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Abstract 

Bacteria have a profound impact on many key biogeochemical cycles in freshwater lake 

ecosystems; in turn, the composition of bacteria in the lake is contingent on the chemistry of the 

water. Many parameters that affect bacterial growth in freshwater ecosystems, such as water 

temperature, nutrient levels, and redox status, exhibit notable inter-annual differences in addition 

to seasonal changes. However, little is known about the impact of these inter- and intra-annual 

differences on the freshwater microbiome, especially in anoxic bottom waters. In this study, we 

paired biogeochemical field data with 16S rRNA gene amplicon sequencing of depth-discrete 

samples from a dimictic lake across two open-water seasons to observe variation in the 

microbiome relative to differences in water chemistry between two years. We found differences 

in the timing anoxia onset and the redox status in the water column across the two years. 

Changes in redox status led to major shifts in the microbial community composition. While there 

was little variation between years in the microbial taxonomic composition at the phyla level, 

there was substantial interannual variation at more resolved taxonomic levels. Some interannual 

differences can be explained by links between the predicted metabolic potential of those lineages 

and the different redox conditions between the two years. These results emphasize the need for 

repeated monitoring to deduce long-term trends in microbial communities in natural ecosystems 

and the importance of a comprehensive evaluation of environmental conditions contemporary 

with any microbiome analysis. 

Importance 

The results of this study add to the growing body of evidence that microbial communities 

in natural systems are temporally dynamic on multiple scales, and even more so at highly 

resolved taxonomic levels. By correlating our analysis of the microbial community with the 
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redox status of the water column we find that many community differences between the years 

can be in part explained by these parameters. As collecting 16S rRNA data over many years is 

critical to understanding long term trends in microbial ecology, our study suggests that 

corresponding water chemistry data could be a powerful tool to help explain microbiome trends.  

Introduction 

Bacterial communities have a significant impact on the ecosystems in which they reside 

due to the domain’s diverse range of metabolisms that interact with virtually all biogeochemical 

cycles (Falkowski, Fenchel, and Delong 2008). A key goal of microbial ecology is to better 

understand and predict these bacterial communities’ biodiversity and how this diversity is 

governed by abiotic environmental factors. In aquatic environments, many different chemical 

and physical properties of the water are known to dictate the composition of the bacterial 

community and the viability of distinct microbial niches (Rubin and Leff 2007; Mathur et al. 

2007). This is particularly true of chemicals involved in alternate terminal electron accepting 

processes (TEAPs). In stratified lakes with high hypolimnetic oxygen demand, redox gradients 

spanning an array of TEAPs can develop. Different metabolic guilds can be found along these 

gradients in freshwater lakes (Lehours et al. 2005; Garcia et al. 2013; Salcher, Pernthaler, and 

Posch 2010), as is commonly observed in Winogradsky columns (Babcsányi, Meite, and Imfeld 

2017; Rogan et al. 2005). Historically, our understanding of microbial distribution along spatial 

and temporal redox gradients has been methodologically limited. However, using recent 

advancements in next-generation sequencing of 16S rRNA gene amplicons, many members of 

highly complex microbial communities can be rapidly identified in many samples, which allows 

for the relative quantification of phylogenetic groups (Youngblut et al. 2013; Huse et al. 2008) 

Several 16S-based studies have identified compositional patterns along chemical gradients in 
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marine (Gilbert et al. 2012; Fuhrman et al. 2006), freshwater (Jones, Newton, and McMahon 

2009; Wu and Hahn 2006; Newton et al. 2007; Garcia et al. 2013), and other ecosystems.  

Several of these studies include investigating microbial communities along redox gradients 

(Garcia et al. 2013; Small et al. 2014; Rojas-Jimenez et al. 2021). 

Freshwater lakes are focal points for biogeochemical cycling on the landscape and are 

ideal study sites for investigating the reciprocal influences between microbial communities and 

environmental conditions. The diversity and taxonomic composition of the freshwater 

microbiome has been shown to vary with environmental conditions (Newton et al. 2011; Linz et 

al. 2017; Paver, Newton, and Coleman 2020). Interannual variation in nutrient inputs, 

temperature, and a wide array of other environmental factors suggest that multi-year microbial 

observations are needed to adequately describe describe community dynamics(Linz et al. 2017; 

Shade et al. 2007). Dimitic lakes with an anoxic hypolimnion pose an especially interesting study 

system as the biannual mixing events cause the formation of temporary redox gradients. These 

gradients have been shown to facilitate the growth of a diverse microbial community (Garcia et 

al. 2013; Rojas-Jimenez et al. 2021). With the seasonal mixing and reforming of the redox 

gradient, the microbes also shape the environmental conditions as the lake stratification 

continues (Yu et al. 2014; Morrison et al. 2017). In addition, environmental parameters such as 

wind speeds, air temperature, and surface turbulence can impact a lake’s thermal stability which 

in turn affects the oxycline, redox gradient, and length of stratification (Kerimoglu and Rinke 

2013; Foley et al. 2012). However, there is little understanding of how interannual variation in 

the timing of anoxia, hypolimnion temperature, and carbon loading (Ladwig et al. 2020) impact 

the long term changes of the microbiome in such systems (Arora-Williams et al. 2018; Garcia et 

al. 2013). This knowledge gap is due to the lack of multi-year studies on microbial community 
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diversity across dynamic redox gradients, which are limited by logistical complications and long-

term funding requirements. 

In this study, we collected samples from a depth profile in the water column from Lake Mendota, 

a relatively large eutrophic dimitic lake, in 2016 and 2017. The samples were collected in the 

summer and fall months when the lake was stratified. During these months, the epilimnion (top 

layer) is oxygenated and warm whereas the hypolimnion (bottom layer) is cold, dark, and anoxic. 

The metalimnion, or the transition between these two zones, is characterized by a steep gradient 

of dissolved oxygen, temperature and sulfide. We collected samples on similar dates in 2016 and 

2017 (three time points per year) to assess annual differences in the diversity and taxonomic 

composition of the microbial consortia across depths. While the onset of stratification and anoxia 

was similar, large differences in the redox status of the water column were observed between the 

two years. We used 16S rRNA gene amplicon sequencing to track changes in community 

composition both temporally and in relation to varying redox status. We found that between 

2016 and 2017, many major phyla and classes were consistently detected, however, microbial 

groups at lower (i.e. more finely resolved) taxonomic levels showed more variance between the 

years. We linked the variation in several of these groups to changes in the redox gradient based 

on expected metabolic function of those organisms, especially near the oxic-anoxic interface. 

Overall, this paper shows significant chemical and microbial variation between 2016 and 2017 

and highlights the importance of using multi-year, depth-discrete studies to characterize the 

reciprocal relationship between microbial communities and their environment along transient 

redox gradients. 

 

Results/Discussion 
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 Thermal stratification: While the onset of anoxia in 2016 and 2017 was comparable, 

there were interannual differences in the late stages of redox progression below the epilimnion 

between 2016 and 2017. Thermal stratification was firmly established by mid- to late May in 

both years (Figure S2a and b). The hypolimnetic temperature was higher in 2017 than in 2016 

(11-12 oC vs 13-14 oC, respectively), likely due to warmer surface waters before stratification 

was established. Correspondingly, the thermocline was approximately 1-2 meters deeper in the 

late summer months of 2017 (~11-12 m) than 2016 (~9-10 m). The warmer hypolimnion likely 

also contributed to the less stable thermocline and earlier thermal destratification observed in 

2017. Anoxia developed in the hypolimnion around the same time both years with dissolved 

oxygen (DO) reaching 0 in the deep hypolimnion by early June (Figure S2c and d). By the time 

we collected samples in August, the oxycline (where oxygen goes below detection) was at 11 m, 

near the thermocline. It then followed the downward migration of the thermocline to about 14 m 

in October before mixing. Thus, nearly the entire hypolimnion was at least suboxic throughout 

the sampling period. 

