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Abstract

Eukaryal cells are used for the production of many recombinant pharmaceutical proteins,
including several of the current top-selling products. The protein secretory pathway in eukaryal
cells is complex and involves many different processes such as post-translational modifications,
translocation, and folding. Furthermore, recombinant protein production competes with native
secretory proteins for the limited energy and proteome resources allocated to the protein
secretory pathway. Due to the complexity of this pathway, improvement through metabolic
engineering has traditionally been relatively ad-hoc; and considering the industrial importance
of this pathway, there is a need for more systematic approaches for novel design principles.
Here, we present the first proteome-constrained genome-scale protein secretory model of a
eukaryal cell, namely for the yeast Saccharomyces cerevisiae (pcSecYeast). The model
contains all key processes of this pathway, i.e., protein translation, modification, and
degradation coupled with metabolism. The model can capture delicate phenotypic changes
such as the switch in the use of specific glucose transporters in response to changing
extracellular glucose concentration. Furthermore, the model can also simulate the effects of
protein misfolding on cellular growth, suggesting that retro-translocation of misfolded proteins
contributes to protein retention in the Endoplasmic reticulum (ER). We used pcSecYeast to
simulate various recombinant proteins production and identified overexpression targets for
different recombinant proteins overproduction. We experimentally validated many of the
predicted targets for a-amylase production in this study, and the results show that the secretory

pathways have more limited capacity than metabolism in terms of protein secretion.

Key words: o-amylase, genome-scale modeling, protein secretion, proteome constraints,

rational design
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Introduction

The protein secretory pathway is an important pathway for eukaryal cells. About 30% of native
proteins are processed by the secretory pathway in eukaryotes'. The secretory pathway spans
several different organelles carrying out peptide translocation, folding, ER-associated protein
degradation (ERAD), sorting processes as well as different post-translational modifications
(PTMs), ensuring proper protein functionality?. There are around 200 proteins engaged in the
protein secretory pathway in Saccharomyces cerevisiae, hence responsible for these functions.
The unique modification profile of each secretory protein dictates specific combinations of
multiple processes required for their production and secretion, which makes the secretory
pathway a complicated production line and therefore complex to describe. Unraveling the
processing and energetic costs for proteins passing through the secretory pathway and how the
cell distributes energy and enzymes to process these proteins is therefore desirable, as this

would facilitate a better understanding of protein secretion.

S. cerevisiae is used as the expression system for around 15% of all protein-based
biopharmaceuticals for human use on the market’. It has also been used as an important model
organism for studying this important pathway, and many discoveries made in yeast translate
directly to other eukaryotes such as Chinese Hamster Ovary (CHO) cells that are also widely
used for the production of protein-based biopharmaceuticals*®. Since the early days of
recombinant protein production in the 1980s, there have been many attempts to improve the
protein expression and secretion levels by removing bottlenecks in the protein modification
and secretion pathways®. However, most of these attempts were usually evaluated for one
recombinant protein, and often do not work for improved expression of another protein.
Furthermore, the protein yield has typically been much lower than the theoretically estimated

range’®. There is therefore much interest in developing a rational design tool for optimization
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of the secretory pathway for any recombinant protein, in line with what has been developed for

metabolism in many cell factories®!°.

There are several published frameworks or models for describing protein secretion in yeast and
other eukaryotes, but they are either not able to perform simulations or contain only a partial
description of the protein secretion pathway>!!~'4. Besides, even for a recently published
secretory model for mammalian cells, the model is solely a basic extension of a genome-scale
metabolic model (GEM), which is not able to simulate how native secretory proteins compete
with recombinant proteins targeted to pass through this pathway!3. We, therefore, reconstructed
a detailed proteome-constrained genome-scale protein secretory model for S. cerevisiae
(pcSecYeast), which contains the description of the complete protein secretion pathway and
can perform multiple kinds of simulations including the competition of recombinant proteins
with native secretory proteins. The model also enables calculation of the energetic cost for
native secretory proteins and hereby investigates how misfolded proteins cause growth
reduction. We used the model to evaluate the secretion of various recombinant proteins and
identify engineering targets for improving their production. The model represents a significant
advancement in terms of enabling the more rational design of yeast cells to be used for
recombinant protein production, but it also provides a scaffold for building similar models for

other eukaryal cells, e.g., CHO cells.

Results

Construction of pcSecYeast

We first updated the latest yeast GEM Yeast8!®> by adding several reactions to enable the
synthesis of precursors required in the secretory pathway such as glycosylphosphatidylinositol

(GPI) anchor and glycans (Supplementary Table 1). Similar to the metabolic-expression (ME)
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90  model for Escherichia coli'® and S. cerevisiae'’, protein expression, translation, folding, and
91  degradation were then added for all proteins in the model. Besides that, for proteins processed
92  in the secretory pathway, we added reactions detailly describing protein processing including
93  translocation, PTM, folding, misfolding and degradation (Fig. l1a). Hereby the model can
94  describe detailed processes from nascent peptides in the cytosol to the final mature form of
95  proteins in their destination compartment for all proteins in the model. Therefore, pcSecYeast
96  adds a much more detailed description of protein translocation and processing compared with
97  those ME models. To our knowledge, pcSecYeast represents the first model to describe close
98 links between metabolism, protein translation, post-translational protein processing, protein
99  degradation, and protein secretion in yeast and can be easily adapted to any cell. The
100  components that participate in the protein secretory pathway are involved in 12 subsystems
101  (Fig. 1b). Overall, pcSecYeast accounts for 1,639 protein-coding genes and approximately 70%
102 of the total proteome mass according to PaxDb!'® (Supplementary Table 2). Details of the
103 reconstruction process can be found in the Supplementary Methods.
104
105  As an extension of Yeast8, pcSecYeast includes default constraints such as mass conservation
106  and flux bounds on metabolic reactions. Besides them, we introduced coupling constraints to
107  relate protein synthesis with metabolism (Supplementary Methods). The metabolic part in the
108  model supplies the substrate and energy for the protein-related part such as ribosome and
109  enzyme synthesis, while the metabolite conversion process in the metabolic part is catalyzed
110 by enzyme complexes synthesized in the protein-related part (Fig. 1c). Protein synthesis is
111  constrained by the synthesis of ribosome and other machineries such as secretory machinery
112 complexes (Fig. 1c). Each flux of enzymatic reaction in the model is constrained at the maximal
113 rate of the associated enzyme, which is a function of turnover rate (kca) and the enzyme

