

1

## 2 Experimental evolution of extremophile levels of radiation 3 resistance in *Escherichia coli*

4 Steven T. Bruckbauer<sup>1</sup>, Benjamin B. Minkoff<sup>1,2</sup>, Takeshi Shinohara<sup>1</sup>, Anna Lipzen<sup>3</sup>, Jie Guo<sup>3</sup>,  
5 Elizabeth A. Wood<sup>1</sup>, Michael R. Sussman<sup>1,2</sup>, Christa Pennacchio<sup>3</sup>, and Michael M. Cox<sup>1</sup>

6

7 <sup>1</sup>Department of Biochemistry, University of Wisconsin – Madison. Madison, WI 53706-1544,

8 <sup>2</sup>Center for Genomic Science Innovation, University of Wisconsin School of Medicine and Public Health,  
9 Madison, WI 53706,

10 <sup>3</sup>DOE Joint Genome Institute - 1 Cyclotron Road, Berkeley, CA 94720,

11

### 12 Abstract

13 Recent human development of high-level sources of ionizing radiation (IR) prompts a  
14 corresponding need to understand the effects of IR on living systems. One approach has  
15 focused on the capacity of some organisms to survive astonishing levels of IR exposure. Using  
16 experimental evolution, we have generated populations of *Escherichia coli* with IR resistance  
17 comparable to the extremophile *Deinococcus radiodurans*. Every aspect of cell physiology is  
18 affected. Cellular isolates exhibit approximately 1,000 base pair changes plus major genomic  
19 and proteomic alterations. The IR resistance phenotype is stable without selection for at least  
20 100 generations. Defined and probable contributions include alterations in cellular systems  
21 involved in DNA repair, amelioration of reactive oxygen species, Fe metabolism and repair of  
22 iron-sulfur centers, DNA packaging, and intermediary metabolism. A path to new mechanistic  
23 discoveries, exemplified by an exploration of *rssB* function, is evident. Most important, there  
24 is no single molecular mechanism underlying extreme IR resistance.

25

### 26 Keywords

27 Ionizing radiation, experimental evolution, reactive oxygen species, double-strand breaks,  
28 DNA repair, *Escherichia coli*, *Deinococcus radiodurans*

29

### 30 Introduction

31 Ionizing radiation (IR), particularly from gamma rays, induces severe damage to all  
32 cellular macromolecules. Gamma radiation works primarily via H<sub>2</sub>O radiolysis to produce  
33 reactive oxygen species (ROS) (1, 2). Direct ionization and indirect oxidation of DNA through  
34 ROS leads to the accumulation of double-strand breaks (DSBs) of genomic DNA, which are  
35 lethal if left unrepaired (3-7). Cellular proteomes and lipidomes are also damaged (8-16). Some  
36 organisms exhibit an extraordinary capacity to survive high doses of IR. Of seminal interest  
37 has been the bacterium *Deinococcus radiodurans*, which was first isolated due to its ability to  
38 survive IR-based sterilization of canned meat (17). Whereas a dose of 3-5 Gy is lethal to a  
39 human, *Deinococcus* can survive 5,000 Gy without lethality (18-21). Research has revealed

40 several mechanisms utilized by *D. radiodurans* to survive high levels of IR exposure, including  
41 specialized mechanisms of DNA end protection and DSB repair, and a notable ability to  
42 accumulate Mn<sup>2+</sup> ions as a means of ameliorating the ROS generated by IR (22-30).

43 For most of the history of our planet, there have been no environments that would  
44 expose living organisms to high levels of ionizing radiation. That situation has changed with  
45 the advent of nuclear power, X-rays, the prospect of extended spaceflight, and more.  
46 Understanding how cells respond to ionizing radiation becomes more important as the  
47 potential for IR exposure increases.

48 Our understanding of IR resistance is rudimentary at best. The study of extremophiles  
49 such as *D. radiodurans* has been illuminating but can never provide a complete view of IR  
50 resistance mechanisms. The reason is simple. The evolution of *Deinococcus* was not driven by  
51 ionizing radiation. Prior to its discovery in the 1950s (17), this organism was never exposed to  
52 the requisite IR-laden environments (31). Instead, *Deinococcus* is a desert dweller and evolved  
53 to survive desiccation (32-35). IR resistance is merely a byproduct of that parched origin. It is  
54 thus unlikely that evolution has equipped *Deinococcus* with all possible biological strategies for  
55 IR resistance. It is not clear that we know what to look for with respect to additional possible  
56 mechanisms. It is not clear that we even understand all the strategies embodied in *Deinococcus*.  
57 More broadly, no research has ever tested the limits. How resistant to ionizing radiation can  
58 an organism become?

59 An alternative and unbiased approach to defining mechanisms of IR resistance,  
60 pioneered for this phenotype by Evelyn Witkin in 1946 (36, 37), is experimental evolution. Take  
61 a species that is not IR resistant, convert it into something that is IR resistant, and see what  
62 changes. We are not the first to take this approach (38-40). However, previous work was carried  
63 out before the development of “omics” technologies that could efficiently identify cellular  
64 changes associated with the phenotype.

65 With a goal of elucidating new mechanisms of IR resistance, we are pursuing a long-  
66 term evolution experiment with the goal of generating IR resistance in four populations of *E. coli*  
67 equivalent to and eventually surpassing *D. radiodurans*. After 150 cycles of selection carried  
68 out over 5 years, our initial goal of IR resistance parity with *Deinococcus* has been achieved.  
69 Earlier reports of results after 50 or 100 cycles of selection have described important  
70 intermediate steps in this project (41, 42). Here, we present *E. coli* strains with documented  
71 extremophile levels of IR resistance. Two of our four replicate populations of evolved *E. coli*  
72 now match the survival of *D. radiodurans* out to a dose of 6,000 Gy of IR, whereas doses in  
73 excess of 1,000 Gy effectively sterilize cultures of the Founder *E. coli* strain. Combined genomic  
74 and proteomic approaches have revealed that changes to systems involved in DNA repair,  
75 ROS amelioration, Fe metabolism, and aerobic metabolism have partially driven acquired IR  
76 resistance in at least one of the four evolved populations. A path to describing additional  
77 mechanisms is evident. In addition, we demonstrate that an elevated stress response  
78 contributes to IR resistance. The overall effort highlights the lack of a single molecular  
79 mechanism underlying biological resistance to ionizing radiation. Layers of contributing  
80 mechanisms are evident within these four evolved *E. coli* populations.

