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Abstract 41 

     In the past decade, adenosine to inosine (A-to-I) RNA editing, which is catalyzed by 42 

adenosine deaminases acting on RNA (ADAR) family of enzymes ADAR1 and ADAR2, has 43 

been shown to contribute to the development and progression of multiple cancers; however, 44 

very little is known about its role in acute myeloid leukemia (AML) - the second most 45 

common type of leukemia making up 31% of all adult leukemia cases. Here, we found that 46 

ADAR2, but not ADAR1 and ADAR3, is specifically downregulated in core binding factor 47 

(CBF) AML with t(8;21) or inv(16). In t(8;21) AML, RUNX1-driven transcription of 48 

ADAR2 transcripts was found to be repressed by the RUNX1-ETO fusion protein. Forced 49 
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overexpression of two ADAR2-regulated RNA editing targets COPA and COG3 indeed 50 

inhibits clonogenic growth of human t(8;21) AML cells. Further in vivo animal studies 51 

confirmed that ADAR2 could suppress leukemogenesis of t(8;21) AML through its RNA 52 

binding and editing capabilities. Our results suggest a novel RNA editing-mediated 53 

mechanism leading to t(8,12) AML.  54 

 55 

Introduction 56 

     High throughput technologies such as RNA sequencing have revolutionized our 57 

understanding of global transcriptomic changes. RNA processing steps including alternative 58 

splicing, alternative polyadenylation, and RNA editing/modifications, significantly contribute 59 

to the composition and complexity of the transcriptome. Adenosine-to-inosine (A-to-I) RNA 60 

editing is the most prevalent type of RNA editing in mammals and is catalysed by the 61 

adenosine deaminase acting on RNA (ADAR) family of enzymes that recognise 62 

double-stranded RNAs (dsRNA)1. In vertebrates, the ADAR family consists of 3 members, 63 

ADAR1, ADAR2, and ADAR32. ADAR1 and ADAR2 mediate the editing reaction which 64 

contributes to multilevel regulation of gene expression and activity, whereas ADAR3 has no 65 

documented deaminase activity3. A-to-I RNA editing not only alters the RNA sequence itself 66 

but also affect the cellular fate of RNA molecules. In principle, A-to-I editing sites can be 67 

found in both coding and non-coding regions. However, the vast majority of A-to-I editing 68 

sites are in introns and untranslated regions harbouring long and perfect dsRNA structures 69 

formed by inverted Alu repetitive elements4. Over the past decades, accumulating evidence 70 

suggests the dysregulated A-to-I editing as one of the key drivers for various cancers, 71 

particularly solid tumors5-10. In coding regions, RNA editing can lead to amino acid codon 72 

change. Differential editing of these protein-recoding sites are found to impact on human 73 

diseases, such as neurological diseases and cancer6,8,10-12. In cancer, only a few aberrant 74 
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protein-recoding targets have been reported thus far, and they contribute to tumorigenesis 75 

largely through enhancing cancer promoting activity or repressing tumour suppressive 76 

activity7,8,10,13.  77 

     Till date, very limited efforts have been placed on understanding the role of RNA editing 78 

in haematological malignancies including acute myeloid leukemia (AML) which is the most 79 

common haematological malignancy characterized by the abnormal proliferation and 80 

differentiation of myeloid progenitor cells with high incidence and recurrence rates. Although 81 

there are several studies on ADAR1 and its mediated RNA editing events in multiple 82 

myeloma (MM)14,15 and chronic myeloid leukaemia (CML)16-18, the role of ADAR2 in AML 83 

and other haematological malignancies remain unknown. In this study, we analysed the 84 

expression profiles of three ADAR enzymes in AML patients with distinct molecular 85 

subtypes, from publicly available cDNA microarray19 and the TCGA RNA sequencing 86 

datasets20.  Surprisingly, ADAR2, but not ADAR1 and ADAR3, was specifically 87 

downregulated in AML patients with t(8;21) or inv(16) and both of which belong to the core 88 

binding factor (CBF) AML comprising up to 12–15% of all AML cases21-23. CBF AML is 89 

characterized by the presence of either t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16), which 90 

results in the formation of RUNX1-ETO and CBFβ-MYH11 fusion genes respectively. Core 91 

binding factors are transcription factors which are necessary in normal haematopoiesis and 92 

characterized by heterodimers of a DNA-binding unit CBFα (including three subunits 93 

RUNX1, RUNX2, RUNX3) and a non-DNA-binding unit CBFβ. Chromosomal 94 

translocations can alter DNA-binding capability and create alternate binding sites of the 95 

heterodimer, leading to disruption of normal transcription program and the consequent 96 

maturation arrest24. Unlike wildtype RUNX1, RUNX1-ETO fusion protein drive 97 

leukemogenesis through assembling transcriptional regulatory complexes, either as a 98 

repressor or an activator25-29.  Although the presence of RUNX1-ETO (also named 99 
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AML1-ETO) defines a precursor stage of leukaemia, additional molecular events are required 100 

for transformation30,31. In this study, we report that RUNX1-ETO fusion protein represses 101 

RUNX1-driven transcription of ADAR2 transcripts. The functional investigation of ADAR2 102 

and ADAR2-mediated RNA editing in human t(8;21) AML cells and a t(8;21) AML mouse 103 

model uncovered that ADAR2 could suppress leukemogenesis of t(8;21) AML through its 104 