114 concentration. Thus, we can simulate the minimum protein levels which sustain the metabolic
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115  state, i.e., the proteome-constrained metabolic state. This means that the proteome composition
116  inpcSecYeast is not a fixed amount of average amino acid compositions as in the default GEMs,
117  but a dynamic changing composition of enzymes which reflects the cell state at a certain
118  condition. Thus, the model enables simulation of resource allocations in the cell under different
119  conditions, such as how the cell would balance recombinant protein with native secretory
120  proteins in the recombinant protein production and how the cell would optimize its enzyme
121  profile among various environmental conditions.

122

123 Secretory cost initiates the switch of hexose transporters

124 Transporters are one important group of proteins that pass through the secretory pathway. Yeast
125  has multiple hexose transporters with diverse kinetics, which are expressed at different levels
126  under different extracellular glucose concentrations'®. To investigate how the model can
127  simulate the expression and processing of glucose transporters, we utilized the model to
128  simulate yeast growth under different glucose concentrations (Methods). As a result, the model
129  captured the metabolic shift referred as the Crabtree effect, i.e., the production of ethanol at
130  high specific growth rates (Fig. 2a). Furthermore, the model correctly predicted a switch from
131  the predominant use of the high-affinity glucose transporter (Hxt7) to low-affinity glucose
132 transporters (Hxt3 and Hxtl) at high glucose concentrations (Fig. 2b), which is consistent with
133 the experimental observation that HX73 and HXT1 genes are only expressed at high specific
134 growth rates'. This is explained by the difference in kinetics of the different sugar transporters,
135 i.e., keat and Kwm, and therefore the secretory cost for synthesizing and processing glucose
136  transporters that can support a given glucose uptake flux. Thus, at low specific growth rates
137  where there is a low glucose uptake rate, the cells express a high-affinity transporter with a low
138 kearin a small amount, but to support a high glucose uptake rate it is necessary to express a large

139  amount of glucose transporters, then the low-affinity transporters with high kca values are


https://doi.org/10.1101/2021.10.16.464630
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.16.464630; this version posted October 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

140  preferred. This is illustrated by eq. 1, which specifies the secretory cost for a glucose transporter
141  to sustain a given glucose uptake rate can be calculated as the ‘unit secretory cost” multiplied
142 by the abundance. The protein abundance of the transporter [E;] is determined by the glucose
143 uptake rate V., Km and extracellular glucose concentration [S] according to the Michaelis-
144  Menten equation. The ‘unit secretory cost’ is defined as the cost required for translation,
145  modification, and secretion of one mol specific protein, which can be predicted by pcSecYeast
146  (Methods). We predicted the ‘unit secretory costs’ for all native secretory proteins in S.
147  cerevisiae (Supplementary Table 3) and found that Hxtl and Hxt3 have a smaller ‘unit
148  secretory cost’ compared with Hxt7, suggesting that synthesizing one mol Hxtl and Hxt3
149  would pose less energy burden on the cell. This is partly because Hxtl has fewer N-
150  glycosylation modification sites than Hxt7 (Supplementary Table 4). Combining with the
151  glucose uptake rate, extracellular glucose concertation, ke, and Km, we can calculate the
152 secretory cost for each glucose transporter from the eq.1 (Fig. 2c). The result suggests that with
153  anincrease in the glucose concentration, utilization of Hxt1 and Hxt3 would gradually gain the
154  advantage over Hxt7 (Fig. 2c). Parameter sensitivity analysis of Hxtl showed that even if we
155  set the same kcar for Hxtl and Hxt7, Hxtl would still be favorable for glucose uptake in the
156  model simulation at maximum growth rate (Supplementary Figure 1). This demonstrates that
157  the contribution of the low ‘unit secretory cost’ of Hxtl is critical. Our model hereby predicts
158  that the switch of different affinity glucose transporter is a resource optimization strategy of

159  the cell to adapt to limited resources.

v
glc
15T €q. 1

160  Secretory cost; = unit secretory cost; * [E;] = unit secretory cost; * .
catiro—
[ST+K M,

161
162  Yeast suppresses expression of high-cost secretory proteins under secretion pressure
163  The protein secretory pathway is concurrently processing hundreds of proteins that compete

