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Abstract

Distinct brain systems are thought to support statistical learning over different timescales.

Regularities encountered during online perceptual experience can be acquired rapidly by

the hippocampus. Further processing during offline consolidation can establish these

regularities gradually in cortical regions, including the medial prefrontal cortex (mPFC).

These mechanisms of statistical learning may be critical during spatial navigation, for

which knowledge of the structure of an environment can facilitate future behavior. Rapid

acquisition and prolonged retention of regularities have been investigated in isolation, but

how they interact in the context of spatial navigation is unknown. We had the rare

opportunity to study the brain systems underlying both rapid and gradual timescales of

statistical learning using intracranial electroencephalography (iEEG) longitudinally in the

same patient over a period of three weeks. As hypothesized, spatial patterns were

represented in the hippocampus but not mPFC for up to one week after statistical learning

and then represented in the mPFC but not hippocampus two and three weeks after

statistical learning. Taken together, these findings clarify that the hippocampus may do

the initial work of extracting regularities and transfer these integrated memories to cortex,

rather than only storing individual experiences and leaving it up to cortex to extract

regularities.

Keywords: memory integration, complementary learning systems, intracranial EEG,

hippocampus, medial prefrontal cortex, inverted encoding models
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Remembering the pattern: A longitudinal case study on statistical learning in spatial

navigation and memory consolidation

Highlights

• Case study of an epilepsy patient tested longitudinally over three weeks.

• We tracked time-dependent changes in neural representations of spatial patterns.

• Representations reconstructed from hippocampal activity reflected patterns learned

within a week.

• Representations reconstructed from activity in the mPFC reflected patterns learned

2–3 weeks ago.

1. Introduction

When you move to a new city, even on your first walk around town, you begin

mapping out the streets and landmarks in your head, allowing you to subsequently find

your way home that day. This knowledge grows over time through continued experience,

such that it can help you find particular places on future excursions that you have never

visited before. This ability to immediately represent the structure of one’s surroundings

and to retain and refine this knowledge over time reflects two different timescales of

statistical learning, or extraction of regularities from the environment.

On rapid timescales of minutes to hours, statistical learning occurs robustly across

modalities (Sherman, Graves, & Turk-Browne, 2020), from auditory sequences of tones

(Saffran, Johnson, Aslin, & Newport, 1999) to visual series of shapes (Turk-Browne, Jungé,

& Scholl, 2005) to haptic properties (Lengyel et al., 2019), and within multiple domains,

from abstract categories (Brady & Oliva, 2008) to music (Leung & Dean, 2018) to faces

(Dotsch, Hassin, & Todorov, 2017). It supports parsing of streams of speech into words

(Karuza et al., 2013; McNealy, Mazziotta, & Dapretto, 2006), as well as learning of motor

sequences (Janacsek et al., 2020) and reward contingencies (Goldfarb, Chun, & Phelps,
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REMEMBERING THE PATTERN 4

2016). In the brain, this process relies at least in part on the hippocampus (Schapiro &

Turk-Browne, 2015), which computational models have shown contains the necessary

architecture for rapid, online learning of regularities from the environment (Schapiro,

Turk-Browne, Botvinick, & Norman, 2017).

On more gradual timescales of days to weeks, or even years, cortical consolidation of

encoded experiences shapes our semantic knowledge, supporting the emergence of spatial,

contextual, and conceptual schemas (Gilboa & Marlatte, 2017). The formation of schemas

is supported by the medial prefrontal cortex (mPFC), which represents overlapping

features of previously encoded stimuli in humans (Tompary & Davachi, 2017) and spatial

locations in rodents (Richards et al., 2014). For example, this latter study established a

causal link between rodent mPFC and pattern consolidation by having rats learn locations

in a Morris Water Maze that were drawn from an underlying, hidden distribution. After

learning the individual locations, the mPFC of rats in the experimental group was disabled

via a pharmacological manipulation, whereas the mPFC of rats in the control group was

left intact. During a test phase 30 days later, the rats were placed back in the water maze

to measure whether they had extracted the distribution through consolidation of individual

locations. Rats with an intact mPFC searched according to the distribution, indicating

statistical learning, but those with a impaired mPFC did not. This finding suggested a

critical role for mPFC in consolidation and prolonged retention of spatial regularities.

