

ADAR2 suppresses leukemogenesis of t(8;21) AML

1 **ADAR2-repressed RNA editing: a novel mechanism contributing to t (8;21) AML**

2 **leukemogenesis**

3 **Authors:** Mingrui Guo^{1,2,8}, Tim Hon Man Chan^{1,3,8}, Omer An¹, Yangyang Song¹, Zi Hui

4 Tan^{1,4}, Vanessa Hui En Ng¹, Xinang Cao^{1,2}, Wee Joo Chng^{1,2,5}, Motomi Osato¹, Henry

5 Yang¹, Qiling Zhou^{1,2,9}, Leilei Chen^{1,6,9,*}, and Daniel G. Tenen^{1,7,9,*}

6 **Affiliations:**

7 ¹Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore,

8 Singapore.

9 ²YLL School of Medicine, National University of Singapore, 119228 Singapore, Singapore.

10 ³Department of Laboratory Medicine, Molecular Diagnosis Centre, National University
11 Health System, Singapore 119074, Singapore

12 ⁴Duke-NUS Medical School, Singapore 169857, Singapore

13 ⁵Department of Haematology-Oncology, National University Cancer Institute of Singapore,
14 National University Health System, Singapore, Singapore.

15 ⁶Department of Anatomy, Yong Loo Lin School of Medicine, National University of
16 Singapore, Singapore 117594, Singapore

17 ⁷Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.

18 ⁸These authors contributed equally

19 ⁹These authors contributed equally

20

21 *Correspondence:

22 Daniel G. Tenen: daniel.tenen@nus.edu.sg

23 Leilei Chen: polly_chen@nus.edu.sg

24

ADAR2 suppresses leukemogenesis of t(8;21) AML

25 Word Count (Text): 3914

26 Word Count (Abstract): 162

27 Main Table Count: 0

28 Main Figure Count: 4

29 Reference Count: 74

30

31 **Key points**

32 • ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in CBF-AML

33 • RUNX1-ETO suppresses ADAR2 transcription in t(8;21) AML through binding on

34 its promoter

35 • RNA editing capability of ADAR2 is essential for its repression of leukemogenesis in

36 an AE9a mouse model

37

38 **Keywords**

39 AML, Leukemogenesis, RUNX, ADAR, A-to-I RNA editing, COG3, COPA

40

41 **Abstract**

42 In the past decade, adenosine to inosine (A-to-I) RNA editing, which is catalyzed by

43 adenosine deaminases acting on RNA (ADAR) family of enzymes ADAR1 and ADAR2, has

44 been shown to contribute to the development and progression of multiple cancers; however,

45 very little is known about its role in acute myeloid leukemia (AML) - the second most

46 common type of leukemia making up 31% of all adult leukemia cases. Here, we found that

47 ADAR2, but not ADAR1 and ADAR3, is specifically downregulated in core binding factor

48 (CBF) AML with t(8;21) or inv(16). In t(8;21) AML, RUNX1-driven transcription of

49 ADAR2 transcripts was found to be repressed by the RUNX1-ETO fusion protein. Forced

ADAR2 suppresses leukemogenesis of t(8;21) AML

50 overexpression of two ADAR2-regulated RNA editing targets COPA and COG3 indeed
51 inhibits clonogenic growth of human t(8;21) AML cells. Further *in vivo* animal studies
52 confirmed that ADAR2 could suppress leukemogenesis of t(8;21) AML through its RNA
53 binding and editing capabilities. Our results suggest a novel RNA editing-mediated
54 mechanism leading to t(8;12) AML.

55

56 **Introduction**

57 High throughput technologies such as RNA sequencing have revolutionized our
58 understanding of global transcriptomic changes. RNA processing steps including alternative
59 splicing, alternative polyadenylation, and RNA editing/modifications, significantly contribute
60 to the composition and complexity of the transcriptome. Adenosine-to-inosine (A-to-I) RNA
61 editing is the most prevalent type of RNA editing in mammals and is catalysed by the
62 adenosine deaminase acting on RNA (ADAR) family of enzymes that recognise
63 double-stranded RNAs (dsRNA)¹. In vertebrates, the ADAR family consists of 3 members,
64 ADAR1, ADAR2, and ADAR3². ADAR1 and ADAR2 mediate the editing reaction which
65 contributes to multilevel regulation of gene expression and activity, whereas ADAR3 has no
66 documented deaminase activity³. A-to-I RNA editing not only alters the RNA sequence itself
67 but also affect the cellular fate of RNA molecules. In principle, A-to-I editing sites can be
68 found in both coding and non-coding regions. However, the vast majority of A-to-I editing
69 sites are in introns and untranslated regions harbouring long and perfect dsRNA structures
70 formed by inverted *Alu* repetitive elements⁴. Over the past decades, accumulating evidence
71 suggests the dysregulated A-to-I editing as one of the key drivers for various cancers,
72 particularly solid tumors⁵⁻¹⁰. In coding regions, RNA editing can lead to amino acid codon
73 change. Differential editing of these protein-recoding sites are found to impact on human
74 diseases, such as neurological diseases and cancer^{6,8,10-12}. In cancer, only a few aberrant

ADAR2 suppresses leukemogenesis of t(8;21) AML

75 protein-recoding targets have been reported thus far, and they contribute to tumorigenesis
76 largely through enhancing cancer promoting activity or repressing tumour suppressive
77 activity^{7,8,10,13}.
78 Till date, very limited efforts have been placed on understanding the role of RNA editing
79 in haematological malignancies including acute myeloid leukemia (AML) which is the most
80 common haematological malignancy characterized by the abnormal proliferation and
81 differentiation of myeloid progenitor cells with high incidence and recurrence rates. Although
82 there are several studies on ADAR1 and its mediated RNA editing events in multiple
83 myeloma (MM)^{14,15} and chronic myeloid leukaemia (CML)¹⁶⁻¹⁸, the role of ADAR2 in AML
84 and other haematological malignancies remain unknown. In this study, we analysed the
85 expression profiles of three ADAR enzymes in AML patients with distinct molecular
86 subtypes, from publicly available cDNA microarray¹⁹ and the TCGA RNA sequencing
87 datasets²⁰. Surprisingly, ADAR2, but not ADAR1 and ADAR3, was specifically
88 downregulated in AML patients with t(8;21) or inv(16) and both of which belong to the core
89 binding factor (CBF) AML comprising up to 12–15% of all AML cases²¹⁻²³. CBF AML is
90 characterized by the presence of either t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16), which
91 results in the formation of *RUNX1-ETO* and *CBFβ-MYH11* fusion genes respectively. Core
92 binding factors are transcription factors which are necessary in normal haematopoiesis and
93 characterized by heterodimers of a DNA-binding unit CBFα (including three subunits
94 RUNX1, RUNX2, RUNX3) and a non-DNA-binding unit CBFβ. Chromosomal
95 translocations can alter DNA-binding capability and create alternate binding sites of the
96 heterodimer, leading to disruption of normal transcription program and the consequent
97 maturation arrest²⁴. Unlike wildtype RUNX1, RUNX1-ETO fusion protein drive
98 leukemogenesis through assembling transcriptional regulatory complexes, either as a
99 repressor or an activator²⁵⁻²⁹. Although the presence of RUNX1-ETO (also named

ADAR2 suppresses leukemogenesis of t(8;21) AML

100 AML1-ETO) defines a precursor stage of leukaemia, additional molecular events are required
101 for transformation^{30,31}. In this study, we report that RUNX1-ETO fusion protein represses
102 RUNX1-driven transcription of *ADAR2* transcripts. The functional investigation of ADAR2
103 and ADAR2-mediated RNA editing in human t(8;21) AML cells and a t(8;21) AML mouse
104 model uncovered that ADAR2 could suppress leukemogenesis of t(8;21) AML through its
105 RNA binding and editing capabilities. This is the first time that ADAR2 and its-mediated
106 RNA editing events are linked to leukemogenesis of t(8;21) AML.

107 Materials and methods

108 Clinical tissue samples

109 Primary AML and matched normal knee samples were obtained from the CenTRAL
110 (Molecular) Leukaemia Tissue Bank, with approvals from Institutional Review Board,
111 National University of Singapore, and signed patient informed consent. In this study,
112 “normal” samples refer to samples harvested from the knee samples of healthy individuals.

113 Mice

114 C57BL/6J mice were obtained from The Jackson Laboratory. All mice were housed in a
115 sterile barrier facility within the Comparative Medicine facility at the National University of
116 Singapore under housing condition of 22 °C temperature, 50% humidity and a 12:12
117 light/dark cycle. All mice experiments performed in this study were approved by Institutional
118 Animal Care and Use Committee of National University of Singapore. In this study, 8- to
119 16-week old male mice were used for bone marrow harvesting or transplantation; 8- to
120 16- week old female mice were used for time mating. See method detail for more
121 information.

122 Establishment of Kasumi-1 stable cell lines

123 To generate Kasumi-1 cells stably expressing *ADAR2*, *ADAR2* mutants, wildtype or edited
124 forms of *COPA* and *COG3*, 4.5 µg VSV-G and 4.5 µg expression constructs were

ADAR2 suppresses leukemogenesis of t(8;21) AML

125 co-transfected into GP2-293 cells cultured in T75 flask for virus generation. Supernatant
126 containing lentivirus was harvested and filtered using 0.45um syringe filter (Sartorius, cat.no.
127 16537) at 48 and 72 hours after transfection. These two portions of supernatant were mixed
128 and aliquoted for virus transduction or stored in -80°C for subsequent usage. Virus
129 transduction was performed using RetroNectin® Recombinant Human Fibronectin Fragment
130 (Takara, cat.no. T100A/B) according to the manufacturer's instructions (with centrifugation).
131 At 72 hours after virus transduction, cells were selected using puromycin (2 µg/ml) for 72 hrs
132 or by FACS sorting.

