

1 Effects of dual deletion of *glnR* and *mtrA* on expression of nitrogen metabolism genes
2 in *Streptomyces venezuelae*

4 Yanping Zhu¹, Jiao Wang¹, Wenya Su¹, Ting Lu¹, Aiying Li¹, Xiuhua Pang^{1*}

6 ¹The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

10 Footnotes:

11 *For correspondence, Email: pangxiuhua@sdu.edu.cn

15 Running title: The role of MtrA and GlnR in nitrogen metabolism

17 Key words: *Streptomyces*, nitrogen metabolism, MtrA, GlnR

32 **Summary**

33 GlnR activates nitrogen metabolism genes under nitrogen-limited conditions whereas MtrA
34 represses these genes under nutrient-rich conditions in *Streptomyces*. In this study, we compared the
35 transcription patterns of nitrogen metabolism genes in a double deletion mutant ($\Delta mtrA-glnR$)
36 lacking both *mtrA* and *glnR* and in mutants lacking either *mtrA* ($\Delta mtrA$) or *glnR* ($\Delta glnR$). The
37 nitrogen metabolism genes were expressed similarly in $\Delta mtrA-glnR$ and $\Delta glnR$ under both
38 nitrogen-limited and nutrient-rich conditions, with patterns distinctly different from that of $\Delta mtrA$,
39 suggesting a decisive role for GlnR in the control of nitrogen metabolism genes and further
40 suggesting that regulation of these genes by MtrA is GlnR-dependent. MtrA and GlnR utilize the
41 same binding sites upstream of nitrogen metabolism genes, and we showed stronger *in vivo* binding
42 of MtrA to these sites under nutrient-rich conditions and of GlnR under nitrogen-limited conditions,
43 consistent with the higher levels of MtrA or GlnR under those respective conditions. In addition, we
44 showed that both *mtrA* and *glnR* are auto-regulatory. Our study provides new insights into the
45 regulation of nitrogen metabolism genes in *Streptomyces*.

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 **Introduction**

64 Nitrogen sources, whether organic or inorganic, are a necessity for all living organisms, including
65 microbes, and the regulation of nitrogen metabolism is complex and varied in bacteria (Leigh &
66 Dodsworth, 2007, Merrick & Edwards, 1995). Under nitrogen-limited growth conditions, genes
67 involved in nitrogen assimilation are expressed to enable the acquisition and conversion of
68 inorganic nitrogen sources into organic nitrogen sources such as glutamine and glutamate.
69 *Streptomyces* are a genus of Gram-positive and filamentous actinobacteria mostly known for their
70 potential in producing antibiotics as well as for their complex development cycle, including spore
71 formation (Chater, 2011, Hopwood, 2007). Within members of this genus, multiple nitrogen
72 assimilation genes have been identified, including *amtB*, encoding a protein that transports
73 extracellular ammonium into the cell; *narGHJ*, encoding nitrate reductase, which reduces nitrate
74 into nitrite; *nirBCD*, encoding nitrite reductase, which reduces nitrite into ammonium; *ureABC*,
75 encoding a urease for the cleavage of urea into NH_4^+ ; *glnA* and *glnII*, both encoding a glutamine
76 synthetase, and *gltDB*, encoding a glutamate synthase, which synthesize glutamine or glutamate,
77 respectively, using NH_4^+ imported from the extracellular environment or converted from nitrate,
78 nitrile, or urea (Wolfgang Wohlleben, 2011).

79 Under nitrogen-limited conditions, most *Streptomyces* genes for nitrogen assimilation are
80 activated by the orphan response regulator GlnR (Wolfgang Wohlleben, 2011, Tiffert *et al.*, 2008,
81 Fink *et al.*, 2002). GlnR boxes were identified for *amtB*, *glnII*, and other nitrogen assimilation genes,
82 indicating that these nitrogen metabolism genes are targeted by GlnR (Tiffert *et al.*, 2008, Fink *et al.*,
83 2002, Pullan *et al.*, 2011, Tiffert *et al.*, 2011). Under nutrient-rich growth conditions, surplus
84 nitrogen is present, and therefore nitrogen assimilation genes do not need to be expressed and
85 appear to be silent. We revealed that this silencing, or only basal level of expression of nitrogen
86 assimilation genes, is the result of repression by MtrA (Zhu *et al.*, 2019), a global response regulator
87 that is also required for cellular development (Zhang *et al.*, 2017), antibiotic production (Zhu *et al.*,
88 2020a, Som *et al.*, 2017a, Som *et al.*, 2017b), and phosphate metabolism (Zhu *et al.*, 2021).
89 Intriguingly, the sequence recognized by MtrA (MtrA site) is similar to the GlnR box (Zhang *et al.*,
90 2017), and thus MtrA can interact with the GlnR boxes upstream of the nitrogen metabolism genes
91 that are targeted by GlnR (Zhu *et al.*, 2019), suggesting that MtrA potentially competes with GlnR
92 in the regulation of nitrogen metabolism genes. GlnR and MtrA have been characterized as the two
93 major regulators for nitrogen metabolism in *Streptomyces* and potentially in other actinobacteria

94 (Zhu *et al.*, 2019, Wang *et al.*, 2015). Studies suggest that these two regulators function under
95 contrasting nitrogen supply conditions, although minor regulatory effects on nitrogen metabolism
96 genes by PhoP and AfsQ1 were also observed under specific conditions (Rodriguez-Garcia *et al.*,
97 2009, Wang *et al.*, 2013).

98 Although it is known that MtrA and GlnR function by binding their target sites under
99 nitrogen-limited and nutrient-rich conditions, respectively, it is not known whether MtrA or GlnR
100 still have a role under the contrasting condition that does not favor their function. The combined
101 regulatory effect of MtrA and GlnR on nitrogen metabolism genes is also unknown. In this study,
102 we investigated the binding of MtrA and GlnR under different nitrogen conditions and explored the
103 combined effect of MtrA and GlnR on nitrogen metabolism genes, thus providing new insights into
104 the understanding of nitrogen metabolism in *Streptomyces*.

105

106 **Results**

107 *The role of MtrA on nitrogen metabolism is similar in S. venezuelae and S. coelicolor*

108 Our previous study showed that MtrA represses nitrogen metabolism genes such as *amtB* and *glnII*
109 in *S. coelicolor* and *S. lividans* (Zhu *et al.*, 2019), which are closely related species (Kawamoto &
110 Ochi, 1998, Lewis *et al.*, 2010). To investigate whether MtrA has a similar regulatory effect in *S.*
111 *venezuelae*, which is more distantly related to the model strain *S. coelicolor*, we compared the
112 expression levels of known nitrogen metabolism genes in the wild-type strain *S. venezuelae*
113 ATCC10712 and $\Delta mtrA_{SVE}$, which is an *mtrA* deletion mutant of this strain (Zhu *et al.*, 2020a). Our
114 transcriptional analysis showed that the nitrogen metabolism genes *amtB*, *glnK*, *glnD*, *nirB*, and
115 *glnII* were more highly expressed in the mutant on rich medium, including YBP (Fig. S1) and
116 R2YE (Fig. 1A). We also investigated whether MtrA recognizes the GlnR boxes of nitrogen
117 metabolism genes in *S. venezuelae*. We showed that MtrA binds the GlnR boxes of nitrogen
118 metabolism genes including *amtB*, *glnII*, *glnA*, *glnR*, *nirB*, *ureA*, *gltB* using the wild-type and
119 mutagenized sequence as probes (Fig. S2-S9), indicating that MtrA recognizes GlnR box and
120 represses these nitrogen metabolism genes in *S. venezuelae*, consistent with its role in *S. coelicolor*
121 (Zhu *et al.*, 2019)

122

123 *The two nitrogen metabolism regulators mtrA and glnR are auto-regulatory*

124 MtrA functions as a repressor for nitrogen metabolism genes; however, the impact of MtrA on its

125 own expression was not known. To determine whether *mtrA* is auto-regulatory, a set of primers was
126 designed to target a region of *mtrA* still present in $\Delta mtrA_{SVE}$, and these primers were used in
127 transcriptional analysis by real-time PCR. To facilitate comparison, the expression level of *mtrA* at
128 the first time point in the wild-type strain was arbitrarily set to one (Fig. 2). For the wild-type strain,
129 an expression level of about one (ranging from 0.74 to 1.1) was detected for *mtrA* throughout the
130 entire time course, whereas the fold change in expression of *mtrA* in $\Delta mtrA_{SVE}$ ranged from 170 ± 37
131 to 287 ± 153 on R2YE (Fig. 2A). *mtrA* also maintained a basal expression level throughout the time
132 course for the wild-type strain on the nitrogen-limited medium N-Evans (Fig. 2B), and although its
133 upregulation in $\Delta mtrA_{SVE}$ was not so striking as on R2YE, *mtrA* expression in the mutant ranged
134 from 59 ± 24 to 82 ± 25 , indicating that MtrA represses its own expression under both nitrogen-limited
135 and nutrient-rich conditions. Notably, no detectable level of expression was detected for *mtrA* in
136 transcriptional analysis using a second set of primers that target the deleted sequence of *mtrA* (Fig.
137 S10), confirming the removal of a portion of *mtrA*. However, analysis using each set of primers
138 showed that *mtrA* was overexpressed in a *glnR* mutant strain of *S. venezuelae* ($\Delta glnR_{SVE}$) on
139 N-Evans medium (Fig. 2B, Fig. S10A), indicating that GlnR represses *mtrA* under nitrogen-limited
140 conditions, which is in agreement with our previous report on *S. coelicolor* (Zhu *et al.*, 2019).

141 We also investigated whether GlnR is auto-regulatory using a set of primers that targeted at the
142 undeleted sequence of *glnR* and a *glnR* mutant strain of *S. venezuelae* (Zhu *et al.*, 2020a). While a
143 level of about one was detected for *glnR* in the wild-type strain through time course on both media,
144 *glnR* reached a level ranging from 10 ± 1.7 to 12.9 ± 1.5 on N-Evans and a level ranging from 31 ± 5.2
145 to 42 ± 12.9 on R2YE in $\Delta glnR_{SVE}$ (Fig. 2), indicating that GlnR represses its own expression under
146 both nitrogen-limited and nutrient-rich conditions. However, when a second set of primers that
147 targets a segment of *glnR* deleted in $\Delta glnR_{SVE}$ was used, no detectable level of expression was
148 detected for *glnR* (Fig. S10), confirming the deletion. Overexpression of *glnR* was detected in the
149 *mtrA* mutant strain using both sets of primers on R2YE (Fig. 2A, Fig. S10B), validating that MtrA
150 represses *glnR* in *S. venezuelae* under nutrient-rich conditions, similar to our findings with *S.*
151 *coelicolor* (Zhu *et al.*, 2019).