164  for limited resources such as energy, precursors, and components of the secretory machinery.
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165 It has been reported that recombinant mammalian cells repress the expression of native
166  energetically expensive secretory proteins to save limited resources for growth and
167  recombinant protein production!®. With our proteome allocation model of the secretory
168  pathway, we can perform not only the same calculation of the secretory costs of all 497 native
169  secretory and cell membrane proteins as done for mammalian cells'® (denoted as ‘direct cost’
170  in the Supplementary Figure 2a) but also a more accurate analysis of the costs including the
171  associated costs for corresponding shares of catalyzing enzymes and secretory machineries
172 required for processing the protein besides the cost for itself (‘unit secretory cost’ in
173 Supplementary Figure 2a). By correlating ‘unit secretory cost’ with ‘direct cost’, we found that
174 the ‘unit secretory cost’ calculated in pcSecYeast is overall 3.8-fold higher compared with the
175  “direct cost’ (Supplementary Figure 2a). Outliers in the correlation of these two kinds of cost
176  calculation are mainly caused by the unusual protein features such as the 52 N-glycosylation
177  sites annotated for the protein RAX2 or long amino acid sequences for large proteins TORI
178  and TOR2 (Supplementary Figure 2a). To evaluate if there is reduced expression of the proteins
179  that are costly to process by the secretory pathway as observed in mammalian cells, we
180  correlated the calculated ‘unit secretory costs’ with the mRNA levels of 497 native secretory
181  proteins for three strains with different levels of recombinant a-amylase production that were
182  characterized in a recent study?’. We observed a significant negative correlation (P value < le-
183 &) between unit secretory costs and mRNA levels of native secretory proteins in all three strains
184  (Supplementary Figure 2b-c), suggesting that the cells suppress the expression of proteins that
185  are expansive to secrete when the secretory pathway is under pressure to process a recombinant
186  protein. Moreover, we found that the negative correlations are stronger in the strains with
187  higher a-amylase production levels (MH34 and B184) compared with that in the strain with a
188  lower a-amylase production level (AAC) (Supplementary Figure 2¢c, P value = 0.004).

189  Therefore, the suppression level for costly native secretory proteins depends on the
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190  recombinant protein production levels, suggesting that the yeast cells respond accordingly to
191  the level of secretion stress.

192

193 Misfolded protein slows maximum growth

194  Protein synthesis and secretion is an error-prone process. Mutation in the sequence, errors
195  during the synthesis or environmental insults cause the newly synthesized protein to misfold?!.
196  Misfolded proteins are prioritized to be eliminated rapidly by the ERAD pathway but may
197  retain and accumulate in the ER, and could trigger cell stress (Fig. 3a)**>*. Here, we used our
198  model to simulate the ER tolerance to misfolded proteins. We expanded pcSecYeast to include
199  the production of vacuolar carboxypeptidase Y (YMR297W, CPY), since CPY and its derived
200 misfolded form CPY* are processed in the secretory pathway, and widely used in the
201  elucidation of the mechanisms of ER quality control and ERAD of misfolded proteins®. By
202  modifying misfolding ratio parameter in the model, we can simulate the misfolding levels of
203  CPY. A misfolding ratio of 1 means that all the CPY protein molecules are misfolded and
204  cannot be targeted to the Golgi for further processing as the reported misfolded form CPY* in
205  literature®s.

206

207  Here, we used the maximum growth rate reduction to indicate the fitness cost for CPY going
208  through different routes: 1) all correctly folded and targeted to the vacuole without misfolding;
209  2) misfolded in different ratios and some targeted for ERAD; 3) all of them misfolded, retained
210  inthe ER at different times. Our simulations showed that misfolding imposes more fitness cost
211  compared with correct folding; that retention imposes more fitness cost compared with ERAD;
212 and that retention in the ER for a long time would also impose more fitness cost. We predicted
213 that there is about 1.9% maximum specific growth reduction when expressing 0.46 mg native

214  CPY without misfolding (0.46 mg representing 0.1% of the total proteome, Fig. 3b), which is
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215  comparable to the measurement for expression of a cytosol wildtype Yellow Fluorescent
216  Protein (YFP) where a 1.4% growth reduction was observed for expressing YFP at the same
217  abundance?’. Compared with cytosolic YFP, CPY requires extra energy and allocation of
218  resources in the secretory pathway, and this can explain the slightly higher predicted growth
219  reduction for expressing CPY. The growth reduction for expressing CPY proteins all in
220  misfolded form is 2.2%-3.5% (Fig. 3b), which is also comparable with the measurement of
221  expressing the mostly misfolded cytosolic YFP at the same level (up to 3.2% growth
222 reduction)?’. The growth reduction measured for YFP in the literature is a combination of
223 fitness cost caused by the misfolding itself and unfolded protein response in the cytosol (UPR-
224  cyto) triggered by the accumulation of misfolded proteins. In the model simulations, we only
225  considered the fitness cost for misfolding and degradation of CPY. This also suggests that ER
226  misfolded protein imposes more fitness cost compared with cytosolic misfolded protein when
227  they are expressed at the same level. If the misfolded proteins are degraded by ERAD and the
228  proteasome, then amino acids and modification precursors such as glycans can be recycled.
229  However, if misfolded proteins are retained in the ER, they would compete with unfolded
230  protein for limited ER quality control proteins especially Kar2 and Pdil1?’, which would further
231  increase the ER burden. We investigated the simulated various protein levels and found that
232 thelevels of Kar2 and Pdil increase significantly when CPY is retained (Supplementary Figure
233 3), which suggests that the retained protein would drain Kar2 and Pdil and therefore compete
234 with native proteins processed in the secretory pathway. In addition, we evaluated the ER redox
235  stress by comparing the transport of glutathione (GSH) and glutathione disulfide (GSSG) and
236  found that the flux of GSSG export from the ER is significantly higher when misfolded protein
237  is retained in the ER (Supplementary Figure 4), suggesting the higher redox unbalance in the
238  ER at this state.

239

10
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240  Furthermore, we performed analysis to identify parameters leading to misfolded protein
241  accumulation in ER (Supplementary Figure S5a-d, Fig. 3c) and found that when retro-
242  translocation enzymes (Sec61, DoalO and Hrd10) are constrained, the excessive misfolded
243 CPY would be retained and accumulated in ER if CPY is expressed at high levels, causing a
244  steeper decrease in the specific growth rate (Fig. 3c). Other parameters such as ERAD capacity,
245  ER volume, ER membrane space and secretory machinery capacity were not able to show the
246  retention and accumulation phenotype when constrained in the model (Supplementary Figure
247  5a-d). We found that the retention of the misfolded protein phenotype is alleviated when
248  removing the constraint of retro-translocation enzymes, suggesting the importance of the retro-
249  translocation towards handling of misfolded proteins (Supplementary Figure 5e). Therefore,
250  we can use the pcSecYeast model with the extra constraint of retro-translocation enzymes to
251  mimic state of misfolded protein accumulation in ER (Fig. 3c). The plateau in the CPY
252  degradation rate demonstrates that there is a maximum capacity of the ERAD pathway and
253  therefore also a tolerance limit for misfolded CPY.

