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Abstract 

Phosphoproteomics methods are commonly employed in labs to identify and quantify the sites of 

phosphorylation on proteins. In recent years, various software tools have been developed, incorporating 

scores or statistics related to whether a given phosphosite has been correctly identified, or to estimate 

the global false localisation rate (FLR) within a given data set for all sites reported. These scores have 

generally been calibrated using synthetic data sets, and their statistical reliability on real datasets is 

largely unknown. As a result, there is considerable problem in the field of reporting incorrectly localised 

phosphosites, due to inadequate statistical control. 

 

In this work, we develop the concept of using scoring and ranking modifications on a decoy amino acid, 

i.e. one that cannot be modified, to allow for independent estimation of global FLR. We test a variety of 

different amino acids to act as the decoy, on both synthetic and real data sets, demonstrating that the 

amino acid selection can make a substantial difference to the estimated global FLR. We conclude that 

while several different amino acids might be appropriate, the most reliable FLR results were achieved 

using alanine and leucine as decoys, although we have a preference for alanine due to the risk of 

potential confusion between leucine and isoleucine amino acids. We propose that the 

phosphoproteomics field should adopt the use of a decoy amino acid, so that there is better control of 

false reporting in the literature, and in public databases that re-distribute the data. Data are available 

via ProteomeXchange with identifier PXD028840. 

  

 

Introduction 

There is great research interest in studying post-translational modifications (PTMs) to proteins, due to 

their importance in cell signalling, as a rapid mode of proteins changing their function, and their 

implication in almost all known disease processes. The most widely studied reversible modifications 

include phosphorylation (by far the most studied one, and our primary focus here), acetylation, 

methylation, and attachment of small proteins, such as ubiquitin and SUMO.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464791
http://creativecommons.org/licenses/by/4.0/


 2

 

High throughput tandem mass spectrometry (MS) is commonly used for detection and localisation of 

phosphorylation sites on proteins, using so-called phosphoproteomics methods. Typically in these 

methods, proteins are first extracted from samples, digested with an enzyme such as trypsin and then 

phosphorylated peptides are enriched in a sample, for example using TiO2 or other metal ion attached 

to a column (affinity chromatography), to which phosphate binds preferentially. Bound peptides are 

then eluted and analysed by liquid chromatography-mass spectrometry (LC-MS/MS) [1]. In the common 

analysis mode used in phosphoproteomics, data dependent acquisition (DDA) is performed to fragment 

the most abundant peptides observed. The MS
2
 fragmentation spectra (plus the mass/charge of the 

intact precursor) are then used to identify peptide sequences, for example using sequence database 

search software. In this approach, the spectra are searched against a theoretical digest of the proteome 

(i.e. peptide sequence database) for the given species, taking account for the variable modifications 

selected. For phosphorylation, most users search for phosphorylation on the canonical Ser, Thr and Tyr 

(STY) residues, where the vast majority of detectable phosphorylation resides in eukaryotic systems. The 

search engine then considers every STY residue with and without the addition of the phosphate mass 

(+79.97 Daltons), greatly increasing the size of the search space, with a corresponding reduction in 

statistical power for peptide identification. Confident peptide identification is governed by the quality of 

the match between the observed spectrum and the theoretical spectrum expected for a peptide from 

the sequence database, from which local statistics such as p-values or e-values are usually calculated, as 

well as sometimes a PEP (posterior error probability). If a PEP value is calculated, 1-PEP gives the 

probability that a given peptide-spectrum match (PSM) is correct. There are of course many different 

proteomics search engines, including commercial and free and/or open source, for a review see 

Verheggen et al. [2].   

 

An important consideration for phosphoproteomics is the confidence that a given site within a protein 

has been correctly identified as being phosphorylated. Ambiguity in this regard may occur when a 

confident PSM has more STY residues than n, where n is the number of phosphorylation modification 

instances detected i.e. intact peptidoform mass = peptide sequence mass + (n * 79.97 Da). In this case, 

the search engine itself, or a downstream analysis package, calculates statistics related to each of the n 

phosphosites within a peptide, such as a PEP that the site has been incorrectly localised (sometimes also 

called local false localisation rate; local FLR) or other ad hoc score. As for PSMs, if an accurate PEP can be 

estimated, then 1-PEPsite gives the probability that the site has been correctly localised, in this case 

assuming already that the PSM is definitively correct. Correct site localisation can be critically important 

for downstream uses of data. As one example, there are completely different kinases and phosphatases 

involved in Ser/Thr versus Tyr phosphorylation, and thus biological conclusions as to the up and 

downstream signalling pathways would be completely different. Even where ambiguity relates to 

different, say, Ser residues in a peptide, nearby amino acid motifs allow inference of the kinase 

responsible for phosphorylating the site, and thus incorrect site determination could lead researchers 

into making incorrect assumptions and conclusions. 