152

153 *mtrA* is the target of both MtrA and GlnR in *S. venezuelae*

154 To explore the potential mechanism for the autoregulation of *mtrA*, the sequence upstream of *mtrA*
155 was examined, and a potential MtrA site was identified (Fig. 3A). To determine if MtrA interacts

156 with this site, an electrophoretic mobility shift assay (EMSA) was performed using purified MtrA
157 and short oligonucleotides containing the predicted MtrA site as probe. The EMSA analysis showed
158 that MtrA binds the probe with the predicted MtrA site, but not the probes with mutations at the
159 conserved nucleotides of the site, upstream of *mtrA* *in vitro* (Fig. 3B). To determine whether MtrA
160 also binds this site *in vivo*, the integrative plasmid pMtrA-FLAG, which expresses an MtrA-FLAG
161 fusion protein under the control of the native *mtrA* promoter, was constructed and was introduced
162 into $\Delta mtrA_{SVE}$. Whereas $\Delta mtrA_{SVE}$ exhibited a delay in spore formation and defective pigment
163 production, these defects were reversed in MtrA-FLAG- $\Delta mtrA_{SVE}$ (Fig. S11), indicating that
164 FLAG-tagged MtrA is expressed and functional. MtrA-FLAG- $\Delta mtrA_{SVE}$ was therefore used for
165 ChIP analysis with anti-FLAG antibody. The binding level detected at the *mtrA* promoter remained
166 at around background levels for the control wild-type strain, whereas a relative binding level of
167 about four was detected for MtrA-FLAG- $\Delta mtrA_{SVE}$ on R2YE and N-Evans (Fig. 4A), indicating that
168 MtrA binds this site *in vivo* under both conditions.

169 To determine whether GlnR also binds the MtrA site upstream of *mtrA* *in vivo*, the integrative
170 plasmid pGlnR-FLAG expressing a GlnR-FLAG fusion protein under the control of the native *glnR*
171 promoter was constructed and introduced into $\Delta glnR_{SVE}$. The delay in spore formation and the
172 defect in pigment production by $\Delta glnR_{SVE}$ were restored to nearly wild-type levels in
173 GlnR-FLAG- $\Delta glnR_{SVE}$ (Fig. S12), indicating that the FLAG-tagged GlnR was expressed and
174 functional. This strain was then used for ChIP analysis. Our data showed that GlnR bound the MtrA
175 site upstream of *mtrA* *in vitro* (Fig. 3C) and also *in vivo* on both R2YE and N-Evans (Fig. 4B).
176 Altogether, we showed that the *mtrA* promoter is a target of both MtrA and GlnR, explaining the
177 autoregulation of MtrA and its regulation by GlnR.

178

179 *Transcription of nitrogen metabolism genes in $\Delta mtrA-glnR$*

180 Previously, we used mutant strains with deletions of either *mtrA* or *glnR* to investigate the impact of
181 MtrA or GlnR, respectively, on nitrogen metabolism genes (Zhu *et al.*, 2019). In this study, we
182 asked what is the combined impact of MtrA and GlnR on nitrogen metabolism genes? To address
183 this question, we generated the mutant strain $\Delta mtrA-glnR$, which has deletions of both *mtrA* and
184 *glnR*. Next, we compared the expression of nitrogen metabolism genes in this strain and in the
185 single *mtrA* and *glnR* deletion mutants. To facilitate the comparison, the expression level of each
186 gene in the wild-type strain at the first time point was arbitrarily set to one. As noted previously, on

187 R2YE, nitrogen genes such as *amtB*, *glnII*, and *nirB2* were markedly upregulated in $\Delta mtrA_{SVE}$, most
188 notably at the three early time points (24, 36, 48 h) (Fig. 1A), confirming a major role for MtrA
189 under nutrient-rich conditions. In contrast, the expression level of these genes was reduced
190 moderately, mostly at two time points (48 and 72 h) in $\Delta glnR_{SVE}$, suggesting a positive, although
191 minor, role for GlnR in their regulation under nutrient-rich conditions. Unexpectedly, in
192 $\Delta mtrA-glnR$, the expression levels of several nitrogen metabolism genes on R2YE, including *amtB*,
193 *nirB*, and *glnII*, were more similar to those in $\Delta glnR_{SVE}$, a transcription pattern distinctly different
194 from that observed in $\Delta mtrA_{SVE}$ (Fig. 1A and Fig. S13). Two exceptions were *gltB* and *gdhA*, whose
195 transcription pattern in $\Delta mtrA-glnR$ was more similar to that in $\Delta mtrA_{SVE}$ at several time points (Fig.
196 S13).

197 We next examined the transcription patterns in $\Delta mtrA-glnR$ grown on N-Evans, a
198 nitrogen-limited medium on which GlnR functions as an activator for nitrogen metabolism genes
199 (Zhu *et al.*, 2019, Tiffert *et al.*, 2008). In $\Delta mtrA_{SVE}$, the expression level of *amtB*, *nirB*, and *glnII*
200 was either comparable to that of the wild-type control or only slightly altered (Fig. 1B and Fig. S14),
201 suggesting a minor role for MtrA under nitrogen-limited conditions. As expected, only a minimal
202 level of expression was detected for these genes in $\Delta glnR_{SVE}$ (Fig. 1B and Fig. S14), consistent with
203 the major role for GlnR under nitrogen-limited conditions. Similar to the results for $\Delta glnR_{SVE}$, only
204 minimal expression of these genes was detected in $\Delta mtrA-glnR$ on N-Evans (Fig. 1B and Fig. S14).
205 The exception was *gltB*, which was upregulated in both $\Delta mtrA_{SVE}$ and $\Delta glnR_{SVE}$ (Fig. S14) but
206 which showed even higher expression in the double mutant at the two early time points (24 h and 36
207 h), suggesting a synergistic effect from the loss of *mtrA* and *glnR*.

208 We next investigated the expression profiles of nitrogen metabolism genes in $\Delta mtrA-glnR$
209 following a shift from nutrient-rich (YBP broth) to nitrogen-limited conditions (N-Evans broth) (Fig.
210 1C and Fig. S15). RNA extracts were prepared directly from YBP and designated as the time 0
211 samples, prior to the transfer of culture to N-Evans broth for further growth for four or six hours.
212 The expression level of each gene in the wild-type control at time 0 was arbitrarily set to one. As
213 expected, the expression levels of nitrogen metabolism genes were all increased at time 0 in
214 $\Delta mtrA_{SVE}$, and levels were either comparable to the wild-type strain or only slightly impacted in
215 $\Delta glnR_{SVE}$, with the expression patterns in $\Delta mtrA-glnR$ similar to those in $\Delta glnR_{SVE}$ (Fig. 1C and Fig.
216 S15). After four and six hours of growth in N-Evans, the expression profiles of these genes in
217 $\Delta mtrA-glnR$ remained nearly identical to those of $\Delta glnR_{SVE}$. In conclusion, the transcriptional

218 patterns of nitrogen metabolism genes in $\Delta mtrA-glnR$ is similar to that in $\Delta glnR_{SVE}$ under
219 nitrogen-limited or nutrient-rich conditions, or under a nutrient shift from nutrient-rich to
220 nitrogen-limited conditions, implying a decisive role for GlnR in the regulation of nitrogen
221 metabolism genes.

222

223 *The relative expression levels of mtrA, glnR, and nitrogen metabolism genes under different growth*
224 *conditions*

225 Our previous and this study showed that MtrA plays a major role in nitrogen metabolism under
226 nutrient-rich conditions and a minor role under nitrogen-limited conditions. However, it was not
227 known whether MtrA is differentially expressed under these two conditions. Therefore, the
228 expression level of *mtrA* on different growth media was compared using the wild-type strain. The
229 expression level of *hrdB*, which served as the internal control, was arbitrarily set to one at each time
230 point, and the expression of *mtrA* at each time point was calculated relative to *hrdB* (Fig. 5). On
231 YBP, the expression levels of *mtrA* were higher (0.44-0.54) at the two early time points than at the
232 later time points (0.18-0.28). On R2YE, a level ranging from 0.44-0.49 was detected for *mtrA* at the
233 three early time points, whereas the two later time points were lower (0.27-0.32), suggesting highest
234 expression of *mtrA* at the early growth phase under nutrient-rich conditions. On N-Evans, levels
235 remained around 0.26-0.28 for *mtrA*, which is comparable to the levels at the two later time points
236 on R2YE (Fig. 5A), suggesting that, although *mtrA* plays a minor role under nitrogen-limited
237 conditions, it is still moderately expressed under such conditions and its role is also influenced by
238 growth phase.

239 We also examined the response of *glnR* to different nitrogen conditions using the wild-type
240 strain (Fig. 5A). Expression levels of about 0.09-0.14 were detected for *glnR* on YBP medium,
241 which was comparable with its levels on R2YE (0.10-0.16). However, markedly higher levels,
242 ranging from 0.34-0.52, were detected for *glnR* on N-Evans, indicating that, although *glnR* is
243 expressed under nutrient-rich conditions, its expression was much higher in nitrogen-limited
244 conditions. These findings are consistent with a previous report indicating that GlnR is the major
245 regulator for nitrogen metabolism genes under nitrogen-limited conditions but not under
246 nutrient-rich conditions (Tiffert *et al.*, 2008). The expression levels of *amtB*, *glnK*, *glnD*, *glnII*, *nirB*,
247 and *ureA* were also notably higher on N-Evans than on YBP and R2YE (Fig. 5A and Fig. S16), in
248 agreement with a previous report indicating that these nitrogen metabolism genes respond to

249 nitrogen-limited conditions in *S. coelicolor* (Tiffert *et al.*, 2008). However, *gdhA* expression was
250 barely detectable on any of the media, while *gltB* expression was detectable and remained at
251 roughly comparable levels on all three media types (Fig. S16), implying that these two genes
252 respond differently from other nitrogen metabolism genes.

253 The expression levels of *mtrA*, *glnR*, and other nitrogen metabolism genes under the same
254 growth conditions were also compared (Figs. 5B, 5C, S17, and S18). *mtrA* expression remained
255 lower than *glnR* expression (0.26-0.28 vs 0.33-0.52) at the four time points on N-Evans (Fig. 5B),
256 whereas on R2YE, *mtrA* expression was consistently higher than that of *glnR* (0.27-0.49 vs
257 0.095-0.164) (Fig. 5C), with the large difference in expression levels indicating that *glnR* is more
258 sensitive to nitrogen availability. Both *glnA* and *glnII* encode glutamine synthetases; however, *glnA*
259 was expressed much more highly than *glnII* on N-Evans (Fig. 5B) and R2YE (Fig. 5C), supporting
260 the notion that GlnA is the major glutamine synthetase in *S. coelicolor* (Tiffert *et al.*, 2008).

