

1 **Genome scale modeling of the protein secretory pathway reveals novel targets for
2 improved recombinant protein production in yeast**

3 Feiran Li¹, Yu Chen^{1, 5}, Qi Qi^{1, 5}, Yanyan Wang^{1, 5}, Le Yuan^{1, 2}, Mingtao Huang¹, Ibrahim E.
4 Elsemman^{1, 3}, Amir Feizi^{1, *}, Eduard J Kerkhoven^{1, 2}, Jens Nielsen^{1, 4, *}

5

6 1 Department of Biology and Biological Engineering, Chalmers University of Technology,
7 Kemivägen 10, SE412 96 Gothenburg, Sweden

8 2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology,
9 Kemivägen 10, SE-412 96, Gothenburg, Sweden

10 3 Current affiliation: Department of Information Systems, Faculty of Computers and
11 Information, Assiut University, Assiut, Egypt

12 4 BioInnovation Institute, Ole Måløes Vej 3, DK2200 Copenhagen N, Denmark

13 5 These authors contributed equally: Yu Chen, Qi Qi and Yanyan Wang.

14 * Correspondence to: afeizi@gmail.com, nielsenj@chalmers.se

15

16 **Abstract**

17 Eukaryal cells are used for the production of many recombinant pharmaceutical proteins,
18 including several of the current top-selling products. The protein secretory pathway in eukaryal
19 cells is complex and involves many different processes such as post-translational modifications,
20 translocation, and folding. Furthermore, recombinant protein production competes with native
21 secretory proteins for the limited energy and proteome resources allocated to the protein
22 secretory pathway. Due to the complexity of this pathway, improvement through metabolic
23 engineering has traditionally been relatively ad-hoc; and considering the industrial importance
24 of this pathway, there is a need for more systematic approaches for novel design principles.
25 Here, we present the first proteome-constrained genome-scale protein secretory model of a
26 eukaryal cell, namely for the yeast *Saccharomyces cerevisiae* (pcSecYeast). The model
27 contains all key processes of this pathway, i.e., protein translation, modification, and
28 degradation coupled with metabolism. The model can capture delicate phenotypic changes
29 such as the switch in the use of specific glucose transporters in response to changing
30 extracellular glucose concentration. Furthermore, the model can also simulate the effects of
31 protein misfolding on cellular growth, suggesting that retro-translocation of misfolded proteins
32 contributes to protein retention in the Endoplasmic reticulum (ER). We used pcSecYeast to
33 simulate various recombinant proteins production and identified overexpression targets for
34 different recombinant proteins overproduction. We experimentally validated many of the
35 predicted targets for α -amylase production in this study, and the results show that the secretory
36 pathways have more limited capacity than metabolism in terms of protein secretion.

37

38 **Key words:** α -amylase, genome-scale modeling, protein secretion, proteome constraints,
39 rational design

40 **Introduction**

41 The protein secretory pathway is an important pathway for eukaryal cells. About 30% of native
42 proteins are processed by the secretory pathway in eukaryotes¹. The secretory pathway spans
43 several different organelles carrying out peptide translocation, folding, ER-associated protein
44 degradation (ERAD), sorting processes as well as different post-translational modifications
45 (PTMs), ensuring proper protein functionality². There are around 200 proteins engaged in the
46 protein secretory pathway in *Saccharomyces cerevisiae*, hence responsible for these functions.
47 The unique modification profile of each secretory protein dictates specific combinations of
48 multiple processes required for their production and secretion, which makes the secretory
49 pathway a complicated production line and therefore complex to describe. Unraveling the
50 processing and energetic costs for proteins passing through the secretory pathway and how the
51 cell distributes energy and enzymes to process these proteins is therefore desirable, as this
52 would facilitate a better understanding of protein secretion.

53

54 *S. cerevisiae* is used as the expression system for around 15% of all protein-based
55 biopharmaceuticals for human use on the market³. It has also been used as an important model
56 organism for studying this important pathway, and many discoveries made in yeast translate
57 directly to other eukaryotes such as Chinese Hamster Ovary (CHO) cells that are also widely
58 used for the production of protein-based biopharmaceuticals^{4,5}. Since the early days of
59 recombinant protein production in the 1980s, there have been many attempts to improve the
60 protein expression and secretion levels by removing bottlenecks in the protein modification
61 and secretion pathways⁶. However, most of these attempts were usually evaluated for one
62 recombinant protein, and often do not work for improved expression of another protein.
63 Furthermore, the protein yield has typically been much lower than the theoretically estimated
64 range^{7,8}. There is therefore much interest in developing a rational design tool for optimization

65 of the secretory pathway for any recombinant protein, in line with what has been developed for
66 metabolism in many cell factories^{9,10}.

67

68 There are several published frameworks or models for describing protein secretion in yeast and
69 other eukaryotes, but they are either not able to perform simulations or contain only a partial
70 description of the protein secretion pathway^{2,11-14}. Besides, even for a recently published
71 secretory model for mammalian cells, the model is solely a basic extension of a genome-scale
72 metabolic model (GEM), which is not able to simulate how native secretory proteins compete
73 with recombinant proteins targeted to pass through this pathway¹³. We, therefore, reconstructed
74 a detailed proteome-constrained genome-scale protein secretory model for *S. cerevisiae*
75 (pcSecYeast), which contains the description of the complete protein secretion pathway and
76 can perform multiple kinds of simulations including the competition of recombinant proteins
77 with native secretory proteins. The model also enables calculation of the energetic cost for
78 native secretory proteins and hereby investigates how misfolded proteins cause growth
79 reduction. We used the model to evaluate the secretion of various recombinant proteins and
80 identify engineering targets for improving their production. The model represents a significant
81 advancement in terms of enabling the more rational design of yeast cells to be used for
82 recombinant protein production, but it also provides a scaffold for building similar models for
83 other eukaryal cells, e.g., CHO cells.

84

85 **Results**

86 **Construction of pcSecYeast**

87 We first updated the latest yeast GEM Yeast^{8,15} by adding several reactions to enable the
88 synthesis of precursors required in the secretory pathway such as glycosylphosphatidylinositol
89 (GPI) anchor and glycans (Supplementary Table 1). Similar to the metabolic-expression (ME)

90 model for *Escherichia coli*¹⁶ and *S. cerevisiae*¹⁷, protein expression, translation, folding, and
91 degradation were then added for all proteins in the model. Besides that, for proteins processed
92 in the secretory pathway, we added reactions detailly describing protein processing including
93 translocation, PTM, folding, misfolding and degradation (Fig. 1a). Hereby the model can
94 describe detailed processes from nascent peptides in the cytosol to the final mature form of
95 proteins in their destination compartment for all proteins in the model. Therefore, pcSecYeast
96 adds a much more detailed description of protein translocation and processing compared with
97 those ME models. To our knowledge, pcSecYeast represents the first model to describe close
98 links between metabolism, protein translation, post-translational protein processing, protein
99 degradation, and protein secretion in yeast and can be easily adapted to any cell. The
100 components that participate in the protein secretory pathway are involved in 12 subsystems
101 (Fig. 1b). Overall, pcSecYeast accounts for 1,639 protein-coding genes and approximately 70%
102 of the total proteome mass according to PaxDb¹⁸ (Supplementary Table 2). Details of the
103 reconstruction process can be found in the Supplementary Methods.

104

105 As an extension of Yeast8, pcSecYeast includes default constraints such as mass conservation
106 and flux bounds on metabolic reactions. Besides them, we introduced coupling constraints to
107 relate protein synthesis with metabolism (Supplementary Methods). The metabolic part in the
108 model supplies the substrate and energy for the protein-related part such as ribosome and
109 enzyme synthesis, while the metabolite conversion process in the metabolic part is catalyzed
110 by enzyme complexes synthesized in the protein-related part (Fig. 1c). Protein synthesis is
111 constrained by the synthesis of ribosome and other machineries such as secretory machinery
112 complexes (Fig. 1c). Each flux of enzymatic reaction in the model is constrained at the maximal
113 rate of the associated enzyme, which is a function of turnover rate (k_{cat}) and the enzyme
114 concentration. Thus, we can simulate the minimum protein levels which sustain the metabolic

115 state, i.e., the proteome-constrained metabolic state. This means that the proteome composition
116 in pcSecYeast is not a fixed amount of average amino acid compositions as in the default GEMs,
117 but a dynamic changing composition of enzymes which reflects the cell state at a certain
118 condition. Thus, the model enables simulation of resource allocations in the cell under different
119 conditions, such as how the cell would balance recombinant protein with native secretory
120 proteins in the recombinant protein production and how the cell would optimize its enzyme
121 profile among various environmental conditions.