It remains unclear how the multiple timescales of statistical learning relate to spatial

navigation in humans. For example, whereas it takes a month for rodents to extract spatial

patterns during navigation, humans can do so immediately during online behavior (Graves,

Antony, & Turk-Browne, 2020). Participants in this study performed a virtual analogue of

the Morris Water Maze, finding hidden locations in an arena that were drawn from a

Gaussian distribution. Over the course of a few minutes of learning, navigation behavior

switched from a bias toward previously learned individual locations to a bias toward the

mean of the distribution of locations.
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Despite being acquired rapidly, the fate of this acquired representation over time is

unknown. Moreover, whereas we hypothesize that the hippocampus may support rapid

extraction, followed by more prolonged retention in mPFC, such time-dependent changes in

the brain systems involved in human navigation have not been tested previously.

In the current study, we tracked the cognitive and neural trajectory of learned spatial

patterns during navigation via intracranial electroencephalography (iEEG). We had the

rare opportunity to repeatedly test a single patient, who was in the hospital for clinical

seizure monitoring substantially longer than an average study (6 weeks vs. 1-1.5 weeks

typically). The patient performed a screen-based virtual maze task (Graves et al., 2020)

where hidden target locations were drawn from a Gaussian distribution. She learned two

distributions of locations on two separate days of training, after which the extent of her

distribution extraction was tested at multiple intervals. We predicted that the

hippocampus would represent the underlying distribution initially after learning, but that

this pattern would come to be represented in mPFC over time.

2. Materials and Methods

2.1 Participant

We tested one patient (female, age 26, right-handed) admitted to Yale New Haven

Hospital for iEEG seizure monitoring. She had a history of epilepsy and attention deficit

hyperactivity disorder (ADHD) starting at age 10, as well as recurring depression starting

when she was a teenager. Her medications included oxcarbazepine and intronasal

midazolam for epilepsy, as well as occasional Adderall for ADHD. A structural MRI in

2017 revealed normal hippocampal volume. Neuropsychological test scores were high

overall (Full Scale Intelligence Quotient (FSIQ) = 131, Verbal Comprehension Index (VCI)

= 141, Perceptual Reasoning Index (PRI) = 123) and non-indicative of any seizure

lateralization or localization. Pre-implant video and EEG monitoring suggested seizures

were likely arising from the left posterior lateral temporal region.
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The patient was implanted with subdural electrodes on the cortical surface over the

left hemisphere, as well as multiple depth electrodes implanted in subcortical structures

including the left hippocampus (Fig. 1). Decisions on electrode placement were determined

solely by the clinical care team to optimize localization of seizure foci. The patient

completed three sessions of a virtual Morris Water Maze task, referred to hereafter as Day

1, Day 8, and Day 21. The research protocol was approved by the Yale University

Institutional Review Board.

Fig. 1 . Reconstruction of the patient’s electrode coverage. Arrows are pointing to a (red)

depth electrode containing left hippocampal contacts at the tip and to a (green) electrode

strip covering left mPFC.

2.2 Experimental Design

The virtual environment was designed as a circular arena and constructed in Blender

(www.blender.org). The environment was rendered in Matlab (Mathworks, Natick, MA,

USA), and Psychtoolbox (Brainard, 1997) was used to display task instructions. The arena

was designed graphically with an island beach theme. The circular floor (radius = 7.85

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464818
http://creativecommons.org/licenses/by-nc-nd/4.0/


REMEMBERING THE PATTERN 7

arbitrary units, AU) was covered by an image of sand. Mountains appeared on the north

end and palm trees on the south end; similar to the classic water maze task, these

landmarks served as directional headings. Each “platform” was a shell in the first session

and a crab in the second session. Following Richards et al. (2014), the locations of the

shells were drawn from a normal distribution of distances d from center (µ = 3.4 AU, σ =

0.9067 AU) and a circular normal distribution of angles θ between the platform and the

eastern cardinal direction (µ = 0.2618 radians, κ = 8). The locations of the crabs were

generated by taking the shell distribution and rotating it 160 degrees counterclockwise

around the arena. We chose 160 degrees instead of a full 180 degree rotation to prevent the

use of symmetry-based heuristics.

