 knockdown efficiency (Figures 6d and S6a), and resulting transcriptome changes were
440 highly correlated between ASOs, indicating that the majority of effects arise via on-

441 target perturbation of CHiLL1 (Figure 6e). Similar correlation was observed in H460
442 cells (Figure S6b). The generality of CHiLL1-dependent expression changes was
443 further confirmed by correlated expression changes between A549 and H460 (Figure
444 S6c).

445 We explored perturbed genes by enrichment analysis. Defining high-confidence
446 target gene subsets from the intersection of both ASOs, we identified enriched KEGG
447 terms(74) (Figures 6f and S6d). These underscored disease relevance (e.g. “Non-
448 small cell lung cancer”), and also implicated potential mechanistic pathways (MAPK,
449 PI3K-Akt), and the high degree of concordance between the two cell backgrounds
450 again supported the generality of CHiLL1 effects across KRAS⁺ NSCLC cells.

451 Similar analysis of the Molecular Signatures Database (MSigDB)(75) implicated
452 p53 and mTORC1 signalling (Figure S6e). Numerous transcription factor binding sites
453 (TFBS) are enriched in changing genes, including *ZBTB7A* (in both A549 and
454 H460)(76,77) (Figure S6f). Interestingly, *ZBTB7A* has been reported as both
455 oncogene and tumour suppressor that regulates processes including apoptosis and
456 glycolysis (78–81).

457 Amongst the cell-type independent enriched KEGG pathways was “Apoptosis”
458 (Figure 6f). Supporting this, knockdown of CHiLL1, but not CHiLL2, resulted in a
459 significant increase of early apoptotic cells (Figure 6g).


460 Turning to CHiLL2 (mean expression 2.5 TPM, ~1 copies per cell), we observed
461 effective knockdown and cell-type-independent effects using a single ASO
462 (Figures 6h, 6i, and S6g). Gene enrichment analysis revealed partially overlapping
463 terms with CHiLL1 (including p53 pathway, cholesterol homeostasis and epithelial to
464 mesenchymal transition). Amongst the CHiLL2-specific terms, we noticed several
465 related to cell cycle progression, including “G2–M checkpoint” (Figure 6j). Indeed,
466 knockdown of CHiLL2, but not CHiLL1, led to an increase of cells in G2-phase (Figure
467 6k). CHiLL2 targets are also enriched for migration genes, and knockdown led to
468 impaired cell migratory capability (Figure 6l).

469 Interestingly, we notice that CHiLL2 knockdown resulted in a significant
470 upregulation of CHiLL1, but not vice versa, (Figure S6h), explaining the additive effect
471 on cell viability observed with the CHiLL1 / CHiLL2 ASO cocktail (Figure 5g).

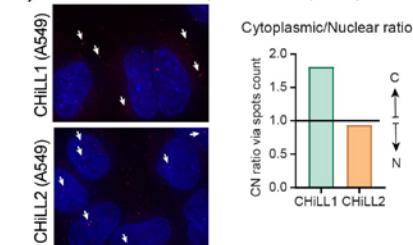
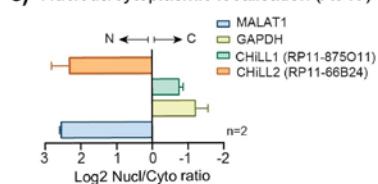
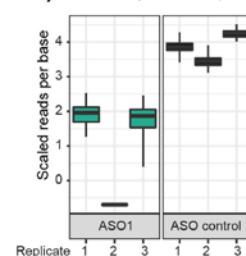
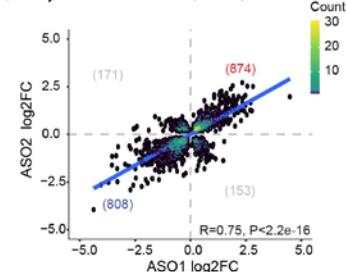
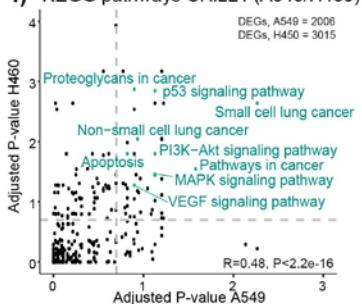

472 Together, these data establish that CHiLL1&2 promote cancer hallmarks via
 473 widespread, non-overlapping downstream gene networks, and support the on-target
 474 basis for ASO activity.

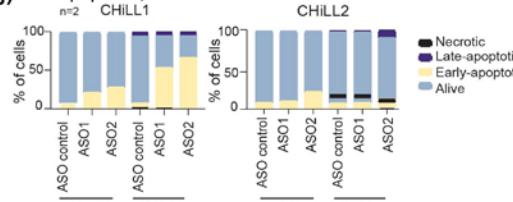
Figure 6

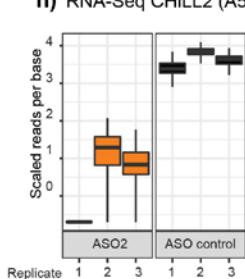

a) CHiLL2

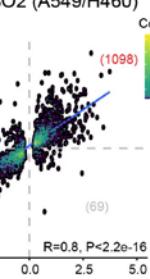

b) Fluorescence in-situ hybridisation (FISH)

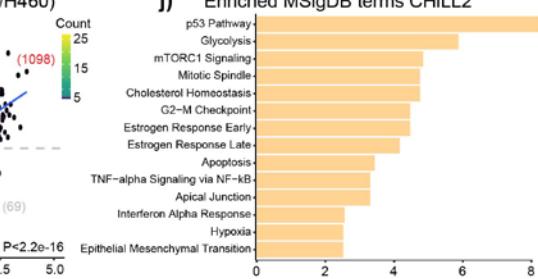

c) Nucleus/cytoplasmic localisation (A549)

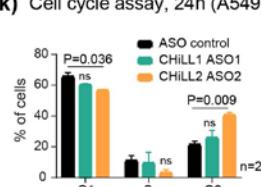

d) RNA-seq CHiLL1 (A549)

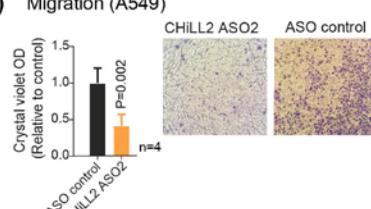

e) CHiLL1 ASOs (A549)


f) KEGG pathways CHiLL1 (A549/H460)


g) Apoptosis, 24h CHiLL1


h) RNA-Seq CHiLL2 (A549)


i) CHiLL2 ASO2 (A549/H460)


j) Enriched MSigDB terms CHiLL2

k) Cell cycle assay, 24h (A549)

l) Migration (A549)

475 **Figure 6. CHiLL1 and CHiLL2 drive distinct but overlapping oncogenic pathways. a)**
476 Genomic elements in CHiLL2 exons (grey rectangles) and introns. Strand is indicated by
477 element direction, where appropriate. Plot was generated with ezTracks(82). **b)** Confocal
478 microscopy images of RNA-FISH performed with CHiLL1 and CHiLL2 probe sets in A549 cells.
479 Selected lncRNA foci are arrowed. Nuclear/Cytoplasmic (N/C) quantification of CHiLL 1&2. **c)**
480 Ratio of concentrations of indicated RNAs as measured by RT-qPCR in nuclear/cytoplasmic
481 fractions of A549 cells. MALAT1 and GAPDH are used as nuclear and cytosolic controls,
482 respectively. **d)** Expression of CHiLL1 as quantified in the three RNA-seq replicates from A549
483 RNA. The y-axis represents the normalized expression (counts) per nucleotide and the
484 boxplots show the variance of inference using bootstraps generated by Kallisto. **e)** Fold
485 change in gene expression in response to CHiLL1 knockdown by ASO1 and ASO2 in A549
486 cells. Statistical significance: Pearson correlation coefficient. Trendline depicts regression line.
487 Numbers indicate genes in each quadrant. **f)** Statistical enrichment of KEGG pathways
488 amongst DEGs resulting from CHiLL1 knockdown. Genes significantly affected in common by
489 ASO1 and ASO2 were included, for each cell line. Cancer-relevant pathways that are
490 significant for both cell lines are highlighted in green. Statistical significance: Pearson
491 correlation coefficient. **g)** Annexin-V apoptosis assay 24h after transfection with ASOs
492 targeting CHiLL1 (left) and CHiLL2 (right). **h)** As for C, for CHiLL2. **i)** As for D, but comparing
493 knockdown of CHiLL2 with the same ASO in A549 and H460 cells ($P=2.2e-16$; $R=0.8$;
494 statistical significance: Pearson correlation coefficient). **j)** MSigDB term enrichment
495 significance for differentially-expressed genes in common between A549 and H460 cells. The
496 most significant terms are shown. y-axis: Adjusted P-value (q-value). **k)** Cell cycle assay
497 results after 24h upon knock-down of CHiLL1 and CHiLL2 in A549. ($n=2$ biological replicates,
498 error bars: standard deviation; statistical significance: two-tailed Student's *t* test) **l)** Cell
499 migration across transwell supports in A549 cells. The crystal violet quantification is
500 normalised to non-targeting ASO ($n=4$ biological replicates, error bars: standard deviation;
501 statistical significance: one-tailed Student's *t* test).

502 **Discussion**

503 We have mapped the functional lncRNA landscape across hallmarks and cell
504 backgrounds in the most common KRAS⁺ subtype of NSCLC. This led us to promising
505 therapeutic targets with pleiotropic roles across a range of 2- and 3-dimensional
506 models from primary and metastatic tumours.

507 Pooled CRISPR screening is emerging as a foundation for therapeutic target
508 identification, thanks to its practicality and versatility (83). It avoids the investment and
509 expertise required for arrayed screening(84), and delivers improved perturbation and
510 on-target rates compared to shRNA(35). By directly identifying lncRNAs via their cell-
511 level function, it represents a welcome addition to widely-used, indirect evidence like
512 survival, mutation, differential expression or evolutionary conservation(85,86). It was
513 encouraging to observe concordance between these signatures and screen hits.
514 Nonetheless, key barriers to entry remain, notably the lack of available screening
515 libraries, making the libDECKO-NSCLC1 library a valuable resource for future
516 discovery.

517 Through its integrative strategy, this work sets new standards. Previous studies
518 typically screened a single cell line with a single hallmark (often proliferation) and in a
519 single format (often drop-out)(18,20,87) . Internal benchmarking here highlighted the
520 risks of this approach, in identifying hits whose activity is specific to that cell
521 background alone. We mitigated this with parallel screens in distinct but matched cell
522 backgrounds, and resulting hits could be validated in several additional models and
523 mutational subtypes. To identify pleiotropic hits, we performed parallel screens in
524 multiple phenotypic dimensions and both positive and negative formats. The resulting
525 challenge of integrating diverse screen data was solved by developing the simple yet
526 robust TPP pipeline that balances effect size and significance. Overall, the
527 combination of multiple screens with TPP yielded improved performance compared to
528 conventional approaches.

529 The result is a unique functional panorama of lncRNAs in a single cancer type.
530 Given the paucity of global-level functional lncRNA maps(18,88), this dataset
531 represents an invaluable resource for understanding both the basic biology of lncRNAs
532 and their roles in cancer. Overall, our data implicate approximately 6% of lncRNAs
533 with cell-level functions, comparable to Liu's and Zhu's estimates(18,40). The

534 conceptual and experimental configuration will have a broad application for other
535 diseases and biological systems.