122

123 **Secretory cost initiates the switch of hexose transporters**

124 Transporters are one important group of proteins that pass through the secretory pathway. Yeast
125 has multiple hexose transporters with diverse kinetics, which are expressed at different levels
126 under different extracellular glucose concentrations¹⁹. To investigate how the model can
127 simulate the expression and processing of glucose transporters, we utilized the model to
128 simulate yeast growth under different glucose concentrations (Methods). As a result, the model
129 captured the metabolic shift referred as the Crabtree effect, i.e., the production of ethanol at
130 high specific growth rates (Fig. 2a). Furthermore, the model correctly predicted a switch from
131 the predominant use of the high-affinity glucose transporter (Hxt7) to low-affinity glucose
132 transporters (Hxt3 and Hxt1) at high glucose concentrations (Fig. 2b), which is consistent with
133 the experimental observation that *HXT3* and *HXT1* genes are only expressed at high specific
134 growth rates¹⁹. This is explained by the difference in kinetics of the different sugar transporters,
135 i.e., k_{cat} and K_M , and therefore the secretory cost for synthesizing and processing glucose
136 transporters that can support a given glucose uptake flux. Thus, at low specific growth rates
137 where there is a low glucose uptake rate, the cells express a high-affinity transporter with a low
138 k_{cat} in a small amount, but to support a high glucose uptake rate it is necessary to express a large
139 amount of glucose transporters, then the low-affinity transporters with high k_{cat} values are

140 preferred. This is illustrated by eq. 1, which specifies the secretory cost for a glucose transporter
141 to sustain a given glucose uptake rate can be calculated as the ‘unit secretory cost’ multiplied
142 by the abundance. The protein abundance of the transporter $[E_i]$ is determined by the glucose
143 uptake rate V_{glc} , K_M and extracellular glucose concentration $[S]$ according to the Michaelis-
144 Menten equation. The ‘unit secretory cost’ is defined as the cost required for translation,
145 modification, and secretion of one mol specific protein, which can be predicted by pcSecYeast
146 (Methods). We predicted the ‘unit secretory costs’ for all native secretory proteins in *S.*
147 *cerevisiae* (Supplementary Table 3) and found that Hxt1 and Hxt3 have a smaller ‘unit
148 secretory cost’ compared with Hxt7, suggesting that synthesizing one mol Hxt1 and Hxt3
149 would pose less energy burden on the cell. This is partly because Hxt1 has fewer N-
150 glycosylation modification sites than Hxt7 (Supplementary Table 4). Combining with the
151 glucose uptake rate, extracellular glucose concentration, k_{cat} , and K_M , we can calculate the
152 secretory cost for each glucose transporter from the eq.1 (Fig. 2c). The result suggests that with
153 an increase in the glucose concentration, utilization of Hxt1 and Hxt3 would gradually gain the
154 advantage over Hxt7 (Fig. 2c). Parameter sensitivity analysis of Hxt1 showed that even if we
155 set the same k_{cat} for Hxt1 and Hxt7, Hxt1 would still be favorable for glucose uptake in the
156 model simulation at maximum growth rate (Supplementary Figure 1). This demonstrates that
157 the contribution of the low ‘unit secretory cost’ of Hxt1 is critical. Our model hereby predicts
158 that the switch of different affinity glucose transporter is a resource optimization strategy of
159 the cell to adapt to limited resources.

160
$$\text{Secretory cost}_i = \text{unit secretory cost}_i * [E_i] = \text{unit secretory cost}_i * \frac{V_{glc}}{k_{cat,i} * \frac{[S]}{[S] + K_{M,i}}} \quad \text{eq. 1}$$

161

162 **Yeast suppresses expression of high-cost secretory proteins under secretion pressure**

163 The protein secretory pathway is concurrently processing hundreds of proteins that compete
164 for limited resources such as energy, precursors, and components of the secretory machinery.

165 It has been reported that recombinant mammalian cells repress the expression of native
166 energetically expensive secretory proteins to save limited resources for growth and
167 recombinant protein production¹³. With our proteome allocation model of the secretory
168 pathway, we can perform not only the same calculation of the secretory costs of all 497 native
169 secretory and cell membrane proteins as done for mammalian cells¹³ (denoted as ‘direct cost’
170 in the Supplementary Figure 2a) but also a more accurate analysis of the costs including the
171 associated costs for corresponding shares of catalyzing enzymes and secretory machineries
172 required for processing the protein besides the cost for itself (‘unit secretory cost’ in
173 Supplementary Figure 2a). By correlating ‘unit secretory cost’ with ‘direct cost’, we found that
174 the ‘unit secretory cost’ calculated in pcSecYeast is overall 3.8-fold higher compared with the
175 ‘direct cost’ (Supplementary Figure 2a). Outliers in the correlation of these two kinds of cost
176 calculation are mainly caused by the unusual protein features such as the 52 N-glycosylation
177 sites annotated for the protein RAX2 or long amino acid sequences for large proteins TOR1
178 and TOR2 (Supplementary Figure 2a). To evaluate if there is reduced expression of the proteins
179 that are costly to process by the secretory pathway as observed in mammalian cells, we
180 correlated the calculated ‘unit secretory costs’ with the mRNA levels of 497 native secretory
181 proteins for three strains with different levels of recombinant α -amylase production that were
182 characterized in a recent study²⁰. We observed a significant negative correlation (P value < 1e-
183 8) between unit secretory costs and mRNA levels of native secretory proteins in all three strains
184 (Supplementary Figure 2b-c), suggesting that the cells suppress the expression of proteins that
185 are expansive to secrete when the secretory pathway is under pressure to process a recombinant
186 protein. Moreover, we found that the negative correlations are stronger in the strains with
187 higher α -amylase production levels (MH34 and B184) compared with that in the strain with a
188 lower α -amylase production level (AAC) (Supplementary Figure 2c, P value = 0.004).
189 Therefore, the suppression level for costly native secretory proteins depends on the

190 recombinant protein production levels, suggesting that the yeast cells respond accordingly to
191 the level of secretion stress.

192

193 **Misfolded protein slows maximum growth**

194 Protein synthesis and secretion is an error-prone process. Mutation in the sequence, errors
195 during the synthesis or environmental insults cause the newly synthesized protein to misfold²¹.
196 Misfolded proteins are prioritized to be eliminated rapidly by the ERAD pathway but may
197 retain and accumulate in the ER, and could trigger cell stress (Fig. 3a)²²⁻²⁴. Here, we used our
198 model to simulate the ER tolerance to misfolded proteins. We expanded pcSecYeast to include
199 the production of vacuolar carboxypeptidase Y (YMR297W, CPY), since CPY and its derived
200 misfolded form CPY* are processed in the secretory pathway, and widely used in the
201 elucidation of the mechanisms of ER quality control and ERAD of misfolded proteins²⁵. By
202 modifying misfolding ratio parameter in the model, we can simulate the misfolding levels of
203 CPY. A misfolding ratio of 1 means that all the CPY protein molecules are misfolded and
204 cannot be targeted to the Golgi for further processing as the reported misfolded form CPY* in
205 literature²⁶.

206

207 Here, we used the maximum growth rate reduction to indicate the fitness cost for CPY going
208 through different routes: 1) all correctly folded and targeted to the vacuole without misfolding;
209 2) misfolded in different ratios and some targeted for ERAD; 3) all of them misfolded, retained
210 in the ER at different times. Our simulations showed that misfolding imposes more fitness cost
211 compared with correct folding; that retention imposes more fitness cost compared with ERAD;
212 and that retention in the ER for a long time would also impose more fitness cost. We predicted
213 that there is about 1.9% maximum specific growth reduction when expressing 0.46 mg native
214 CPY without misfolding (0.46 mg representing 0.1% of the total proteome, Fig. 3b), which is

215 comparable to the measurement for expression of a cytosol wildtype Yellow Fluorescent
216 Protein (YFP) where a 1.4% growth reduction was observed for expressing YFP at the same
217 abundance²⁷. Compared with cytosolic YFP, CPY requires extra energy and allocation of
218 resources in the secretory pathway, and this can explain the slightly higher predicted growth
219 reduction for expressing CPY. The growth reduction for expressing CPY proteins all in
220 misfolded form is 2.2%-3.5% (Fig. 3b), which is also comparable with the measurement of
221 expressing the mostly misfolded cytosolic YFP at the same level (up to 3.2% growth
222 reduction)²⁷. The growth reduction measured for YFP in the literature is a combination of
223 fitness cost caused by the misfolding itself and unfolded protein response in the cytosol (UPR-
224 cyto) triggered by the accumulation of misfolded proteins. In the model simulations, we only
225 considered the fitness cost for misfolding and degradation of CPY. This also suggests that ER
226 misfolded protein imposes more fitness cost compared with cytosolic misfolded protein when
227 they are expressed at the same level. If the misfolded proteins are degraded by ERAD and the
228 proteasome, then amino acids and modification precursors such as glycans can be recycled.
229 However, if misfolded proteins are retained in the ER, they would compete with unfolded
230 protein for limited ER quality control proteins especially Kar2 and Pdi1²⁷, which would further
231 increase the ER burden. We investigated the simulated various protein levels and found that
232 the levels of Kar2 and Pdi1 increase significantly when CPY is retained (Supplementary Figure
233 3), which suggests that the retained protein would drain Kar2 and Pdi1 and therefore compete
234 with native proteins processed in the secretory pathway. In addition, we evaluated the ER redox
235 stress by comparing the transport of glutathione (GSH) and glutathione disulfide (GSSG) and
236 found that the flux of GSSG export from the ER is significantly higher when misfolded protein
237 is retained in the ER (Supplementary Figure 4), suggesting the higher redox unbalance in the
238 ER at this state.

239

240 Furthermore, we performed analysis to identify parameters leading to misfolded protein
241 accumulation in ER (Supplementary Figure 5a-d, Fig. 3c) and found that when retro-
242 translocation enzymes (Sec61, Doa10 and Hrd10) are constrained, the excessive misfolded
243 CPY would be retained and accumulated in ER if CPY is expressed at high levels, causing a
244 steeper decrease in the specific growth rate (Fig. 3c). Other parameters such as ERAD capacity,
245 ER volume, ER membrane space and secretory machinery capacity were not able to show the
246 retention and accumulation phenotype when constrained in the model (Supplementary Figure
247 5a-d). We found that the retention of the misfolded protein phenotype is alleviated when
248 removing the constraint of retro-translocation enzymes, suggesting the importance of the retro-
249 translocation towards handling of misfolded proteins (Supplementary Figure 5e). Therefore,
250 we can use the pcSecYeast model with the extra constraint of retro-translocation enzymes to
251 mimic state of misfolded protein accumulation in ER (Fig. 3c). The plateau in the CPY
252 degradation rate demonstrates that there is a maximum capacity of the ERAD pathway and
253 therefore also a tolerance limit for misfolded CPY.