 

Many of the published site localisation algorithms were benchmarked by the originating authors and 

scores calibrated based on synthetic data sets, with a known “ground truth” i.e. where the sites of 
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phosphorylation were known [3]. There have also been some independent efforts to benchmark 

different site localisation tools, showing that the choice of tool does alter the global statistics [4, 5]  i.e. 

sensitivity - how many sites in a whole data set can be correctly localised at a suitable overall (global) 

FLR. While tools continue to improve and become more widely used for ensuring confident site 

localisation, there remain several unsolved challenges for the field, as follows. First, it is unclear whether 

findings on synthetic data sets can be extrapolated to genuine biological data sets, with generally a 

higher level of complexity. Second, for analysis of real experimental data sets, there are no commonly 

used methods for independent estimation of global FLR, for example that allow a researcher to ask the 

question – how many sites have we confidently identified and how many are likely false positives in the 

whole data set. For regular peptide/protein identification in proteomics, decoy database search 

methods are now almost ubiquitously used for estimating peptide/protein false discovery rate (FDR), 

since they give a search engine independent statistic that is easy to understand. There is not a generally 

accepted method for calculating the same type of statistic for PTM site identification. Third, our groups 

are interested in very large-scale re-analysis of public PTM enriched data sets, via a project called 

PTMeXchange. We wish to have methods that allow for accurate calculation of the probability that a 

given PTM site has been observed in a meta-analysis of data sets, where there could be potentially 

multiple PSMs from different studies supporting a given site. To our knowledge, there are no suitable 

statistical models for combining different evidence streams. 

 

In this work, we explore the concept of using decoy amino acid(s) for estimation of site localisation 

statistics (global FLR), in this context defined as one that we know cannot be modified, to model the 

distribution of false localisations detected from a processing pipeline. We test a range of different amino 

acids for their suitability as a decoy in synthetic and real data sets, as well as demonstrating the results 

obtained from several common proteome informatics pipelines. The concept of using a decoy amino 

acid for localisation of PTMs is not a new one. It has been used before in several previous publications 

and approaches [6, 7]. However, to our knowledge, no publication has yet validated the statistics 

associated with the use of decoy amino acids, particularly on multiple tools, and the method of using a 

decoy amino acid has not gained widespread use in the field. The majority of PTM-based studies still rely 

on using ad hoc score thresholds for determining whether PTMs have been correctly identified or not. 

From the results we present, we make some recommendations as to how we believe large-scale PTM-

enriched studies should be analysed to control the local and global false localisation rate. While we have 

focussed on computational analysis and pipelines for phosphorylation, general approaches and 

conclusions are largely applicable to other types of PTM readily detected by mass spectrometry (MS). 

Code used for the analysis is in GitHub: https://github.com/PGB-LIV/PhosphoFLR. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464791
http://creativecommons.org/licenses/by/4.0/


 1

 

 

Methods 

 

Our overall goal is to demonstrate methods for controlling and understanding FLR, rather than 

benchmarking tools per se, although we wished to demonstrate the reproducibility of methods in 

different pipelines. As such, we tested four commonly used analysis pipelines: Trans-Proteomic Pipeline 

(TPP) [8] including Comet search [9] and PTMProphet site localization [10]; MaxQuant including 

PTMScore [11]; ProteomeDiscover, including Mascot search and ptmRS localization [12, 13]; and PEAKS 

DB search with A-Score [14]. We tested the effects on global FLR of selecting different amino acids as 

the “decoy”, and profiled the frequency of potential decoy amino acids relative to assumed correct STY 

phosphorylation sites, to see which provides the decoy distribution best matching the target distribution 

i.e. other STY sites to which the site could be wrongly localized. The mass spectrometry proteomics data 

have been deposited to the ProteomeXchange Consortium via the PRIDE [15] partner repository with 

the dataset identifier PXD028840 and DOI 10.6019/PXD028840 

 

Three data sets were used for evaluation of methods for estimating global FLR – one synthetic data set, 

one model plant phosphoproteomics data set (from Arabidopsis thaliana) and one human 

phosphoproteomics data set. The raw files of the three search data sets were obtained from the 

ProteomeXchange Consortium [16] via the PRIDE repository [17]. These included ten files from the 

PXD007058 [5] synthetic data set (files named “HCDOT” pools 1 to 5, reps 1 and 2), twelve files from the 

PXD008355 [18] Arabidopsis data set (rapamycin treated) and six from the PXD000612 [19] human data 

set (files randomly selected). The PXD007058 data set contains a synthetic phosphopeptide library. The 

use of synthetic phosphopeptides allowed us to define FLR (through one method) by comparing the 

results from our search pipelines to the known phosphopeptide sequences to determine if our analyses 

correctly localise the phosphosites. The PXD008355 Arabidopsis thaliana data set and the PXD000612 

human data set are both biological data sets with unknown phosphosites. 

 

Databases were created for the searches of each data set. The PXD007058 search database consisted of 

the synthetic peptides [5],  the PXD008355 Arabidopsis search database of Araport11 [20] sequences 

and the PXD000612 human search database was created from the Level 1 PeptideAtlas Tiered Human 

Integrated Search Proteome [21], containing core isoforms from neXtProt [22]. Each search database 

also contained the cRAP contaminants sequences (https://www.thegpm.org/crap/, last accessed 

October 2021). Decoys across all three databases were generated for each entry using the Brujin 

method (with k=2) [23].  

 

Using the Trans-Proteomic Pipeline (TPP) [8], the data set files were first searched using Comet [9]. The 

resulting files were then combined and processed using PeptideProphet [24], iProphet [25] , and 

PTMProphet [10]. In addition to searching for phosphorylation, we also searched for 

pyrophosphorylation modifications which pilot searches had determined were present on some 
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synthetic peptides. The key Comet search parameters for each dataset are shown in Table 1; the key 

parameters used for the other pipelines are shown in Supplementary Table 1.  