536 This resource enabled us to narrow down ten lncRNAs for ASO development,
537 from which we identified a pair of oncogenic lncRNAs, CHiLL 1 & 2 with particularly
538 promising characteristics as therapeutic targets. Firstly, replication experiments using
539 distinct ASO sequences and in different cell backgrounds strongly suggested that
540 observed phenotypic and molecular effects occur on-target (via the intended
541 lncRNA)(89). Second, ASOs were effective in both monolayer and three-dimensional
542 KRAS⁺ NSCLC backgrounds, in addition to several EGFR-mutant cell lines, raising
543 hope for a more general utility. Future efforts will be required to further refine ASO
544 sequences and chemistry, and to effectively deliver them *in vivo*. Third, those
545 phenotypic effects were diminished in non-transformed cells, pointing to reduced non-
546 specific toxicity *in vivo*. This raises hopes for reduced toxicity in healthy cells, allowing
547 not only higher doses, but also combination therapies to suppress therapy
548 resistance(90). Finally, CHiLL1 or 2 are detected in the majority of KRAS⁺ NSCLC
549 tumours, suggesting the majority of patients might benefit from eventual treatment.

550 Mechanistically, the concordance of CRISPR and ASO phenotypes indicates that
551 both genes act via an RNA transcript, or at least the production thereof(56,91). Both
552 have profound effects on the cellular transcriptome, affecting hundreds of target genes
553 that converge on many shared, oncogenic pathways, which yielded experimentally
554 verifiable predictions. Interestingly, however, these effects are mediated by very
555 different immediate molecular mechanisms, as evidenced by their distinct subcellular
556 localisation, non-overlapping target genes, and the fact that mixing their ASOs yielded
557 greater than additive effects.

558 We have shown how ASO cocktails boosted efficacy without increasing toxicity,
559 compared to equal doses of single ASOs. Our findings open the possibility of using
560 either fixed cocktails or cocktails tailored specifically to a patient's tumour
561 transcriptome, for potent, enduring, low-toxicity and personalised cancer treatment.

562 Nonetheless several issues remain to be addressed in future. It is likely that we
563 overlooked many valuable lncRNA targets, due to the relative inefficiency of CRISPR-
564 deletion as a perturbation compared to ORF mutation(92), and also due to the ongoing
565 incompleteness of lncRNA annotation(93). We here screened in two monolayer cell
566 backgrounds, however future screens should be performed in parallel across the
567 widest panel of mutationally-matched 2- and 3-dimensional models(94). Finally, our

568 screens discovered scores of lncRNAs that could not be followed up here and
569 hopefully will provide a fertile source of new targets in the future.
570

571 **Additional information:**

572 **Acknowledgements**

573 We thank members of the GOLD Lab, including Joana Carlevaro-Fita, Núria
574 Bosch-Guiteras, Michela Coan, Antonio Tarruell and Tina Uroda for insightful
575 discussions. We also thank Roderic Guigó (CRG Barcelona) for insightful discussion.
576 Thomas Marti and Renwang Peng (DMBR) generously donated cell lines and advice
577 on functional assays. We thank Basak Ginsbourger (DBMR) for administrative
578 support, and Willy Hofstetter and Patrick Furer (DBMR) for logistical support. All
579 computation was performed on the Bern Interfaculty Bioinformatics Unit computing
580 cluster maintained by Rémy Bruggmann and Pierre Berthier.

581 **Author contributions**

582 R.E., T.P., and R.J. conceived and designed the experiment procedure and
583 performed data analysis and its interpretation. D.F.M developed the TPP pipeline
584 and performed most of the bioinformatic analysis C.P. Designed the 'libDECKO-
585 NSCLC1' with the help of S.H. P.C. Analyzed the RNA-seq data. S.F. and M.R.
586 Established the patients-derived organoids. P.S., AK, G.B. and J.S. generated the
587 stably-expressing Cas9 cell line lines and helped with the validation. E.S.W., I.M.,
588 and P.C.M. validated the results in additional cell lines. D.H. performed the analysis
589 on the FISH images. L.Z. and X.W. performed the survival analysis from TCGA data.
590 A.V. provided the set of known cancer genes in NSCLC. A.A., H.A.G., P.P.M. and
591 A.L. contributed to the bioinformatic analysis. I.C. prepared the libraries for the NGS
592 sequencing. S. H., C.R., and A.O. provided key inputs and tools. T.P., R.E. and R. J.
593 wrote the manuscript with input from all the authors.

594 **Competing interests**

595 The authors declare no competing interests.

596 **Availability of data and material**

597 The data generated during this study will be available within few days in the
598 Gene Expression Omnibus repository (GEO).

599 **Financial support**

600 This work was funded by the Swiss National Science Foundation through the
601 National Center of Competence in Research (NCCR) 'RNA & Disease' and Sinergia

602 programme (173738), by the Medical Faculty of the University and University
603 Hospital of Bern, by the Helmut Horten Stiftung, by the Scherbarth Foundation, and
604 the Swiss Cancer Research Foundation (4534-08-2018). RJ was also supported by
605 Science Foundation Ireland through the Future Research Leaders programme
606 (18/FRL/6194). IM and ESW were funded by Tumor Microenvironment (TME)
607 CoBRE Grant (NIH/NIGMS P20GM121322), West Virginia IDeA-CTR (NIH/NIGMS
608 2U54 GM104942-03), National Science Foundation (NSF/1920920, NSF/1761792),
609 West Virginia IDeA Network of Biomedical Research Excellence (WV-INBRE)
610 (NIH/NIGMS P20GM103434). AA was supported by the Spanish Ministry of Science,
611 Innovation and Universities (FPU17/00067) and by an EMBO Short-Term
612 Fellowship. PPM's laboratory is supported by the Spanish Association Against
613 Cancer (LAB-AECC-2018) and by the Ministry of Economy of Spain (SAF2015-
614 67919-R).

615 **Abbreviations**

616 ASO: Antisense oligonucleotide
617 CRISPR: Clustered regularly interspaced short palindromic repeats
618 CHiLL: Cancer Hallmark in Lung LncRNA
619 DECKO: Dual excision CRISPR knock-out
620 FDR: False Discovery Rate
621 FISH: Fluorescence in situ hybridisation
622 FPKM: Fragments per kilobase of exon per million mapped fragments
623 KEGG: Kyoto Encyclopedia of Genes and Genomes
624 KO: Knock-Out
625 KRAS: Kirsten rat sarcoma virus
626 LNA: Locked Nucleic Acid
627 LncRNA: Long non-coding RNA
628 MOI: Multiplicity of infection
629 NGS: Next-Generation Sequencing
630 NSCLC: Non small cell lung cancer
631 ORF: Open Reading Frame
632 PCR: Polymerase Chain Reaction
633 pgRNA: paired guide RNAs
634 qPCR: quantitative Polymerase Chain Reaction

- 635 RNA-seq: RNA-sequencing
- 636 RRA: Robust Rank Aggregation
- 637 TCGA: The Cancer Genome Atlas
- 638 TFBS: Transcription factor binding sites
- 639 TPM: Transcripts per million
- 640 TPP: Target prioritisation pipeline
- 641 TSS: Transcriptional Start Site

642 **Methods**

643

644 **Cell lines and culture**

645 HEK293T, A549, H460, H441, CCD-16Lu cell lines were a kind gift by the groups
646 of Adrian Ochsenbein and Renwang Peng (University Hospital of Bern). MRC-5 cells
647 were provided by the group of Ronald Dijkmanthe (Institute of Virology and
648 Immunology, University of Bern). HBEC3-KT bronchial epithelial human cells were
649 purchased from the American Type Culture Collection (ATCC; <http://www.atcc.org>).
650 All the cell lines were authenticated using Short Tandem Repeat (STR) profiling
651 (Microsynth Cell Line Typing) and tested negative for mycoplasma contamination.

652 A549 and HEK293T cells were maintained DMEM, MRC-5 in EMEM, NCI-H460,
653 H441, and CCD-16Lu in RPMI-1640 medium, all supplemented with 10% Fetal Bovine
654 Serum, 1% L-Glutamine, 1% Penicillin-Streptomycin. HBEC3-KT were maintained in
655 Airway Epithelial Cell Basal Medium (ATCC®, cat. no. PCS-300-030) supplemented
656 with Bronchial Epithelial Cell Growth Kit (ATCC®, cat. no. PCS-300-040).

657 All cells were passaged every 2–3 days and maintained at 37°C in a humid
658 atmosphere with 5% CO₂.

659

660 **Lentiviral infection and stable cell line production**

661 The plasmids used in this paper are listed in File S4. Lentivirus production was
662 carried out by co-transfecting HEK293T cells with 12.5 µg of Cas9 plasmid with
663 blasticidin resistance (Addgene, cat. no. 52962), 7.5 µg psPAX2 plasmid and 4 µg the
664 packaging pVsVg plasmids, using Lipofectamine2000. 24h before the transfection,
665 2.5e6 HEK293T cells were seeded in a 10 cm dish coated with Poly-L-Lysine (Sigma,
666 cat. no. P4832) (diluted 1:5 in 1X PBS). The supernatant containing viral particles was
667 harvested 24h, 48h and 72h after transfection. Viral particles were then concentrated
668 100-fold by adding 1 volume of cold PEG-it Virus Precipitation Solution (BioCat, cat.
669 no. LV810A-1-SBI) to every four volumes of supernatant. After 12h at 4°C, the
670 supernatant/PEG-it mixture was centrifuged at 1,500 × g for 30min at 4°C,
671 resuspended in 1X PBS, and stored at -80°C till use.

672 For the generation of stable Cas9-expressing cell lines, A549 and H460 were
673 incubated for 24h with culture medium containing concentrated viral preparation

674 carrying pLentiCas9-T2A-BFP and 8 µg/ml Polybrene. Infected cells were selected for
675 at least five days with blasticidin (8 µg/mL) and then were FACS-sorted two times, so
676 as to have at least 60% BFP-positive cells.

677

678 **Design and cloning of DECKO plasmids and lentiviral production**

679 For the design and cloning of DECKO plasmids, we used our previously-
680 described protocol(23,95) (<http://crispeta.crg.eu/>).

681 To produce lentivirus carrying the pDECKO plasmid, we followed the same
682 protocol. After infection with pDECKO plasmid-carrying viruses, cells were selected
683 with puromycin (µg/mL) for at least three days.

684

685 **Library design**

686 We downloaded GTF-format annotations from the following sources: i)
687 GENCODE annotation release 19 (GRCh37) from gencodegenes.org; ii)
688 BIGTranscriptome annotation(28) from <http://big.hanyang.ac.kr/CASOL/>; i; iii)
689 FANTOM CAT(10). We also generated a novel transcriptome assembly of A549 RNA-
690 seq(30,31) using StringTie(96), version 1.3.

691 All lncRNAs were filtered thus: First, those with transcription start sites (TSS)
692 <2kb from any protein-coding gene exon were removed. Second, expression was
693 calculated with RSEM v1.3 (97), and transcripts with FPKM <0.1 were removed.
694 Remaining TSS within 300 bp were clustered into a single TSS. TSS were intersected
695 with ENCODE evidence source specific to A549 cells: CAGE, DNase I hypersensitivity
696 sites and ChromHMM marks: Active TSS, Flanking TSS, Promoter Downstream TSS,
697 Flanking TSS Downstream, Genic enhancer1, Genic enhancer2, Active Enhancer 1,
698 Active Enhancer 2, Weak Enhancer and Bivalent-Poised TSS (30,31,98). Candidates
699 were prioritized by the number of evidence sources.