2.3 Procedure

On Day 1, the patient was trained on the shell distribution. She was instructed that

she was on an island, searching for a total of 20 seashells buried below the sand. She could

only find one shell at a time and had to walk around the beach until she found it. The

patient used the I key to walk forward, the J and L keys to turn left and right,

respectively, and the M key to walk backward. At the beginning of the search for each new

shell, the patient’s location was initialized to the center of the arena, always facing a new

random direction. Navigation was initiated by the patient following a minimum of 4

seconds in which the ground was green and the I/M keys were locked only allowing the

patient to rotate in place left or right. The ground then turned to sand, cuing the patient

that she could now start moving forward and backward. There was no time limit, and thus

the searches varied in length. The patient successfully located a shell when she walked

within a 1 1/3-unit radius of the platform location of that shell. When this occurred,

further navigation was locked, and the walls turned green to reveal the outline of a shell.

The screen then went black, and the patient was told how many new shells remained to be

found before beginning to search for the next shell.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464818
http://creativecommons.org/licenses/by-nc-nd/4.0/


REMEMBERING THE PATTERN 8

On Day 8, the patient was first trained on the crab distribution. This second

distribution was introduced to provide another set of lags between training and test, over

which we could examine time-dependent changes in hippocampal and mPFC

representations. The crab training on Day 8 was nearly identical to the shell training on

Day 1, with the only difference being that the patient was now looking for crabs instead of

shells and the distribution was centered in a new part of the arena. After finding all of the

crabs, the patient then completed a test phase following a brief delay for instructions.

During the test phase, the patient was instructed that she was back on the island and that

she would alternate between finding more shells and crabs. She received a cue on each trial

indicating which object was the target. The test phase differed critically from training in

that search was limited to 16 seconds and no feedback was given until the end of the time.

This resulted in the patient searching an empty arena based on what was learned during

training. The patient completed four alternating trials of searching for shells and searching

for crabs. The Day 8 shell test evaluates a lag of 7 days, whereas the Day 8 crab test

evaluates an immediate lag of 0 days.

On Day 21, the patient completed six more alternating tests of searching for shells

and crabs in the empty arena (Fig. 2). The Day 21 shell test evaluates a lag of 20 days,

whereas the crab test evaluates a lag of 13 days. Thus, across distributions we tested for

the representation of spatial patterns 0, 7, 13, and 20 days after training.
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Fig. 2 . The patient’s testing schedule. A) The experiment was conducted in a virtual

beach environment. B) On Day 1, the patient found a distribution of shells (brown icons).

On Day 8, she found a distribution of crabs (orange icons), and then performed the first

test phase, where she alternated searching for shells (7-day lag) and crabs (0-day lag) in an

empty arena. She completed another alternating test phase on Day 21 for shells (20-day

lag) and crabs (13-day lag). C) Each trial of training and test consisted of a cue, a

pre-navigation period where forward motion was locked, a navigation period, and a

post-navigation period.

2.4 Intracranial Recordings

Intracranial EEG (iEEG) was recorded in Natus Neuroworks 8.5.1 using a Natus

Quantum amplifer, sampled at 4,096 Hz. Signals were referenced to an inverted (facing

away from brain) left parieto-temporal strip electrode. In post-processing, to reduce

electrical line noise, a notch filter was applied between 55-65 Hz. Data corresponding to
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each trial were segmented into fixation, pre-navigation, navigation, and post-navigation

epochs, and downsampled to 256 Hz. To eliminate events containing epileptiform activity,

epochs were removed from analysis if kurtosis of the voltage trace within epoch exceeded a

threshold of 5 (van Vugt, Schulze-Bonhage, Litt, Brandt, & Kahana, 2010). This resulted

in an exclusion 2.8% of experimental events. Data from the pre-navigation and navigation

epochs were used for analysis.

2.5 Electrode Localization

Patient electrodes were localized via BioImage Suite (Papademetris, Jackowski,

Rajeevan, Constable, & Staib, n.d.) and Matlab. The patient’s skull-stripped T1 weighted

structural brain MRI was registered to an MNI T1 average structural MRI via nonlinear

registration. The resulting transformation file was used to transform the patient’s electrode

locations into standard space. Hippocampus and mPFC regions of interest (ROIs) were

constructed from the Automated Anatomical Labeling (AAL) map in MNI space

(Tzourio-Mazoyer et al., 2002) and used to determine which electrodes fell within each ROI.