 

 

  PXD007058 

(Synthetic data set) 

PXD008355 

(Arabidopsis data set) 

PXD000612 

(Human data set) 

Peptide Mass Tolerance 20.0 ppm 7 ppm 7 ppm 

Fragment Bin Tolerance 0.02Da  0.02Da  0.02Da  

Digest Mode Tryptic Tryptic Tryptic 

Max Missed Cleavages 4 2 2 

Fixed Mods Carbamidomethylation (C) Carbamidomethylation (C) Carbamidomethylation (C) 

Variable Mods Oxidation (MWP) 

Phospho (STYX*) 

Pyrophospho (STY)
¶
, 

N-terminal acetylation 

Ammonia loss (QC) 

Pyro-Glu (EQ on the N-

terminus) 

Deamination (NQ) 

Oxidation (M) 

Phospho (STYX*) 

N-terminal acetylation 

Ammonia loss (QC) 

Pyro-Glu (EQ on the N-

terminus) 

Deamination (NQ) 

Oxidation (M) 

Phospho (STYX*) 

N-terminal acetylation 

Ammonia loss (QC) 

Pyro-Glu (EQ on the N-

terminus) 

Deamination (NQ) 

Max Variable PTMs 5 5 5 

Table 1: Comet search params for each data set. 
*

X corresponds to the different decoy amino acid 

searched: Ala, Gly, Leu, Asp, Glu or Pro. 
¶
 Preliminary analysis of the data set detected that several 

peptides had been manufactured with a pyrophosphate modification rather than the intended 

phosphate, which can cause apparent errors when comparing the results to the answer key if they are 

not accounted for. 

 

Downstream data analysis 

The data from searching with TPP were downstream processed by custom Python scripts 

(https://github.com/PGB-LIV/PhosphoFLR). Firstly, the global FDR was calculated from the decoy counts 

and the PSMs were filtered for 1% PSM FDR. From these filtered PSMs, a site-based file was generated 

giving separate localisation scores for each phosphosite found on each PSM, removing decoy and 

contaminant hits. These site-based PSMs were ordered by a combined probability, calculated by 

multiplying the PSM probability by the localisation probability. In the processing pipeline from TPP, 

iProphet calculates a probability that a given PSM is correct, and PTMProphet calculates a probability for 

the site assignment. We demonstrated that there is almost no meaningful correlation (r
2
 =~ 0.01) 

between these probabilities (Supplementary Figure 1), and thus we conclude that these probabilities are 

sufficiently independent that they can be multiplied to arrive at a final probability that a given site’s 

identification is supported by the given spectrum.  

 

For the PEAKS search, the PSM score and A-scores for targets and decoys were modelled based on the 

counts of targets and decoys per histogram score bin, to generate similar probability estimates (code 

provided in the GitHub repository). For MaxQuant and Mascot searches, the PSM probability values 

were calculated as 1-PEP values (reported by the pipeline natively) with the PTM probabilities being 

calculated innately through PTM-score/ptmRS probabilities, respectively. For the synthetic peptide 

search, these site-based results were then filtered further to allow comparison with the synthetic 
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peptide known localisation key. Partial peptides and PSMs with the incorrect phosphorylation count 

compared to what was expected from the answer key, or other additional modifications, were removed. 

These remaining PSMs were then compared against the synthetic peptide answer key to determine if 

the phosphosites had been correctly identified. For analysis of the synthetic data only, results were 

ordered by the corresponding site localisation probability rather than the combined probability, since 

due to the small size of the search database, not all pipelines could produce accurate estimates of PSM 

probability. 

 

The sites reported for each analysis method were ordered by combined probability and global FLR was 

estimated for every ranked site, from which we can then later apply a threshold at the lowest scoring 

site that delivers a desired global FLR (e.g. 1%, 5% or 10%), similar to the q-value approach for standard 

database searching. The global FLRs for all of the data sets were estimated using two methods – called 

Model FLR and Decoy FLR method. For the synthetic data set a third method was also used, called 

Answer Key method (comparing against the known phosphosite answer key) 

 

Model FLR method 

Firstly, we estimated the global FLR using the combined probabilities (Global Model FLR). For TPP, we 

use the 1 – final probability, to give the local FLR (PEP) for each given site scored in a ranked list. The 

“Global Model FLR” is calculated as a running sum of the local FLR divided by the count of rows 

(Equation 1) i.e. the estimated frequency of false localisations at each row in a ranked list, divided by the 

total number of reported observations.  

 

Equation 1 Global Model FLR: 

������ ���	� 
��� 

∑ 1 � ���

��� �  ��
����

�…�

�
 

Where n is the count of observations, P
PSM

 is the local FLR (PEP) for a given PSM identification and P
PTM

 is 

the local FLR for a given site localisation.  

 

Decoy FLR method 

We used the identification of phosphorylated decoy amino acids (e.g. worked example follows for 

Alanine, pA), as these are known to be false localisations and can therefore be used to estimate the FLR. 

The counts of the phosphorylated decoy amino acids were first normalised to allow comparison with 

true hits, modelling the random frequency one would expect incorrect sites to be assigned to target STY 

residues. The “STY:X ratio” was determined by dividing the total count of STY residues by the total count 

of the decoy amino acid residues, e.g. count Ser, Thr and Tyr / count Ala = STY:A ratio, within the set of 

PSMs with a scored phosphosite. 

 

For every false localisation of the decoy amino acid, it would be expected to see STY:A ratio X false 

localisations within the target hits (STY). The count of phosphorylated amino acids is therefore 

multiplied by this ratio (to model the expected frequency of random wrong hits), then multiplied by 2 

(to model the normalised frequency of random wrong assignments amongst both the decoy amino acid 

and the target amino acid) to arrive at a normalised false localisation count. This is relative conservative 
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method to calculate global FLR, but without the correction to multiply by two, the use of a less frequent 

decoy amino acid would be insufficiently corrected for.  

 

This normalised false localisation count is then divided by the total count of observations, at a given row 

in the ranked list, to obtain the Model (global) FLR estimate (Equation 2).  