700 We designed neutral control pgRNAs in genomic regions not expected to affect
701 cell phenotype. We retrieved 10 regions in the AAVS1 gene loci from the publication
702 of Zhu and colleagues (99). To this set we added a set of 65 randomly selected
703 intergenic regions (>10 kb distant from nearest gene annotation) and 25 intronic
704 regions (for introns >5 kb in length). Moreover, 53 positive (promoting cell growth) and
705 50 negative (opposing cell growth) protein-coding gene (PCG) controls, with known

706 roles promoting/opposing cancer cell growth and cisplatin resistance were added.
707 These were manually selected from literature and retrieved from the paper of Zhu and
708 colleagues(99). The complete list of genes contained in the library is available in File
709 S1.

710 10 unique pgRNAs were generated for each candidate region with
711 CRISPEtta(95) using the following parameters: -eu 0 -ed 0 -du 1000 -dd 1000 -si 0.2
712 -t 0,0,0,x,x -v 0.4 -c DECKO. For the candidates where <10 pgRNAs could be
713 identified, the parameters were subsequently loosened until 10 were reached: in the
714 second round one off-target with 3 mismatches was allowed; in the third round the
715 designs region was repeatedly increased in size (summary in File S5, Table 2).

716 The final library design comprised 12,000 unique sequences of length 165/166
717 bp, with overhangs compatible with cloning into the pDECKO plasmid(23,95). The
718 median distance between the pgRNAs is shown in Figure S1d.

719

720 **Library cloning**

721 Library was synthesized as single stranded oligonucleotides by Twist Bioscience
722 (USA), and upon arrival resuspended in nuclease-free low Tris-EDTA (TE) buffer (10
723 mM Tris-HCl, pH 8.0 and 0.1 mM EDTA) to a final concentration of 10 ng/μl. This was
724 PCR amplified using the Oligo-Fw: 5'-ATCTTGAAAGGACGAAA-3' and Oligo-
725 Rev: GCCTTATTAACTTGCTATTTC (PCR mix listed in File S5, Table 3) with the
726 following conditions: 95°C x 1min; 10 cycles of (95°C x 1 min, 53°C x 20 sec, 72°C x
727 1 min); 72°C x 10 min. The amplification product was purified using the QIAquick PCR
728 Purification Kit (Qiagen, cat. no. 28104) according to the manufacturer's instructions.
729 The correct amplicon size was checked on a 2% agarose gel at 100V for 40 min.

730 The steps of cloning follow the low-throughput protocol described in (100). In the
731 first step, the pDECKO_mCherry plasmid was digested following the conditions listed
732 in File S5, Table 4. The amplified library was inserted into the digested plasmid, using
733 Gibson Assembly mix (obtained from 'Biomolecular Screening & Protein
734 Technologies' Unit at CRG, Barcelona) at 50 °C for 1 h (200ng of pDECKO_mCherry
735 plasmid, 20ng amplified library, H2O up to 10 μl, 10 μl of Gibson mix 10 μl). 1 μl of the
736 Gibson reaction was delivered to 25 μl of electrocompetent EnduraTM cells (Lucigen,
737 cat. no. 60242-2) using Gene Pulser®/MicroPulser™ Electroporation Cuvettes, 0.1 cm
738 gap (Biorad, cat. no. 16520891). The library coverage of 66.7X was estimated by

739 counting the number of obtained bacterial colonies divided by the total number of
740 different sequences in the designed library (12,000). The intermediate plasmid
741 obtained in this step contains the pgRNA variable sequences, but still lacks the
742 constant part of the first sgRNA and the H1 promoter (Figure S1b)(23).

743 In the second step of cloning, the intermediate plasmid was digested by Bmsbl
744 enzyme (ThermoFisher, cat. no ER0451). After purification, the constant insert was
745 assembled by ligation, by using PAGE purified and 5' phosphorylated long oligos (File
746 S5, Table 5), as explained in(100). Afterwards, 5 μ l of the ligation product was
747 transformed and used for the electroporation of electrocompetent EnduraTM cells as
748 described above. Clones were tested by colony PCR and by Sanger sequencing using
749 primer sequences found in File S5, Table 6. The PCR conditions are listed in File S5,
750 Table 7. The overall library quality was evaluated by NGS sequencing. Briefly, the
751 plasmid containing the pgRNAs was amplified by PCR (primers listed in File S5, Table
752 8), purified using Agencourt AMPure XP beads (Beckman Coulter, cat. no. A63880),
753 according to the manufacturer's protocol. The purified product was sequenced by
754 Illumina at a depth of 20M PE125 reads. The reads were aligned to the pgRNAs library
755 and the read distribution of each pgRNA was determined using the Ineq package in R
756 (version 3.5.3) to calculate both the Lorenz-curve and Gini-coefficient (Figure S1c).

757

758 **Lentiviral titer calculation and lentiviral infection**

759 To achieve the desired multiplicity of infection (MOI) of 0.3–0.4, a titration
760 experiment in A549 and H460 cells was performed. 2e6 cells were plated in each well
761 of a 12-well plate and supplemented with 8 μ g/ml polybrene. Each well was treated
762 with virus ranging from 2.5 and 50 μ l and transduced via spin-infection as previously
763 described (101). After centrifugation, the media was replaced with complete fresh
764 media without polybrene and incubated overnight. The following day, cells were
765 counted and each well was split in two equal aliquots, of which one was treated with
766 2 μ g/ml puromycin. After 72 h, the MOI was calculated by dividing the number of
767 surviving cells in the puromycin well, by the number in the puromycin-free well. The
768 MOI of 0.3 was used for all screening experiments. For large-scale screens, 120M
769 cells were seeded in 12-well plates with a density of 2M per well for spin-infection. The
770 following day, cells were pooled together and fresh puromycin-containing (2 μ g/ml)

771 medium was added. Puromycin selection was maintained for six days until phenotypic
772 screens began.

773 **CRISPR screens**

774 One week after infection (Timepoint 0 or T0), cells were counted and the
775 reference sample was collected (T0, 16M cells corresponding to a library coverage
776 >1,000x). For all screens, cells were cultured in 150 mm culture-treated dishes and
777 passaged every 2-3 days.

778 *Proliferation.* Drop-out screens: at T0 16M of cells were plated and passaged so
779 as to maintain a coverage >1,000X (defined as the number of cells divided by the
780 number of unique library sequences). Cells were harvested at 14 and 21 days for
781 gDNA extraction. CFSE screens: At T7, 16M cells were seeded and starved for 24 h
782 with media lacking FBS. Then cells were stained using CellTrace™ CFSE Cell
783 Proliferation Kit (ThermoFisher, cat. no. C34570) following the manufacturer's
784 instructions. One aliquot of stained cells was immediately analyzed by flow cytometry,
785 while the rest were plated with normal media. Five days later (T5), cells were sorted
786 into two populations: 20% brightest (slow-growing) and 20% least bright (fast-
787 growing). The two populations were plated separately and, five days later (T10)
788 subjected to another round of staining and sorting.

789 *Cisplatin screen.* Optimal cisplatin working concentrations were established via
790 dose response (Figure S2d) and cell doubling time (Figure S2e). In the dose response,
791 3,000 A549 and H460 cells were plated in 96-well plates and treated with a range of
792 cisplatin concentrations. After 72 h, CellTiter-Glo 2.0 (Promega, cat. no. G9242) was
793 added to the media (1:1), and luminescence was recorded. For the cell doubling time,
794 1M cells were plated in 10 cm plates. Different cisplatin concentrations were added at
795 indicated concentrations, and living cells counted every 2-3 days up to 14 days.
796 Cisplatin survival screen: 48M and 96M cells were plated at T0 and treated with 6.5
797 μ M and 25 μ M of Cisplatin for A549 cells and 2 μ M and 10 μ M for H460 cells,
798 corresponding to IC30 and IC80, respectively. Cell pellets were collected after 14 and
799 21 days. The death screen was carried out as follows: 144M cells were seeded and
800 treated with cisplatin at 2 μ M and 1 μ M (IC20) for A549 and H460, respectively (Figure
801 S2d). Every 24 h, for five days, floating (dead) cells were collected and pooled together
802 for gDNA extraction.

803 *Migration screen.* To test the optimal conditions, the following set-up experiment
804 was performed. 0.5 M A549 cells/well were seeded in 5 Boyden chambers (Corning,
805 PC Membrane, 8.0 μ m, 6.5mm, cat. no. 3422-COR). Each migration assay was
806 stopped at a different timepoint (ranging from 5 h up to 48 h; Figure S2g). 48 h was
807 selected as timepoint for the following experiment. At T0 infected cells (~16M) were
808 divided and seeded in the upper part of 32 transwell inserts (0.5 M cells/transwell).
809 The upper part of transwell inserts was filled with media lacking FBS, the lower part
810 with media containing 10% FBS. After 48 h cells in the upper part of the chamber
811 (impaired migration) and lower part (accelerated migration) (Figure 2c) were
812 trypsinized and plated separately for 48 h, after this time, cells were counted and
813 collected for gDNA extraction. Control cells that did not undergo the migration assay
814 were harvested at the same time as a reference population.

815

816 **Genomic DNA preparation and sequencing**

817 Genomic DNA (gDNA) was isolated using the Blood & Cell Culture DNA Midi
818 (5e6–3e07 cells) (Qiagen, cat. no. 13343), or Mini (<5e6 cells) Kits (Qiagen, cat. no.
819 13323) as per the manufacturer's instructions. The gDNA concentrations were
820 quantified by Nanodrop.

821 For PCR amplification, gDNA was divided into 100 μ l reactions such that each
822 well had at most 4 μ g of gDNA. Each well consisted of 66.5 μ l gDNA plus water, 23.5 μ l
823 PCR master mix (20 μ l Buffer 5X, 2 μ l dNTPs 10 μ M, 1.5 μ l GoTaq; Promega, cat. no.
824 M3001), and 5 μ l of Forward universal primer, and 5 μ l of a uniquely barcoded P7
825 primer (both stock at 10 μ M concentration). PCR cycling conditions: an initial 2 min at
826 95 °C; followed by 30 s at 95 °C, 40 s at 60 °C, 1 min at 72 °C, for 22 cycles; and a final
827 5 min extension at 72 °C. NGS primers are listed in File S5, Table 9 and Table 10.
828 PCR products were purified with Agencourt AMPure XP SPRI beads according to
829 manufacturer's instructions (Beckman Coulter, cat. no. A63880). Purified PCR
830 products were quantified using the Qubit™ dsDNA HS Assay Kit (ThermoFisher, cat.
831 no. Q32854). Samples were sequenced on a HiSeq2000 (Illumina) with paired-end
832 150 bp reads at coverage of 40M reads/sample.

833

834 **Screen hit identification and prioritisation**

835 The raw sequencing reads from individual screens were analyzed by using
836 CASPR(102). After the mapping step, the obtained counts per million (cpm) for each
837 pgRNA were filtered to remove sequences with $3 > \text{cpm} > 666$. Low scoring guides were
838 removed by GuideScan(103), and a batch effect correction was applied using
839 MageckFlute(104). After all the corrections, the table count was provided to CASPR
840 to calculate log2-Fold Change and FDR corrected P-values at a target level.

841 To integrate multiple screens an integrative target prioritisation pipeline (TPP)
842 was designed, applying two different approaches in parallel: the Robust Rank
843 Aggregation (RRA)(105) to compute a ranking based on the effect size (CASPR
844 log2FC) across screens; and an empirical adaptation of Brown's method (EBM)(106)
845 to combine the significance values (CASPR P-value) of each candidate across
846 screens. The RRA-scores were converted to exact P-values using the rho-score
847 correction from the same R package. Subsequently, the harmonic mean P-value
848 (HMP)(107) was calculated using the two significance scores from RRA and EBM.
849 These P-values were corrected for multiple hypothesis testing using the Benjamini &
850 Hochberg method, and a cutoff of FDR<0.2 was used to define hits. The code is
851 available at <https://github.com/RescueGum/TargetPP>.