Redox status: While anoxia was first detected around the same time each year, 

measurements of the most prominent terminal electron acceptors (TEAs) suggest prominent 

differences in the redox state between years (Figure 1). We observed a large spike in 

nitrate/nitrite in August 2017 at 10 m, which was not seen in 2016. These peaks commonly occur 

in the metalimnion in July and August as ammonia from the hypolimnion is oxidized (Brock 

2012) due entrainment of metalimnion or hypolimnion water. Nitrate and nitrite were then 

consumed through denitrification as the redox status continued to decrease. Although this 

nitrate/nitrite spike did not appear in our data in 2016, it is possible that it occurred during a time 

when we did not sample. This provides further evidence that the hypolimnion was more 
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biogeochemically reduced in 2016 than 2017. Dissolved manganese, assumed to be in the 

reduced Mn(II) form, was present in similar concentrations (0 – 5 µM) throughout the water 

column in both years. We observed localized dissolved Mn peaks at the oxic-anoxic interface 

during late fall in both years which could indicate localized cycling (Oldham et al. 2017). This 

peak was more pronounced in 2016, suggesting elevated Mn cycling in this year, possibly due to 

a compressed redox gradient. The most prominent interannual difference was in the sulfide 

profiles. Overall, sulfide levels in 2016 were much higher than in 2017. Additionally, in 

September and October, 2016 had a much steeper gradient, increasing from 0 to 60 µM between 

11 and 12.5 m.  Conversely, in 2017, sulfide did not reach 60 µM until about 15 m and exhibited 

a much less steep gradient. Overall, these data again confirm that the redox status of the 

hypolimnetic water was substantially lower in 2016 than it was in 2017, likely indicating greater 

microbial activity in the hypolimnion in 2016. This is unexpected because the hypolimnion was 

warmer in 2017, which might be expected to drive higher microbial activity. In turn, this lower 

redox status generated a stronger redox gradient near the oxic-anoxic interface during late fall in 

2016. This strong gradient is more likely to support redox processes that rely on such steep 

gradients, such as sulfide oxidation with O2 or Mn cycling (Taillefert and Gaillard 2002).  
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 Alpha diversity: We first investigated the alpha diversity of all samples included in our 

sequencing efforts using amplicon sequence variants (ASVs), which is the finest scale of 

taxonomic resolution possible using our 16S rRNA gene amplicon sequences. Previous work has 

shown that alpha diversity tends to be higher in the hypolimnion than in the epi- or metalimnion 

(Yu et al. 2014; Shade et al. 2012). We calculated the Shannon Diversity Index for each sample 

(Figure S1). The two-way ANOVA reveals a substantial effect of both redox state (p < 0.0001) 
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Figure 1. Geochemistry of Sampling Dates Geochemical profiles of the six sampling dates. The top x axis 
applies to ppb Nitrate/Nitrite, µM dissolved manganese, and mg/L dissolved oxygen whereas the bottom x axis 
refers to µM Sulfide. Redox status is indicated by the corresponding shading color on the graph.  
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and year (p = 0.0005) on the Shannon diversity, but no interactive effect (p = 0.56). Consistent 

with previous work, hypolimnetic microbial communities were more diverse than epilimnetic or 

metalimnetic communities. Overall, microbial communities in 2016 were more diverse. This co-

occurred with the lower redox state of the hypolimnion in 2016, which led us to hypothesize that 

the 2016 community may contain some organisms that were reliant on sharper redox gradients in 

2016. 

Beta diversity: In addition to examining diversity within each sample, we sought to 

identify potential drivers of community composition change by observing the relationship 

between changing redox conditions and microbial community composition shifts. An NMDS 

ordination based on Bray-Curtis dissimilarity revealed separation of the samples based on both 

redox status and year (figure 2). To test these observations statistically, we ran a UniFrac 

distance-based PERMANOVA on our samples, which showed that clustering by year was 

significantly different (R2 = 0.036). On the other hand, clustering by redox status was not 

significantly different (R2 = 0.140), likely due to the overlap between the suboxic and euxinic 

samples, especially in 2016. These results are consistent with our NMDS ordination where there 

is greater separation by year than by redox state. Because the redox status of the water plays a 

major role in microbial metabolism by controlling TEA availability, we would expect major 

differences in the community composition under these different conditions. In 2016, we observed 

a prominent separation between the oxic samples and the other two classifications, but 

substantial overlap between the suboxic group and the euxinic group. In 2017, the oxic samples 

were still distinct, but there was also little overlap between the suboxic and euxinic groups. This 

suggests that suboxic and euxinic microbial communities were less similar to each other in 2017 

than 2016. Considering that our alpha diversity analysis shows that suboxic waters of 2017 were 
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less diverse, it is possible that some organisms that are viable in both euxinic and suboxic waters 

were not viable in the suboxic waters of 2017, possibly due to differences in redox status. While 

these differences in redox status were noticeable, overall the redox progression followed a 

similar pattern. However, this is not observed in the ordinations, as there is little overlap between 

the two years, suggesting significant differences between the microbial populations in each year 

(Figure 2). This is true for samples within all redox classifications. 

 

 
We next investigated beta diversity patterns within subsets of the dataset to further probe 

the extent of interannual variation. Specifically, we removed the oxic samples (DO > 1 mg/L) 
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Figure 2. ASV variability by year and redox state implies temporal distance explains more variability than 
spatial distance. Nonmetric Multidimensional Scaling (NMDS) using Bray-Curtis distance to display 
dissimilarity between each sample. Dissimilarity was calculated using all ASVs as a distance matrix. Ellipses 
represent the clustering of samples by redox state (color) and year (line type) using a 95% confidence level. 
ASVs between oxy and eux have little to no overlap both years, whereas both eux and oxy have substantial 
overlap with sub samples. Within each redox state, 2016 and 2017 do not have much overlap. 
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from the analysis to focus on the relationship between community composition and alternative 

TEAs. First, we specifically wanted to investigate the relative impact of the hypolimnetic redox 

status on community composition and how this related to interannual variation. A canonical 

correspondence analysis (CCA) ordination is useful for incorporating environmental parameters 

into an analysis of beta diversity. In our CCA ordination of suboxic and euxinic samples, 

samples were strongly separated by year (Figure 3A). There was also strong separation of the 

samples by redox status. Samples separated more strongly by year than by redox gradient, but 

the redox status is more of a continuous variable, whereas year is discrete, likely contributing to 

this difference. Although at first this may seem contradictory to our PERMANOVA and NMDS 

ordination where there was no significant separation by redox status, dissolved Mn and sulfide 

are used as constraining variables in this CCA. These two variables varied by year, and 

especially so in suboxic and euxinic depths.  Having separation of suboxic and euxinic samples 

along Mn and sulfide emphasizes temporal distance as a driver for community diversity because 

of the volatile nature of Mn and sulfide with respect to time. 

