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 2 

Abstract 16 

Eukaryal cells are used for the production of many recombinant pharmaceutical proteins, 17 

including several of the current top-selling products. The protein secretory pathway in eukaryal 18 

cells is complex and involves many different processes such as post-translational modifications, 19 

translocation, and folding. Furthermore, recombinant protein production competes with native 20 

secretory proteins for the limited energy and proteome resources allocated to the protein 21 

secretory pathway. Due to the complexity of this pathway, improvement through metabolic 22 

engineering has traditionally been relatively ad-hoc; and considering the industrial importance 23 

of this pathway, there is a need for more systematic approaches for novel design principles. 24 

Here, we present the first proteome-constrained genome-scale protein secretory model of a 25 

eukaryal cell, namely for the yeast Saccharomyces cerevisiae (pcSecYeast). The model 26 

contains all key processes of this pathway, i.e., protein translation, modification, and 27 

degradation coupled with metabolism. The model can capture delicate phenotypic changes 28 

such as the switch in the use of specific glucose transporters in response to changing 29 

extracellular glucose concentration. Furthermore, the model can also simulate the effects of 30 

protein misfolding on cellular growth, suggesting that retro-translocation of misfolded proteins 31 

contributes to protein retention in the Endoplasmic reticulum (ER). We used pcSecYeast to 32 

simulate various recombinant proteins production and identified overexpression targets for 33 

different recombinant proteins overproduction. We experimentally validated many of the 34 

predicted targets for α-amylase production in this study, and the results show that the secretory 35 

pathways have more limited capacity than metabolism in terms of protein secretion.  36 

 37 

Key words: α-amylase, genome-scale modeling, protein secretion, proteome constraints, 38 

rational design  39 
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Introduction 40 

The protein secretory pathway is an important pathway for eukaryal cells. About 30% of native 41 

proteins are processed by the secretory pathway in eukaryotes1. The secretory pathway spans 42 

several different organelles carrying out peptide translocation, folding, ER-associated protein 43 

degradation (ERAD), sorting processes as well as different post-translational modifications 44 

(PTMs), ensuring proper protein functionality2. There are around 200 proteins engaged in the 45 

protein secretory pathway in Saccharomyces cerevisiae, hence responsible for these functions. 46 

The unique modification profile of each secretory protein dictates specific combinations of 47 

multiple processes required for their production and secretion, which makes the secretory 48 

pathway a complicated production line and therefore complex to describe. Unraveling the 49 

processing and energetic costs for proteins passing through the secretory pathway and how the 50 

cell distributes energy and enzymes to process these proteins is therefore desirable, as this 51 

would facilitate a better understanding of protein secretion. 52 

 53 

S. cerevisiae is used as the expression system for around 15% of all protein-based 54 

biopharmaceuticals for human use on the market3. It has also been used as an important model 55 

organism for studying this important pathway, and many discoveries made in yeast translate 56 

directly to other eukaryotes such as Chinese Hamster Ovary (CHO) cells that are also widely 57 

used for the production of protein-based biopharmaceuticals4,5. Since the early days of 58 

recombinant protein production in the 1980s, there have been many attempts to improve the 59 

protein expression and secretion levels by removing bottlenecks in the protein modification 60 

and secretion pathways6. However, most of these attempts were usually evaluated for one 61 

recombinant protein, and often do not work for improved expression of another protein. 62 

Furthermore, the protein yield has typically been much lower than the theoretically estimated 63 

range7,8. There is therefore much interest in developing a rational design tool for optimization 64 
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of the secretory pathway for any recombinant protein, in line with what has been developed for 65 

metabolism in many cell factories9,10. 66 

 67 

There are several published frameworks or models for describing protein secretion in yeast and 68 

other eukaryotes, but they are either not able to perform simulations or contain only a partial 69 

description of the protein secretion pathway2,11–14. Besides, even for a recently published 70 

secretory model for mammalian cells, the model is solely a basic extension of a genome-scale 71 

metabolic model (GEM), which is not able to simulate how native secretory proteins compete 72 

with recombinant proteins targeted to pass through this pathway13. We, therefore, reconstructed 73 

a detailed proteome-constrained genome-scale protein secretory model for S. cerevisiae 74 

(pcSecYeast), which contains the description of the complete protein secretion pathway and 75 

can perform multiple kinds of simulations including the competition of recombinant proteins 76 

with native secretory proteins. The model also enables calculation of the energetic cost for 77 

native secretory proteins and hereby investigates how misfolded proteins cause growth 78 

reduction. We used the model to evaluate the secretion of various recombinant proteins and 79 

identify engineering targets for improving their production. The model represents a significant 80 

advancement in terms of enabling the more rational design of yeast cells to be used for 81 

recombinant protein production, but it also provides a scaffold for building similar models for 82 

other eukaryal cells, e.g., CHO cells. 83 

 84 

Results 85 

Construction of pcSecYeast 86 

We first updated the latest yeast GEM Yeast815 by adding several reactions to enable the 87 

synthesis of precursors required in the secretory pathway such as glycosylphosphatidylinositol 88 

(GPI) anchor and glycans (Supplementary Table 1). Similar to the metabolic-expression (ME) 89 
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model for Escherichia coli16 and S. cerevisiae17, protein expression, translation, folding, and 90 

degradation were then added for all proteins in the model. Besides that, for proteins processed 91 

in the secretory pathway, we added reactions detailly describing protein processing including 92 

translocation, PTM, folding, misfolding and degradation (Fig. 1a). Hereby the model can 93 

describe detailed processes from nascent peptides in the cytosol to the final mature form of 94 

proteins in their destination compartment for all proteins in the model. Therefore, pcSecYeast 95 

adds a much more detailed description of protein translocation and processing compared with 96 

those ME models. To our knowledge, pcSecYeast represents the first model to describe close 97 

links between metabolism, protein translation, post-translational protein processing, protein 98 

degradation, and protein secretion in yeast and can be easily adapted to any cell. The 99 

components that participate in the protein secretory pathway are involved in 12 subsystems 100 