254

255  Protein features impact recombinant protein production

256  Different secretory proteins utilize different components of the secretory pathway to be
257  processed based on their amino acid composition and PTMs. To identify the factors that
258 influence secreted protein levels, we expanded pcSecYeast to describe the production of eight
259  different recombinant proteins by adding the corresponding recombinant protein production
260 and secretion reactions. These eight recombinant proteins differ in protein size and PTMs
261  (detailed information in Supplementary Table 5). Note that hemoglobin folds with heme as a
262  prosthetic group, which requires balancing of heme biosynthesis and its recombinant protein
263  production (Fig. 4a)*®. We generated eight specific models to simulate the maximum

264  recombinant protein secretion under various growth rates. We observed that the maximum

11
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265  production rates were achieved at medium-specific growth rates for all the studied recombinant
266  proteins (Fig. 4b), consistent with previous reports of bell shape kinetics for recombinant

2931 Insulin precursor (IP) and a-

267  protein production in S. cerevisiae and Pichia pastoris
268  amylase production were reported as growth dependent®2, but only for the investigation of a

269  more narrow interval of specific growth rates (0.05-0.2 h'"), which is consistent with the model

270  simulations. At high specific growth rates, there is a clear drop of production rate for all
271  recombinant proteins (Fig. 4b), which clearly shows that at high specific growth rates the cell
272 gives priority of its limited capacity of the secretory pathway to native proteins. It is important
273 to note that a default GEM can only describe a linear negative correlation of recombinant
274  protein production with increasing specific growth rates (Supplementary Figure 6).
275  Furthermore, the fact that the simulated a-amylase production by the default GEM is around
276 1,000 times higher than the experimental values®*® even with the measured glucose uptake rate
277  as the constraint highlights the huge gaps in default GEM for recombinant protein simulation
278  (Supplementary Figure 6).

279

280  Furthermore, we investigated which protein feature influences recombinant protein production
281  the most. We found that PTMs have an average higher impact on recombinant protein
282  production compared with amino acid composition (Fig. 4c, Supplementary Table 6). Among
283  all simulated features, O-glycosylation and N-glycosylation have larger negative impacts on
284  recombinant protein production, which suggests that having more glycosylation sites would
285  cause more burden for the cell (Fig. 4c).

286

287  FSEOF identifies overexpression targets for recombinant protein overproduction

288  Identifying engineering targets is crucial to improve the specific recombinant protein

289  production rate. Predicting gene overexpression targets is more difficult and complex than

12
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290  predicting gene deletion targets since amplification of gene expression does not always
291  increase the metabolic fluxes**. To fully validate the predictive power of pcSecYeast, we used
292  the generated recombinant protein-specific models to predict overexpression targets for
293  increasing the recombinant protein production. Target prediction was performed using adapted
294  Flux Scanning based on Enforced Objective Function (FSEOF)**, where the model was
295  constrained with a stepwise decrease in the specific growth rate, and recombinant protein
296  production was maximized. The original FSEOF method selects fluxes that increase with the
297  enforcement of recombinant protein production in the GEM simulations and identifies those
298  reactions and associated genes as overexpression targets. Since we can compute the protein
299  levels from the pcSecYeast simulations, we can directly select proteins, as overexpression
300 targets, that having increased levels result in increased recombinant protein production (Fig.
301  5a & Supplementary Dataset). The predicted overexpression targets were ranked for priority
302  and compared among the eight recombinant proteins (Fig. Sb&c). We predicted around 70
303  overexpression targets for each of the eight recombinant proteins with the majority of them
304  (70%) being in the secretory pathway and 30% in the metabolic part of the model (Fig. Sb&c).
305  Those targets are more likely shared by recombinant proteins when they have the same PTMs.
306  For example, targets in the O-glycosylation pathway are shared by O-glycosylated human-
307  transferrin (HTF) and human granulocyte colony stimulating factor (hGCSF) (Fig. 5c¢).
308  Surprisingly, even though insulin precursor (IP) contains no N-glycosylation site, some
309  predicted overexpression targets are related to N-glycosylation. This is explained by the fact
310  that N-glycosylation is required for some secretory machinery proteins such as Pdil which
311  catalyzes disulfide bond formation in IP production. By removing the disulfide bonds in IP, we
312 found that those N-glycosylation related genes were not predicted as targets (Supplementary
313  Dataset). There are 21 predicted targets shared by all the eight proteins, which are mainly

314  involved in sorting and ER-Golgi transport, suggesting the general importance of these

13
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315  processes in protein secretion (Fig. 5c). We also showed that hemoglobin is the only
316  recombinant protein with multiple unique targets in metabolism, especially for heme
317  production, which demonstrates that metabolism is equally important along with the secretory
318  pathway for improving hemoglobin production. For all the other recombinant proteins, the
319  secretory pathway is more limiting according to the prediction.

320

321  Experimental validation for predicted a-amylase targets

322 We next validated the predicted overexpression targets for improving a-amylase production.
323  We divided the predicted targets for a-amylase into different groups by their functions and
324  chose 17 targets to validate from all subsystems. There were 14 targets in the secretory pathway
325  spanned in translocation, folding, protein quality control, and sorting subsystems, and three
326  targets in the metabolic part of the model, which are related to N-glycan synthesis and amino
327  acid synthesis (Fig. 6a).