RNA binding and editing capabilities. This is the first time that ADAR2 and its-mediated 105 

RNA editing events are linked to leukemogenesis of t(8;21) AML. 106 

Materials and methods 107 

Clinical tissue samples  108 

     Primary AML and matched normal knee samples were obtained from the CenTRAL 109 

(Molecular) Leukaemia Tissue Bank, with approvals from Institutional Review Board, 110 

National University of Singapore, and signed patient informed consent. In this study, 111 

“normal” samples refer to samples harvested from the knee samples of healthy individuals.  112 

Mice 113 

     C57BL/6J mice were obtained from The Jackson Laboratory. All mice were housed in a 114 

sterile barrier facility within the Comparative Medicine facility at the National University of 115 

Singapore under housing condition of 22 °C temperature, 50% humidity and a 12:12 116 

light/dark cycle. All mice experiments performed in this study were approved by Institutional 117 

Animal Care and Use Committee of National University of Singapore. In this study, 8- to 118 

16-week old male mice were used for bone marrow harvesting or transplantation; 8- to 119 

16- week old female mice were used for time mating. See method detail for more 120 

information. 121 

Establishment of Kasumi-1 stable cell lines 122 

     To generate Kasumi-1 cells stably expressing ADAR2, ADAR2 mutants, wildtype or edited 123 

forms of COPA and COG3, 4.5 µg VSV-G and 4.5 µg expression constructs were 124 
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co-transfected into GP2-293 cells cultured in T75 flask for virus generation. Supernatant 125 

containing lentivirus was harvested and filtered using 0.45um syringe filter (Sartorius, cat.no. 126 

16537) at 48 and 72 hours after transfection. These two portions of supernatant were mixed 127 

and aliquoted for virus transduction or stored in -80°C for subsequent usage. Virus 128 

transduction was performed using RetroNectin® Recombinant Human Fibronectin Fragment 129 

(Takara, cat.no. T100A/B) according to the manufacturer’s instructions (with centrifugation). 130 

At 72 hours after virus transduction, cells were selected using puromycin (2 µg/ml) for 72 hrs 131 

or by FACS sorting.  132 

Luciferase reporter assays 133 

     The firefly luciferase reporter gene in the pGL3 vector is driven by human ADAR2 134 

promoter regions containing different RUNX site portions. As an internal control plasmid for 135 

co-transfections, the pRL-null construct encoding a Renilla luciferase gene (Promega, cat.no. 136 

E2231) was used. Firefly and Renilla luciferase activities were determined 24 hours post 137 

transfection with the dual-luciferase reporter assay system (Promega, cat.no. E1910). Firefly 138 

luciferase readings were normalized against internal control Renilla luciferase and calculated 139 

as fold differences against the activity obtained from cells transfected with empty vector. 140 

Analysis of RNA editing by Sanger-sequencing. 141 

    To amplify regions containing COG3 I635V or COPA I164V site, cDNA from different 142 

cells were used for PLATINUM GREEN HS PCR 2X Master PCR amplification (Thermo 143 

fisher scientific. cat.no. 13001014. Purified PCR products were sent for direct sequencing, 144 

and the result was visualized with SnapGene software (SnapGene®, San Diego, CA,USA). 145 

The frequencies of COPA and COG3 editing were calculated based on the peak area of 146 

adenosine and guanosine determined by SnapGene. Sequence of primers are listed in 147 

Supplemental Table 2. 148 

RUNX1-ETO9a primary leukemia model  149 
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     LSK population from fetal liver cells from embryos at E14.5– E16.5 stage was used for 150 

AE9a retrovirus transduction. At 7 days after transduction, fifty thousands of FACS-sorted 151 

GPF positive cells were transplanted into sub-lethally (6.5 Gy) -irradiated C57BL/6J mice 152 

through retro-orbital injection. Moribund mice were euthanized with CO2 and dissected for 153 

spleen, vertebrae, femur, tibia, and hip collection. A secondary transplantation was performed 154 

through transplanting two hundred thousand bone marrow cells from the first round of 155 

transplantation into sub-lethally (6.5 Gy) -irradiated C57BL/6J mice through 156 

retro-orbital injection. Moribund mice were euthanized with CO2 and dissected for spleen, 157 

vertebrae, femur, tibia, and hip collection. The bone marrow cells were stored in -80°C for 158 

subsequent usage. 159 

Rescue of ADAR2/ADAR2 mutant in AE9a mouse model 160 

     ADAR2 or ADAR2 mutants retrovirus were transduced into BM cells from AE9a leukemic 161 

mice in the 2nd transplantation. At day 2 after transduction, fifty thousands of cells were 162 

transplanted into sub-lethally (6.5 Gy) -irradiated C57BL/6J mice through 163 

retro-orbital injection for Peripheral blood (PB) collection and survival monitoring. PB 164 

samples (∼100 μl per mouse) were collected in EDTA-coated capillary tube (Drummond 165 

Scientific, cat.no. 1-000-800/12) by submandibular venipuncture with 5-mm Goldenrod 166 

animal lancets (Braintree Scientific, cat.no. GR5MM). Counts of nucleated cells was 167 

performed using a NIHOKODEN auto blood cell counter under Pre-dilute 20 µl mode. 168 

