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Abstract

The liver has a unique capacity to regenerate after injury in a highly orchestrated and
regulated manner. Here we report that O-GIcNAcylation, an intracellular post-
translational modification (PTM) regulated by two enzymes, O-GIcNAc transferase
(OGT) and O-GlIcNAcase (OGA), is a critical termination signal for liver regeneration
(LR) following partial hepatectomy (PHX). We studied liver regeneration after PHX on
hepatocyte specific OGT and OGA knockout mice (OGT-KO and OGA-KO), which
caused a significant decrease (OGT-KO) and increase (OGA-KO) in hepatic O-
GIcNAcylation, respectively. OGA-KO mice had normal regeneration, but the OGT-KO
mice exhibited substantial defects in termination of liver regeneration with increased
liver injury, sustained cell proliferation resulting in significant hepatomegaly, hepatic
dysplasia and appearance of small nodules at 28 days after PHX. This was
accompanied by a sustained increase in expression of cyclins along with significant
induction in pro-inflammatory and pro-fibrotic gene expression in the OGT-KO livers.
RNA-Seq studies revealed inactivation of hepatocyte nuclear 4 alpha (HNF4a), the
master regulator of hepatic differentiation and a known termination signal, in OGT-KO
mice at 28 days after PHX, which was confirmed by both Western blot and IHC
analysis. Furthermore, a significant decrease in HNFa target genes was observed in
OGT-KO mice, indicating a lack of hepatocyte differentiation following decreased
hepatic O-GlcNAcylation. Immunoprecipitation experiments revealed HNF4a is O-
GIcNAcylated in normal differentiated hepatocytes. These studies show that O-
GIcNAcylation plays a critical role in the termination of LR via regulation of HNF4a in

hepatocytes.
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Layman summary

O-GlIcNAcylation is a protein modification that plays a critical role in various biological
processes including cell proliferation, differentiation, and disease progression. These
studies show that O-GIcNAcylation in hepatocytes is essential for proper liver

regeneration. Without O-GIcNAcylation, hepatocytes keep on proliferating eventually

forming liver tumors.
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Introduction

The liver has a remarkable regenerative capacity after injury or surgical resection (1).
Liver regeneration (LR) is tightly regulated by a plethora of redundant signals that
regulate initiation and termination of cell proliferation as well as tissue remodeling. The
most widely used model to study liver regeneration (LR) is partial hepatectomy (PHX)
where approximately 2/3rd of the liver is surgically removed (2). Liver cells, starting with
hepatocytes followed by other cells, enter the cell cycle and undergo a synchronized
cell division to restore the lost liver mass. In rodents, this process takes between 3t0 5
days after which proliferation decreases, the newly divided cells undergo
redifferentiation and tissue remodeling takes place. These latter events including
inhibition of cell proliferation, redifferentiation and tissue remodeling, are termed
termination of liver regeneration. Whereas the initiation signals of LR are well
characterized, the mechanisms of termination of LR remain understudied (3). Proper
termination of liver regeneration is essential because the loss of proper termination
signals results in hepatomegaly, defects in redifferentiation of hepatocytes leading to
either loss of liver function and liver failure or rapid preneoplastic changes in the liver

leading to chronic liver disease.

O-GlIcNAcylation is an intracellular post-translational modification (PTM) that involves
the addition of a single N-acetylglucosamine (GIcNAc) molecule on an exposed serine
or threonine amino acid of a protein. The O-GIcNAcylation cycle is regulated by two
enzymes, O-GIcNAc transferase (OGT) and O-GIcNAcase (OGA). OGT catalyzes the