328

329  We next sought to test if overexpression of the predicted secretory targets individually could
330  improve the a-amylase production rate. Among them, the glucosidase Cwh412°, COPII-coated
331  vesicles proteins Erv293°, Sec16%¢ and protein disulfide isomerase Pdil3>*7 have already been
332 validated, i.e., overexpression of these proteins can improve o-amylase production and
333 secretion.

334

335  As for the remaining ten secretory targets, we performed individual gene overexpression
336  experiments for validation, and found that individual overexpression of SEC65, MNS1, SWA2,
337  ERV2and EROI significantly increase the a-amylase production rates by different levels (1.32
338  to 2.2-fold) (Fig. 6b, Supplementary Table 7). Sec65 is one out of six subunits of the signal

339  recognition particle (SRP), which is involved in protein targeting to the ER38. Overexpression
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340  of SEC65 would be anticipated to increase the SRP-dependent co-translational translocation,
341  which would benefit a-amylase translocation from cytosol to ER. Mnsl is involved in folding
342  and ERAD, which is responsible for the removal of one mannose residue from a glycosylated
343  protein. a-amylase contains multiple N-glycosylation sites, and therefore would be benefited
344  from MNSI overexpression from facilitated proper folding. EROI encodes a thiol oxidase
345  required for oxidative protein folding in the ER and provides Pdil with oxidizing equivalents
346  for disulfide bond formation®®. We observed that overexpression of ERO! also has a positive
347  effect on a-amylase production (2-fold). Besides, overexpressing FROI was able to enhance
348  disulfide-bonded human serum albumin (HSA) secretion in Kluyveromyces lactis*® and single-
349  chain T-cell receptors (scTCR) and single-chain antibodies (scFv) secretion in S. cerevisiae*'.
350  Therefore, EROI might be considered as a generic target for secretory protein production.
351  SWA2 is important for vacuole sorting, here we also show that by overexpressing this protein,
352  there is enhancement towards a-amylase production rate (Fig. 6b).

353

354  From three metabolic gene targets, only overexpression of CYS4 led to a significant increase
355  (2.14-fold) of a-amylase productivity (Fig. 6¢). Cys4 (Cystathionine beta-synthase) is involved
356  in cysteine synthesis. Comparing the amino acid composition of a-amylase with the average
357 amino acid composition of S. cerevisiae, we identified that there is a 9-fold enrichment for
358  cysteine in a-amylase than in the yeast proteome in general (Supplementary Table 8), which
359  explains why overexpression of CYS4 drastically increases the a-amylase production rate. The
360  other two metabolic targets are Gnal (Glucosamine-6-phosphate acetyltransferase) and Pcml
361  (PhosphoaCetylglucosamine mutase), which are related to the synthesis of N-glycosylation
362  precursor N-linked oligosaccharides. Overexpression of those two genes does not have a
363  significant increase in the a-amylase production rates, which suggests that N-glycosylation

364  precursor synthesis may not be the bottleneck for a-amylase production.
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365

366  In total, for all the chosen metabolic targets, 1/3 were validated as positive targets, while for
367 identified targets in the secretory pathway, the accuracy was 9/14. Besides the higher accuracy
368 in the secretory targets compared with metabolic targets, FSEOF gives more targets in the
369  secretory pathway even though the fraction of metabolic enzymes in the model is much more
370  than the secretory component. This may give us a hint that for recombinant protein secretion,
371  the secretory pathway is more likely to be the bottleneck, and these results also demonstrate
372 the value of the presented mathematical model for dissecting and systematic analysis of the
373  role of complex protein secretory pathway in recombinant protein production and strain
374  development.

375

376  Discussion

377  In this study, we presented a genome-scale model of yeast that integrates metabolism, protein
378  translation, protein post-translational-modification, ERAD and sorting processes. The model
379  enables the calculation of ‘unit secretory cost’ for any protein that is processed by the secretory
380  pathway. We have shown that the model can correctly predict the switch from the use of high-
381  affinity to low-affinity glucose transporter as a result of resource optimization (Fig. 2). With
382  the secretory cost calculation and reported transcriptome data, we also detected that upon
383  expression of a recombinant protein which is processed by secretory pathway, yeast optimizes
384  the limited secretory capacity by down-regulating expression of secretory proteins that are
385  expensive to process (Supplementary Figure 2). These two simulations suggest that the cell
386  allocates its limited resources by an optimization strategy, which can be accomplished through
387  regulatory networks that have been tuned through the long evolutionary of yeast upon

388  extracellular and intracellular environments** 4.

389
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390  We next used the model to simulate protein misfolding and retention of CPY and hereby
391  identified that there is a certain ER tolerance to the misfolded protein (Fig. 3). Parameter
392 sensitivity analysis showed the importance of retro-translocation in ER stress. This suggests
393  that increasing the level of retro-translocation may alleviate the ER stress caused by the
394  retention of misfolded protein. Since quality control and ERAD pathways are highly conserved
395  between yeast and higher eukaryotes, this may indicate targets for treating a number of human

396  diseases related to misfolded protein accumulation such as Alzheimer’s and Parkinson’s#6-43,

397  which has been recently reported as therapeutic interventions*->°,

398

399  Rational design for recombinant protein production is a crucial task due to the importance of
400 recombinant protein market share and importance, but a very difficult task due to the
401  complexity of the secretory pathway. pcSecYeast serves as a platform for the rational design
402  of system-level engineering targets for recombinant protein production (Fig. 5 & Fig. 6).
403  Besides the experimentally validated the predicted engineering targets for the production of a-
404 amylase (Fig. 6), we also noticed the consistence of the predicted targets for other recombinant
405 proteins with literature reports, such as Hem2, Hem3 and Heml2 for hemoglobin

28,51

406  production*®>'. We also confirmed that even though Hem4 is also in the heme synthesis
407  pathway, this is not a rate-limiting step in the heme synthesis®!. According to the priority rank
408  from the model prediction, Hem4 has lower priority compared with other proteins such as
409  Hem?2 and Hem3. In addition, for targets that were predicted with non-significant impact when
410  overexpressed, we found previous studies to report similar results. For example,
411  overexpressing vacuolar sorting protein Secl5 and Sec4 has been shown to have no positive

412  impact on a-amylase production®® (Supplementary Dataset).