Moribund mice were euthanized with CO2 and dissected for spleen, vertebrae, femur, tibia, 169 

and hip collection. BM cells harvested from moribund mice were cytospun and stained with 170 

Giemsa’s azur-eosin-methylene blue solution (Merck, cat.no. 109204). 171 

Statistical analysis 172 

     The statistical significances were assessed by two-tailed Student’s t-test using the Excel 173 

unless otherwise specified. 174 
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     Additional details are described in the supplemental information. 175 

 176 

Results 177 

ADAR2 is significantly downregulated in CBF AML 178 

     To understand the role of ADARs and their mediated RNA editing in AML, we first 179 

utilized a publicly available microarray dataset19 which determined the gene-expression 180 

profiles in samples of peripheral blood or bone marrow from 285 patients with AML using 181 

Affymetrix U133A GeneChips. Intriguingly, although previous studies reporting the role of 182 

ADAR1 and ADAR1-regulated RNA editing events are implicated in haematological 183 

malignancies, we found that ADAR2, but not ADAR1 and ADAR3, was significantly 184 

downregulated in CBF AML patients (Figure 1A). We next analysed the RNA sequencing 185 

(RNA-seq) data from TCGA. Despite a small same size, we found that the expression level of 186 

ADAR2, but not ADAR1 and ADAR3, was significantly lower in t(8;21) or inv16 AML 187 

patients than the non-t(8;21) and inv16 AML patients (Figure 1B, Supplemental Figure 1). 188 

To experimentally validate our findings, we examined the expression level of ADAR2 in an 189 

in-house AML cohort and healthy controls. In agreement with the above-mentioned 190 

expression analyses, ADAR2 was found to be downregulated in t(8;21) AML patients when 191 

compared to CBF-negative patients and healthy controls (Figure 1C). Altogether, ADAR2 is 192 

most likely to be the only ADAR enzyme showing expression fluctuations among different 193 

AML subtypes and its selective downregulation in CBF AML patients suggests a previously 194 

undescribed mechanism which may lead to leukemogenesis.  195 

 196 

RUNX1-ETO and its truncated variant AE9a demonstrate dominant negative effects on 197 

ADAR2 transcription in t(8;21) AML 198 

     Next, we investigated the mechanism underlying the downregulation of ADAR2 in t(8;21) 199 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464918doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464918
http://creativecommons.org/licenses/by-nd/4.0/


ADAR2 suppresses leukemogenesis of t(8;21) AML 

9 

 

AML. It is reported that the RUNX1-ETO fusion protein works as a dominant-negative 200 

competitor of RUNX1 against RUNX1-mediated gene expression32-36, it is possible that 201 

RUNX1 may transcriptionally activate ADAR2 expression, and such a regulation may be 202 

hindered by RUNX1-ETO which outcompetes RUNX1 for binding to the ADAR2 promoter.  203 

To this end, 5000 bp upstream of the transcription start site (TSS) of ADAR2 and found four 204 

putative RUNX binding sites (TGTGGT) (Figure 2A). To investigate whether RUNX1 205 

and/or RUNX1-ETO bind to these sites, chromatin immunoprecipitation was conducted in 206 

Kasumi-1 cells, a human t(8:21) AML cell line, using anti-RUNX1 (to pull down wildtype 207 

RUNX1) or anti-ETO 37) antibody, followed by qPCR analysis of three different regions (R1, 208 

R2, and R3) (Figure 2A).  As a result, both RUNX1 and RUNX-ETO could bind to the distal 209 

regulatory region of ADAR2, as evident from the observation that R1 and R2 regions of 210 

ADAR2 gene showed approximately 100- and 20-fold enrichment in both RUNX1 and 211 

RUNX1-ETO pulldown samples compared to the IgG counterparts, respectively (Figure 2B).  212 

We further determined whether these RUNX1 sites are essential for transcription activation 213 

of ADAR2.  We generated reporter constructs by inserting different DNA fragments (A1-A4) 214 

upstream of ADAR2 TSS. A dramatic drop in the luciferase signal was observed in Kasumi-1 215 

cells when the RUNX site 1 and site 2 were deleted in the A3 fragment (Figure 2C), 216 

indicating that site 1 and site 2 are indeed essential for the transcriptional activation of 217 

ADAR2 gene.  218 

     Next, upon overexpression of RUNX1 alone (RUNX1) or together with RUNX1-ETO 219 

(RUNX1+RE) in Kasumi-1 cells, although a significant increase in the luciferase activity of 220 

the A1 fragment was detected in both conditions when compared to that of the empty vector 221 

control (EV), co-transfection of RUNX1 and RUNX1-ETO was found to repress the luciferase 222 

activity of the A1 but not the A2 fragment induced by RUNX1 overexpression alone (Figure 223 

2D). It has been reported that alternative splicing generates a truncated variant of 224 
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RUNX1-ETO, namely AML1-ETO9a (AE9a), containing an additional exon 9a, and 225 