2.6 Behavioral Analyses

Raw behavioral data consisted of X and Y coordinates output every 40 ms of

navigation. First, we sought to confirm that by learning each hidden location during

training, the patient also learning the underlying distribution. We predicted that

acquisition of the spatial distribution would result in subsequent navigation that was

biased towards the distribution’s central tendency.

We analyzed the extent to which learning the underlying distribution biased search

behavior during the test phases by measuring whether the patient’s search path brought

them closer to the location of each distribution’s mean than what would be expected by

chance (Graves et al., 2020). To this end, we calculated the patient’s average proximity to

the distribution mean across all test trials, separately for each distribution and testing day.

We then generated a null distribution of proximity measures by rotating the spatial
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distribution locations a random angle between 5 and 355 degrees away from the learned

distribution 1,000 times. Per rotation, we calculated the average proximity to the dummy

rotated mean. An empirical p-value was calculated as the proportion of rotated proximity

measures that were closer to the mean than the true proximity. We repeated this analysis

for the distribution randomly rotated within plus and minus 90 degrees of the true

distribution, and plus and minus 45 degrees, to compare search behavior to more

conservative null distributions. Th objective of this analysis was to quantify the specificity

of the patient’s distribution memory.

2.7 Time-Frequency Decomposition

We calculated a continuous Morlet wavelet transform (wave number 5) at 50

logarithmically spaced frequencies between 1 and 120 Hz for each epoch of each training

and test session. A 5-second buffer was added to both ends of all power calculations to

account for edge effects, and subsequently was discarded. We then estimated the

background power spectrum via a linear regression fit to the power spectrum in log-log

coordinates, and subtracted the subsequent 1/f from our data. Lastly, the data were

z-scored per frequency band, electrode, and session. These data were used in a subsequent

inverted encoding model.

2.8 Inverted Encoding Model

Spatial representations during test were assessed via a 2-D inverted encoding model

method (Sprague & Serences, 2013). Briefly, this method enables reconstruction of a

spatial representation from neural data that is modeled as a sum of the weighted

activations of a set of information channels. The information channels in this study were

initialized as 100 2-D Gaussians distributed throughout the surface of the beach arena,

representing hypothesized place-coding activity (Fig. 3).

Because the patient did not explore the entirety of the arena when learning either

distribution, and therefore would not have provided neural data to train all of the channels,
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we conducted a channel validation step that allowed us to select for our final model only

the channels for which there was enough data and that subsequently showed significant

place-coding activity. This step only used data from the training phases. The resultant

models were then used to reconstruct representations from unseen test phase data.

In separate models for each training day’s distribution, channel validation consisted

of holding out a subset of hippocampal activity from when the patient was standing within

each channel’s radius, training the model, and then testing it on the held-out training data.

A channel for which peak reconstructed activity (i.e., the magnitude of the reconstructed

response above the 99th percentile) was more proximal to the tested channel than all other

channels was considered a “good” channel (Fig. 3).

We conducted separate channel validations using time-frequency decomposed power

from the 1-3 Hz band (delta, which some have termed “low theta”) and the 3-10 Hz band

(theta/low alpha, which some have termed “high theta”) as model training data. Previous

work in human virtual navigation has implicated hippocampal oscillations at around 3 Hz

(Goyal et al., 2020; Watrous et al., 2013) and 8 Hz (Miller et al., 2018) in spatial

navigation and spatial memory encoding. We thus sought to determine which band would

yield greater place coding activity and recover a greater number of channels. We conducted

a principal components analysis (PCA) over the frequencies by hippocampal electrodes for

each band (12 frequencies between 1-3 Hz, 12 frequencies between 3-10 Hz), and iteratively

repeated the channel validation on each number of components. We additionally iterated

through a range of stimulus and receptive field size parameters, which determine the shape

of the Gaussians (Sprague & Serences, 2013). The maximum number of recovered channels

and their associated stimulus size, frequency band, and number of PCA components per

distribution across all iterations served as our basis set for reconstructing the spatial

representations from test data. Critically, these model optimizations were performed

entirely within the training data; test data were held out of all of these steps to avoid

double-dipping. Because our objective at test was to reconstruct not individual place
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representations, but an aggregate distribution representation, we increased the receptive

field size for each distribution’s set of channels. This allowed us to generate smooth

reconstructions via a similar manual parameter selection procedure as has been shown

previously (Sprague & Serences, 2013).