transfer of GIcNAc from its carrier molecule UDP-GIcNAc to the protein. Whereas OGA
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catalyzes the hydrolysis and removal of the GIcNAc motif from the protein (Fig. S1A). In
some cases, the residues that undergo O-GlcNAcylation on the target protein can also
become phosphorylated providing the cell an additional mechanism of regulating
downstream signaling (4). O-GlcNAcylation homeostasis is critical for healthy cells and
aberrant O-GIcNAcylation has been linked to various diseases, including cancer, non-
alcoholic fatty liver disease (NAFLD) and alcoholic steatohepatitis (ASH) (5-7). O-
GIcNAcylation plays a major role in a myriad of cellular processes, including cell
proliferation (8-10). Despite the role of O-GIcNAcylation in cell proliferation, little is
known about its role in hepatocyte LR. In this study, we investigated the role of O-
GIcNAcylation in the regulation of LR after PHX using control, OGA and OGT
hepatocyte-specific knock-out mice (OGA-KO and OGT-KO respectively). Our studies
revealed that decreasing O-GIlcNAcylation leads to impaired termination of LR.
Moreover, this is due to the loss of hepatocyte nuclear 4 alpha (HNF4a) function, a

nuclear receptor critical for hepatocyte differentiation and function.
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Materials and Methods

Animal Care and Surgeries

All animal studies were approved by and performed in accordance with the Institutional
Animal Care and Use Committee at the University of Kansas Medical Center. OGT""
mice were developed by Dr. Natasha Zachara at Johns Hopkins School of Medicine
(11). OGA™ mice were developed by Dr. John Hanover at the NIDDK (12). Two-month-
old male OGT" and OGA™ mice were injected intraperitoneal with AAV8-TBG-GFP or
AAV8-TBG-CRE (Vector Biolabs) to generate control or hepatocyte specific OGT-KO or
OGA-KO animal, as previously stated (13). PHX surgeries were performed on 8-week-
old male C57BL/6J, OGT", OGT-KO, OGA"™ and OGA-KO mice as previously
described (14). Mice were euthanized at various time points between 0 to 28 days after
PHX to collect blood and liver samples. Serum was isolated from clotted blood by
centrifugation at 5,000 rcf for 10 minutes at 4°C. A section of the liver was fixed in 10%
neutral buffered formalin for 48 h and then paraffin embedded. A piece of liver was then
cryopreserved in OCT. Liver injury was measured using serum ALT activity (Pointe

Scientific ALT Assay by Fisher Scientific).

Statistical Analysis

For all experiments not associated with RNA-seq or metabolomics, such as ALT
measurements, results are expressed as mean * standard error of the mean. GraphPad
Prism 8 was used to graph and calculated statistics. Student’s t-test or ANOVA with

Tukey’s post-hoc was applied to all analyses with a p-value <0.05 being considered
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significant. Dot plots and heatmaps were produced in RStudio (R version 4.0.3; RStudio

Team).

All other methods are described in detail in the supplementary materials.
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Results

Decrease O-GIcNAcylation resulted in hepatomegaly, liver Injury and defective
termination of liver regeneration

Hepatocyte-specific OGT-KO and OGA-KO mice were successfully generated by
injecting OGT™" and OGA™ mice with AAV8-TBG-CRE, respectively (Fig 1A-B).
OGT"™ and OGA™ mice treated with AAV8-TBG-GFP were used as controls (referred
to as WT). As expected, deletion of OGT decreased global liver O-GlcNAcylation (Fig.
1A) and deletion of OGA enhanced O-GIcNAcylation levels after PHX (Fig. 1B). Further,
deletion of either OGT or OGA decreased the reciprocal enzyme levels (Fig. 1A-B). A
significant liver injury as demonstrated by serum ALT levels was observed at 2 days
after PHX in WT mice compared to OGT-KO mice. However, OGT-KO mice exhibited
significantly higher liver injury at 14 and 28 days after PHX (Fig. 1C). Most importantly,
the liver weight to body weight ratio indicated substantial hepatomegaly in the OGT-KO
mice at 0, 14 and 28 days after PHX (Fig. 1D). At 28 days after PHX, the liver weight to
body weight ratio was 80% higher in OGT-KO mice as compared to its O-hour level
indicating defective termination of regeneration. Interestingly, liver injury or liver weight
to body weight ratios were not different between WT and OGA-KO mice indicating that

loss of OGA does not affect liver regeneration (Fig. 1E-F).