81

## 82 Results and Discussion

### 83 *Ionizing radiation resistance has matched that of Deinococcus radiodurans*

84 To summarize our experimental evolution protocol (detailed in the *Materials and*  
85 *Methods*), at each cycle of selection, each of the four replicate populations is initially grown to  
86 early exponential phase and cultures are washed with PBS to remove all nutrients or potential  
87 ROS-ameliorating agents present in growth media. The washed cultures are treated with  
88 sufficient IR to kill 99% of each of the four replicate populations at each cycle of selection (thus  
89 the dose used increases as IR resistance increases). The irradiation utilizes a clinical linear  
90 accelerator (Linac) dosing at 70 Gy/min. Following irradiation, a portion of each culture is used  
91 to determine percent survival and the rest is allowed to recover in fresh growth medium  
92 overnight before storage of the new population at -80 °C the following day. This protocol has  
93 resulted in four evolved lineages (IR9, IR10, IR11, and IR12), with distinct populations at each  
94 cycle of selection (i.e. IR9-150 is the population from the IR9 lineage at round 150 of selection),  
95 and 10 isolates from each population (i.e. IR9-150-1 and IR9-150-2 are two separate isolates  
96 from population IR9-150). We note that population IR9 has two sub-populations which have  
97 competed in clonal interference for about 80 selection cycles through round 150 (42). Isolates  
98 IR9-150-1 and IR9-150-2 are taken from different sub-populations and exhibit many genetic  
99 and proteomic distinctions in spite of their presence in the same population.

100 After beginning with a dose of 500 – 750 Gy, at round 150 of selection a dose of 3700-  
101 4000 Gy is required to achieve 99% killing (Figure S1). Furthermore, two populations, IR9-150  
102 and IR10-150, now exhibit survival curves equivalent to *D. radiodurans*, where cultures of each  
103 population and *D. radiodurans* have approximately 0.1% survival at a dose of 6000 Gy (Figure  
104 1).

105 Radioresistance in these four populations is a stable phenotype. After growth for ~100  
106 generations in the absence of IR exposure, isolates from each of these populations maintains  
107 the same level of IR resistance (Figure S2). However, these isolates are not free of fitness  
108 tradeoffs. Each isolate has clear growth rate defects (Figure S3) as well as readily observable  
109 changes in cell morphology (Figure S4). Such differences are expected, as after 150 cycles of  
110 selection isolates contain about 1000 single-nucleotide polymorphisms (SNPs) and other small  
111 changes on average (Table S1). Larger genomic alterations are evident in the populations as  
112 well. Some were reported previously (42). A new genomic deletion present in IR11 is added in  
113 Figure S5.

114

### 115 *Evolved isolates exhibit enhanced DNA repair and resistance to protein oxidation*

116 DNA double strand breaks accumulate with increasing doses of IR and must be repaired  
117 in order for the exposed cell to survive. Thus, we assayed IR-mediated damage to genomic  
118 DNA and the dynamics of DNA repair in evolved isolates from each population after a dose  
119 of 1000 or 4000 Gy, utilizing Pulsed-Field Gel Electrophoresis (PFGE). All evolved isolates  
120 demonstrated a clear capacity to repair shattered genomic DNA at a dose of 4000 Gy, attesting  
121 to enhanced capacity for DNA repair. In contrast, the Founder strain did not recover from this

122 dose (**Figure 2**). These results align with our previous observations that by rounds 50 and 100  
123 of selection, numerous mutations in DNA repair proteins (RecA, RecD, RecN, and RecJ) were  
124 drivers of evolved IR resistance (41, 42). Many of these mutants affect proteins involved in  
125 double strand break repair. The evolved isolates exhibited different rates of DNA repair.  
126 Repaired genomic DNA is apparent in isolate IR12-150-1 only 3 hr post-irradiation with 4000  
127 Gy. Furthermore, IR11-150-1 and IR12-150-1 appear to better protect their genomic DNA from  
128 IR-mediated DSBs, where cells harvested immediately post-irradiation with 1000 Gy contain  
129 at least some more or less intact genomes. Thus, it appears that the evolved lineages may have  
130 developed differing mechanisms of maintaining genome stability despite equivalent IR  
131 exposure.

132  
133 *Proteomics and genomics provide a new entrée to mechanisms of evolved IR resistance*

134 The four evolved populations were subjected to deep sequencing to identify all  
135 mutations present in more than 2% of the cells (**Supplementary Dataset S1**). Genes subject to  
136 mutation in multiple populations are of particular interest as potential candidates for  
137 phenotype contributions, and these are listed in **Table S2**. In parallel, using mass spectrometry  
138 approaches we have described previously (10, 11), we surveyed the proteomes of the Founder  
139 wild type strain and two evolved isolates from the current experiment. Analysis of the  
140 quantified IR9-150-1 and IR9-150-2 proteomes at early exponential phase growth under normal  
141 growth conditions (no IR) revealed significant changes to the composition of their proteomes  
142 compared to MG1655 (**Figure 3**). With a significance threshold of at least a 2-fold increase or  
143 decrease (adjusted p-value < 0.05), each isolate had over 300 proteins with altered abundance  
144 (IR9-150-1: 156 proteins increased and 165 decreased; IR9-150-2: 150 proteins increased and 317  
145 proteins decreased). Such changes potentially reveal what pathways are beneficial or  
146 expendable for IR resistance.