RUNX1-ETO and AE9a are co-expressed in most of AML patients with t(8;21) 226 

translocation38. Co-expression of RUNX1-ETO and AE9a was shown to induce a more 227 

aggressive leukemic phenotype with a rapid onset of AML in a retrovirally transduced mouse 228 

model39. We also examined the combinatory effect of RUNX1-ETO and AE9a on the 229 

luciferase activity of the A1 or A2 fragment and found that AE9a has stronger repressive 230 

effect on ADAR2 transcription than that of RUNX1-ETO (Figure 2D, 2E). These findings 231 

suggested that RUNX1 activates ADAR2 transcription and expression through binding to the 232 

site 1 and 2 at the distal regulatory region of ADAR2 gene, whereas RUNX1-ETO and its 233 

truncated form AE9a may compete with RUNX1 for binding to the RUNX site 1 to suppress 234 

ADAR2 transcription.  235 

     Furthermore, we intended to confirm the dominant negative effects of RUNX1-ETO and 236 

AE9a on endogenous ADAR2 expression. We first confirmed that endogenous ADAR2 237 

expression could be significantly repressed by specifically knocking down RUNX1 in 238 

Kasumi-1 cells (Figure 2F). Next, the co-overexpression of RUNX1 and RUNX1-ETO and/or 239 

AE9a (RUNX1+RE, RUNX1+AE9a, and RUNX1+RE+AE9a) was found to repress the 240 

upregulation of ADAR2 induced by RUNX1 alone (RUNX1) (Figure 2G). In sum, all these 241 

results support our hypothesis that RUNX1-ETO and AE9a demonstrate dominant negative 242 

effects on ADAR2 transcription and expression through outcompeting wildtype RUNX1 for 243 

binding to the distal regulatory region of ADAR2 gene.  244 

 245 

Restoration of ADAR2-reguated RNA editing inhibits leukemogenic ability of t(8;21) 246 

AML cells 247 

     Due to the downregulation of ADAR2, it is not surprising that ADAR2-regulated RNA 248 

editome may be suppressed in t(8;21) AML. We queried whether ADAR2 may regulate 249 
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leukemogenesis of t(8:21) AML cells through its RNA editing function. To this end, the 250 

wildtype (ADAR2 WT), catalytically inactive (DeAD mutant40), or RNA binding -depleted 251 

(EAA mutant41) ADAR2 expression construct was stably transduced in Kasumi-1 cells using 252 

a retroviral system. Upon stable overexpression of wildtype ADAR2 but not the DeAD or 253 

EAA mutant of ADAR2 in Kasumi-1 cells, a significant reduction in the colony-forming 254 

ability of Kasumi-1 cells was observed when compared to the control cells (Figure 3A and 255 

3B). This result suggested that RNA editing function of ADAR2 is required for its 256 

suppressive role in leukemogenesis of t(8;21) AML.  257 

     Next, COPA (coatomer subunit α) and COG3 (Component Of Oligomeric Golgi Complex 258 

3), two reported protein-recoding editing targets regulated by ADAR242,43, were chosen to 259 

study whether restoration of expression of the edited protein variant (COPAI164V or 260 

COG3I635V) could at least partially phenocopy ADAR2-mediated suppression of 261 

leukemogenesis of t(8;21) AML. We first confirmed that upon overexpression of the 262 

wildtype ADAR2 but not the DeAD or EAA mutant, the editing frequencies of editing sites 263 

in COPA and COG3 transcripts were dramatically increased in Kasumi-1 cells 264 

(Supplemental Figure 2A, 2B), indicating COPA and COG3 are indeed ADAR2 targets in 265 

t(8;21) AML cells. Moreover, overexpression of wildtype or mutant form of ADAR2 had no 266 

obvious effect on the expression of COPA and COG3 (Supplemental Figure 2C, 2D and 267 

Figure 3C ). We next stably expressed the wildtype or edited form of COPA or COG3 268 

(COPAWT and COPAI164V, COG3WT and COG3I635V) in Kasumi-1 cells (Figure 3D-3I). 269 

Intriguingly, Kasumi-1 cells constitutionally expressing COPAI164V or COG3I635V but not 270 

COPAWT or COG3WT demonstrated significantly lower colony-forming ability compared to 271 

the control cells (Figure 3J, 3K, and Supplemental Figure 2E, 2F). Taken together, these 272 

results suggested that restoration of ADAR2-reguated RNA editing inhibits leukemogenic 273 

ability of t(8;21) AML cells.  274 
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 275 

RNA editing capability of ADAR2 is essential for its repression of leukemogenesis in an 276 

AE9a mouse model  277 

     It has been reported that co-expression of RUNX1-ETO and its truncated variant AE9a 278 

leads to a rapid development of AML in an experimental mouse system39, likely due to the 279 

impaired transcriptional regulation of RUNX1-ETO target genes44. We therefore established 280 

an AE9a AML mouse model as reported previously39 for further investigation of the role of 281 

ADAR2 in t(8,21)-associated leukemogenesis (Figure 4A). Of note, ADAR2 expression was 282 

consistently decreased in both bone marrow (BM) cells from recipients following the 1st 283 

transplantation, and in that from recipients subjected to serial dilution assay during the 2nd 284 

transplantation, suggesting a negative role of ADAR2 in leukemia initiating- potential 285 

(Figure 4B). To further investigate the function of ADAR2 in leukemogenesis in vivo, BM 286 

cells from recipients following the 2nd transplantation were transduced with the 287 