254

255 **Protein features impact recombinant protein production**

256 Different secretory proteins utilize different components of the secretory pathway to be
257 processed based on their amino acid composition and PTMs. To identify the factors that
258 influence secreted protein levels, we expanded pcSecYeast to describe the production of eight
259 different recombinant proteins by adding the corresponding recombinant protein production
260 and secretion reactions. These eight recombinant proteins differ in protein size and PTMs
261 (detailed information in Supplementary Table 5). Note that hemoglobin folds with heme as a
262 prosthetic group, which requires balancing of heme biosynthesis and its recombinant protein
263 production (Fig. 4a)²⁸. We generated eight specific models to simulate the maximum
264 recombinant protein secretion under various growth rates. We observed that the maximum

265 production rates were achieved at medium-specific growth rates for all the studied recombinant
266 proteins (Fig. 4b), consistent with previous reports of bell shape kinetics for recombinant
267 protein production in *S. cerevisiae* and *Pichia pastoris*²⁹⁻³¹. Insulin precursor (IP) and α -
268 amylase production were reported as growth dependent³², but only for the investigation of a
269 more narrow interval of specific growth rates (0.05-0.2 h⁻¹), which is consistent with the model
270 simulations. At high specific growth rates, there is a clear drop of production rate for all
271 recombinant proteins (Fig. 4b), which clearly shows that at high specific growth rates the cell
272 gives priority of its limited capacity of the secretory pathway to native proteins. It is important
273 to note that a default GEM can only describe a linear negative correlation of recombinant
274 protein production with increasing specific growth rates (Supplementary Figure 6).
275 Furthermore, the fact that the simulated α -amylase production by the default GEM is around
276 1,000 times higher than the experimental values³³ even with the measured glucose uptake rate
277 as the constraint highlights the huge gaps in default GEM for recombinant protein simulation
278 (Supplementary Figure 6).

279
280 Furthermore, we investigated which protein feature influences recombinant protein production
281 the most. We found that PTMs have an average higher impact on recombinant protein
282 production compared with amino acid composition (Fig. 4c, Supplementary Table 6). Among
283 all simulated features, O-glycosylation and N-glycosylation have larger negative impacts on
284 recombinant protein production, which suggests that having more glycosylation sites would
285 cause more burden for the cell (Fig. 4c).

286
287 **FSEOF identifies overexpression targets for recombinant protein overproduction**
288 Identifying engineering targets is crucial to improve the specific recombinant protein
289 production rate. Predicting gene overexpression targets is more difficult and complex than

290 predicting gene deletion targets since amplification of gene expression does not always
291 increase the metabolic fluxes³⁴. To fully validate the predictive power of pcSecYeast, we used
292 the generated recombinant protein-specific models to predict overexpression targets for
293 increasing the recombinant protein production. Target prediction was performed using adapted
294 Flux Scanning based on Enforced Objective Function (FSEOF)³⁴, where the model was
295 constrained with a stepwise decrease in the specific growth rate, and recombinant protein
296 production was maximized. The original FSEOF method selects fluxes that increase with the
297 enforcement of recombinant protein production in the GEM simulations and identifies those
298 reactions and associated genes as overexpression targets. Since we can compute the protein
299 levels from the pcSecYeast simulations, we can directly select proteins, as overexpression
300 targets, that having increased levels result in increased recombinant protein production (Fig.
301 5a & Supplementary Dataset). The predicted overexpression targets were ranked for priority
302 and compared among the eight recombinant proteins (Fig. 5b&c). We predicted around 70
303 overexpression targets for each of the eight recombinant proteins with the majority of them
304 (70%) being in the secretory pathway and 30% in the metabolic part of the model (Fig. 5b&c).
305 Those targets are more likely shared by recombinant proteins when they have the same PTMs.
306 For example, targets in the O-glycosylation pathway are shared by O-glycosylated human-
307 transferrin (HTF) and human granulocyte colony stimulating factor (hGCSF) (Fig. 5c).
308 Surprisingly, even though insulin precursor (IP) contains no N-glycosylation site, some
309 predicted overexpression targets are related to N-glycosylation. This is explained by the fact
310 that N-glycosylation is required for some secretory machinery proteins such as Pdi1 which
311 catalyzes disulfide bond formation in IP production. By removing the disulfide bonds in IP, we
312 found that those N-glycosylation related genes were not predicted as targets (Supplementary
313 Dataset). There are 21 predicted targets shared by all the eight proteins, which are mainly
314 involved in sorting and ER-Golgi transport, suggesting the general importance of these

315 processes in protein secretion (Fig. 5c). We also showed that hemoglobin is the only
316 recombinant protein with multiple unique targets in metabolism, especially for heme
317 production, which demonstrates that metabolism is equally important along with the secretory
318 pathway for improving hemoglobin production. For all the other recombinant proteins, the
319 secretory pathway is more limiting according to the prediction.

320

321 **Experimental validation for predicted α -amylase targets**

322 We next validated the predicted overexpression targets for improving α -amylase production.
323 We divided the predicted targets for α -amylase into different groups by their functions and
324 chose 17 targets to validate from all subsystems. There were 14 targets in the secretory pathway
325 spanned in translocation, folding, protein quality control, and sorting subsystems, and three
326 targets in the metabolic part of the model, which are related to N-glycan synthesis and amino
327 acid synthesis (Fig. 6a).

328

329 We next sought to test if overexpression of the predicted secretory targets individually could
330 improve the α -amylase production rate. Among them, the glucosidase Cwh41²⁰, COPII-coated
331 vesicles proteins Erv29³⁵, Sec16³⁶ and protein disulfide isomerase Pdi1^{35,37} have already been
332 validated, i.e., overexpression of these proteins can improve α -amylase production and
333 secretion.

334

335 As for the remaining ten secretory targets, we performed individual gene overexpression
336 experiments for validation, and found that individual overexpression of *SEC65*, *MNS1*, *SWA2*,
337 *ERV2* and *ERO1* significantly increase the α -amylase production rates by different levels (1.32
338 to 2.2-fold) (Fig. 6b, Supplementary Table 7). Sec65 is one out of six subunits of the signal
339 recognition particle (SRP), which is involved in protein targeting to the ER³⁸. Overexpression

340 of *SEC65* would be anticipated to increase the SRP-dependent co-translational translocation,
341 which would benefit α -amylase translocation from cytosol to ER. *Mns1* is involved in folding
342 and ERAD, which is responsible for the removal of one mannose residue from a glycosylated
343 protein. α -amylase contains multiple N-glycosylation sites, and therefore would be benefited
344 from *MNS1* overexpression from facilitated proper folding. *ERO1* encodes a thiol oxidase
345 required for oxidative protein folding in the ER and provides Pdi1 with oxidizing equivalents
346 for disulfide bond formation³⁹. We observed that overexpression of *ERO1* also has a positive
347 effect on α -amylase production (2-fold). Besides, overexpressing *ERO1* was able to enhance
348 disulfide-bonded human serum albumin (HSA) secretion in *Kluyveromyces lactis*⁴⁰ and single-
349 chain T-cell receptors (scTCR) and single-chain antibodies (scFv) secretion in *S. cerevisiae*⁴¹.
350 Therefore, *ERO1* might be considered as a generic target for secretory protein production.
351 *SWA2* is important for vacuole sorting, here we also show that by overexpressing this protein,
352 there is enhancement towards α -amylase production rate (Fig. 6b).

353

354 From three metabolic gene targets, only overexpression of *CYS4* led to a significant increase
355 (2.14-fold) of α -amylase productivity (Fig. 6c). Cys4 (Cystathionine beta-synthase) is involved
356 in cysteine synthesis. Comparing the amino acid composition of α -amylase with the average
357 amino acid composition of *S. cerevisiae*, we identified that there is a 9-fold enrichment for
358 cysteine in α -amylase than in the yeast proteome in general (Supplementary Table 8), which
359 explains why overexpression of *CYS4* drastically increases the α -amylase production rate. The
360 other two metabolic targets are *Gna1* (Glucosamine-6-phosphate acetyltransferase) and *Pcm1*
361 (PhosphoAcetylglucosamine mutase), which are related to the synthesis of N-glycosylation
362 precursor N-linked oligosaccharides. Overexpression of those two genes does not have a
363 significant increase in the α -amylase production rates, which suggests that N-glycosylation
364 precursor synthesis may not be the bottleneck for α -amylase production.

365

366 In total, for all the chosen metabolic targets, 1/3 were validated as positive targets, while for
367 identified targets in the secretory pathway, the accuracy was 9/14. Besides the higher accuracy
368 in the secretory targets compared with metabolic targets, FSEOF gives more targets in the
369 secretory pathway even though the fraction of metabolic enzymes in the model is much more
370 than the secretory component. This may give us a hint that for recombinant protein secretion,
371 the secretory pathway is more likely to be the bottleneck, and these results also demonstrate
372 the value of the presented mathematical model for dissecting and systematic analysis of the
373 role of complex protein secretory pathway in recombinant protein production and strain
374 development.

375

376 **Discussion**

377 In this study, we presented a genome-scale model of yeast that integrates metabolism, protein
378 translation, protein post-translational-modification, ERAD and sorting processes. The model
379 enables the calculation of ‘unit secretory cost’ for any protein that is processed by the secretory
380 pathway. We have shown that the model can correctly predict the switch from the use of high-
381 affinity to low-affinity glucose transporter as a result of resource optimization (Fig. 2). With
382 the secretory cost calculation and reported transcriptome data, we also detected that upon
383 expression of a recombinant protein which is processed by secretory pathway, yeast optimizes
384 the limited secretory capacity by down-regulating expression of secretory proteins that are
385 expensive to process (Supplementary Figure 2). These two simulations suggest that the cell
386 allocates its limited resources by an optimization strategy, which can be accomplished through
387 regulatory networks that have been tuned through the long evolutionary of yeast upon
388 extracellular and intracellular environments⁴²⁻⁴⁵.