147 Across both isolates, large changes in abundance of greater than 10-fold (observed in 18  
148 proteins increasing and 52 proteins decreasing in IR9-150-1, and 24 proteins increasing and 42  
149 decreasing in IR9-150-2) are largely explained through genomic sequencing data. Large  
150 increases in abundance are often due to mutations in their cognate regulatory proteins. For  
151 example, the pentose phosphate pathway protein RpiB is increased due to a frameshift in its  
152 regulator, RpiR (also called AlsR) (43, 44); pilus proteins from the *fim* operon are likely  
153 increased due to mutations in the FimE site-specific recombinase, locking the *fim* promoter in  
154 the 'on' orientation (45-47); and RpoS is increased in IR9-150-1 due to an early frameshift in its  
155 regulator, RssB, that effectively eliminates RssB function (48-50). Some increases in protein  
156 abundance may be linked to intergenic mutations affecting transcription or translation (such  
157 as two mutations at -150 and +21 relative to the transcription start site of *uvrB* in both IR9-150  
158 isolates), or due to regulatory changes (i.e. Fe-starvation, explained below). Large decreases in  
159 protein abundance are typically due to introduced stop codons or frameshift mutations, or  
160 deletion of the gene encoding the protein in question (particularly due to a > 100 kb deletion in  
161 IR9 (42)).

162 In prior work characterizing the evolved lineages after 50 (41) and 100 (42) cycles of  
163 selection, we found that evolved IR resistance appeared to proceed through at least two distinct  
164 phases: (1) adaptation of DNA repair pathways in all four lineages, followed by (2) lineage-  
165 specific adaptations, potentially focusing at least in part on adaptations to respiration, Fe-S  
166 cluster repair, and polyamine metabolism in lineage IR9 (42). The proteomics and additional  
167 genomic sequencing conducted now at round 150 of selection largely confirm the trends first  
168 discovered through genomics datasets, as well as highlight new potential players in evolved  
169 radioresistance. In the following analysis, we highlight mutations confirmed to be contributors  
170 to IR resistance as well as proteomic changes that suggest additional mechanisms to guide  
171 additional investigation.

172 *DNA repair.* The proteomics effort highlights adaptations of the DNA repair systems  
173 that were not documented earlier. Each of the two round 150 isolates have increased levels of  
174 proteins involved in nucleotide excision repair (UvrB, LigA) as well as proteins involved in  
175 remodeling DNA (RuvA, GyrA, GyrB, ParC), suggesting new ways to bolster a cells capacity  
176 to process damaged DNA substrates (**Figure S6**). In conjunction with increased levels of GyrA  
177 (IR9-150-2) and GyrB (IR9-150-1), a decrease in the gyrase inhibitor SbmC in both isolates  
178 further underlines the potential importance of increased gyrase activity in radioresistance.  
179 Additional decreases in DNA repair proteins focus on exo and endonucleases (RecD, RecJ,  
180 SbcD, Nth). As IR-induced double strand breaks increase, the capacity of exonucleases to  
181 wreak genomic havoc also increases. Hence, a reduction in cellular nuclease activity may  
182 contribute to the maintenance of genome integrity in a high IR environment. Mutations in  
183 proteins involved in double strand break repair (RecD, RecN, RecJ, RecA) make clear  
184 contributions to IR resistance, as documented previously (41), and the IR resistance conferred  
185 by the changes in RecD and RecJ may reflect declines in nuclease function.

186 *Response to ROS.* ROS generated by IR or respiration have the capacity to not only  
187 generate DNA damage, but also oxidize proteins side chains and destroy protein-coordinated  
188 Fe-S clusters (51, 52). IR9-150-1 and IR9-150-2 exhibit extensive proteomic changes which are  
189 suggestive of suppressing ROS formation linked to respiration by reducing the level of  
190 associated proteins (**Figure S6**). Furthermore, both isolates exhibit significant increases in  
191 proteins involved in repair of damaged Fe-S clusters, in particular members of the *suf* operon  
192 (**Figure S6**). These changes build on previous observations that variants of the ATP synthase  
193 component AtpA and Fe-S repair protein SufD were partially responsible for the radioresistant  
194 phenotype of lineage IR9 after 100 cycles of selection (42).

195 The new proteomics data show that isolate IR9-150-1 has increased levels of the ROS  
196 amelioration enzymes Hmp, SodA, and AhpF in addition to a large increase in the stress  
197 response sigma factor RpoS (which in turn controls transcription of the ROS amelioration  
198 proteins PqiA, PqiB, PqiC, and KatE). All of these changes have the potential to reduce the  
199 oxidative damage to cellular constituents of all kinds. In contrast, numerous ROS-responsive  
200 proteins are observed at decreased levels in IR9-150-2 (KatG, PqiB, PqiC, OxyR, Dps)  
201 suggesting that the two sub-populations of IR9 are pursuing quite distinct paths to IR  
202 resistance.

203        *Fe metabolism.* In addition to proteomic confirmation of adaptations previously  
204 identified through genomics, the proteome of IR9-150-2 exhibits a strong indication of altered  
205 Fe metabolism. Pathways focused on the production and uptake of Fe-scavenging siderophore  
206 enterobactin are all increased in abundance, while Fe-storage proteins Dps and Bfr are both  
207 decreased. The changes to Fe metabolism may be related to a frameshift in the ExbB protein  
208 (ExbB S67fs), which would additionally knock ExbD out of frame. The ExbBD protein complex  
209 (in conjunction with TonB) provides the mechanical energy necessary to facilitate enterobactin  
210 uptake across the outer membrane. Without these proteins cells can no longer utilize  
211 enterobactin as a means of Fe acquisition, leading to Fe starvation (53, 54). Interestingly, metals  
212 analysis through ICP-MS (**Figure S7**) did not reveal a decreased concentration of Fe in IR9-150-  
213 2 cells, suggesting that while an inability to uptake enterobactin may trigger the Fe starvation  
214 response, the cells are able to acquire Fe by other means. However, the Mn/Fe ratio was  
215 somewhat increased in several of the populations, perhaps telegraphing some evolutionary  
216 movement towards an ROS amelioration mechanism characterized by Daly and coworkers (22-  
217 30).