The extent of the variation in community composition attributed to interannual 

differences as opposed to the redox gradient is surprising but does not necessarily indicate strong 

functional differences. While 16S rRNA gene based identification cannot consistently and 

reliably predict most metabolic functions, it is likely that, on average, functional guilds are more 

closely related. We thus hypothesized that interannual differences in the microbial community 

would be less pronounced at coarser taxonomic levels. To visualize this, we performed the CCA 

ordination on data that had been aggregated by family, order, or phylum. We observed 

decreasing interannual variation as the data was aggregated by higher taxonomic levels (Figure 

3B-C). There was no difference in the impact of the redox parameters on sample separation at 
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any of the taxonomic levels.  This suggests that community composition differences across years 

are more pronounced when taxa are split into finer and finer groups due to stochastic processes 

that determine which strains or closely related species within a functional guild assemble, rather 

than substitution of whole functional guilds across years. More simply, the same functional 

guilds are present each year but different species or strains comprise those guilds. One important 

note is that CCA analyses are sensitive to rare species. This bias means that if a sample has an 

organism that is not present in other samples, it will be weighed more in its overall difference 

from other samples (Ramette 2007). The fact that the groups converge but stay cohesive within 

themselves (ellipses do not change shape significantly at finer taxonomic levels) despite this bias 

emphasizes that the contrast is not excessively driven by aggregation of rare taxa. 

Overall, our ordinations and PERMANOVA suggest that there is substantial year-to-year 

variation in the community composition, but that this variation emerges mainly at finer 

taxonomic scales. At the phylum level, there is little variation in the microbial community year 

to year within the different redox layers. On the other hand, the variation related to redox 

gradients is robust over all taxonomic levels we investigated, suggesting a more consistent 

functional response of the microbial community to redox gradients, as might be expected based 

on fundamental principles of environmental microbiology (cite Brock textbook!). These results 

highlight the need to study freshwater systems over multiple years to fully comprehend microbial 

community patterns in spatially-resolved datasets. Future work on intra- and inter-annual 

differences in microbial community function would help resolve some of these questions, such as 

through functional assays or shotgun metagenomic sequencing to examine differences in 

functional gene abundance.  
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Taxonomic analysis: To further investigate these taxonomic shifts in the microbial 

community underlying the above trends in beta diversity, we examined the taxonomic 

composition of the microbial community from a subset of samples. We selected three profiles 
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Figure 3. Constrained ASV Variability of Anoxic Samples of Different Taxonomic Levels. Canonical 
correspondence analysis (CCA) on anoxic samples using Bray-Curtis distance to display dissimilarity between 
the normalized ASVs of each sample. Sulfide and manganese levels and year are used as constraining variables. 
Ellipses represent the clustering of samples by redox state (color) and year (line type) using a 95% confidence 
level. Sub samples are yellow, Eux samples are purple, 2017 has triangle points with a dashed line ellipse and 
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analysis. There is strong separation of the samples by year when all ASVs are considered. Suboxic and euxinix 
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ordination, euxinic between the two years has no overlap.  
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from each of the two years to investigate in detail, chosen to match up by date. We assigned 

taxonomic classifications to each ASV using a custom freshwater 16S rRNA gene database and 

investigated the spatial and temporal variation in the microbial community composition at 

different taxonomic levels.  

Taxonomy - phyla: The most coarse taxonomic level, phylum, was a natural starting 

point to visualize the most general trends in the microbiome. The relative abundance of phyla has 

been shown to change dramatically with depth in several other depth-discrete sampling studies 

(Tran et al. 2021; Rojas-Jimenez et al. 2021; Baatar et al. 2016; Garcia et al. 2013). These 

changes in phyla are often attributed to the redox gradients throughout the water column (Jones, 

Newton, and McMahon 2009; Wu and Hahn 2006; Newton et al. 2007; Garcia et al. 2013) . 

However, less is known about interannual differences in taxonomic groups across these re-

occurring redox gradients. Based on our ordinations (Figure 4), we expected to see greater 

differences in phylum-level community composition along redox gradient than between the two 

years. We observed substantial variation in the phyla across the redox gradients, but very little 

interannual variation, as we would expect from the ordinations. In the epilimnion, Actinobacteria 

and Cyanobacteria are the most prevalent phyla, usually consisting of about 30% relative read 

abundance each in the epilimnion, but dropping to about 10% and 5% in the hypolimnion, 

respectively (Figure 4). The presence of even a small number of Cyanobacteria at the anoxic 

bottom of the lake is surprising considering their association with aerobic metabolism. However, 

this has been observed elsewhere (Tran et al. 2021). Actinobacteria are known to include the 

cosmopolitan epilimnetic lineage acI (order Nanopelagicales), and account for much of the 

abundance in the epilimnion. Kiritimatiellaeota, on the other hand, are absent in the epilimnion 

but become one of the more common phyla in the hypolimnion at around 15% relative 
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abundance. Kiritimatiellaeota have been previously shown to be highly abundant in the 

hypolimnion of Lake Mendota, are known to thrive in anoxic conditions, and degrade 

polysaccharides (Spring et al. 2016; Peterson, McDaniel, Schmidt, Lepak, Tran, et al. 2020). 

Firmicutes were also primarily abundant in the hypolimnion (10-15%), which is consistent with 

their documented role as fermentative organisms (Weber, Achenbach, and Coates 2006). Other 

phyla are consistently abundant throughout the water column. For example, Proteobacteria are 

the most prevalent phyla in the hypolimnion usually consisting of about ~40% relative read 

abundance, but also are present at 20% in the epilimnion. This is likely due to the high functional 

diversity of this phylum, which is confirmed by the variation at finer taxonomic levels across the 

redox gradients (see below). The abundances of each of these phyla show very little interannual 

variation. However, there are some lower-abundance phyla that do show interannual variation. 

For example, the candidate WS4 phylum is only present in the hypolimnion in early August of 

2016. Armatimonadetes was also only present in the hypolimnion of 2016, but was there in 

August, September and October. Organisms such as these might be reliant on the lower redox 

status that was present in 2016. Alternatively, their presence in 2016 but not 2017 could be 

strictly due to stochastic processes. Regardless, their appearance likely contributes to the greater 

richness observed in 2016 relative to 2017 (see alpha diversity, Figure S1). 
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Taxonomy – class, order, family: We next investigated the abundances of several finer-

scale taxonomic groups. We selected a subset of taxonomic groups to highlight the observed 

trends and show how the changing redox status can affect the microbial community. 

We first investigated Proteobacteria composition at lower taxonomic levels since they 

were one of the most prevalent phyla in both oxic and anoxic waters. At the class level, 

Proteobacteria in our samples exclusively consisted of Gammaproteobacteria, 

Alphaproteobacteria and Deltaproteobacteria (Figure 5). Within Proteobacteria, 

Gammaproteobacteria are the most abundant in the epilimnion, however their abundance sharply 

declines in the hypolimnion where Deltaproteobacteria become more prevalent.  Here we note 

that our general reference database for classification was SILVA XXX, which incorporates a re-
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Figure 4. Vertical Distribution of Phyla Bar charts displaying the relative abundance profiles of bacterial phyla 
from three sampling dates in 2016 and 2017. Samples for each date were taken at several discrete depths above, 
at, and below the oxycline. Bacterial communities from the samples are classified at the phylum level and phyla 
accounting for less than 1% of the overall read abundance are not shown. 
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organized Bacterial phylogeny that most significantly moved the old class Betaproteobacteria as 

an order into the Gammaproteobacteria class. Consistent with literature showing 

Betaproteobacteria to be some of the most common bacteria in upper waters of lakes (Newton et 

al. 2011), Betaproteobacteria accounted for a majority of Gammaproteobacteria in the epilimnion 

(Figure S3). The markedly higher relative read abundance of Deltaproteobacteria in the 

hypolimnion is parallel with a general increase of sulfide in the hypolimnion and a shift towards 

Desulfobacterales, which make up 40% to 70% of the Deltaproteobacteria reads (Figure 5). 