852 Enrichment scores and nominal P-values (GSEA simulation, n=10,000) of
853 positive and neutral control genes were used as indication for the quality of the ranking,
854 as well as fraction of detected genes previously linked to lung cancer(11). Positive and
855 neutral control genes were also used as “true positives/false negatives” and “false
856 positives/true negatives” respectively to calculate ROC curves and associated
857 statistical metrics.

858

859 **Public RNA-sequencing data**

860 101 KRAS⁺ LUAD RNA-seq samples were downloaded from TCGA
861 (gdc.cancer.gov), applying the following filters: Adenocarcinoma - not treated - KRAS
862 mutated, and the expression of target genes was estimated using HTSeq(108).
863 Another independent cohort of LUAD RNA-seq ex-vivo data, containing 87 tumour and
864 77 adjacent normal tissue samples, was obtained from the TANRIC(60,109).
865

866 **PCR amplification from genomic DNA**

867 gDNA was extracted with GeneJET Genomic DNA Purification Kit
868 (ThermoFisher, cat. no. K0702) from pDECKO-transduced A549-Cas9-expressing
869 cells. The PCR was done with primers flanking the deleted region (File S5, Table 11)
870 as shown in Figure 1F, using the Phusion™ High-Fidelity DNA Polymerase (2 U/μl)
871 (ThermoFisher, cat. no. F-530S). The product was run on a 1% agarose gel.
872

873 **Competition assay**

874 A549 cells were infected with DECKO lentiviruses expressing fluorescent
875 proteins. Viruses expressing control pgRNAs targeting AAVS1 also expressed GFP
876 protein (pgRNAs-AAV1-GFP+), while the pgRNAs targeting candidate lncRNAs
877 expressed mCherry. After infection, and seven days of puromycin (2 μg/ml) selection,
878 GFP and mCherry cells were mixed 1:1 in a six-well plate (150,000 cells). Cell counts
879 were analyzed by LSR II SORP instrument (BD Biosciences) and analyzed by FlowJo
880 software (Treestar).
881

882 **Patient-derived xenograft organoids**

883 The KRAS⁺ patient-derived organoid BE874 was derived in the following way.
884 Small pieces (~1 – 2 cm³) of lung cancer tissue (provided by the Institute of Pathology,
885 University of Bern) were taken from the surgically resected lung cancer specimen with
886 patients' informed consent. Parts of the sample (pieces of around 5 mm) were
887 separated and implanted subcutaneously into the flanks of 6 weeks old NOD.Cg-
888 PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (purchased from Charles River Laboratories)
889 for cancer engraftment(110). After successful engraftment, tumour bearing mice were
890 euthanized and tumours were resected. Single cells were isolated through mechanical
891 and enzymatic tissue disruption for generation of BE874 organoids. Genotyping of
892 BE874 organoids was performed at the Institute of Pathology, University of Bern, using
893 KRAS targeted sanger sequencing. KRAS c.34G>T (p.Gly12Cys) mutation was
894 detected in both BE874 organoids and the corresponding primary cancer.

895 NSG mice were housed under specific pathogen-free conditions in isolated
896 ventilated cages on a regular 12-hour/12-hour cycle of light and dark. Mice were fed
897 ad libitum, and were regularly monitored for pathogens. Mouse experiments were

898 licensed by the Canton of Bern and were performed in compliance with Swiss Federal
899 legislation.

900

901 **Antisense oligonucleotides**

902 Locked nucleic acid ASOs were designed using the Qiagen custom LNA
903 oligonucleotides designer (www.qiagen.com). Per each target, we designed from 3 to
904 5 different ASOs. The day of the transfection, 300,000 cells were counted and plated
905 on a 6-well plate. ASOs were transfected into the cells still in suspension, using
906 Lipofectamine3000 (ThermoFisher, cat. no. L3000015) with final 25 nM in 2 ml media
907 for A549, H460, NCI-H441, and MRC5-CV1 and 10 nM in 2 ml for HBEC3-KT and
908 CCD-16LU, following the manufacturer's instructions.

909 For cocktail experiments the final concentration of the ASOs mix was kept at 25
910 nM. The media was refreshed 24h post transfection and cells were harvested to check
911 the efficiency of gene knockdown or sub-cultured for cell viability experiments. The
912 ASOs target sequences are listed in File S5, Table 1. We checked ASOs penetration
913 in cells by means of the 5'-FAM-labeled control ASO A provided by Qiagen (Figure
914 S5f).

915

916 **2D cell viability assay**

917 Cell viability assay was carried out in 2D cell lines by using CellTiter-Glo 2.0
918 (Promega, cat. no. G9242). The assays were performed according to the
919 corresponding manufacturer's protocol. 24h after the transfection, A549, H460, NCI-
920 H441, H1975, H157, WVU-Ma-0005A, H820 and H1650 cells were harvested, counted
921 and 3,500 cells/well were seeded in triplicate in 96 well plates. For Mrc5-SV1, HBEC3-
922 KT and CCD-16LU 3,000, 3,500, and 1,000 cells/well were seeded, respectively. The
923 number of viable cells was estimated after 24, 48, 72, 96 and/or 144h. The day of the
924 measurement, a mix of 1:1 media and CellTiter-Glo was added to the plates and the
925 luminescence was recorded with Tecan Infinite® 200 Pro. Student's *t* test was used
926 to evaluate significance (P<0.05).

927

928 **3D cell viability assay**

929 NCI-H441 cells were detached, counted, and 200,000 cells were plated in 24 well
930 plates. The ASO-Lipofectamine3000 mix was delivered to the cells in suspension as
931 described above. After 24 hours, the cells are detached, counted and seeded onto 96-
932 well Black/Clear Round Bottom Ultra-Low Attachment Surface Spheroid Microplate
933 (Corning, cat. no. 4520) in 20 μ l domes of Matrigel® Matrix GFR, LDEV-free (Corning,
934 cat. no. 356231) and RPMI-1640 growth medium (1:1) with a density of 20,000 cells
935 per dome. Matrigel containing the cells was allowed to solidify for an hour in the
936 incubator at 37 °C before adding DMEM-F12 (Sigma, cat. no. D6421) media on top of
937 the wells (40 μ l and 80 μ l for the wells intended to the first and second timepoint,
938 respectively. The spheroids were allowed to grow in the incubator at 37°C in a humid
939 atmosphere with 5% CO₂. After 4 h the number of viable cells in the 3D cell culture
940 was recorded as time point 0 (T0), CellTiter-Glo® 3D Cell Viability Assay (Promega,
941 cat. no. G9682) was added to the wells, following the manufacturer's instructions and
942 the contents transferred into a Corning® 96-well Flat Clear Bottom White (Corning,
943 cat. no. 3610) for the reading with the Tecan Infinite® 200 Pro. After one week the
944 measurement was repeated.

945 BE874 organoids were generated and expanded using a special lung cancer
946 organoid (LCO) medium (File S5, Table 12).

947 BE874 organoids were transfected with ASOs as described for the NCI-H441. 24
948 h after transfection the cells were detached, counted and seeded onto Corning® 96-
949 well Flat Clear Bottom White (Corning, cat. no. 3610) in 20 μ l domes of LCO growth
950 medium and Matrigel (1:1) with a density of 20,000 cells per dome. The Matrigel-
951 containing PDX-organoids was allowed to solidify for an hour in the incubator at 37 °C
952 before adding 80 μ l LCO growth media on top. The organoids were allowed to grow in
953 the incubator at 37°C in a humid atmosphere with 5% CO₂. After 24h, 100 μ l of
954 CellTiter-Glo® 3D Cell Viability Assay (Promega cat. no. G9682) were added to the
955 wells intended for the T0 and the luminescence was recorded with Tecan Infinite® 200
956 Pro. After three days the 80 μ l of LCO media were added to the wells to keep them
957 from drying out. After one week, the media was aspirated and replenished with fresh
958 80 μ l, before proceeding with the measurement with CellTiter-Glo® 3D.

959

960 **Apoptosis assay**

961 Annexin V and viability dye were used to detect early apoptotic and dead cells,
962 respectively. 24 h after the transfection, cells were counted and 150,000 cells were re-
963 suspend in 100 μ l of 1X PBS. The viability dye (ThermoFisher, cat. no. 35111) was
964 added (1:5,000) in 100 μ l of 1X PBS and cells incubated for 30 minutes at 4°C. Cells
965 were then washed once with 1X PBS and re-suspend in 100 μ l of Annexin buffer PH
966 7, added PE Annexin (1:200; ThermoFisher, cat. no. L34960) and incubated 30
967 minutes at 4°C. After a wash with 1X PBS, cells were resuspended in 300 μ l of Annexin
968 buffer and underwent the flow analysis by using the LSR Fortessa instrument (BD
969 Biosciences). Unstained cells were used as control.

970

971 **Cell cycle assay**

972 Cells were transfected with ASOs using Lipofectamine3000 according to the
973 manufacturer's instructions. 24 h after, cells were harvested and fixed with 100 μ l of
974 BD Cytofix/Cytoperm Fixation (BD Biosciences, cat. no. 51-2090KZ) for 30 minutes at
975 room temperature. The cells were then washed with 200 μ l of 1X BD Perm/Wash (BD
976 Biosciences, cat. no. 51-2091KE) and resuspended in 100 μ l of 1X PBS. The K-i67
977 Antibody (ThermoFisher cat. no. 12-5698-82) was added (1:100) and incubated for 30
978 minutes at 4°C. Wash again with 1X BD perm/wash and stain with DAPI (Roche, cat.
979 no. 10236276001) was added (1:10,000) in 100 μ l of 1X PBS. Incubate 5' at room
980 temperature and wash with 1X PBS. Acquire the data with the Fortessa flow
981 cytometer. Data analysis performed using FlowJo, and the different cell cycle phases
982 were determined according to the Dean-Jett Fox (DJF) model.

983

984 **Low-throughput migration assay**

985 Migration assay was performed as previously described(111). 24 h after ASOs
986 transfection, A549 cells were counted and seeded in the upper part of Boyden
987 chambers with the density of 35,000 cells/transwell. The upper part of transwell inserts
988 was filled with media without FBS, while the lower part with media supplemented with
989 10% FBS to induce the directional movement of cells. After 24 h the cells were washed
990 three times with 1X PBS and stained using 300 μ l of crystal violet 1% for 30 minutes.
991 Three washes with 1X PBS followed. The cells in the upper part of the membrane
992 were removed by using a cotton swab. The chambers are left to dry overnight. The

993 day after, the crystal violet was solubilized in 1X PBS containing 1% SDS and the
994 absorbance at 595 nm was recorded by using the Tecan Infinite® 200 Pro.

995 **RNA isolation and qRT-PCR**

996 To purify total RNAs from cultured cells, a Quick-RNA™ kit from ZymoResearch
997 was used according to the manufacturer's protocol. RNAs were reverse transcribed to
998 produce cDNAs by using the GoScript™ Reverse Transcription System Kit (Promega,
999 cat. no. A5003). The cDNAs were then used for qPCR to evaluate gene expression,
1000 using the GoTaq® qPCR Master Mix kit (Promega, cat. no. A6002). The expression
1001 of HPRT1 was used as an internal control for normalization. All the primers are listed
1002 in File S5, Table 13.

1003

1004 **RNA-sequencing and analysis**

1005 24 h after ASO transfection, A549 and H460 cells were harvested and the total
1006 RNA was extracted as explained before and samples' quality was checked at
1007 Bioanalyzer. Libraries were prepared using the NEBNext® Ultra RNA Library Prep Kit
1008 and sequenced in paired-end 150 format to a depth of 30M reads/sample.