413
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414  To be noted here, our model captures most of the secretory processes, but currently exclude
415  some processes such as Endosome and Golgi-associated degradation pathway (EGAD)>?, the
416  unfolded protein response and other signaling and regulatory networks>?. Therefore, including
417  those processes could potentially increase the prediction accuracy in particular when it comes
418  to the dynamic aspects of protein secretion. Besides, we simplified some processes to perform
419  the simulation, which would also introduce some uncertainties, for example, different types of
420  glycans and glycoforms can exist for N-glycosylation>*. However, modifications to incorporate
421  these processes in the model will be relatively easy in case there is a need to study specific
422  proteins where these processes are important.

423

424 In conclusion, we present pcSecYeast as a first genome-scale model which allows systematic
425  modeling of the protein secretory pathway and its interaction with metabolism and gene
426  expression in yeast. This model enables the first time to identify engineering targets for
427  recombinant protein production that can be validated experimentally, and it helps to test the
428  various hypothesis in silico for specific protein overexpression. With this new advancement,
429  we expect that this kind of powerful genome-scale secretory model could also be developed
430  for other recombinant protein producing cells, which will entail a fully in silico hypothesis
431  generation and identification of cell engineering targets for strain development.

432

433  Methods and materials

434  Construction of pcSecYeast and constraint-based analysis

435  We reconstructed pcSecYeast, which accounts for cell metabolism and protein synthesis
436  processes. Detailed instruction can be found in Supplementary Methods. The reconstruction is
437  based on the latest yeast GEM, Yeast8.3.5'. Firstly, we refined all protein PTM precursors

438  synthesis/secretion reactions in the model, such as dolichol synthesis for N-glycosylation, GPI
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439  anchor synthesis for GPI modification (Supplementary Table 1). Missing reactions in those
440  precursor synthesis pathways with corresponding GPRs and necessary transport reactions were
441  added into the model for gap-filling.

442

443  We split all reversible enzymatic reactions into forward and reverse reactions, and also split
444  reactions catalyzed by isozymes into multiple identical reactions with various isozymes.
445  Besides that, we formulated protein synthesis reactions for all proteins in the model. To
446  facilitate the reconstruction process, the protein synthesis and secretion were divided into 12
447  different processes: protein translation, protein translocation, ER N-glycosylation, disulfide
448  bond formation, ER O-glycosylation, GPI anchor transfer, COPII anterograde transport, COPI
449  retrograde transport, Golgi N-glycosylation, Golgi O-glycosylation, versatile vesicular
450  transport to destination compartment. We formulated these processes into 123 template
451  reactions. Using the template reactions, we formulated protein synthesis reactions for all
452  proteins in the model. Protein-specific information matrix (PSIM) and localization information
453  for all proteins were downloaded from UniPort™ and the SGD*® database (Supplementary
454  Table 4). To represent abundance of unpresented proteins that go through ER, we added a
455  dummy ER protein in the model which uses the same composition as the biomass protein, and
456  the PTM for dummy ER protein is calculated as the mean protein modification for proteins that
457  go through ER using the protein abundance from PaxDb'® and PSIM information. Protein in
458  the biomass was used to represent protein abundance for proteins excluded in the model. The
459  ratio is rescaled from 1 in original GEM Yeast8 to a lower value 0.3, which was estimated
460  based on the fact that all proteins in the model taking up roughly 70% of the total proteome
461  according to the PaxDb database, which accounts for 4.6% unmodeled dummy ER protein.
462  Detailed model construction and constraints coupling can be found in Supplementary Methods.

463
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464  Model simulation for growth using glucose concentration as the constraint

465  Since the specific growth rate is integrated into the coupling constraints, we adopted a binary
466  search method when we simulated growth. For each specific growth rate, we sampled the
467  glucose concentration until the minimal glucose concentration that can sustain the growth was
468  found. The glucose concentration was used to calculate import rate using the Michaelis—
469  Menten equation where Km and maximal kcae of glucose transporters were collected from the
470  literature>’=>°. As for the glucose transporters which does not have any kca values, the Vimax data
471  was used to convert to kcae values with the assumption that the expression levels are comparable
472  inthe collected dataset since they expressed transporter constructs under constitutive promoters
473 in a yeast glucose-transporter null-mutant>®*®!, The model was set with minimal media and
474  the dummy protein production was set as the objective. Besides all mentioned basic constraints
475  in the Supplementary Methods, we added constraints on the fraction of ER membrane proteins
476  and ER volume to avoid the possibility of an unrealistic ER volume. Due to the requirement of
477  the linear programming (LP) solver (SoPlex), all constraints were written in a LP file for
478  solving in each simulation. This method for adding constraints is used in all following
479  simulations unless otherwise stated.

480

481  Estimation of ‘unit secretory cost’ and ‘direct cost’ for secretory proteins

482  ‘Unit secretory cost’ of synthesizing about ~500 proteins that localize to the cell membrane or
483  are secreted were estimated using the model. At a specific growth rate of 0.1 h™!, we used
484  pcSecYeast to produce a sequential small fraction production of those proteins, respectively.
485  The glucose uptake rate minimization was set as the objective. Using the simulated glucose
486  uptake rates and the production rates, we could fit the linear equation to get the slope which is

487  the ‘unit secretory cost’ for each protein. This cost stands for the energetic cost for synthesizing
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488  the protein, PTM, sorting and even the related cost for the corresponding fraction of the
489  catalytic machineries in these processes.