Considering that Desulfobacterales are usually associated with sulfate-reduction it is not 

surprising they are most abundant in euxinic waters (Figure S4). Another order of 

Deltaproteobacteria, Desulfuromonadales, are dominated by Geobacteraceae, specifically 

Geobacter at the family and genus level. These microbes were most abundant at the oxic/anoxic 

interface, where they increased in read abundance with depth almost ten-fold before receding in 

the hypolimnion to about 0.1% relative abundance (Figure 6). This corresponds with a striking 

increase in dissolved Mn, at the depth where we suspect elevated Mn cycling occurs, suggesting 

these organisms could be respiring Mn. Geobacter are well-known Mn reducers (Lovley and 

Phillips 1988), and we recently identified several Geobacterales genomes in Lake Mendota, all 

of which contained a porin-cytochrome c complex (PCC) operon, further supporting this 

hypothesis (Peterson, McDaniel, Schmidt, Lepak, Janssen, et al. 2020).  In our data, 

Desulfuromondales are about 3-4 times more abundant in September and October 2016 than they 

were one year later, which coincides with a more prominent metalimnetic Mn maximum in 2016 

than in 2017. A previous study also demonstrated Geobacter-associated metal reduction genes 

spiking at similar depths in a lake that is of nearly identical depth in 2013 (Arora-Williams et al. 
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2018). This difference in Geobacter abundance highlights the importance of interannual 

variability in redox status in determining the abundance of select metabolic guilds. 

We also further investigated the taxonomic composition of the Cyanobacteria, 

particularly to identify the lineages living in the hypolimnion. Despite their reputation as being 

photoautotrophic, Cyanobacteria have been known to grow in dark and anoxic waters (Callieri et 

al. 2019; Tran et al. 2021). In our samples, at the class level, Cyanobacteria were almost 

exclusively Oxyphotobacteria (~97%).  The main orders of Oxyphotobacteria include 

Synechococcales (~15%-80%), Phormidesmiales (~5%-25%) and Nostocales (~5%-50%) 

(Figure S5). Despite the large range in relative read abundance of some of these orders, for the 

most part Synechococcales are the dominant order, especially in 2016.  Synechococcales become 

a larger portion of cyanobacteria in the hypolimnion in 2016, however Synechococcales are 

evenly distributed in 2017. Nostocales and Phormidesmiales are evenly distributed in 2017, but 

wane in abundance in the hypolimnion in 2016. Nostocales are more abundant throughout the 

entire water column in 2017 than 2016. There have been some studies that have reported that 

hypolimnetic photosynthetic picoplankton communities become dominated by phycoerythrin-

containing Synechococcus during seasonal thermal stratification  (Becker, Richl, and Ernst 2007; 

Fahnenstiel and Carrick 1992). This could explain why in August and September 2016, 

Synechococcales became so dominant, however the same level of abundance was not seen one 

year later. Although the exact mechanism by which the cyanobacteria population varies in 2016 

versus 2017 cannot exactly be elucidated by our study, Cyanobacteria variation is nevertheless 

intriguing due to the phylum’s abundance and role as a primary producer in the ecosystem. 

Future work should also focus on whether cyanobacterial cells in the hypolimnion are active or 

simply sinking while senescing. 
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Members of other phyla, such as the Kiritimatiellaeota phylum, have limited fine-scale 

taxonomic resolution, likely due to poor representation of this phylum in databases. This 

complicates comparisons of closely related lineages between years. All ASVs classified as 

Kiritimatiellaeota are Kiritimatiellae at the class level and mostly (95%+) WCHB1-41 at the 

order level. However, they are mostly unclassified (95%+) at the family, genus, and species 

levels. This limited classification is likely due to the novelty of the phylum, which was only 
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Figure 6. Vertical Distribution of Desulfuromonadales Bar charts displaying the distribution and relative 
abundance of order Desulfuromonadales. Samples for each date were taking at several discrete depths above, at 
and below the oxycline. This graph shows the relative abundance of order Desulfuromonadales with respect to 
all ASVs. Desulfuromonadales spike at the oxic-anoxic interface. In our dataset, Desulfuromonadales consist 
entirely of Geobacteraceae and Geobacter at the family and genus level respectively. 
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discovered recently (Spring et al. 2016). Kiritimatiellaeota increase in abundance with time in 

the hypolimnion in Mendota over both years of study, however they are present in some 

epilimnion samples. This may suggest that there are aerobic lineages of WCHB1-41 that have 

yet to be described. Although not much are known about this lineage, Kirimatiellaeota are mostly 

found in anoxic waters, and some are known to degrade polysaccharides, so these two aspects 

may very well be true of WCHB1-41 (Van Vliet et al. 2019). 

 A significant difference in the microbial community composition of the water column 

between 2016 and 2017 is in the key anaerobic photosynthetic groups class Chlorobia and family 

Chromatiaceae. Chlorobia are one of the two major groups of green sulfur bacteria (GSB) and 

are photolithotrophs and obligate anaerobes. Chromatiaceae are a subset of 

Gammaproteobacteria commonly known as purple sulfur bacteria. Both groups were observed in 

Lake Mendota only during September and October 2016 at the oxic/anoxic interface, where 

sulfide drastically increased with depth. Specifically, Chlorobia increased to around 0.1% of all 

ASVs and Chromatiaceae increased to about 0.25% of all ASVs (Figure 7). Anaerobic 

photosynthesis often uses sulfide as a terminal electron acceptor to fix carbon, so this process is 

relevant in the sulfide and carbon cycles. Due to anaerobic photosynthesis requiring light, high 

sulfide, and anoxia, these types of organisms are often found in stagnant water bodies and 

microbial mats (Van Gemerden and Mas 1995). The required conditions for anaerobic 

photosynthesis are not easily met in a deep dimictic and highly eutrophic lake like Mendota. 

Intense cyanobacterial blooms in the upper water column are thought to shade the depths below, 

excluding other phototrophs. However, anoxygenic phototrophs can be active under extremely 

low-light conditions (cite Brock textbook?). Furthermore, Chromatiaceae also include 

chemolithotrophs that can oxidize sulfide using oxygen (though Chlorobia are usually thought to 
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be strictly photolithotrophic) (cite Brock textbook). The redox conditions present at the oxic-

anoxic interface should be able to support such chemolithotrophic growth . On September 9th, 

2016 at 12.5 m (the first euxinic depth), D.O. drops to 0.625 mg/L and sulfide jumps to 67 µM 

and this produces the largest spike in abundance of the groups discussed. These conditions 

continue through to October 4th, 2016, where at 15 m we observed a similar low oxygen/high 

sulfide environment. September and October 2017 do not have any shallow euxinic depths with 

overlap in oxygen and sulfide due to the redox gradient not being as strong that year. Thus, it 

makes sense that these types of microbes were not able to make a living under the conditions 

observed in 2017. Chlorobia in previous studies have shown spatial abundance variability 

positively correlated with NH4 -N so the differences in the redox gradient between 2016 and 

2017 may very well be explanatory for our temporal variability (Edberg, Andersson, and 

Holmström 2012; Eraqi et al. 2021). The temporal disparity of microbes capable of anaerobic 

photosynthesis suggests that certain functional guilds involved in important environmental cycles 

will not appear consistently every year. 

 Ignavibacteria, previously considered to represent a class within the phylum Chlorobi 

(now renamed to be Bacteroidota) were also much more prevalent in 2016. These organisms are 

thought to be metabolically diverse heterotrophs incapable of photosynthesis (Liu et al. 2012). 

Ignavibacteria usually spiked (2.5-5% of all ASVs) when D.O. dropped below 3 mg/L and just 

before dissolved Mn started to sharply increase (Figure S5).  