261

262 *MtrA binds differentially to the MtrA/GlnR sites of nitrogen metabolism genes under different*
263 *growth conditions*

264 To investigate if the differential expression of *mtrA* on different media is reflected at the protein
265 level, we performed Western blot analysis using MtrA-FLAG- Δ *mtrA_{SVE}* grown on solid R2YE and
266 N-Evans. Crude cellular lysates were extracted at the same four time points. Whereas the level of
267 MtrA was almost constant on either R2YE or N-Evans, the level on N-Evans was notably lower
268 than on R2YE (Fig. 6A), which is consistent with the transcriptional analysis (Fig. 5). To explore
269 whether the different level of MtrA leads to differential binding *in vivo* to the MtrA/GlnR sites of
270 nitrogen metabolism genes, previously tested in ESMA (Fig. S2-S9), we performed ChIP-qPCR
271 analysis and compared the binding level of MtrA in cultures grown on R2YE and N-Evans (Fig. 6B,
272 6C and Fig. S19). Higher binding levels were detected on R2YE than on N-Evans and the levels are
273 fairly constant for a given medium. For example, at 24 h, the levels on R2YE versus N-Evans were
274 as follows: *glnA* (5.02 \pm 0.81 vs 3.36 \pm 0.83), *glnII* (5.30 \pm 0.75 vs 2.58 \pm 0.28), *ureA* (4.75 \pm 0.67 vs
275 2.91 \pm 0.71), *amtB* (4.56 \pm 0.51 vs 3.76 \pm 0.64). However, only minor differences in binding by MtrA
276 were observed for *gdhA* and *gltB* (Fig. S19), and no *in vivo* binding was detected for *nirB* and
277 *sven_1860* (Fig. S19), although MtrA bound these two sites *in vitro* (Fig. S6, S9).

278

279 *GlnR binds differentially to the MtrA/GlnR sites of nitrogen metabolism genes under different*

280 *growth conditions*

281 To investigate if the differential expression of *glnR* on different media is reflected at the protein
282 level, we performed Western blot analysis using the complemented strain GlnR-FLAG- $\Delta glnR_{SVE}$,
283 which expresses a functional GlnR-FLAG (Fig. S12). Crude cellular lysates were extracted at the
284 same four time points of GlnR-FLAG- $\Delta glnR_{SVE}$ grown on solid R2YE and N-Evans. Although the
285 level of GlnR was nearly constant on either R2YE or N-Evans, the level on N-Evans was notably
286 higher than on R2YE (Fig. 7A), consistent with the transcriptional analysis (Fig. 5). To determine
287 whether the different levels of GlnR leads to differential binding *in vivo* to the MtrA/GlnR sites for
288 nitrogen metabolism genes, we performed ChIP-qPCR analysis and compared the binding level of
289 GlnR to nitrogen genes on R2YE and N-Evans (Fig. 7B, 7C and Fig. S20). Higher binding levels
290 were detected on N-Evans than on R2YE and the levels are fairly constant for a given medium. For
291 example, at 24 h, the levels on N-Evans versus on R2YE were as follows: *glnA* (5.71±0.69) vs
292 4.35±0.69), *glnII* (4.77±0.60 vs 3.63±0.64), *ureA* (4.15±0.71 vs 3.24±0.52), *amtB* (4.76±0.35 vs
293 3.22±0.19)], and several other nitrogen genes (Fig. S20), suggesting that GlnR binds stronger under
294 nitrogen-limited conditions than under nutrient-rich conditions.

295

296 **Discussion**

297 From the model that we proposed for the regulation of nitrogen metabolism genes (Zhu *et al.*, 2019),
298 MtrA binds the MtrA sites of nitrogen assimilation genes and represses these genes to prevent the
299 unnecessary expression of these genes when nitrogen resources are in surplus under nutrient-rich
300 conditions; however, GlnR binds the GlnR boxes of these genes and activates the genes under
301 nitrogen-limited conditions. As there is strong similarity in the core sequence of the MtrA site and
302 the GlnR box and as MtrA and GlnR compete *in vitro* to bind to these sequences (Zhu *et al.*, 2019),
303 we hypothesized that MtrA would bind the MtrA sites/GlnR boxes under nutrient-rich conditions
304 and disassociate from them under nitrogen-limited conditions *in vivo*, whereas GlnR would exhibit
305 the opposite pattern, with binding under nitrogen-limited conditions and disassociation under
306 nutrient-rich conditions. However, the hypothesis was partially contradicted by the data obtained
307 from this study. We showed that MtrA and GlnR bound the MtrA sites/GlnR boxes under both
308 nitrogen-limited and nutrient-rich conditions, although the binding levels differed. In general, MtrA
309 bound more strongly to these target sites under nutrient-rich conditions than under nitrogen-limited
310 conditions, in agreement with a moderately higher levels of MtrA under nutrient-rich conditions

311 than under nitrogen-limited conditions. However, GlnR bound at notably stronger levels to the
312 MtrA sites/GlnR boxes under nitrogen-limited conditions than under nutrient-rich conditions,
313 consistent with a markedly higher level of GlnR under nitrogen-limited conditions. Although it has
314 only a minor role in the regulation of nitrogen metabolism genes under nitrogen-limited conditions,
315 MtrA still bound the MtrA sites/GlnR boxes under these conditions; likewise, GlnR still bound
316 these targets under nutrient-rich conditions, implying co-occupancy of the MtrA sites/GlnR boxes
317 by MtrA and GlnR under the conditions tested. However, when both proteins are bound to the same
318 site, it is unclear how MtrA exerts its role under nutrient-rich conditions and GlnR exerts its role
319 under nitrogen-limited conditions. Nevertheless, as MtrA demonstrated a higher binding level than
320 GlnR under nutrient-rich conditions, MtrA may occupy more of the MtrA sites/GlnR boxes than
321 GlnR does under nutrient-rich conditions, enabling MtrA to manifest its repressor role when
322 nitrogen sources are abundant. In contrast, as GlnR generally displayed a higher binding level than
323 MtrA did under nitrogen-limited conditions, GlnR may occupy more of these sites when nitrogen is
324 limited, consistent with its role as an activator of nitrogen metabolism genes.

325 The lower level of MtrA under nitrogen-limited and of GlnR under nutrient-rich conditions
326 conditions could be caused at the transcriptional level and potentially at the post-transcriptional
327 level. In addition to changes in the levels of these regulators, modification at the post-translational
328 level has been reported for GlnR in *Streptomyces* and MtrA in *Mycobacterium tuberculosis* (Singh
329 *et al.*, 2020, Singhal *et al.*, 2020, Amin *et al.*, 2016). Acetylated and phosphorylated forms of GlnR
330 have been identified (Amin *et al.*, 2016); GlnR phosphorylation correlated with nitrogen-rich
331 conditions, and phosphorylation inhibited the binding of GlnR to its target genes, whereas
332 acetylation had only a minor influence on the binding of GlnR to its target genes (Amin *et al.*, 2016).
333 Acetylation and methylation of MtrA influenced its repressor activity in *M. tuberculosis* (Singh *et*
334 *al.*, 2020, Singhal *et al.*, 2020), and MtrA of *Streptomyces* may be similarly subject to
335 post-translational modification, with different forms of MtrA having different binding affinities for
336 target genes (Singh *et al.*, 2020, Singhal *et al.*, 2020). However, the role of any such modifications
337 needs to be further investigated in *Streptomyces*.

338 The transcriptional data obtained from mutant strains with deletion of a single gene ($\Delta mtrA$ or
339 $\Delta glnR$) in this and a previous study (Zhu *et al.*, 2019) indicated that MtrA and GlnR function under
340 nutrient-rich and nitrogen-limited conditions, respectively. Therefore, we initially hypothesized that,
341 under nutrient-rich conditions, the transcriptional pattern of nitrogen metabolism genes in the

342 double mutant $\Delta mtrA-glnR$ would follow the pattern of $\Delta mtrA$, while under nitrogen-limited
343 conditions, the pattern would follow that of $\Delta glnR$. Consistent with our hypothesis, the
344 transcriptional pattern in $\Delta mtrA-glnR$ was similar to that of $\Delta glnR$ under nitrogen-limited conditions
345 (Fig. 1B). However, unexpectedly, the transcriptional pattern in $\Delta mtrA-glnR$ was also similar to that
346 of $\Delta glnR$ under nutrient-rich conditions (Fig. 1A), implying a GlnR-dependent regulatory effect of
347 MtrA, although GlnR maintains a lower level of expression under this condition. This is a new and
348 interesting finding, although it is difficult to explain from our current understanding.

349 Based on our data, we propose a new model for nitrogen regulation by MtrA and GlnR (Fig. 8).
350 In this model, both MtrA and GlnR are auto-regulatory, repressing their own expression. Under
351 nitrogen-poor conditions, expression of GlnR is highly induced, and therefore GlnR binds more
352 strongly (or more GlnR binds) to the MtrA sites/GlnR boxes of the nitrogen metabolism genes, and
353 thus these genes are activated. Under nutrient-rich conditions, expression of GlnR is minimal
354 whereas MtrA is induced, and therefore MtrA binds more strongly (or more MtrA binds) to the
355 target sites, resulting in repression of the nitrogen genes. The molecular mechanism underlying the
356 dependence of MtrA on GlnR for the regulation of nitrogen metabolism genes is not clear and is not
357 yet explained in our model. Nevertheless, our study does provide new insights into the
358 understanding of the complex regulation of nitrogen metabolism in microbes.

359

360 **Experimental procedures**

361 *Strains, plasmids, primers, and culture conditions.*

362 All strains and primers are listed in Table S1 and Table S2, respectively. *Streptomyces venezuelae*
363 ATCC 10712 was used as the wild-type strain in this study. The *Streptomyces* strains were
364 cultivated on solid maltose-yeast extract-malt extract (MYM) medium (Frojd & Flardh, 2019) for
365 sporulation, and on N-Evans (Fink *et al.*, 2002), YBP (Ou *et al.*, 2009), and R2YE (Kieser *et al.*,
366 2000) for phenotypic observation, RNA extraction, cellular lysate purification, and ChIP analysis.
367 All *Escherichia coli* strains were cultured in Luria-Bertani (LB) agar or liquid medium. When
368 necessary, appropriate antibiotics were added.

369

370 *Deletion of both mtrA and glnR from the genome of S. venezuelae*

371 The mutant strain $\Delta mtrA-glnR$ with deletions of both *mtrA* and *glnR* was obtained using the
372 mutation plasmid pJTU-*mtrA* to delete *mtrA* from the mutant strain $\Delta glnR$ (Zhu *et al.*, 2020a).