Our main analyses build from this method of parameter and channel selection.

However, the statistical trends in our results are the same if we simply set a data threshold

for inclusion for all channels without establishing significant place coding activity and

manually select the parameters for Gaussian shape (1 1/3 AU stimulus size, 1.2 AU

receptive field size) (Supplemental Fig. 1).
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Fig. 3 . Model channel validation and test. Information channels for this model were

generated based on a predicted Gaussian-shaped place field response. The model was

initialized with 100 distributed channels, and navigation data from the two distribution

training phases was used to train the model. The final model consisted of a subset of

channels that demonstrated significant place coding activity in the training data.

To examine representations at test, we built separate models on training data from

the shell and crab distributions. For each test trial, we applied the model for the

corresponding cued distribution to reconstruct place activity. We used test data from only

the first four pre-navigation seconds of each trial when the patient was confined to the

origin of the arena, predicting that the patient would be representing whatever she had

learned during training in planning her search. We combined reconstructions over all trials

from a given distribution and test session, yielding a reconstruction for each lag and brain

region.
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We then assessed whether the peak reconstructed activity was significantly proximal

to the distribution mean to quantify neural evidence of statistical learning of the

distribution. We first determined the most active channel and then calculated the distance

from that channel to the distribution mean. We shuffled the full reconstruction matrix,

determined the most active channel contributing to the shuffled reconstruction, and

calculated its proximity to the mean. We repeated this measure 1,000 times, and computed

and empirical p-value as the proportion of true distances to the distribution mean that

were smaller than the shuffled distances.

3. Results

3.1 Behavior

We order our findings by latency between training and test: the crab distribution on

Day 8 with 0-day lag, the shell distribution on Day 8 with 7-day lag, the crab distribution

on Day 21 with 13-day lag, and the shell distribution on Day 21 with 20-day lag.

At the shortest lag (0-day), null distributions revealed above chance proximal

navigation to the mean for all ranges of rotation (360°: prot=0.001; 180°: prot=0.002; 90°:

prot=0.005). Navigation at the second shortest lag (7-day) was marginally more biased

than a 360°rotated null (prot=0.076), but not significantly different from the 180°rotated

null (prot=0.144) or 90°rotated null (prot=0.301).

At the second-longest lag (13-day), test behavior again revealed navigation proximal

to the mean as compared to the 360°(prot=0.023) and 180°(prot=0.044) null distributions,

although only marginal in comparison to the 90°null (prot=0.092). Proximity to the

distribution mean at the longest lag (20-days) was significantly greater than the 360°null

distribution (prot=0.029), marginally greater than the 180°null (prot=0.074), and not

significantly different from the 90°null (prot=0.138).
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3.2 Reconstructed Location Representations

For the shell distribution, 46 information channels (out of 100) showed significant

hippocampal place-coding activity. For the crab distribution, 17 information channels

showed significant place-coding activity. We attribute the greater number of validated shell

vs. crab channels to the patient exploring more of the arena at the beginning of the study,

as she was gaining familiarity with the task and learning the first distribution. Critically,

the number of validated information channels per distribution from training was held

constant across test lags.

We investigated representational change from the shortest to the longest latency

between training and test. Hippocampal activity patterns allowed us to reconstruct the

distribution mean at the shortest lag (0-day: prot=0.049) and second shortest lag (7-day:

prot = 0.015). However, mPFC activity patterns did not contain information about the

distribution mean at either of these lags (0-day: prot=1; 7-day, prot = 0.333).