389

390 We next used the model to simulate protein misfolding and retention of CPY and hereby
391 identified that there is a certain ER tolerance to the misfolded protein (Fig. 3). Parameter
392 sensitivity analysis showed the importance of retro-translocation in ER stress. This suggests
393 that increasing the level of retro-translocation may alleviate the ER stress caused by the
394 retention of misfolded protein. Since quality control and ERAD pathways are highly conserved
395 between yeast and higher eukaryotes, this may indicate targets for treating a number of human
396 diseases related to misfolded protein accumulation such as Alzheimer's and Parkinson's⁴⁶⁻⁴⁸,
397 which has been recently reported as therapeutic interventions^{49,50}.

398

399 Rational design for recombinant protein production is a crucial task due to the importance of
400 recombinant protein market share and importance, but a very difficult task due to the
401 complexity of the secretory pathway. pcSecYeast serves as a platform for the rational design
402 of system-level engineering targets for recombinant protein production (Fig. 5 & Fig. 6).
403 Besides the experimentally validated the predicted engineering targets for the production of α -
404 amylase (Fig. 6), we also noticed the consistence of the predicted targets for other recombinant
405 proteins with literature reports, such as Hem2, Hem3 and Hem12 for hemoglobin
406 production^{28,51}. We also confirmed that even though Hem4 is also in the heme synthesis
407 pathway, this is not a rate-limiting step in the heme synthesis⁵¹. According to the priority rank
408 from the model prediction, Hem4 has lower priority compared with other proteins such as
409 Hem2 and Hem3. In addition, for targets that were predicted with non-significant impact when
410 overexpressed, we found previous studies to report similar results. For example,
411 overexpressing vacuolar sorting protein Sec15 and Sec4 has been shown to have no positive
412 impact on α -amylase production³⁶ (Supplementary Dataset).

413

414 To be noted here, our model captures most of the secretory processes, but currently exclude
415 some processes such as Endosome and Golgi-associated degradation pathway (EGAD)⁵², the
416 unfolded protein response and other signaling and regulatory networks⁵³. Therefore, including
417 those processes could potentially increase the prediction accuracy in particular when it comes
418 to the dynamic aspects of protein secretion. Besides, we simplified some processes to perform
419 the simulation, which would also introduce some uncertainties, for example, different types of
420 glycans and glycoforms can exist for N-glycosylation⁵⁴. However, modifications to incorporate
421 these processes in the model will be relatively easy in case there is a need to study specific
422 proteins where these processes are important.

423

424 In conclusion, we present pcSecYeast as a first genome-scale model which allows systematic
425 modeling of the protein secretory pathway and its interaction with metabolism and gene
426 expression in yeast. This model enables the first time to identify engineering targets for
427 recombinant protein production that can be validated experimentally, and it helps to test the
428 various hypothesis *in silico* for specific protein overexpression. With this new advancement,
429 we expect that this kind of powerful genome-scale secretory model could also be developed
430 for other recombinant protein producing cells, which will entail a fully *in silico* hypothesis
431 generation and identification of cell engineering targets for strain development.

432

433 **Methods and materials**

434 **Construction of pcSecYeast and constraint-based analysis**

435 We reconstructed pcSecYeast, which accounts for cell metabolism and protein synthesis
436 processes. Detailed instruction can be found in Supplementary Methods. The reconstruction is
437 based on the latest yeast GEM, Yeast8.3.5¹⁵. Firstly, we refined all protein PTM precursors
438 synthesis/secretion reactions in the model, such as dolichol synthesis for N-glycosylation, GPI

439 anchor synthesis for GPI modification (Supplementary Table 1). Missing reactions in those
440 precursor synthesis pathways with corresponding GPRs and necessary transport reactions were
441 added into the model for gap-filling.

442

443 We split all reversible enzymatic reactions into forward and reverse reactions, and also split
444 reactions catalyzed by isozymes into multiple identical reactions with various isozymes.
445 Besides that, we formulated protein synthesis reactions for all proteins in the model. To
446 facilitate the reconstruction process, the protein synthesis and secretion were divided into 12
447 different processes: protein translation, protein translocation, ER N-glycosylation, disulfide
448 bond formation, ER O-glycosylation, GPI anchor transfer, COPII anterograde transport, COPI
449 retrograde transport, Golgi N-glycosylation, Golgi O-glycosylation, versatile vesicular
450 transport to destination compartment. We formulated these processes into 123 template
451 reactions. Using the template reactions, we formulated protein synthesis reactions for all
452 proteins in the model. Protein-specific information matrix (PSIM) and localization information
453 for all proteins were downloaded from UniPort⁵⁵ and the SGD⁵⁶ database (Supplementary
454 Table 4). To represent abundance of unpresented proteins that go through ER, we added a
455 dummy ER protein in the model which uses the same composition as the biomass protein, and
456 the PTM for dummy ER protein is calculated as the mean protein modification for proteins that
457 go through ER using the protein abundance from PaxDb¹⁸ and PSIM information. Protein in
458 the biomass was used to represent protein abundance for proteins excluded in the model. The
459 ratio is rescaled from 1 in original GEM Yeast8 to a lower value 0.3, which was estimated
460 based on the fact that all proteins in the model taking up roughly 70% of the total proteome
461 according to the PaxDb database, which accounts for 4.6% unmodeled dummy ER protein.
462 Detailed model construction and constraints coupling can be found in Supplementary Methods.

463

464 **Model simulation for growth using glucose concentration as the constraint**

465 Since the specific growth rate is integrated into the coupling constraints, we adopted a binary
466 search method when we simulated growth. For each specific growth rate, we sampled the
467 glucose concentration until the minimal glucose concentration that can sustain the growth was
468 found. The glucose concentration was used to calculate import rate using the Michaelis–
469 Menten equation where K_M and maximal k_{cat} of glucose transporters were collected from the
470 literature^{57–59}. As for the glucose transporters which does not have any k_{cat} values, the V_{max} data
471 was used to convert to k_{cat} values with the assumption that the expression levels are comparable
472 in the collected dataset since they expressed transporter constructs under constitutive promoters
473 in a yeast glucose-transporter null-mutant^{58,60,61}. The model was set with minimal media and
474 the dummy protein production was set as the objective. Besides all mentioned basic constraints
475 in the Supplementary Methods, we added constraints on the fraction of ER membrane proteins
476 and ER volume to avoid the possibility of an unrealistic ER volume. Due to the requirement of
477 the linear programming (LP) solver (SoPlex), all constraints were written in a LP file for
478 solving in each simulation. This method for adding constraints is used in all following
479 simulations unless otherwise stated.

480

481 **Estimation of ‘unit secretory cost’ and ‘direct cost’ for secretory proteins**

482 ‘Unit secretory cost’ of synthesizing about ~500 proteins that localize to the cell membrane or
483 are secreted were estimated using the model. At a specific growth rate of 0.1 h⁻¹, we used
484 pcSecYeast to produce a sequential small fraction production of those proteins, respectively.
485 The glucose uptake rate minimization was set as the objective. Using the simulated glucose
486 uptake rates and the production rates, we could fit the linear equation to get the slope which is
487 the ‘unit secretory cost’ for each protein. This cost stands for the energetic cost for synthesizing

488 the protein, PTM, sorting and even the related cost for the corresponding fraction of the
489 catalytic machineries in these processes.

490

491 ‘Direct cost’ accounts for the energetic cost for synthesizing the amino acids, bounded glycan
492 precursors and enzyme bounded energetic molecules, which was calculated with only the
493 default GEM constraint including the mass balance and reaction bound, without any enzyme-
494 related constraint. Since this simulation only require any extra constraint, we used the optimize
495 function and default solver in COBRA toolbox rather than the SoPlex and LP file method.

496

497 **Analysis of gene expression versus protein ‘unit secretory cost’**

498 Absolute transcriptome data for three strains (AAC, MH34 and B184) with different α -amylase
499 production levels were used for the correlation analysis (Supplementary Table 9)²⁰. Pearson
500 correlation coefficient was used to assess the correlation of ‘unit secretory cost’ with the
501 expression levels.

502

503 **Simulation of protein misfolding and accumulation**

504 We used CPY as an example to show how the model responds towards misfolded protein
505 production. CPY was expressed in the model with different levels from the native abundance
506 towards its 25 fold as reported in the literature²⁶ by constraining its translation flux. In order to
507 identify the factor causing the accumulation of misfolded protein in ER, we performed the
508 parameter sensitivity analysis for ERAD capacity, ER volume, ER membrane space, total
509 secretory machinery capacity and retro-translocation enzyme abundance, respectively. Since
510 the membrane space and the volume of proteins are positively correlated with the protein
511 weight⁶², ER membrane space and ER volume constraints can be converted to proteome
512 abundance constraints, which can be calculated from the proteome data. Therefore, all these

513 parameters can be constrained by an upper limit on the total abundance of the corresponding
514 proteins. In the meanwhile, we changed the misfolding ratio constraint of CPY by coupling the
515 flux of misfolding reaction and the translation reaction of CPY. When misfolded protein was
516 retained in the ER, we used the multiple round reactions of binding Kar2 and Pdi1 to reflect its
517 occupancy of Kar1 and Pdi1 as reported^{26,39}. The coefficient of this reaction was used to
518 represent the time for the retention. For the combination of CPY expression levels and
519 misfolding ratio, we used the binary search as mentioned above to search for the maximum
520 specific growth rate. The accumulated CPY rate was obtained from the simulated flux under
521 the found maximum growth rate condition. To reflect the CPY production as close to the *in*
522 *vivo* as possible, we adjusted the N-glycans attached to the N-glycosylation sites of CPY as
523 reported⁶³.

524

525 **Expansion of pcSecYeast to recombinant protein specific models**

526 We expanded pcSecYeast to represent the recombinant protein production by adding the
527 production and secretion reactions using the same template reactions for the native proteins.
528 The PTMs, amino acid sequence and leader sequence were collected from the literature.
529 Detailed information for those proteins and the literature reference can be found in
530 Supplementary Table 5.

531

532 **Model simulation for recombinant protein production**

533 To simulate recombinant protein production, the model was constrained with a certain specific
534 growth rate, and then the protein production was maximized. SD-2×SCAA medium was used
535 in the simulations³³. All constraints mentioned were added when writing the LP file for solving
536 by SoPlex.