(Fig. 1b). Overall, pcSecYeast accounts for 1,639 protein-coding genes and approximately 70% 101 

of the total proteome mass according to PaxDb18 (Supplementary Table 2). Details of the 102 

reconstruction process can be found in the Supplementary Methods. 103 

 104 

As an extension of Yeast8, pcSecYeast includes default constraints such as mass conservation 105 

and flux bounds on metabolic reactions. Besides them, we introduced coupling constraints to 106 

relate protein synthesis with metabolism (Supplementary Methods). The metabolic part in the 107 

model supplies the substrate and energy for the protein-related part such as ribosome and 108 

enzyme synthesis, while the metabolite conversion process in the metabolic part is catalyzed 109 

by enzyme complexes synthesized in the protein-related part (Fig. 1c). Protein synthesis is 110 

constrained by the synthesis of ribosome and other machineries such as secretory machinery 111 

complexes (Fig. 1c). Each flux of enzymatic reaction in the model is constrained at the maximal 112 

rate of the associated enzyme, which is a function of turnover rate (kcat) and the enzyme 113 

concentration. Thus, we can simulate the minimum protein levels which sustain the metabolic 114 
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state, i.e., the proteome-constrained metabolic state. This means that the proteome composition 115 

in pcSecYeast is not a fixed amount of average amino acid compositions as in the default GEMs, 116 

but a dynamic changing composition of enzymes which reflects the cell state at a certain 117 

condition. Thus, the model enables simulation of resource allocations in the cell under different 118 

conditions, such as how the cell would balance recombinant protein with native secretory 119 

proteins in the recombinant protein production and how the cell would optimize its enzyme 120 

profile among various environmental conditions.  121 

 122 

Secretory cost initiates the switch of hexose transporters 123 

Transporters are one important group of proteins that pass through the secretory pathway. Yeast 124 

has multiple hexose transporters with diverse kinetics, which are expressed at different levels 125 

under different extracellular glucose concentrations19. To investigate how the model can 126 

simulate the expression and processing of glucose transporters, we utilized the model to 127 

simulate yeast growth under different glucose concentrations (Methods). As a result, the model 128 

captured the metabolic shift referred as the Crabtree effect, i.e., the production of ethanol at 129 

high specific growth rates (Fig. 2a). Furthermore, the model correctly predicted a switch from 130 

the predominant use of the high-affinity glucose transporter (Hxt7) to low-affinity glucose 131 

transporters (Hxt3 and Hxt1) at high glucose concentrations (Fig. 2b), which is consistent with 132 

the experimental observation that HXT3 and HXT1 genes are only expressed at high specific 133 

growth rates19. This is explained by the difference in kinetics of the different sugar transporters, 134 

i.e., kcat and KM, and therefore the secretory cost for synthesizing and processing glucose 135 

transporters that can support a given glucose uptake flux. Thus, at low specific growth rates 136 

where there is a low glucose uptake rate, the cells express a high-affinity transporter with a low 137 

kcat in a small amount, but to support a high glucose uptake rate it is necessary to express a large 138 

amount of glucose transporters, then the low-affinity transporters with high kcat values are 139 
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preferred. This is illustrated by eq. 1, which specifies the secretory cost for a glucose transporter 140 

to sustain a given glucose uptake rate can be calculated as the ‘unit secretory cost’ multiplied 141 

by the abundance. The protein abundance of the transporter [E!] is determined by the glucose 142 

uptake rate 𝑉"#$, KM and extracellular glucose concentration [𝑆] according to the Michaelis-143 

Menten equation. The ‘unit secretory cost’ is defined as the cost required for translation, 144 

modification, and secretion of one mol specific protein, which can be predicted by pcSecYeast 145 

(Methods). We predicted the ‘unit secretory costs’ for all native secretory proteins in S. 146 

cerevisiae (Supplementary Table 3) and found that Hxt1 and Hxt3 have a smaller ‘unit 147 

secretory cost’ compared with Hxt7, suggesting that synthesizing one mol Hxt1 and Hxt3 148 

would pose less energy burden on the cell. This is partly because Hxt1 has fewer N-149 

glycosylation modification sites than Hxt7 (Supplementary Table 4). Combining with the 150 

glucose uptake rate, extracellular glucose concertation, kcat, and KM, we can calculate the 151 

secretory cost for each glucose transporter from the eq.1 (Fig. 2c). The result suggests that with 152 

an increase in the glucose concentration, utilization of Hxt1 and Hxt3 would gradually gain the 153 

advantage over Hxt7 (Fig. 2c). Parameter sensitivity analysis of Hxt1 showed that even if we 154 

set the same kcat for Hxt1 and Hxt7, Hxt1 would still be favorable for glucose uptake in the 155 

model simulation at maximum growth rate (Supplementary Figure 1). This demonstrates that 156 

the contribution of the low ‘unit secretory cost’ of Hxt1 is critical. Our model hereby predicts 157 

that the switch of different affinity glucose transporter is a resource optimization strategy of 158 

the cell to adapt to limited resources. 159 

𝑆𝑒𝑐𝑟𝑒𝑡𝑜𝑟𝑦	𝑐𝑜𝑠𝑡! = 𝑢𝑛𝑖𝑡	secretory	𝑐𝑜𝑠𝑡! ∗ [E!] = 	𝑢𝑛𝑖𝑡	secretory	𝑐𝑜𝑠𝑡! ∗
"!"#

#$%&$∗
[&]

[&]()*,$
	
     eq. 1 160 

 161 

Yeast suppresses expression of high-cost secretory proteins under secretion pressure 162 

The protein secretory pathway is concurrently processing hundreds of proteins that compete 163 

for limited resources such as energy, precursors, and components of the secretory machinery. 164 
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It has been reported that recombinant mammalian cells repress the expression of native 165 

energetically expensive secretory proteins to save limited resources for growth and 166 

recombinant protein production13. With our proteome allocation model of the secretory 167 

pathway, we can perform not only the same calculation of the secretory costs of all 497 native 168 

secretory and cell membrane proteins as done for mammalian cells13 (denoted as ‘direct cost’ 169 

in the Supplementary Figure 2a) but also a more accurate analysis of the costs including the 170 

associated costs for corresponding shares of catalyzing enzymes and secretory machineries 171 

required for processing the protein besides the cost for itself (‘unit secretory cost’ in 172 