218

219        *An altered stress response through RpoS highlights evolutionary divergence of IR resistance*  
220 *mechanisms*

221        The new proteomic and genomic data highlight many potential new contributions to  
222 the IR resistance phenotype, but each requires testing. To illustrate how these evolved  
223 populations can be exploited for mechanistic discovery, we further explored the frameshift in  
224 gene *rssB*, resulting in increased expression of RpoS. The frameshift occurs early in the gene  
225 (at codon 3), essentially deleting *rssB* function. This mutation is present in one sub-population  
226 of IR9, exemplified by isolate IR9-150-1, but not in the sub-population from which isolate IR9-  
227 150-2 is derived or in population IR10. The *rssB* mutation contributes to IR resistance in a  
228 context-dependent manner. When a wild type *rssB* gene is restored in IR9-150-1, while  
229 retaining all other mutations in this evolved isolate, there is no evident effect on IR resistance  
230 at 3,000 Gy. However, at 4,000 Gy, IR resistance is strongly suppressed (**Figure 4**). Thus, the  
231 *rssB* mutation is important in this genetic background primarily at high doses of IR. When an  
232 *rssB* deletion was engineered into isolate IR9-150-2, no increase in IR resistance was observed.  
233 Instead, the change proved to be slightly deleterious (**Figure 4**). A similar deletion engineered  
234 into an isolate from population IR10 (IR-150-1) had no significant effect on IR resistance. An  
235 *rssB* deletion introduced into a wild type background produced a significant increase in IR  
236 resistance at 1,000 Gy (**Figure S8**), providing additional confirmation that this alteration can  
237 contribute to the IR resistance phenotype. Notably, elevated expression of RpoS in a wild type  
238 background can slow growth under at least some conditions (55), an effect that may have  
239 constrained the emergence of similar mutations earlier in the experimental evolution trial. The  
240 mutation does not measurably add to the IR resistance of IR9-150-2 or IR10-150-1, indicating  
241 that its effects depend on genomic context.

242

243 Whereas we have identified quite a number of mutations that contribute to IR resistance  
244 in the present study and previously (41, 42), we cannot yet account for the complete phenotype  
245 in any one population or sub-population. Some obvious candidates for additional study are  
246 revealed here and more will be identified. As exemplified by the *rssB* mutation, these  
247 experimentally evolved populations provide a robust platform for the discovery of new  
248 mechanisms of IR resistance, although complexity is evident. This study also makes several  
249 more general and important points. First, we have not yet reached a dose of ionizing radiation  
250 that would preclude survival if appropriate genomic changes are present. The potential for  
251 amelioration of IR-mediated damage in living organisms is great and may be greater than that  
252 seen in any extant extremophile studied to date. Second, there is not just one way to survive  
253 the damage inflicted by IR. Instead, survival may depend on layers of mechanisms that both  
254 prevent IR-inflicted damage and facilitate repair of any damage that occurs. The existence of  
255 multiple paths to IR resistance may eventually offer multiple points of intervention for cells  
256 from bacteria to human that may require this phenotype. Finally, it is likely that at least some  
257 of the mechanisms that may contribute to IR resistance involve processes never or rarely  
258 discussed in the context of this phenotype. Contributions by alterations in genes involved in  
259 DNA packaging (*cadA*) and repair of Fe-S clusters (*sufD*) (42), as well as the *rssB* mutation  
260 described here, provide examples. Experimental evolution provides an unbiased path to their  
261 discovery.

262

263

264

265

## 266 Acknowledgements

267 This work was supported by grant GM112757 from the National Institute of General Medical  
268 Sciences (NIGMS), and by grants 2817 and 502930 from the Joint Genome Institute, United  
269 States Department of Energy. The work conducted by the U.S. Department of Energy Joint  
270 Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science  
271 of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. STB was  
272 supported by a Morgridge Biotechnology Scholarship from the Vice Chancellor's Office for  
273 Research and Graduate Education, University of Wisconsin-Madison. BBM was supported by  
274 the Department of Defense Defense Threat Reduction Agency grant HDTRA1-16-1-0049.

275

## 276 Dedication

277 This paper is dedicated to Evelyn Witkin on the occasion of her 100<sup>th</sup> birthday.

278

## 279 Data and Resource Availability Statement:

280 Mutations detected via deep sequencing at round 150 are listed in Supplementary Dataset 1. MS  
281 datasets for each strain are available online at the Proteomics Identification Database  
282 (<https://www.ebi.ac.uk/pride/>; accession number: PXD024784) and are included as

283 Supplementary Dataset 2. All data utilized here are incorporated within this publication or in  
284 one of these datasets. In addition, all “omics” data, as well as all bacterial populations,  
285 isolates, and cellular constructs associated with this project, both published and unpublished,  
286 are available to any interested researcher at any time. For a current listing, please inquire.

287

288

289 **References**

290

- 291 1. J. A. Reisz, N. Bansal, J. Qian, W. L. Zhao, C. M. Furdui, Effects of ionizing radiation  
292 on biological molecules-mechanisms of damage and emerging methods of detection.  
293 *Antiox. Redox. Signal.* **21**, 260-292 (2014).
- 294 2. P. A. Riley, Free radicals in biology - oxidative stress and the effects of ionizing  
295 radiation. *Int. J. Rad. Biol.* **65**, 27-33 (1994).
- 296 3. G. Iliakis, The role of DNA double strand breaks in ionizing radiation-induced killing  
297 of eukaryotic cells. *Bioessays* **13**, 641-648 (1991).
- 298 4. R. E. Krisch, F. Krasin, C. J. Sauri, DNA breakage, repair, and lethality accompanying  
299 <sup>125</sup>I decay in microorganisms. *Current Topics Rad. Res. h Quarterly*. **12**, 355-368 (1978).
- 300 5. T. Haaf *et al.*, Sequestration of mammalian Rad51-recombination protein into  
301 micronuclei. *J. Cell Biol.* **144**, 11-20 (1999).
- 302 6. M. Toma, T. Skorski, T. Sliwinski, DNA double strand break repair - related synthetic  
303 lethality. *Curr. Med. Chem.* **26**, 1446-1482 (2019).
- 304 7. C. Shee *et al.*, Engineered proteins detect spontaneous DNA breakage in human and  
305 bacterial cells. *eLife* **2**, e01222 (2013).
- 306 8. G. Z. Cao *et al.*, Effects of X-ray and carbon ion beam irradiation on membrane  
307 permeability and integrity in *Saccharomyces cerevisiae* cells. *J. Rad. Res.* **56**, 294-304  
308 (2015).
- 309 9. A. Krisko, M. Radman, Protein damage and death by radiation in *Escherichia coli* and  
310 *Deinococcus radiodurans*. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 14373-14377 (2010).
- 311 10. S. T. Bruckbauer *et al.*, Ionizing radiation-induced proteomic oxidation in *Escherichia*  
312 *coli*. *Mol. Cell. Proteom.* **19**, 1375-1395 (2020).
- 313 11. B. B. Minkoff, S. T. Bruckbauer, G. Sabat, M. M. Cox, M. R. Sussman, Covalent  
314 modification of amino acids and peptides Induced by ionizing radiation from an  
315 electron beam linear accelerator used in radiotherapy. *Rad. Res.* **191**, 447-459 (2019).
- 316 12. G. H. Xu, M. R. Chance, Hydroxyl radical-mediated modification of proteins as probes  
317 for structural proteomics. *Chem. Rev.* **107**, 3514-3543 (2007).
- 318 13. A. F. Fragopoulou *et al.*, Hippocampal lipidome and transcriptome profile alterations  
319 triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An  
320 exploratory study. *Brain Behav.* **8**, (2018).
- 321 14. E. L. Pannkuk *et al.*, A lipidomic and metabolomic serum signature from nonhuman  
322 primates exposed to ionizing radiation. *Metabolomics* **12**, (2016).
- 323 15. M. Upadhyay *et al.*, Identification of plasma lipidome changes associated with low  
324 dose space-type radiation exposure in a murine model. *Metabolites* **10**, (2020).
- 325 16. R. L. Chang *et al.*, Protein structure, amino acid composition and sequence determine  
326 proteome vulnerability to oxidation-induced damage. *EMBO J.* **39**, (2020).
- 327 17. A. W. Anderson, H. C. Nordon, R. F. Cain, G. Parrish, D. Duggan, Studies on a radio-  
328 resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance  
329 to gamma radiation. *Food Technol.* **10**, 575-578 (1956).