537

538 **Protein feature importance analysis**

539 Machine learning was integrated to score the importance of factors. In this study, various
540 factors (PTMs, amino acid compositions) were used as the input features and the maximum
541 recombinant protein production rate was used as the target label. We split the created dataset
542 into a training dataset and testing dataset at the ratio of 80% and 20%, respectively. A random
543 forest regressor with 10 estimators was used to train the model. Feature importance scores from
544 the random forest were computed by SHAP (SHapley Additive exPlanations)⁶⁴.

545

546 **Overexpression target prediction for recombinant protein overproduction**

547 Identification of overexpression targets for improving recombinant protein production was
548 performed using the concept of FSEOF³⁴ but to identify the proteins with increased expression
549 during the enforcement of recombinant protein production. To be noted here, original FSEOF
550 searches for the candidate fluxes to be amplified through scanning for those fluxes that increase
551 with enforced product formation flux under the objective function of maximizing biomass
552 formation flux, which is under the assumption that there is a tradeoff between growth and target
553 production. pcSecYeast is much more complex than the default GEM and can better represent
554 the cell state which the recombinant protein production does not always increase with the
555 decrease of growth. Besides that, there is metabolic state switch of the fermentation ratio for
556 energy production. Therefore, to eliminate growth and metabolic state influence, we selected
557 a small window (0.25h^{-1} - 0.3 h^{-1}) for this analysis. At each growth rate in this window, we
558 maximized the recombinant protein production rate without any constraint on exchange rates.
559 Proteins with amplified expression accompanied increased recombinant protein production
560 were selected as initial overexpression targets. Then, we used several cutoffs to rank the targets
561 further: 1) for proteins that always increase with the enforcement of the recombinant protein
562 production with a Pearson correlation score over 0.9, the priority score was set to 1; 2) for

563 proteins with priority score 1 and showed 1.3-fold change of the maximum recombinant protein
564 production state towards the maximum specific growth rate, the priority score was set to 2; 3)
565 for proteins with priority score 2 and showed a comparable difference towards the reference
566 PaxDb abundance, which represents the reservation state of the protein abundance in the cell,
567 the priority score was set to 3; 4) for proteins with priority score 3 and were neither subunits
568 of complexes nor contain homologs, the priority score was set to 4. Targets with higher priority
569 scores should be prioritized. Proteins with the priority score 0 in the result indicate those
570 proteins are not identified as overexpression targets. Based on the criteria, we ranked the targets
571 and generated an annotated table as result for all eight recombinant proteins (Supplementary
572 Dataset). For plotting the common targets shared by all eight recombinant proteins analyzed in
573 this study, we only chose the priority score of 3 and 4 for the analysis.

574

575 **Experimental validation**

576 *Strains and plasmids*

577 All strains and plasmids used in this study are listed in Supplementary Table 10. Plasmids for
578 gene overexpression were constructed by insertion of the gene fragment, which was amplified
579 from the yeast genome then assembled with the expression vector pSPGM1 through Gibson
580 assembly method. The standard LiAc/SS DNA/PEG method was used for yeast transformation.

581

582 *Media and culture conditions*

583 For strain constructions, yeast strains were grown in SD-URA medium at 30 °C according to
584 the auxotrophy of the cells. For α -amylase production in shake flasks, yeast strains were
585 cultured for 96 h at 200 rpm, 30 °C with an initial OD₆₀₀ of 0.05 in the SD-2×SCAA medium
586 containing 20 g/l glucose, 6.9 g/l yeast nitrogen base without amino acids, 190 mg/l Arg, 400
587 mg/l Asp, 1,260 mg/l Glu, 130 mg/l Gly, 140 mg/l His, 290 mg/l Ile, 400 mg/l Leu, 440 mg/l

588 Lys, 108 mg/l Met, 200 mg/l Phe, 220 mg/l Thr, 40 mg/l Trp, 52 mg/l Tyr, 380 mg/l Val, 1 g/l

589 BSA, 5.4 g/l Na₂HPO₄ and 8.56 g/l NaH₂PO₄·H₂O (pH=6.0)³³.

590

591 *α-Amylase quantification*

592 The α -amylase activity was measured using the α -amylase assay kit (Megazyme) with a

593 commercial α -amylase from *Aspergillus oryzae* (Sigma-Aldrich) as the standard. Samples were

594 centrifuged for 10 min at 15,000 g, 4 °C and the supernatant was used for extracellular α -

595 amylase quantification.

596

597 **Code availability**

598 To facilitate further usage, we provide all codes and detailed instruction in GitHub repository:

599 <https://github.com/SysBioChalmers/pcSecYeast>. All codes to reproduce figures were also

600 included in the GitHub repository.

601

602 **Data availability**

603 All data used in this study are included in supplementary files and GitHub repository.

604

605 **Author contribution**

606 F.L. and J.N. designed the research. F.L. performed the research. Y.C. contributed to the model

607 simulation. Q.Q. and Y.W. performed the experimental validation. L.Y. contributed to the

608 protein feature importance analysis. I.EE. contributed to the model reconstruction. F.L., Y.C.,

609 Q.Q., Y.W., A.F., I.E., E.J.K. and J.N. analyzed the data. F.L., Y.C., E.J.K. and J.N. wrote the

610 paper. All authors approved the final paper.

611

612 **Acknowledgement**

613 This project has received funding from the Novo Nordisk Foundation (grant no.
614 NNF10CC1016517), VINNOVA center CellNova (2017-02105), the Knut and Alice
615 Wallenberg Foundation, and the European Union's Horizon 2020 research and innovation
616 program with projects DD-DeCaF (grant no. 686070). The computations were enabled by
617 resources provided by the Swedish National Infrastructure for Computing (SNIC) at Chalmers
618 Centre for Computational Science and Engineering (C3SE) and High Performance Computing
619 Center North (HPC2N), partially funded by the Swedish Research Council through grant
620 agreement no. 2018-05973.

621

622 Competing interests

623 The authors declare no competing interests.

624

625 References:

- 626 1. Barlowe, C. K. & Miller, E. A. Secretory protein biogenesis and traffic in the early
627 secretory pathway. *Genetics* **193**, 383–410 (2013).
- 628 2. Feizi, A., Österlund, T., Petranovic, D., Bordel, S. & Nielsen, J. Genome-Scale
629 Modeling of the Protein Secretory Machinery in Yeast. *PLoS One* **8**, e63284 (2013).
- 630 3. Wang, G., Huang, M. & Nielsen, J. Exploring the potential of *Saccharomyces*
631 *cerevisiae* for biopharmaceutical protein production. *Curr. Opin. Biotechnol.* **48**, 77–
632 84 (2017).
- 633 4. Chen, X. *et al.* FMN reduces Amyloid- β toxicity in yeast by regulating redox status
634 and cellular metabolism. *Nat. Commun.* **11**, 867 (2020).
- 635 5. Coughlan, C. M. & Brodsky, J. L. Use of yeast as a model system to investigate
636 protein conformational diseases. *Mol. Biotechnol.* **30**, 171–180 (2005).
- 637 6. Hou, J., Tyo, K. E. J., Liu, Z., Petranovic, D. & Nielsen, J. Metabolic engineering of

638 recombinant protein secretion by *Saccharomyces cerevisiae*. *FEMS Yeast Res.* **12**,
639 491–510 (2012).

640 7. Sheng, J., Flick, H. & Feng, X. Systematic Optimization of Protein Secretory
641 Pathways in *Saccharomyces cerevisiae* to Increase Expression of Hepatitis B Small
642 Antigen. *Front. Microbiol.* **8**, 875 (2017).

643 8. Robson, G. D., van West, P. & Gadd, G. *Exploitation of fungi*. **26**, (Cambridge
644 University Press, 2007).

645 9. King, Z. A., Lloyd, C. J., Feist, A. M. & Palsson, B. O. Next-generation genome-scale
646 models for metabolic engineering. *Curr. Opin. Biotechnol.* **35**, 23–29 (2015).

647 10. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and
648 applications of genome-scale metabolic models. *Genome Biol.* **20**, 121 (2019).

649 11. Umaña, P. & Bailey, J. E. A mathematical model of N-linked glycoform biosynthesis.
650 *Biotechnol. Bioeng.* **55**, 890–908 (1997).

651 12. Krambeck, F. J. & Betenbaugh, M. J. A mathematical model of N-linked
652 glycosylation. *Biotechnol. Bioeng.* **92**, 711–728 (2005).

653 13. Gutierrez, J. M. *et al.* Genome-scale reconstructions of the mammalian secretory
654 pathway predict metabolic costs and limitations of protein secretion. *Nat. Commun.* **11**,
655 68 (2020).

656 14. Irani, Z. A., Kerkhoven, E. J., Shojaosadati, S. A. & Nielsen, J. Genome-scale
657 metabolic model of *Pichia pastoris* with native and humanized glycosylation of
658 recombinant proteins. *Biotechnol. Bioeng.* **113**, 961–969 (2016).

659 15. Lu, H. *et al.* A consensus *S. cerevisiae* metabolic model Yeast8 and its ecosystem for
660 comprehensively probing cellular metabolism. *Nat. Commun.* **10**, 1–13 (2019).

661 16. O'Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. Ø. Genome-
662 scale models of metabolism and gene expression extend and refine growth phenotype

663 prediction. *Mol. Syst. Biol.* **9**, 693 (2013).

664 17. Oftadeh, O. *et al.* A genome-scale metabolic model of *Saccharomyces cerevisiae* that
665 integrates expression constraints and reaction thermodynamics. *Nat. Commun.* **12**,
666 4790 (2021).

667 18. Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D. & von Mering, C. Version
668 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and
669 cell-lines. *Proteomics* **15**, 3163–3168 (2015).

670 19. Diderich, J. A. *et al.* Glucose uptake kinetics and transcription of HXT genes in
671 chemostat cultures of *Saccharomyces cerevisiae*. *J. Biol. Chem.* **274**, 15350–15359
672 (1999).