133 **Luciferase reporter assays**

134 The firefly luciferase reporter gene in the pGL3 vector is driven by human *ADAR2*
135 promoter regions containing different RUNX site portions. As an internal control plasmid for
136 co-transfections, the pRL-null construct encoding a Renilla luciferase gene (Promega, cat.no.
137 E2231) was used. Firefly and Renilla luciferase activities were determined 24 hours post
138 transfection with the dual-luciferase reporter assay system (Promega, cat.no. E1910). Firefly
139 luciferase readings were normalized against internal control Renilla luciferase and calculated
140 as fold differences against the activity obtained from cells transfected with empty vector.

141 **Analysis of RNA editing by Sanger-sequencing.**

142 To amplify regions containing *COG3 I635V* or *COPA II64V* site, cDNA from different
143 cells were used for PLATINUM GREEN HS PCR 2X Master PCR amplification (Thermo
144 fisher scientific. cat.no. 13001014. Purified PCR products were sent for direct sequencing,
145 and the result was visualized with SnapGene software (SnapGene®, San Diego, CA,USA).
146 The frequencies of *COPA* and *COG3* editing were calculated based on the peak area of
147 adenosine and guanosine determined by SnapGene. Sequence of primers are listed in
148 Supplemental Table 2.

149 **RUNX1-ETO9a primary leukemia model**

ADAR2 suppresses leukemogenesis of t(8;21) AML

150 LSK population from fetal liver cells from embryos at E14.5– E16.5 stage was used for
151 AE9a retrovirus transduction. At 7 days after transduction, fifty thousands of FACS-sorted
152 GPF positive cells were transplanted into sub-lethally (6.5 Gy) γ -irradiated C57BL/6J mice
153 through retro-orbital injection. Moribund mice were euthanized with CO₂ and dissected for
154 spleen, vertebrae, femur, tibia, and hip collection. A secondary transplantation was performed
155 through transplanting two hundred thousand bone marrow cells from the first round of
156 transplantation into sub-lethally (6.5 Gy) γ -irradiated C57BL/6J mice through
157 retro-orbital injection. Moribund mice were euthanized with CO₂ and dissected for spleen,
158 vertebrae, femur, tibia, and hip collection. The bone marrow cells were stored in -80°C for
159 subsequent usage.

160 **Rescue of ADAR2/ADAR2 mutant in AE9a mouse model**

161 *ADAR2* or *ADAR2* mutants retrovirus were transduced into BM cells from AE9a leukemic
162 mice in the 2nd transplantation. At day 2 after transduction, fifty thousands of cells were
163 transplanted into sub-lethally (6.5 Gy) γ -irradiated C57BL/6J mice through
164 retro-orbital injection for Peripheral blood (PB) collection and survival monitoring. PB
165 samples (~100 μ l per mouse) were collected in EDTA-coated capillary tube (Drummond
166 Scientific, cat.no. 1-000-800/12) by submandibular venipuncture with 5-mm Goldenrod
167 animal lancets (Braintree Scientific, cat.no. GR5MM). Counts of nucleated cells was
168 performed using a NIHOKODEN auto blood cell counter under Pre-dilute 20 μ l mode.
169 Moribund mice were euthanized with CO₂ and dissected for spleen, vertebrae, femur, tibia,
170 and hip collection. BM cells harvested from moribund mice were cytospun and stained with
171 Giemsa's azur-eosin-methylene blue solution (Merck, cat.no. 109204).

172 **Statistical analysis**

173 The statistical significances were assessed by two-tailed Student's *t*-test using the Excel
174 unless otherwise specified.

ADAR2 suppresses leukemogenesis of t(8;21) AML

175 Additional details are described in the supplemental information.

176

177 **Results**

178 ***ADAR2 is significantly downregulated in CBF AML***

179 To understand the role of ADARs and their mediated RNA editing in AML, we first
180 utilized a publicly available microarray dataset¹⁹ which determined the gene-expression
181 profiles in samples of peripheral blood or bone marrow from 285 patients with AML using
182 Affymetrix U133A GeneChips. Intriguingly, although previous studies reporting the role of
183 ADAR1 and ADAR1-regulated RNA editing events are implicated in haematological
184 malignancies, we found that *ADAR2*, but not *ADAR1* and *ADAR3*, was significantly
185 downregulated in CBF AML patients (**Figure 1A**). We next analysed the RNA sequencing
186 (RNA-seq) data from TCGA. Despite a small sample size, we found that the expression level of
187 *ADAR2*, but not *ADAR1* and *ADAR3*, was significantly lower in t(8;21) or inv16 AML
188 patients than the non-t(8;21) and inv16 AML patients (**Figure 1B, Supplemental Figure 1**).
189 To experimentally validate our findings, we examined the expression level of *ADAR2* in an
190 in-house AML cohort and healthy controls. In agreement with the above-mentioned
191 expression analyses, *ADAR2* was found to be downregulated in t(8;21) AML patients when
192 compared to CBF-negative patients and healthy controls (**Figure 1C**). Altogether, ADAR2 is
193 most likely to be the only ADAR enzyme showing expression fluctuations among different
194 AML subtypes and its selective downregulation in CBF AML patients suggests a previously
195 undescribed mechanism which may lead to leukemogenesis.

196

197 **RUNX1-ETO and its truncated variant AE9a demonstrate dominant negative effects on 198 *ADAR2* transcription in t(8;21) AML**

199 Next, we investigated the mechanism underlying the downregulation of ADAR2 in t(8;21)

ADAR2 suppresses leukemogenesis of t(8;21) AML

200 AML. It is reported that the RUNX1-ETO fusion protein works as a dominant-negative
201 competitor of RUNX1 against RUNX1-mediated gene expression³²⁻³⁶, it is possible that
202 RUNX1 may transcriptionally activate *ADAR2* expression, and such a regulation may be
203 hindered by RUNX1-ETO which outcompetes RUNX1 for binding to the *ADAR2* promoter.
204 To this end, 5000 bp upstream of the transcription start site (TSS) of *ADAR2* and found four
205 putative RUNX binding sites (TGTGGT) (**Figure 2A**). To investigate whether RUNX1
206 and/or RUNX1-ETO bind to these sites, chromatin immunoprecipitation was conducted in
207 Kasumi-1 cells, a human t(8;21) AML cell line, using anti-RUNX1 (to pull down wildtype
208 RUNX1) or anti-ETO³⁷ antibody, followed by qPCR analysis of three different regions (R1,
209 R2, and R3) (**Figure 2A**). As a result, both RUNX1 and RUNX-ETO could bind to the distal
210 regulatory region of *ADAR2*, as evident from the observation that R1 and R2 regions of
211 *ADAR2* gene showed approximately 100- and 20-fold enrichment in both RUNX1 and
212 RUNX1-ETO pulldown samples compared to the IgG counterparts, respectively (**Figure 2B**).
213 We further determined whether these RUNX1 sites are essential for transcription activation
214 of *ADAR2*. We generated reporter constructs by inserting different DNA fragments (A1-A4)
215 upstream of *ADAR2* TSS. A dramatic drop in the luciferase signal was observed in Kasumi-1
216 cells when the RUNX site 1 and site 2 were deleted in the A3 fragment (**Figure 2C**),
217 indicating that site 1 and site 2 are indeed essential for the transcriptional activation of
218 *ADAR2* gene.

219 Next, upon overexpression of *RUNX1* alone (*RUNX1*) or together with *RUNX1-ETO*
220 (*RUNX1+RE*) in Kasumi-1 cells, although a significant increase in the luciferase activity of
221 the A1 fragment was detected in both conditions when compared to that of the empty vector
222 control (EV), co-transfection of *RUNX1* and *RUNX1-ETO* was found to repress the luciferase
223 activity of the A1 but not the A2 fragment induced by *RUNX1* overexpression alone (**Figure**
224 **2D**). It has been reported that alternative splicing generates a truncated variant of

ADAR2 suppresses leukemogenesis of t(8;21) AML

225 *RUNX1-ETO*, namely AML1-ETO9a (AE9a), containing an additional exon 9a, and
226 RUNX1-ETO and AE9a are co-expressed in most of AML patients with t(8;21)
227 translocation³⁸. Co-expression of RUNX1-ETO and AE9a was shown to induce a more
228 aggressive leukemic phenotype with a rapid onset of AML in a retrovirally transduced mouse
229 model³⁹. We also examined the combinatory effect of RUNX1-ETO and AE9a on the
230 luciferase activity of the A1 or A2 fragment and found that AE9a has stronger repressive
231 effect on *ADAR2* transcription than that of RUNX1-ETO (**Figure 2D, 2E**). These findings
232 suggested that RUNX1 activates *ADAR2* transcription and expression through binding to the
233 site 1 and 2 at the distal regulatory region of *ADAR2* gene, whereas RUNX1-ETO and its
234 truncated form AE9a may compete with RUNX1 for binding to the RUNX site 1 to suppress
235 *ADAR2* transcription.

236 Furthermore, we intended to confirm the dominant negative effects of RUNX1-ETO and
237 AE9a on endogenous ADAR2 expression. We first confirmed that endogenous ADAR2
238 expression could be significantly repressed by specifically knocking down *RUNX1* in
239 Kasumi-1 cells (**Figure 2F**). Next, the co-overexpression of *RUNX1* and *RUNX1-ETO* and/or
240 *AE9a* (RUNX1+RE, RUNX1+AE9a, and RUNX1+RE+AE9a) was found to repress the
241 upregulation of *ADAR2* induced by RUNX1 alone (RUNX1) (**Figure 2G**). In sum, all these
242 results support our hypothesis that RUNX1-ETO and AE9a demonstrate dominant negative
243 effects on *ADAR2* transcription and expression through outcompeting wildtype RUNX1 for
244 binding to the distal regulatory region of *ADAR2* gene.