 All in all, the main differences at finer taxonomic levels were found in more specialized 

lifestyles corresponding to a slightly different redox status, usually at the oxic-anoxic interface, 

between the years. For example, the anoxic photoautotrophs were seen only in 2016 and 

Desulfuromondales only peaked at the oxic-anoxic interface in 2016. These examples 
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demonstrate that the presence of certain groups of microbes, some of them corresponding to 

unique functional guilds, can be dependent on environmental conditions that change annually. 

For example, it is likely that Mn reduction and lithotrophic sulfide oxidation were important 

biogeochemical processes in the metalimnion in 2016, but may have played a smaller role in 

2017. These groups are in the minority, however, as most taxonomic groups that we investigated 

above the family level exhibited similar patterns from year to year. 
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Figure 7. Vertical Distribution of lineage Chromatiaceae and class Chlorobia Bar charts displaying the 
distribution and relative abundance of lineage Chromatiaceae and class Chlorobia. Red is Chromatiaceae and 
Brown is Chlorobia. Samples for each date were taking at several discrete depths above, at and below the 
oxycline. This graph shows the relative abundance of lineage Chromatiaceae with respect to all ASVs. These 
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As lakes are hot spots for geochemical cycling in the landscape, understanding their 

dynamics is critical to environmental research at large. As climate change, land-use change, and 

other outside events change lake chemistry all over the world, the need to understand how the 

microbiome could respond to these events is critical now more than ever(Adrian et al. 2009; 

Fournier, Lovejoy, and Vincent 2021). The data we have collected adds to a growing body of 

evidence that extrapolation from a limited number of observations in space or time provides an 

incomplete picture of microbial processes at larger/longer scales. How often, and for how long, 

do we need to sample a lake in order to understand its microbiome? Dynamic geochemical 

conditions in spatially structured systems such as stratified lakes make this question even more 

pressing. More multi-year, depth-discrete studies including detailed geochemical characterization 

are needed to comprehend long-term trends in lake microbial community dynamics. These types 

of studies will ultimately help elucidate the reciprocal relationships between microbial taxa and 

their environment, with implications for ecosystem-scale prediction. 

 

Materials and Methods 

Sample Collection: We sampled Lake Mendota, a eutrophic dimictic lake located in 

Madison, WI, USA. Samples were taken near the deepest part of Lake Mendota (GPS 

coordinates: 43.0989, -89.405). Sampling events occurred approximately bimonthly throughout 

the summer and fall (June - November) of 2016 and 2017. This temporal range covers early 

stratification and turnover of the water column. Profiles of temperature and dissolved oxygen 

were collected continuously with a YSI Exo2 multiparameter sonde (YSI Incorporated, Yellow 

Springs, OH). Temperature profiles were supplemented with temperature readings from the 

North Temperate Lakes Long-Term Ecological Research (NTL-LTER) station (Magnuson, 
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Carpenter, and Stanley 2010). Dissolved oxygen profiles were supplemented with profiles 

collected by the Microbial Observatory NTL-LTER. All samples were collected using a 

peristaltic pump with an acid-washed Teflon sampling tube. Water samples for sulfide analysis 

were preserved in an acid-washed Nalgene (Nalgene Nunc International Corporation, Rochester, 

NY) HDPE plastic bottle with 1% zinc acetate. Water samples for dissolved manganese analysis 

were filtered with a 0.45 µm PES Acrodisc filter and immediately preserved to 1% HCl.  

Microbial samples for DNA extraction were collected on 0.22µm pore-size PES filters, then 

immediately flash-frozen on liquid nitrogen and stored at -80˚C. 

Geochemical Analysis: Sulfide quantification was done using the Cline method with 

spectrophotometry (Cline 1969). Manganese was quantified using inductively coupled plasma 

optical emission spectroscopy (ICP-OES) on a Varian Vista-MPX CCD ICP-OES. Nitrate/nitrite 

was quantified using colorimetric spectrophotometry on an Astoria II segmented flow 

autoanalyzer (Astoria-Pacific). DNA was extracted from the filters via enzymatic and physical 

lysis preceding phenol-chloroform extraction and purification by isopropanol precipitation. 

Details of the DNA extraction protocol and other methods can be found in Peterson et. al. 2020. 

The geochemical data was collectively used to assign a redox status to each sample we collected. 

Samples with over 1 mg/L DO were marked as oxic samples (oxy). Samples with less than 1 

mg/L DO and less than 2 µM of sulfide were classified as suboxic (sub), while those with over 2 

µM of sulfide were euxinic (eux). No samples were observed with both > 1 mg/L DO and > 2 

µM sulfide. 

16S amplicon sequencing and bioinformatics: A total of 194 samples (97 locations 

with biological duplicates) were sequenced at the Biotech Center at the University of Wisconsin 

- Madison. The v3v4 region was amplified and sequenced on an Illuminia MiSeq to generate 
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250bp paired-end reads. Read counts for each sample ranged from 36,112 to 87,069 with a mean 

read count of 63,343 (Table S1/Github). The mothur SOP was followed for sequence processing, 

trimming, and quality control (Kozich et al. 2013). Briefly, paired end reads were trimmed and 

merged, then pre-clustered using a 4-nucleotide difference cut-off. Then, chimeras were removed 

using UCHIME (Edgar et al. 2011), resulting in 269,921 sequences with an average length of 

459. These sequences are described here as Amplicon Sequence Variants (ASVs) (Callahan, 

McMurdie, and Holmes 2017). ASVs matching a sequences in the FreshTrain database with a 

percent identity greater than 98% based on blastn were classified in that database, and the 

remaining sequences were classified in the Greengenes database (Camacho et al. 2009; Newton 

et al. 2011; Rohwer et al. 2018; McDonald et al. 2012). 

Statistical methods: All statistical analysis, ordinations and taxonomic analysis were done in R 

version 3.6.2 (R Core Team 2019). ASVs only recorded once across all samples were removed. 

The ASV counts were then normalized to the total counts within every sample. Shannon 

Diversity Index was calculated for each sample using the diversity() function on the normalized 

ASVs in “vegan” (Oksanen et al. 2019). For the Nonmetric Multidimensional Scaling (NMDS) 

ordination a dissimilarity matrix was generated based on Bray-Curtis dissimilarity of the samples 

using the normalized ASVs. NMDS ordinations were performed with the metaMDS() function in 

“vegan”.  A canonical correspondence analysis (CCA) ordination of the anoxic samples using 

Bray-Curtis dissimilarity was created using sulfide, manganese, and year of the sample as 

constraining variables. This was also done after grouping ASV counts at the phylum, class, and 

lineage level in each sample. Taxa that were unclassified at any taxonomic level down to the 

level of clustering were removed for this second analysis. The fraction of reads removed at each 

taxonomic level are shown in Figure S7. The CCA ordinations were implemented using the cca() 
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function in “vegan”. Packages “dplyr” (Wickham et al. 2019) and “tidyr” (Wickham and Henry 

2019) were used for data formatting and all plots were generated using “ggplot2” (Wickham 

2016). Weighted UniFrac distance was used to determine similarity between samples for 

permutational multivariate analysis of variance (PERMANOVA). Weighted UniFrac distance 

was implemented using the phyloseq() function in the "phyloseq" package (McMurdie and 

Holmes 2013). A phylogenetic tree for the UniFrac was generated using neighbor-joining using 

the DistanceTreeConstructor() function in Biopython library (Cock et al. 2009) in Python 3.8.3 

(Python Software Foundation, https://www.python.org/). All analyses using the weighted 

UniFrac distance matrix were done using only ASVs that appear more than 500 times across all 

194 samples. Even with this cutoff, NMDS ordinations are impacted little (Figure S8), so this 

subset should still be a good representation of the samples. All scripts used for analysis are 

available on GitHub: (https://github.com/robertmarick/Mendota20162017). Processed 16S data, 

geochemical measurements, and dissolved oxygen profiles from the NTL-LTER Microbial 

Observatory are available on OSF: https://osf.io/p92gn/ 

 

Acknowledgments 

We acknowledge the North Temperate Lakes Long Term Ecological Research (NTL-LTER) site, 

Lake Mendota Microbial Observatory field crews, and University of Wisconsin - Madison 

Center for Limnology for the field and logistical support. Funding for geochemical analysis and 

16S sequencing was provided by the Wisconsin Sea Grant College Program Project #HCE-22. 