330 18. J. R. Battista, Against all odds - the survival strategies of *deinococcus radiodurans*.  
331 *Ann. Rev. Microbiol.* **51**, 203-224 (1997).

332 19. M. M. Cox, J. R. Battista, *Deinococcus radiodurans* - The consummate survivor. *Nature Rev. Microbiol.* **3**, 882-892 (2005).

334 20. M. J. Daly, OPINION A new perspective on radiation resistance based on *Deinococcus*  
335 *radiodurans*. *Nature Rev. Microbiol.* **7**, 237-245 (2009).

336 21. D. Slade, M. Radman, Oxidative Stress Resistance in *Deinococcus radiodurans*. *Microbiol. Mol. Biol. Rev.* **75**, 133-191 (2011).

338 22. E. Bentchikou, P. Servant, G. Coste, S. Sommer, A major role of the RecFOR pathway  
339 in DNA double-strand-break repair through ESDSA in *Deinococcus radiodurans*. *PLoS Genet* **6**, e1000774 (2009).

340 23. D. A. Bernstein *et al.*, Crystal structure of the *D. radiodurans* single-stranded DNA  
342 binding protein suggests a novel mechanism for coping with DNA damage. *Proc. Natl. Acad. Sci. U.S.A.* **101**, 8575-8580 (2004).

344 24. M. J. Daly, L. Ouyang, P. Fuchs, K. W. Minton, In vivo damage and *recA*-dependent  
345 repair of plasmid and chromosomal DNA in the radiation-resistant bacterium  
346 *Deinococcus radiodurans*. *J. Bacteriol.* **176**, 3508-3517 (1994).

347 25. M. J. Daly, K. W. Minton, An alternative pathway of recombination of chromosomal  
348 fragments precedes *recA*-dependent recombination in the radioresistant bacterium  
349 *Deinococcus radiodurans*. *J. Bacteriol.* **178**, 4461-4471 (1996).

350 26. M. J. Daly *et al.*, Accumulation of Mn(II) in, *Deinococcus radiodurans* facilitates gamma-  
351 radiation resistance. *Science* **306**, 1025-1028 (2004).

352 27. D. R. Harris *et al.*, Preserving Genome Integrity: The DdrA Protein of *Deinococcus*  
353 *radiodurans* R1. *PLoS Biology* **2**, e304 (2004).

354 28. D. R. Harris, K. V. Ngo, M. M. Cox, The stable, functional core of DdrA from  
355 *Deinococcus radiodurans* R1 does not restore radioresistance in vivo. *J Bacteriol* **190**,  
356 6475-6482 (2008).

357 29. J.-I. Kim, M. M. Cox, The RecA proteins of *Deinococcus radiodurans* and *Escherichia coli*  
358 promote DNA strand exchange via inverse pathways. *Proc. Natl. Acad. Sci. U.S.A.* **99**,  
359 7917-7921 (2002).

360 30. C. Norais *et al.*, The *Deinococcus radiodurans* DR1245 Protein, a DdrB Partner  
361 Homologous to YbjN Proteins and Reminiscent of Type III Secretion System  
362 Chaperones. *PLoS One* **8**, (2013).

363 31. P. A. Karam, S. A. Leslie, Calculations of background beta-gamma radiation dose  
364 through geologic time. *Health Physics* **77**, 662-667 (1999).

365 32. J. K. Fredrickson *et al.*, Protein oxidation: key to bacterial desiccation resistance? *Isme J.*  
366 **2**, 393-403 (2008).

367 33. V. Mattimore, J. R. Battista, Radioresistance of *Deinococcus radiodurans*: functions  
368 necessary to survive ionizing radiation are also necessary to survive prolonged  
369 desiccation. *J. Bacteriol.* **178**, 633-637 (1996).

370 34. M. Tanaka *et al.*, Analysis of *Deinococcus radiodurans*'s transcriptional response to  
371 ionizing radiation and desiccation reveals novel proteins that contribute to extreme  
372 radioresistance. *Genetics* **168**, 21-33 (2004).

373 35. F. A. Rainey *et al.*, Extensive diversity of ionizing-radiation-resistant bacteria  
374 recovered from Sonoran Desert soil and description of nine new species of the genus  
375 *Deinococcus* obtained from a single soil sample. *Appl. Environ. Microbiol.* **71**, 5225-5235  
376 (2005).