Supplementary Figure 2a). By correlating ‘unit secretory cost’ with ‘direct cost’, we found that 173 

the ‘unit secretory cost’ calculated in pcSecYeast is overall 3.8-fold higher compared with the 174 

‘direct cost’ (Supplementary Figure 2a). Outliers in the correlation of these two kinds of cost 175 

calculation are mainly caused by the unusual protein features such as the 52 N-glycosylation 176 

sites annotated for the protein RAX2 or long amino acid sequences for large proteins TOR1 177 

and TOR2 (Supplementary Figure 2a). To evaluate if there is reduced expression of the proteins 178 

that are costly to process by the secretory pathway as observed in mammalian cells, we 179 

correlated the calculated ‘unit secretory costs’ with the mRNA levels of 497 native secretory 180 

proteins for three strains with different levels of recombinant α-amylase production that were 181 

characterized in a recent study20. We observed a significant negative correlation (P value < 1e-182 

8) between unit secretory costs and mRNA levels of native secretory proteins in all three strains 183 

(Supplementary Figure 2b-c), suggesting that the cells suppress the expression of proteins that 184 

are expansive to secrete when the secretory pathway is under pressure to process a recombinant 185 

protein. Moreover, we found that the negative correlations are stronger in the strains with 186 

higher α-amylase production levels (MH34 and B184) compared with that in the strain with a 187 

lower α-amylase production level (AAC) (Supplementary Figure 2c, P value = 0.004). 188 

Therefore, the suppression level for costly native secretory proteins depends on the 189 
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 9 

recombinant protein production levels, suggesting that the yeast cells respond accordingly to 190 

the level of secretion stress.  191 

 192 

Misfolded protein slows maximum growth 193 

Protein synthesis and secretion is an error-prone process. Mutation in the sequence, errors 194 

during the synthesis or environmental insults cause the newly synthesized protein to misfold21. 195 

Misfolded proteins are prioritized to be eliminated rapidly by the ERAD pathway but may 196 

retain and accumulate in the ER, and could trigger cell stress (Fig. 3a)22–24. Here, we used our 197 

model to simulate the ER tolerance to misfolded proteins. We expanded pcSecYeast to include 198 

the production of vacuolar carboxypeptidase Y (YMR297W, CPY), since CPY and its derived 199 

misfolded form CPY* are processed in the secretory pathway, and widely used in the 200 

elucidation of the mechanisms of ER quality control and ERAD of misfolded proteins25. By 201 

modifying misfolding ratio parameter in the model, we can simulate the misfolding levels of 202 

CPY. A misfolding ratio of 1 means that all the CPY protein molecules are misfolded and 203 

cannot be targeted to the Golgi for further processing as the reported misfolded form CPY* in 204 

literature26.  205 

 206 

Here, we used the maximum growth rate reduction to indicate the fitness cost for CPY going 207 

through different routes: 1) all correctly folded and targeted to the vacuole without misfolding; 208 

2) misfolded in different ratios and some targeted for ERAD; 3) all of them misfolded, retained 209 

in the ER at different times. Our simulations showed that misfolding imposes more fitness cost 210 

compared with correct folding; that retention imposes more fitness cost compared with ERAD; 211 

and that retention in the ER for a long time would also impose more fitness cost. We predicted 212 

that there is about 1.9% maximum specific growth reduction when expressing 0.46 mg native 213 

CPY without misfolding (0.46 mg representing 0.1% of the total proteome, Fig. 3b), which is 214 
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comparable to the measurement for expression of a cytosol wildtype Yellow Fluorescent 215 

Protein (YFP) where a 1.4% growth reduction was observed for expressing YFP at the same 216 

abundance27. Compared with cytosolic YFP, CPY requires extra energy and allocation of 217 

resources in the secretory pathway, and this can explain the slightly higher predicted growth 218 

reduction for expressing CPY. The growth reduction for expressing CPY proteins all in 219 

misfolded form is 2.2%-3.5% (Fig. 3b), which is also comparable with the measurement of 220 

expressing the mostly misfolded cytosolic YFP at the same level (up to 3.2% growth 221 

reduction)27. The growth reduction measured for YFP in the literature is a combination of 222 

fitness cost caused by the misfolding itself and unfolded protein response in the cytosol (UPR-223 

cyto) triggered by the accumulation of misfolded proteins. In the model simulations, we only 224 

considered the fitness cost for misfolding and degradation of CPY. This also suggests that ER 225 

misfolded protein imposes more fitness cost compared with cytosolic misfolded protein when 226 

they are expressed at the same level. If the misfolded proteins are degraded by ERAD and the 227 

proteasome, then amino acids and modification precursors such as glycans can be recycled. 228 

However, if misfolded proteins are retained in the ER, they would compete with unfolded 229 

protein for limited ER quality control proteins especially Kar2 and Pdi127, which would further 230 

increase the ER burden. We investigated the simulated various protein levels and found that 231 

the levels of Kar2 and Pdi1 increase significantly when CPY is retained (Supplementary Figure 232 

3), which suggests that the retained protein would drain Kar2 and Pdi1 and therefore compete 233 

with native proteins processed in the secretory pathway. In addition, we evaluated the ER redox 234 

stress by comparing the transport of glutathione (GSH) and glutathione disulfide (GSSG) and 235 

found that the flux of GSSG export from the ER is significantly higher when misfolded protein 236 

is retained in the ER (Supplementary Figure 4), suggesting the higher redox unbalance in the 237 

ER at this state. 238 

 239 
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Furthermore, we performed analysis to identify parameters leading to misfolded protein 240 

accumulation in ER (Supplementary Figure 5a-d, Fig. 3c) and found that when retro-241 

translocation enzymes (Sec61, Doa10 and Hrd10) are constrained, the excessive misfolded 242 

CPY would be retained and accumulated in ER if CPY is expressed at high levels, causing a 243 

steeper decrease in the specific growth rate (Fig. 3c). Other parameters such as ERAD capacity, 244 

ER volume, ER membrane space and secretory machinery capacity were not able to show the 245 

retention and accumulation phenotype when constrained in the model (Supplementary Figure 246 