Mechanisms of liver injury on OGT-KO mice after PHX
We performed TUNEL staining to determine the mechanisms of cell death in OGT-KO
mice at 7, 14 and 28 day time points due to the extent of liver injury. At 14 and 28 days

after PHX, the majority of the staining was localized in the cytosol with very limited
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nuclear staining indicating necrotic cell death and some apoptosis (Fig. S2A). Western
blot analysis confirmed activation of both necroptosis and apoptosis at 14 and 28 days
after PHX (Fig. S2B-C). Pyroptotic cell death mechanisms did not contribute to cell
death determined by western blot analysis (Fig. S2D). Interestingly, OGT-KO mice
exhibited elevated p62, an autophagy marker (Fig. S2E). Taken these data together,

OGT-KO mice exhibited liver injury due to necroptosis and apoptosis.

Decreased O-GIcNAcylation resulted in sustained cell proliferation and hepatic
dysplasia

We determined cell proliferation in the liver after PHX using PCNA
immunohistochemistry. PCNA expression peaked at 2 days after PHX as expected in
both WT and OGT-KO (Fig. 2A-B). After day 3, PCNA expression gradually declined in
the WT, whereas it remained high in the OGT-KO mice till 28 days after PHX (Fig. 2A-
B). Cell proliferation peaked in the WT and OGA-KO mice at 2 days after PHX before
declining. Consistent with the liver weight to body weight data, we did not observe any

difference in cell proliferation between WT and OGA-KO mice after PHX (Fig. S3A).

Next, we investigated the expression of core cell cycle machinery that drives cell
proliferation. Western blot analysis revealed that expression of cyclin D1, CDK4 and
phosphorylated Rb (p-Rb) protein increased after PHX to similar levels in WT and OGT-
KO livers at 2 days after PHX. A steady decline in expression of these proteins was
observed in WT mice after the 2-day time point. However, OGT-KO mice exhibited

sustained induction in cyclin D1, p-Rb and CDK4, 14 and 28 days after PHX. (Fig. 2B).
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In OGA-KO mice, expression of these proteins increased at 2 days post-PHX and
decreased thereafter. There was no difference between the OGA-KO and WT mice,

consistent with cell proliferation data (Fig. S3B).

Hepatic dysplasia, inflammation and early fibrosis occurred in OGT-KO 28 days after
PHX

Hematoxylin and Eosin (H&E) staining was utilized to determine histopathological
changes. As expected, OGA-KO mice had little to no effect in histological changes at all
time points after PHX (Fig. S3C-D). In contrast, OGT-KO mice manifested significant
histological changes at 14 and 28 days after PHX characterized by ballooning
hepatocytes (Fig. 3A-B). At 28 days after PHX, the OGT-KO liver showed presence of
hepatic nodules containing mitotic figures, surrounded by extensive inflammatory and
ductular cells (Fig. 3B). gPCR analysis revealed an induction of Cyclin D1, A2, and B1
gene expression and no change in Cyclin E2 in OGT-KO mice 28 days after PHX (Fig.
3C). Similarly, protein levels of Cyclin D1, Al, E1, and B1 were elevated 28 days after
PHX (Fig. 3D). Western blot analysis revealed a significant increase in expression cell
proliferation marker PCNA, (Fig. 3E), corroborating. Additionally, PCNA
immunohistochemistry (IHC) showed proliferation of both hepatocytes and the ductular

cells (Fig. 2C).