377 36. E. M. Witkin, A case of inherited resistance to radiation in bacteria. *Genetics* **31**, 236-236  
378 (1946).

379 37. E. M. Witkin, inherited differences in sensitivity to radiation in *Escherichia coli*. *Proc. Natl. Acad. Sci. U.S.A.* **32**, 59-68 (1946).

380 38. R. Davies, A. J. Sinskey, Radiation-resistant mutants of *Salmonella typhimurium* LT2: development and characterization. *J Bacteriol* **113**, 133-144 (1973).

381 39. I. E. Erdman, F. S. Thatcher, K. F. Macqueen, Studies on the irradiation of microorganisms in relation to food preservation. II. Irradiation resistant mutants. *Can J Microbiol* **7**, 207-215 (1961).

382 40. A. Parisi, A. D. Antoine, Increased radiation resistance of vegetative *Bacillus pumilus*. *Appl Microbiol* **28**, 41-46 (1974).

383 41. S. T. Bruckbauer *et al.*, Experimental evolution of extreme resistance to ionizing radiation in *Escherichia coli* after 50 cycles of selection. *J. Bacteriol.* **201**, e00784 (2019).

384 42. S. T. Bruckbauer *et al.*, Physiology of highly radioresistant *Escherichia coli* after experimental evolution for 100 cycles of selection. *Frontiers Microbiol.* **11**, 582590 (2020).

385 43. K. I. Sorensen, B. HoveJensen, Ribose catabolism of *Escherichia coli*: Characterization of the *rpiB* gene encoding ribose phosphate isomerase B and of the *rpiR* gene, which is involved in regulation of *rpiB* expression. *J. Bacteriol.* **178**, 1003-1011 (1996).

386 44. G. A. Sprenger, Genetics of pentose-phosphate pathway enzymes of *Escherichia coli* K-12. *Archives Microbiol.* **164**, 324-330 (1995).

387 45. I. C. Blomfield, D. H. Kulasekara, B. I. Eisenstein, Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in *Escherichia coli*. *Molecular Microbiology* **23**, 705-717 (1997).

388 46. S. A. Joyce, C. J. Dorman, A Rho-dependent phase-variable transcription terminator controls expression of the FimE recombinase in *Escherichia coli*. *Mol. Microbiol.* **45**, 1107-1117 (2002).

389 47. M. S. McClain, I. C. Blomfield, B. I. Eisenstein, Roles of FimB and FimE in site-specific DNA inversin associated with phase variation of type-1 fimbriae in *Escherichia coli*. *J. Bacteriol.* **173**, 5308-5314 (1991).

390 48. G. Becker, E. Klauck, R. Hengge-Aronis, Regulation of RpoS proteolysis in *Escherichia coli*: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. *Proc. Natl. Acad. Sci. U.S.A.* **96**, 6439-6444 (1999).

391 49. D. Micevski, J. E. Zammit, K. N. Truscott, D. A. Dougan, Anti-adaptors use distinct modes of binding to inhibit the RssB-dependent turnover of RpoS (sigma(S)) by ClpXP. *Frontiers Mol. Biosci.* **2**, (2015).

392 50. F. Mika, R. Hengge, A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigma(S) (RpoS) in E-coli. *Genes Develop.* **19**, 2770-2781 (2005).

393 51. J. A. Imlay, The mismetallation of enzymes during oxidative stress. *J. Biological Chemistry* **289**, 28121-28128 (2014).

394 52. J. A. Imlay, R. Sethu, S. K. Rohaun, Evolutionary adaptations that enable enzymes to tolerate oxidative stress. *Free Rad. Biol. Med.* **140**, 4-13 (2019).

395 53. B. M. M. Ahmer, M. G. Thomas, R. A. Larsen, K. Postle, Characterization of the exbBD operon of *Escherichia coli* and the role of ExbB and ExbD in TonB function and stability. *J. Bacteriol.* **177**, 4742-4747 (1995).

396 54. S. Maki-Yonekura *et al.*, Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. *Elife* **7**, (2018).

397 55. O. Patange *et al.*, *Escherichia coli* can survive stress by noisy growth modulation. *Nature Commun.* **9**, (2018).

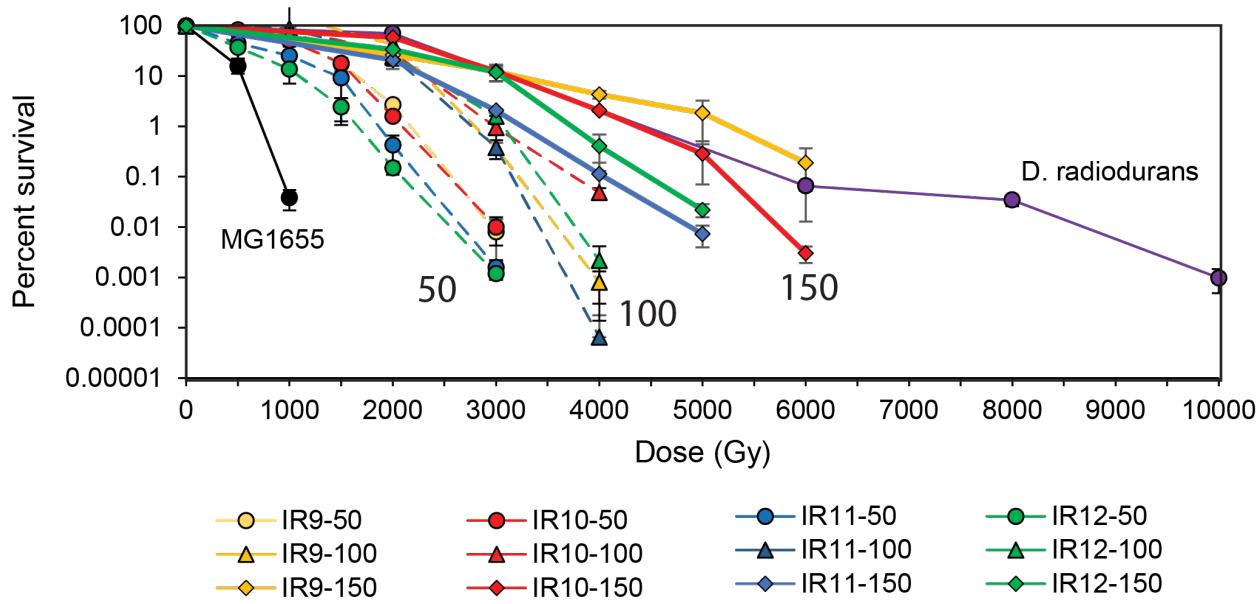
427 56. J. H. Miller, *A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for*  
428 *Escherichia coli and Related Bacteria*. (Cold Spring Harbor Laboratory, Cold Spring  
429 Harbor, NY, 1992).