 

Equation 2 phosphorylated decoy amino acid FLR: 

 

�� 
��� 
  
���: � ����� � ∑ �� �� ���…� � 2

�
 

Where pX count is the count of phosphorylated decoy amino acid and n is the count of observations at a 

given row in the ranked list. 

 

Answer Key FLR 

For the synthetic data set, we used the synthetic peptide false localisations in a similar way, the false 

localisation count (i.e. result not matching the answer key) was divided by the total count of sites to 

calculate the FLR (Equation 3). 

 

Equation 3 Synthetic answer key FLR: 

�"��#	��� �	����	 
��� 

∑ $��%	 ������%����� �� ���…�

�
 

Where n is the count of observations and false localisation count is the count of sites not matching the 

answer key in a given position in the ranked list. 

 

Collapsing observations of a site across multiple PSMs 

When summarising study results, it is desirable to “collapse” results where there are multiple PSMs 

supporting the same modification site down to a single row. There is no well-agreed method for 

collapsing data, although common practice when using collapsing multiple PSMs into individual reports 

for peptides is to use the maximum peptide score for ordering results, and disregarding the count of 

PSMs. The rationale for this simplification is that multiple PSMs reporting for the same peptide are not 

independent statistical tests and thus the same wrong answer can appear in multiple PSMs. As such, a 

simple method for ranking final “collapsed” results for sites is simply to take the maximum final 

probability. However, our own profiling of data sets suggests that this method is sub-optimal. Many of 

the high scoring decoy hits are supported by only a single PSMs, and so a collapse method that weights 

sites supported by a higher number of PSMs is more likely to be true than one supported by a single 

PSM (Supplementary Figure 2). This is an area of active development in our group to create a valid 

statistical model for multiple observations of a PTM site, which accurately models probabilities in this 

space. For this study, we use a relatively ad hoc method for collapsing multiple observations that 

attempts to balance maximum final probability and spectral counts. We took the maximum probability 

for a given site, derived from multiple PSMs, and binned into final probability values at 2 decimal places. 

We ranked via binned final probability, and then ranked within bins via the count of PSMs.  
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Profiling distance distributions from real identifications to decoy amino acids 

In order to compare between the decoy amino acids investigated, the distribution of amino acids around 

phosphorylation sites were compared. The phosphorylation sites obtained searching each database for 

phospho (STY) using TPP was first filtered for 5% model FLR. The minimum distance between an 

assumed correctly localised phosphorylated STY and the nearest candidate amino acid were compared, 

alongside the minimum distance for the nearest STY. Histograms were generated with the normalised 

frequencies of these distributions in order to compare between the selected decoy amino acids and STY.  

 

Profiling site probabilities for proximal amino acids 

When analysing the results for different decoy amino acids we observed particular differences in the 

global FLR estimates for certain decoys (particularly pAla versus pGly) that could not be explained by 

distributions of amino acids in relation to confident target sites (above). We further explored these 

effects by calculating the average final probabilities for assumed correct sites with different amino acids 

in the -1 and +1 position relative to the site. The assumed correct sites were estimated as sites with 

combined probability ≥0.68. This threshold was calculated from the average minimum combined 

probability using a 5% FLR cut off for each of the decoy FLR estimations across all searches. These 

average probability distributions were calculated for the Arabidopsis and human data sets, from results 

of the TPP search with no decoy amino acid (pSTY), pAla decoy (pASTY), pLeu decoy (pLSTY) and pGly 

decoy (pGSTY).  

 

Results  

 

Analysis of synthetic data set PXD007058 

The analysis setup aimed to determine whether global FLR within genuinely modifiable residues (target 

amino acids) could be estimated reliably by including in the search a “decoy” amino acid that is not 

modified. We tested six different amino acids to act as a decoy in parallel searches: glycine, leucine, 

alanine, glutamate, aspartate and proline, to determine what effect the selection of a particular decoy 

had on results obtained. The set of potential decoy amino acids were selected based on the following 

rationale: i) glycine, leucine, alanine – no evidence that they can be phosphorylated in any known 

biological system, all relatively frequent amino acids in most biological systems; ii) glutamate –

infrequently phosphorylated [26] and not typically detectable as phosphorylated in most standard 

enrichment MS experiments, thus could be a plausible choice as a decoy; iii) aspartate and proline were 

chosen as expected to be deliberately poor choices of decoy amino acids, since there are known SP and 

SD phosphorylation motifs, which could bias estimates of global FLR. We expect a statistically reliable 

choice of amino acid should have a similar distance distribution from a phosphorylation site (STY) to 

another truly possible phosphorylation site (STY), under the theory that incorrect localisations are more 

likely to amino acids nearby in the sequence.  

 

We first searched the PX007058 synthetic dataset, which allowed us to test the three different methods 

of FLR estimation against a known answer. The data set was searched using TPP and the global FLR of 

these was calculated using the decoy phosphorylated amino acid method for six different choices of 
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decoy amino acid i.e. in six parallel searches (Figure 1a). As described in the Methods, the global 

“Decoy” FLR is estimated based on the counts of hits to the decoy amino acids in the ranked list of 

results, adjusted for the ratio of the counts of the decoy amino acid to the target amino acid in the 

modified peptides that have been considered. We also show the global FLR calculation for all three 

methods in Figures 1b-g, split by decoy amino acid choice i.e. i) Answer key - identifying false localisation 

by comparing to the known phosphosites (in this synthetic data set where the truly modified site is 

known), ii) Decoy amino acid method and iii) Model FLR i.e. based on summing local FLR calculated by 

the analysis software intrinsically (see Methods). The first observation we make is that the choice of 

decoy amino acid can have a substantial effect on the sensitivity (counts of assumed true sites), for a 

given estimated global FLR threshold (Table 2 and Figure 1). At 5% FLR, the lowest sensitivity is achieved 

with a Gly decoy (749 sites), versus the highest sensitivity with a Glu decoy (952 sites). 

