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Abstract

Several computational and statistical methods have been
developed to analyse data generated through the 3C-based
methods, especially the Hi-C. Most of existing methods do
not account for dependency in Hi-C data. Here, we present
ZipHiC, a novel statistical method to explore Hi-C data fo-
cusing on detection of enriched contacts. ZipHiC imple-
ments a Bayesian method based on a hidden Markov random
field (HMRF) model and the Approximate Bayesian Com-
putation (ABC) to detect interactions in two-dimensional
space based on Hi-C contact frequency matrix. ZipHiC uses
data on the sources of biases related to contact frequency
matrix, allows borrowing information from neighbours us-
ing the Potts model and improves computation speed by
using the ABC model. In addition to outperforming exist-
ing tools on both simulated and real data, our model also
provides insights into different sources of biases that affects
Hi-C data. We show that some datasets display higher bi-
ases from DNA accessibility or Transposable Elements con-
tent. Furthermore, approximately half of the detected sig-
nificant interactions connect promoters with other parts of
the genome indicating a functional biological role. Finally,
we found that the micro-C datasets display higher biases
from DNA accessibility compared to a similar Hi-C experi-
ment, but this can be corrected by ZipHiC.

1 Introduction

Distant regulatory elements and their target genes are of-
ten separated by large genomic distances. In order for the
regulatory element to activate a target gene, they need to
come in 3D proximity (Bonev and Cavalli, 2016; Hua et al.,
2021). This indicates that the spatial organisation of the
genome is intimately related to genome regulation and bet-
ter understanding the 3D organisation of the genome is
important to disentangle the contribution of different fac-
tors to gene regulation. One of the recently developed
genome-wide proximity ligation assay is the Hi-C technique
(Lieberman-Aiden et al., 2009), which is a chromosome con-

formation capture (3C)-based method. Hi-C is able to de-
tect interactions (short-range and long-range) within and
between chromosomes at high resolutions. While in mam-
malian system, resolutions of 5 Kb have been achieved
(Rao et al., 2014), in smaller genomes, such as Drosophila,
sub-kilobase pair resolutions were obtained from Hi-C ex-
periments (Eagen et al., 2017; Cubenãs-Potts et al., 2017;
Chathoth and Zabet, 2019). In addition, datasets generated
by Hi-C are highly reproducible between replicates and often
highly conserved between tissues (Ghavi-Helm et al., 2014).
Recent technological advances have pushed the resolution
of conformation capture methods to base pair resolution in
mammalian systems (Hua et al., 2021).

The data generated by a Hi-C experiment can be
represented as a matrix of contact frequencies between
pairs of fragments along the genome. These matrices are
associated with biases ((Yaffe and Tanay, 2011)), such as
the restriction fragment length, GC-content of trimmed
ligation junctions and mappability, but many additional
factors may also contribute to the contact counts. Cor-
recting for these biases is important and there has been
several methods being proposed to take them into account
(Yaffe and Tanay, 2011; Imakaev et al., 2012; Hu et al.,
2013; Servant et al., 2015).

The Iterative correction and eigenvector decomposi-
tion(ICE) has been the most widely used method to account
for biases associated with the Hi-C data, due to its simplic-
ity and being parameter-free by assuming equal visibility
across all fragments (Imakaev et al., 2012). This equal visi-
bility assumption considers that all fragments can be probed
by the method with same probability. However this assump-
tion is not always true, because the visibility of areas could
vary. In addition, ICE is computationally intensive because
the Hi-C interaction matrix is of size O(N2), where N is the
number of genomic regions.

The study of (Rao et al., 2014) generated one of the high-
est resolution map of the 3D organisation of the human
genome by using a in situ Hi-C to probe the 3D architecture
of genomes for DNA-DNA proximity ligation in intact nu-
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clei. This has revealed that the human genome is organized
into sub-compartments globally and contains about 10, 000
chromatin loops (Rao et al., 2014). To account for biases in
Hi-C data, (Rao et al., 2014) adopts the matrix-balancing
proposed in (Knight and Ruiz, 2013). In particular, peaks
are called only when a pair of fragment shows elevated con-
tact frequency relative to the local background; i.e., peaks
are called when the peak pixel is enriched as compared to
other pixels in its neighborhood.

Other methods take into account potential dependence
among pairs of fragments (Jin et al., 2013). In order to
accurately identify the chromatin interactions and loops
with high sensitivity and resolution, they used data filtering
technique based on the strand orientation of Hi-C paired-
end reads. This also allows detection of short distance
interactions between restriction fragments and their anal-
ysis shows the effects of GC-content and mappability on
the observed contact frequency. Interestingly, there seems
to be a linear relationship between average trans-contact
frequency and mappability (Jin et al., 2013).