245

246 **Restoration of ADAR2-regulated RNA editing inhibits leukemogenic ability of t(8;21)**
247 **AML cells**

248 Due to the downregulation of ADAR2, it is not surprising that ADAR2-regulated RNA
249 editome may be suppressed in t(8;21) AML. We queried whether ADAR2 may regulate

ADAR2 suppresses leukemogenesis of t(8;21) AML

250 leukemogenesis of t(8;21) AML cells through its RNA editing function. To this end, the
251 wildtype (ADAR2 WT), catalytically inactive (DeAD mutant⁴⁰), or RNA binding -depleted
252 (EAA mutant⁴¹) *ADAR2* expression construct was stably transduced in Kasumi-1 cells using
253 a retroviral system. Upon stable overexpression of wildtype ADAR2 but not the DeAD or
254 EAA mutant of ADAR2 in Kasumi-1 cells, a significant reduction in the colony-forming
255 ability of Kasumi-1 cells was observed when compared to the control cells (**Figure 3A** and
256 **3B**). This result suggested that RNA editing function of ADAR2 is required for its
257 suppressive role in leukemogenesis of t(8;21) AML.

258 Next, *COPA* (coatomer subunit α) and *COG3* (Component Of Oligomeric Golgi Complex
259 3), two reported protein-recoding editing targets regulated by ADAR2^{42,43}, were chosen to
260 study whether restoration of expression of the edited protein variant (*COPA*^{I164V} or
261 *COG3*^{I635V}) could at least partially phenocopy ADAR2-mediated suppression of
262 leukemogenesis of t(8;21) AML. We first confirmed that upon overexpression of the
263 wildtype ADAR2 but not the DeAD or EAA mutant, the editing frequencies of editing sites
264 in *COPA* and *COG3* transcripts were dramatically increased in Kasumi-1 cells
265 (**Supplemental Figure 2A, 2B**), indicating *COPA* and *COG3* are indeed ADAR2 targets in
266 t(8;21) AML cells. Moreover, overexpression of wildtype or mutant form of ADAR2 had no
267 obvious effect on the expression of COPA and COG3 (**Supplemental Figure 2C, 2D** and
268 **Figure 3C**). We next stably expressed the wildtype or edited form of COPA or COG3
269 (*COPA*^{WT} and *COPA*^{I164V}, *COG3*^{WT} and *COG3*^{I635V}) in Kasumi-1 cells (**Figure 3D-3I**).
270 Intriguingly, Kasumi-1 cells constitutionally expressing *COPA*^{I164V} or *COG3*^{I635V} but not
271 *COPA*^{WT} or *COG3*^{WT} demonstrated significantly lower colony-forming ability compared to
272 the control cells (**Figure 3J, 3K**, and **Supplemental Figure 2E, 2F**). Taken together, these
273 results suggested that restoration of ADAR2-regulated RNA editing inhibits leukemogenic
274 ability of t(8;21) AML cells.

ADAR2 suppresses leukemogenesis of t(8;21) AML

275

276 **RNA editing capability of ADAR2 is essential for its repression of leukemogenesis in an** 277 **AE9a mouse model**

278 It has been reported that co-expression of RUNX1-ETO and its truncated variant AE9a
279 leads to a rapid development of AML in an experimental mouse system³⁹, likely due to the
280 impaired transcriptional regulation of RUNX1-ETO target genes⁴⁴. We therefore established
281 an AE9a AML mouse model as reported previously³⁹ for further investigation of the role of
282 ADAR2 in t(8;21)-associated leukemogenesis (**Figure 4A**). Of note, *ADAR2* expression was
283 consistently decreased in both bone marrow (BM) cells from recipients following the 1st
284 transplantation, and in that from recipients subjected to serial dilution assay during the 2nd
285 transplantation, suggesting a negative role of ADAR2 in leukemia initiating- potential
286 (**Figure 4B**). To further investigate the function of ADAR2 in leukemogenesis *in vivo*, BM
287 cells from recipients following the 2nd transplantation were transduced with the
288 MSCV-IRES-tdTomato-hADAR2 expression construct or empty vector (**Figure 4C**,
289 **Supplemental Figure 3A, 3B**). Stably transduced cells were transplanted into
290 sublethally- (6.5Gy) γ -irradiated C57BL/6J mice for peripheral blood (PB) collection and
291 survival monitoring. PB harvested 28 days post-transplantation revealed that white blood cell
292 (WBC) counts backed to the normal region in the *ADAR2* group compared with that in the
293 empty vector group, while red blood cell (RBC) and platelet counts increased slightly in the
294 *ADAR2* group (**Figure 4D**). Moreover, overexpression of *ADAR2* significantly extended mice
295 survival (**Figure 4E**). Wright Giemsa stain confirmed that the majority of BM cells harvested
296 from the *ADAR2* group underwent differentiation, whereas in empty vector group most of
297 them were myeloblast (**Supplemental Figure 3C**). In line with a significant reduction of
298 GFP-positive population in PB from *ADAR2* transduced mice (**Supplemental Figure 3D**),

ADAR2 suppresses leukemogenesis of t(8;21) AML

299 we concluded that ADAR2 plays important function to prohibit leukemogenesis of t(8;21)
300 AML.

301 To further explore whether RNA editing function of ADAR2 is required for
302 ADAR2-mediated leukemogenesis inhibition, we overexpressed wildtype ADAR2
303 (ADAR2^{WT}) or the DeAD mutant (ADAR2^{Mut}) in BM cells from the recipients following 2nd
304 transplantation using a retrovirus-mediated transduction system. After verifying of the
305 transduction efficiency (**Figure 4F, Supplemental Figure 3E**), cells were transplanted back
306 into sub-lethally (6.5Gy) γ -irradiated C57BL/6J mice for PB collection and survival
307 monitoring. Comparing with empty vector group, lower WBC count, and higher RBC or
308 platelet count was detected in wildtype *ADAR2* group, but not in *ADAR2 DeAD* or *ADAR2*
309 *EAA* groups. (**Figure 4G**). Furthermore, although approximately 50% of ADAR2^{WT} mice
310 survived over 150 days, all ADAR2^{Mut} recipients died within 100 days, while all control mice
311 (EV) died within 50 days (**Figure 4H**). Consistently, Wright Giemsa stain revealed that loss
312 of RNA editing ability impacted ADAR2-mediated BM cell differentiation (**Supplemental**
313 **Figure 3F**). Higher percentage of AE9a (GFP)-positive cells were also detected in BM cells
314 of ADAR2^{Mut} recipients than the ADAR2^{WT} counterparts (**Supplemental Figure 3G**). Taken
315 together, these data indicate that ADAR2 suppresses leukemogenesis of t(8;21) AML via RNA
316 editing *in vivo*.

317

318 Discussion

319 A-to-I RNA editing is one of the most common posttranscriptional RNA modification
320 processes that change the DNA coding in the mammalian transcriptome. Enzymes catalysing
321 this process include ADAR1, ADAR2, ADAR3³. ADARs demonstrate specific expression
322 patterns in different tissues and environments^{45,46}. While the dysregulation of A-to-I RNA
323 editing is implicated in human diseases including multiple cancers^{6,8,10-12}, roles of RNA

ADAR2 suppresses leukemogenesis of t(8;21) AML

324 editing in leukemia, particularly ADAR2 and ADAR2-mediated RNA editing, remain largely
325 unexplored.

326 In this study, utilizing both clinical samples and mouse models, we reveal a previously
327 undescribed role of ADAR2-mediated RNA editing in leukemogenesis. Initiating with a
328 serial of analyses with different cohorts of patients with AML, we found that *ADAR2* is
329 specifically down-regulated in CBF AML patients, whereas no obvious changes in the
330 expression levels of *ADAR1* and *ADAR3* among different subtypes of AML. Mechanistically,
331 we found that the wildtype RUNX1 activates expression of *ADAR2* transcriptionally through
332 two distal RUNX binding sites (1 and 2) upstream of the TSS of *ADAR2* gene, whereas
333 RUNX1-ETO and its truncated variant AE9a suppress RUNX1-mediated activation of
334 *ADAR2* transcription in a dominant-negative manner, likely by outcompeting RUNX1 for
335 binding to the site 1. Due to the fact that ADAR2 can suppress the development and/or
336 progression of solid tumours such as HCC and CRC through RNA editing^{42,47}, it prompted us
337 to study whether ADAR2 may lead to leukemogenesis of t(8;21) AML via its RNA editing
338 function. Indeed, as evident from our cell line-based studies and mouse experiments, ADAR2
339 prohibits leukemogenesis of t(8;21) AML dependent of its RNA editing ability. It is an
340 exciting discovery on the role of RNA editing in t(8;21) AML. Previous studies on this AML
341 subtype mainly focus on the changes of gene expression patterns or chromatin status⁴⁸; and
342 the gap between AML and RNA editing is still open. Our results showed that restoration of
343 ADAR2 level in AE9a-positive BM cells significantly prolongs survival of recipients,
344 whereas RNA editing-deficient form has very limited rescue efficiency. This finding clearly
345 indicates that ADAR2 and its mediated RNA editing is of biological importance to inhibit
346 leukemogenesis in t(8;21) AML. Of note, the limited rescue effect of the editing-deficient
347 *ADAR2*^{Mut} is likely to be attributed to the RNA editing-independent functions of ADAR2.
348 For example, ADARs can regulate microRNA maturation through interaction with Dicer⁴⁹.

ADAR2 suppresses leukemogenesis of t(8;21) AML

349 ADAR2 enhances target mRNA stability by limiting the interaction of RNA-destabilizing
350 proteins with their cognate substrates⁵⁰. In general, our study sheds a new light on a novel
351 role of ADAR2 in suppressing leukemogenesis of t(8;21) AML via RNA editing.