5a-d). We found that the retention of the misfolded protein phenotype is alleviated when 247 

removing the constraint of retro-translocation enzymes, suggesting the importance of the retro-248 

translocation towards handling of misfolded proteins (Supplementary Figure 5e). Therefore, 249 

we can use the pcSecYeast model with the extra constraint of retro-translocation enzymes to 250 

mimic state of misfolded protein accumulation in ER (Fig. 3c). The plateau in the CPY 251 

degradation rate demonstrates that there is a maximum capacity of the ERAD pathway and 252 

therefore also a tolerance limit for misfolded CPY.  253 

 254 

Protein features impact recombinant protein production 255 

Different secretory proteins utilize different components of the secretory pathway to be 256 

processed based on their amino acid composition and PTMs. To identify the factors that 257 

influence secreted protein levels, we expanded pcSecYeast to describe the production of eight 258 

different recombinant proteins by adding the corresponding recombinant protein production 259 

and secretion reactions. These eight recombinant proteins differ in protein size and PTMs 260 

(detailed information in Supplementary Table 5). Note that hemoglobin folds with heme as a 261 

prosthetic group, which requires balancing of heme biosynthesis and its recombinant protein 262 

production (Fig. 4a)28. We generated eight specific models to simulate the maximum 263 

recombinant protein secretion under various growth rates. We observed that the maximum 264 
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production rates were achieved at medium-specific growth rates for all the studied recombinant 265 

proteins (Fig. 4b), consistent with previous reports of bell shape kinetics for recombinant 266 

protein production in S. cerevisiae and Pichia pastoris29–31. Insulin precursor (IP) and α-267 

amylase production were reported as growth dependent32, but only for the investigation of a 268 

more narrow interval of specific growth rates (0.05-0.2 h-1), which is consistent with the model 269 

simulations. At high specific growth rates, there is a clear drop of production rate for all 270 

recombinant proteins (Fig. 4b), which clearly shows that at high specific growth rates the cell 271 

gives priority of its limited capacity of the secretory pathway to native proteins. It is important 272 

to note that a default GEM can only describe a linear negative correlation of recombinant 273 

protein production with increasing specific growth rates (Supplementary Figure 6). 274 

Furthermore, the fact that the simulated α-amylase production by the default GEM is around 275 

1,000 times higher than the experimental values33 even with the measured glucose uptake rate 276 

as the constraint highlights the huge gaps in default GEM for recombinant protein simulation 277 

(Supplementary Figure 6).  278 

 279 

Furthermore, we investigated which protein feature influences recombinant protein production 280 

the most. We found that PTMs have an average higher impact on recombinant protein 281 

production compared with amino acid composition (Fig. 4c, Supplementary Table 6). Among 282 

all simulated features, O-glycosylation and N-glycosylation have larger negative impacts on 283 

recombinant protein production, which suggests that having more glycosylation sites would 284 

cause more burden for the cell (Fig. 4c). 285 

 286 

FSEOF identifies overexpression targets for recombinant protein overproduction 287 

Identifying engineering targets is crucial to improve the specific recombinant protein 288 

production rate. Predicting gene overexpression targets is more difficult and complex than 289 
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predicting gene deletion targets since amplification of gene expression does not always 290 

increase the metabolic fluxes34. To fully validate the predictive power of pcSecYeast, we used 291 

the generated recombinant protein-specific models to predict overexpression targets for 292 

increasing the recombinant protein production. Target prediction was performed using adapted 293 

Flux Scanning based on Enforced Objective Function (FSEOF)34, where the model was 294 

constrained with a stepwise decrease in the specific growth rate, and recombinant protein 295 

production was maximized. The original FSEOF method selects fluxes that increase with the 296 

enforcement of recombinant protein production in the GEM simulations and identifies those 297 

reactions and associated genes as overexpression targets. Since we can compute the protein 298 

levels from the pcSecYeast simulations, we can directly select proteins, as overexpression 299 

targets, that having increased levels result in increased recombinant protein production (Fig. 300 

5a & Supplementary Dataset). The predicted overexpression targets were ranked for priority 301 

and compared among the eight recombinant proteins (Fig. 5b&c). We predicted around 70 302 

overexpression targets for each of the eight recombinant proteins with the majority of them 303 

(70%) being in the secretory pathway and 30% in the metabolic part of the model (Fig. 5b&c). 304 

Those targets are more likely shared by recombinant proteins when they have the same PTMs. 305 

For example, targets in the O-glycosylation pathway are shared by O-glycosylated human-306 

transferrin (HTF) and human granulocyte colony stimulating factor (hGCSF) (Fig. 5c). 307 

Surprisingly, even though insulin precursor (IP) contains no N-glycosylation site, some 308 

predicted overexpression targets are related to N-glycosylation. This is explained by the fact 309 

that N-glycosylation is required for some secretory machinery proteins such as Pdi1 which 310 

catalyzes disulfide bond formation in IP production. By removing the disulfide bonds in IP, we 311 

found that those N-glycosylation related genes were not predicted as targets (Supplementary 312 

Dataset). There are 21 predicted targets shared by all the eight proteins, which are mainly 313 

involved in sorting and ER-Golgi transport, suggesting the general importance of these 314 
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processes in protein secretion (Fig. 5c). We also showed that hemoglobin is the only 315 

recombinant protein with multiple unique targets in metabolism, especially for heme 316 

production, which demonstrates that metabolism is equally important along with the secretory 317 

pathway for improving hemoglobin production. For all the other recombinant proteins, the 318 

secretory pathway is more limiting according to the prediction. 319 

 320 

Experimental validation for predicted α-amylase targets 321 

We next validated the predicted overexpression targets for improving α-amylase production. 322 

We divided the predicted targets for α-amylase into different groups by their functions and 323 

chose 17 targets to validate from all subsystems. There were 14 targets in the secretory pathway 324 

spanned in translocation, folding, protein quality control, and sorting subsystems, and three 325 

targets in the metabolic part of the model, which are related to N-glycan synthesis and amino 326 

acid synthesis (Fig. 6a).  327 

 328 

We next sought to test if overexpression of the predicted secretory targets individually could 329 

improve the α-amylase production rate. Among them, the glucosidase Cwh4120, COPII-coated 330 

vesicles proteins Erv2935, Sec1636 and protein disulfide isomerase Pdi135,37 have already been 331 

validated, i.e., overexpression of these proteins can improve α-amylase production and 332 

secretion.  333 

 334 

As for the remaining ten secretory targets, we performed individual gene overexpression 335 

experiments for validation, and found that individual overexpression of SEC65, MNS1, SWA2, 336 