Neighbouring regions often interact with the same frag-
ments suggesting that these anchors are part of a large
region. Some of the existing methods are based on one-
dimensional calling approaches, which do not consider use-
ful information that can be gained using the two-dimensional
approach. The first method to take into account the spa-
tial dependency of Hi-C is the HMRFBayesHiC algorithm
(Xu et al., 2016b). In particular, HMRFBayesHiC mod-
els the neighbouring fragments in the context of a two-
dimensional contact matrix generated from Hi-C. This algo-
rithm assumes that not all peaks will have similar strength
and clustering patterns. Nevertheless, it also involves hav-
ing prior information about the expected count frequency
distribution to account for biases, which is often unknown.
One of the biggest shortcomings of this approach is that it
is computationally intensive and chromosome wide compu-
tations, even in smaller genomes, are not feasible.

FastHiC is a novel hidden Markov random field (HMRF)-
based peak caller to detect long-range chromosomal inter-
actions from Hi-C data (Xu et al., 2016a). The FastHiC
method is based based on the HMRFBayesHiC (Xu et al.,
2016b) and uses simulated field approximation, which ap-
proximates the joint distribution of the hidden peak status
by a set of independent random variables. In particular,
FastHiC approximates the Ising distribution by a set of inde-
pendent random variables, enabling tractable computation
of the normalising constant in the Ising model. Despite this
improvement in computation time, FastHiC is still compu-
tational intensive and chromosome wide computations are
still challenging.

Finally, all these previous methods, often classify the
observations into only two classes: non-random contacts
(peaks) and random contacts (noise). Nevertheless, it is pos-
sible to have more than two classes due to the nature of the
Hi-C approach. For example, a non-random contact may
have similar bias information to a random contact, which
may lead to misclassification of this pair of fragments by
existing method.

In this paper, we present ZipHiC, a hidden Markov ran-
dom field based Bayesian approach to identify significant
interactions in Hi-C data. This new model addresses sev-
eral issues with current models. First, we improve on ex-
isting methods by introducing dependency of neighbouring
fragments in the two-dimensional space and by adopting the
Approximate Bayesian Approach (ABC) to deal with the in-
tractable normalizing constant in the Potts model, a Markov
random field-based model (Wu, 1982). Second, our model
is computationally tractable and can be applied chromo-
some wide. Third, the number of classes under consideration
can be naturally extended to more than two. We focus our
analysis on intra-chromosomal interactions due to the fact
that about 95% of non-random interactions are found within
chromosomes (Jin et al., 2013; Xu et al., 2016b). Most im-
portantly, we use ZipHiC to model Hi-C contact maps in
Drosophila cells and human cells and explore biases intro-
duced by GC content, transposable elements (TEs) and
DNA accessibility. Finally, we also model micro-C data in
human ES cells and compare it to a similar Hi-C dataset in
terms of the identified significant contacts and biases.

2 Materials and Methods

2.1 ZipHiC

2.1.1 Notations

ZipHiC uses the contact matrix between pairs of fragments
generated from Hi-C experiments. Let yij , 0 ≤ i < j ≤ N

denote the observed contact frequency between fragment i

and fragment j in N total fragments and Dij represent the
genomic distance between fragment i and fragment j. Let
GCij represent the average percentage of Guanine and Cy-
tosine, TEij represent the average number of transposable
elements (TEs) and ACCij represent the average DNA ac-
cessibility score in fragments i and j . For simplicity, we use
s = {i, j} to denote the interaction pair of fragments i and j

and use Ds, GCs, ACCs and TEs to denote the observation
value for interaction s.

2.1.2 Mixture model for data

We use the K-component mixture density to model our
data yij , where the first component is a zero-inflated Pois-
son (ZIP) distribution for noise (see below), while the other
components follow Poisson distributions:

f(yij) = α1ZIP(τ, λ
(1)
ij ) +

K
∑

k=2

αkPois(λ
(k)
ij ) (1)

where τ is the probability of extra zeros, λ
(k)
ij is the mean

of the kth component. αk is unknown percentage of kth
component where

∑K

k=1 αk = 1.
The above mixture model can be interpreted via a la-

tent variable framework. We introduce the latent variable
zij = k, k = 1, 2, · · · , K, where zij = k means that yij fol-

lows the distribution of component k. Furthermore, λ
(k)
ij

represents the mean interaction of fragments i and j if it
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is from the kth component. We propose increasing to Kth
components which makes the framework more flexible for
different scenarios.

Due to the fact that the Hi-C contact map displays ex-
cess zero-counts and that the mean and variance are not the
same, we assume that the noise follows a ZIP distribution
rather than a Poisson distribution. In particular, a ZIP dis-
tribution has the mean (1−τ)λ and variance λ(1−τ)(1+τλ).
Furthermore we assume that the sources of biases can be cor-
rected by modeling λ

(k)
s with s = {i, j}, k = 1, 2, · · · , K as

log(λ(k)
s ) = β

(k)
0 + β

(k)
1 log(Ds) + β

(k)
2 log(GCs) + β

(k)
3 log(TEs)

+β
(k)
4 log(Accs)

(2)

2.1.3 Potts Model

To introduce the spatial dependency, our method utilizes
the HMRF for the hidden components. The HMRF is a
generalization of the hidden Markov model (HMM). The
HMRF has been widely used in areas such as image analy-
sis ((Zhang et al., 2001)), gene expression data ((Wei et al.,
2008)) and population genetics study ((François et al.,
2006)). We adopt the Potts model ((Wu, 1982)) which is
a Markov random field-based method that provides a flexi-
ble way to model spatially dependent data as our prior for
the latent variable zs. The latent variable z adopting the
Potts model is written as

p(z|γ) =
1

C(γ)
exp

(

γ
∑

(s∼t)