352 In line with other studies, our study further emphasizes the importance of RNA
353 metabolism in AML and opens a new avenue for the development of RNA therapies for
354 AML. Functions of RNA processing steps such as splicing, polyadenylation, RNA
355 modifications and RNA editing in AML remain completely unknown until recent years. For
356 example, leukemogenesis through reducing of N6-methyladenosine (m⁶A) RNA modification
357 by FTO (Fat Mass and Obesity-associated protein) is firstly discovered in 2017⁵¹. Since then,
358 numbers of studies from several groups described the importance of m⁶A modification in
359 normal hematopoiesis and AML, suggesting m⁶A RNA modification as a potential process
360 for AML therapy⁵²⁻⁵⁹. Similar to m⁶A RNA modification, A-to-I RNA editing is the most
361 prevalent type of RNA editing in mammals. Our result revealed that restoration of
362 ADAR2-mediated RNA editing of COG3^{I635V} and COPA^{I164V} could inhibit colony-forming
363 of Kasumi-1 cells. Together with previous findings that COG3^{I635V} could increase cell
364 viability in multiple normal human cell lines and drug sensitivity including MEK inhibitors⁹
365 and COPA^{I164V} functions as a dominant negative form which represses the oncogenic
366 function of the unedited and wildtype COPA (COPA^{WT})⁴², our results suggest a novel
367 therapeutic strategy by restoring edited RNAs. Notably, in the present study, only two
368 ADAR2-regulated editing targets were tested in cell culture-based experiments. To perform a
369 transcriptome-wide identification of ADAR2 target genes in different cell populations/types,
370 single cell RNA-seq will be required, and the functional importance of potential editing
371 targets needs to be verified by conducting rescue experiments in mouse AML model or pre-
372 clinical AML model such as AML patient-derived organoids (PDOs).

373 Another interesting finding is the involvement of CBF complex in regulation of *ADAR2*

ADAR2 suppresses leukemogenesis of t(8;21) AML

374 transcription and expression. Expression of *ADARs* is commonly dysregulated in multiple
375 cancer types. For instance, expression of *ADAR1* is dysregulated in esophageal squamous cell
376 carcinoma (ESCC), HCC, gastric cancer, cervical cancer, lung cancer, and breast cancer, and
377 disruption of *ADAR2* expression was detected in gastric cancer, HCC, ESCC, and
378 glioblastoma^{6,7,12,13,60-67}. However, the regulatory mechanisms leading to dysregulation of
379 *ADARs* expression remain elusive. In our study, we found that RUNX1-ETO and AE9a
380 demonstrate dominant negative effects on *ADAR2* transcription and expression through
381 outcompeting wildtype RUNX1 for binding to the distal regulatory region of *ADAR2* gene.
382 Since both RUNX1 and ADAR2 express in multiple organs, it is possible that such regulatory
383 mechanism commonly presents in other tissues. On the other hand, besides t(8;21) AML,
384 *ADAR2* was also significantly downregulated in the other type of CBF leukemia- inv(16)
385 which generates *CBFβ-MYH11* fusion gene. As the *CBFβ-MYH11* fusion protein retains the
386 ability to bind RUNX1 with increased affinity as compared to *CBFβ*, thereby sequestering
387 RUNX proteins from their target genes⁶⁸⁻⁷¹. This may account for the downregulation of
388 *ADAR2* in inv(16) AML patients and also provides a hint on the regulation of *ADAR2*
389 expression by CBF complex, which remains for our further investigation. Of note, changes in
390 chromatin accessibility regulates transcription of *ALKBH5*, an important m⁶A demethylase
391 required for maintaining leukemia stem cells (LSCs) function⁷². Due to the fact that
392 chromatin status, such as histone modifications and chromatin interactions, plays important
393 role in hematopoiesis^{73,74}, another aspect to consider is that the regulation of *ADAR2*
394 expression through dynamic changes of chromatin status. In sum, our findings shed new light
395 on future studies of dysregulated *ADAR2* transcription and expression as well as their RNA
396 editing-dependent or independent biological implications in multiple diseases including
397 cancers.

398 **Acknowledgement**

ADAR2 suppresses leukemogenesis of t(8;21) AML

399 We thank Michelle, Mok Meng Huang for assistance with flow cytometry experiments
400 and Wright Giemsa stain and thank Dr. Sudhakar Jha for providing the pMSCV-flag-puro
401 plasmid. This research was supported by the Singapore Ministry of Health's National
402 Medical Research Council (NMRC), the Singapore National Research Foundation (NRF), the
403 Singapore Ministry of Education (MOE) under its Research Centres of Excellence initiative
404 (RCE), and the U.S. National Institutes of Health (NIH) with following detail: Singapore
405 Translational Research (STaR) Investigator Award, NIH Grants 1R35CA197697 and P01
406 HL131477 to D.G.T., MOE Tier 2 Grants MOE2018-T2-1-005 and MOE2019-T2-2-008,
407 NMRC Clinician Scientist-Individual Research Grant (CS-IRG: MOH-CIRG18nov-0007,
408 Project ID: MOH-000214) to L.C., NMRC Open Fund-Young Individual Research Grant
409 MOH-OFYIRG20nov-0011 and MOE Research Scholarship Block (RSB) Grant
410 N-171-000-019-001 to Q.Z., as well as MOE Tier 3 Grant (MOE2014-T3-1-006) to D.G.T.
411 and L.C.

412 **Authorship Contributions**

413 D.G.T. and L.C. conceived and co-supervised the study with Q.Z. D.G.T., L.C., M.G.,
414 T.H.M.C., and Q.Z. designed the experiments. M.G. and T.H.M.C. performed all experiments
415 with input from Y.S. and V.H.E.N. H.Y. and O.A. conducted all bioinformatics analyses.
416 Z.H.T. and V.H.E.N. assisted with mouse experiments. W.J.C. and M.O. provided the
417 leukemia clinical samples. D.G.T., L.C, Q.Z and M.G. wrote the manuscript with input from
418 T.H.M.C and X.C.

419 **Disclosure of Conflicts of Interest**

420 All authors declare that they have no competing interest.

ADAR2 suppresses leukemogenesis of t(8;21) AML

421 References

- 422 1. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. *Annu Rev Biochem.* 2010;79:321-349.
- 423 2. Keegan LP, Leroy A, Sproul D, O'Connell MA. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. *Genome Biol.* 2004;5(2):209.
- 424 3. Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seuberg PH. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. *J Biol Chem.* 1996;271(50):31795-31798.
- 425 4. Morse DP, Aruscavage PJ, Bass BL. RNA hairpins in noncoding regions of human brain and *Caenorhabditis elegans* mRNA are edited by adenosine deaminases that act on RNA. *Proc Natl Acad Sci U S A.* 2002;99(12):7906-7911.
- 426 5. Fumagalli D, Gacquer D, Rothe F, et al. Principles Governing A-to-I RNA Editing in the Breast Cancer Transcriptome. *Cell Rep.* 2015;13(2):277-289.
- 427 6. Chan TH, Lin CH, Qi L, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. *Gut.* 2014;63(5):832-843.
- 428 7. Chan TH, Qamra A, Tan KT, et al. ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer. *Gastroenterology.* 2016;151(4):637-650 e610.
- 429 8. Chen L, Li Y, Lin CH, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. *Nat Med.* 2013;19(2):209-216.
- 430 9. Han L, Diao L, Yu S, et al. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. *Cancer Cell.* 2015;28(4):515-528.
- 431 10. Han SW, Kim HP, Shin JY, et al. RNA editing in RHOQ promotes invasion potential in colorectal cancer. *J Exp Med.* 2014;211(4):613-621.
- 432 11. Martinez HD, Jasavala RJ, Hinkson I, et al. RNA editing of androgen receptor gene transcripts in prostate cancer cells. *J Biol Chem.* 2008;283(44):29938-29949.
- 433 12. Galeano F, Rossetti C, Tomaselli S, et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. *Oncogene.* 2013;32(8):998-1009.
- 434 13. Chen YB, Liao XY, Zhang JB, et al. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. *Int J Oncol.* 2017;50(2):622-630.
- 435 14. Lazzari E, Mondala PK, Santos ND, et al. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. *Nat Commun.* 2017;8(1):1922.
- 436 15. Teoh PJ, An O, Chung TH, et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. *Blood.* 2018;132(12):1304-1317.
- 437 16. Jiang Q, Isquith J, Zipeto MA, et al. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. *Cancer Cell.* 2019;35(1):81-94 e87.
- 438 17. Jiang Q, Crews LA, Barrett CL, et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. *Proc Natl Acad Sci U S A.* 2013;110(3):1041-1046.
- 439 18. Zipeto MA, Court AC, Sadarangani A, et al. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. *Cell Stem Cell.* 2016;19(2):177-191.
- 440 19. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. *N Engl J Med.* 2004;350(16):1617-1628.
- 441 20. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat Genet.* 2013;45(10):1113-1120.

ADAR2 suppresses leukemogenesis of t(8;21) AML

469 21. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are
470 predictive of induction success, cumulative incidence of relapse, and overall survival in adult
471 patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B
472 (CALGB 8461). *Blood*. 2002;100(13):4325-4336.

473 22. Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute
474 myeloid leukemia. *N Engl J Med*. 2009;361(13):1249-1259.

475 23. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on
476 outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The
477 Medical Research Council Adult and Children's Leukaemia Working Parties. *Blood*.
478 1998;92(7):2322-2333.

479 24. Stengel KR, Ellis JD, Spielman CL, Bomber ML, Hiebert SW. Definition of a small
480 core transcriptional circuit regulated by AML1-ETO. *Mol Cell*. 2021;81(3):530-545 e535.

