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Abstract

Distinct brain systems are thought to support statistical learning over different timescales.
Regularities encountered during online perceptual experience can be acquired rapidly by
the hippocampus. Further processing during offline consolidation can establish these
regularities gradually in cortical regions, including the medial prefrontal cortex (mPFC).
These mechanisms of statistical learning may be critical during spatial navigation, for
which knowledge of the structure of an environment can facilitate future behavior. Rapid
acquisition and prolonged retention of regularities have been investigated in isolation, but
how they interact in the context of spatial navigation is unknown. We had the rare
opportunity to study the brain systems underlying both rapid and gradual timescales of
statistical learning using intracranial electroencephalography (iEEG) longitudinally in the
same patient over a period of three weeks. As hypothesized, spatial patterns were
represented in the hippocampus but not mPFC for up to one week after statistical learning
and then represented in the mPFC but not hippocampus two and three weeks after
statistical learning. Taken together, these findings clarify that the hippocampus may do
the initial work of extracting regularities and transfer these integrated memories to cortex,
rather than only storing individual experiences and leaving it up to cortex to extract
regularities.

Keywords: memory integration, complementary learning systems, intracranial EEG,

hippocampus, medial prefrontal cortex, inverted encoding models
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Remembering the pattern: A longitudinal case study on statistical learning in spatial

navigation and memory consolidation
Highlights
o (Case study of an epilepsy patient tested longitudinally over three weeks.
o We tracked time-dependent changes in neural representations of spatial patterns.

» Representations reconstructed from hippocampal activity reflected patterns learned

within a week.

« Representations reconstructed from activity in the mPFC reflected patterns learned

2-3 weeks ago.

1. Introduction

When you move to a new city, even on your first walk around town, you begin
mapping out the streets and landmarks in your head, allowing you to subsequently find
your way home that day. This knowledge grows over time through continued experience,
such that it can help you find particular places on future excursions that you have never
visited before. This ability to immediately represent the structure of one’s surroundings
and to retain and refine this knowledge over time reflects two different timescales of
statistical learning, or extraction of regularities from the environment.

On rapid timescales of minutes to hours, statistical learning occurs robustly across
modalities (Sherman, Graves, & Turk-Browne, 2020), from auditory sequences of tones
(Saffran, Johnson, Aslin, & Newport, 1999) to visual series of shapes (Turk-Browne, Jungé,
& Scholl, 2005) to haptic properties (Lengyel et al., 2019), and within multiple domains,
from abstract categories (Brady & Oliva, 2008) to music (Leung & Dean, 2018) to faces
(Dotsch, Hassin, & Todorov, 2017). It supports parsing of streams of speech into words
(Karuza et al., 2013; McNealy, Mazziotta, & Dapretto, 2006), as well as learning of motor

sequences (Janacsek et al., 2020) and reward contingencies (Goldfarb, Chun, & Phelps,
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2016). In the brain, this process relies at least in part on the hippocampus (Schapiro &
Turk-Browne, 2015), which computational models have shown contains the necessary
architecture for rapid, online learning of regularities from the environment (Schapiro,

Turk-Browne, Botvinick, & Norman, 2017).

On more gradual timescales of days to weeks, or even years, cortical consolidation of
encoded experiences shapes our semantic knowledge, supporting the emergence of spatial,
contextual, and conceptual schemas (Gilboa & Marlatte, 2017). The formation of schemas
is supported by the medial prefrontal cortex (mPFC), which represents overlapping
features of previously encoded stimuli in humans (Tompary & Davachi, 2017) and spatial
locations in rodents (Richards et al., 2014). For example, this latter study established a
causal link between rodent mPFC and pattern consolidation by having rats learn locations
in a Morris Water Maze that were drawn from an underlying, hidden distribution. After
learning the individual locations, the mPFC of rats in the experimental group was disabled
via a pharmacological manipulation, whereas the mPFC of rats in the control group was
left intact. During a test phase 30 days later, the rats were placed back in the water maze
to measure whether they had extracted the distribution through consolidation of individual
locations. Rats with an intact mPFC searched according to the distribution, indicating
statistical learning, but those with a impaired mPFC did not. This finding suggested a

critical role for mPFC in consolidation and prolonged retention of spatial regularities.