δzszt

)

(3)

where δzszt
is the Kronecker symbol which takes the value 1

when zs = zt and 0 otherwise. Label t defines the neighbor-
ing fragment pairs of s, i.e. s ∼ t means s and t are neigh-
bours in the Hi-C matrix. The set of latent variables zij

are modelled as a 2-dimensional HMRF, so the latent vari-
able zs depends on the status of the neighbors of s = {i, j},
Ns = {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)}. The neigh-
bouring

∑

(s,t) δzszt
can be interpreted as the sum of the

influence of neighbours of s. Here γ is a non-negative in-
teraction parameter, with value 0 resulting in an indepen-
dent uniform distribution on zij . Larger values of γ, such
as γ = 1, corresponds to a high level of spatial interaction,
and the probability of pairs of neighbours being in the same
component is very high. C(γ) is the normalizing constant,
also known as the partition function, which is written as

C(γ) =
∑

z

exp

(

γ
∑

(s∼t)

δzszt

)

(4)

where
∑

z indicates the summation over zs at all interactions
s and it depends on the interaction parameter γ. The nor-
malizing constant is computationally intractable in higher
order. To overcome this complication, methods such as the
likelihood-free approach can be used. Here we use the Ap-
proximate Bayesian Model (ABC) (Beaumont et al., 2002).

2.1.4 Approximate Bayesian Model (ABC)

The ABC algorithm (Beaumont et al., 2002) used here can
be described as follows:

• For a given dataset Y = (y1, y2, ..., yn) that is associated
with the models in equations (1), (2) and (3), simulate
an initial value γ0 from the prior distribution π0(γ);

• Generate a parameter value from the posterior distri-
bution π(γ|Y ) ∝ π0(γ)p(z|γ);

• A new value of γ∗ and y∗ is simulated jointly from (1),
(2) and (3);

• Compute the absolute distance or euclidean distance d

between the simulated data and the observed data;

• fix a tolerance ǫ or use an empirical quantile of
d(y∗, y) which often corresponds to 1% quantile
((Beaumont et al., 2002))

• Accept γ∗ if the absolute distance is less than ǫ, other-
wise reject and start from step 1 again.

2.1.5 Bayesian Inference

In order to infer parameters, we adopt the Bayesian ap-
proach which is based on the posterior distribution. The
posterior distribution is the product of the prior and likeli-
hood. For our prior, we make use of the Empirical Bayes
approach, which uses a hierarchical structure to determine
the prior, where the prior is determined by a distribution
with parameters called hyper-priors. The hyper-priors are
estimated from the dataset which means that it is less af-
fected by mis-specification of priors.

We also use the conventional Bayesian approach. For the
conventional Bayesian approach, we set the priors of our βs
to follow the normal distribution. For example, we set the

prior of β
(1)
0 ∼ N(β

(1)
0 ; 2, 1), γ ∼ β(γ; 10, 5) and set π0 = 0.6.

To estimate the impact of priors, we consider other priors;
see Results and Supplementary Material.

2.2 Datasets and preprocessing

2.2.1 Drosophila dataset

To test the performance of the model, we used a high res-
olution Hi-C map of Kc167 cell lines in Drosophila from
(Eagen et al., 2017). The raw data was downloaded and
preprocessed with HiCExplorer following the set of pa-
rameters from (Chathoth and Zabet, 2019). Briefly, we
aligned each pair of the PE reads to Drosophila melanogaster
(dm6) genome (dos Santos et al., 2015) using BWA-mem
(Li and Durbin, 2010) (with options -t 20 -A1 -B4 -E50 -
L0). HiCExplorer was used to build and correct the con-
tact matrices and detect enriched contacts (Ramirez et al.,
2018). The contact matrices were built using 2 Kb bins and
then exported in text format to be loaded in R.

For DNA accessibility in Drosophila Kc167 cells data
we used DNaseI-seq data from (Kharchenko et al., 2010),
while, for TE annotation in Drosophila, we used FlyBase
(dos Santos et al., 2015).

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.463680doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.463680
http://creativecommons.org/licenses/by/4.0/


We detected TADs using HiCExplorer at 2Kb resolution,
similarly as done in (Chathoth and Zabet, 2019). Briefly,
TADs had at least 20 Kb width, a P-value threshold of 0.01,
a minimum threshold of the difference between the TAD-
separation score of 0.04, and FDR correction for multiple
testing (–step 2000, –minBoundaryDistance 20000 –pvalue
0.01 –delta 0.04 – correctForMultipleTesting fdr).

2.2.2 Human datasets

We also used Hi-C and micro-C datasets in H1-hES
cells from (Krietenstein et al., 2020). We used the
same preprocessing pipeline as for the Drosophila dataset.
Briefly, we aligned each pair to the human genome hg38
(Schneider et al., 2017) using BWA-mem (Li and Durbin,
2010). HiCExplorer was used to build and correct the con-
tact matrices at 10 Kb resolution and detect enriched con-
tacts (Ramirez et al., 2018).