1009 Transcript quantification was performed using Kallisto v0.46.0(112) against
1010 GENCODE v36(29). Gene level expression was inferred by aggregating the counts of
1011 the individual isoforms. Differential expression analysis was performed using Sleuth
1012 v0.30(113). Genes with a q-value <0.2 were considered significant. For CHiLL1, the
1013 genes that were significantly up- and down-regulated with two different ASO were
1014 selected. For CHiLL2, we selected the pool of common genes deregulated in A549
1015 and H460.

1016 Visualization of the results was produced in R 4.0.0 (R: The R Project for
1017 Statistical Computing, n.d.) using ggplot2 package v3.3.2 (Ggplot2 - Elegant Graphics
1018 for Data Analysis | Hadley Wickham | Springer, n.d.). Functional enrichment analysis
1019 was performed through the enrichR package v2.1(114).

1020

1021 **Fluorescent In-Situ Hybridization (FISH) and cell fractionation**

1022 FISH was performed on A549 cell lines, according to the Stellaris protocol
1023 (<https://www.biosearchtech.com/support/resources/stellaris-protocols>). For detection

1024 of CHiLL 1&2 at a single-cell level, pools of 25 and 48 FISH probes respectively were
1025 designed using the Stellaris probe designer software (www.biosearchtech.com). Cells
1026 were grown on round coverslip slides (ThermoFisher, 18mm), fixed in 3.7%
1027 formaldehyde and permeabilized in ethanol 70% overnight. Hybridization was carried
1028 out overnight at 37 °C in hybridization buffer from Stellaris. Cells were counterstained
1029 with DAPI and visualized using the DeltaVision microscope.

1030 Nuclear and cytoplasmic fractionation was carried out in A549 cells as described
1031 previously(71). The pipeline used to analyse the data was adapted from CellProfiler
1032 (115), and it is named 'SpeckleCounting'.
1033

1034 **ezTracks visualisation of RNA elements**

1035 Genomic tracks were retrieved for the hg38 human genome assembly from their
1036 original publications: predicted neo-functionalised fragments of transposable
1037 elements, also known as RIDLs (repeat insertion domains of lncRNA) (71), RNA
1038 structures conserved in vertebrates (CRS) (116), and ENCODE candidate cis-
1039 regulatory elements(117). In addition, the following tracks were downloaded from the
1040 UCSC Genome Browser(118): repeat-masked CpG islands, phastCons conserved
1041 elements in 7, 20, 30 and 100-way multiple alignments(119), and repeat families from
1042 the RepeatMasker annotation (Smit, AFA, Hubley, R & Green, P. RepeatMasker
1043 Open-4.0. 2013-2015; <http://www.repeatmasker.org>).

1044 The comprehensive gene annotations for CHiLL1 (ENSG00000253616) and
1045 CHiLL2 (ENSG00000272808 and ENSG00000232386) loci were extracted from the
1046 GENCODE v36 GTF file(29). Then, all the exons corresponding to each locus were
1047 collapsed into a meta-transcript and output as separate GTF files using BEDTools
1048 merge(120). Third, configuration files for each locus were prepared to draw the meta-
1049 transcript annotation alongside the genomic tracks using the program ezTracks(82).
1050

1051 **Copy number analysis of pan-hallmark CRISPR candidates**

1052 The copy number status of A549 and in H460 cells was retrieved from the CCLE
1053 (<https://portals.broadinstitute.org/ccle/data>). Then, we intersected the hg19
1054 coordinates of the pgRNA with the hg19 coordinates of the CCLE copy number data.

1055 TCGA-LUAD copy number data were downloaded as 'log2 ratio segment means'
1056 using the R package TCGAbiolinks and converted to hg19 coordinates using liftOver.
1057 The values of each candidate were averaged across all TCGA-LUAD samples.

1058 The pan-cancer recurrently amplified or deleted genomic regions were
1059 downloaded from the ICGC Data Portal
1060 (https://dcc.icgc.org/releases/PCAWG/consensus_cnv/GISTIC_analysis/all_lesions.cnv_95.rmcnv.pt_170207.txt.gz). Then, we searched for overlaps between each
1061 candidate and the recurrent copy number altered regions ("Wide Peak Limits"). The
1062 differences in the proportions of amplified, deleted, or non-copy number altered hits
1063 versus non-hits were tested using Fisher's exact tests.

1065 **References**

- 1066 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
1067 cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
1068 worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* [Internet]. Wiley;
1069 2018 [cited 2020 Sep 14];68:394–424. Available from:
1070 <https://acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21492>
- 1071 2. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, et al. Non-
1072 small-cell lung cancer [Internet]. *Nat. Rev. Dis. Prim.* Nature Publishing Group;
1073 2015 [cited 2021 Jun 7]. Available from:
1074 <https://pubmed.ncbi.nlm.nih.gov/27188576/>
- 1075 3. Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M. The improbable
1076 targeted therapy: KRAS as an emerging target in non-small cell lung cancer
1077 (NSCLC). *Cell Reports Med.* Cell Press; 2021;2:100186.
- 1078 4. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in
1079 NSCLC [Internet]. *Nat. Rev. Cancer.* Nature Publishing Group; 2017 [cited
1080 2021 Apr 27]. page 637–58. Available from:
1081 <https://pubmed.ncbi.nlm.nih.gov/29068003/>
- 1082 5. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al.
1083 KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors.
1084 <https://doi.org/10.1056/NEJMoa1917239> [Internet]. Massachusetts Medical
1085 Society; 2020 [cited 2021 Sep 8];383:1207–17. Available from:
1086 <https://www.nejm.org/doi/full/10.1056/NEJMoa1917239>
- 1087 6. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical
1088 KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. *Nat* 2019
1089 5757781 [Internet]. Nature Publishing Group; 2019 [cited 2021 Sep
1090 8];575:217–23. Available from: <https://www.nature.com/articles/s41586-019-1694-1>
- 1092 7. Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R.
1093 Towards a complete map of the human long non-coding RNA transcriptome.
1094 *Nat Rev Genet* [Internet]. 2018 [cited 2018 Jun 25];19:535–48. Available from:
1095 <http://www.ncbi.nlm.nih.gov/pubmed/29795125>
- 1096 8. Ma L, Cao J, Liu L, Du Q, Li Z, Zou D, et al. LncBook: a curated

1097 knowledgebase of human long non-coding RNAs. *Nucleic Acids Res* [Internet].
1098 Oxford University Press; 2019 [cited 2018 Oct 25];47:D128–34. Available from:
1099 <https://academic.oup.com/nar/article/47/D1/D128/5133669>

1100 9. Volders PJ, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P, et
1101 al. Lncipedia 5: Towards a reference set of human long non-coding rnas.
1102 *Nucleic Acids Res* [Internet]. Oxford University Press; 2019 [cited 2021 Jun
1103 7];47:D135–9. Available from: <https://lncipedia.org>

1104 10. Hon C-C, Ramiłowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J, et
1105 al. An atlas of human long non-coding RNAs with accurate 5' ends. *Nature*
1106 [Internet]. Nature Research; 2017 [cited 2017 Oct 30];543:199–204. Available
1107 from: <http://www.nature.com/doifinder/10.1038/nature21374>

1108 11. Vancura A, Lanzós A, Bosch-Guiteras N, Esteban MT, Gutierrez AH, Haefliger
1109 S, et al. Cancer LncRNA Census 2 (CLC2): an enhanced resource reveals
1110 clinical features of cancer lncRNAs. *NAR Cancer* [Internet]. Oxford Academic;
1111 2021 [cited 2021 Apr 28];3. Available from:
1112 <https://academic.oup.com/narcancer/article/doi/10.1093/narcan/zcab013/6225859>

1114 12. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding
1115 RNAs and its biological functions [Internet]. *Nat. Rev. Mol. Cell Biol.* *Nature*
1116 Research; 2021 [cited 2021 Jun 7]. page 96–118. Available from:
1117 <https://pubmed.ncbi.nlm.nih.gov/33353982/>

1118 13. Montes M, Lubas M, Arendrup FS, Mentz B, Rohatgi N, Tumas S, et al. The
1119 long non-coding RNA MIR31HG regulates the senescence associated
1120 secretory phenotype. *Nat Commun* [Internet]. Nature Research; 2021 [cited
1121 2021 Jun 8];12. Available from: <https://pubmed.ncbi.nlm.nih.gov/33911076/>

1122 14. Lee B, Sahoo A, Marchica J, Holzhauser E, Chen X, Li JL, et al. The long
1123 noncoding RNA SPRIGHTLY acts as an intranuclear organizing hub for pre-
1124 mRNA molecules. *Sci Adv* [Internet]. American Association for the
1125 Advancement of Science; 2017 [cited 2021 Jun 8];3. Available from:
1126 <https://pubmed.ncbi.nlm.nih.gov/28508063/>

1127 15. John Liu S, Malatesta M, Lien B V., Saha P, Thombare SS, Hong SJ, et al.
1128 CRISPRi-based radiation modifier screen identifies long non-coding RNA

1129 therapeutic targets in glioma. *Genome Biol* [Internet]. BioMed Central Ltd.;
1130 2020 [cited 2021 Jun 7];21. Available from:
1131 <https://pubmed.ncbi.nlm.nih.gov/32234056/>

1132 16. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al.
1133 Melanoma addiction to the long non-coding RNA SAMMSON. *Nature*.
1134 England; 2016;531:518–22.

1135 17. Esposito R, Bosch N, Lanzós A, Polidori T, Pulido-Quetglas C, Johnson R.
1136 Hacking the cancer genome: Profiling therapeutically-actionable long
1137 noncoding RNAs using CRISPR-Cas9 screening. *Cancer Cell*. 2019;15:545–
1138 57.

1139 18. Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, et al. CRISPRi-
1140 based genome-scale identification of functional long non-coding RNA loci in
1141 human cells HHS Public Access lncRNA knockdown can perturb complex
1142 transcriptional networks in a cell type-specific manner. These data underscore
1143 the functional importance. *Science* (80-). 2017;06:1–19.

1144 19. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham
1145 MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional
1146 activation screening. *Nat Protoc*. England; 2017;12:828–63.

1147 20. Bester AC, Lee JD, Chavez A, Lee Y-RR, Nachmani D, Vora S, et al. An
1148 Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in
1149 Drug Resistance. *Cell* [Internet]. United States: Elsevier Inc.; 2018;173:649–
1150 664.e20. Available from: <https://doi.org/10.1016/j.cell.2018.03.052>

1151 21. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical
1152 development success rates for investigational drugs. *Nat Biotechnol* 2014 321
1153 [Internet]. Nature Publishing Group; 2014 [cited 2021 Sep 14];32:40–51.
1154 Available from: <https://www.nature.com/articles/nbt.2786>

1155 22. MacLeod AR, Crooke ST. RNA Therapeutics in Oncology: Advances,
1156 Challenges, and Future Directions. *J Clin Pharmacol* [Internet]. Blackwell
1157 Publishing Inc.; 2017 [cited 2021 Jun 8];57:S43–59. Available from:
1158 <https://accp1.onlinelibrary.wiley.com/doi/full/10.1002/jcph.957>

1159 23. Aparicio-Prat E, Arnan C, Sala I, Bosch N, Guigó R, Johnson R. DECKO:
1160 Single-oligo, dual-CRISPR deletion of genomic elements including long non-

1161 coding RNAs. *BMC Genomics* [Internet]. BioMed Central; 2015 [cited 2018
1162 Mar 28];16:846. Available from:
1163 <http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12864-015-2086-z>

1164 24. Furlan G, Gutierrez Hernandez N, Huret C, Galupa R, van Bemmel JG, Romito
1165 A, et al. The Ftx Noncoding Locus Controls X Chromosome Inactivation
1166 Independently of Its RNA Products. *Mol Cell*. Cell Press; 2018;70:462-472.e8.