It remains unclear how the multiple timescales of statistical learning relate to spatial
navigation in humans. For example, whereas it takes a month for rodents to extract spatial
patterns during navigation, humans can do so immediately during online behavior (Graves,
Antony, & Turk-Browne, 2020). Participants in this study performed a virtual analogue of
the Morris Water Maze, finding hidden locations in an arena that were drawn from a
Gaussian distribution. Over the course of a few minutes of learning, navigation behavior
switched from a bias toward previously learned individual locations to a bias toward the

mean of the distribution of locations.
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Despite being acquired rapidly, the fate of this acquired representation over time is
unknown. Moreover, whereas we hypothesize that the hippocampus may support rapid
extraction, followed by more prolonged retention in mPFC, such time-dependent changes in
the brain systems involved in human navigation have not been tested previously.

In the current study, we tracked the cognitive and neural trajectory of learned spatial
patterns during navigation via intracranial electroencephalography (iEEG). We had the
rare opportunity to repeatedly test a single patient, who was in the hospital for clinical
seizure monitoring substantially longer than an average study (6 weeks vs. 1-1.5 weeks
typically). The patient performed a screen-based virtual maze task (Graves et al., 2020)
where hidden target locations were drawn from a Gaussian distribution. She learned two
distributions of locations on two separate days of training, after which the extent of her
distribution extraction was tested at multiple intervals. We predicted that the
hippocampus would represent the underlying distribution initially after learning, but that

this pattern would come to be represented in mPFC over time.

2. Materials and Methods
2.1 Participant

We tested one patient (female, age 26, right-handed) admitted to Yale New Haven
Hospital for iEEG seizure monitoring. She had a history of epilepsy and attention deficit
hyperactivity disorder (ADHD) starting at age 10, as well as recurring depression starting
when she was a teenager. Her medications included oxcarbazepine and intronasal
midazolam for epilepsy, as well as occasional Adderall for ADHD. A structural MRI in
2017 revealed normal hippocampal volume. Neuropsychological test scores were high
overall (Full Scale Intelligence Quotient (FSIQ) = 131, Verbal Comprehension Index (VCI)
= 141, Perceptual Reasoning Index (PRI) = 123) and non-indicative of any seizure
lateralization or localization. Pre-implant video and EEG monitoring suggested seizures

were likely arising from the left posterior lateral temporal region.
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The patient was implanted with subdural electrodes on the cortical surface over the
left hemisphere, as well as multiple depth electrodes implanted in subcortical structures
including the left hippocampus (Fig. 1). Decisions on electrode placement were determined
solely by the clinical care team to optimize localization of seizure foci. The patient
completed three sessions of a virtual Morris Water Maze task, referred to hereafter as Day

1, Day 8, and Day 21. The research protocol was approved by the Yale University

Institutional Review Board.

Fig. 1. Reconstruction of the patient’s electrode coverage. Arrows are pointing to a (red)
depth electrode containing left hippocampal contacts at the tip and to a (green) electrode

strip covering left mPFC.

2.2 Experimental Design

The virtual environment was designed as a circular arena and constructed in Blender
(www.blender.org). The environment was rendered in Matlab (Mathworks, Natick, MA,
USA), and Psychtoolbox (Brainard, 1997) was used to display task instructions. The arena

was designed graphically with an island beach theme. The circular floor (radius = 7.85
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arbitrary units, AU) was covered by an image of sand. Mountains appeared on the north
end and palm trees on the south end; similar to the classic water maze task, these
landmarks served as directional headings. Each “platform” was a shell in the first session
and a crab in the second session. Following Richards et al. (2014), the locations of the
shells were drawn from a normal distribution of distances d from center (1 = 3.4 AU, 0 =
0.9067 AU) and a circular normal distribution of angles 6 between the platform and the
eastern cardinal direction (u = 0.2618 radians, k = 8). The locations of the crabs were
generated by taking the shell distribution and rotating it 160 degrees counterclockwise
around the arena. We chose 160 degrees instead of a full 180 degree rotation to prevent the

use of symmetry-based heuristics.