490

491 ‘Direct cost’ accounts for the energetic cost for synthesizing the amino acids, bounded glycan
492  precursors and enzyme bounded energetic molecules, which was calculated with only the
493  default GEM constraint including the mass balance and reaction bound, without any enzyme-
494  related constraint. Since this simulation only require any extra constraint, we used the optimize
495  function and default solver in COBRA toolbox rather than the SoPlex and LP file method.
496

497  Analysis of gene expression versus protein ‘unit secretory cost’

498  Absolute transcriptome data for three strains (AAC, MH34 and B184) with different a-amylase
499  production levels were used for the correlation analysis (Supplementary Table 9)?°. Pearson
500  correlation coefficient was used to assess the correlation of ‘unit secretory cost’ with the
501  expression levels.

502

503  Simulation of protein misfolding and accumulation

504  We used CPY as an example to show how the model responds towards misfolded protein
505  production. CPY was expressed in the model with different levels from the native abundance
506  towards its 25 fold as reported in the literature?® by constraining its translation flux. In order to
507  identify the factor causing the accumulation of misfolded protein in ER, we performed the
508  parameter sensitivity analysis for ERAD capacity, ER volume, ER membrane space, total
509  secretory machinery capacity and retro-translocation enzyme abundance, respectively. Since
510  the membrane space and the volume of proteins are positively correlated with the protein
511  weight®?, ER membrane space and ER volume constraints can be converted to proteome

512  abundance constraints, which can be calculated from the proteome data. Therefore, all these
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513  parameters can be constrained by an upper limit on the total abundance of the corresponding
514  proteins. In the meanwhile, we changed the misfolding ratio constraint of CPY by coupling the
515  flux of misfolding reaction and the translation reaction of CPY. When misfolded protein was
516  retained in the ER, we used the multiple round reactions of binding Kar2 and Pdil to reflect its
517  occupancy of Karl and Pdil as reported?®>°. The coefficient of this reaction was used to
518  represent the time for the retention. For the combination of CPY expression levels and
519  misfolding ratio, we used the binary search as mentioned above to search for the maximum
520  specific growth rate. The accumulated CPY rate was obtained from the simulated flux under
521  the found maximum growth rate condition. To reflect the CPY production as close to the in
522 vivo as possible, we adjusted the N-glycans attached to the N-glycosylation sites of CPY as
523 reported®.

524

525  Expansion of pcSecYeast to recombinant protein specific models

526  We expanded pcSecYeast to represent the recombinant protein production by adding the
527  production and secretion reactions using the same template reactions for the native proteins.
528 The PTMs, amino acid sequence and leader sequence were collected from the literature.
529  Detailed information for those proteins and the literature reference can be found in
530  Supplementary Table 5.

531

532  Model simulation for recombinant protein production

533  To simulate recombinant protein production, the model was constrained with a certain specific
534  growth rate, and then the protein production was maximized. SD-2xSCAA medium was used
535  in the simulations®®. All constraints mentioned were added when writing the LP file for solving
536 by SoPlex.

537
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538  Protein feature importance analysis

539  Machine learning was integrated to score the importance of factors. In this study, various
540  factors (PTMs, amino acid compositions) were used as the input features and the maximum
541  recombinant protein production rate was used as the target label. We split the created dataset
542  into a training dataset and testing dataset at the ratio of 80% and 20%, respectively. A random
543  forestregressor with 10 estimators was used to train the model. Feature importance scores from
544  the random forest were computed by SHAP (SHapley Additive exPlanations)®*.

545

546  Overexpression target prediction for recombinant protein overproduction

547  ldentification of overexpression targets for improving recombinant protein production was
548  performed using the concept of FSEOF?* but to identify the proteins with increased expression
549  during the enforcement of recombinant protein production. To be noted here, original FSEOF
550  searches for the candidate fluxes to be amplified through scanning for those fluxes that increase
551  with enforced product formation flux under the objective function of maximizing biomass
552 formation flux, which is under the assumption that there is a tradeoff between growth and target
553  production. pcSecYeast is much more complex than the default GEM and can better represent
554  the cell state which the recombinant protein production does not always increase with the
555  decrease of growth. Besides that, there is metabolic state switch of the fermentation ratio for
556  energy production. Therefore, to eliminate growth and metabolic state influence, we selected
557  a small window (0.25h™'-0.3 h!) for this analysis. At each growth rate in this window, we
558  maximized the recombinant protein production rate without any constraint on exchange rates.
559  Proteins with amplificated expression accompanied increased recombinant protein production
560  were selected as initial overexpression targets. Then, we used several cutoffs to rank the targets
561  further: 1) for proteins that always increase with the enforcement of the recombinant protein

562  production with a Pearson correlation score over 0.9, the priority score was set to 1; 2) for
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563  proteins with priority score 1 and showed 1.3-fold change of the maximum recombinant protein
564  production state towards the maximum specific growth rate, the priority score was set to 2; 3)
565  for proteins with priority score 2 and showed a comparable difference towards the reference
566  PaxDb abundance, which represents the reservation state of the protein abundance in the cell,
567  the priority score was set to 3; 4) for proteins with priority score 3 and were neither subunits
568  of complexes nor contain homologs, the priority score was set to 4. Targets with higher priority
569  scores should be prioritized. Proteins with the priority score 0 in the result indicate those
570  proteins are not identified as overexpression targets. Based on the criteria, we ranked the targets
571  and generated an annotated table as result for all eight recombinant proteins (Supplementary
572 Dataset). For plotting the common targets shared by all eight recombinant proteins analyzed in
573 this study, we only chose the priority score of 3 and 4 for the analysis.