MSCV-IRES-tdTomato-hADAR2 expression construct or empty vector (Figure 4C, 288 

Supplemental Figure 3A, 3B). Stably transduced cells were transplanted into 289 

sublethally- (6.5Gy) -irradiated C57BL/6J mice for peripheral blood (PB) collection and 290 

survival monitoring. PB harvested 28 days post-transplantation revealed that white blood cell 291 

(WBC) counts backed to the normal region in the ADAR2 group compared with that in the 292 

empty vector group, while red blood cell (RBC) and platelet counts increased slightly in the 293 

ADAR2 group (Figure 4D). Moreover, overexpression of ADAR2 significantly extended mice 294 

survival (Figure 4E). Wright Giemsa stain confirmed that the majority of BM cells harvested 295 

from the ADAR2 group underwent differentiation, whereas in empty vector group most of 296 

them were myeloblast (Supplemental Figure 3C). In line with a significant reduction of 297 

GFP-positive population in PB from ADAR2 transduced mice (Supplemental Figure 3D), 298 
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we concluded that ADAR2 plays important function to prohibit leukemogenesis of t(8:21) 299 

AML. 300 

     To further explore whether RNA editing function of ADAR2 is required for 301 

ADAR2-mediated leukemogenesis inhibition, we overexpressed wildtype ADAR2 302 

(ADAR2WT) or the DeAD mutant (ADAR2Mut) in BM cells from the recipients following 2nd 303 

transplantation using a retrovirus-mediated transduction system.  After verifying of the 304 

transduction efficiency (Figure 4F, Supplemental Figure 3E), cells were transplanted back 305 

into sub-lethally (6.5Gy) -irradiated C57BL/6J mice for PB collection and survival 306 

monitoring. Comparing with empty vector group, lower WBC count, and higher RBC or 307 

platelet count was detected in wildtype ADAR2 group, but not in ADAR2 DeAD or ADAR2 308 

EAA groups. (Figure 4G). Furthermore, although approximately 50% of ADAR2WT mice 309 

survived over 150 days, all ADAR2Mut recipients died within 100 days, while all control mice 310 

(EV) died within 50 days (Figure 4H). Consistently, Wright Giemsa stain revealed that loss 311 

of RNA editing ability impacted ADAR2-mediated BM cell differentiation (Supplemental 312 

Figure 3F). Higher percentage of AE9a (GFP)-positive cells were also detected in BM cells 313 

of ADAR2Mut recipients than the ADAR2WT counterparts (Supplemental Figure 3G). Taken 314 

together, these data indicate that ADAR2 supresses leukemogenesis of t(8:21) AML via RNA 315 

editing in vivo. 316 

 317 

Discussion  318 

     A-to-I RNA editing is one of the most common posttranscriptional RNA modification 319 

processes that change the DNA coding in the mammalian transcriptome. Enzymes catalysing 320 

this process include ADAR1, ADAR2, ADAR33. ADARs demonstrate specific expression 321 

patterns in different tissues and environments45,46. While the dysregulation of A-to-I RNA 322 

editing is implicated in human diseases including multiple cancers6,8,10-12, roles of RNA 323 
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editing in leukemia, particularly ADAR2 and ADAR2-mediated RNA editing, remain largely 324 

unexplored.  325 

     In this study, utilizing both clinical samples and mouse models, we reveal a previously 326 

undescribed role of ADAR2-mediated RNA editing in leukemogenesis. Initiating with a 327 

serial of analyses with different cohorts of patients with AML, we found that ADAR2 is 328 

specifically down-regulated in CBF AML patients, whereas no obvious changes in the 329 

expression levels of ADAR1 and ADAR3 among different subtypes of AML. Mechanistically, 330 

we found that the wildtype RUNX1 activates expression of ADAR2 transcriptionally through 331 

two distal RUNX binding sites (1 and 2) upstream of the TSS of ADAR2 gene, whereas 332 

RUNX1-ETO and its truncated variant AE9a suppress RUNX1-mediated activation of 333 

ADAR2 transcription in a dominant-negative manner, likely by outcompeting RUNX1 for 334 

binding to the site 1. Due to the fact that ADAR2 can suppress the development and/or 335 

progression of solid tumours such as HCC and CRC through RNA editing42,47, it prompted us 336 

to study whether ADAR2 may lead to leukemogenesis of t(8;21) AML via its RNA editing 337 

function. Indeed, as evident from our cell line-based studies and mouse experiments, ADAR2 338 

prohibits leukemogenesis of t(8;21) AML dependent of its RNA editing ability. It is an 339 

exciting discovery on the role of RNA editing in t(8;21) AML. Previous studies on this AML 340 

subtype mainly focus on the changes of gene expression patterns or chromatin status48; and 341 

the gap between AML and RNA editing is still open. Our results showed that restoration of 342 

ADAR2 level in AE9a-positive BM cells significantly prolongs survival of recipients, 343 

whereas RNA editing-deficient form has very limited rescue efficiency. This finding clearly 344 

indicates that ADAR2 and it mediated RNA editing is of biological importance to inhibit 345 

leukemogenesis in t(8;21) AML. Of note, the limited rescue effect of the editing-deficient 346 

ADAR2Mut is likely to be attributed to the RNA editing-independent functions of ADAR2. 347 