373 Plasmid pJTU-*mtrA*, which is apramycin resistance (Zhu *et al.*, 2020a), was transformed into *E. coli*
374 ET12567 (pUZ8002) and then introduced into the kanamycin-resistant $\Delta glnR_{SVE}$ (Zhu *et al.*, 2020a)
375 by conjugation. After several rounds of selection on MS agar containing both apramycin and
376 kanamycin, the deletion of *mtrA* from $\Delta glnR_{SVE}$ was confirmed by PCR using MtrA V-F/R.
377

378 *Expression and purification of MtrA and GlnR*

379 His-tagged MtrA and GlnR were expressed and purified essentially as described (Zhu *et al.*, 2020a,
380 Zhu *et al.*, 2019, Lu *et al.*, 2018). In brief, protein production was induced by addition of 1 mM
381 IPTG, and bacterial cells were collected after overnight culture at 16°C and then re-suspended and
382 sonicated in binding buffer [50 mM NaH₂PO₄ (pH 8.0), 200 mM NaCl, 20 mM imidazole] on ice.
383 Crude lysates were centrifuged to remove cell debris, and soluble proteins in supernatant were
384 purified by Ni affinity column (Qiagen, USA). Purified proteins were examined by sodium dodecyl
385 sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and their concentration was determined by
386 the Pierce BCA Protein Assay Kit (Thermo Scientific, USA).

387

388 *Electrophoretic mobility shift assays (EMSA)*

389 All primers for EMSAs (Table S2) were labelled with biotin at the 5'-terminus. The complementary
390 forward and reverse 59 nt primers were mixed and annealed to produce probes. The conditions for
391 EMSAs were as described previously (Zhang *et al.*, 2015, Zhu *et al.*, 2020b). Signal detection was
392 conducted by the ECL Western Blotting Analysis System kit (GE Healthcare) and was displayed by
393 exposure to X-ray film or visualized by myECL imager (Thermo Scientific) instrument.

394

395 *Extraction of crude cellular lysates, SDS-PAGE, and Western blot analysis*

396 *S. venezuelae* strains were cultivated on solid R2YE or N-Evans (supplemented with 2 mM
397 glutamine), and mycelia were harvested at indicated times. The harvested mycelia were ground in
398 liquid nitrogen, dissolved in lysis buffer (50 mM Tris-HCl, 50 mM EDTA, PH8.0), and centrifuged
399 to remove cellular debris. The concentration of the crude lysates was determined by the Pierce
400 Protein Assay Kit. Equal amounts of crude lysates were separated by SDS-PAGE (12%) and then
401 transferred to Hybond-ECL membranes (GE Amersham), which were blocked with 5% fat-free milk
402 at room temperature for 2 hours, washed twice, and incubated with anti-FLAG mAb (1:3000;
403 Boster Biological Technology) at 4°C overnight (Yan *et al.*, 2020, Lu *et al.*, 2020b). Next, the

404 membranes were washed twice before incubating with the HRP-conjugated goat anti-mouse IgG
405 (H+L) secondary antibody (1:5000; Boster Biological Technology) for 50 min at room temperature.
406 Finally, the membranes were washed twice, and the signal was revealed by the ECL Western
407 Blotting Analysis System kit or imaged by the myECL imager system.

408

409 *Total RNA extraction, reverse transcription-PCR (RT-PCR), and real-time PCR*

410 Equal amounts of spores of *Streptomyces* strains were inoculated onto solid YBP, R2YE, and
411 N-Evans media, and cultures were collected at indicated times. For the media-shift experiment, the
412 *Streptomyces* strains were first cultured in liquid YBP medium for 24 h at 30.0 °C and at 220 rpm.
413 After the optical density of the culture reached 2.0 at OD_{450nm}, one portion of the culture was
414 centrifuged and collected for RNA isolation at the base time (0 h). An equal portion of the YBP
415 culture was centrifuged, washed twice with liquid N-Evans, and dispersed into 50 ml N-Evans
416 medium supplemented with 2 mM glutamine for extended growth (4 h or 6 h) at 30.0°C and at 220
417 rpm. Cell cultures were collected, ground in liquid nitrogen, and processed for RNA extraction as
418 described previously (Zhang *et al.*, 2017, Lu *et al.*, 2020a). Reverse transcription PCR for cDNA
419 synthesis and real-time PCR assays were carried out as described previously (Zhu *et al.*, 2020c).
420 Specificity and melting curves of the PCR products were determined using the Roche
421 LightCycler480 thermal cycler according to the manufacturer's protocol. Transcription levels of
422 measured genes were normalized relative to the level for *hrdB*, which was used as the internal
423 control.

424

425 *Construction of engineered strains expressing FLAG-tagged MtrA or GlnR*

426 To express the MtrA-FLAG fusion protein, the plasmid pMtrA-FLAG was constructed following
427 the described strategy (Liu *et al.*, 2019). Briefly, DNA fragment I containing the promoter and
428 coding region of *mtrA* of *S. venezuelae* was amplified using the primer set MtrA Fcom-F/R and the
429 template genomic DNA, and DNA fragment II containing the linker and 3 × FLAG sequence
430 (including stop codon) was amplified using primer set Linker-Flag-F/R with the template
431 pMacR-FLAG, which contains the linker sequence and the coding sequence of FLAG (Liu *et al.*,
432 2019); the two sets of primers were designed so that there would be overlapping sequences between
433 these two amplified fragments. The two PCR fragments were purified, mixed, and ligated with
434 pMS82 to obtain pMtrA-FLAG, which was then introduced into $\Delta mtrA_{SVE}$ and $\Delta mtrA-glnR$ by

435 conjugation to obtain the complemented strains MtrA-Flag- $\Delta mtrA_{SVE}$ and MtrA-Flag- $\Delta mtrA-glnR$,
436 respectively. The plasmid expressing the GlnR-FLAG fusion protein and complemented strains
437 GlnR-Flag- $\Delta glnR_{SVE}$ and GlnR-Flag- $\Delta mtrA-glnR$ were constructed similarly, using primers listed in
438 Table S2.

439

440 *Chromatin immunoprecipitation and qPCR*

441 *S. venezuelae* strains were grown on R2YE and N-Evans agar and harvested at indicated times. For
442 the chromatin immunoprecipitation (ChIP), the M2 mouse monoclonal anti-FLAG antibody (Sigma)
443 was used. The cross-linking, chromosomal DNA sonication, immunoprecipitation, reverse of the
444 cross-links, and elution steps were conducted essentially as described previously (Bush *et al.*, 2013,
445 Liu *et al.*, 2019, Bush *et al.*, 2019). The elution was quantified and subjected to qPCR analysis. The
446 qPCR reactions were performed as above. To calculate the binding level of protein in the ChIP
447 samples, the relative quantities of each DNA fragment were normalized with the housekeeping gene
448 *hrdB*, which served as an internal control, and the binding level of at each target in the input
449 chromosomal DNA was arbitrarily set to one.

450

451 **Acknowledgement**

452 This work was supported by grants from the National Natural Science Foundation of Shandong
453 Province (ZR2019MC062 to XP), the Open Funding Project of the State Key Laboratory of
454 Microbial Metabolism (MMLKF21-02 to XP), and the National Key R&D Program of China
455 (2018YFA0900400 to AL).

456

457 **Conflict of interest**

458 The authors declare that they have no conflict of interest with the contents of this article.

459

460 **Author contributions**

461 XP conceived, supervised the study, and wrote the paper; XP and YZ designed experiments; YZ, JW,
462 TL, and WS performed experiments; XP, YZ, and AL analysed data; and all authors reviewed the
463 results and approved the final version of the manuscript.

464

465 **Figure captions**

466 Figure 1. Transcriptional analysis of nitrogen metabolism genes in $\Delta mtrA_{SVE}$, $\Delta glnR_{SVE}$, and
467 $\Delta mtrA-glnR$ mutants by real-time PCR. *Streptomyces* strains were cultured on solid (A) R2YE, (B)
468 N-Evans, or (C) shifted from liquid YBP to liquid N-Evans, and RNA samples from 10712 (WT),
469 $\Delta mtrA_{SVE}$, $\Delta glnR_{SVE}$, and $\Delta mtrA-glnR$ were isolated at the indicated times. Expression of *hrdB*,
470 encoding the major sigma factor, was used as an internal control. For each gene, the expression
471 level in the wild-type strain (WT) at the first time point was arbitrarily set to one. The y-axis shows
472 the fold change in expression in WT, $\Delta mtrA_{SVE}$, $\Delta glnR_{SVE}$, and $\Delta mtrA-glnR$ over the levels in WT at
473 the first time point. Results are the means (\pm SD) of triplet biological experiments.

474

475 Figure 2. Transcriptional analysis of *mtrA* and *glnR* in $\Delta mtrA_{SVE}$, $\Delta glnR_{SVE}$, and $\Delta mtrA-glnR$
476 mutants by real-time PCR. *Streptomyces* strains were cultured on solid R2YE (A) and N-Evans (B),
477 and RNA samples from the wild-type strain (WT), $\Delta mtrA_{SVE}$, $\Delta glnR_{SVE}$, and $\Delta mtrA-glnR$ were
478 isolated at the indicated times. Expression of *hrdB*, encoding the major sigma factor, was used as an
479 internal control. For each gene, the expression level in WT at the first time point was arbitrarily set
480 to one. The y-axis shows the fold change in expression in WT, $\Delta mtrA_{SVE}$, $\Delta glnR_{SVE}$, and $\Delta mtrA-glnR$
481 over the levels in WT at the first time point. Primer sets that target remaining regions of *mtrA* or
482 *glnR* in $\Delta mtrA_{SVE}$ and $\Delta glnR_{SVE}$, respectively, were used. Results are the means (\pm SD) of triplet
483 biological experiments.

484

485 Figure 3. *mtrA* is a target of MtrA and GlnR. (A) the predicted MtrA site upstream of *mtrA* in *S.*
486 *venezuelae*. The MtrA site is underlined and in boldface, and tested mutations are highlighted in red.
487 (B) EMSA with MtrA and 59-bp probes containing the predicted MtrA site or the MtrA site with
488 mutations. Reactions were carried out with the addition of no MtrA (lane 1), or with 1.18 μ M (lane
489 2), 4.74 μ M (lane 3), or 8.29 μ M (lane 4) MtrA. (C) EMSA with GlnR and a 59-bp probe containing
490 the predicted MtrA site or the MtrA site with mutations. Reactions were carried out with the
491 addition of no GlnR (lane 1), or with 0.45 μ M (lane 2), 1.78 μ M (lane 3), or 3.11 μ M (lane 4) GlnR.
492 The red and black arrows indicate the positions of the shifted and free probes, respectively.