430 57. F. R. Blattner *et al.*, The complete genome sequence of *Escherichia coli* K-12. *Science* **277**,  
431 1453-1474 (1997).

432 58. S. Warming, N. Costantino, D. L. Court, N. A. Jenkins, N. G. Copeland, Simple and  
433 highly efficient BAC recombineering using galK selection. *Nuc. Acids Res.* **33**, e36  
434 (2005).

435 59. K. A. Datsenko, B. L. Wanner, One-step inactivation of chromosomal genes in  
436 *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U.S.A.* **97**, 6640-6645  
437 (2000).

438 60. P. R. Almond *et al.*, AAPM's TG-51 protocol for clinical reference dosimetry of high-  
439 energy photon and electron beams. *Med. Phys.* **26**, 1847-1870 (1999).


440 61. D. R. Harris *et al.*, Directed evolution of radiation resistance in *Escherichia coli*. *J.*  
441 *Bacteriol.* **191**, 5240-5252 (2009).

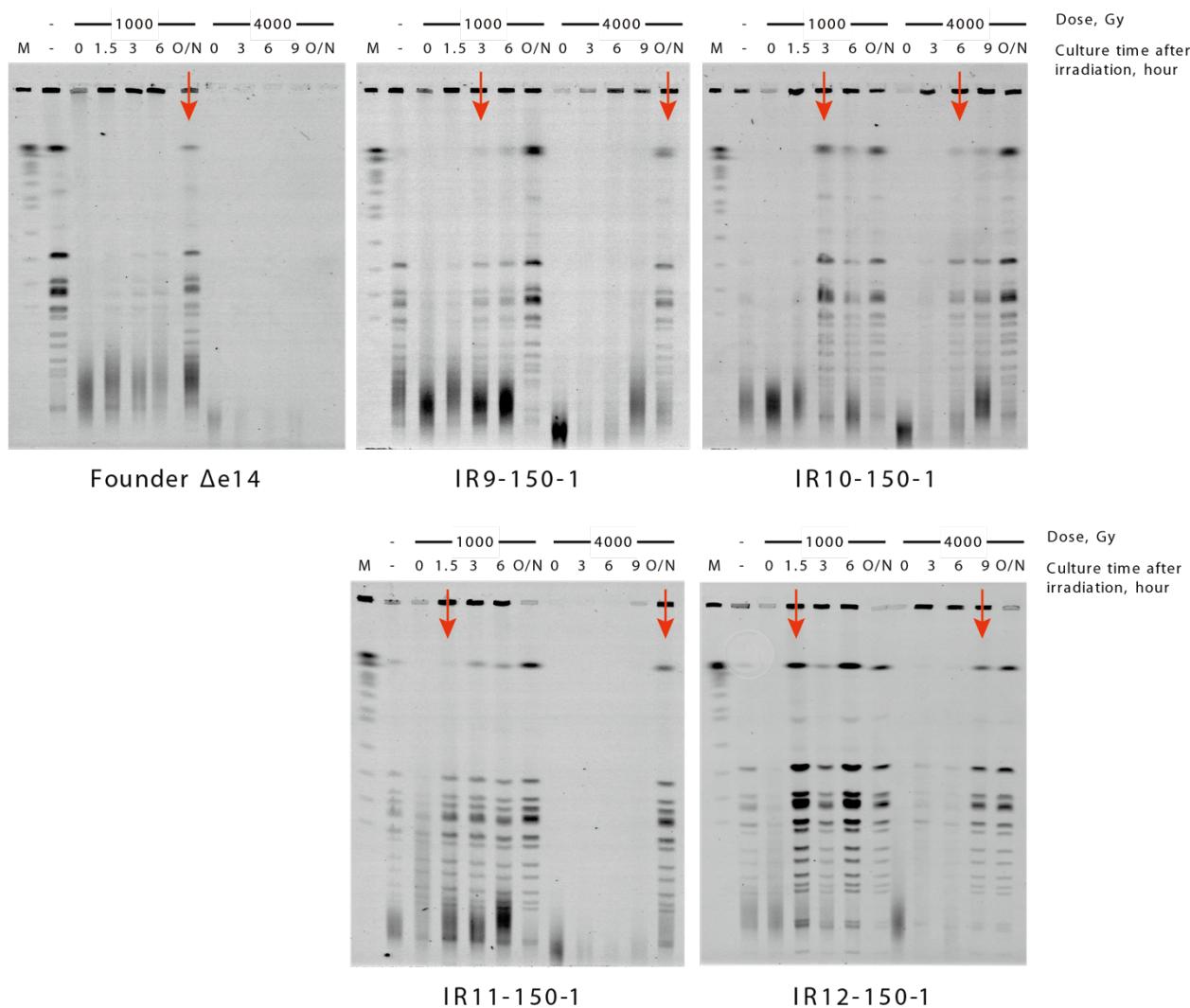
442 62. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler  
443 transform. *Bioinformatics* **25**, 1754-1760 (2009).

444  
445  
446  
447

448 **Figures**

449




450

451

452 **Figure 1. After 150 cycles of selection experimentally evolved *E. coli* populations exhibit IR**  
453 **resistance comparable to *D. radiodurans*.** Survival curves of evolved populations compared  
454 to previously evolved *Escherichia coli* populations and *Deinococcus radiodurans*. MG1655 is the  
455 Founder strain used to begin the evolution experiment. IR'X'-50 and IR'X'-100 are populations  
456 of the indicated lineages after 50 or 100 cycles of selection with IR. Early exponential phase  
457 cultures of the indicated strains were exposed to electron beam IR as described in the *Materials*  
458 and *methods*. Error bars represent the standard deviation of CFU/mL calculations from a single  
459 experiment performed in biological triplicate. Survival data for MG1655, populations after 50  
460 cycles of selection, and *D. radiodurans* strain R1 at 2000 and 6000 Gy are as previously reported  
461 (41, 42).