For example, ADARs can regulate microRNA maturation through interaction with Dicer 49. 348 
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ADAR2 enhances target mRNA stability by limiting the interaction of RNA-destabilizing 349 

proteins with their cognate substrates50.  In general, our study sheds a new light on a novel 350 

role of ADAR2 in suppressing leukemogenesis of t(8;21) AML via RNA editing.  351 

     In line with other studies, our study further emphasizes the importance of RNA 352 

metabolism in AML and opens a new avenue for the development of RNA therapies for 353 

AML. Functions of RNA processing steps such as splicing, polyadenylation, RNA 354 

modifications and RNA editing in AML remain completely unknown until recent years. For 355 

example, leukemogenesis through reducing of N6-methyladenosine (m6A) RNA modification 356 

by FTO (Fat Mass and Obesity-associated protein) is firstly discovered in 201751. Since then, 357 

numbers of studies from several groups described the importance of m6A modification in 358 

normal hematopoiesis and AML, suggesting m6A RNA modification as a potential process 359 

for AML therapy52-59. Similar to m6A RNA modification, A-to-I RNA editing is the most 360 

prevalent type of RNA editing in mammals. Our result revealed that restoration of 361 

ADAR2-mediated RNA editing of COG3I635V and COPAI164V could inhibit colony-forming 362 

of Kasumi-1 cells. Together with previous findings that COG3I635V could increase cell 363 

viability in multiple normal human cell lines and drug sensitivity including MEK inhibitors9 364 

and COPAI164V functions as a dominant negative form which represses the oncogenic 365 

function of the unedited and wildtype COPA (COPAWT)42, our results suggest a novel 366 

therapeutic strategy by restoring edited RNAs. Notably, in the present study, only two 367 

ADAR2-regulated editing targets were tested in cell culture-based experiments. To perform a 368 

transcriptome-wide identification of ADAR2 target genes in different cell populations/types, 369 

single cell RNA-seq will be required, and the functional importance of potential editing 370 

targets needs to be verified by conducting rescue experiments in mouse AML model or pre-371 

clinical AML model such as AML patient-derived organoids (PDOs).  372 

     Another interesting finding is the involvement of CBF complex in regulation of ADAR2 373 
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transcription and expression. Expression of ADARs is commonly dysregulated in multiple 374 

cancer types. For instance, expression of ADAR1 is dysregulated in esophageal squamous cell 375 

carcinoma (ESCC), HCC, gastric cancer, cervical cancer, lung cancer, and breast cancer, and 376 

disruption of ADAR2 expression was detected in gastric cancer, HCC, ESCC, and 377 

glioblastoma6,7,12,13,60-67. However, the regulatory mechanisms leading to dysregulation of 378 

ADARs expression remain elusive. In our study, we found that RUNX1-ETO and AE9a 379 

demonstrate dominant negative effects on ADAR2 transcription and expression through 380 

outcompeting wildtype RUNX1 for binding to the distal regulatory region of ADAR2 gene. 381 

Since both RUNX1 and ADAR2 express in multiple organs, it is possible that such regulatory 382 

mechanism commonly presents in other tissues. On the other hand, besides t(8;21) AML, 383 

ADAR2 was also significantly downregulated in the other type of CBF leukemia- inv(16) 384 

which generates CBFβ-MYH11 fusion gene. As the CBFβ-MYH11 fusion protein retains the 385 

ability to bind RUNX1 with increased affinity as compared to CBFβ, thereby sequestering 386 

RUNX proteins from their target genes68-71. This may account for the downregulation of 387 

ADAR2 in inv(16) AML patients and also provides a hint on the regulation of ADAR2 388 

expression by CBF complex, which remains for our further investigation. Of note, changes in 389 

chromatin accessibility regulates transcription of ALKBH5, an important m6A demethylase 390 

required for maintaining leukemia stem cells (LSCs) function72. Due to the fact that 391 

chromatin status, such as histone modifications and chromatin interactions, plays important 392 

role in hematopoiesis73,74, another aspect to consider is that the regulation of ADAR2 393 

expression through dynamic changes of chromatin status. In sum, our findings shed new light 394 

on future studies of dysregulated ADAR2 transcription and expression as well as their RNA 395 

editing-dependent or independent biological implications in multiple diseases including 396 

cancers.  397 
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Figure legends 614 

Figure 1. ADAR2 is selectively downregulated in CBF AMLs.  615 

A) Expression levels of ADAR1, ADAR2, and ADAR3 in healthy donors (n = 8) and 616 

different subtypes of AML patients (n=108) (****, p < 0.0001, n.s., not significant; two-617 

tailed Student’s t-test). Gene expression analysis was conducted a publicly available 618 

Affymetrix microarray dataset downloaded from the GEO database (GSE1159)19. The level 619 

of expression of a particular gene is reflected by the intensity of hybridization of labelled 620 

messenger RNA (mRNA) to gene-specific probe sets (10 to 20 oligonucleotides per gene)19.   621 