673 20. Qi, Q. *et al.* Different Routes of Protein Folding Contribute to Improved Protein
674 Production in *Saccharomyces cerevisiae*. *MBio* **11**, (2020).

675 21. Schubert, U. *et al.* Rapid degradation of a large fraction of newly synthesized proteins
676 by proteasomes. *Nature* **404**, 770–774 (2000).

677 22. Qi, L., Tsai, B. & Arvan, P. New Insights into the Physiological Role of Endoplasmic
678 Reticulum-Associated Degradation. *Trends Cell Biol.* **27**, 430–440 (2017).

679 23. Qian, S.-B., Princiotta, M. F., Bennink, J. R. & Yewdell, J. W. Characterization of
680 rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent
681 protein quality control. *J. Biol. Chem.* **281**, 392–400 (2006).

682 24. Glembotski, C. C. Endoplasmic reticulum stress in the heart. *Circ. Res.* **101**, 975–984
683 (2007).

684 25. Stolz, A. & Wolf, D. H. Use of CPY and its derivatives to study protein quality control
685 in various cell compartments. *Methods Mol. Biol.* **832**, 489–504 (2012).

686 26. Haynes, C. M., Titus, E. A. & Cooper, A. A. Degradation of misfolded proteins
687 prevents ER-derived oxidative stress and cell death. *Mol. Cell* **15**, 767–776 (2004).

688 27. Geiler-Samerotte, K. A. *et al.* Misfolded proteins impose a dosage-dependent fitness
689 cost and trigger a cytosolic unfolded protein response in yeast. *Proc. Natl. Acad. Sci.*
690 *U. S. A.* **108**, 680–685 (2011).

691 28. Ishchuk, O. P., Martínez, J. L. & Petranovic, D. Improving the Production of Cofactor-
692 Containing Proteins: Production of Human Hemoglobin in Yeast. *Methods Mol. Biol.*
693 **1923**, 243–264 (2019).

694 29. Verripsab, T., Duboc, P., Visser, C. & Sagt, C. From gene to product in yeast:
695 production of fungal cutinase. *Enzyme Microb. Technol.* **26**, 812–818 (2000).

696 30. Giuseppin, M. L., Almkerk, J. W., Heistek, J. C. & Verrips, C. T. Comparative study
697 on the production of guar alpha-galactosidase by *Saccharomyces cerevisiae* SU50B
698 and *Hansenula polymorpha* 8/2 in continuous cultures. *Appl. Environ. Microbiol.* **59**,
699 52–59 (1993).

700 31. Thomassen, Y. E., Verkleij, A. J., Boonstra, J. & Verrips, C. T. Specific production
701 rate of VHH antibody fragments by *Saccharomyces cerevisiae* is correlated with
702 growth rate, independent of nutrient limitation. *J. Biotechnol.* **118**, 270–277 (2005).

703 32. Liu, Z., Hou, J., Martínez, J. L., Petranovic, D. & Nielsen, J. Correlation of cell growth
704 and heterologous protein production by *Saccharomyces cerevisiae*. *Appl. Microbiol.*
705 *Biotechnol.* **97**, 8955–8962 (2013).

706 33. Huang, M., Bao, J., Hallström, B. M., Petranovic, D. & Nielsen, J. Efficient protein
707 production by yeast requires global tuning of metabolism. *Nat. Commun.* **8**, 1131
708 (2017).

709 34. Choi, H. S., Lee, S. Y., Kim, T. Y. & Woo, H. M. In silico identification of gene
710 amplification targets for improvement of lycopene production. *Appl. Environ.*
711 *Microbiol.* **76**, 3097–3105 (2010).

712 35. Huang, M., Wang, G., Qin, J., Petranovic, D. & Nielsen, J. Engineering the protein

713 secretory pathway of *Saccharomyces cerevisiae* enables improved protein production.

714 *Proc. Natl. Acad. Sci. U. S. A.* **115**, E11025–E11032 (2018).

715 36. Bao, J., Huang, M., Petranovic, D. & Nielsen, J. Moderate Expression of SEC16

716 Increases Protein Secretion by *Saccharomyces cerevisiae*. *Appl. Environ. Microbiol.*

717 **83**, (2017).

718 37. Tang, H. *et al.* Engineering protein folding and translocation improves heterologous

719 protein secretion in *Saccharomyces cerevisiae*. *Biotechnol. Bioeng.* **112**, 1872–1882

720 (2015).

721 38. Hann, B. C., Stirling, C. J. & Walter, P. SEC65 gene product is a subunit of the yeast

722 signal recognition particle required for its integrity. *Nature* **356**, 532–533 (1992).

723 39. Delic, M. *et al.* The secretory pathway: Exploring yeast diversity. *FEMS Microbiol.*

724 *Rev.* **37**, 872–914 (2013).

725 40. Lodi, T., Neglia, B. & Donnini, C. Secretion of human serum albumin by

726 *Kluyveromyces lactis* overexpressing K1PDI1 and K1ERO1. *Appl. Environ. Microbiol.*

727 **71**, 4359–4363 (2005).

728 41. Wentz, A. E. & Shusta, E. V. A novel high-throughput screen reveals yeast genes that

729 increase secretion of heterologous proteins. *Appl. Environ. Microbiol.* **73**, 1189–1198

730 (2007).

731 42. Teusink, B., Diderich, J. A., Westerhoff, H. V., van Dam, K. & Walsh, M. C.

732 Intracellular glucose concentration in derepressed yeast cells consuming glucose is

733 high enough to reduce the glucose transport rate by 50%. *J. Bacteriol.* **180**, 556–562

734 (1998).

735 43. Ozcan, S. & Johnston, M. Three different regulatory mechanisms enable yeast hexose

736 transporter (HXT) genes to be induced by different levels of glucose. *Mol. Cell. Biol.*

737 **15**, 1564–1572 (1995).

738 44. Gast, V. *et al.* The Yeast eIF2 Kinase Gcn2 Facilitates H(2)O(2)-Mediated Feedback
739 Inhibition of Both Protein Synthesis and Endoplasmic Reticulum Oxidative Folding
740 during Recombinant Protein Production. *Appl. Environ. Microbiol.* **87**, e0030121
741 (2021).

742 45. Guerra-Moreno, A., Ang, J., Welsch, H., Jochem, M. & Hanna, J. Regulation of the
743 unfolded protein response in yeast by oxidative stress. *FEBS Lett.* **593**, 1080–1088
744 (2019).

745 46. Horton, A. C. & Ehlers, M. D. Secretory trafficking in neuronal dendrites. *Nat. Cell
746 Biol.* **6**, 585–591 (2004).

747 47. Gouras, G. K., Almeida, C. G. & Takahashi, R. H. Intraneuronal Abeta accumulation
748 and origin of plaques in Alzheimer’s disease. *Neurobiol. Aging* **26**, 1235–1244 (2005).

749 48. Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. *Neuron* **39**,
750 889–909 (2003).

751 49. Kaneko, M. *et al.* Loss of HRD1-mediated protein degradation causes amyloid
752 precursor protein accumulation and amyloid-beta generation. *J. Neurosci.* **30**, 3924–
753 3932 (2010).

754 50. Gerakis, Y., Dunys, J., Bauer, C. & Checler, F. A β 42 oligomers modulate β -secretase
755 through an XBP-1s-dependent pathway involving HRD1. *Sci. Rep.* **6**, 1–14 (2016).

756 51. Liu, L., Martínez, J. L., Liu, Z., Petranovic, D. & Nielsen, J. Balanced globin protein
757 expression and heme biosynthesis improve production of human hemoglobin in
758 *Saccharomyces cerevisiae*. *Metab. Eng.* **21**, 9–16 (2014).

759 52. Schmidt, O. *et al.* Endosome and Golgi-associated degradation (EGAD) of membrane
760 proteins regulates sphingolipid metabolism. *EMBO J.* **38**, e101433 (2019).

761 53. Travers, K. J. *et al.* Functional and genomic analyses reveal an essential coordination
762 between the unfolded protein response and ER-associated degradation. *Cell* **101**, 249–

763 258 (2000).

764 54. De Pourcq, K., De Schutter, K. & Callewaert, N. Engineering of glycosylation in yeast
765 and other fungi: current state and perspectives. *Appl. Microbiol. Biotechnol.* **87**, 1617–
766 1631 (2010).

767 55. The UniProt Consortium. UniProt: the universal protein knowledgebase. *Nucleic Acids
768 Res.* **45**, D158–D169 (2017).

769 56. Hellerstedt, S. T. *et al.* Curated protein information in the *Saccharomyces* genome
770 database. *Database (Oxford)*. **2017**, bax011 (2017).

771 57. Ye, L., Berden, J. A., van Dam, K. & Kruckeberg, A. L. Expression and activity of the
772 Hxt7 high-affinity hexose transporter of *Saccharomyces cerevisiae*. *Yeast* **18**, 1257–
773 1267 (2001).

774 58. Elbing, K. *et al.* Role of hexose transport in control of glycolytic flux in
775 *Saccharomyces cerevisiae*. *Appl. Environ. Microbiol.* **70**, 5323–5330 (2004).

776 59. Kruckeberg, A. L., Ye, L., Berden, J. A. & van Dam, K. Functional expression,
777 quantification and cellular localization of the Hxt2 hexose transporter of
778 *Saccharomyces cerevisiae* tagged with the green fluorescent protein. *Biochem. J.* **339**
779 (Pt 2), 299–307 (1999).

780 60. Reifenberger, E., Boles, E. & Ciriacy, M. Kinetic characterization of individual hexose
781 transporters of *Saccharomyces cerevisiae* and their relation to the triggering
782 mechanisms of glucose repression. *Eur. J. Biochem.* **245**, 324–333 (1997).