Furthermore, we used DNaseI-seq for DNA accessibility
from ENCODE consortium (Thurman et al., 2012) and TE
annotation from RepeatMasker (Smit, 2015).

2.3 Comparison to other tools

In this manuscript, we compare our new method ZipHiC
to three other tools: (i) FastHiC (Xu et al., 2016a),
(ii) HiCExplorer (Ramirez et al., 2018) and (ii) Juicer
(Durand et al., 2017). First, we generated the enriched in-
teractions using a JAVA implementation of FastHiC which
use excepted counts and, for that, we the values estimated
by the HiCExplorer (Ramirez et al., 2018).

Second, we used the HiCExplorer generated matrices and
corrected them using the following values: (i) [−1.8, 5.0] for
Hi-C in Kc167 cells, (ii) [−2.4, 5.0] for Hi-C in H1-hES cells
and (iii) [−2.0, 5.0] for micro-C in H1-hES cells; see Sup-
plementary Figure S1 (Ramirez et al., 2018). Then, we gen-
erated the enriched contacts from the corrected matrix us-
ing hicFindEnrichedContacts tool with observed over ex-
pected method (--method obs/exp) (Ramirez et al., 2018).

Third, we used Juicer to generate enriched contacts by
calling dump tool from Juicer tools. In particular, we used
the observed over expected method (oe) and Knight-Ruiz
normalisation (KR) at 2 Kb resolution for the Hi-C data in
Kc167 cells and at at 10 Kb resolution for the Hi-C and
micro-C data in H1-hES cells (Durand et al., 2017).

The R scripts used to perform
the analysis can be downloaded from
https://github.com/igosungithub/HMRFHiC.git.

3 Results

3.1 Using the two component model on

simulated data

First, we consider the case of a two component model (signal
and noise) and evaluated whether this model can correctly
estimate the sources of biases associated with Hi-C contact
matrix using simulated data. We simulated a dataset of
n = 2, 500 observations from the mixture model (1), with

K = 2. The simulation studies are based on outputs of
MCMC algorithms with 20, 000 iterations and 10, 000 burn-
in steps. We considered using either informative prior or
Empirical Bayes method, which has been used previously
to analyse missing data (Carlin and Louis, 2000). Further-
more, there are three cases under different component pro-
portions: (i) when the proportion of the noise is greater
than the signal, (ii) when the proportion of the noise and
the signal is the same, (iii) when the proportion of noise is
less than the signal. Finally, we also used different starting
values to justify the convergence of MCMC algorithms.

We study the sensitivity of our model to different set of
prior parameters values using the traditional informative
prior and Empirical Bayes method. The latter, the prior
of Empirical Bayes method, is based on the hyper-prior
determined by the dataset. Table S1 shows that the two
component model are able to estimate the true value
accurately when we using either the Informative or the
Empirical Bayes method for the prior distribution. In order
to illustrate the effect of using one of the priors (fixed prior
or Empirical Bayes), we included only one covariate, Dij

(genomic distance) from 2 . Our results show that the
estimates of the posterior means of the parameters are
accurate for both approaches to infer prior distribution.
For our downstream analysis, we use the Empirical Bayes
method.

Next, we evaluated the estimated posterior means of the
parameters for our regression model (see equation 2). We
used fixed informative prior and the component percentages
(αs) in equation 1 are set as α1 = 0.7 and α2 = 0.3, showing
a higher percentage of noise to signal. Table S2 shows
that our method was able to estimate the true parameters
accurately despite the higher noise. We also check our
estimated posterior means with respect to their credible
intervals, which are usually used in Bayesian analysis and
have similar interpretation to confidence intervals. The
main differences between our estimated posterior means
fall within ±0.02 of the true values and our estimated
posterior means are all significant as they fall within
the 90% credible intervals. In addition, when evaluating
Tables S1 and S2 and analysing the trace plots of all our
simulations, we did not observe label switching; i.e., we
are able to identify each components parameters distinctly
without any unidentifiability issues. Furthermore, in Tables
S3 and S4, we show that our method is also robust to
different proportions of noise and signal (see Supplementary
Material).

3.2 Hi-C Data analysis with a two compo-

nents model

Following the validation of our model on simulated data,
we next use the two component ZipHiC model on real Hi-
C data. In particular, we use a dataset from (Eagen et al.,
2017) in Kc167 cell line in Drosophila at 2 Kb resolution
and focus this analysis on chromosome 2L. As mentioned
earlier, the aim of our proposed method is to detect signifi-
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cant interactions, which we called true signal, by taking into
consideration the biases associated with Hi-C dataset.