481 25. Vangala RK, Heiss-Neumann MS, Rangatia JS, et al. The myeloid master regulator
482 transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. *Blood*.
483 2003;101(1):270-277.

484 26. Pabst T, Mueller BU. Transcriptional dysregulation during myeloid transformation in
485 AML. *Oncogene*. 2007;26(47):6829-6837.

486 27. Choi Y, Elagib KE, Delehanty LL, Goldfarb AN. Erythroid inhibition by the
487 leukemic fusion AML1-ETO is associated with impaired acetylation of the major erythroid
488 transcription factor GATA-1. *Cancer Res*. 2006;66(6):2990-2996.

489 28. Wang L, Gural A, Sun XJ, et al. The leukemogenicity of AML1-ETO is dependent on
490 site-specific lysine acetylation. *Science*. 2011;333(6043):765-769.

491 29. Shia WJ, Okumura AJ, Yan M, et al. PRMT1 interacts with AML1-ETO to promote
492 its transcriptional activation and progenitor cell proliferative potential. *Blood*.
493 2012;119(21):4953-4962.

494 30. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression
495 of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine
496 model of human t(8;21) acute myeloid leukemia. *Cancer Cell*. 2002;1(1):63-74.

497 31. Schessl C, Rawat VP, Cusan M, et al. The AML1-ETO fusion gene and the FLT3
498 length mutation collaborate in inducing acute leukemia in mice. *J Clin Invest*.
499 2005;115(8):2159-2168.

500 32. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA. Aberrant
501 recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute
502 myeloid leukemia fusion partner ETO. *Mol Cell Biol*. 1998;18(12):7185-7191.

503 33. Lutterbach B, Westendorf JJ, Linggi B, et al. ETO, a target of t(8;21) in acute
504 leukemia, interacts with the N-CoR and mSin3 corepressors. *Mol Cell Biol*.
505 1998;18(12):7176-7184.

506 34. Trinh BQ, Ummarino S, Zhang Y, et al. Myeloid lncRNA LOUP Mediates Opposing
507 Regulatory Effects of RUNX1 and RUNX1-ETO in t(8;21) AML. *Blood*. 2021.

508 35. van der Kouwe E, Heller G, Czibere A, et al. Core binding factor leukemia hijacks T-
509 cell prone PU.1 antisense promoter. *Blood*. 2021.

510 36. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21)
511 acute myeloid leukemia, represses transcription by interaction with the human N-
512 CoR/mSin3/HDAC1 complex. *Proc Natl Acad Sci U S A*. 1998;95(18):10860-10865.

513 37. Johnson DT, Davis AG, Zhou JH, Ball ED, Zhang DE. MicroRNA let-7b
514 downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3'UTR. *Exp
515 Hematol Oncol*. 2021;10(1):8.

516 38. Miao YQ, Chen ZX, He J, et al. [Expression of AML1/ETO9a isoform in acute
517 myeloid leukemia-M2 subtype]. *Zhonghua Xue Ye Xue Za Zhi*. 2007;28(1):27-29.

ADAR2 suppresses leukemogenesis of t(8;21) AML

518 39. Yan M, Kanbe E, Peterson LF, et al. A previously unidentified alternatively spliced
519 isoform of t(8;21) transcript promotes leukemogenesis. *Nat Med.* 2006;12(8):945-949.

520 40. Lai F, Drakas R, Nishikura K. Mutagenic analysis of double-stranded RNA adenosine
521 deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. *J
522 Biol Chem.* 1995;270(29):17098-17105.

523 41. Valente L, Nishikura K. RNA binding-independent dimerization of adenosine
524 deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer
525 functions. *J Biol Chem.* 2007;282(22):16054-16061.

526 42. Song Y, An O, Ren X, et al. RNA editing mediates the functional switch of COPA in
527 a novel mechanism of hepatocarcinogenesis. *J Hepatol.* 2021;74(1):135-147.

528 43. Monteleone LR, Matthews MM, Palumbo CM, et al. A Bump-Hole Approach for
529 Directed RNA Editing. *Cell Chem Biol.* 2019;26(2):269-277 e265.

530 44. Link KA, Lin S, Shrestha M, et al. Supraphysiologic levels of the AML1-ETO
531 isoform AE9a are essential for transformation. *Proc Natl Acad Sci U S A.*
532 2016;113(32):9075-9080.

533 45. Paupard MC, O'Connell MA, Gerber AP, Zukin RS. Patterns of developmental
534 expression of the RNA editing enzyme rADAR2. *Neuroscience.* 2000;95(3):869-879.

535 46. Sansam CL, Wells KS, Emeson RB. Modulation of RNA editing by functional
536 nucleolar sequestration of ADAR2. *Proc Natl Acad Sci U S A.* 2003;100(24):14018-14023.

537 47. Shelton PM, Duran A, Nakanishi Y, et al. The Secretion of miR-200s by a
538 PKCzeta/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. *Cell Rep.*
539 2018;23(4):1178-1191.

540 48. Nafria M, Keane P, Ng ES, Stanley EG, Elefanti AG, Bonifer C. Expression of
541 RUNX1-ETO Rapidly Alters the Chromatin Landscape and Growth of Early Human Myeloid
542 Precursor Cells. *Cell Rep.* 2020;31(8):107691.

543 49. Qi L, Song Y, Chan THM, et al. An RNA editing/dsRNA binding-independent gene
544 regulatory mechanism of ADARs and its clinical implication in cancer. *Nucleic Acids Res.*
545 2017;45(18):10436-10451.

546 50. Anantharaman A, Tripathi V, Khan A, et al. ADAR2 regulates RNA stability by
547 modifying access of decay-promoting RNA-binding proteins. *Nucleic Acids Res.*
548 2017;45(7):4189-4201.

549 51. Li Z, Weng H, Su R, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia
550 as a N(6)-Methyladenosine RNA Demethylase. *Cancer Cell.* 2017;31(1):127-141.

551 52. Shen C, Sheng Y, Zhu AC, et al. RNA Demethylase ALKBH5 Selectively Promotes
552 Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. *Cell Stem
553 Cell.* 2020;27(1):64-80 e69.

554 53. Calvanese V, Nguyen AT, Bolan TJ, et al. MLLT3 governs human hematopoietic
555 stem-cell self-renewal and engraftment. *Nature.* 2019;576(7786):281-286.

556 54. Paris J, Morgan M, Campos J, et al. Targeting the RNA m(6)A Reader YTHDF2
557 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. *Cell Stem Cell.*
558 2019;25(1):137-148 e136.

559 55. Wang H, Zuo H, Liu J, et al. Loss of YTHDF2-mediated m(6)A-dependent mRNA
560 clearance facilitates hematopoietic stem cell regeneration. *Cell Res.* 2018;28(10):1035-1038.

561 56. Weng H, Huang H, Wu H, et al. METTL14 Inhibits Hematopoietic Stem/Progenitor
562 Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. *Cell Stem
563 Cell.* 2018;22(2):191-205 e199.

564 57. Su R, Dong L, Li C, et al. R-2HG Exhibits Anti-tumor Activity by Targeting
565 FTO/m(6)A/MYC/CEBPA Signaling. *Cell.* 2018;172(1-2):90-105 e123.

566 58. Zhang C, Chen Y, Sun B, et al. m(6)A modulates hematopoietic stem and progenitor
567 cell specification. *Nature.* 2017;549(7671):273-276.

ADAR2 suppresses leukemogenesis of t(8;21) AML

568 59. Vu LP, Pickering BF, Cheng Y, et al. The N(6)-methyladenosine (m₆A)-forming
569 enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia
570 cells. *Nat Med.* 2017;23(11):1369-1376.

571 60. Fritzell K, Xu LD, Lagergren J, Ohman M. ADARs and editing: The role of A-to-I
572 RNA modification in cancer progression. *Semin Cell Dev Biol.* 2018;79:123-130.

573 61. Qin YR, Qiao JJ, Chan TH, et al. Adenosine-to-inosine RNA editing mediated by
574 ADARs in esophageal squamous cell carcinoma. *Cancer Res.* 2014;74(3):840-851.

575 62. Anadon C, Guil S, Simo-Riudalbas L, et al. Gene amplification-associated
576 overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.
577 *Oncogene.* 2016;35(33):4407-4413.

578 63. Song IH, Kim YA, Heo SH, et al. ADAR1 expression is associated with tumour-
579 infiltrating lymphocytes in triple-negative breast cancer. *Tumour Biol.*
580 2017;39(10):1010428317734816.

581 64. Maas S, Patt S, Schrey M, Rich A. Underediting of glutamate receptor GluR-B
582 mRNA in malignant gliomas. *Proc Natl Acad Sci U S A.* 2001;98(25):14687-14692.

583 65. Cesarini V, Silvestris DA, Tassinari V, et al. ADAR2/miR-589-3p axis controls
584 glioblastoma cell migration/invasion. *Nucleic Acids Res.* 2018;46(4):2045-2059.

585 66. Li Z, Tian Y, Tian N, et al. Aberrant alternative splicing pattern of ADAR2
586 downregulates adenosine-to-inosine editing in glioma. *Oncol Rep.* 2015;33(6):2845-2852.

587 67. Paul D, Sinha AN, Ray A, et al. A-to-I editing in human miRNAs is enriched in seed
588 sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma
589 multiforme. *Sci Rep.* 2017;7(1):2466.

590 68. Adya N, Stacy T, Speck NA, Liu PP. The leukemic protein core binding factor beta
591 (CBF β)-smooth-muscle myosin heavy chain sequesters CBF α 2 into cytoskeletal
592 filaments and aggregates. *Mol Cell Biol.* 1998;18(12):7432-7443.