 

It can be seen that for pAla and pLeu decoys (Fig 1b and d), there is close agreement between the two 

“empirical” methods of estimating global FLR i.e. Answer Key and Decoy, with the Model giving more 

conservative estimates of FLR. The pGly and pPro methods (Fig 1c and g) have good agreement between 

the Answer Key and Decoy methods up to ~700 counts, and then the decoy method gives more 

conservative estimates (rising steeply), compared to the Answer Key method (and Model). The pAsp 

decoy method agrees well with the Model FLR but is more conservative than the Answer Key (Fig 1e). 

The pGlu decoy method is the least conservative, apparently underestimating global FLR compared to 

the answer key (Fig 1f). Overall, the matching of pAla and pLeu decoy FLR estimation to the answer key 

FLR gives some supporting evidence towards pAla and pLeu being appropriate choices for decoy amino 

acids. The Model FLR method is shown to be more conservative that the other “empirical” FLR methods 

in most cases, especially in the most important regions of the distribution i.e. up to 5% global FLR for 

example. 

 

The estimates from Figure 1b-g and Table 2 demonstrate greater stability in the Model FLR and Answer 

Key FLR across different decoy amino acids i.e. there is less variation in sensitivity at a given estimated 

FLR. This is to be expected since comparing the six different searches, many of the errors in localisation 

are due to incorrect localisation to a target amino acid (which largely behave the same across the six 

searches). 
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Fig 1: a) Comparison of FLR estimation searching PXD007058 (Synthetic data set) using different decoy 

amino acids: pAla, pGly, pLeu, pAsy, pGlu and pPro (TPP, fully tryptic, 1 %FDR) b-g) Comparison of FLR 

estimation methods searching PXD007058 for each of the different decoy amino acids (TPP, fully tryptic, 

1% FDR). X-axis = count of sites, y-axis is global FLR estimated as q-values. 

 

Table 2: Counts at pX FLR (calculated by the decoy method) for 1%, 5% and 10% using each FLR method, 

searching PXD007058 (Synthetic data set) (TPP, fully tryptic, 1% FDR) 

 Count at 1% FLR Count at 5% FLR Count at 10% FLR 

 Answer 

Key 

Model Decoy Answer 

Key 

Model Decoy Answer 

Key 

Model Decoy 

pAla 702 226 799 835 700 866 935 836 921 

a) 
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pGly 571 203 515 778 645 749 866 791 787 

pLeu 632 229 665 843 710 823 938 844 914 

pAsp 535 258 207 834 721 784 929 849 805 

pGlu 722 232 841 858 734 952 975 866 n/a 

pPro 636 206 621 817 692 768 883 832 823 

 

On the same synthetic data set, we also compared the estimation methods across four different 

pipelines: TPP, PEAKS, MaxQuant and Mascot (Supplementary Fig 3, Supplementary Table 2). The 

PXD007058 synthetic data set was searched for pSTY and pAla and pLeu (for decoy comparison). The 

initial set of results from our analysis pipeline are the redundant identification of phosphorylation sites 

i.e. if multiple PSMs support the same site, these appear as multiple rows (not collapsed). In general, as 

noted in the Methods, our preference is to order these results by the final probability that a site has 

been observed (PSM probability X site localisation probability). The synthetic data set has a small 

database size and an overall small count of identifications, which makes it difficult to model PSM 

probability accurately. As such, for the synthetic data set only, we ordered results by the site localisation 

probability, having first accepted only PSMs with FDR < 1%.  

 

FLR was calculated using the synthetic answer key and the decoy amino acid hits (Supplementary Fig 3). 

For all four pipelines tested, both the pAla and pLeu Decoy methods agree well with the results from the 

Answer Key FLR method across all three pipelines, demonstrating that our method with these amino 

acids gives reliable FLR estimates in a software-independent manner. There are differences in the total 

number of sites identified at a fixed FLR threshold, dependent on the pipeline applied. For this data set, 

TPP gives highest sensitivity, followed by PEAKS, Mascot/ptmRS and MaxQuant. However, our primary 

goal in this manuscript is not extensively to benchmark different pipelines, as there are choices of 

algorithm parameterisation, which need to be optimised and could affect conclusions, and thus we do 

not make any general conclusions about software performance for PTM analysis here. 

 

 

Biological data set analysis  

 

PXD008355 

To investigate the effect of using different decoy amino acids on different data sets, we compared the 

FLR estimations across the six different amino acids using two experimental data sets from Arabidopsis 

thaliana and Human. Figure 2 shows the decoy FLR comparisons searching the PXD008355 Arabidopsis 

data set with TPP. Here we can see a similar trend as previously seen in the synthetic data set FLR 

estimations with pGly and pPro giving most conservative performance at higher FLR values i.e. a steep 

rise in global FLR (Fig. 2a) and giving the lowest sensitivity at 10% global FLR, although there is a more 

complex picture at 1% and 5% FLR values (Table 4 and Fig. 2b). We assume that many studies will aim to 

threshold at 5% global FLR, here we observe lowest counts (of sites at 5% FLR) for the pAsp decoy, 

similar, intermediate counts for pGly, pGlu and pPro methods, and highest counts of sites (sensitivity) 

for pAla and pLeu decoys. One of the challenges with accurate FLR estimation is that there can be some 

high-scoring incorrect localisations, and their position in the ranked list can have significant implications 
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on the count of sites at 1% FLR (Fig 2b and Table 3). We thus would not recommend generally 

thresholding at 1% global FLR, but instead applying a 5% FLR where the global FLR estimates are likely to 

be robust. There is additional discussion of these high-scoring false hits in the Supplementary materials 

(i), Supplementary Figure 4 and Supplementary Table 3. We also calculated the Model FLR for each 

decoy option, demonstrating good agreement at 5% FLR between the two methods (Decoy FLR versus 

Model FLR) for pAla, pLeu and pGly decoy options, but less good agreement for other decoys 

(Supplementary Figure 5). 