First, we considered the 31, 375 observations from a 82 Kb

fragment (region 2L:1-82000), resulting in 250 unique pair
of fragments in order to compare our method to existing sta-
tistical methods. FastHic (Xu et al., 2016a) is an updated
version of the HMRFBayesHiC (Xu et al., 2016b) as both
methods use a hidden Markov random field (HMRF) based
Bayesian method and Ising model (Ising, 1925), which ac-
counts for spatial dependence for peak calling. Note that,
we only used 31, 375 observations, because of the high com-
putation time of the FastHic (Xu et al., 2016a). In con-
trast to ZipHiC, FastHic (Xu et al., 2016a) method involves
calculating the time expected frequencies, which is com-
putation intensive and can be done using the approach in
(Lieberman-Aiden et al., 2009).

Based on the Monte Carlo draws from the posterior dis-
tribution of our ZipHiC model, we can compute whether
the estimated values of our parameters are significant or
not (see posterior means values in Tables S5 and S6 in Sup-
plementary Material). Figure 1 shows the Venn diagram
of the biologically significant interacting pairs of fragments
using ZipHiC two component model compared to FastHic
(Xu et al., 2016a). ZipHiC recovers 87% (21, 061) of the
interactions detected by FastHic (Xu et al., 2016a); see Fig-
ure 1. We notice that the FastHic (Xu et al., 2016a) method
discovered additional 3, 106 pairing fragments as being bi-
ologically significant and this suggests that our model is
slightly more conservative in detecting significant interac-
tions. Interestingly, both methods detected 7, 134 pairing
fragments as noise (random collision). Further investigation
of the additional significant pairing fragments detected by
the FastHic (Xu et al., 2016a) and not by our method, shows
that the FastHic (Xu et al., 2016a) has higher false discov-
ery rate than our method by falsely classifying the pairing
fragments with 0 frequency as being significant.

Figure 1: Comparison between ZipHiC and FastHiC Venn
Diagram showing true signal comparison between our pro-
posed method (ZipHiC) and FastHiC on sub region of chro-
mosome 2L in Drosophila Kc167 cells.

3.3 Hi-C Data analysis with a three com-

ponents model

One limitation of previous studies was the limitation to two
components (noise and signal). Here, we further increase
the number of components from K = 2 to K = 3 by adding

a new component. This new component accounts for in-
teracting pairs of fragments that ZipHiC has misclassified
as signal due to conflicting information both in the contact
frequencies and sources of bias and, thus, we call this new
component false signal. For example, if a pair of interacting
fragment have high contact frequency but their sources of
bias closely exhibits that of the noise component, this pair
of fragment can be classified to the false signal component.

First, we compared the detected significant interactions
in the three component ZipHiC model with the ones in the
two component one and from FastHic. Figure 2 shows that
by adding an additional component, we detect less than 1%
of additional pairs of fragments (231) overlapping with the
FastHic ((Xu et al., 2016a)) method.

Figure 2: Venn Diagram showing comparison between the
HMRF (Xu et al., 2016b), ZipHiC-2 (our true signal) and
ZipHiC-3 (our false signal) of the sub region of Chromosome
2L of Drosophila Melanogaster .

To evaluate whether the new component in our method
(false signal) results in better performance of our method, we
conducted model selection analysis using the Deviance In-
formation Criterion (Spiegelhalter et al., 2002) and in par-
ticular, we used a modified DIC method (Li et al., 2020)
for latent variable models. The value of the DIC for two
component is −331, 344, 746 and for the three component is
−401, 662, 547. These results show that the best model to
analyse this particular Hi-C dataset is the three components
model (thus, including the false signal).

To better understand the contributions of the different
components, we investigated the posterior means of our es-
timated βs for the noise, signal and false signal components
(see Table 1). The values of βs correspond to the coeffi-
cients of the intercept and the log of distance, GC-content,
TEs content and DNA accessibility. The posterior means
of noise levels of the interaction for all components, except
GC content, have β values with negative signs, indicating
the noise and signal are negatively correlated. The negative
sign of β1 parameter (distance) indicates that when distance
between two fragments increases the average of their inter-
action noise decreases. Similarly, for β3 (TEs) and β4 (DNA
accessibility), our results indicate that the higher the TEs
content or the level of DNA accessibility is the lower the
interaction noise will be, but only for DNA accessibility the
effect is large. In other words, noise levels in the Hi-C sig-
nals are higher in dense chromatin and will have a higher
impact on the observed enriched interactions, unless cor-
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rectly accounted for. Nevertheless, for β2 (GC content), we
found that the GC-content increase corresponds to an in-
crease in the interaction noise, but, while this is significant,
the contribution of GC content is relatively small to the
noise levels in Hi-C data. Interestingly, we noticed from Ta-
ble S6 and Table 1 that our estimated posterior means for
the noise components are similar if we use a two component
or a three component model. This can be seen as most of
the third component (false signal) in our model is influenced
by the second component (true signal).

Table 1: Posterior means of our estimated βs as shown in
equation 2 for noise, signal and false signal components. The
95% credible intervals are shown inside the brackets. For
the 90% credible intervals, see Table S7 in Supplementary
Material.