1167 25. George MR, Duan Q, Nagle A, Kathiriya IS, Huang Y, Rao K, et al. Minimal in
1168 vivo requirements for developmentally regulated cardiac long intergenic non-
1169 coding RNAs. *Dev* [Internet]. Company of Biologists Ltd; 2019 [cited 2021 May
1170 3];146. Available from: <https://pubmed.ncbi.nlm.nih.gov/31784461/>

1171 26. Perry RBT, Hezroni H, Goldrich MJ, Ulitsky I. Regulation of Neuroregeneration
1172 by Long Noncoding RNAs. *Mol Cell*. Cell Press; 2018;72:553-567.e5.

1173 27. Lee HJ, Gopalappa R, Sunwoo H, Choi SW, Ramakrishna S, Lee JT, et al. En
1174 bloc and segmental deletions of human XIST reveal X chromosome
1175 inactivation-involving RNA elements. *Nucleic Acids Res* [Internet]. Oxford
1176 University Press; 2019 [cited 2021 Apr 28];47:3875–87. Available from:
1177 <https://academic.oup.com/nar/article/47/8/3875/5345153>

1178 28. You B-H, Yoon S-H, Nam J-W. High-confidence coding and noncoding
1179 transcriptome maps. *Genome Res* [Internet]. 2017 [cited 2018 Jan 3];27:1050–
1180 62. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/28396519>

1181 29. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. *Nucleic
1182 Acids Res* [Internet]. Oxford University Press; 2019 [cited 2021 Jun
1183 7];47:D766–73. Available from: <https://pubmed.ncbi.nlm.nih.gov/30357393/>

1184 30. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The
1185 Encyclopedia of DNA elements (ENCODE): Data portal update. *Nucleic Acids
1186 Res* [Internet]. Oxford University Press; 2018 [cited 2021 Apr 28];46:D794–
1187 801. Available from: <https://pubmed.ncbi.nlm.nih.gov/29126249/>

1188 31. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An
1189 integrated encyclopedia of DNA elements in the human genome. *Nature*
1190 [Internet]. Nature Publishing Group; 2012 [cited 2016 Dec 20];489:57–74.
1191 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22955616>

1193 32. Imkeller K, Ambrosi G, Boutros M, Huber W. Modelling asymmetric count
1194 ratios in CRISPR screens to decrease experiment size and improve phenotype
1195 detection. bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2019 [cited 2020
1196 Sep 23];699348. Available from: <https://doi.org/10.1101/699348>

1197 33. Brower M, Carney DN, Oie HK, Gazdar AF, Minna JD. Growth of Cell Lines
1198 and Clinical Specimens of Human Non-Small Cell Lung Cancer in a Serum-
1199 free Defined Medium. *Cancer Res.* 1986;46.

1200 34. DJ G, SA A, GJ T, P A, JH K, H D, et al. In vitro cultivation of human tumors:
1201 Establishment of cell lines derived from a series of solid tumors. *J Natl Cancer
1202 Inst* [Internet]. *J Natl Cancer Inst*; 1973 [cited 2020 Sep 10];51:1417–23.
1203 Available from: <https://pubmed.ncbi.nlm.nih.gov/4357758/>

1204 35. Stojic L, Lun ATL, Mangei J, Mascalchi P, Quarantotti V, Barr AR, et al.
1205 Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in
1206 transcriptional analysis. *Nucleic Acids Res* [Internet]. 2018 [cited 2018 Jul
1207 29];46:5950–66. Available from:
1208 <http://www.ncbi.nlm.nih.gov/pubmed/29860520>

1209 36. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, et al. Complete
1210 sequencing and characterization of 21,243 full-length human cDNAs. *Nat
1211 Genet* [Internet]. *Nat Genet*; 2004 [cited 2021 Jun 7];36:40–5. Available from:
1212 <https://pubmed.ncbi.nlm.nih.gov/14702039/>

1213 37. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation [Internet].
1214 *Cell*. *Cell*; 2011 [cited 2020 Sep 20]. page 646–74. Available from:
1215 <https://pubmed.ncbi.nlm.nih.gov/21376230/>

1216 38. Bester AC, Lee JD, Chavez A, Church GM, Clohessy JG, Paolo P, et al. An
1217 Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in
1218 Drug Resistance In Brief A CRISPR activation screen identifies both coding
1219 and noncoding pathways involved in resistance to chemotherapy. Identification
1220 of Drug Resistance Coding and lncRNA Networks Dual Coding & lncRNA
1221 CRISPRa Screening In Vitro and In Vivo Validation Bester et al Article An
1222 Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in
1223 Drug Resistance. *Cell* [Internet]. 2018 [cited 2021 Apr 28];173:649-652.e20.
1224 Available from: <https://doi.org/10.1016/j.cell.2018.03.052>

1225 39. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C,
1226 et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9
1227 complex. *Nature* [Internet]. 2015 [cited 2017 May 11];517:583–8. Available
1228 from: <http://www.nature.com/articles/nature14136>

1229 40. Zhu S, Li W, Liu J, Chen C-H, Liao Q, Xu P, et al. Genome-scale deletion
1230 screening of human long non-coding RNAs using a paired-guide RNA
1231 CRISPR–Cas9 library. *Nat Biotechnol* [Internet]. Nature Research; 2016 [cited
1232 2016 Dec 21];34:1279–86. Available from:
1233 <http://www.nature.com/doifinder/10.1038/nbt.3715>

1234 41. Beermann J, Kirste D, Iwanov K, Lu D, Kleemäß F, Kumarswamy R, et al. A
1235 large shRNA library approach identifies lncRNA Ntep as an essential regulator
1236 of cell proliferation. *Cell Death Differ* [Internet]. England; 2017 [cited 2018 Mar
1237 28];25:307–18. Available from:
1238 <https://www.nature.com/articles/cdd2017158.pdf?origin=ppub>

1239 42. Zhang M, Lin B, Liu Y, Huang T, Chen M, Lian D, et al. LINC00324 affects
1240 non-small cell lung cancer cell proliferation and invasion through regulation of
1241 the miR-139-5p/IGF1R axis. *Mol Cell Biochem* [Internet]. Springer; 2020 [cited
1242 2021 Jun 7];473:193–202. Available from:
1243 <https://pubmed.ncbi.nlm.nih.gov/32734536/>

1244 43. Zeng Z, Zhao G, Rao C, Hua G, Yang M, Miao X, et al. Knockdown of lncRNA
1245 ZFAS1-suppressed non-small cell lung cancer progression via targeting the
1246 miR-150-5p/HMGA2 signaling. *J Cell Biochem* [Internet]. Wiley-Liss Inc.; 2020
1247 [cited 2021 Jun 7];121:3814–24. Available from:
1248 <https://pubmed.ncbi.nlm.nih.gov/31692094/>

1249 44. Zheng S, Zhang X, Wang X, Li J. MIR31HG promotes cell proliferation and
1250 invasion by activating the Wnt/β-catenin signaling pathway in non-small cell
1251 lung cancer. *Oncol Lett* [Internet]. Spandidos Publications; 2019 [cited 2021
1252 Jun 7];17:221–9. Available from: [/pmc/articles/PMC6313218/](https://pmc/articles/PMC6313218/)

1253 45. Lv J, Qiu M, Xia W, Liu C, Xu Y, Wang J, et al. High expression of long non-
1254 coding RNA SBF2-AS1 promotes proliferation in non-small cell lung cancer. *J*
1255 *Exp Clin Cancer Res* [Internet]. BioMed Central Ltd.; 2016 [cited 2021 Jun
1256 7];35:1–13. Available from:

1257 https://jeccr.biomedcentral.com/articles/10.1186/s13046-016-0352-9

1258 46. Wang H, Feng L, Zheng Y, Li W, Liu L, Xie S, et al. Linc00680 promotes the
1259 progression of non-small cell lung cancer and functions as a sponge of mir-
1260 410-3p to enhance hmgb1 expression. *Onco Targets Ther* [Internet]. Dove
1261 Medical Press Ltd; 2020 [cited 2021 Jun 7];13:8183–96. Available from:
1262 <https://pubmed.ncbi.nlm.nih.gov/32904350/>

1263 47. Sun CC, Li SJ, Li G, Hua RX, Zhou XH, Li DJ. Long Intergenic Noncoding
1264 RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding
1265 to EZH2 and Suppressing p57. *Mol Ther - Nucleic Acids*. Elsevier Inc;
1266 2016;5:e385.

1267 48. Peng W, Feng J. Long noncoding RNA LUNAR1 associates with cell
1268 proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma.
1269 *Biomed Pharmacother* [Internet]. Elsevier Masson SAS; 2016 [cited 2021 Jun
1270 7];77:65–71. Available from: <https://pubmed.ncbi.nlm.nih.gov/26796267/>

1271 49. Cui C, Zhai D, Cai L, Duan Q, Xie L, Yu J. Long noncoding rna heih promotes
1272 colorectal cancer tumorigenesis via counteracting mir-939-mediated
1273 transcriptional repression of Bcl-XL. *Cancer Res Treat* [Internet]. Korean
1274 Cancer Association; 2018 [cited 2021 Jun 7];50:992–1008. Available from:
1275 <https://pubmed.ncbi.nlm.nih.gov/29081216/>

1276 50. Liu Y, Cao Z, Wang Y, Guo Y, Xu P, Yuan P, et al. Genome-wide screening for
1277 functional long noncoding RNAs in human cells by Cas9 targeting of splice
1278 sites. *Nat Biotechnol*. 2018;36.

1279 51. Hanna N, Johnson D, Temin S, Baker S, Brahmer J, Ellis PM, et al. Systemic
1280 therapy for stage IV non–small-cell lung cancer: American Society of clinical
1281 oncology clinical practice guideline update. *J Clin Oncol* [Internet]. American
1282 Society of Clinical Oncology; 2017 [cited 2020 Sep 10];35:3484–515. Available
1283 from: <https://pubmed.ncbi.nlm.nih.gov/28806116/>

1284 52. Lu QC, Rui HH, Guo ZL, Xie W, Shan S, Ren T. LncRNA-DANCR contributes
1285 to lung adenocarcinoma progression by sponging miR-496 to modulate mTOR
1286 expression. *J Cell Mol Med* [Internet]. Blackwell Publishing Inc.; 2018 [cited
1287 2021 Jun 7];22:1527–37. Available from:
1288 <https://pubmed.ncbi.nlm.nih.gov/29266795/>

1289 53. Li S, Wu D, Jia H, Zhang Z. Long non-coding RNA LRRC75A-AS1 facilitates
1290 triple negative breast cancer cell proliferation and invasion via functioning as a
1291 ceRNA to modulate BAALC. *Cell Death Dis* [Internet]. Springer Nature; 2020
1292 [cited 2021 Jun 7];11. Available from:
1293 <https://pubmed.ncbi.nlm.nih.gov/32811810/>

1294 54. Han L, Li Z, Jiang Y, Jiang Z, Tang L. SNHG29 regulates miR-223-
1295 3p/CTNND1 axis to promote glioblastoma progression via Wnt/β-catenin
1296 signaling pathway. *Cancer Cell Int* [Internet]. BioMed Central Ltd.; 2019 [cited
1297 2021 Jun 7];19. Available from: <https://pubmed.ncbi.nlm.nih.gov/31889897/>

1298 55. Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation,
1299 invasion and EMT progression of prostate cancer via the miR-30a-
1300 5p/RAB11A/WNT/β-catenin pathway. *Cancer Cell Int* [Internet]. BioMed
1301 Central Ltd; 2020 [cited 2021 Jun 7];20:571. Available from:
1302 <http://www.ncbi.nlm.nih.gov/pubmed/33292272>

1303 56. Lai F, Damle SS, Ling KK, Rigo F. Directed RNase H Cleavage of Nascent
1304 Transcripts Causes Transcription Termination. *Mol Cell* [Internet]. Cell Press;
1305 2020 [cited 2021 Jun 7];77:1032-1043.e4. Available from:
1306 <https://pubmed.ncbi.nlm.nih.gov/31924447/>

1307 57. CRISPRi-based genome-scale identification of functional long noncoding RNA
1308 loci in human cells. *Science* (80-). 355:aah7111.