783 61. Bosdriesz, E. *et al.* Low affinity uniporter carrier proteins can increase net substrate
784 uptake rate by reducing efflux. *Sci. Rep.* **8**, 5576 (2018).

785 62. Erickson, H. P. Size and shape of protein molecules at the nanometer level determined
786 by sedimentation, gel filtration, and electron microscopy. *Biol. Proced. Online* **11**, 32–
787 51 (2009).

788 63. B S, G. K. & Surolia, A. N-Glycosylation analysis of yeast Carboxypeptidase Y
789 reveals the ultimate removal of phosphate from glycans at Asn(368). *Int. J. Biol.*
790 *Macromol.* **98**, 582–585 (2017).

791 64. Lundberg, S. M. *et al.* From Local Explanations to Global Understanding with
792 Explainable AI for Trees. *Nat. Mach. Intell.* **2**, 56–67 (2020).

793

794

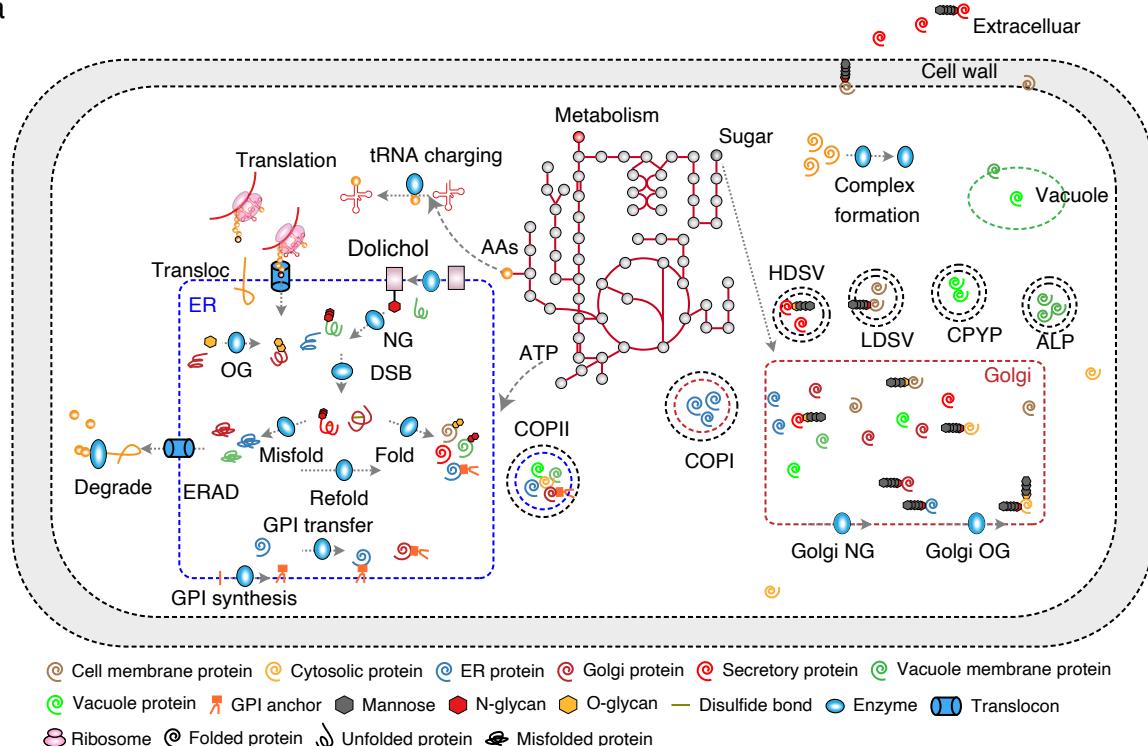
795

796

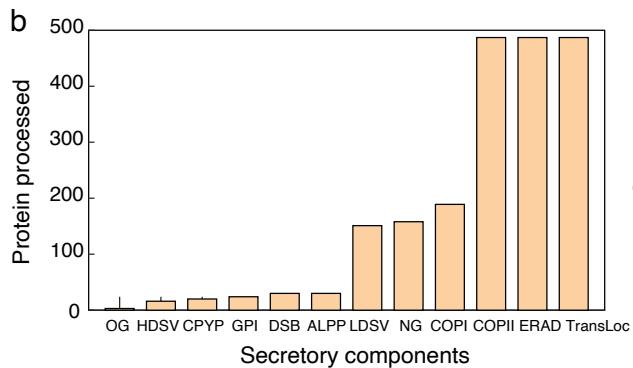
797

798 **Figures**

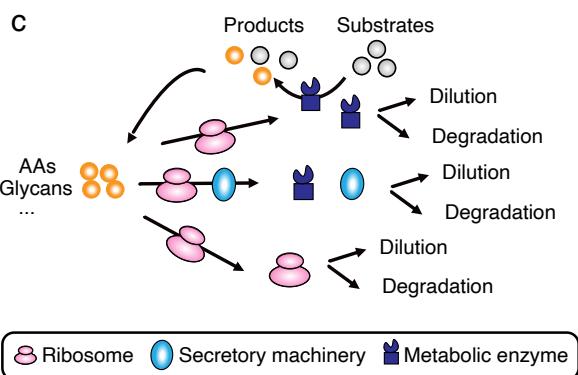
a



b



c

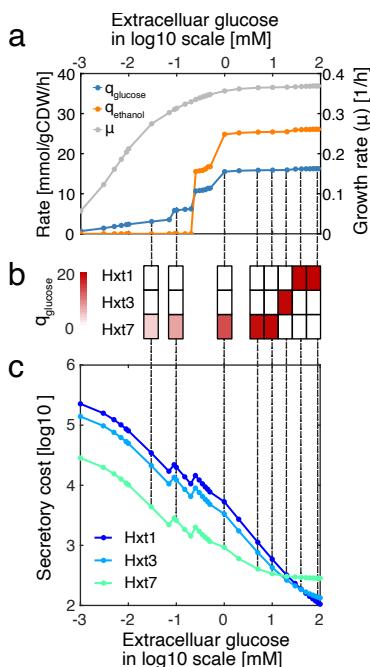


799

800

801 **Fig. 1:** Overview of components in pcSecYeast. a) Simplified schematic processes involved in
802 the protein secretion pathway. The process includes protein translation, translocation,
803 glycosylation, GPI transfer, ERAD and sorting process. The detailed description of all
804 components and reactions can be found in Supplementary Methods. Transloc: translocation,
805 NG: N-glycosylation, OG: O-glycosylation, DSB: disulfide bond formation, GPI:
806 glycosylphosphatidylinositol, ER: endoplasmic reticulum, ERAD: ER-associated degradation,
807 LDSV: low-density secretory vesicles, HDSV: high-density secretory vesicles, ALPP: alkaline
808 phosphatase pathway, CPYP: carboxypeptidase Y pathway. b) Subsystems in the secretory
809 pathway and the number of proteins that are processed in each subsystem. c) Coupling process
810 in the model. Metabolic part produces energy and precursors such as amino acids, glycans for
811 enzyme and ribosome synthesis. Enzymes constrain these metabolic reactions. Ribosomes
812 constrain protein translation. The secretory machinery constrains protein processing in this
813 pathway. All proteins, including ribosomes are diluted due to growth and degraded due to
814 misfolding.

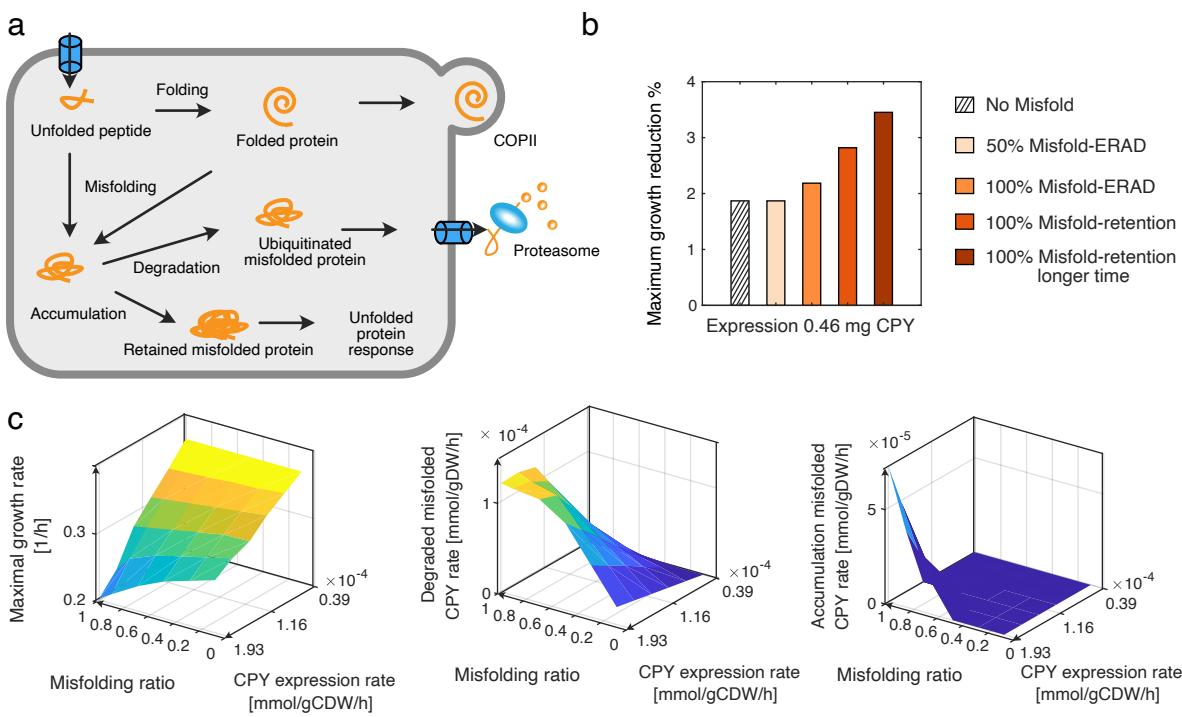
815



816

817 **Fig. 2:** Simulated physiological response of *S. cerevisiae* as a function of the extracellular
818 glucose concentration. a) Simulated glucose uptake rates, ethanol production rates and specific
819 growth rates under different extracellular glucose concentrations. Each point is the simulated
820 result under a certain extracellular glucose condition. b) Specific glucose uptake rate carried
821 by each glucose transporter. Hxt1 and Hxt3 are two low-affinity glucose transporters, while
822 Hxt7 is a high-affinity glucose transporter. c) Calculation of secretory costs of different glucose
823 transporters with the specific glucose uptake rate at input for each extracellular glucose
824 concentration, unit secretory cost, K_M and k_{cat} that are specific to each transporter based on eq.
825 1 in the text.