As hypothesized, we found the inverse at a longer latency. mPFC activity patterns

allowed us to reconstruct the distribution mean at the second longest lag (13-day: prot =

0.009) and longest lag (20-day: prot=0.048). However, hippocampal activity patterns did

not contain information about the distribution mean at either of these lags (13-day:

prot=0.421; 20-day: prot = 0.539). These results indicate a double dissociation between the

hippocampus and mPFC in the representation of spatial regularities as a function of time.
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Fig. 4 . Place representations reconstructed from pre-navigation test data, plotted

left-to-right as a function of lag between training and test. Each image is thresholded to

exclude reconstruction from locations with no active channel. Colors are scaled by from

negative to positive channel evidence, where cooler colors indicate negative channel

evidence and warmer colors indicate positive channel evidence. Shell and crab icons mark

the mean location from each distribution. At training/test lags of 0 and 7 days,

hippocampal reconstructions were significantly proximal to the mean, but mPFC

reconstructions were not. At lags of 13 and 20 days, mPFC reconstructions were

significantly proximal to the mean, but hippocampal reconstructions were not.
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4. Discussion

We found evidence of statistical learning on two timescales by reconstructing place

information from neural activity in the human brain. The learned spatial distributions

switched from being represented only in the hippocampus at shorter latencies to being

represented only in the mPFC at longer latencies.

Our findings are partially consistent with a previous study on the role of

consolidation in accentuating stimulus overlap, which found that abstracted representations

come online in mPFC only following a period of consolidation (Tompary & Davachi, 2017).

However, that study additionally found parallel abstracted representations in the

hippocampus after consolidation. The difference in length of consolidation may partly

explain this discrepancy, with their study testing after one week of consolidation compared

to our two and three week intervals. This additional time may have allowed for further

transformation and weakening of the hippocampal representation. Given that the shell

distribution was still represented in the hippocampus (but not mPFC) after one week, it

may be that these two studies, with different tasks and stimuli, index different points along

a trajectory of memory transformation. The endpoint of this trajectory in our study aligns

well with previous rodent work showing cortically dependent spatial pattern

representations emerging after 30 days of consolidation (Richards et al., 2014).

Our findings also serve to extend previous discoveries of ensemble-level spatial coding

in the human brain. Single-unit recordings have identified sparse distributions of place cells

(Ekstrom et al., 2003), and at the level of regional activity, multiple fMRI studies have

revealed increasing hippocampal pattern similarity as a function of spatial distance

between locations (Deuker, Bellmund, Schröder, & Doeller, 2016; Morgan, MacEvoy,

Aguirre, & Epstein, 2011). Here, using inverted encoding models, we demonstrate more

explicitly, and from fewer recordings, evidence of hippocampal place coding at the level of

ensemble LFP. This result illustrates the high degree of information that can be derived

from neural oscillations in a handful of macro electrodes, and provides a promising avenue
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for future navigation studies with iEEG.

This unique patient allowed us to track acquisition of spatial patterns across multiple

timescales. An obvious limitation of the current study is the sample size of one. As a case

study, our results should be interpreted with caution for their generalizability. However,

this study provides initial support for the notion that consolidation operates over not only

episodic memories, but extracted navigational patterns acquired online during learning.

We additionally extend previous findings of the link between statistical learning and

pattern similarity(Schapiro, Kustner, & Turk-Browne, 2012), arguing for an analogous

process during human virtual navigation. Although it is unlikely that such a rare data

collection opportunity will arise in a larger cohort of epilepsy patients, future noninvasive

neuroimaging work could seek to verify the timeline discovered here. Our investigation

provides a promising step in confirming the relationship between the hippocampus and

mPFC in representing underlying structure in the world.
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Fig. S 1 . IEM reconstructions using a data threshold-based channel selection method,

where channels were included in the model if the patient spent a cumulative minimum of

2500ms within that channel’s radius during search. Here, the Guassian shape parameters

were manually set at 1 1/3 AU stimulus size and 1.2 AU receptive field size in order to

accomplish a smooth reconstruction. The reconstruction from hippocampal data was

significantly mean-proximal at both shorter latencies (0-days: prot=0.009; 7-days:

prot=0.007) but not at the longer latencies (13-days: prot=0.082; 20-days: prot=0.546). The

inverse was true for reconstructions from mPFC data, with significant mean-proximal

reconstructions at the longer latencies (13-days: prot=0.049; 20-days: prot=0.002) but not

the shorter latencies (0-days: prot=0.613; 7-days: prot=0.1).
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