2.3 Procedure

On Day 1, the patient was trained on the shell distribution. She was instructed that
she was on an island, searching for a total of 20 seashells buried below the sand. She could
only find one shell at a time and had to walk around the beach until she found it. The
patient used the I key to walk forward, the J and L keys to turn left and right,
respectively, and the M key to walk backward. At the beginning of the search for each new
shell, the patient’s location was initialized to the center of the arena, always facing a new
random direction. Navigation was initiated by the patient following a minimum of 4
seconds in which the ground was green and the I/M keys were locked only allowing the
patient to rotate in place left or right. The ground then turned to sand, cuing the patient
that she could now start moving forward and backward. There was no time limit, and thus
the searches varied in length. The patient successfully located a shell when she walked
within a 1 1/3-unit radius of the platform location of that shell. When this occurred,
further navigation was locked, and the walls turned green to reveal the outline of a shell.
The screen then went black, and the patient was told how many new shells remained to be

found before beginning to search for the next shell.
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On Day 8, the patient was first trained on the crab distribution. This second
distribution was introduced to provide another set of lags between training and test, over
which we could examine time-dependent changes in hippocampal and mPFC
representations. The crab training on Day 8 was nearly identical to the shell training on
Day 1, with the only difference being that the patient was now looking for crabs instead of
shells and the distribution was centered in a new part of the arena. After finding all of the
crabs, the patient then completed a test phase following a brief delay for instructions.
During the test phase, the patient was instructed that she was back on the island and that
she would alternate between finding more shells and crabs. She received a cue on each trial
indicating which object was the target. The test phase differed critically from training in
that search was limited to 16 seconds and no feedback was given until the end of the time.
This resulted in the patient searching an empty arena based on what was learned during
training. The patient completed four alternating trials of searching for shells and searching
for crabs. The Day 8 shell test evaluates a lag of 7 days, whereas the Day 8 crab test
evaluates an immediate lag of 0 days.

On Day 21, the patient completed six more alternating tests of searching for shells
and crabs in the empty arena (Fig. 2). The Day 21 shell test evaluates a lag of 20 days,
whereas the crab test evaluates a lag of 13 days. Thus, across distributions we tested for

the representation of spatial patterns 0, 7, 13, and 20 days after training.
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Fig. 2. The patient’s testing schedule. A) The experiment was conducted in a virtual
beach environment. B) On Day 1, the patient found a distribution of shells (brown icons).
On Day 8, she found a distribution of crabs (orange icons), and then performed the first
test phase, where she alternated searching for shells (7-day lag) and crabs (0-day lag) in an
empty arena. She completed another alternating test phase on Day 21 for shells (20-day
lag) and crabs (13-day lag). C) Each trial of training and test consisted of a cue, a
pre-navigation period where forward motion was locked, a navigation period, and a

post-navigation period.

2.4 Intracranial Recordings

Intracranial EEG (iIEEG) was recorded in Natus Neuroworks 8.5.1 using a Natus
Quantum amplifer, sampled at 4,096 Hz. Signals were referenced to an inverted (facing
away from brain) left parieto-temporal strip electrode. In post-processing, to reduce

electrical line noise, a notch filter was applied between 55-65 Hz. Data corresponding to
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each trial were segmented into fixation, pre-navigation, navigation, and post-navigation
epochs, and downsampled to 256 Hz. To eliminate events containing epileptiform activity,
epochs were removed from analysis if kurtosis of the voltage trace within epoch exceeded a
threshold of 5 (van Vugt, Schulze-Bonhage, Litt, Brandt, & Kahana, 2010). This resulted
in an exclusion 2.8% of experimental events. Data from the pre-navigation and navigation

epochs were used for analysis.

2.5 Electrode Localization

Patient electrodes were localized via Biolmage Suite (Papademetris, Jackowski,
Rajeevan, Constable, & Staib, n.d.) and Matlab. The patient’s skull-stripped T1 weighted
structural brain MRI was registered to an MNI T'1 average structural MRI via nonlinear
registration. The resulting transformation file was used to transform the patient’s electrode
locations into standard space. Hippocampus and mPFC regions of interest (ROIs) were
constructed from the Automated Anatomical Labeling (AAL) map in MNI space

(Tzourio-Mazoyer et al., 2002) and used to determine which electrodes fell within each ROI.

2.6 Behavioral Analyses

Raw behavioral data consisted of X and Y coordinates output every 40 ms of
navigation. First, we sought to confirm that by learning each hidden location during
training, the patient also learning the underlying distribution. We predicted that
acquisition of the spatial distribution would result in subsequent navigation that was
biased towards the distribution’s central tendency.

We analyzed the extent to which learning the underlying distribution biased search
behavior during the test phases by measuring whether the patient’s search path brought
them closer to the location of each distribution’s mean than what would be expected by
chance (Graves et al., 2020). To this end, we calculated the patient’s average proximity to
the distribution mean across all test trials, separately for each distribution and testing day.