ERV2 and ERO1 significantly increase the α-amylase production rates by different levels (1.32 337 

to 2.2-fold) (Fig. 6b, Supplementary Table 7). Sec65 is one out of six subunits of the signal 338 

recognition particle (SRP), which is involved in protein targeting to the ER38. Overexpression 339 
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of SEC65 would be anticipated to increase the SRP-dependent co-translational translocation, 340 

which would benefit α-amylase translocation from cytosol to ER. Mns1 is involved in folding 341 

and ERAD, which is responsible for the removal of one mannose residue from a glycosylated 342 

protein. α-amylase contains multiple N-glycosylation sites, and therefore would be benefited 343 

from MNS1 overexpression from facilitated proper folding. ERO1 encodes a thiol oxidase 344 

required for oxidative protein folding in the ER and provides Pdi1 with oxidizing equivalents 345 

for disulfide bond formation39. We observed that overexpression of ERO1 also has a positive 346 

effect on α-amylase production (2-fold). Besides, overexpressing ERO1 was able to enhance 347 

disulfide-bonded human serum albumin (HSA) secretion in Kluyveromyces lactis40 and single-348 

chain T-cell receptors (scTCR) and single-chain antibodies (scFv) secretion in S. cerevisiae41. 349 

Therefore, ERO1 might be considered as a generic target for secretory protein production. 350 

SWA2 is important for vacuole sorting, here we also show that by overexpressing this protein, 351 

there is enhancement towards α-amylase production rate (Fig. 6b).  352 

 353 

From three metabolic gene targets, only overexpression of CYS4 led to a significant increase 354 

(2.14-fold) of α-amylase productivity (Fig. 6c). Cys4 (Cystathionine beta-synthase) is involved 355 

in cysteine synthesis. Comparing the amino acid composition of α-amylase with the average 356 

amino acid composition of S. cerevisiae, we identified that there is a 9-fold enrichment for 357 

cysteine in α-amylase than in the yeast proteome in general (Supplementary Table 8), which 358 

explains why overexpression of CYS4 drastically increases the α-amylase production rate. The 359 

other two metabolic targets are Gna1 (Glucosamine-6-phosphate acetyltransferase) and Pcm1 360 

(PhosphoaCetylglucosamine mutase), which are related to the synthesis of N-glycosylation 361 

precursor N-linked oligosaccharides. Overexpression of those two genes does not have a 362 

significant increase in the α-amylase production rates, which suggests that N-glycosylation 363 

precursor synthesis may not be the bottleneck for α-amylase production. 364 
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 365 

In total, for all the chosen metabolic targets, 1/3 were validated as positive targets, while for 366 

identified targets in the secretory pathway, the accuracy was 9/14. Besides the higher accuracy 367 

in the secretory targets compared with metabolic targets, FSEOF gives more targets in the 368 

secretory pathway even though the fraction of metabolic enzymes in the model is much more 369 

than the secretory component. This may give us a hint that for recombinant protein secretion, 370 

the secretory pathway is more likely to be the bottleneck, and these results also demonstrate 371 

the value of the presented mathematical model for dissecting and systematic analysis of the 372 

role of complex protein secretory pathway in recombinant protein production and strain 373 

development. 374 

 375 

Discussion 376 

In this study, we presented a genome-scale model of yeast that integrates metabolism, protein 377 

translation, protein post-translational-modification, ERAD and sorting processes. The model 378 

enables the calculation of ‘unit secretory cost’ for any protein that is processed by the secretory 379 

pathway. We have shown that the model can correctly predict the switch from the use of high-380 

affinity to low-affinity glucose transporter as a result of resource optimization (Fig. 2). With 381 

the secretory cost calculation and reported transcriptome data, we also detected that upon 382 

expression of a recombinant protein which is processed by secretory pathway, yeast optimizes 383 

the limited secretory capacity by down-regulating expression of secretory proteins that are 384 

expensive to process (Supplementary Figure 2). These two simulations suggest that the cell 385 

allocates its limited resources by an optimization strategy, which can be accomplished through 386 

regulatory networks that have been tuned through the long evolutionary of yeast upon 387 

extracellular and intracellular environments42–45. 388 

 389 
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We next used the model to simulate protein misfolding and retention of CPY and hereby 390 

identified that there is a certain ER tolerance to the misfolded protein (Fig. 3). Parameter 391 

sensitivity analysis showed the importance of retro-translocation in ER stress. This suggests 392 

that increasing the level of retro-translocation may alleviate the ER stress caused by the 393 

retention of misfolded protein. Since quality control and ERAD pathways are highly conserved 394 

between yeast and higher eukaryotes, this may indicate targets for treating a number of human 395 

diseases related to misfolded protein accumulation such as Alzheimer’s and Parkinson’s46–48, 396 

which has been recently reported as therapeutic interventions49,50. 397 

 398 

Rational design for recombinant protein production is a crucial task due to the importance of 399 

recombinant protein market share and importance, but a very difficult task due to the 400 

complexity of the secretory pathway. pcSecYeast serves as a platform for the rational design 401 

of system-level engineering targets for recombinant protein production (Fig. 5 & Fig. 6). 402 

Besides the experimentally validated the predicted engineering targets for the production of α-403 

amylase (Fig. 6), we also noticed the consistence of the predicted targets for other recombinant 404 

proteins with literature reports, such as Hem2, Hem3 and Hem12 for hemoglobin 405 

production28,51. We also confirmed that even though Hem4 is also in the heme synthesis 406 

pathway, this is not a rate-limiting step in the heme synthesis51. According to the priority rank 407 

from the model prediction, Hem4 has lower priority compared with other proteins such as 408 