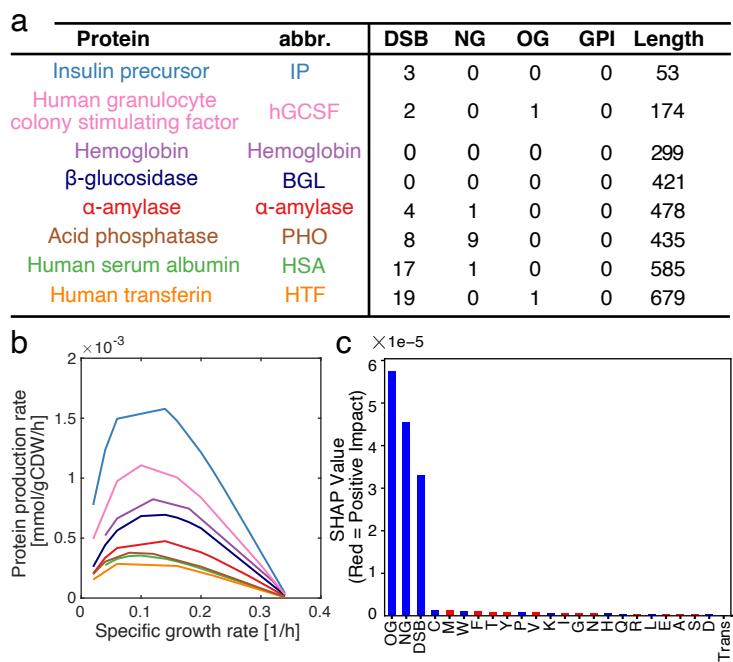
826



827

828 **Fig. 3:** Simulation of CPY overexpression. a) Schematic view of different routes for expressed
 829 CPY. b) Reduction of simulated maximum specific growth rate [1/h] due to expression at
 830 certain levels of CPY following different routes. c) Simulations for various CPY expression
 831 levels and misfolding ratios with the constraint for retro-translocation enzymes.

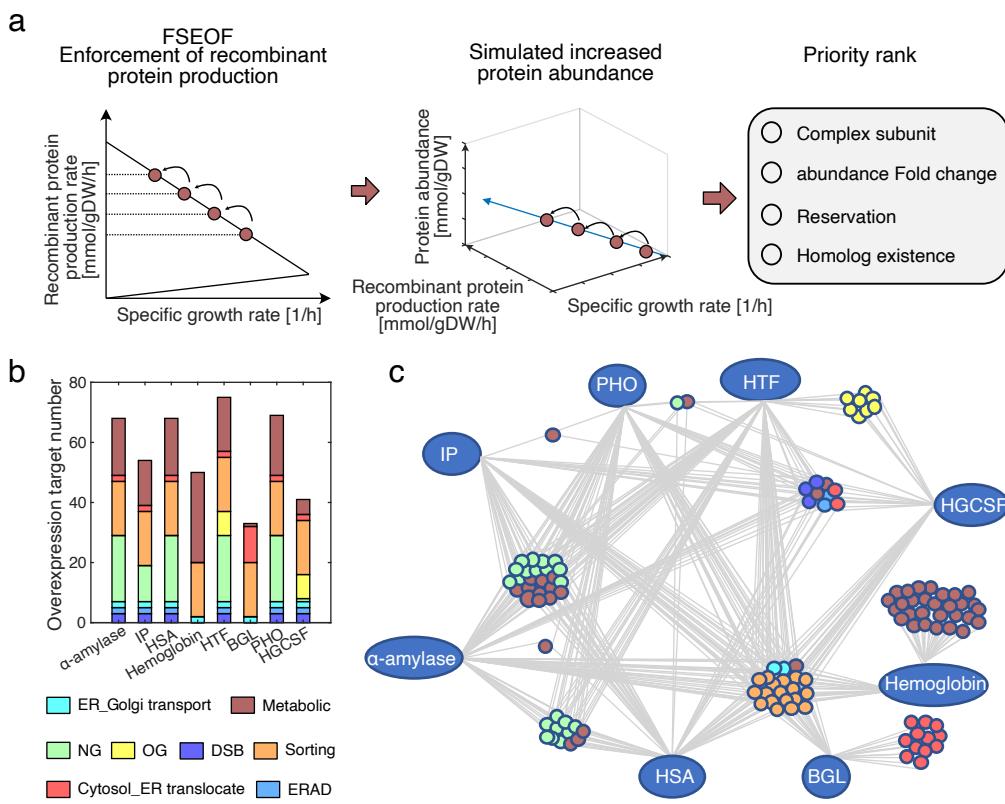
832



833

834 **Fig. 4:** Simulation of recombinant protein production. a) Overview of protein features for eight
 835 recombinant proteins produced by *S. cerevisiae*. See Supplementary Table 5 for detailed
 836 information. b) Simulation of maximum specific recombinant protein production rate as a
 837 function of specific growth rate. c) Feature importance analysis towards recombinant protein
 838 production. NG: N-glycosylation site; OG:O-glycosylation site; DSB: disulfide bond number;
 839 trans: transmembrane domain; one letter stands for amino acid. Blue color stands for negative
 840 impact of having this feature towards recombinant protein production rate, while red color
 841 indicates a positive impact.

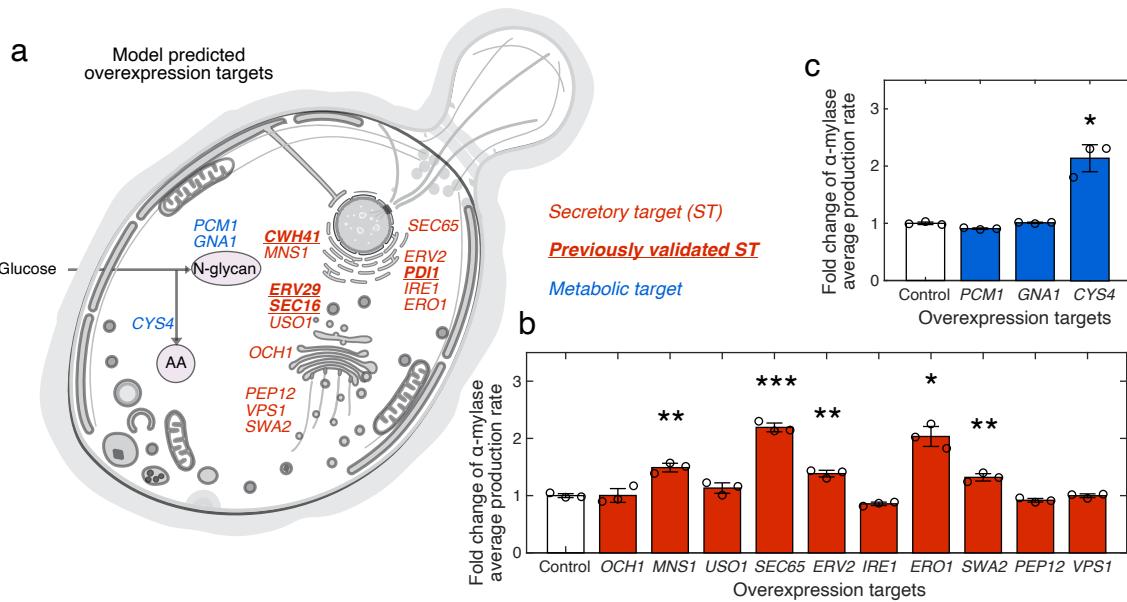
842



843

844 **Fig. 5:** Prediction and comparison of overexpression targets for improving recombinant protein
 845 production. a) Adapted FSEOF method for target identification. b) Overview of the predicted
 846 overexpression targets for eight recombinant proteins grouped by pathways. c) Comparison of
 847 predicted targets for the eight recombinant proteins.

848



849

850 **Fig. 6:** Validation of predicted overexpression targets for α -amylase overproduction. a) Protein
 851 localization of the predicted overexpression targets. Yeast compartmentalized figure source:
 852 SwissBioPics. b) Validation result of predicted secretory targets. c) Validation result of
 853 predicted metabolic targets. *: $P < 0.05$, **: $P < 0.01$, ***: $P < 0.001$. *GNA1* (Glucosamine-6-
 854 phosphate acetyltransferase); *PCM1* (PhosphoCetylglucosamine mutase); *CYS4*
 855 (Cystathionine beta-synthase); *CWH41* (Processing alpha glucosidase I); *OCH1*
 856 (Mannosyltransferase of the cis-Golgi apparatus); *MNS1* (Alpha-1,2-mannosidase);
 857 *USO1* (Intracellular protein transport protein from ER to Golgi); *SEC65* (Signal recognition
 858 particle subunit); *ERV2* (FAD-linked sulphhydryl oxidase); *IRE1* (Serine/threonine-protein
 859 kinase/endoribonuclease); *ERO1* (Endoplasmic oxidoreductin-1); *SWA2* (Auxilin-like clathrin
 860 uncoating factor); *VPS1* (Vacuolar protein sorting-associated protein); *ERV29* (ER-derived
 861 vesicles protein); *PEP12* (Syntaxin); *PDI1* (Protein disulfide-isomerase); *SEC16* (COPII coat
 862 assembly protein).