1309 58. Marín-Béjar O, Mas AM, González J, Martínez D, Athie A, Morales X, et al.
1310 The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly
1311 conserved sequence element. *Genome Biol* [Internet]. 2017 [cited 2018 Jan
1312 16];18:202. Available from:
1313 <http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1331-y>

1314 59. Huarte M. The emerging role of lncRNAs in cancer. *Nat Med* [Internet]. 2015
1315 [cited 2016 Jun 29];21:1253–61. Available from:
1316 <http://www.nature.com/doifinder/10.1038/nm.3981>

1317 60. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional
1318 landscape and mutational profile of lung adenocarcinoma. *Genome Res*
1319 [Internet]. *Genome Res*; 2012 [cited 2021 Jun 7];22:2109–19. Available from:
1320 <https://pubmed.ncbi.nlm.nih.gov/22975805/>

1321 61. Blokhin I, Khorkova O, Hsiao J, Wahlestedt C. Developments in lncRNA drug
1322 discovery: where are we heading? *Expert Opin Drug Discov* [Internet]. 2018
1323 [cited 2018 Oct 25];13:837–49. Available from:
1324 <http://www.ncbi.nlm.nih.gov/pubmed/30078338>

1325 62. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, et al. Antisense
1326 Oligonucleotides: An Emerging Area in Drug Discovery and Development. *J
1327 Clin Med* [Internet]. Multidisciplinary Digital Publishing Institute (MDPI); 2020
1328 [cited 2020 Nov 15];9:2004. Available from:
1329 [/pmc/articles/PMC7355792/?report=abstract](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355792/?report=abstract)

1330 63. Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA
1331 therapeutics: From concept to clinical reality [Internet]. *Genome Med.* BioMed
1332 Central Ltd.; 2017 [cited 2020 Sep 14]. page 1–16. Available from:
1333 <https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-017-0450-0>

1335 64. Matsui M, Corey DR. Non-coding RNAs as drug targets [Internet]. *Nat. Rev.
1336 Drug Discov.* Nature Publishing Group; 2017 [cited 2020 Sep 25]. page 167–
1337 79. Available from: <https://pubmed.ncbi.nlm.nih.gov/27444227/>

1338 65. Wang Y, Guo S, Li D, Tang Y, Li L, Su L, et al. YIPF2 promotes
1339 chemotherapeutic agent-mediated apoptosis via enhancing TNFRSF10B
1340 recycling to plasma membrane in non-small cell lung cancer cells. *Cell Death
1341 Dis* [Internet]. Springer Nature; 2020 [cited 2020 Sep 20];11. Available from:
1342 <https://pubmed.ncbi.nlm.nih.gov/32303681/>

1343 66. Ruan Z, Xu Z, Li Z, Lv Y. Integral analyses of survival-related long non-coding
1344 RNA MIR210HG and its prognostic role in colon cancer. *Oncol Lett* [Internet].
1345 Spandidos Publications; 2019 [cited 2020 Sep 12];18:1107–16. Available from:
1346 <http://starbase.sysu.edu.cn>.

1347 67. Ma M, Zhang Y, Weng M, Hu Y, Xuan Y, Hu YR, et al. lncRNA GCAWKR
1348 Promotes Gastric Cancer Development by Scaffolding the Chromatin
1349 Modification Factors WDR5 and KAT2A. *Mol Ther* [Internet]. Cell Press; 2018
1350 [cited 2021 Jun 7];26:2658–68. Available from: [/pmc/articles/PMC6225079/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225079/)

1351 68. Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H.
1352 Modeling human carcinomas: Physiologically relevant 3D models to improve

1353 anti-cancer drug development [Internet]. *Adv. Drug Deliv. Rev.* Elsevier; 2014
1354 [cited 2020 Sep 24]. page 50–67. Available from:
1355 <https://pubmed.ncbi.nlm.nih.gov/25453261/>

1356 69. Han K, Pierce SE, Li A, Spees K, Anderson GR, Seoane JA, et al. CRISPR
1357 screens in cancer spheroids identify 3D growth-specific vulnerabilities. *Nature*
1358 [Internet]. Nature Research; 2020 [cited 2020 Aug 4];580:136–41. Available
1359 from: <https://pubmed.ncbi.nlm.nih.gov/32238925/>

1360 70. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living
1361 Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. *Cell*
1362 [Internet]. Cell Press; 2018 [cited 2021 Jun 7];172:373-386.e10. Available
1363 from: <https://doi.org/10.1016/j.cell.2017.11.010>

1364 71. Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R. Ancient
1365 exapted transposable elements promote nuclear enrichment of human long
1366 noncoding RNAs. *Genome Res* [Internet]. 2019 [cited 2019 Feb 6];29:208–22.
1367 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/30587508>

1368 72. Ramiowski JA, Yip CW, Agrawal S, Chang JC, Ciani Y, Kulakovskiy I V., et al.
1369 Functional annotation of human long noncoding RNAs via molecular
1370 phenotyping. *Genome Res* [Internet]. NLM (Medline); 2020 [cited 2020 Sep
1371 22];30:1060–72. Available from:
1372 <http://www.genome.org/cgi/doi/10.1101/153516>.
1373 <http://creativecommons.org/licenses/by/4.0/>;
1373 www.genome.org

1374 73. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al.
1375 Defining functional DNA elements in the human genome [Internet]. *Proc. Natl.*
1376 *Acad. Sci. U. S. A. National Academy of Sciences*; 2014 [cited 2021 Apr 30].
1377 page 6131–8. Available from: www.ncbi.nlm.nih.gov/geo

1378 74. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New
1379 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res*
1380 [Internet]. Oxford University Press; 2017 [cited 2021 Jun 7];45:D353–61.
1381 Available from: <https://pubmed.ncbi.nlm.nih.gov/27899662/>

1382 75. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
1383 et al. Gene set enrichment analysis: A knowledge-based approach for
1384 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*

1385 [Internet]. National Academy of Sciences; 2005 [cited 2021 Apr
1386 30];102:15545–50. Available from:
1387 www.pnas.orgcgidoi10.1073pnas.0506580102

1388 76. Apostolopoulou K, Pateras IS, Evangelou K, Tsantoulis PK, Lontos M, Kittas
1389 C, et al. Gene amplification is a relatively frequent event leading to ZBTB7A
1390 (Pokemon) overexpression in non-small cell lung cancer. *J Pathol* [Internet]. *J*
1391 *Pathol*; 2007 [cited 2021 Jun 7];213:294–302. Available from:
1392 <https://pubmed.ncbi.nlm.nih.gov/17907153/>

1393 77. Zhijun Z, Jingkang H. MicroRNA-520e suppresses non-small-cell lung cancer
1394 cell growth by targeting Zbtb7a-mediated Wnt signaling pathway. *Biochem*
1395 *Biophys Res Commun* [Internet]. Elsevier B.V.; 2017 [cited 2021 Jun
1396 7];486:49–56. Available from: <https://pubmed.ncbi.nlm.nih.gov/28242196/>

1397 78. Berkers CR, Maddocks ODK, Cheung EC, Mor I, Vousden KH. Metabolic
1398 regulation by p53 family members [Internet]. *Cell Metab.* *Cell Metab*; 2013
1399 [cited 2021 Apr 30]. page 617–33. Available from:
1400 <https://pubmed.ncbi.nlm.nih.gov/23954639/>

1401 79. Maeda T, Hobbs RH, Morghoub T, Guernah I, Zelent A, Cordon-Cardo C, et
1402 al. Role of the proto-oncogene Pokemon in cellular transformation and ARF
1403 repression. *Nature* [Internet]. *Nature*; 2005 [cited 2021 Apr 30];433:278–85.
1404 Available from: <https://pubmed.ncbi.nlm.nih.gov/15662416/>

1405 80. Zhang YQ, Xiao CX, Lin BY, Shi Y, Liu YP, Liu JJ, et al. Silencing of Pokemon
1406 Enhances Caspase-Dependent Apoptosis via Fas- and Mitochondria-Mediated
1407 Pathways in Hepatocellular Carcinoma Cells. *PLoS One* [Internet]. *PLoS One*;
1408 2013 [cited 2021 Jun 7];8. Available from:
1409 <https://pubmed.ncbi.nlm.nih.gov/23874836/>

1410 81. Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A,
1411 Sgourou A. The multi-faceted functioning portrait of LRF/ZBTB7A [Internet].
1412 *Hum. Genomics.* BioMed Central Ltd.; 2019 [cited 2021 Jun 7]. page 1–14.
1413 Available from: <https://doi.org/10.1186/s40246-019-0252-0>

1414 82. Guillen-Ramirez HA, Johnson R. ezTracks v0.1.0. 2021 [cited 2021 Jun 7];
1415 Available from: <https://zenodo.org/record/4749431>

1416 83. Doench JG. Am I ready for CRISPR? A user's guide to genetic screens. *Nat*

1417 Rev Genet [Internet]. Nature Publishing Group; 2017 [cited 2018 Feb
1418 20];19:67–80. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/29199283>

1419 84. Agrotis A, Ketteler R. A new age in functional genomics using CRISPR/Cas9 in
1420 arrayed library screening. Front Genet [Internet]. 2015 [cited 2018 Mar
1421 28];6:300. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26442115>

1422 85. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al.
1423 Melanoma addiction to the long non-coding RNA SAMMSON. Nature.
1424 England; 2016;531:518–22.