462

463

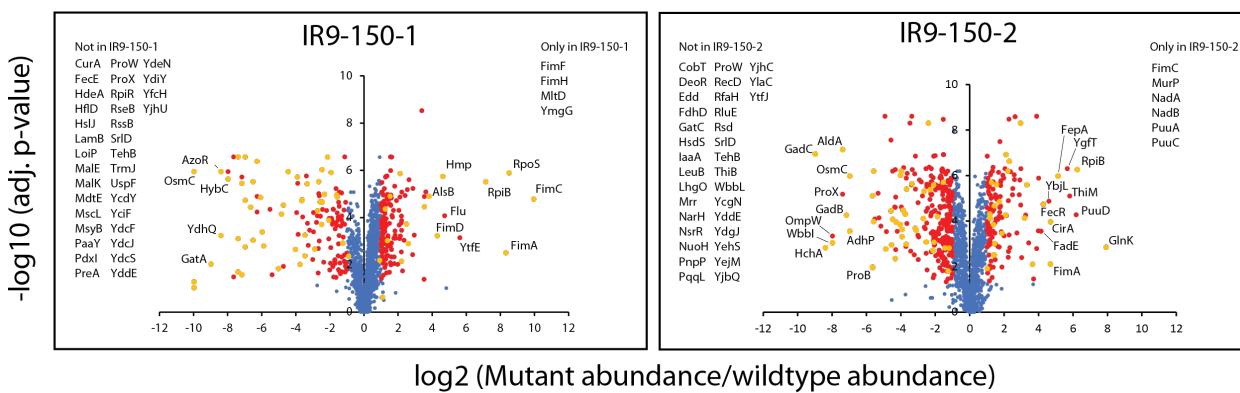


464

465

466

467 **Figure 2. Evolved isolates experience and repair extensive IR-induced DNA damage.** Pulsed-  
468 field gel electrophoresis (PFGE) was used to assay the extent and repair of DNA damage  
469 induced by IR exposure at 1000 and 4000 Gy. Genomic DNA is digested with restriction  
470 enzyme NotI to facilitate observation of intact versus degraded genomes. At 4000 Gy, cultures  
471 of MG1655 are completely killed and no repair of genomic DNA is observed. Red arrows  
472 indicate the first appearance of a banding pattern suggesting intact genome. Results are  
473 representative of two independent experiments. PFGE was performed as described previously  
474 (61), and as in *Materials and methods*.


475

476

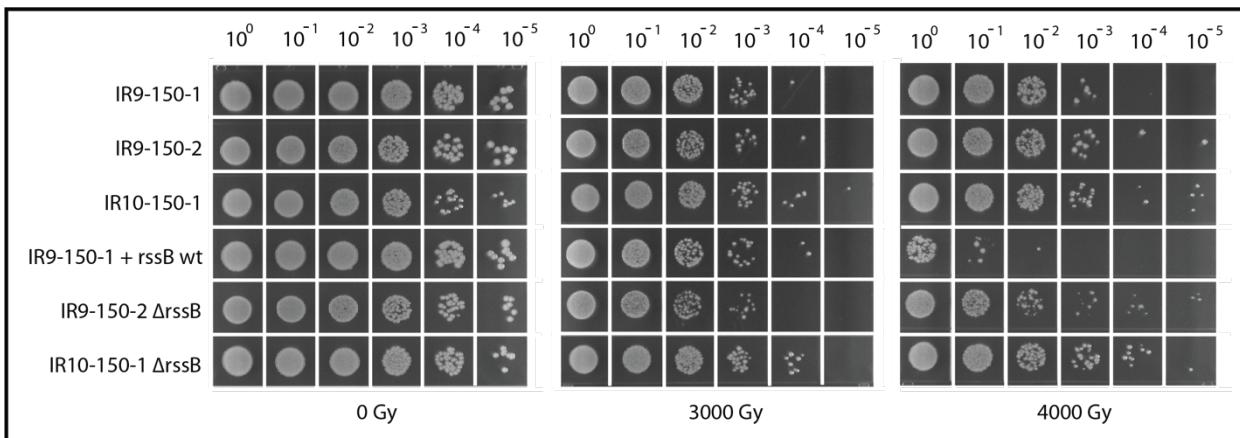
477

478

479



480


481

482

483 **Figure 3. The proteome composition of IR9-150-1 and IR9-150-2 have diverged from *E. coli* MG1655.** Volcano plots depict each protein detected with a circle, with the fold difference in abundance compared to the same protein in MG1655 on the x-axis and the p-value of that change on the y-axis. Proteins with a significant fold change are colored in red. Numerous proteins were not detected, or only detected in the evolved isolates. Such proteins are listed next to their respective volcano plots, as they cannot be plotted due to no actual fold increase or decrease. The proteome composition of MG1655, IR9-150-1, and IR9-150-2 was determined utilizing label free quantification mass spectrometry (LFQ-MS). Significant changes in protein abundance were defined as an increase or decrease greater than two-fold, with adjusted p-values less than 0.05 (calculated using Benjamini-Hochberg correction). Supplementary Datasets 1 and 2 contain the genomics and proteomics data used for these analyses, respectively.

495

496



497

498

499

500

501

502

503

504

505

506

**Figure 4. Loss of *rssB* enhances IR resistance in a context-dependent manner.** When *rssB* is converted to the wildtype sequence in IR9-150-2, a loss of IR-resistance is observed at 4000 Gy. However, at 3000 Gy no effect is observed from loss of the frameshifted *rssB*, highlighting the dose-dependent context of some beneficial mutations. Furthermore, when *rssB* is deleted from IR9-150-2, or IR10-150-1 we see no effect (IR10-150-1) or deleterious phenotypes (IR9-150-2) at the doses tested. Therefore, beneficial effects from the loss of *rssB* is also dependent on genomic context (see Figure S8 for the effects of an *rssB* deletion in a wild type background).

507

508

509

510