We thank graduate students Tylor Rosera, Stephanie Berg, and Marissa Kneer for sampling 

assistance. We also thank undergraduate researchers Mykala Sobieck for sampling design and 

sampling assistance and Anna Schmidt, Diana Mendez, and Ariel Sorg for sampling assistance. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 28 

Geochemical analyses were performed at the Water Science and Engineering Laboratory at the 

University of Wisconsin−Madison. Computational work was performed in part using the 

Wisconsin Energy Institute computing cluster, which is supported by the Great Lakes Bioenergy 

Research Center as part of the U.S. Department of Energy Office of Science.  

 

References 

Adrian, Rita, Catherine M O’Reilly, Horacio Zagarese, Stephen B Baines, Dag O Hessen, 
Wendel Keller, David M Livingstone, et al. 2009. “Lakes as Sentinels of Climate 
Change.” Limnology and Oceanography 54 (6part2): 2283–97. 

Arora-Williams, Keith, Scott W Olesen, Benjamin P Scandella, Kyle Delwiche, Sarah J Spencer, 
Elise M Myers, Sonali Abraham, Alyssa Sooklal, and Sarah P Preheim. 2018. “Dynamics 
of Microbial Populations Mediating Biogeochemical Cycling in a Freshwater Lake.” 
Microbiome 6 (1): 1–16. 

Baatar, Bayanmunkh, Pei-Wen Chiang, Denis Yu Rogozin, Yu-Ting Wu, Ching-Hung Tseng, 
Cheng-Yu Yang, Hsiu-Hui Chiu, Bolormaa Oyuntsetseg, Andrey G Degermendzhy, and 
Sen-Lin Tang. 2016. “Bacterial Communities of Three Saline Meromictic Lakes in 
Central Asia.” PloS One 11 (3): e0150847. 

Babcsányi, Izabella, Fatima Meite, and Gwenaël Imfeld. 2017. “Biogeochemical Gradients and 
Microbial Communities in Winogradsky Columns Established with Polluted Wetland 
Sediments.” FEMS Microbiology Ecology 93 (8). 

Becker, Sven, Petra Richl, and Anneliese Ernst. 2007. “Seasonal and Habitat-Related 
Distribution Pattern of Synechococcus Genotypes in Lake Constance.” FEMS 
Microbiology Ecology 62 (1): 64–77. 

Brock, Thomas D. 2012. A Eutrophic Lake: Lake Mendota, Wisconsin. Vol. 55. Springer Science 
& Business Media. 

Callahan, Benjamin J, Paul J McMurdie, and Susan P Holmes. 2017. “Exact Sequence Variants 
Should Replace Operational Taxonomic Units in Marker-Gene Data Analysis.” The 
ISME Journal 11 (12): 2639–43. 

Callieri, Cristiana, Violeta Slabakova, Nina Dzhembekova, Nataliya Slabakova, Elisaveta 
Peneva, Pedro J Cabello-Yeves, Andrea Di Cesare, et al. 2019. “The Mesopelagic Anoxic 
Black Sea as an Unexpected Habitat for Synechococcus Challenges Our Understanding 
of Global ‘Deep Red Fluorescence.’” The ISME Journal 13 (7): 1676–87. 

Camacho, Christiam, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, 
Kevin Bealer, and Thomas L Madden. 2009. “BLAST+: Architecture and Applications.” 
BMC Bioinformatics 10 (1): 421. 

Cline, Joel D. 1969. “Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters 
1.” Limnology and Oceanography 14 (3): 454–58. 

Cock, Peter JA, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke, 
Iddo Friedberg, et al. 2009. “Biopython: Freely Available Python Tools for 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 29 

Computational Molecular Biology and Bioinformatics.” Bioinformatics 25 (11): 1422–
23. 

Edberg, Frida, Anders F Andersson, and Sara JM Holmström. 2012. “Bacterial Community 
Composition in the Water Column of a Lake Formed by a Former Uranium Open Pit 
Mine.” Microbial Ecology 64 (4): 870–80. 

Edgar, Robert C, Brian J Haas, Jose C Clemente, Christopher Quince, and Rob Knight. 2011. 
“UCHIME Improves Sensitivity and Speed of Chimera Detection.” Bioinformatics 27 
(16): 2194–2200. 

Eraqi, Walaa A, Marwa T ElRakaiby, Salwa A Megahed, Noha H Yousef, Mostafa S Elshahed, 
and Aymen S Yassin. 2021. “Spatiotemporal Analysis of the Water and Sediment Nile 
Microbial Community Along an Urban Metropolis.” Microbial Ecology, 1–11. 

Fahnenstiel, Gary L, and Hunter J Carrick. 1992. “Phototrophic Picoplankton in Lakes Huron 
and Michigan: Abundance, Distribution, Composition, and Contribution to Biomass and 
Production.” Canadian Journal of Fisheries and Aquatic Sciences 49 (2): 379–88. 

Falkowski, Paul G, Tom Fenchel, and Edward F Delong. 2008. “The Microbial Engines That 
Drive Earth’s Biogeochemical Cycles.” Science 320 (5879): 1034–39. 

Foley, Brian, Ian D Jones, Stephen C Maberly, and Brian Rippey. 2012. “Long-Term Changes in 
Oxygen Depletion in a Small Temperate Lake: Effects of Climate Change and 
Eutrophication.” Freshwater Biology 57 (2): 278–89. 

Fournier, Isabelle B, Connie Lovejoy, and Warwick F Vincent. 2021. “Changes in the 
Community Structure of Under-Ice and Open-Water Microbiomes in Urban Lakes 
Exposed to Road Salts.” Frontiers in Microbiology 12. 

Fuhrman, Jed A, Ian Hewson, Michael S Schwalbach, Joshua A Steele, Mark V Brown, and 
Shahid Naeem. 2006. “Annually Reoccurring Bacterial Communities Are Predictable 
from Ocean Conditions.” Proceedings of the National Academy of Sciences 103 (35): 
13104–9. 

Garcia, Sarahi L, Ivette Salka, Hans-Peter Grossart, and Falk Warnecke. 2013. “Depth-Discrete 
Profiles of Bacterial Communities Reveal Pronounced Spatio-Temporal Dynamics 
Related to Lake Stratification.” Environmental Microbiology Reports 5 (4): 549–55. 

Gilbert, Jack A, Joshua A Steele, J Gregory Caporaso, Lars Steinbrück, Jens Reeder, Ben 
Temperton, Susan Huse, et al. 2012. “Defining Seasonal Marine Microbial Community 
Dynamics.” The ISME Journal 6 (2): 298–308. 

Huse, Susan M, Les Dethlefsen, Julie A Huber, David Mark Welch, David A Relman, and 
Mitchell L Sogin. 2008. “Exploring Microbial Diversity and Taxonomy Using SSU 
RRNA Hypervariable Tag Sequencing.” PLoS Genetics 4 (11): e1000255. 