 

We next explored data after collapsing multiple scores from different PSMs supporting the same site, 

taking the maximum probability for a given site for ranking results, along with the greatest number of 

supporting PSMs (see Methods). The results following this collapse step are shown in Figure 2c and d, 

demonstrating relatively similar trends, with considerable differences in sensitivity at 5% and 10% global 

FLR, with pAla and pLeu giving highest sensitivity at a 5% and 10% FLR. The statistical assumptions for 

the Model FLR do not hold after collapse, so this method was not used. 

 

Fig 2: Comparison of FLR estimation searching PXD008355 (Arabidopsis data set) using different decoy 

amino acids: pAla, pGly, pLeu, pAsy, pGlu and pPro (TPP, fully tryptic, 1 %FDR) a) all PSMs, b) zoom 

5%FLR all PSMs, c) collapsed by modified peptide, sorting by combined probability and count of 

supporting PSMs,  d) collapsed by modified peptide, sorting by combined probability and count of 

supporting PSMs, zoom at 5%FLR. X-axis = count of sites, y-axis is global FLR estimated as q-values. 
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Table 3: Counts at pX FLR for 1%, 5% and 10% using each decoy method, searching PXD008355 

(Arabidopsis data set)  (TPP, fully tryptic, 1% FDR) showing all PSMs (no collapse) and collapsing multiple 

PSMs to one row per modified peptide, sorting by combined probability and count of supporting PSMs 

 Count at 1% FLR Count at 5% FLR Count at 10% FLR 

 No collapse Collapse No Collapse Collapse No Collapse Collapse 

pAla  23104 1570 40541 4704 44556 5815 

pGly  18872 1469 35939 3654 38885 4990 

pLeu  17943 1017 42157 4964 45875 6068 

pAsp  13490 234 32595 4151 39262 5130 

pGlu  21923 2766 34949 4385 40532 5607 

pPro  23696 2771 35170 4483 38226 5221 

 

 

To further investigate the selection of decoy amino acid candidates, the minimum distance between an 

assumed correctly localised phosphorylated STY (<5% global FLR filtered) and the nearest candidate 

amino acid were compared, alongside the minimum distance for the nearest STY (Figure 3). The 

rationale for this comparison is that in a regular search not employing a decoy, if a phosphosite is 

wrongly localized, it will usually be to the nearest other STY residue than the correct site. We assume 

that a statistically reliable decoy amino acid will follow a similar (normalised) frequency distribution to 

the closest STY residue from correct hits. When comparing these distances in the Arabidopsis data set, it 

can be seen that Ala, Leu and Gly follow somewhat similar frequency distributions to proximal STY, 

particularly in the + positions (i.e. towards the C-terminus of the protein). Asp, Glu and Pro are all 

enriched at the +1 position relative to STY, which likely partially explains the higher FLR estimates 

observed for the same site counts in Table 3 and Figure 2, i.e. the pipeline wrongly assigns sites to ASp, 

Glu and Pro more frequently than it would be other target sites (STY). We also observed in Table 3 that 

using a glycine decoy gave relatively low sensitivity at 5% FLR, and steeply increasing FLR at higher site 

counts.  The results for Gly in Figure 3 are thus are outlier with respective to Figure 2, as well as for the 

synthetic data set in Figure 1, in which we observed lowest site count at 5% FLR for estimates using a Gly 

decoy. Our starting expectation was that Ala, Leu and Gly would all make reliable choices as decoy 

amino acids, and thus we also conducted an analysis of amino acid frequencies to attempt to explain the 

differences seen for Gly, results are shown in Supplementary material (ii) and Supplementary Table 4. 

Gly and Ala have similar frequencies of observations in phosphopeptides, so this also does not explain 

the disparity. We further explore this phenomenon below. 
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Fig 3: Comparison of minimum distance between phosphorylated STY and the nearest target amino acid 

(Ala, Leu, Gly, Asp, Glu and Pro), compared to the STY distribution, searching PXD008355 (Arabidopsis 

data set).  

 

 

Similar to the synthetic data set, a comparison between FLR estimates was made across the different 

pipelines: TPP, PEAKS, MaxQuant and Mascot/ptmRS. The PXD008355 Arabidopsis data set was 

searched with an Ala decoy, as well as a Leu and Gly decoy, and FLR estimations were calculated in the 

same way as before (Supplementary Figure 6, Supplementary Table 5). In general, highest sensitivity is 

achieved by TPP and Mascot/ptmRS, whereas there are high-scoring decoy (amino acid) hits in the other 

two pipelines that lead to much lower sensitivity at a given FLR cut-off. For TPP and Mascot/ptmRS 

pipelines, the results from estimation with the three decoys are largely reproducible i.e. pAla and pLeu 

gives highest (and similar) counts of sites at a given FLR, whereas pGly gives a lower count of sites at the 

same FLR threshold. 