593 69. Huang G, Shigesada K, Wee HJ, Liu PP, Osato M, Ito Y. Molecular basis for a
594 dominant inactivation of RUNX1/AML1 by the leukemogenic inversion 16 chimera. *Blood.*
595 2004;103(8):3200-3207.

596 70. Kanno Y, Kanno T, Sakakura C, Bae SC, Ito Y. Cytoplasmic sequestration of the
597 polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor alpha (CBF α)
598 subunit by the leukemia-related PEBP2/CBF β -SMMHC fusion protein inhibits
599 PEBP2/CBF-mediated transactivation. *Mol Cell Biol.* 1998;18(7):4252-4261.

600 71. Wijmenga C, Gregory PE, Hajra A, et al. Core binding factor beta-smooth muscle
601 myosin heavy chain chimeric protein involved in acute myeloid leukemia forms unusual
602 nuclear rod-like structures in transformed NIH 3T3 cells. *Proc Natl Acad Sci U S A.*
603 1996;93(4):1630-1635.

604 72. Wang J, Li Y, Wang P, et al. Leukemogenic Chromatin Alterations Promote AML
605 Leukemia Stem Cells via a KDM4C-ALKB β -AXL Signaling Axis. *Cell Stem Cell.*
606 2020;27(1):81-97 e88.

607 73. Zhou Q, Yu M, Tirado-Magallanes R, et al. ZNF143 mediates CTCF-bound
608 promoter-enhancer loops required for murine hematopoietic stem and progenitor cell
609 function. *Nat Commun.* 2021;12(1):43.

610 74. Numata A, Kwok HS, Zhou QL, et al. Lysine acetyltransferase Tip60 is required for
611 hematopoietic stem cell maintenance. *Blood.* 2020;136(15):1735-1747.

612

613

ADAR2 suppresses leukemogenesis of t(8;21) AML

614 **Figure legends**

615 **Figure 1. ADAR2 is selectively downregulated in CBF AMLs.**

616 **A)** Expression levels of ADAR1, ADAR2, and ADAR3 in healthy donors (n = 8) and
617 different subtypes of AML patients (n=108) (****, $p < 0.0001$, n.s., not significant; two-
618 tailed Student's *t*-test). Gene expression analysis was conducted a publicly available
619 Affymetrix microarray dataset downloaded from the GEO database (GSE1159)¹⁹. The level
620 of expression of a particular gene is reflected by the intensity of hybridization of labelled
621 messenger RNA (mRNA) to gene-specific probe sets (10 to 20 oligonucleotides per gene)¹⁹.
622 **B)** Expression of *ADAR1*, *ADAR2*, *ADAR3* in t(8;21) AML patients (n=7) and the control
623 group including AML patients without t(8;21) and inv16 (n=10), from TCGA. (**, $p < 0.01$,
624 n.s., not significant; two-tailed Student's *t*-test)
625 **C)** Quantitative PCR (qPCR) analysis of *ADAR2* transcript level in leukemic blasts isolated
626 from t(8;21)-positive (n=11) and CBF-negative (n=24) AML patients as well as CD34-
627 positive cells isolated from bone marrow samples of healthy individuals (n=16). Data are
628 presented as the mean \pm SD of technical triplicates from a representative experiment. (**, $p <$
629 0.01, ****, $p < 0.001$, n.s., not significant; two-tailed Student's *t*-test.)

630

631 **Figure 2. RUNX1-ETO and its truncated variant AE9a demonstrate dominant negative
632 effects on ADAR2 transcription in t(8;21) AML.**

633 **A)** Schematic diagram of the RUNX1 binding sites along the 4kb region upstream of the
634 transcription start site (TSS) of *ADAR2* gene. Number indicates the position with respect to
635 the *ADAR2* TSS which is at position -1. Black bars indicate four putative RUNX1 binding
636 sites. The locations of primers used for ChIP-qPCR experiments are indicated by black
637 arrows. Primers were designed to amplify R1, R2, and R3 regions which cover site 1, site 2 &
638 3, and site 4, respectively.

639 **B)** ChIP-quantitative PCR (ChIP-qPCR) analysis of the binding of RUNX1 or RUNX1-ETO
640 protein to the indicated regulatory region (R1, R2, and R3) upstream of the TSS of *ADAR2*
641 gene in Kasumi-1 cells, using anti-RUNX1 or anti-ETO antibody respectively. IgG was used
642 as a negative control. Data are presented as the mean \pm SD of technical triplicates from a
643 representative experiment. The anti-RUNX1 antibody recognizes the N-terminal portion of
644 RUNX1 protein; while the anti-ETO antibody was used for immunoprecipitation to
645 specifically pull down RUNX1-ETO in Kasumi-1 cells which do not express wildtype ETO
646 protein.

ADAR2 suppresses leukemogenesis of t(8;21) AML

647 **C)** Bar charts demonstrate the luciferase activities associated with each of the indicated
648 sequences upstream of the TSS of *ADAR2*. HEK293T cells were transfected with each of the
649 indicated reporter constructs containing A1, A2, A3, or A4 fragment. S1-S4, site 1, 2, 3 and
650 4. Luciferase activity of each reporter construct is normalized to the pGL3 empty vector
651 control and defined as ‘Relative luciferase activity’. Data are presented as the mean \pm SD of
652 three independent experiments.

653 **D)** Bar charts demonstrate the luciferase activities associated with the A1 fragment in
654 HEK293T cells that were transfected with *RUNX1* alone, or *RUNX1* together with *RUNX1-*
655 *ETO* or *AE9a* (*RUNX1*, *RUNX1*+RE, or *RUNX1*+*AE9a* respectively). To calculate the fold
656 change of the luciferase activity, luciferase activity associated with the A1 fragment detected
657 in the indicated group was divided by that of the empty vector (EV) control. Data are
658 presented as the mean \pm SD of three independent experiments.

659 **E)** Bar charts demonstrate the luciferase activities associated with the A2 fragment in
660 HEK293T cells that were transfected with *RUNX1* alone, or *RUNX1* together with *RUNX1-*
661 *ETO* or *AE9a* (*RUNX1*, *RUNX1*+RE, or *RUNX1*+*AE9a* respectively). Data are calculated
662 and presented using the same method as described in **D**). Data are presented as the mean \pm
663 SD of three independent experiments.

664 **F)** Semi-quantitative PCR (qPCR) analysis of *RUNX1*, *RUNX1-ETO/AE9a*, and *ADAR2*
665 mRNA expression in Kasumi-1 cells, upon shRNA-mediated knockdown of *RUNX1*
666 (shRUNX1-2 and shRUNX1-3). The relative expression of each gene in the indicated group
667 of cells was calculated by the formula $2^{-\Delta CT}$ ($\Delta CT = CT_{(gene)} - CT_{(\beta\text{-actin})}$) and then normalized
668 to the scramble shRNA control counterpart (PLKO.1 shSCR, defined as 1.0). Data are
669 presented as mean \pm SD. of three independent experiments (****, $p < 0.0001$, n.s., not
670 significant; two-tailed Student’s *t*-test.)

671 **G)** qPCR analysis of *RUNX1*, *RUNX1-ETO/AE9a*, and *ADAR2* mRNA expression in
672 Kasumi-1 cells, upon overexpression of empty vector (Plenti6-EV), *RUNX1* alone, *RUNX1*
673 together with *RUNX1-ETO* or *AE9a*, or *RUNX1* together with *RUNX1-ETO* and *AE9a*
674 (*RUNX1*, *RUNX1*+RE, *RUNX1*+*AE9a*, or *RUNX1*+RE+*AE9a*). Data are calculated and
675 presented using the same method as described in **F**) (****, $p < 0.0001$, ***, $p < 0.001$, **, p
676 < 0.01 , *, $p < 0.05$, n.s., not significant; two-tailed Student’s *t*-test). Data are presented as the
677 mean \pm SD of technical triplicates from a representative experiment.

678

679

ADAR2 suppresses leukemogenesis of t(8;21) AML

680 **Figure 3. Rescue of ADAR2-repressed clonogenic growth of Kasumi-1 cells through**
681 **stable overexpression of COPA^{I164V} or COG3^{I635V}.**

682 **A)** Western blot analysis of ADAR2 protein in Kasumi-1 cells stably overexpressed with the
683 wildtype or mutant form of *ADAR2* by a retrovirus-mediated transduction system. GAPDH
684 was used as a loading control. WT, wildtype ADAR2; DeAD, ADAR2 DeAD mutant; EAA,
685 ADAR2 EAA mutant; EV, empty vector.

686 **B)** Bar chart represents the number of colonies formed by the same group of cells as
687 described in **A**). Data are presented as the mean \pm SD of technical replicates from a
688 representative experiment of three independent experiments. (*, $p < 0.05$, n.s., not
689 significant; two-tailed Student's *t*-test.)

690 **C)** Western blot analysis of COG3 or COPA protein expression in the same samples as
691 described in **A**). GAPDH was used as a loading control.

692 **D)** qPCR analysis of *COG3* transcript level in Kasumi-1 cells stably overexpressing the
693 wildtype or edited COG3 (*COG3^{WT}* or *COG3^{I635V}*) or the MSCV-PURO empty vector (EV)
694 control. Data are presented as the mean \pm SD of technical triplicates from a representative
695 experiment of three independent experiments. (****, $p < 0.0001$, two-tailed Student's *t*-test.)

696 **E)** Western blot analysis of COG3 protein level in the same samples as described in **E**).
697 GAPDH was used as a loading control.

698 **F)** Sequence chromatograms illustrate the editing level of *COG3* transcripts in the same
699 samples as described in **D**). The arrow indicates the editing position.