Jones, Stuart E, Ryan J Newton, and Katherine D McMahon. 2009. “Evidence for Structuring of 
Bacterial Community Composition by Organic Carbon Source in Temperate Lakes.” 
Environmental Microbiology 11 (9): 2463–72. 

Kerimoglu, Onur, and Karsten Rinke. 2013. “Stratification Dynamics in a Shallow Reservoir 
under Different Hydro-Meteorological Scenarios and Operational Strategies.” Water 
Resources Research 49 (11): 7518–27. 

Kozich, James J, Sarah L Westcott, Nielson T Baxter, Sarah K Highlander, and Patrick D 
Schloss. 2013. “Development of a Dual-Index Sequencing Strategy and Curation Pipeline 
for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform.” 
Applied and Environmental Microbiology 79 (17): 5112–20. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 30 

Ladwig, Robert, Paul C Hanson, Hilary A Dugan, Cayelan C Carey, Yu Zhang, Lele Shu, 
Christopher J Duffy, and Kelly M Cobourn. 2020. “Lake Thermal Structure Drives Inter-
Annual Variability in Summer Anoxia Dynamics in a Eutrophic Lake over 37 Years.” 
Hydrol. Earth Syst. Sci. Discuss, 1–45. 

Lehours, Anne-C, Corinne Bardot, Aurelie Thenot, Didier Debroas, and Gerard Fonty. 2005. 
“Anaerobic Microbial Communities in Lake Pavin, a Unique Meromictic Lake in 
France.” Applied and Environmental Microbiology 71 (11): 7389–7400. 

Linz, Alexandra M, Benjamin C Crary, Ashley Shade, Sarah Owens, Jack A Gilbert, Rob 
Knight, and Katherine D McMahon. 2017. “Bacterial Community Composition and 
Dynamics Spanning Five Years in Freshwater Bog Lakes.” MSphere 2 (3). 

Liu, Zhenfeng, Niels-Ulrik Frigaard, Kajetan Vogl, Takao Iino, Moriya Ohkuma, Jörg 
Overmann, and Donald A Bryant. 2012. “Complete Genome of Ignavibacterium Album, 
a Metabolically Versatile, Flagellated, Facultative Anaerobe from the Phylum Chlorobi.” 
Frontiers in Microbiology 3: 185. 

Lovley, Derek R, and Elizabeth JP Phillips. 1988. “Novel Mode of Microbial Energy 
Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or 
Manganese.” Applied and Environmental Microbiology 54 (6): 1472–80. 

Magnuson, J., S. Carpenter, and E. Stanley. 2010. “North Temperate Lakes LTER: High 
Frequency Water Temperature Data - Lake Mendota Buoy 2006 - Current,” September. 

Mathur, Jayanti, Richard W Bizzoco, Dean G Ellis, David A Lipson, Alexander W Poole, 
Richard Levine, and Scott T Kelley. 2007. “Effects of Abiotic Factors on the 
Phylogenetic Diversity of Bacterial Communities in Acidic Thermal Springs.” Applied 
and Environmental Microbiology 73 (8): 2612–23. 

McDonald, Daniel, Morgan N Price, Julia Goodrich, Eric P Nawrocki, Todd Z DeSantis, 
Alexander Probst, Gary L Andersen, Rob Knight, and Philip Hugenholtz. 2012. “An 
Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary 
Analyses of Bacteria and Archaea.” The ISME Journal 6 (3): 610–18. 

McMurdie, Paul J., and Susan Holmes. 2013. “Phyloseq: An R Package for Reproducible 
Interactive Analysis and Graphics of Microbiome Census Data.” PLoS ONE 8 (4): 
e61217. 

Morrison, Jessica M, Kristina D Baker, Richard M Zamor, Steve Nikolai, Mostafa S Elshahed, 
and Noha H Youssef. 2017. “Spatiotemporal Analysis of Microbial Community 
Dynamics during Seasonal Stratification Events in a Freshwater Lake (Grand Lake, OK, 
USA).” PLoS One 12 (5): e0177488. 

Newton, Ryan J., Stuart E. Jones, Alexander Eiler, Katherine D. McMahon, and Stefan 
Bertilsson. 2011. “A Guide to the Natural History of Freshwater Lake Bacteria.” 
Microbiology and Molecular Biology Reviews 75 (1): 14–49. 
https://doi.org/10.1128/MMBR.00028-10. 

Newton, Ryan J, Stuart E Jones, Matthew R Helmus, and Katherine D McMahon. 2007. 
“Phylogenetic Ecology of the Freshwater Actinobacteria AcI Lineage.” Applied and 
Environmental Microbiology 73 (22): 7169–76. 

Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan 
McGlinn, Peter R. Minchin, et al. 2019. Vegan: Community Ecology Package. 
https://CRAN.R-project.org/package=vegan. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 31 

Oldham, Véronique E, Matthew R Jones, Bradley M Tebo, and George W Luther III. 2017. 
“Oxidative and Reductive Processes Contributing to Manganese Cycling at Oxic-Anoxic 
Interfaces.” Marine Chemistry 195: 122–28. 

Paver, Sara F, Ryan J Newton, and Maureen L Coleman. 2020. “Microbial Communities of the 
Laurentian Great Lakes Reflect Connectivity and Local Biogeochemistry.” 
Environmental Microbiology 22 (1): 433–46. 

Peterson, Benjamin D, Elizabeth A McDaniel, Anna G Schmidt, Ryan F Lepak, Sarah E Janssen, 
Patricia Q Tran, Robert A Marick, et al. 2020. “Mercury Methylation Genes Identified 
across Diverse Anaerobic Microbial Guilds in a Eutrophic Sulfate-Enriched Lake.” 
Environmental Science & Technology 54 (24): 15840–51. 

Peterson, Benjamin D, Elizabeth A McDaniel, Anna G Schmidt, Ryan F Lepak, Patricia Q Tran, 
Robert A Marick, Jacob M Ogorek, John F DeWild, David P Krabbenhoft, and Katherine 
D McMahon. 2020. “Mercury Methylation Trait Dispersed across Diverse Anaerobic 
Microbial Guilds in a Eutrophic Sulfate-Enriched Lake.” BioRxiv. 

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing. https://www.R-project.org/. 

Ramette, Alban. 2007. “Multivariate Analyses in Microbial Ecology.” FEMS Microbiology 
Ecology 62 (2): 142–60. 

Rogan, Brian, Michael Lemke, Michael Levandowsky, and Thomas Gorrell. 2005. “Exploring 
the Sulfur Nutrient Cycle Using the Winogradsky Column.” The American Biology 
Teacher 67 (6): 348–56. 

Rohwer, Robin R, Joshua J Hamilton, Ryan J Newton, and Katherine D McMahon. 2018. 
“TaxAss: Leveraging a Custom Freshwater Database Achieves Fine-Scale Taxonomic 
Resolution.” MSphere 3 (5): e00327-18. 

Rojas-Jimenez, Keilor, Alex Araya-Lobo, Fabio Quesada-Perez, Johana Akerman-Sanchez, 
Brayan Delgado-Duran, Lars Ganzert, Peter O Zavialov, Salmor Alymkulov, Georgiy 
Kirillin, and Hans-Peter Grossart. 2021. “Variation of Bacterial Communities along the 
Vertical Gradient in Lake Issyk Kul, Kyrgyzstan.” Environmental Microbiology Reports. 