 

In this approach, sites are ordered by final probability (PSM probability * PTM probability). An 

alternative approach commonly used in the field is to threshold first at say <1% FDR for PSMs or 

peptides, and then order purely by PTM localisation score or probability. We tested a similar approach 

to see what effect there is on sensitivity at a given FLR for the pAla results (Supplementary Fig 7). Whilst 

ordering site localisations by PTM probability only rather than the combined PSM*PTM probability, we 
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can see that there is lower sensitivity at 1% FLR for the PTM probability option, and almost identical 

sensitivity between the two options at 5% and 10% FLR (Supplementary Table 6). We therefore conclude 

that it is slightly superior to model both the probability that a given PSM is correct, as well as that the 

PTM has been correctly localised to give the best ordering of results, particularly for those highest 

scoring around 1% global FLR. 

 

PXD000612  

 

Given that we see consistent trends for the synthetic data set and Arabidopsis data set in terms of 

comparing decoys across different pipelines, for the final validation, we focus only on the use of TPP on 

one further validation set from a different species (human). We would expect some different 

phosphorylation motifs comparing an animal species to a plant species, which could affect decoy amino 

acid performance. Figure 4 and Table 4 illustrate the FLR comparison using the different decoy amino 

acids, searching the PXD000612 human data set. A similar trend can be seen here as in the Arabidopsis 

data set with pAla and pLeu giving the highest site counts at 5% FLR and pAsp giving lowest site count. 

On the zoomed plot (<5% FLR, Figure 4b), the same issue as for data set PXD008355 can be observed, 

with unstable decoy estimation at low counts due to a random factor from a few high-scoring decoys 

(FLR < 1%). For this data set, there is also good agreement between the Model FLR and the Decoy FLR 

for most amino acids except pGlu, where the Model FLR tends to be more conservative than Decoy FLR 

(Supplementary Figure 8).  We also show the data after collapsing multiple PSMs reporting on the same 

site (Fig 4c and d), giving similar trends in sensitivity at fixed FLR thresholds as for data without collapse.  
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Fig 4: Comparison of Decoy FLR estimation searching PXD000612 (human data set) using different decoy 

amino acids: pAla, pGly, pLeu, pAsy, pGlu and pPro. (TPP, fully tryptic, 1 %FDR) a) no collapse, all sites 

shown, b) zoom on 5% FLR, c) collapse to unique sites, d) zoom on <5 FLR for data collapsed to unique 

sites. X-axis is count of sites, y-axis is global FLR, estimated as q-values by the Decoy method. 

 

 

Table 4: Counts at pX FLR for 1%, 5% and 10% using each decoy method, searching PXD000612 (human 

data set) (TPP, fully tryptic, 1% FDR) showing all PSMs (no collapse) and collapsed to unique sites. 

 Count at 1% FLR Count at 5% FLR Count at 10%FLR 

 No collapse Collapse No Collapse Collapse No Collapse Collapse 

pAla 62050 5246 95924 9504 103609 11491 

pGly 58367 5557 86752 9267 94536 11193 

pLeu 3822 6705 98875 10172 106453 12030 

pAsp 2650 809 71968 8458 86451 10052 

pGlu 22563 608 78708 7819 94337 10092 

pPro 47942 3256 79821 7384 90430 9482 

 

 

The distance between the phosphorylated STY and the nearest candidate amino acid were again 

compared (Supplementary Figure 9) to further investigate the effect of decoy amino acid choice and to 

examine how the distributions differ between the different data sets. When comparing these distances 

in the Human data set, a similar pattern is seen to that of the Arabidopsis data set. It can be seen that 

Ala and Leu again follow a somewhat similar frequency distribution to proximal STY residues, again 

particularly in the positive direction. Asp and Pro are again enriched at the +1 position relative to STY, 

which would be expected. Gly is also seen to follow a similar distribution to STY residues and therefore 

would be expected to be a reliable decoy amino acid, based on this measure. However, looking at the 

FLR comparisons seen in Fig 4, Gly can be seen to give more conservative FLR estimation (or lower site 

counts at 5% FLR for example than Ala or Leu), as was also seen in the Arabidopsis data set.  

 

We next explored whether particular amino acids in proximity to true phosphorylation sites cause 

results to change. We plotted the average final probabilities for the Arabidopsis data set searched via 

the TPP pipeline, split according to the amino acid in the -1 (Fig. 5) and +1 (Supplementary Figure 10) 

position relative to the assumed correct phosphorylation site, for the data set searched with no decoy 

pSTY, pAla decoy, pLeu decoy and pGly decoy. In the search with no decoy, there is a particularly striking 

trend that sites have a lower probability when the -1 amino acid is Ser, Thr or Tyr. This occurs because 

the site localisation algorithm (PTMProphet) has fewer ions available to discriminate the correct from 

incorrect localisation. In the pAla and pLeu results, we see that Ala and Leu in the -1 position, cause sites 

to have a similar reduction in final probability as Ser, Thr and Tyr in the no decoy search i.e. final 

probability shifts from around ~0.96 to ~0.91 (Ala and Leu decoy). We interpret this to mean that they 

behave as statistically “good decoys” i.e. when they are present in the -1 position relative to a true site, 

they behave in a similar manner to STY residues. In the pGly data, there is a much larger drop off in final 

probabilities when G is in the -1 position (~0.96 to~0.87), meaning that (most commonly) Gly-pSer sites 
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are scored less well that phosphoserines preceded by other amino acids, and excessive probability space 

is being distributed to the pGly-Ser hypotheses. In the results we observe that around 47% (Arabidopsis 

data) and 35% (human data) of the high scoring pGly decoys have pGly-Ser motif. We see similar trends 

in the human data set (supplementary Figures 11 and 12). It is unclear why this particular amino acid 

combination causes a problem for PTM localisation, but we hypothesise that the Gly-pSer bond is 

perhaps particularly stable during fragmentation and hence a discriminating y ion terminating with pSer 

is less commonly observed. We thus conclude that based on what we have observed that pGly is not an 

ideal choice for a decoy amino acid. 