493

494 Figure 4. ChIP-qPCR analysis of MtrA and GlnR binding to the *mtrA* and *glnR* promoters. The
495 wild-type strain (WT), MtrA-FLAG- $\Delta mtrA_{SVE}$, and GlnR-FLAG- $\Delta glnR_{SVE}$ were cultured on solid
496 R2YE and N-Evans media and were processed at the indicated times. The y-axis shows the binding

497 level of MtrA or GlnR relative to the background in WT, MtrA-FLAG- $\Delta mtrA_{SVE}$, and
498 GlnR-FLAG- $\Delta glnR_{SVE}$. As WT contains native MtrA and GlnR only, the results for this strain are
499 equivalent to background amplification of the target sequences. The data show the means (\pm SD) of
500 triplet biological experiments.

501

502 Figure 5. Transcriptional analysis of *mtrA*, *glnR*, and nitrogen metabolism genes in the wild-type
503 strain 10712 grown on different media. (A) Transcription analysis using YBP, R2YE, and N-Evans
504 cultures. For each gene, the expression level of *hrdB* at each time point was arbitrarily set to one.
505 The y-axis shows the fold change in expression of each gene over the expression level of *hrdB* for
506 each time point. Results are the means (\pm SD) of triplet biological experiments. (B-C)
507 Transcriptional analysis using R2YE or N-Evans cultures at various time points. Results are the
508 means (\pm SD) of triplet biological experiments and were calculated as for panel A.

509

510 Figure 6. Comparison of the level of MtrA and its binding to the promoters of nitrogen metabolism
511 genes under nitrogen-limited and nutrient-rich conditions. (A) Western blot analysis using 10 μ g
512 total cellular lysates extracted at indicated times from mycelia of indicated strains grown on R2YE
513 or N-Evans. (B-C) ChIP-qPCR analysis of the binding of MtrA to the promoters of nitrogen
514 metabolism genes from cultures grown on R2YE or N-Evans. Analysis was performed using strains
515 MtrA-FLAG- $\Delta mtrA_{SVE}$ and the wild-type 10712 (WT) grown on R2YE or N-Evans for the
516 indicated times. The y-axis shows the binding levels of MtrA-FLAG in MtrA-FLAG- $\Delta mtrA_{SVE}$ and
517 WT relative to background levels, which was determined by recovery of target sequences. Results
518 are the means (\pm SD) of triplet biological experiments.

519

520 Figure 7. Comparison of the level of GlnR and its binding to the promoters of nitrogen metabolism
521 genes under nitrogen-limited and nutrient-rich conditions. (A) Western blot analysis. For details, see
522 legend to Figure 6, panel A. (B-C) ChIP-qPCR analysis of the binding of GlnR to the promoters of
523 nitrogen metabolism genes from cultures grown on R2YE or N-Evans. Analysis was performed
524 using strains GlnR-FLAG- $\Delta glnR_{SVE}$, and the wild-type 10712 (WT) grown on R2YE for N-Evans
525 for the indicated times. The y-axis shows the binding levels of GlnR-FLAG in
526 GlnR-FLAG- $\Delta glnR_{SVE}$ and WT relative background levels, which was determined by recovery of
527 target sequences. Results are the means (\pm SD) of triplet biological experiments.

528

529 Figure 8. Model for regulation of nitrogen metabolism genes by MtrA and GlnR. (A) MtrA and
530 GlnR are auto-regulatory, repressing their own expression. (B) Under nitrogen-poor conditions,
531 more GlnR binds to the MtrA sites/GlnR boxes, activating the nitrogen metabolism genes. (C)
532 Under nutrient-rich conditions, more MtrA binds to the MtrA sites/GlnR boxes, repressing the
533 nitrogen metabolism genes.

534

535 **References**

536 Amin, R., Franz-Wachtel, M., Tiffert, Y., Heberer, M., Meky, M., Ahmed, Y., *et al.* (2016) Post-translational
537 Serine/Threonine Phosphorylation and Lysine Acetylation: A Novel Regulatory Aspect of the Global Nitrogen
538 Response Regulator GlnR in *S. coelicolor* M145. *Frontiers in molecular biosciences* **3**: 38.

539 Bush, M.J., Bibb, M.J., Chandra, G., Findlay, K.C., and Buttner, M.J. (2013) Genes required for aerial growth, cell division,
540 and chromosome segregation are targets of WhiA before sporulation in *Streptomyces venezuelae*. *Mbio* **4**:
541 e00684-00613.

542 Bush, M.J., Chandra, G., Al-Bassam, M.M., Findlay, K.C., and Buttner, M.J. (2019) BldC Delays Entry into Development
543 To Produce a Sustained Period of Vegetative Growth in *Streptomyces venezuelae*. *MBio* **10**.

544 Chater, K., (2011) Differentiation in *Streptomyces*: the properties and programming of diverse cell-types. In:
545 *Streptomyces: Molecular Biology and Biotechnology*. D. P (ed). Caister Academic Press, pp. 43-86.

546 Fink, D., Weisschuh, N., Reuther, J., Wohlleben, W., and Engels, A. (2002) Two transcriptional regulators GlnR and
547 GlnRII are involved in regulation of nitrogen metabolism in *Streptomyces coelicolor* A3(2). *Mol Microbiol* **46**:
548 331-347.

549 Frojd, M.J., and Flardh, K. (2019) Apical assemblies of intermediate filament-like protein FilP are highly dynamic and
550 affect polar growth determinant DivIVA in *Streptomyces venezuelae*. *Mol Microbiol* **112**: 47-61.

551 Hopwood, D.A., (2007) *Streptomyces* in Nature and Medicine. In.: OXFORD UNIVERSITY PRESS, pp.

552 Kawamoto, S., and Ochi, K. (1998) Comparative ribosomal protein (L11 and L30) sequence analyses of several
553 *Streptomyces* spp. commonly used in genetic studies. *Int J Syst Bacteriol* **48 Pt 2**: 597-600.

554 Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A., (2000) Practical *Streptomyces* Genetics. In.:
555 Norwich: John Innes Foundation., pp.

556 Leigh, J.A., and Dodsworth, J.A. (2007) Nitrogen regulation in bacteria and archaea. *Annu Rev Microbiol* **61**: 349-377.

557 Lewis, R.A., Laing, E., Allenby, N., Bucca, G., Brenner, V., Harrison, M., *et al.* (2010) Metabolic and evolutionary insights
558 into the closely-related species *Streptomyces coelicolor* and *Streptomyces lividans* deduced from
559 high-resolution comparative genomic hybridization. *BMC Genomics* **11**: 682.

560 Liu, M., Zhang, P., Zhu, Y., Lu, T., Wang, Y., Cao, G., *et al.* (2019) Novel Two-Component System MacRS Is a Pleiotropic
561 Regulator That Controls Multiple Morphogenic Membrane Protein Genes in *Streptomyces coelicolor*. *Appl
562 Environ Microbiol* **85**.

563 Lu, T., Cao, Q., Pang, X.H., Xia, Y.Z., Xun, L.Y., and Liu, H.W. (2020a) Sulfane sulfur-activated actinorhodin production and
564 sporulation is maintained by a natural gene circuit in *Streptomyces coelicolor*. *Microb Biotechnol* **13**:
565 1917-1932.

566 Lu, T., Zhu, Y.P., Zhang, P.P., Sheng, D.H., Cao, G.X., and Pang, X.H. (2018) SCO5351 is a pleiotropic factor that impacts
567 secondary metabolism and morphological development in *Streptomyces coelicolor*. *Fems Microbiol Lett* **365**.

568 Lu, X.R., Liu, X.C., Chen, Z., Li, J.L., van Wezel, G.P., Chen, W., *et al.* (2020b) The ROK-family regulator Rok7B7 directly
569 controls carbon catabolite repression, antibiotic biosynthesis, and morphological development in

570 Streptomyces avermitilis. *Environ Microbiol* **22**: 5090-5108.

571 Merrick, M.J., and Edwards, R.A. (1995) Nitrogen control in bacteria. *Microbiological reviews* **59**: 604-622.

572 Ou, X.J., Zhang, B., Zhang, L., Zhao, G.P., and Ding, X.M. (2009) Characterization of rrdA, a TetR Family Protein Gene
573 Involved in the Regulation of Secondary Metabolism in Streptomyces coelicolor. *Appl Environ Microb* **75**:
574 2158-2165.

575 Pullan, S.T., Chandra, G., Bibb, M.J., and Merrick, M. (2011) Genome-wide analysis of the role of GlnR in Streptomyces
576 venezuelae provides new insights into global nitrogen regulation in actinomycetes. *BMC Genomics* **12**: 175.

577 Rodriguez-Garcia, A., Sola-Landa, A., Apel, K., Santos-Benito, F., and Martin, J.F. (2009) Phosphate control over nitrogen
578 metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB
579 expression by the response regulator PhoP. *Nucleic Acids Res* **37**: 3230-3242.

580 Singh, K.K., Athira, P.J., Bhardwaj, N., Singh, D.P., Watson, U., and Saini, D.K. (2020) Acetylation of Response Regulator
581 Protein MtrA in M. tuberculosis Regulates Its Repressor Activity. *Frontiers in microbiology* **11**: 516315.

582 Singhal, A., Virmani, R., Naz, S., Arora, G., Gaur, M., Kundu, P., et al. (2020) Methylation of two-component response
583 regulator MtrA in mycobacteria negatively modulates its DNA binding and transcriptional activation. *Biochem
584 J* **477**: 4473-4489.

585 Som, N.F., Heine, D., Holmes, N., Knowles, F., Chandra, G., Seipke, R.F., et al. (2017a) The MtrAB two-component
586 system controls antibiotic production in Streptomyces coelicolor A3(2). *Microbiology* **163**: 1415-1419.

587 Som, N.F., Heine, D., Holmes, N.A., Munnoch, J.T., Chandra, G., Seipke, R.F., et al. (2017b) The Conserved
588 Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in
589 Streptomyces venezuelae NRRL B-65442. *Frontiers in microbiology* **8**: 1145.

590 Tiffert, Y., Franz-Wachtel, M., Fladerer, C., Nordheim, A., Reuther, J., Wohlleben, W., et al. (2011) Proteomic analysis of
591 the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. *Appl Microbiol
592 Biotechnol* **89**: 1149-1159.

593 Tiffert, Y., Supra, P., Wurm, R., Wohlleben, W., Wagner, R., and Reuther, J. (2008) The Streptomyces coelicolor GlnR
594 regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in
595 actinomycetes. *Mol Microbiol* **67**: 861-880.

596 Wang, J., Wang, Y., and Zhao, G.P. (2015) Precise characterization of GlnR Box in actinomycetes. *Biochem Biophys Res
597 Commun* **458**: 605-607.