Rubin, Melissa A, and Laura G Leff. 2007. “Nutrients and Other Abiotic Factors Affecting 
Bacterial Communities in an Ohio River (USA).” Microbial Ecology 54 (2): 374–83. 

Salcher, Michaela M, Jakob Pernthaler, and Thomas Posch. 2010. “Spatiotemporal Distribution 
and Activity Patterns of Bacteria from Three Phylogenetic Groups in an 
Oligomesotrophic Lake.” Limnology and Oceanography 55 (2): 846–56. 

Shade, Ashley, Angela D Kent, Stuart E Jones, Ryan J Newton, Eric W Triplett, and Katherine D 
McMahon. 2007. “Interannual Dynamics and Phenology of Bacterial Communities in a 
Eutrophic Lake.” Limnology and Oceanography 52 (2): 487–94. 

Shade, Ashley, Jordan S Read, Nicholas D Youngblut, Noah Fierer, Rob Knight, Timothy K 
Kratz, Noah R Lottig, et al. 2012. “Lake Microbial Communities Are Resilient after a 
Whole-Ecosystem Disturbance.” The ISME Journal 6 (12): 2153–67. 

Small, Gaston E, James B Cotner, Jacques C Finlay, Rebecca A Stark, and Robert W Sterner. 
2014. “Nitrogen Transformations at the Sediment–Water Interface across Redox 
Gradients in the Laurentian Great Lakes.” Hydrobiologia 731 (1): 95–108. 

Spring, Stefan, Boyke Bunk, Cathrin Spröer, Peter Schumann, Manfred Rohde, Brian J Tindall, 
and Hans-Peter Klenk. 2016. “Characterization of the First Cultured Representative of 
Verrucomicrobia Subdivision 5 Indicates the Proposal of a Novel Phylum.” The ISME 
Journal 10 (12): 2801–16. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 32 

Taillefert, M, and J-F Gaillard. 2002. “Reactive Transport Modeling of Trace Elements in the 
Water Column of a Stratified Lake: Iron Cycling and Metal Scavenging.” Journal of 
Hydrology 256 (1–2): 16–34. 

Tran, Patricia Q, Samantha C Bachand, Peter B McIntyre, Benjamin M Kraemer, Yvonne 
Vadeboncoeur, Ismael A Kimirei, Rashid Tamatamah, Katherine D McMahon, and 
Karthik Anantharaman. 2021. “Depth-Discrete Metagenomics Reveals the Roles of 
Microbes in Biogeochemical Cycling in the Tropical Freshwater Lake Tanganyika.” The 
ISME Journal, 1–16. 

Van Gemerden, H, and J Mas. 1995. Ecology of Phototrophic Sulfur Bacteria In: Anoxygenic 
Photosynthetic Bacteria (Blankenship, RE, Madigan, MT and Bauer, CE, Eds.). Kluwer 
Academic Publishers, Dordrecht, The Netherlands. 

Van Vliet, Daan M, Susakul Palakawong Na Ayudthaya, Sally Diop, Laura Villanueva, Alfons 
JM Stams, and Irene Sánchez-Andrea. 2019. “Anaerobic Degradation of Sulfated 
Polysaccharides by Two Novel Kiritimatiellales Strains Isolated from Black Sea 
Sediment.” Frontiers in Microbiology 10: 253. 

Weber, Karrie A, Laurie A Achenbach, and John D Coates. 2006. “Microorganisms Pumping 
Iron: Anaerobic Microbial Iron Oxidation and Reduction.” Nature Reviews Microbiology 
4 (10): 752–64. 

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New 
York. https://ggplot2.tidyverse.org. 

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2019. Dplyr: A Grammar 
of Data Manipulation. https://CRAN.R-project.org/package=dplyr. 

Wickham, Hadley, and Lionel Henry. 2019. Tidyr: Tidy Messy Data. https://CRAN.R-
project.org/package=tidyr. 

Wu, Qinglong L, and Martin W Hahn. 2006. “High Predictability of the Seasonal Dynamics of a 
Species-like Polynucleobacter Population in a Freshwater Lake.” Environmental 
Microbiology 8 (9): 1660–66. 

Youngblut, Nicholas D, Ashley Shade, Jordan S Read, Katherine D McMahon, and Rachel J 
Whitaker. 2013. “Lineage-Specific Responses of Microbial Communities to 
Environmental Change.” Applied and Environmental Microbiology 79 (1): 39–47. 

Yu, Zheng, Jun Yang, Stefano Amalfitano, Xiaoqing Yu, and Lemian Liu. 2014. “Effects of 
Water Stratification and Mixing on Microbial Community Structure in a Subtropical 
Deep Reservoir.” Scientific Reports 4 (1): 1–7. 
 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 33 

Supplementary Material 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464574
http://creativecommons.org/licenses/by-nd/4.0/


 34 

 

 
Figure S1. Shannon Diversity Index of All Samples. The Shannon diversity index of all samples was calculated 

based on a sample-by-ASV matrix and plotted according to the sample’s group. A two-way ANOVA showed 

significant difference between year (p = 4.61e-4) and redox status (p < 2e-16) but no significant interactive effect.  
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Figure S2. Temperature and Dissolved Oxygen profile of 2016 and 2017 These plots were compiled from data 
gathered from a buoy that is positioned spring through fall at the sampling site. In the temperature profiles A and B, 
The line represents the thermocline position at a given point in time. The thermocline gradually moves down as the 
year progresses preceding the fall mixing event. The thermocline is in similar positions in 2016 and 2017. Graphs C 
and D are the corresponding DO profiles. DO profiles are very similar between the years.  
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Figure S3. Composition of Class Gammaproteobacteria. Bar charts displaying the distribution and the 
composition of orders in class Deltaproteobacteria for each sample. Samples for each date were taking at 
several discreet depths above, at and below the oxycline. Order Betaproteobacteriales dominate the class at the 
epilimnion and hypolimnion.  
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Figure S4. Composition of class Deltaproteobacteria Bar charts displaying the distribution and the 
composition of orders in class Deltaproteobacteria for each sample. Samples for each date were taken at 
several discreet depths above, at and below the oxycline. Desulfobacterales are the most prevalent in the 
hypolimnion correlating with the increase of sulfide.  
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Figure S5. Composition of class Oxyphotobacteria Bar charts displaying the distribution and the composition of 
orders in class Oxyphotobacteria for each sample. Samples for each date were taken at several discreet depths above, 
at and below the oxycline. Although Oxyphotobacteria are primarily in the epilimnion, surprisingly some 
Synechococcales are capable of survival at the depths of lake Mendota. 
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Figure S6. Vertical Distribution of Ignavibacteria Bar charts displaying the distribution and relative abundance of 
class Ignavibacteria. Samples for each date were taken at several discreet depths above, at and below the oxycline. 
This graph shows the relative abundance of class Ignavibacteria with respect to all ASVs. Ignavibacteria tend to 
spike in the lower epilimnion corresponding with an uptick in manganese and waning DO.  
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Figure S7. Percent of Unclassified Sequences in each Sample Strip plots showing the percent of unclassified 
sequences in each sample for three phylogenetic levels. 
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Figure S8. NMDS ordinations at different ASV cutoffs Nonmetric Multidimensional Scaling (NMDS) using 
Bray-Curtis distance to display dissimilarity between each sample's ASVs. Ellipses represent the clustering of 
samples by redox state (color) and year (line type) using a 95% confidence level. The greater than symbol along 
with the number at the top of each ordination is referring to the cutoff of that ordination. For example >100 means 
only ASVs that appear more that 100 times were used in the ordination. All three graphs look very similar with only 
the 2016 sub ellipse changing position a little bit. 
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