Parameters Posterior mean (noise) Posterior mean (signal) Posterior mean (false signal)
β0 (intercept) -84.00 (-84.90, -83.64) 13.06 (12.80, 13.35) 499.34 (498.39, 500.21)
β1 (distance) -10.05 (-10.16, -10.03) -0.90 (-0.92, -0.89) -64.16 (-64.45, -63.97)
β2 (GC content) 0.34 (0.34, 0.35) 0.36 (0.35, 0.37) 0.30 (0.09, 0.57)
β3 (TEs) -0.76 (-0.79, -0.68) -0.10 (-0.16, -0.03) 0.54 (-0.40, 1.03)
β4 (Accessibility) -3.54 (-3.57, -3.44) 0.15 (0.11, 0.20) -0.70 (-1.04, -0.15)

Next, we observed that the posterior mean of our false
signal intercept is higher than that of the noise and sig-
nal components, which implies what the value of the log of
our λ in (2) will be if all the sources of bias are kept at 0.
For the false signal component, we noticed that the poste-
rior mean and credible intervals for distance (β1) parameter
of the false signal component is significant and the negative
value indicates that as the increase distance of two fragments
results in a decrease in the false signal interaction. The ef-
fect size of distance on false signal is higher than compared
to noise and was previously unaccounted for. For DNA ac-
cessibility (β4), the negative value of the posterior mean and
the credible intervals means that increase DNA accessibility
leads to a decrease in the false signal interaction, but this
is relatively small. Similarly for the posterior mean of the
GC content (β2), the value is positive and indicates that as
higher GC content corresponds to an increase in the false
signal. However for TEs (β3) the credible intervals of false
signal component covers 0, which means the result is not
significant.

Furthermore, we noticed that the posterior mean of
true signal for GC content (β2) decreased when the third
component (false signal) was added (compare from Tables 1
and S6). This means that the influence of GC content was
reduced when taking into account false signal. In addition,
we noticed that the estimated posterior mean of (TEs) β3

for the signal component is significant and the false signal
component is insignificant when the third component was
added. This indicates that in order to properly estimate
the true signal over TEs a three component model might be
required and previous models that did not include a false
signal might have obtained inaccurate enriched contacts
over TEs.

3.4 Whole chromosome analysis using the

three component ZipHiC model

Given that our model performs best with three components
on this particular Hi-C dataset in Drosophila Kc167 cells, we
analyse the whole of chromosome 2L using the three com-
ponent ZipHiC model and identified 12.82M significant in-
teractions. We observe that most of the detected significant
interactions are found closer to the diagonal and that the
significant interactions formed triangular shapes along the
diagonal which sometimes overlap each others; see Figure 3.

Figure 3: Significant interactions on chromosome 2L in
Drosophila Kc167 cells. Heatmap showing significant in-
teractions on chromosome 2L of Drosophila Kc167 cell line
using ZipHiC three component model. The intensity of the
colour indicates the probability, with darker colours repre-
senting higher probability.

These triangular shapes are Topologically Associated
Domains (TADs) (Nora et al., 2012; Dixon et al., 2012;
Sexton et al., 2012; Hansen et al., 2018) and are one of the
main features of Hi-C data. However, we found that ma-
jority of significant interactions connect fragments that are
very far apart (between 1 Mb and 10 Mb) (see Figure 4A),
which are distances larger than the usual size of TADs
in Drosophila (Ramirez et al., 2018; Chathoth and Zabet,
2019) and suggests that they connect fragments located in
different TADs. Indeed, this is the case and approximately
98% of significant interactions are outside TADs (see Figure
4B). Interestingly, we found that almost half of the signifi-
cant interactions connect promoters with other parts of the
genome or with other promoters, which indicates they have
a functional role (see Figure 4C). The majority of the sig-
nificant interactions connect genes with either themselves or
other genes, promoters or other regions of the genome (po-
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tentially enhancers). Note that we also performed a genome
wide analysis and these results are true for all chromosomes
(see Figure S2).

Figure 4: Characterisation of significant interactions on
chromosome 2L in Drosophila Kc167 cells. (A) Distribution
of the distance between the two fragments for all significant
interactions. (B) classification of significant interactions as
either outside TADs when the two fragments are located in
different TADs or inside TADs when the two fragments are
located in the same TAD. (C) Percentage of significant in-
teractions that have promoters at one of the fragments. We
consider the cases of: (P) promoters (200 bp upstream and
50 bp downstream of TSS), (G) genes (including exons, in-
trons, 5’UTRs and 3’ UTRs and excluding promoters) and
(O) other regions (excluding promoters and genes).

Finally, we compared the significant interaction detected
by ZipHiC with significant interactions detected by two pop-
ular tools: HiCExplorer (Ramirez et al., 2018) and Juicer
(Durand et al., 2017). Figure 5A shows that approximately
half of the ZipHiC interactions are common with both
HiCExplorer and Juicer (6.31M). In addition, ZipHiC de-
tects 6.37M interactions detected only by HiCExplorer and
missed by Juicer and 41K significant interactions detected
only by Juicer and missed by HiCExplorer. ZipHiC dis-
tinctly identifies 129K significant interactions, which are
missed by the other tools. Overall, we found that ZipHiC
recovers almost all HiCExplorer (12.68M) significant inter-
actions (98.9% overlap), but also an additional 170K signif-
icant interactions missed by HiCExplorer. Juicer seems to
have a smaller overlap and only retrieves approximately half
of the ZipHiC and HiCExplorer significant interactions.