700 **G, H)** qPCR **G)** or western blot **H)** analysis of COPA expression at transcript or protein level
701 respectively, in Kasumi-1 cells stably overexpressing the wildtype or edited COPA (*COPA^{WT}*
702 or *COPA^{I164V}*) or the MSCV-PURO empty vector (EV) control. Data are presented as the
703 mean \pm SD of technical triplicates from two representative experiment of three independent
704 experiments. (****, $p < 0.0001$, two-tailed Student's *t*-test.)

705 **I)** Sequence chromatograms illustrate the editing level of *COPA* transcripts in the same
706 samples as described in **G-H**). The arrow indicates the editing position.

707 **J, K)** Bar chart represents the number of colonies formed by the same group of cells as
708 described in **D**) and **G, H**). Data are presented as the mean \pm SD of technical replicates from
709 one representative experiment from D) and two from G, H) of three independent experiments.
710 (**, $p < 0.01$, n.s., not significant; two-tailed Student's *t*-test.)

711

712

ADAR2 suppresses leukemogenesis of t(8;21) AML

713 **Figure 4. RNA editing capability of ADAR2 is essential for its repression of**
714 **leukemogenesis in an AE9a mouse model**

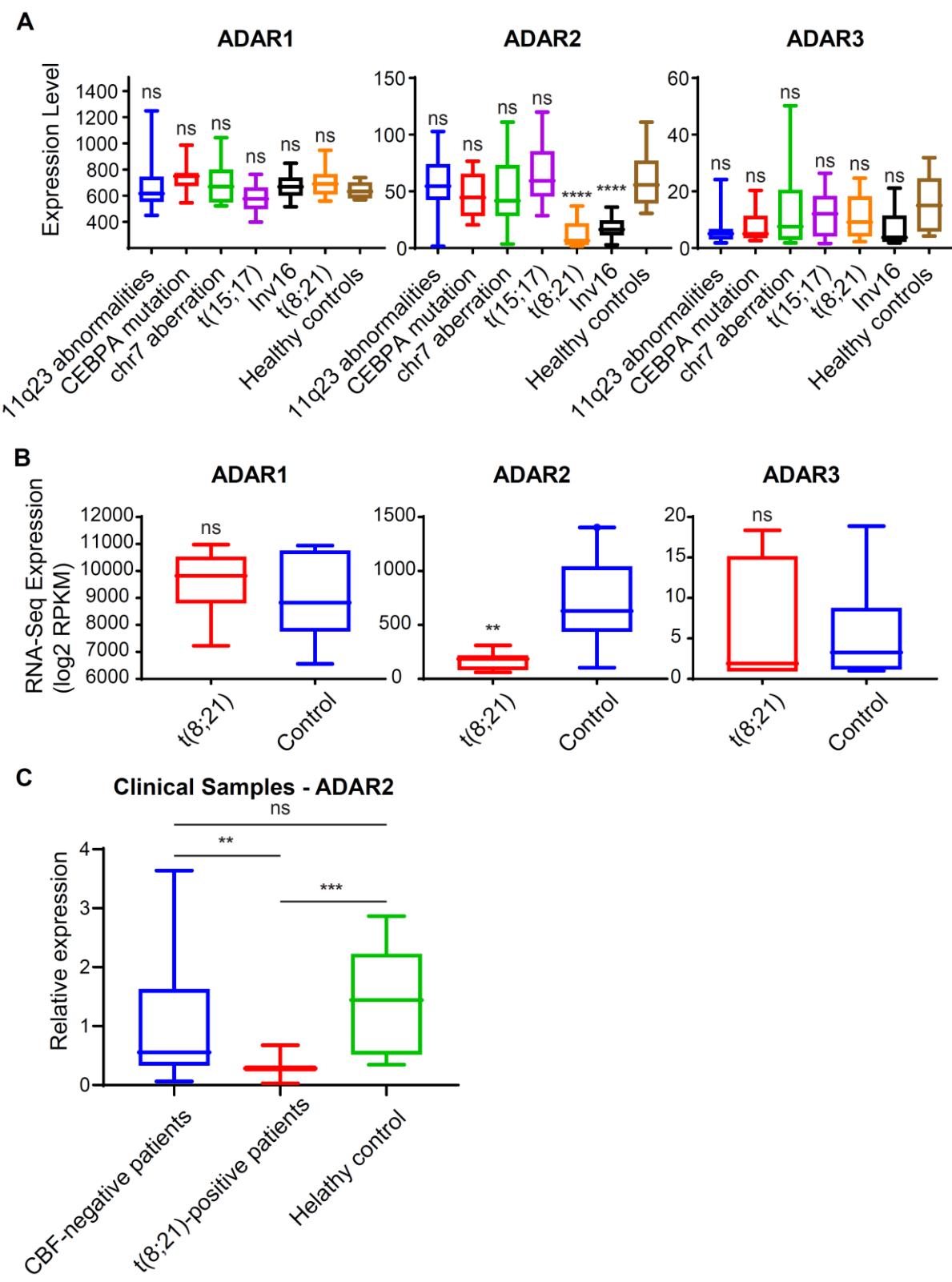
715 **A)** Experimental strategy for AE9a bone marrow transplantation mouse model.

716 **B)** qPCR analyses of *ADAR2* transcript in BM cells from moribund mice in the 1st
717 transplantation and in the 2nd transplantation injected with different number of AE9a cells
718 (200k, 100k, 50k). Data are presented as the mean ± SD of technical triplicates from a
719 representative experiment. (**p < 0.01, *p < 0.05, two-tailed Student's t-test)

720 **C)** Western blot analysis of ADAR2 protein expression in AE9a BM cells stably
721 overexpressing ADAR2 or the MSCV-IRES-tdTOMATO empty vector (EV).

722 **D)** Dot plot represents counts of white blood cell (WBC), red blood cell (RBC), and platelet
723 in the peripheral blood from recipients at 28 days post-transplantation of AE9a AML cells
724 stably overexpressing ADAR2 or the MSCV-IRES-tdTOMATO empty vector (EV). n=5 in
725 each group.

726 **E)** Kaplan–Meyer survival curve of recipients transplanted with 50,000 AE9a AML cells
727 stably overexpressing ADAR2 or MSCV-IRES-tdTOMATO empty vector (EV). n=16 in
728 each group. Statistical analysis is performed using Log-rank (Mantle-Cox) test. (**p <
729 0.001).


730 **F)** Western blot analysis of ADAR2^{WT} or ADAR2^{Mut} protein expression in BM cells from the
731 same recipients as described in E). Actin was used as a loading control.

732 **G.** Dot plot represents counts of white blood cell (WBC), red blood cell (RBC), and platelet
733 in the peripheral blood from recipients at 45 days post-transplantation of AE9a AML cells
734 stably overexpressing of ADAR2^{WT} (n=6), ADAR2^{Mut} (n=5), or MSCV-IRES-tdTOMATO
735 empty vector (n=6).

736 **H)** Kaplan–Meyer survival curve of recipients transplanted with 50k AE9a AML cells stably
737 overexpressing of ADAR2^{WT} (n=9), ADAR2^{Mut} (n=7), or MSCV-IRES-tdTOMATO empty
738 vector (EV) (n=9). Statistical analysis is performed using Log-rank (Mantle-Cox) test. (****p
739 < 0.0001, ***p < 0.001.)