We then generated a null distribution of proximity measures by rotating the spatial
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distribution locations a random angle between 5 and 355 degrees away from the learned
distribution 1,000 times. Per rotation, we calculated the average proximity to the dummy
rotated mean. An empirical p-value was calculated as the proportion of rotated proximity
measures that were closer to the mean than the true proximity. We repeated this analysis
for the distribution randomly rotated within plus and minus 90 degrees of the true
distribution, and plus and minus 45 degrees, to compare search behavior to more
conservative null distributions. Th objective of this analysis was to quantify the specificity

of the patient’s distribution memory.

2.7 Time-Frequency Decomposition

We calculated a continuous Morlet wavelet transform (wave number 5) at 50
logarithmically spaced frequencies between 1 and 120 Hz for each epoch of each training
and test session. A 5-second buffer was added to both ends of all power calculations to
account for edge effects, and subsequently was discarded. We then estimated the
background power spectrum via a linear regression fit to the power spectrum in log-log
coordinates, and subtracted the subsequent 1/f from our data. Lastly, the data were
z-scored per frequency band, electrode, and session. These data were used in a subsequent

inverted encoding model.

2.8 Inverted Encoding Model

Spatial representations during test were assessed via a 2-D inverted encoding model
method (Sprague & Serences, 2013). Briefly, this method enables reconstruction of a
spatial representation from neural data that is modeled as a sum of the weighted
activations of a set of information channels. The information channels in this study were
initialized as 100 2-D Gaussians distributed throughout the surface of the beach arena,
representing hypothesized place-coding activity (Fig. 3).

Because the patient did not explore the entirety of the arena when learning either

distribution, and therefore would not have provided neural data to train all of the channels,
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we conducted a channel validation step that allowed us to select for our final model only
the channels for which there was enough data and that subsequently showed significant
place-coding activity. This step only used data from the training phases. The resultant

models were then used to reconstruct representations from unseen test phase data.

In separate models for each training day’s distribution, channel validation consisted
of holding out a subset of hippocampal activity from when the patient was standing within
each channel’s radius, training the model, and then testing it on the held-out training data.
A channel for which peak reconstructed activity (i.e., the magnitude of the reconstructed
response above the 99" percentile) was more proximal to the tested channel than all other

channels was considered a “good” channel (Fig. 3).

We conducted separate channel validations using time-frequency decomposed power
from the 1-3 Hz band (delta, which some have termed “low theta”) and the 3-10 Hz band
(theta/low alpha, which some have termed “high theta”) as model training data. Previous
work in human virtual navigation has implicated hippocampal oscillations at around 3 Hz
(Goyal et al., 2020; Watrous et al., 2013) and 8 Hz (Miller et al., 2018) in spatial
navigation and spatial memory encoding. We thus sought to determine which band would
yield greater place coding activity and recover a greater number of channels. We conducted
a principal components analysis (PCA) over the frequencies by hippocampal electrodes for
each band (12 frequencies between 1-3 Hz, 12 frequencies between 3-10 Hz), and iteratively
repeated the channel validation on each number of components. We additionally iterated
through a range of stimulus and receptive field size parameters, which determine the shape
of the Gaussians (Sprague & Serences, 2013). The maximum number of recovered channels
and their associated stimulus size, frequency band, and number of PCA components per
distribution across all iterations served as our basis set for reconstructing the spatial
representations from test data. Critically, these model optimizations were performed
entirely within the training data; test data were held out of all of these steps to avoid

double-dipping. Because our objective at test was to reconstruct not individual place
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representations, but an aggregate distribution representation, we increased the receptive
field size for each distribution’s set of channels. This allowed us to generate smooth
reconstructions via a similar manual parameter selection procedure as has been shown
previously (Sprague & Serences, 2013).

Our main analyses build from this method of parameter and channel selection.
However, the statistical trends in our results are the same if we simply set a data threshold
for inclusion for all channels without establishing significant place coding activity and
manually select the parameters for Gaussian shape (1 1/3 AU stimulus size, 1.2 AU

receptive field size) (Supplemental Fig. 1).


https://doi.org/10.1101/2021.10.18.464818
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464818; this version posted October 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REMEMBERING THE PATTERN 14
IEM Cross-Validation IEM Test
iEEG Training Data Weights  Hypothetical Channel Responses—
m time points/components ‘m time points/components channels
n spatial locations k channels n spatial Iocanons | Cross_Va I idation

i

O (@ |

. \4

CE) = W X - e Model Training _—
.