598 Wang, R., Mast, Y., Wang, J., Zhang, W., Zhao, G., Wohlleben, W., et al. (2013) Identification of two-component system
599 AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. *Mol Microbiol* **87**: 30-48.

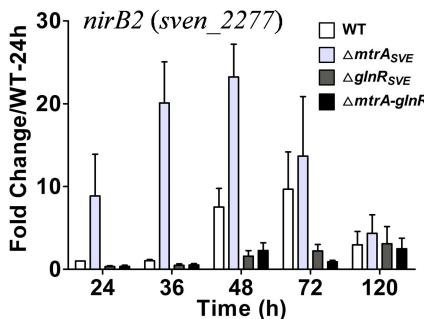
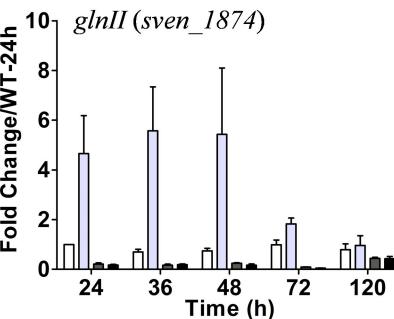
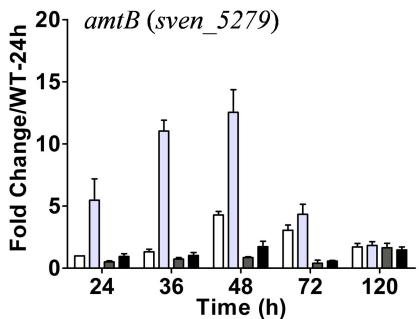
600 Wolfgang Wohlleben, Y.M.a.J.R., (2011) Regulation of nitrogen assimilation in Streptomyces and other actinobacteria.
601 In: Streptomyces-Molecular Biology and Biotechnologh. P. Dyson (ed). Caister Academic Press, pp.

602 Yan, H., Lu, X.R., Sun, D., Zhuang, S., Chen, Q., Chen, Z., et al. (2020) BldD, a master developmental repressor, activates
603 antibiotic production in two Streptomyces species. *Mol Microbiol* **113**: 123-142.

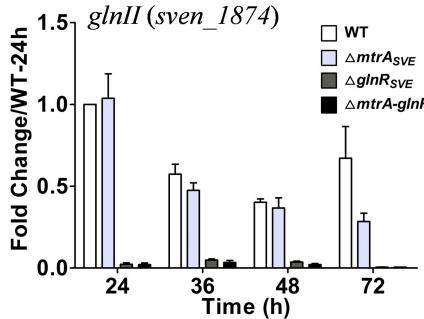
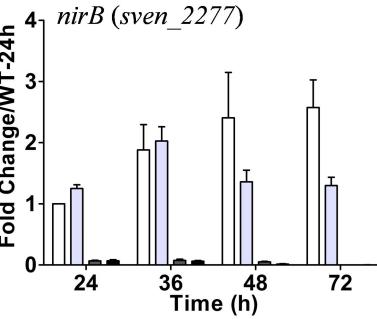
604 Zhang, P., Wu, L., Zhu, Y., Liu, M., Wang, Y., Cao, G., et al. (2017) Deletion of MtrA Inhibits Cellular Development of
605 Streptomyces coelicolor and Alters Expression of Developmental Regulatory Genes. *Frontiers in microbiology*
606 **8**: 2013.

607 Zhang, P.P., Zhao, Z.L., Li, H., Chen, X.L., Deng, Z.X., Bai, L.Q., et al. (2015) Production of the antibiotic FR-008/candididin
608 in Streptomyces sp FR-008 is co-regulated by two regulators, FscR1 and FscRIV, from different transcription
609 factor families. *Microbiol-Sgm* **161**: 539-552.

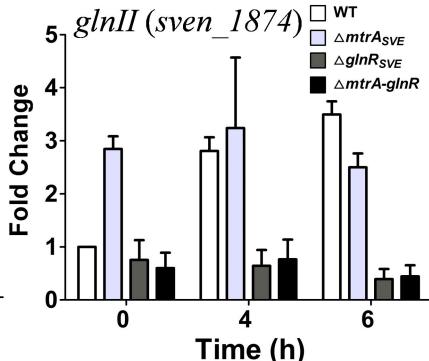
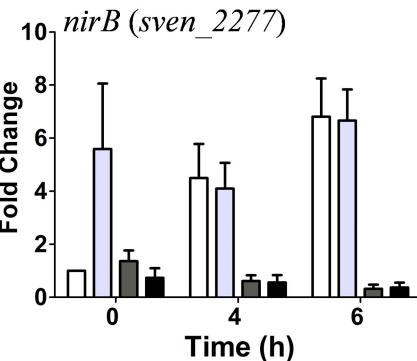
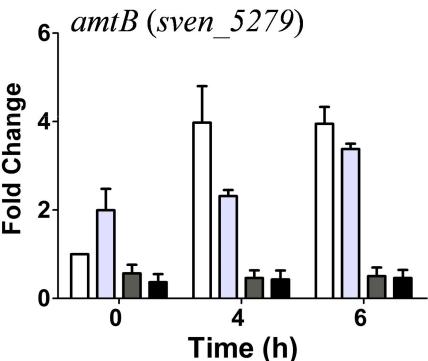
610 Zhu, Y., Zhang, P., Lu, T., Wang, X., Li, A., Lu, Y., et al. (2021) Impact of MtrA on phosphate metabolism genes and the
611 response to altered phosphate conditions in Streptomyces. *Environ Microbiol*.

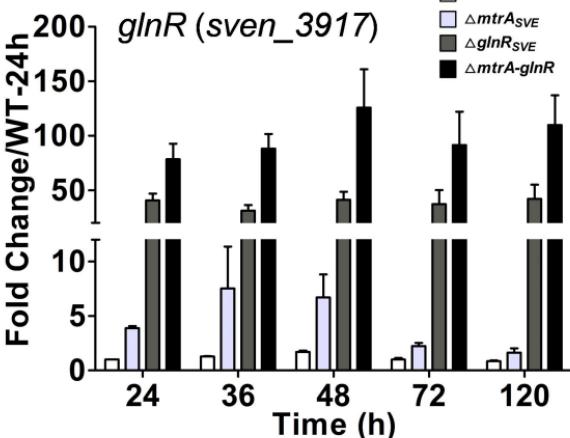
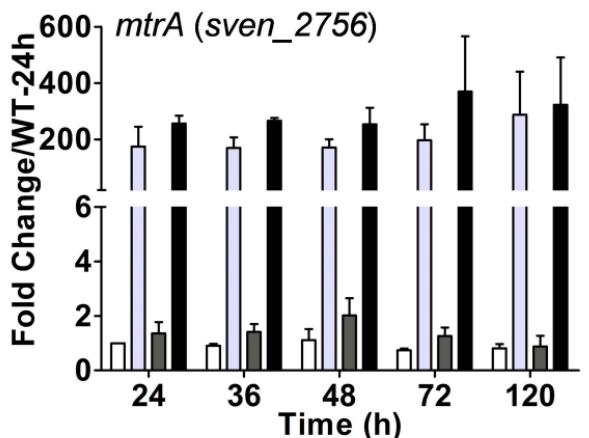



612 Zhu, Y., Zhang, P., Zhang, J., Wang, J., Lu, Y., and Pang, X. (2020a) Impact on Multiple Antibiotic Pathways Reveals MtrA
613 as a Master Regulator of Antibiotic Production in Streptomyces spp. and Potentially in Other Actinobacteria.
614 *Appl Environ Microbiol* **86**.

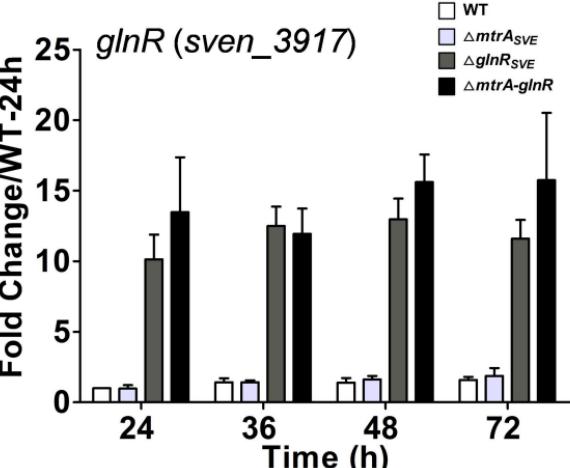
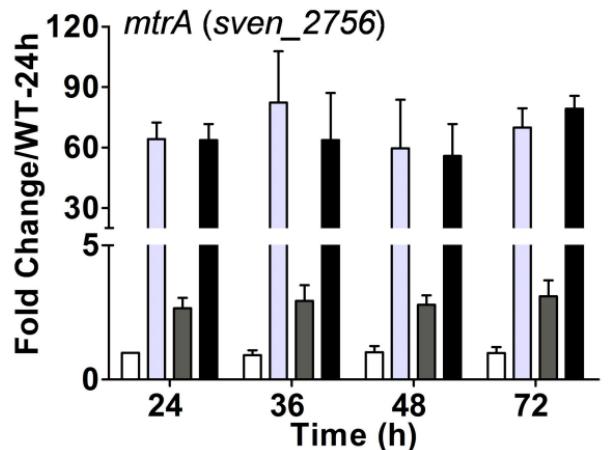
615 Zhu, Y., Zhang, P., Zhang, J., Xu, W., Wang, X., Wu, L., et al. (2019) The developmental regulator MtrA binds GlnR boxes



616 and represses nitrogen metabolism genes in *Streptomyces coelicolor*. *Mol Microbiol* **112**: 29-46.
617 Zhu, Y.P., Lu, T., Zhang, J., Zhang, P.P., Tao, M.F., and Pang, X.H. (2020b) A novel XRE family regulator that controls
618 antibiotic production and development in *Streptomyces coelicolor*. *Appl Microbiol Biot* **104**: 10075-10089.
619 Zhu, Y.P., Xu, W.H., Zhang, J., Zhang, P.P., Zhao, Z.L., Sheng, D.H., *et al.* (2020c) A hierarchical network of four regulatory
620 genes controlling production of the polyene antibiotic candicidin in *Streptomyces* sp. Strain FR-008. *Appl
621 Environ Microb* **86**: e00055-00020.