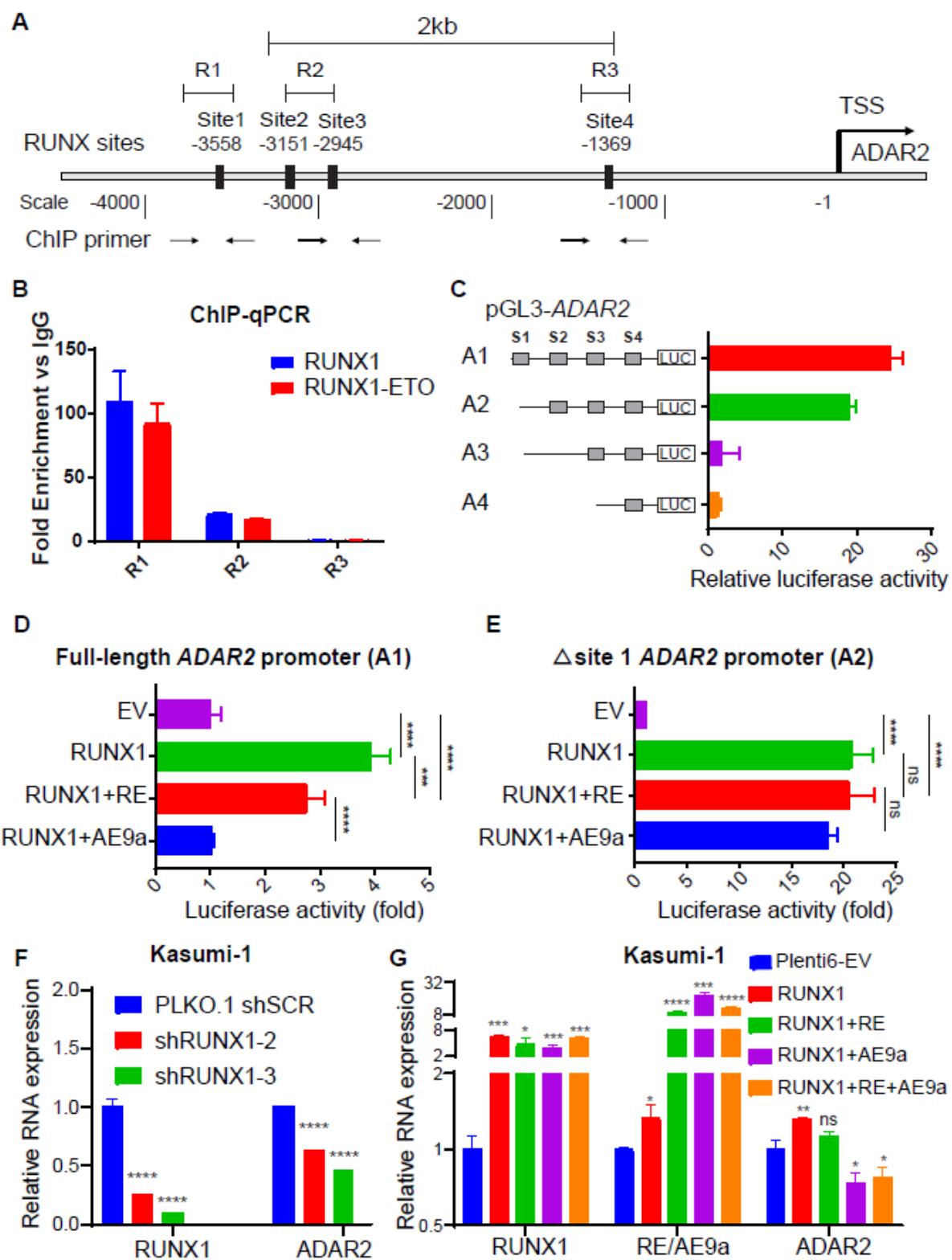
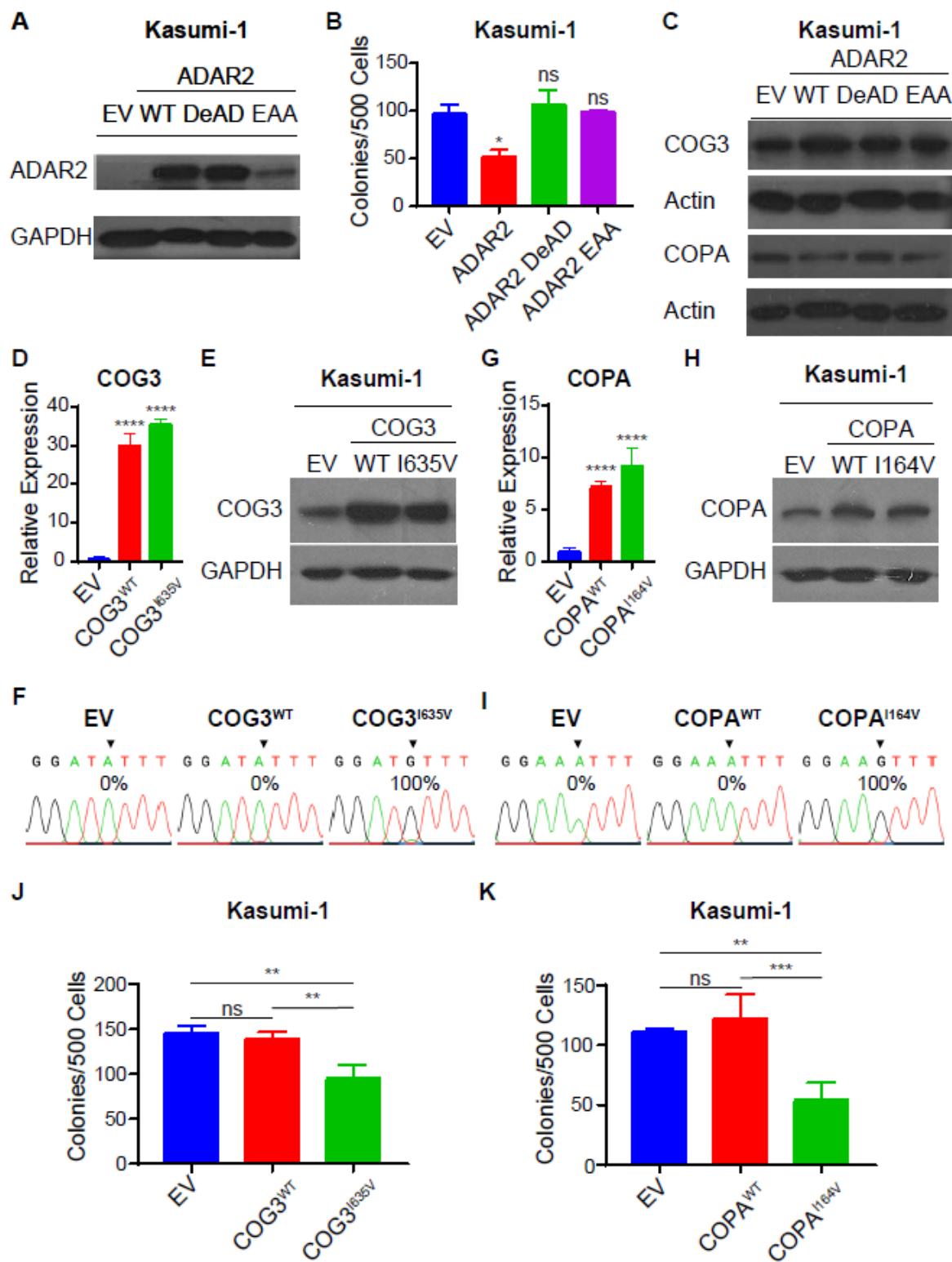

ADAR2 suppresses leukemogenesis of t(8;21) AML

Figure 1

ADAR2 suppresses leukemogenesis of t(8;21) AML

Figure 2

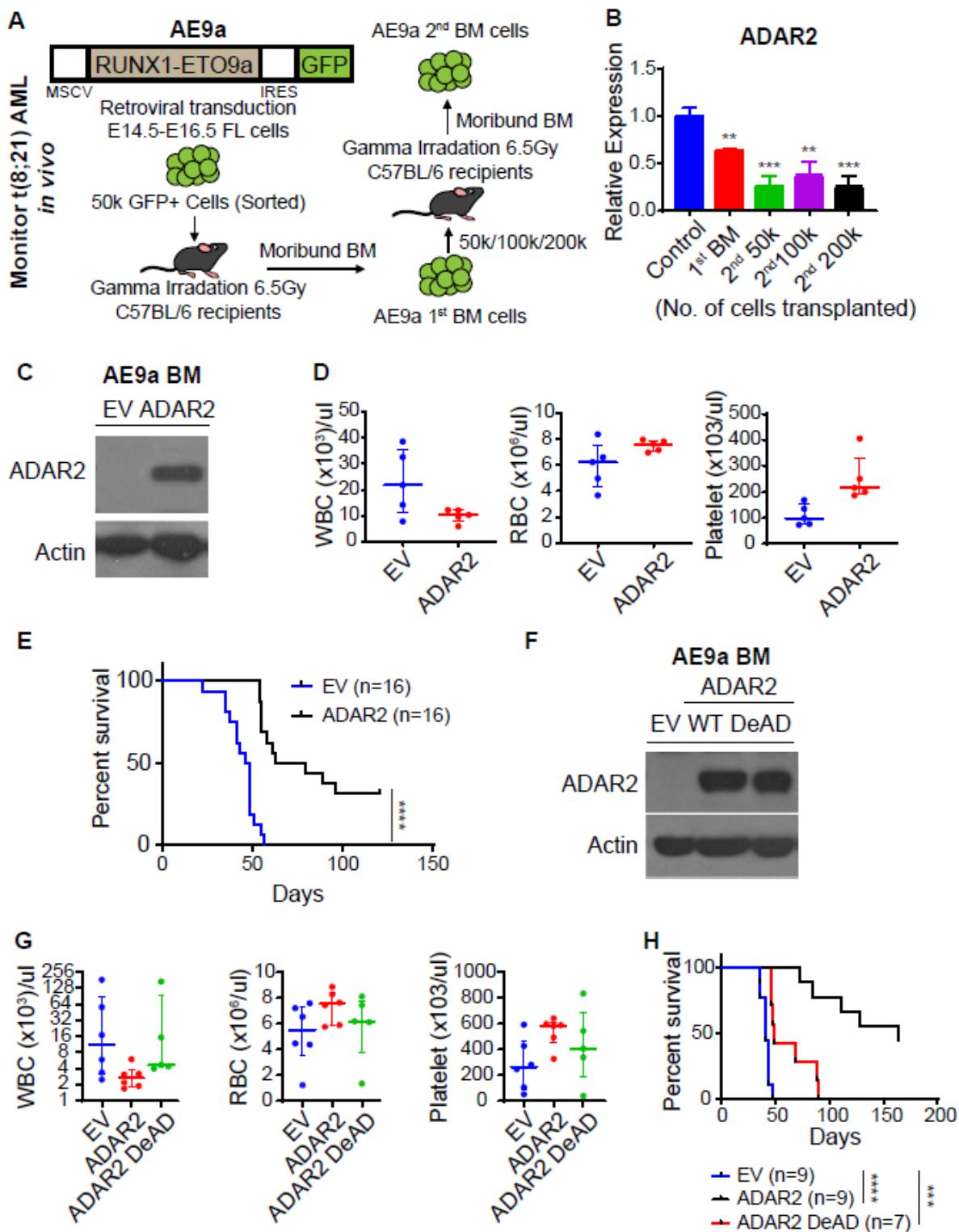


742

743 **Figure 2. RUNX1-ETO and its truncated variant AE9a demonstrate dominant negative**
744 **effects on ADAR2 transcription in t(8;21) AML.**

ADAR2 suppresses leukemogenesis of t(8;21) AML

Figure 3



745

746 **Figure 3. Rescue of ADAR2-repressed clonogenic growth of Kasumi-1 cells through**
 747 **stable overexpression of COPA^{I164V} or COG3^{I635V}.**

ADAR2 suppresses leukemogenesis of t(8;21) AML

Figure 4

748

749 **Figure 4. RNA editing capability of ADAR2 is essential for its repression of**
750 **leukemogenesis in an AE9a mouse model**