Day 1 Learning Phas:

iEEG Training Weights channel

Data
responses

\ i = || x [
Day 1

Spatial Location Channels Learning Phase

NI
//

Eé@@

K-Fold training data

Inverse Model iEEG Test Data Decoded channel responses [
pdl O B /\ .
(WW)'WT| x E = Z Reconstruction
. Decoded
Day 1 Learning Phase kchannels Inverse iEEG Test channel
1 Model Data responses
m time points/ 1
components | - - ~ T
K-Fold . (W™W) "Wl X By~ =
held- out data Day 8 & Day 21 :

Test Phase
Bad Channel  Good Channel
Day 1 Day 2
Distribution Distribution
Channels Channels

Fig. 3. Model channel validation and test. Information channels for this model were

generated based on a predicted Gaussian-shaped place field response. The model was
initialized with 100 distributed channels, and navigation data from the two distribution
training phases was used to train the model. The final model consisted of a subset of

channels that demonstrated significant place coding activity in the training data.

To examine representations at test, we built separate models on training data from
the shell and crab distributions. For each test trial, we applied the model for the
corresponding cued distribution to reconstruct place activity. We used test data from only
the first four pre-navigation seconds of each trial when the patient was confined to the
origin of the arena, predicting that the patient would be representing whatever she had
learned during training in planning her search. We combined reconstructions over all trials
from a given distribution and test session, yielding a reconstruction for each lag and brain

region.
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We then assessed whether the peak reconstructed activity was significantly proximal
to the distribution mean to quantify neural evidence of statistical learning of the
distribution. We first determined the most active channel and then calculated the distance
from that channel to the distribution mean. We shuffled the full reconstruction matrix,
determined the most active channel contributing to the shuffled reconstruction, and
calculated its proximity to the mean. We repeated this measure 1,000 times, and computed
and empirical p-value as the proportion of true distances to the distribution mean that

were smaller than the shuffled distances.

3. Results

3.1 Behavior

We order our findings by latency between training and test: the crab distribution on
Day 8 with O-day lag, the shell distribution on Day 8 with 7-day lag, the crab distribution

on Day 21 with 13-day lag, and the shell distribution on Day 21 with 20-day lag.

At the shortest lag (0-day), null distributions revealed above chance proximal
navigation to the mean for all ranges of rotation (360°: p,.,,=0.001; 180°: p,,,=0.002; 90°:
Prot=0.005). Navigation at the second shortest lag (7-day) was marginally more biased
than a 360°rotated null (p,,+=0.076), but not significantly different from the 180°rotated

null (p,,;=0.144) or 90°rotated null (p,,;=0.301).

At the second-longest lag (13-day), test behavior again revealed navigation proximal
to the mean as compared to the 360°(p,,;=0.023) and 180°(p,.,;=0.044) null distributions,
although only marginal in comparison to the 90°null (p,»=0.092). Proximity to the
distribution mean at the longest lag (20-days) was significantly greater than the 360°null
distribution (p,=0.029), marginally greater than the 180°null (p,,+=0.074), and not

significantly different from the 90°null (p,,=0.138).
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3.2 Reconstructed Location Representations

For the shell distribution, 46 information channels (out of 100) showed significant
hippocampal place-coding activity. For the crab distribution, 17 information channels
showed significant place-coding activity. We attribute the greater number of validated shell
vs. crab channels to the patient exploring more of the arena at the beginning of the study,
as she was gaining familiarity with the task and learning the first distribution. Critically,
the number of validated information channels per distribution from training was held
constant across test lags.

We investigated representational change from the shortest to the longest latency
between training and test. Hippocampal activity patterns allowed us to reconstruct the
distribution mean at the shortest lag (0-day: p,,;=0.049) and second shortest lag (7-day:
prot = 0.015). However, mPFC activity patterns did not contain information about the
distribution mean at either of these lags (0-day: p,=1; 7-day, p,o; = 0.333).