Figure 5B shows the Venn diagram of the three compo-
nent ZipHiC model with other methods by adding the false
signal component. The highest number of false signals (245)
overlap with the significant interactions detected by Juicer,
further supporting the fact that this tool is less accurate in
detecting significant interactions

8 pairing fragments classified by our method to be false
signal overlaps with both HiCExplorer (Wolff et al., 2018)
and Juicer (Durand et al., 2017). False signals identified
by ZipHiC has 2 pairing fragments overlapping only with
the HiCExplorer (Wolff et al., 2018). The false signal that
does not overlap with any of the tools (116), indicates that
while HiCExplorer can remove false significant interactions

Figure 5: Comparison with other tools. (A) Venn Diagram
showing the comparison between significant interactions de-
tected by ZipHiC, HiCExplorer and Juicer. We analysed
chromosome 2L in Drosophila Kc167 cells. (B) The number
of false signals identified by ZipHiC detected as true signals
by HiCExplorer and Juicer

(only 10 false signals overlap with HiCExplorer), Juicer is
more affected by these false significant interactions (253 false
signals overlap with Juicer).

3.5 Analysis of micro-C data in human ES

cells

Micro-C is a new and improved variation of Hi-C that can
generate sub-kilobase pair 3D contacts map in mammalian
systems (Hsieh et al., 2015; Krietenstein et al., 2020). To
evaluate the capacity of ZipHiC to analyse micro-C data,
we consider a small region on human chromosome 8 (60-
70Mb) for which both micro-C and Hi-C data is available
in human ES cells (Krietenstein et al., 2020). As we did
previously, we consider both a two components and a three
components model (K = 2 and K = 3) and use the DIC
to select the best performing model (for the 3 components
models of Hi-C and micro-C data see Table S8 and Table S9
respectively). Interestingly, in the case of this specific region
on the human chromosome 8, the two component model has
the lowest DIC (DIC2 = 194, 721.1 and DIC3 = 469, 950.5)
and, thus, was selected for the analysis. This indicates that
the human ES cell Hi-C and micro-C data in this region
of the genome is not affected by false positive signals as it
was the case with the Drosophila whole genome analysis in
Kc167 cells.

Figure 6 shows the overlap of significant interactions iden-
tified by ZipHiC on micro-C and Hi-C datasets for this par-
ticular region of the human genome (60-70Mb). The Venn
diagram shows that 96% (18, 498) of the significant interac-
tions in the Hi-C dataset are recovered as significant inter-
actions in the micro-C dataset as well and only a negligible
number of interactions are missed (4%). Similarly, only 3%
of the micro-C interactions are novel and previously missed
by Hi-C. Our results confirm that micro-C can reproduce
accurately the results of Hi-C despite a significantly lower
library size.

We also investigated the overlap between the significant
interactions identified by ZipHiC, Juicer and HiCExplorer
and found that the three methods agree well (see Figure

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.463680doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.463680
http://creativecommons.org/licenses/by/4.0/


Figure 6: Venn Diagram showing significant interactions
(signal) comparison identified by ZipHiC on micro-C and
Hi-C data in human ES cells within 60-70Mb region of hu-
man chromosome 8.

S3). Nevertheless, ZipHiC was also able to analyse the
models and extract the sources of bias in the Hi-C and
micro-C datasets. In micro-C, the chromatin is fragmented
to mononucleosomes using micro-Coccal nuclease (MNase),
which increases fragment density. The digestion with MNase
raises the possibility that micro-C data is affected by DNA
accessibility biases, which would not the case with Hi-C
data.

Table 2 shows the model parameters for the two compo-
nent model for both micro-C and Hi-C data. Interestingly,
we observed an effect of the DNA accessibility on mean sig-
nal that is higher even compared to the effect of the distance
between the fragments. Similar effect in the mean signal
was also observed in the case of Hi-C data, but that was
approximately half compared to the level observed in the
micro-C data. In the case of the whole genome Hi-C analy-
sis in Drosophila, we identified limited effects of accessibility
on the mean signal but strong effects on the noise compo-
nent. For this particular region in the human genome, we
observed the opposite, strong biases introduced by accessi-
bility in the mean signal (especially in the micro-C data),
but significantly reduced biases on the noise of the signal.
The beta values have positive sign indicating that more ac-
cessible regions of the genome display higher signal, but only
modest biases in the noise levels.

Table 2: Posterior means of our estimated βs as shown in
equation 2 for noise and signal components of human Chro-
mosome 8, region 60, 000, 000 : 70, 000, 000 for data gener-
ated using the Hi-C and micro-C method. The 95% credible
intervals are shown inside the brackets.