1425 86. Hosono Y, Niknafs YS, Prensner JR, Feng FY, Zhou W, Chinnaiyan AM.
1426 Oncogenic Role of THOR , a Conserved Cancer / Testis Non-coding RNA. Cell
1427 [Internet]. Elsevier Inc.; 2017;171:1559-1561.e20. Available from:
1428 <https://doi.org/10.1016/j.cell.2017.11.040>

1429 87. Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et
1430 al. Genome-scale activation screen identifies a lncRNA locus regulating a
1431 gene neighbourhood. Nature [Internet]. England: Nature Publishing Group;
1432 2017 [cited 2018 Mar 28];548:343–6. Available from:
1433 <http://www.nature.com/doifinder/10.1038/nature23451>

1434 88. Ramiłowski JA, Yip CW, Agrawal S, Chang J-C, Ciani Y, Kulakovskiy I V., et
1435 al. Functional Annotation of Human Long Non-Coding RNAs via Molecular
1436 Phenotyping. bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2019 [cited
1437 2020 Jun 5];700864. Available from: <http://dx.doi.org/10.1101/700864%0A>

1438 89. Gagnon KT, Corey DR. Guidelines for Experiments Using Antisense
1439 Oligonucleotides and Double-Stranded RNAs. Nucleic Acid Ther [Internet].
1440 Mary Ann Liebert Inc.; 2019 [cited 2021 May 3];29:116–22. Available from:
1441 [/pmc/articles/PMC6555184/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555184/)

1442 90. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et
1443 al. Combination therapy in combating cancer [Internet]. Oncotarget. Impact
1444 Journals LLC; 2017 [cited 2021 Jun 7]. page 38022–43. Available from:
1445 [/pmc/articles/PMC5514969/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514969/)

1446 91. Ritter N, Ali T, Kopitchinski N, Schuster P, Beisaw A, Hendrix DA, et al. The
1447 lncRNA Locus Handsdown Regulates Cardiac Gene Programs and Is
1448 Essential for Early Mouse Development. Dev Cell [Internet]. Cell Press; 2019

1449 [cited 2021 Jun 7];50:644-657.e8. Available from:
1450 <https://pubmed.ncbi.nlm.nih.gov/31422919/>

1451 92. Lavalou P, Eckert H, Damy L, Constanty F, Majello S, Bitetti A, et al.
1452 Strategies for Genetic Inactivation of Long Noncoding RNAs in Zebrafish. *RNA*
1453 [Internet]. 2019 [cited 2019 May 15];rna.069484.118. Available from:
1454 <http://www.ncbi.nlm.nih.gov/pubmed/31043511>

1455 93. Lagarde J, Uszczynska-Ratajczak B, Carbonell S, Pérez-Lluch S, Abad A,
1456 Davis C, et al. High-throughput annotation of full-length long noncoding RNAs
1457 with capture long-read sequencing. *Nat Genet* [Internet]. 2017 [cited 2018 Jan
1458 3];49:1731–40. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/29106417>

1459 94. Han K, Pierce SE, Li A, Spees K, Anderson GR, Seoane JA, et al. CRISPR
1460 screens in cancer spheroids identify 3D growth-specific vulnerabilities. *Nature*
1461 [Internet]. Nature Research; 2020 [cited 2020 Sep 15];580:136–41. Available
1462 from: <https://doi.org/10.1038/s41586-020-2099-x>

1463 95. Pulido-Quetglas C, Aparicio-Prat E, Arnan C, Polidori T, Hermoso T, Palumbo
1464 E, et al. Scalable Design of Paired CRISPR Guide RNAs for Genomic
1465 Deletion. *PLOS Comput Biol* [Internet]. Public Library of Science (PLoS);
1466 2017;13:e1005341. Available from:
1467 <http://dx.doi.org/10.1371/journal.pcbi.1005341>

1468 96. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL.
1469 StringTie enables improved reconstruction of a transcriptome from RNA-seq
1470 reads. *Nat Biotechnol* [Internet]. 2015 [cited 2018 Jan 3];33:290–5. Available
1471 from: <http://www.ncbi.nlm.nih.gov/pubmed/25690850>

1472 97. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
1473 with or without a reference genome. *BMC Bioinformatics* [Internet]. BioMed
1474 Central; 2011 [cited 2016 Dec 23];12:323. Available from:
1475 <http://www.ncbi.nlm.nih.gov/pubmed/21816040>

1476 98. Ernst J, Kellis M. Discovery and characterization of chromatin states for
1477 systematic annotation of the human genome. *Nat Biotechnol* [Internet]. *Nat*
1478 *Biotechnol*; 2010 [cited 2021 Jun 7];28:817–25. Available from:
1479 <https://pubmed.ncbi.nlm.nih.gov/20657582/>

1480 99. Zhu S, Li W, Liu J, Chen C-HH, Liao Q, Xu P, et al. Genome-scale deletion

1481 screening of human long non-coding RNAs using a paired-guide RNA
1482 CRISPR-Cas9 library. *Nat Biotechnol* [Internet]. Nature Research; 2016 [cited
1483 2016 Nov 4];34:1279–86. Available from:
1484 <http://www.nature.com/doifinder/10.1038/nbt.3715>

1485 100. DECKO: single-oligo, dual-CRISPR deletion of genomic elements including
1486 long non-coding RNAs. *BMC Genomics*. 16:846.

1487 101. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries
1488 for CRISPR screening. *Nat Methods* [Internet]. United States: NIH Public
1489 Access; 2014 [cited 2018 Mar 28];11:783–4. Available from:
1490 <http://www.nature.com/articles/nmeth.3047>

1491 102. Bergadà-Pijuan J, Pulido-Quetglas C, Vancura A, Johnson R. CASPR, an
1492 analysis pipeline for single and paired guide RNA CRISPR screens, reveals
1493 optimal target selection for long non-coding RNAs. *Bioinformatics*.
1494 2020;36:1673–80.

1495 103. Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, et al.
1496 GuideScan software for improved single and paired CRISPR guide RNA
1497 design. *Nat Biotechnol* [Internet]. Nature Publishing Group; 2017 [cited 2021
1498 Jun 7];35:347–9. Available from: <https://pubmed.ncbi.nlm.nih.gov/28263296/>

1499 104. Wang B, Wang M, Zhang W, Xiao T, Chen CH, Wu A, et al. Integrative
1500 analysis of pooled CRISPR genetic screens using MAGeCKFlute. *Nat Protoc*
1501 [Internet]. Nature Publishing Group; 2019 [cited 2021 Jun 7];14:756–80.
1502 Available from: <https://pubmed.ncbi.nlm.nih.gov/30710114/>

1503 105. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list
1504 integration and meta-analysis. *Bioinformatics* [Internet]. Oxford Academic;
1505 2012 [cited 2021 Jun 7];28:573–80. Available from: <http://cran.r-project.org/>.

1506 106. Poole W, Gibbs DL, Shmulevich I, Bernard B, Knijnenburg TA. Combining
1507 dependent P-values with an empirical adaptation of Brown's method.
1508 *Bioinformatics* [Internet]. Oxford University Press; 2016 [cited 2021 Jun 7].
1509 page i430–6. Available from: <https://pubmed.ncbi.nlm.nih.gov/27587659/>

1510 107. Wilson DJ. The harmonic mean p-value for combining dependent tests. *Proc*
1511 *Natl Acad Sci U S A* [Internet]. National Academy of Sciences; 2019 [cited
1512 2021 Jun 7];116:1195–200. Available from:

1513 www.pnas.org/cgi/doi/10.1073/pnas.1814092116

1514 108. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-
1515 throughput sequencing data. *Bioinformatics* [Internet]. Oxford University Press;
1516 2015 [cited 2021 Jun 7];31:166–9. Available from:
1517 <https://pubmed.ncbi.nlm.nih.gov/25260700/>

1518 109. Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, et al. TANRIC: An Interactive
1519 Open Platform to Explore the Function of lncRNAs in Cancer. *Cancer Res*
1520 [Internet]. American Association for Cancer Research; 2015 [cited 2016 Jun
1521 28];75:3728–37. Available from:
1522 <http://www.ncbi.nlm.nih.gov/pubmed/26208906>

1523 110. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human
1524 Lymphoid and Myeloid Cell Development in NOD/LtSz- scid IL2R γ null Mice
1525 Engrafted with Mobilized Human Hemopoietic Stem Cells . *J Immunol*
1526 [Internet]. The American Association of Immunologists; 2005 [cited 2021 Jun
1527 7];174:6477–89. Available from:
1528 <http://www.jimmunol.org/content/174/10/6477>
1529 <http://www.jimmunol.org/content/174/10/6477.full#ref-list-1>

1530 111. Esposito R, Esposito D, Pallante P, Fusco A, Ciccodicola A, Costa V.
1531 Oncogenic properties of the antisense lncRNA COMET in BRAF- and RET-
1532 driven papillary thyroid carcinomas. *Cancer Res* [Internet]. American
1533 Association for Cancer Research Inc.; 2019 [cited 2021 Jun 8];79:2124–35.
1534 Available from: <http://cancerres.aacrjournals.org/>

1535 112. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
1536 seq quantification. *Nat Biotechnol* [Internet]. Nature Publishing Group; 2016
1537 [cited 2021 Jun 7];34:525–7. Available from:
1538 <https://pubmed.ncbi.nlm.nih.gov/27043002/>

1539 113. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of
1540 RNA-seq incorporating quantification uncertainty. *Nat Methods* [Internet].
1541 Nature Publishing Group; 2017 [cited 2021 Jun 7];14:687–90. Available from:
1542 <https://pubmed.ncbi.nlm.nih.gov/28581496/>

1543 114. Jawaid W. Provides an R Interface to “Enrichr” [R package enrichR version
1544 3.0]. Comprehensive R Archive Network (CRAN); 2021 [cited 2021 Jun 7];

1545 Available from: <https://cran.r-project.org/package=enrichR>

1546 115. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW,
1547 et al. CellProfiler 3.0: Next-generation image processing for biology. PLOS Biol
1548 [Internet]. Public Library of Science; 2018 [cited 2021 Sep 9];16:e2005970.
1549 Available from:
1550 <https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005970>

1551 116. Seemann SE, Mirza AH, Hansen C, Bang-Bertelsen CH, Garde C,
1552 Christensen-Dalsgaard M, et al. The identification and functional annotation of
1553 RNA structures conserved in vertebrates. Genome Res [Internet]. 2017 [cited
1554 2017 Sep 2];27:1371–83. Available from:
1555 <http://www.ncbi.nlm.nih.gov/pubmed/28487280>

1556 117. Abascal F, Acosta R, Addleman NJ, Adrian J, Afzal V, Aken B, et al. Expanded
1557 encyclopaedias of DNA elements in the human and mouse genomes. Nature
1558 [Internet]. Nature Research; 2020 [cited 2021 Jun 7];583:699–710. Available
1559 from: <https://doi.org/10.1038/s41586-020-2493-4>

1560 118. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The
1561 human genome browser at UCSC. Genome Res [Internet]. Cold Spring Harbor
1562 Laboratory Press; 2002 [cited 2017 Apr 20];12:996–1006. Available from:
1563 <http://www.ncbi.nlm.nih.gov/pubmed/12045153>

1564 119. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al.
1565 Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
1566 genomes. Genome Res [Internet]. Cold Spring Harbor Laboratory; 2005 [cited
1567 2017 Aug 25];15:1034–50. Available from:
1568 <http://dx.doi.org/10.1101/gr.3715005>

1569 120. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
1570 genomic features. Bioinformatics [Internet]. Oxford University Press (OUP);
1571 2010 [cited 2017 Aug 25];26:841–2. Available from:
1572 <http://www.ncbi.nlm.nih.gov/pubmed/20110278>

1573

1574 **Supplementary information titles and legends**

1575 **Supplementary File 1.** Composition of CRISPR-del “libDECKO-NSCLC1” library.

1576 This file contains, per each target, the sequence of the pgRNAs and the target gene.

1577 **Supplementary File 2.** Single screen results of all 10 screens using the CASPR

1578 pipeline.

1579 **Supplementary File 3.** Results from the target prioritisation pipeline (TPP) (integration

1580 of all 10 screens (pan-hallmark), or split by phenotype (pro=proliferation; cis=cisplatin;

1581 mig=migration).

1582 **Supplementary File 4.** List of plasmids used in this project. Related to the methods

1583 **Supplementary File 5.** Tables 1-13. Sequence of oligonucleotides for, PCR qPCR,

1584 ASO, media composition and PCR condition.

1585

1586 **Supplementary figures**

1587 **Supplementary Fig. 1.** libDECKO-NSCLC1 library creation.

1588 **Supplementary Fig. 2.** Assessing screen accuracy.

1589 **Supplementary Fig. 3.** TPP quality assessment and CNV analysis. R

1590 **Supplementary Fig. 4.** Tier 2 candidates and cancer hallmarks. R

1591 **Supplementary Fig. 5.** Further information on CHiLL1 and CHiLL2.

1592 **Supplementary Fig. 6.** CHiLL1&2 perturbation impacts disease transcriptome.