As hypothesized, we found the inverse at a longer latency. mPFC activity patterns
allowed us to reconstruct the distribution mean at the second longest lag (13-day: p.os =
0.009) and longest lag (20-day: p,»=0.048). However, hippocampal activity patterns did
not contain information about the distribution mean at either of these lags (13-day:
Prot=0.421; 20-day: p,o,; = 0.539). These results indicate a double dissociation between the

hippocampus and mPFC in the representation of spatial regularities as a function of time.
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Fig. /. Place representations reconstructed from pre-navigation test data, plotted
left-to-right as a function of lag between training and test. Each image is thresholded to
exclude reconstruction from locations with no active channel. Colors are scaled by from
negative to positive channel evidence, where cooler colors indicate negative channel
evidence and warmer colors indicate positive channel evidence. Shell and crab icons mark
the mean location from each distribution. At training/test lags of 0 and 7 days,
hippocampal reconstructions were significantly proximal to the mean, but mPFC
reconstructions were not. At lags of 13 and 20 days, mPFC reconstructions were

significantly proximal to the mean, but hippocampal reconstructions were not.
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4. Discussion

We found evidence of statistical learning on two timescales by reconstructing place
information from neural activity in the human brain. The learned spatial distributions
switched from being represented only in the hippocampus at shorter latencies to being
represented only in the mPFC at longer latencies.

Our findings are partially consistent with a previous study on the role of
consolidation in accentuating stimulus overlap, which found that abstracted representations
come online in mPFC only following a period of consolidation (Tompary & Davachi, 2017).
However, that study additionally found parallel abstracted representations in the
hippocampus after consolidation. The difference in length of consolidation may partly
explain this discrepancy, with their study testing after one week of consolidation compared
to our two and three week intervals. This additional time may have allowed for further
transformation and weakening of the hippocampal representation. Given that the shell
distribution was still represented in the hippocampus (but not mPFC) after one week, it
may be that these two studies, with different tasks and stimuli, index different points along
a trajectory of memory transformation. The endpoint of this trajectory in our study aligns
well with previous rodent work showing cortically dependent spatial pattern
representations emerging after 30 days of consolidation (Richards et al., 2014).

Our findings also serve to extend previous discoveries of ensemble-level spatial coding
in the human brain. Single-unit recordings have identified sparse distributions of place cells
(Ekstrom et al., 2003), and at the level of regional activity, multiple fMRI studies have
revealed increasing hippocampal pattern similarity as a function of spatial distance
between locations (Deuker, Bellmund, Schroder, & Doeller, 2016; Morgan, MacEvoy,
Aguirre, & Epstein, 2011). Here, using inverted encoding models, we demonstrate more
explicitly, and from fewer recordings, evidence of hippocampal place coding at the level of
ensemble LFP. This result illustrates the high degree of information that can be derived

from neural oscillations in a handful of macro electrodes, and provides a promising avenue
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for future navigation studies with iEEG.

This unique patient allowed us to track acquisition of spatial patterns across multiple
timescales. An obvious limitation of the current study is the sample size of one. As a case
study, our results should be interpreted with caution for their generalizability. However,
this study provides initial support for the notion that consolidation operates over not only
episodic memories, but extracted navigational patterns acquired online during learning.
We additionally extend previous findings of the link between statistical learning and
pattern similarity(Schapiro, Kustner, & Turk-Browne, 2012), arguing for an analogous
process during human virtual navigation. Although it is unlikely that such a rare data
collection opportunity will arise in a larger cohort of epilepsy patients, future noninvasive
neuroimaging work could seek to verify the timeline discovered here. Our investigation
provides a promising step in confirming the relationship between the hippocampus and

mPFC in representing underlying structure in the world.
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Fig. S 1. IEM reconstructions using a data threshold-based channel selection method,
where channels were included in the model if the patient spent a cumulative minimum of
2500ms within that channel’s radius during search. Here, the Guassian shape parameters
were manually set at 1 1/3 AU stimulus size and 1.2 AU receptive field size in order to
accomplish a smooth reconstruction. The reconstruction from hippocampal data was
significantly mean-proximal at both shorter latencies (0-days: p,»=0.009; 7-days:
Prot=0.007) but not at the longer latencies (13-days: p,.:=0.082; 20-days: p,,+=0.546). The
inverse was true for reconstructions from mPFC data, with significant mean-proximal
reconstructions at the longer latencies (13-days: p,=0.049; 20-days: p,,+=0.002) but not

the shorter latencies (0-days: p,;=0.613; 7-days: p,=0.1).
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