Next, we investigated the fibroinflammatory changes in the livers of WT and OGT-KO
28 days after PHX. gPCR analysis revealed a significant induction in the expression of

pro-inflammatory genes (Tnfa, ll1b, Ifng and 116) and the anti-inflammatory gene 1110.
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OGT-KO mice showed induction in F4/80, a Kupffer cells marker (Fig. 4A), which was
corroborated by immunofluorescence (IF) staining analysis showing increased F4/80"
cells in OGT-KO liver 28 days after PHX (Fig 5B). gPCR analysis indicated a significant
increase in the hepatic stellate cell (HSC) marker desmin, its activation marker alpha-
smooth muscle actin (Acta2) and Tgfb, a growth factor involved in activation of HSC
(Fig. 4C). Consistent with these changes, OGT-KO livers also showed induction in
fibrillar Collal and Colla2 expression (Fig. 4C). Picrosirius red (PSR) staining showed
an increased collagen deposition in OGT-KO livers compared to the control (Fig. 4D).
Moreover, hydroxyproline assay showed a significant increase in collagen deposition in
OGT-KO livers 28 days after PHX (Fig. 4E). These parameters of inflammation and
fibrosis did not show induction at any time point in OGA-KO mice (Fig. S4B-C). These
data indicate that OGT-KO 28 days after PHX have significant inflammation and

fibrosis.

RNA-Seq Revealed Decrease Activation of HNF4a in OGT-KO Mice 14 and 28 Days
Post-PHX

To gain insight into the mechanisms of the defective termination of LR, we performed
RNA-Seq on 14 and 28 days after PHX in OGT-KO and WT mice. Using a two-fold
change expression cutoff, at 14 days after PHX, 2811 genes were upregulated and
1928 were downregulated. A total of 4518 genes were upregulated and 902 genes were
downregulated at 28 days after PHX. 1,695 genes were commonly upregulated, and
471 genes were commonly downregulated between OGT-KO livers at 14- and 28-day

after PHX (Fig. 5A-B, Table S1-2). Conversely, RNA-Seq studies on WT and OGA-KO
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mice at 14 and 28 days after PHX revealed only 19 commonly upregulated and 10
commonly downregulated genes (Fig. S4D, Table S3-4), which is consistent with no

difference in liver regeneration between WT and OGA-KO mice.

An upstream regulator analysis was performed using Ingenuity Pathway Analysis (IPA)
to identify key transcription regulators involved in the transcriptomic changes observed
at 14 and 28 days after PHX. 14 days after PHX had exclusive activation of interferon
regulatory factor 3 and 7 (IRF3, IRF7) and deactivation of HNF1A (Fig. 5C). Activation
of IFNG, IL1B, and TNF were uniquely increased in 28 days after PHX, indicating an
increase in inflammatory responses (Fig. 5D). Further, we identified transcription factors
that were activated and inactivated at both 14 and 28 days after PHX in OGT-KO mice
(Fig 6E-F). Interestingly, OGT-KO showed significant deactivation in HNF4a function at

both 14 and 28 days after PHX (Fig. 5E-F, Fig. S5A).

HNF4 « expression and activity declined in OGT-KO livers after PHX

Hepatocyte HNF4a deficiency has been linked to spontaneous hepatocyte proliferation
as well as defective termination of LR (15, 16). Therefore, we investigated HNF4a
expression and activity in OGT-KO mice 28 days after PHX. Western blot analysis of
whole liver lysate indicated a significant decrease in HNF4a protein levels in OGT-KO
mice 28 days after PHX (Fig. 6A). Previous studies have shown that HNF4a levels have
reciprocal effects on the expression of the oncoprotein c-Myc (16, 17). Western blot
analysis showed induction in c-MYC expression in OGT-KO livers at 28 days after PHX

(Fig. 6A). Interestingly, IHC analysis revealed marked cytoplasmic redistribution of
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HNF4a in OGT-KO mice (Fig. 6B). gPCR analysis of HNF4a target genes indicated the
loss of HNF4a function with the decrease of positively regulated genes (Apob, Apoa2,
Cyp2c37, Ugt2bl, Diol, and Ces3) (Fig. 6C) and the increase of negatively regulated
genes (Akrlb7 and Ect2) (Fig. 6D). Finally, to determine if HNF4a undergoes O-
GIcNAcylation, immunoprecipitant (IP) experiments were performed. Total liver lysates
from WT mice were used for immunoprecipitation of HNF4o protein and then Western
blotting was conducted to detect the fraction of O-GlcNAcylated HNF4o. The data
indicate that in WT normal livers, HNF4a is heavily O-GIcNAcylated which is absent in

OGT-KO mice (Fig. 6E).