Hem2 and Hem3. In addition, for targets that were predicted with non-significant impact when 409 

overexpressed, we found previous studies to report similar results. For example, 410 

overexpressing vacuolar sorting protein Sec15 and Sec4 has been shown to have no positive 411 

impact on α-amylase production36 (Supplementary Dataset).  412 

 413 
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To be noted here, our model captures most of the secretory processes, but currently exclude 414 

some processes such as Endosome and Golgi-associated degradation pathway (EGAD)52, the 415 

unfolded protein response and other signaling and regulatory networks53. Therefore, including 416 

those processes could potentially increase the prediction accuracy in particular when it comes 417 

to the dynamic aspects of protein secretion. Besides, we simplified some processes to perform 418 

the simulation, which would also introduce some uncertainties, for example, different types of 419 

glycans and glycoforms can exist for N-glycosylation54. However, modifications to incorporate 420 

these processes in the model will be relatively easy in case there is a need to study specific 421 

proteins where these processes are important.  422 

 423 

In conclusion, we present pcSecYeast as a first genome-scale model which allows systematic 424 

modeling of the protein secretory pathway and its interaction with metabolism and gene 425 

expression in yeast. This model enables the first time to identify engineering targets for 426 

recombinant protein production that can be validated experimentally, and it helps to test the 427 

various hypothesis in silico for specific protein overexpression. With this new advancement, 428 

we expect that this kind of powerful genome-scale secretory model could also be developed 429 

for other recombinant protein producing cells, which will entail a fully in silico hypothesis 430 

generation and identification of cell engineering targets for strain development.  431 

 432 

Methods and materials 433 

Construction of pcSecYeast and constraint-based analysis 434 

We reconstructed pcSecYeast, which accounts for cell metabolism and protein synthesis 435 

processes. Detailed instruction can be found in Supplementary Methods. The reconstruction is 436 

based on the latest yeast GEM, Yeast8.3.515. Firstly, we refined all protein PTM precursors 437 

synthesis/secretion reactions in the model, such as dolichol synthesis for N-glycosylation, GPI 438 
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anchor synthesis for GPI modification (Supplementary Table 1). Missing reactions in those 439 

precursor synthesis pathways with corresponding GPRs and necessary transport reactions were 440 

added into the model for gap-filling. 441 

 442 

We split all reversible enzymatic reactions into forward and reverse reactions, and also split 443 

reactions catalyzed by isozymes into multiple identical reactions with various isozymes. 444 

Besides that, we formulated protein synthesis reactions for all proteins in the model. To 445 

facilitate the reconstruction process, the protein synthesis and secretion were divided into 12 446 

different processes: protein translation, protein translocation, ER N-glycosylation, disulfide 447 

bond formation, ER O-glycosylation, GPI anchor transfer, COPII anterograde transport, COPI 448 

retrograde transport, Golgi N-glycosylation, Golgi O-glycosylation, versatile vesicular 449 

transport to destination compartment. We formulated these processes into 123 template 450 

reactions. Using the template reactions, we formulated protein synthesis reactions for all 451 

proteins in the model. Protein-specific information matrix (PSIM) and localization information 452 

for all proteins were downloaded from UniPort55 and the SGD56 database (Supplementary 453 

Table 4). To represent abundance of unpresented proteins that go through ER, we added a 454 

dummy ER protein in the model which uses the same composition as the biomass protein, and 455 

the PTM for dummy ER protein is calculated as the mean protein modification for proteins that 456 

go through ER using the protein abundance from PaxDb18 and PSIM information. Protein in 457 

the biomass was used to represent protein abundance for proteins excluded in the model. The 458 

ratio is rescaled from 1 in original GEM Yeast8 to a lower value 0.3, which was estimated 459 

based on the fact that all proteins in the model taking up roughly 70% of the total proteome 460 

according to the PaxDb database, which accounts for 4.6% unmodeled dummy ER protein. 461 

Detailed model construction and constraints coupling can be found in Supplementary Methods. 462 

 463 
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Model simulation for growth using glucose concentration as the constraint 464 

Since the specific growth rate is integrated into the coupling constraints, we adopted a binary 465 

search method when we simulated growth. For each specific growth rate, we sampled the 466 

glucose concentration until the minimal glucose concentration that can sustain the growth was 467 

found. The glucose concentration was used to calculate import rate using the Michaelis–468 

Menten equation where KM and maximal kcat of glucose transporters were collected from the 469 

literature57–59. As for the glucose transporters which does not have any kcat values, the Vmax data 470 

was used to convert to kcat values with the assumption that the expression levels are comparable 471 

in the collected dataset since they expressed transporter constructs under constitutive promoters 472 

in a yeast glucose-transporter null-mutant58,60,61. The model was set with minimal media and 473 

the dummy protein production was set as the objective. Besides all mentioned basic constraints 474 

in the Supplementary Methods, we added constraints on the fraction of ER membrane proteins 475 

and ER volume to avoid the possibility of an unrealistic ER volume. Due to the requirement of 476 

the linear programming (LP) solver (SoPlex), all constraints were written in a LP file for 477 

solving in each simulation. This method for adding constraints is used in all following 478 

simulations unless otherwise stated.  479 

 480 

Estimation of ‘unit secretory cost’ and ‘direct cost’ for secretory proteins 481 

‘Unit secretory cost’ of synthesizing about ~500 proteins that localize to the cell membrane or 482 

are secreted were estimated using the model. At a specific growth rate of 0.1 h-1, we used 483 

pcSecYeast to produce a sequential small fraction production of those proteins, respectively. 484 

The glucose uptake rate minimization was set as the objective. Using the simulated glucose 485 

uptake rates and the production rates, we could fit the linear equation to get the slope which is 486 

the ‘unit secretory cost’ for each protein. This cost stands for the energetic cost for synthesizing 487 
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the protein, PTM, sorting and even the related cost for the corresponding fraction of the 488 

catalytic machineries in these processes.  489 

 490 

 ‘Direct cost’ accounts for the energetic cost for synthesizing the amino acids, bounded glycan 491 

precursors and enzyme bounded energetic molecules, which was calculated with only the 492 

default GEM constraint including the mass balance and reaction bound, without any enzyme-493 

related constraint. Since this simulation only require any extra constraint, we used the optimize 494 

function and default solver in COBRA toolbox rather than the SoPlex and LP file method.  495 