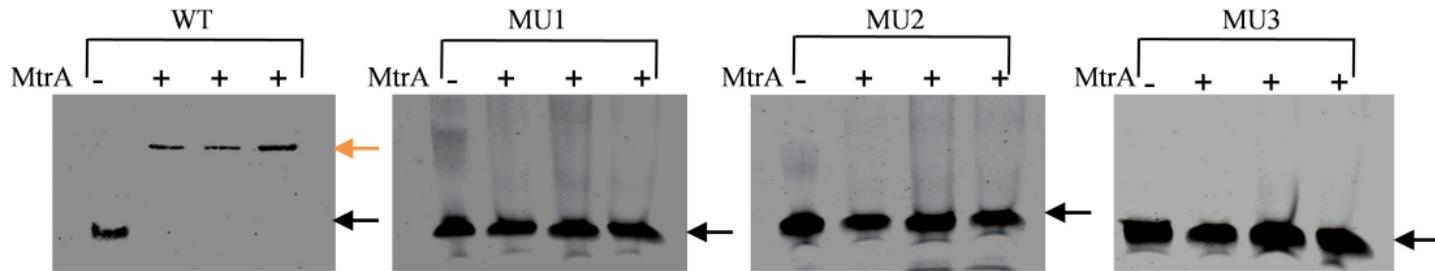
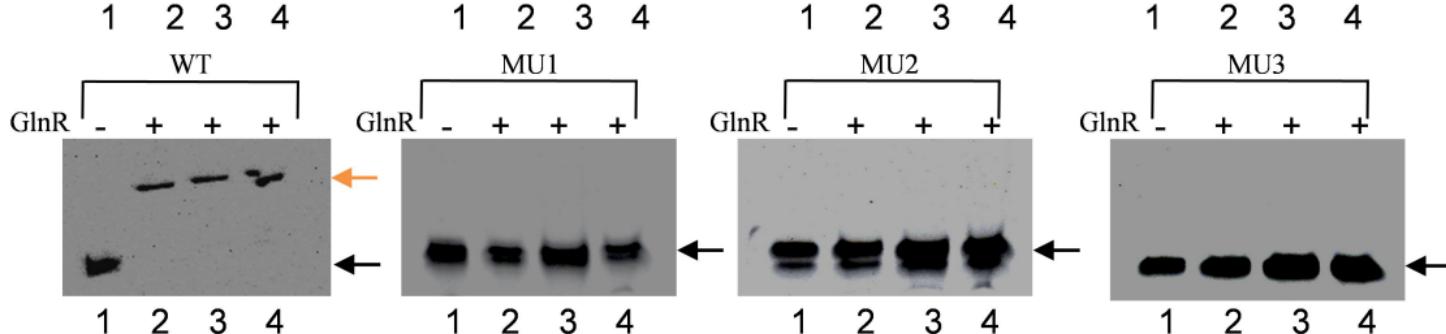
622

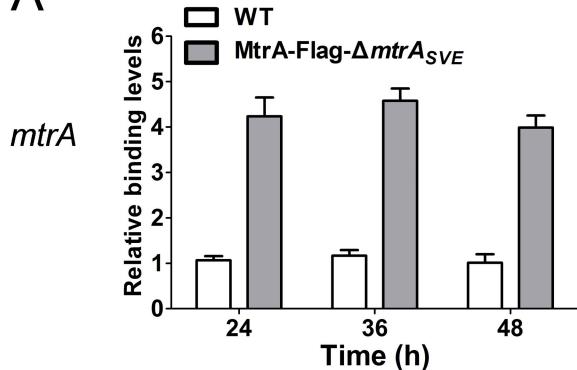
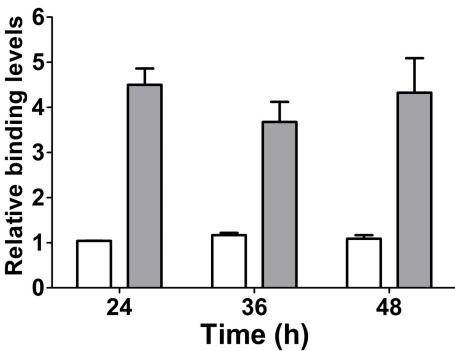
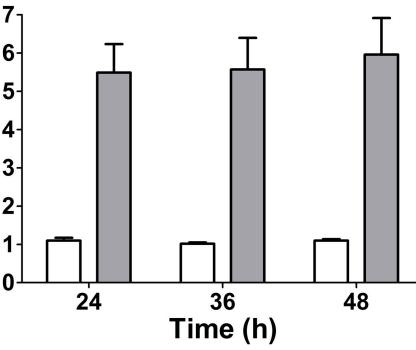
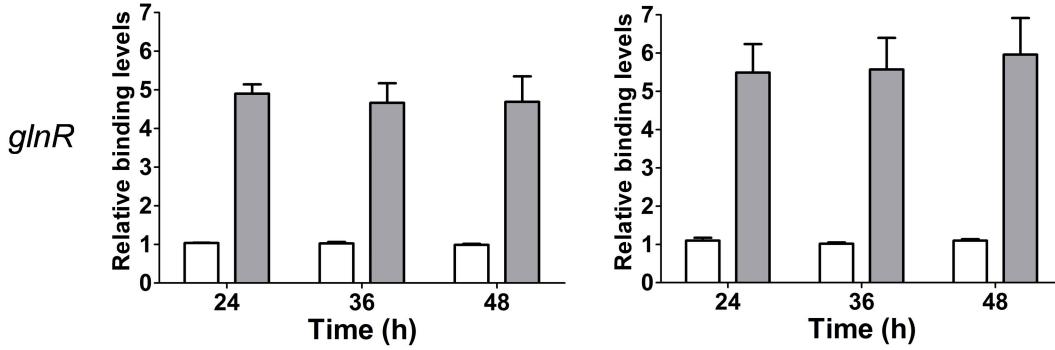
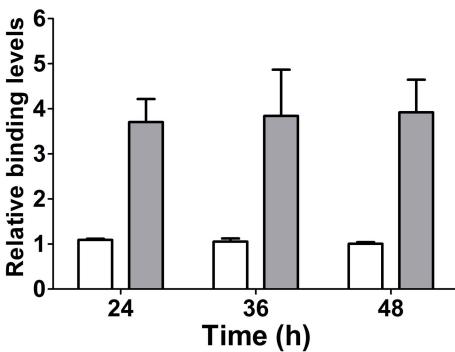
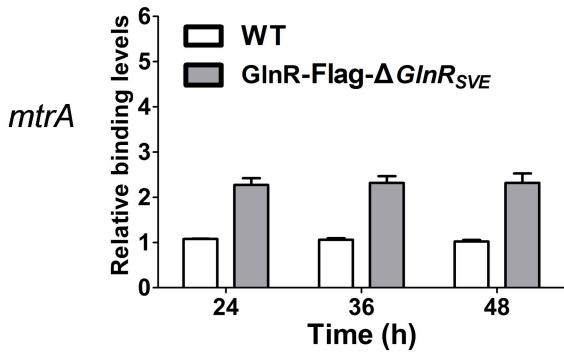



A (R2YE)

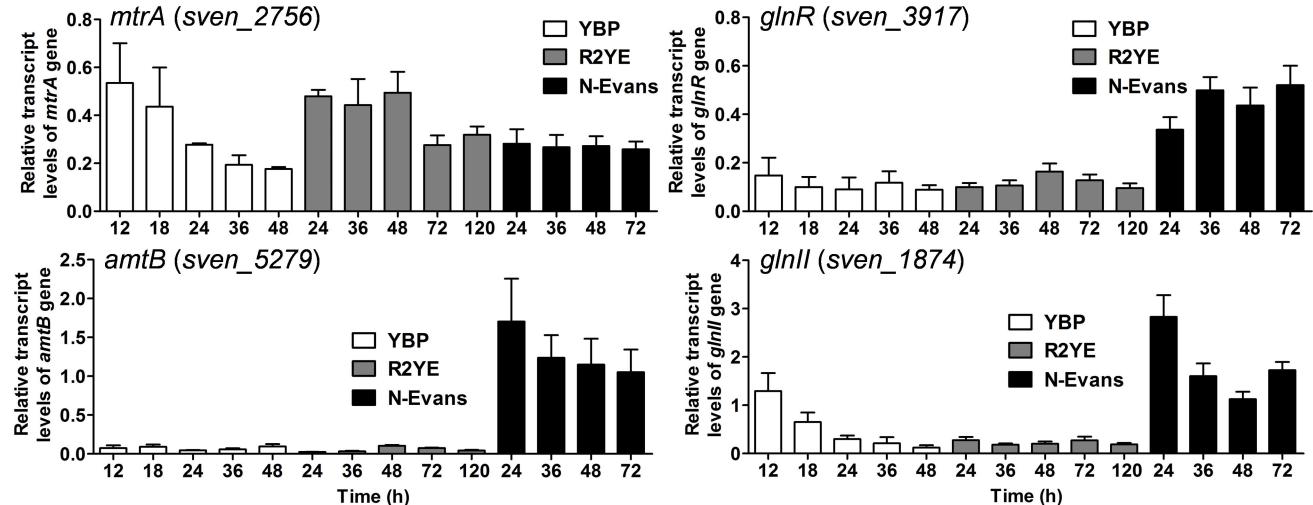
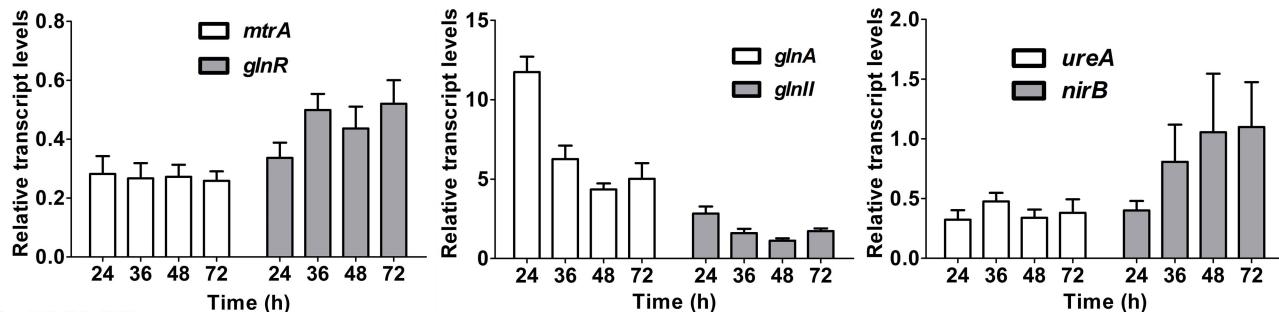
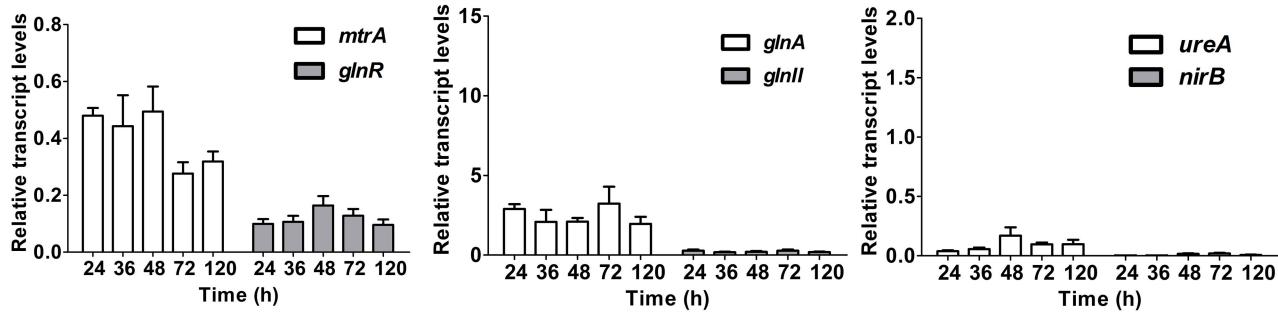