 

 

Fig 5: Comparison of averaged final site probabilities for all peptides (final probability ≥0.68 split by 

amino acid in the -1 positions for the PXD008355 (Arabidopsis data set) a) STY (no decoy), b) STY with Ala 

decoy, c) STY with Leu decoy and d) STY Gly decoy.  

 

 

Discussion 

 

In the proteomics field, prior to the widespread adoption of decoy database searching, there was a 

general problem with false positive results in the literature, as labs vied to report the largest number of 

peptides and proteins, without control of FDR. It is now accepted that all proteomics studies should 

control for FDR at an appropriately conservative level, e.g. < 1% FDR at the protein-level for protein-

centric studies. It has long been recognised that a similar problem exists with reporting PTM sites. The 

accurate discovery of a site can be crucially important for downstream interpretation, since the identity 

of the residue (STY for canonical phosphorylation) and the proximal amino acids govern understanding 

of the kinase and phosphatase that regulate it. Given the interest in understanding phosphorylation 

(and other PTM) sites in most human diseases, adequate control of false reporting is crucial. It has 
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recently reported that >80% of reported sites in a popular phosphorylation database are estimated to 

be false positives [27]. This has likely resulted due to studies using overly weak FLR thresholds in 

publications, and results then get deposited in databases. Correct identifications tend to be reported 

from multiple studies, whereas random wrong site identifications tend to be seen only one or twice and 

thus over time, database-level FLR creeps up.  

 

This study is, to our knowledge, the most detailed attempt to understand how best to estimate global 

FLR using decoy amino acids. We compare the method against the use of a statistical model, based on 

summing local FLR values, and results agree reasonably, but not perfectly well. We also demonstrate 

that the selection of a particular amino acid, even when correcting for the frequency of that amino acid 

in the results, does influence results more than would be desirable. We believe that our results back up 

that either pAla or pLeu make appropriate decoys based on their similar frequencies proximal to real 

phosphorylation sites (in a test case from humans and a model plant), as compared to target amino 

acids STY. The results for pAla and pLeu decoys also agree well with the Model FLR (for the large data 

sets) and the Answer Key FLR, for the synthetic data set. We have a slight preference to use pAla as a 

decoy going forward, since there is a slight risk of confusion between Leu and Ile amino acids, which 

often cannot be distinguished by MS. In rare cases where there are two peptides in the database, 

differing only by Ile/Leu, errors or inconsistencies in decoy FLR estimation could be introduced. 

 

From the TPP pipeline, using iProphet and PTMProphet, it is possible in theory to use either the Model 

FLR or the Decoy FLR for thresholding final results. As noted above, performing a 1% global FLR 

threshold may be unstable (based on the Decoy FLR method), depending on the chance appearance of a 

few decoys high on the ranked list. If control at this level is required, the Model FLR would thus be 

preferred. For a less conservative threshold, say 5% FLR, then we believe that thresholding using the 

pAla Decoy FLR method should be recommended. The rationale is that this method can be 

straightforwardly applied using any combination of tools, and is simple to interpret. Most other 

pipelines in current use do not report accurate PEP values for PSMs and for site localisation, allowing 

Model FLR to be calculated reliably. We also recommend that the scores per site (final probability in the 

case of TPP-produced data) and the pAla “identifications” get carried forward and reported. This allows 

for the potential for meta-analyses and database submissions to estimate the resulting global FLR once 

multiple data sets have been combined. 

 

We acknowledge that there is a slight downside to searching with a decoy amino acid, in that the search 

spaces for PSM identification and PTM localisation are both increased, leading to a potential loss in 

sensitivity. In our analyses, Ala residues are present at less than 1/3 the total frequency of STY residues, 

leading to a relatively modest increase in search spaces, of say 30%. We also suggest that the 

proteomics field has generally accepted that doubling the PSM search database (and search time) 

through the inclusion of decoys is an acceptable trade-off for gaining the ability to estimate global FDR 

straightforwardly and transparently. While we have presented results for pAla as a decoy for 

phosphorylation studies, we also suggest that modified Ala could also be an appropriate decoy for other 

modification types, such as Lys modifications acetylation, methylation, ubiquitination and SUMOylation 
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etc, although we have not yet profiled the amino acid distributions sufficiently to conclude that Ala is 

more suitable than other amino acids in these cases. 

 

Conclusions 

We have assessed six different amino acids for their ability to act as suitable decoy amino acids for the 

estimation of global FLR in phosphoproteomics studies. We have analysed three data sets, one synthetic 

with a known answer and two biological-sample data sets. We conclude that either Ala or Leu make 

appropriate decoys, and give reliable estimates of FLR above 1% FLR. Below 1% FLR, estimates can be 

unstable due to a few random high-scoring decoys. We demonstrate that the decoy-based FLR gives 

similar estimates to a modelled FLR for Ala and Leu decoys, based on summing local FLR values per site, 

and based on the answer key for the synthetic data set. We recommend that phosphoproteomics 

investigators should adopt the “pAla” decoy going forward i.e. the pASTY method, and report sites with 

appropriate global FLR control.  
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