574

575  Experimental validation

576  Strains and plasmids

577  All strains and plasmids used in this study are listed in Supplementary Table 10. Plasmids for
578  gene overexpression were constructed by insertion of the gene fragment, which was amplified
579  from the yeast genome then assembled with the expression vector pPSPGM1 through Gibson
580  assembly method. The standard LiAc/SS DNA/PEG method was used for yeast transformation.
581

582  Media and culture conditions

583  For strain constructions, yeast strains were grown in SD-URA medium at 30 °C according to
584  the auxotrophy of the cells. For a-amylase production in shake flasks, yeast strains were
585  cultured for 96 h at 200 rpm, 30 °C with an initial ODeoo of 0.05 in the SD-2xSCAA medium
586  containing 20 g/l glucose, 6.9 g/l yeast nitrogen base without amino acids, 190 mg/l Arg, 400

587  mg/l Asp, 1,260 mg/1 Glu, 130 mg/l Gly, 140 mg/l His, 290 mg/1 Ile, 400 mg/1 Leu, 440 mg/1
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588  Lys, 108 mg/l Met, 200 mg/1 Phe, 220 mg/l Thr, 40 mg/l Trp, 52 mg/l Tyr, 380 mg/l Val, 1 g/l
589  BSA, 5.4 g/l Na;HPO4 and 8.56 g/l NaH,PO4 -H>O (pH=6.0)*.

590

591  a-Amylase quantification

592  The a-amylase activity was measured using the a-amylase assay kit (Megazyme) with a
593  commercial a-amylase from Aspergillus oryzae (Sigma-Aldrich) as the standard. Samples were
594  centrifuged for 10 min at 15,000 g, 4 °C and the supernatant was used for extracellular o-
595  amylase quantification.

596

597  Code availability

598  To facilitate further usage, we provide all codes and detailed instruction in GitHub repository:

599  https://github.com/SysBioChalmers/pcSecYeast. All codes to reproduce figures were also

600  included in the GitHub repository.

601

602  Data availability

603  All data used in this study are included in supplementary files and GitHub repository.
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801  Fig. 1: Overview of components in pcSecYeast. a) Simplified schematic processes involved in
802 the protein secretion pathway. The process includes protein translation, translocation,
803  glycosylate, GPI transfer, ERAD and sorting process. The detailed description of all
804  components and reactions can be found in Supplementary Methods. Transloc: translocation,
805 NG: N-glycosylation, OG: O-glycosylation, DSB: disulfide bond formation, GPI:
806  glycosylphosphatidylinositol, ER: endoplasmic reticulum, ERAD: ER-associated degradation,
807  LDSV: low-density secretory vesicles, HDSV: high-density secretory vesicles, ALPP: alkaline
808  phosphatase pathway, CPYP: carboxypeptidase Y pathway. b) Subsystems in the secretory
809  pathway and the number of proteins that are processed in each subsystem. ¢) Coupling process
810  in the model. Metabolic part produces energy and precursors such as amino acids, glycans for
811 enzyme and ribosome synthesis. Enzymes constrain these metabolic reactions. Ribosomes
812  constrain protein translation. The secretory machinery constrains protein processing in this
813  pathway. All proteins, including ribosomes are diluted due to growth and degraded due to
814  misfolding.
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Fig. 2: Simulated physiological response of S. cerevisiae as a function of the extracellular
glucose concentration. a) Simulated glucose uptake rates, ethanol production rates and specific
growth rates under different extracellular glucose concentrations. Each point is the simulated
result under a certain extracellular glucose condition. b) Specific glucose uptake rate carried
by each glucose transporter. Hxtl and Hxt3 are two low-affinity glucose transporters, while
Hxt7 is a high-affinity glucose transporter. ¢) Calculation of secretory costs of different glucose
transporters with the specific glucose uptake rate at input for each extracellular glucose
concentration, unit secretory cost, Km and kcac that are specific to each transporter based on eq.

1 in the text.
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828  Fig. 3: Simulation of CPY overexpression. a) Schematic view of different routes for expressed
829  CPY. b) Reduction of simulated maximum specific growth rate [1/h] due to expression at
830  certain levels of CPY following different routes. ¢) Simulations for various CPY expression

831 levels and misfolding ratios with the constraint for retro-translocation enzymes.
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Fig. 4: Simulation of recombinant protein production. a) Overview of protein features for eight
recombinant proteins produced by S. cerevisiae. See Supplementary Table 5 for detailed
information. b) Simulation of maximum specific recombinant protein production rate as a
function of specific growth rate. ¢) Feature importance analysis towards recombinant protein
production. NG: N-glycosylation site; OG:0O-glycosylation site; DSB: disulfide bond number;
trans: transmembrane domain; one letter stands for amino acid. Blue color stands for negative
impact of having this feature towards recombinant protein production rate, while red color

indicates a positive impact.
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850  Fig. 6: Validation of predicted overexpression targets for a-amylase overproduction. a) Protein
851  localization of the predicted overexpression targets. Yeast compartmentalized figure source:
852  SwissBioPics. b) Validation result of predicted secretory targets. c¢) Validation result of
853  predicted metabolic targets. *: P <0.05, **: P <0.01, ***: P <0.001. GNA! (Glucosamine-6-
854  phosphate acetyltransferase); PCMI (PhosphoaCetylglucosamine mutase); CYS4
855  (Cystathionine beta-synthase); CWH41 (Processing alpha glucosidase 1); OCHI
856  (Mannosyltransferase of the cis-Golgi apparatus); MNSI (Alpha-1,2-mannosidase);
857  USOl(Intracellular protein transport protein from ER to Golgi); SEC65 (Signal recognition
858  particle subunit); ERV2 (FAD-linked sulthydryl oxidase); /RE! (Serine/threonine-protein
859  kinase/endoribonuclease); ERO! (Endoplasmic oxidoreductin-1); SWA2 (Auxilin-like clathrin
860  uncoating factor); VPSI (Vacuolar protein sorting-associated protein ); ERV29 (ER-derived
861  vesicles protein); PEP12 (Syntaxin); PDII (Protein disulfide-isomerase); SECI6 (COPII coat

862  assembly protein).
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