 496 

Analysis of gene expression versus protein ‘unit secretory cost’ 497 

Absolute transcriptome data for three strains (AAC, MH34 and B184) with different α-amylase 498 

production levels were used for the correlation analysis (Supplementary Table 9)20. Pearson 499 

correlation coefficient was used to assess the correlation of ‘unit secretory cost’ with the 500 

expression levels.  501 

 502 

Simulation of protein misfolding and accumulation 503 

We used CPY as an example to show how the model responds towards misfolded protein 504 

production. CPY was expressed in the model with different levels from the native abundance 505 

towards its 25 fold as reported in the literature26 by constraining its translation flux. In order to 506 

identify the factor causing the accumulation of misfolded protein in ER, we performed the 507 

parameter sensitivity analysis for ERAD capacity, ER volume, ER membrane space, total 508 

secretory machinery capacity and retro-translocation enzyme abundance, respectively. Since 509 

the membrane space and the volume of proteins are positively correlated with the protein 510 

weight62, ER membrane space and ER volume constraints can be converted to proteome 511 

abundance constraints, which can be calculated from the proteome data. Therefore, all these 512 
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parameters can be constrained by an upper limit on the total abundance of the corresponding 513 

proteins. In the meanwhile, we changed the misfolding ratio constraint of CPY by coupling the 514 

flux of misfolding reaction and the translation reaction of CPY. When misfolded protein was 515 

retained in the ER, we used the multiple round reactions of binding Kar2 and Pdi1 to reflect its 516 

occupancy of Kar1 and Pdi1 as reported26,39. The coefficient of this reaction was used to 517 

represent the time for the retention. For the combination of CPY expression levels and 518 

misfolding ratio, we used the binary search as mentioned above to search for the maximum 519 

specific growth rate. The accumulated CPY rate was obtained from the simulated flux under 520 

the found maximum growth rate condition. To reflect the CPY production as close to the in 521 

vivo as possible, we adjusted the N-glycans attached to the N-glycosylation sites of CPY as 522 

reported63. 523 

 524 

Expansion of pcSecYeast to recombinant protein specific models 525 

We expanded pcSecYeast to represent the recombinant protein production by adding the 526 

production and secretion reactions using the same template reactions for the native proteins. 527 

The PTMs, amino acid sequence and leader sequence were collected from the literature. 528 

Detailed information for those proteins and the literature reference can be found in 529 

Supplementary Table 5.  530 

 531 

Model simulation for recombinant protein production 532 

To simulate recombinant protein production, the model was constrained with a certain specific 533 

growth rate, and then the protein production was maximized. SD-2×SCAA medium was used 534 

in the simulations33. All constraints mentioned were added when writing the LP file for solving 535 

by SoPlex. 536 

 537 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.16.464630doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.16.464630
http://creativecommons.org/licenses/by-nc/4.0/


 23 

Protein feature importance analysis 538 

Machine learning was integrated to score the importance of factors. In this study, various 539 

factors (PTMs, amino acid compositions) were used as the input features and the maximum 540 

recombinant protein production rate was used as the target label. We split the created dataset 541 

into a training dataset and testing dataset at the ratio of 80% and 20%, respectively. A random 542 

forest regressor with 10 estimators was used to train the model. Feature importance scores from 543 

the random forest were computed by SHAP (SHapley Additive exPlanations)64.  544 

 545 

Overexpression target prediction for recombinant protein overproduction 546 

Identification of overexpression targets for improving recombinant protein production was 547 

performed using the concept of FSEOF34 but to identify the proteins with increased expression 548 

during the enforcement of recombinant protein production. To be noted here, original FSEOF 549 

searches for the candidate fluxes to be amplified through scanning for those fluxes that increase 550 

with enforced product formation flux under the objective function of maximizing biomass 551 

formation flux, which is under the assumption that there is a tradeoff between growth and target 552 

production. pcSecYeast is much more complex than the default GEM and can better represent 553 

the cell state which the recombinant protein production does not always increase with the 554 

decrease of growth. Besides that, there is metabolic state switch of the fermentation ratio for 555 

energy production. Therefore, to eliminate growth and metabolic state influence, we selected 556 

a small window (0.25h-1-0.3 h-1) for this analysis. At each growth rate in this window, we 557 

maximized the recombinant protein production rate without any constraint on exchange rates. 558 

Proteins with amplificated expression accompanied increased recombinant protein production 559 

were selected as initial overexpression targets. Then, we used several cutoffs to rank the targets 560 

further: 1) for proteins that always increase with the enforcement of the recombinant protein 561 

production with a Pearson correlation score over 0.9, the priority score was set to 1; 2) for 562 
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proteins with priority score 1 and showed 1.3-fold change of the maximum recombinant protein 563 

production state towards the maximum specific growth rate, the priority score was set to 2; 3) 564 

for proteins with priority score 2 and showed a comparable difference towards the reference 565 

PaxDb abundance, which represents the reservation state of the protein abundance in the cell, 566 

the priority score was set to 3; 4) for proteins with priority score 3 and were neither subunits 567 

of complexes nor contain homologs, the priority score was set to 4. Targets with higher priority 568 

scores should be prioritized. Proteins with the priority score 0 in the result indicate those 569 

proteins are not identified as overexpression targets. Based on the criteria, we ranked the targets 570 

and generated an annotated table as result for all eight recombinant proteins (Supplementary 571 

Dataset). For plotting the common targets shared by all eight recombinant proteins analyzed in 572 

this study, we only chose the priority score of 3 and 4 for the analysis. 573 

 574 

Experimental validation  575 

Strains and plasmids 576 

All strains and plasmids used in this study are listed in Supplementary Table 10. Plasmids for 577 

gene overexpression were constructed by insertion of the gene fragment, which was amplified 578 

from the yeast genome then assembled with the expression vector pSPGM1 through Gibson 579 

assembly method. The standard LiAc/SS DNA/PEG method was used for yeast transformation. 580 