B) Expression of ADAR1, ADAR2, ADAR3 in t(8;21) AML patients (n=7) and the control 622 

group including AML patients without t(8;21) and inv16 (n=10), from TCGA.  (**, p < 0.01, 623 

n.s., not significant; two-tailed Student’s t-test) 624 

C) Quantitative PCR (qPCR) analysis of ADAR2 transcript level in leukemic blasts isolated 625 

from t(8;21)-positive (n=11) and CBF-negative (n=24) AML patients as well as CD34-626 

positive cells isolated from bone marrow samples of healthy individuals (n=16). Data are 627 

presented as the mean ± SD of technical triplicates from a representative experiment. (**, p < 628 

0.01, ***, p < 0.001, n.s., not significant; two-tailed Student’s t-test.)  629 

 630 

Figure 2. RUNX1-ETO and its truncated variant AE9a demonstrate dominant negative 631 

effects on ADAR2 transcription in t(8,21) AML. 632 

A) Schematic diagram of the RUNX1 binding sites along the 4kb region upstream of the 633 

transcription start site (TSS) of ADAR2 gene. Number indicates the position with respect to 634 

the ADAR2 TSS which is at position -1. Black bars indicate four putative RUNX1 binding 635 

sites. The locations of primers used for ChIP-qPCR experiments are indicated by black 636 

arrows. Primers were designed to amplify R1, R2, and R3 regions which cover site 1, site 2 & 637 

3, and site 4, respectively.  638 

B) ChIP-quantitative PCR (ChIP-qPCR) analysis of the binding of RUNX1 or RUNX1-ETO 639 

protein to the indicated regulatory region (R1, R2, and R3) upstream of the TSS of ADAR2 640 

gene in Kasumi-1 cells, using anti-RUNX1 or anti-ETO antibody respectively. IgG was used 641 

as a negative control. Data are presented as the mean ± SD of technical triplicates from a 642 

representative experiment. The anti-RUNX1 antibody recognizes the N-terminal portion of 643 

RUNX1 protein; while the anti-ETO antibody was used for immunoprecipitation to 644 

specifically pull down RUNX1-ETO in Kasumi-1 cells which do not express wildtype ETO 645 

protein.   646 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464918doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464918
http://creativecommons.org/licenses/by-nd/4.0/


ADAR2 suppresses leukemogenesis of t(8;21) AML 

23 

 

C) Bar charts demonstrate the luciferase activities associated with each of the indicated 647 

sequences upstream of the TSS of ADAR2. HEK293T cells were transfected with each of the 648 

indicated reporter constructs containing A1, A2, A3, or A4 fragment. S1-S4, site 1, 2, 3 and 649 

4.  Luciferase activity of each reporter construct is normalized to the pGL3 empty vector 650 

control and defined as ‘Relative luciferase activity’. Data are presented as the mean ± SD of 651 

three independent experiments.  652 

D) Bar charts demonstrate the luciferase activities associated with the A1 fragment in 653 

HEK293T cells that were transfected with RUNX1 alone, or RUNX1 together with RUNX1-654 

ETO or AE9a (RUNX1, RUNX1+RE, or RUNX1+AE9a respectively). To calculate the fold 655 

change of the luciferase activity, luciferase activity associated with the A1 fragment detected 656 

in the indicated group was divided by that of the empty vector (EV) control. Data are 657 

presented as the mean ± SD of three independent experiments. 658 

E) Bar charts demonstrate the luciferase activities associated with the A2 fragment in 659 

HEK293T cells that were transfected with RUNX1 alone, or RUNX1 together with RUNX1-660 

ETO or AE9a (RUNX1, RUNX1+RE, or RUNX1+AE9a respectively). Data are calculated 661 

and presented using the same method as described in D). Data are presented as the mean ± 662 

SD of three independent experiments. 663 

F) Semi-quantitative PCR (qPCR) analysis of RUNX1, RUNX1-ETO/AE9a, and ADAR2 664 

mRNA expression in Kasumi-1 cells, upon shRNA-mediated knockdown of RUNX1 665 

(shRUNX1-2 and shRUNX1-3). The relative expression of each gene in the indicated group 666 

of cells was calculated by the formula 2−ΔCT (ΔCT = CT(gene) –CT(β-actin)) and then normalized 667 

to the scramble shRNA control counterpart (PLKO.1 shSCR, defined as 1.0). Data are 668 

presented as mean ± SD. of three independent experiments (****, p < 0.0001, n.s., not 669 

significant; two-tailed Student’s t-test.)  670 

G) qPCR analysis of RUNX1, RUNX1-ETO/AE9a, and ADAR2 mRNA expression in 671 

Kasumi-1 cells, upon overexpression of empty vector (Plenti6-EV), RUNX1 alone, RUNX1 672 

together with RUNX1-ETO or AE9a, or RUNX1 together with RUNX1-ETO and AE9a 673 

(RUNX1, RUNX1+RE, RUNX1+AE9a, or RUNX1+RE+AE9a). Data are calculated and 674 

presented using the same method as described in F) (****, p < 0.0001, ***, p < 0.001, **, p 675 

< 0.01, *, p < 0.05, n.s., not significant; two-tailed Student’s t-test). Data are presented as the 676 

mean ± SD of technical triplicates from a representative experiment. 677 

 678 

 679 
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Figure 3. Rescue of ADAR2-repressed clonogenic growth of Kasumi-1 cells through 680 

stable overexpression of COPAI164V or COG3I635V.  681 

A) Western blot analysis of ADAR2 protein in Kasumi-1 cells stably overexpressed with the 682 

wildtype or mutant form of ADAR2 by a retrovirus-mediated transduction system. GAPDH 683 

was used as a loading control. WT, wildtype ADAR2; DeAD, ADAR2 DeAD mutant; EAA, 684 