B (N-Evans)



C (YBP to N-Evans)

A (R2YE)



B (N-Evans)

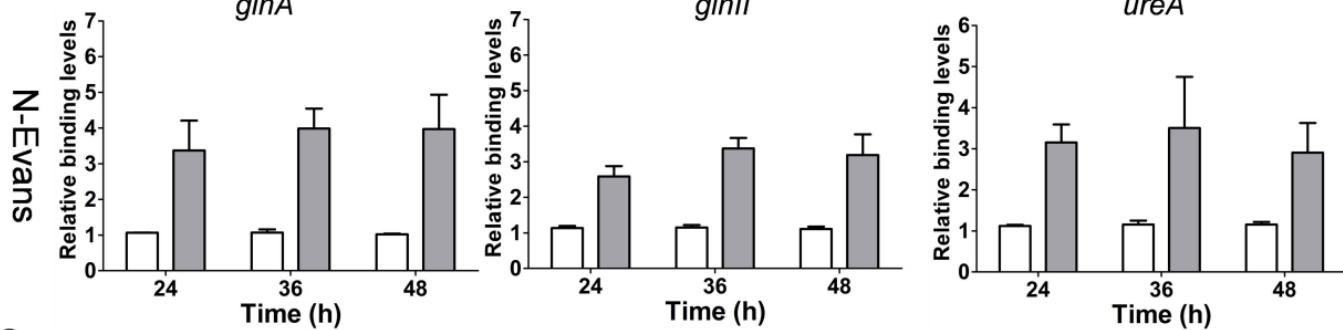










Figure 3

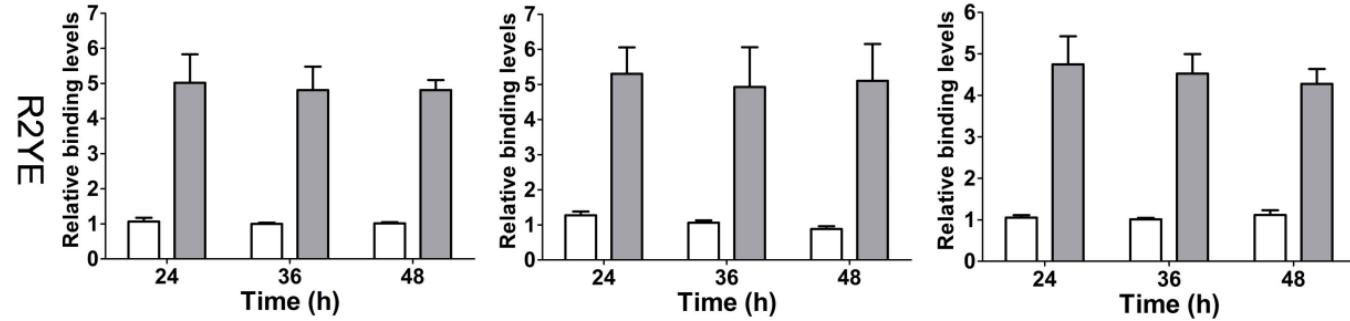
A

mtrA-WT CACGGGGGCCACGGGGGTGACATCCATGTCTGGCATCAACACCCACGGACACCGGCAGT
mtrA-MU1 CACGGGGGCCACGGGGAGGCTATCCATGTCTGGCATCAACACCCACGGACACCGGCAGT
mtrA-MU2 CACGGGGGCCACGGGGGTGACATCCATACTTGGCATCAACACCCACGGACACCGGCAGT
mtrA-MU3 CACGGGGGCCACGGGGAGGCTATCCATACTTGGCATCAACACCCACGGACACCGGCAGT

B**C**

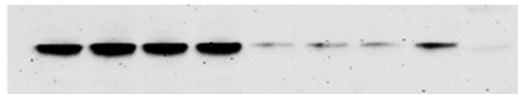

A**R2YE****N-Evans****B**

A**B (N-Evans)****C (R2YE)**


A

B

C

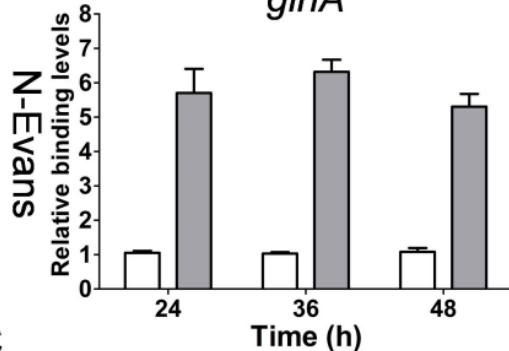


A

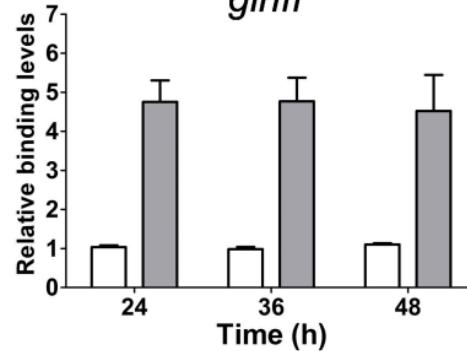
N-Evans

R2YE

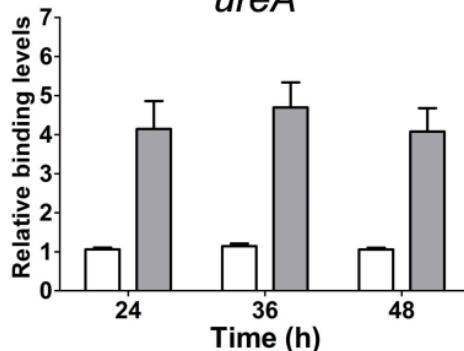
24 36 48 60 24 36 48 60 M



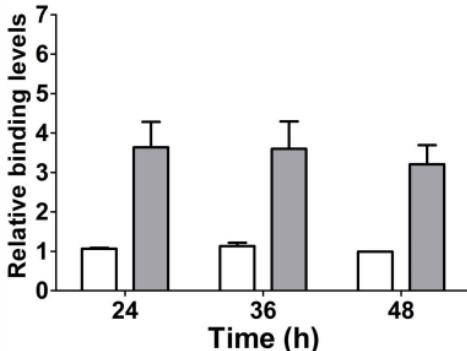
WT


 GlnR-Flag- $\Delta GlnR_{SVE}$

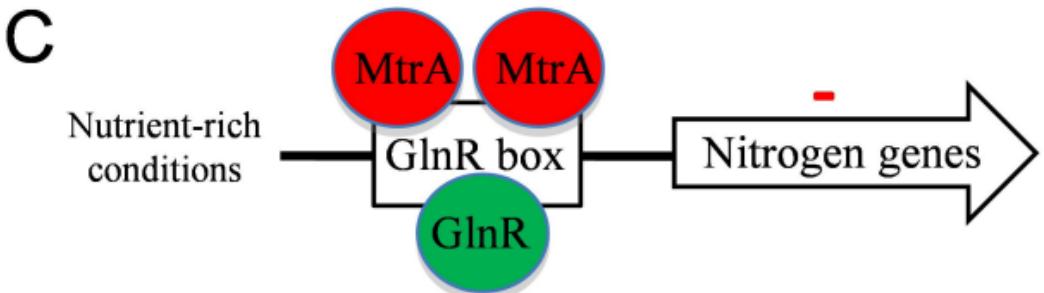
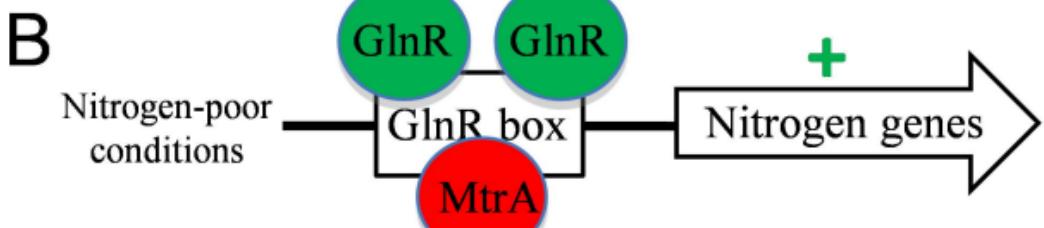
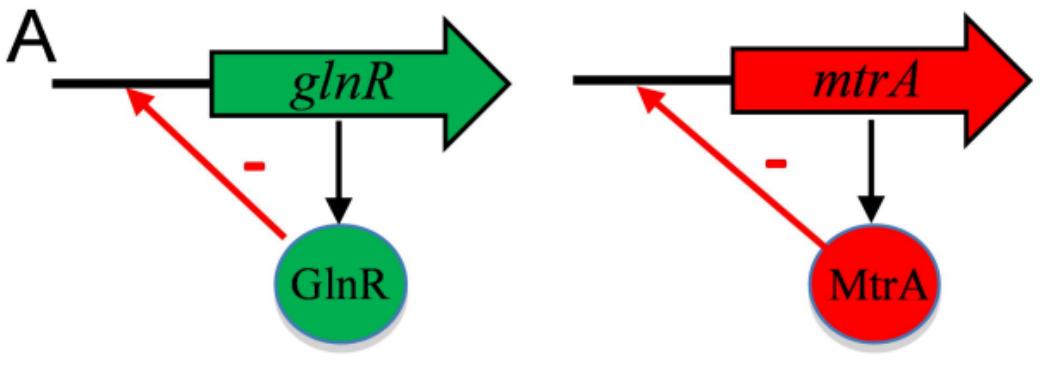
B


glnA

glnII



ureA

C

Time (h)	Condition	Relative binding levels (approx.)
24	White	1.0
24	Grey	4.5
36	White	1.0
36	Grey	4.0
48	White	1.0
48	Grey	4.2

Time (h)	Relative binding levels (White Bar)	Relative binding levels (Grey Bar)
24	1.0	3.3
36	1.0	3.3
48	1.0	3.3