 581 

Media and culture conditions 582 

For strain constructions, yeast strains were grown in SD-URA medium at 30 ºC according to 583 

the auxotrophy of the cells. For α-amylase production in shake flasks, yeast strains were 584 

cultured for 96 h at 200 rpm, 30 ºC with an initial OD600 of 0.05 in the SD-2×SCAA medium 585 

containing 20 g/l glucose, 6.9 g/l yeast nitrogen base without amino acids, 190 mg/l Arg, 400 586 

mg/l Asp, 1,260 mg/l Glu, 130 mg/l Gly, 140 mg/l His, 290 mg/l Ile, 400 mg/l Leu, 440 mg/l 587 
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Lys, 108 mg/l Met, 200 mg/l Phe, 220 mg/l Thr, 40 mg/l Trp, 52 mg/l Tyr, 380 mg/l Val, 1 g/l 588 

BSA, 5.4 g/l Na2HPO4 and 8.56 g/l NaH2PO4·H2O (pH=6.0)33.  589 

 590 

α-Amylase quantification 591 

The α-amylase activity was measured using the α-amylase assay kit (Megazyme) with a 592 

commercial α-amylase from Aspergillus oryzae (Sigma-Aldrich) as the standard. Samples were 593 

centrifuged for 10 min at 15,000 g, 4 ºC and the supernatant was used for extracellular α-594 

amylase quantification. 595 

 596 

Code availability 597 

To facilitate further usage, we provide all codes and detailed instruction in GitHub repository: 598 

https://github.com/SysBioChalmers/pcSecYeast. All codes to reproduce figures were also 599 

included in the GitHub repository. 600 

 601 

Data availability 602 

All data used in this study are included in supplementary files and GitHub repository. 603 
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Fig. 1: Overview of components in pcSecYeast. a) Simplified schematic processes involved in 801 

the protein secretion pathway. The process includes protein translation, translocation, 802 

glycosylate, GPI transfer, ERAD and sorting process. The detailed description of all 803 

components and reactions can be found in Supplementary Methods. Transloc: translocation, 804 

NG: N-glycosylation, OG: O-glycosylation, DSB: disulfide bond formation, GPI: 805 

glycosylphosphatidylinositol, ER: endoplasmic reticulum, ERAD: ER-associated degradation, 806 

LDSV: low-density secretory vesicles, HDSV: high-density secretory vesicles, ALPP: alkaline 807 

phosphatase pathway, CPYP: carboxypeptidase Y pathway. b) Subsystems in the secretory 808 

pathway and the number of proteins that are processed in each subsystem. c) Coupling process 809 

in the model. Metabolic part produces energy and precursors such as amino acids, glycans for 810 

enzyme and ribosome synthesis. Enzymes constrain these metabolic reactions. Ribosomes 811 

constrain protein translation. The secretory machinery constrains protein processing in this 812 

pathway. All proteins, including ribosomes are diluted due to growth and degraded due to 813 

misfolding. 814 
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 816 

Fig. 2: Simulated physiological response of S. cerevisiae as a function of the extracellular 817 

glucose concentration. a) Simulated glucose uptake rates, ethanol production rates and specific 818 

growth rates under different extracellular glucose concentrations. Each point is the simulated 819 

result under a certain extracellular glucose condition. b) Specific glucose uptake rate carried 820 

by each glucose transporter. Hxt1 and Hxt3 are two low-affinity glucose transporters, while 821 

Hxt7 is a high-affinity glucose transporter. c) Calculation of secretory costs of different glucose 822 

transporters with the specific glucose uptake rate at input for each extracellular glucose 823 

concentration, unit secretory cost, KM and kcat that are specific to each transporter based on eq. 824 

1 in the text.  825 
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 827 

Fig. 3: Simulation of CPY overexpression. a) Schematic view of different routes for expressed 828 

CPY. b) Reduction of simulated maximum specific growth rate [1/h] due to expression at 829 

certain levels of CPY following different routes. c) Simulations for various CPY expression 830 

levels and misfolding ratios with the constraint for retro-translocation enzymes. 831 
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 833 

Fig. 4: Simulation of recombinant protein production. a) Overview of protein features for eight 834 

recombinant proteins produced by S. cerevisiae. See Supplementary Table 5 for detailed 835 

information. b) Simulation of maximum specific recombinant protein production rate as a 836 

function of specific growth rate. c) Feature importance analysis towards recombinant protein 837 

production. NG: N-glycosylation site; OG:O-glycosylation site; DSB: disulfide bond number; 838 

trans: transmembrane domain; one letter stands for amino acid. Blue color stands for negative 839 

impact of having this feature towards recombinant protein production rate, while red color 840 

indicates a positive impact. 841 
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 843 

Fig. 5: Prediction and comparison of overexpression targets for improving recombinant protein 844 

production. a) Adapted FSEOF method for target identification. b) Overview of the predicted 845 

overexpression targets for eight recombinant proteins grouped by pathways. c) Comparison of 846 

predicted targets for the eight recombinant proteins. 847 
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Fig. 6: Validation of predicted overexpression targets for α-amylase overproduction. a) Protein 850 

localization of the predicted overexpression targets. Yeast compartmentalized figure source: 851 

SwissBioPics. b) Validation result of predicted secretory targets. c) Validation result of 852 

predicted metabolic targets. *: P < 0.05, **: P < 0.01, ***: P < 0.001. GNA1 (Glucosamine-6-853 

phosphate acetyltransferase); PCM1 (PhosphoaCetylglucosamine mutase); CYS4 854 

(Cystathionine beta-synthase); CWH41 (Processing alpha glucosidase I); OCH1 855 

(Mannosyltransferase of the cis-Golgi apparatus); MNS1 (Alpha-1,2-mannosidase); 856 

USO1(Intracellular protein transport protein from ER to Golgi); SEC65 (Signal recognition 857 

particle subunit); ERV2 (FAD-linked sulfhydryl oxidase); IRE1 (Serine/threonine-protein 858 

kinase/endoribonuclease); ERO1 (Endoplasmic oxidoreductin-1); SWA2 (Auxilin-like clathrin 859 

uncoating factor); VPS1 (Vacuolar protein sorting-associated protein ); ERV29 (ER-derived 860 

vesicles protein); PEP12 (Syntaxin); PDI1 (Protein disulfide-isomerase); SEC16 (COPII coat 861 

assembly protein). 862 
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