ADAR2 EAA mutant; EV, empty vector.  685 

B) Bar chart represents the number of colonies formed by the same group of cells as 686 

described in A). Data are presented as the mean ± SD of technical replicates from a 687 

representative experiment of three independent experiments.  (*, p < 0.05, n.s., not 688 

significant; two-tailed Student’s t-test.)  689 

C) Western blot analysis of COG3 or COPA protein expression in the same samples as 690 

described in A). GAPDH was used as a loading control. 691 

D) qPCR analysis of COG3 transcript level in Kasumi-1 cells stably overexpressing the 692 

wildtype or edited COG3 (COG3WT or COG3I635V) or the MSCV-PURO empty vector (EV) 693 

control. Data are presented as the mean ± SD of technical triplicates from a representative 694 

experiment of three independent experiments. (****, p < 0.0001, two-tailed Student’s t-test.) 695 

E) Western blot analysis of COG3 protein level in the same samples as described in E). 696 

GAPDH was used as a loading control.  697 

F) Sequence chromatograms illustrate the editing level of COG3 transcripts in the same 698 

samples as described in D). The arrow indicates the editing position.  699 

G, H) qPCR G) or western blot H) analysis of COPA expression at transcript or protein level 700 

respectively, in Kasumi-1 cells stably overexpressing the wildtype or edited COPA (COPAWT 701 

or COPAI164V) or the MSCV-PURO empty vector (EV) control. Data are presented as the 702 

mean ± SD of technical triplicates from two representative experiment of three independent 703 

experiments. (****, p < 0.0001, two-tailed Student’s t-test.)  704 

I) Sequence chromatograms illustrate the editing level of COPA transcripts in the same 705 

samples as described in G-H). The arrow indicates the editing position. 706 

J, K) Bar chart represents the number of colonies formed by the same group of cells as 707 

described in D) and G, H). Data are presented as the mean ± SD of technical replicates from 708 

one representative experiment from D) and two from G, H) of three independent experiments.  709 

(**, p < 0.01, n.s., not significant; two-tailed Student’s t-test.) 710 

 711 
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Figure 4. RNA editing capability of ADAR2 is essential for its repression of 713 

leukemogenesis in an AE9a mouse model 714 

A) Experimental strategy for AE9a bone marrow transplantation mouse model.  715 

B) qPCR analyses of ADAR2 transcript in BM cells from moribund mice in the 1st 716 

transplantation and in the 2nd transplantation injected with different number of AE9a cells 717 

(200k, 100k, 50k). Data are presented as the mean ± SD of technical triplicates from a 718 

representative experiment. (**p < 0.01, *p< 0.05, two-tailed Student’s t-test)  719 

C) Western blot analysis of ADAR2 protein expression in AE9a BM cells stably 720 

overexpressing ADAR2 or the MSCV-IRES-tdTOMATO empty vector (EV). 721 

D) Dot plot represents counts of white blood cell (WBC), red blood cell (RBC), and platelet 722 

in the peripheral blood from recipients at 28 days post-transplantation of AE9a AML cells 723 

stably overexpressing ADAR2 or the MSCV-IRES-tdTOMATO empty vector (EV). n=5 in 724 

each group. 725 

E) Kaplan–Meyer survival curve of recipients transplanted with 50,000 AE9a AML cells 726 

stably overexpressing ADAR2 or MSCV-IRES-tdTOMATO empty vector (EV). n=16 in 727 

each group. Statistical analysis is performed using Log-rank (Mantle-Cox) test. (***p < 728 

0.001).  729 

F) Western blot analysis of ADAR2WT or ADAR2Mut protein expression in BM cells from the 730 

same recipients as described in E). Actin was used as a loading control. 731 

G. Dot plot represents counts of white blood cell (WBC), red blood cell (RBC), and platelet 732 

in the peripheral blood from recipients at 45 days post-transplantation of AE9a AML cells 733 

stably overexpressing of ADAR2WT (n=6), ADAR2Mut (n=5), or MSCV-IRES-tdTOMATO 734 

empty vector (n=6).  735 

H) Kaplan–Meyer survival curve of recipients transplanted with 50k AE9a AML cells stably 736 

overexpressing of ADAR2WT (n=9), ADAR2Mut (n=7), or MSCV-IRES-tdTOMATO empty 737 

vector (EV) (n=9). Statistical analysis is performed using Log-rank (Mantle-Cox) test. (****p 738 

< 0.0001, ***p < 0.001.) 739 
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 740 

Figure 1. ADAR2 is selectively downregulated in CBF AMLs.  741 
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  742 

Figure 2. RUNX1-ETO and its truncated variant AE9a demonstrate dominant negative 743 

effects on ADAR2 transcription in t(8,21) AML. 744 
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 745 

Figure 3. Rescue of ADAR2-repressed clonogenic growth of Kasumi-1 cells through 746 

stable overexpression of COPAI164V or COG3I635V.  747 
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 748 

Figure 4. RNA editing capability of ADAR2 is essential for its repression of 749 

leukemogenesis in an AE9a mouse model 750 
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