Parameters (Hi-C) Posterior mean (noise) Posterior mean (signal)
β0 (intercept) 0.88 (0.53, 1.36) 11.13 (10.92, 11.36)
β1 (distance) 0.13 (-0.02, 0.25) -0.79 (-0.81, -0.77)
β2 (GC-content) 0.33 (0.32, 0.33) 0.32 (0.32, 0.34)
β3 (TEs) 1.01 (0.99, 1.15) 0.02 (0.01, 0.03)
β4 (Accessibility) 0.50 (0.43, 0.59) 1.00 (0.99, 1.03)
Parameters (micro-C) Posterior mean (noise) Posterior mean (signal)
β0 (intercept) 1.05 (0.81, 1.30) 8.08 (7.65, 8.39)
β1 (distance) 0.14 (0.12, 0.17) -1.41 (-1.42, -1.38)
β2 (GC-content) 0.33 (0.32, 0.34) 1.02 (0.12, 1.80)
β3 (TEs) 10.00 (9.99, 10.02) -0.37 (-0.41, -0.33)
β4 (Accessibility) 0.40 (0.35, 0.41) 1.83 (1.70, 1.92)

Furthermore, we also identified a strong contribution to
the noise of the signal from the TE composition, specifically

in the micro-C dataset, but also present in the Hi-C data
despite being ten times lower. This means that a higher
TE content leads to a higher noise, specifically in the micro-
C data. In addition, micro-C data also display low bias of
TE content in the mean signal, indicating that higher TE
content leads to a slightly lower signal in micro-C, but not
in Hi-C. Note that that in the case of whole genome analysis
in Drosophila, there was only a relatively medium bias from
TE content in the noise and false signal components, but
not in the true signal one.

4 Discussion

In this manuscript, we introduce a new method called
ZipHiC to analyse Hi-C and micro-C data. ZipHiC models
the contact frequencies as a Zero-Inflated Poisson distribu-
tion due to the fact that this allows to model the presence
of overdispersion which affects Hi-C data (Varoquaux et al.,
2021). In addition, ZipHiC also uses a hidden Markov
Random Field (HMRF) based Bayesian method, the Potts
model, to help account for dependency in Hi-C dataset.
Most importantly, the Potts model alows to increase the
number of components (k = 2, 3, ...K) and, thus, to account
for additional components such as false signal. Finally, our
method uses a likelihood free approach, ABC, to account
for the limitation in the normalizing constant in the Potts
model. Through our extensive simulations on simulated and
real data, we show that our method outperforms existing
methods in distinguishing between noise and signal.

First, we found that a three component model (specifically
considering the false signal) performed better on a very high
resolution dataset in Drosophila Kc167 cells (Eagen et al.,
2017). However, a two component model (considering only
the noise and the signal) performed best for the Hi-C and
micro-C datasets in human ES cells (Krietenstein et al.,
2020) on a region on chromosome 8. This indicates that
the choice of whether to use a two component or a three
component model needs to be driven by the data, since not
all datasets will be affected by a false signal component.

In Drosophila, we found that the distance between frag-
ments has the highest contribution to both the noise and
the false signal, where interactions further from the diago-
nal displayes less noise and fewer false signals compared to
interactions closer to the diagonal. DNA accessibility con-
tributed strongly to the noise component and partially to
the false signal in Drosophila. In particular, less accessible
regions of the genome displayed higher noise and more false
signals. We also observed a moderate effect of TEs on the
noise component and false signal in Drosophila, where re-
gions with higher content of TEs displayed lower noise, but
higher false signals.

Majority of these significant interactions connect frag-
ments that are located in different TADs and this is ex-
plained by the larger distance between the two fragments
detected by ZipHiC in this dataset. The distance between
fragments is larger than previously reported in Drosophila
cells (Chathoth and Zabet, 2019), due to the fact that in
this study we used a 2 Kb resolution and in the previous
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study a higher resolution was used (DpnII restriction sites,
on average every 529 bp).

Most importantly, we identified that approximately half
of these significant interactions in Drosophila connect pro-
moters with either other promoters, genes or other regions
of the genome. This raises the possibility that these signifi-
cant interactions connect promoters with regulatory regions.
Nevertheless, the large number of detected significant inter-
actions and the number of enhancers identified in Drosophila
cells (Arnold et al., 2013; Yanez-Cuna et al., 2014), indicate
that most of them would not connect promoters with en-
hancers. This is likely the case and one possibility is that
a large part of the significant interactions account for gene
domains being formed at actively transcribed genes, where
the promoter of the gene makes 3D contacts with different
parts of the gene (exons, introns or 3’UTRs) (Rowley et al.,
2019). Indeed, we found that majority of significant inter-
actions involve genes, further supporting this model.

Furthermore, we found that micro-C data reproduces ma-
jority of the same significant interactions (96%) as a much
larger Hi-C library. However, the micro-C data displays a
higher bias in the signal to DNA accessibility (more acces-
sible regions of the genome will display higher signals) even
compared to distance between the fragments and this needs
to be accounted for. Interestingly, in this particular region,
the noise component was particularly affected by the TE
content where more TEs lead to a higher noise in the micro-
C data. The stronger effect of TEs on micro-C data in hu-
man cells is not surprising given the fact that human genome
has a higher percentage of TEs compared to Drosophila.

A limitation to ZipHiC resides in the computation time
when analysing the whole genomes. In the case of a stan-
dard computer with 4 cores, it takes more than 72 hours
to analyse a whole genome dataset in Drosophila at 2 Kb
resolution.
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