Methionine and Cysteine Metabolism is Altered in OGT-KO 14 and 28 Days After PHX
Lastly, we performed targeted metabolomics on WT and OGT-KO liver tissue lysates
from 14 and 28 days after PHX. Principle component analysis (PCA) revealed that both
WT and OGT-KO clustering was driven by both PC1 (31.7% variance explained) and
PC2 (14.6% variance explained) and with each time point similar to each other (Fig.
7A). To determine altered metabolic pathways, Metabolomic Set Enrichment Analysis
(MSEA) was performed on both significantly altered metabolites from 14- and 28-day
samples. A significant impact on amino acid metabolism and glutathione metabolism
was observed at 14 days after PHX in OGT-KO mice (Fig. 7B). Likewise, OGT-KO mice
at 28 days after PHX had significantly altered energy substrate metabolisms such as
pentose phosphate and glucose metabolism (Fig. 7C). Specifically, altered methionine
synthesis was observed in OGT-KO mice at 28 days after PHX (Fig. 7C-E). The

methionine synthesis metabolites, phosphorylcholine, choline, betaine, and methionine
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were significantly increased in the OGT-KO 28 days after PHX, whereas cysteine was

significantly decreased (Fig. 7D-E). Importantly, HNF4a regulates methionine and

cysteine metabolism in hepatocytes (18).
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Discussion

Liver regeneration (LR) after PHX, in mice, can be divided into three broad phases. The
initiation of regeneration is where hepatocytes and other cells partially dedifferentiate
and enter cell cycle, progression of regeneration is where cells go through mitosis and
divide, and finally, the termination of regeneration is when cell proliferation declines,
newly divided cells re-differentiate, and liver tissue is reorganized. The initiation and
progression phases are relatively rapid and completed within 5 days after PHX.
Termination of regeneration is more prolonged and can take up to a week. Most of the
liver mass and function is restored by 2 weeks (19, 20). After PHX, multiple signals
have been well characterized that initiate the cell cycle in LR, termed primary mitogens,
such as the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) (19, 21-
23). Auxiliary mitogens, consisting of TNFa and IL-6, enhance the prolific effects of the
primary mitogens during the initiation and progression of LR (19, 24). However, much
less is known about the termination of LR. Integrin-linked kinase (ILK), critical for
hepatocyte interactions with extracellular matrix (ECM), has been identified as a
termination signal (14, 25). Recent studies from our laboratory have shown that HNF4a,
the master regulator of hepatic differentiation (26), is critical for re-differentiation of
hepatocytes after proliferation and plays a critical role in termination of liver
regeneration (16, 17, 27). Previous studies have shown that defective termination of LR
will result in significant hepatomegaly and death due to decline in liver function. We
hypothesize that in cases where animals do not die due to acute liver failure, defective
termination of liver regeneration will lead to hepatic dysplasia that can progress to liver

cancer. Evidence presented here supports this hypothesis and indicates that hepatic O-
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GIcNAcylation is a major regulator of the termination of liver regeneration. After PHX,
OGT-KO mice exhibited no differences during the initiation phase and progression of
LR. However, during the termination of LR, we found sustained proliferation in
hepatocytes indicating a termination defect (Fig. 2A). This was further exhibited by the
significant increase in liver-weight to body-weight ratio 14 and 28 days after PHX (Fig.
1D). The foremost change was the development of hepatic nodules accompanied by

significant inflammation and early fibrotic changes.

These data are consistent with previous observations that O-GIcNAcylation plays a
critical role in cell cycle regulation (8, 10, 28, 29). O-GlcNAcylation of proteins increases
during the progression of G; phase following a rapid decrease when cells enter S phase
(9). This is contributed to an immediate induction of OGA protein levels during S phase
(9). Throughout G; phase, Rb is O-GIcNAcylated and when the G1/S-checkpoint into S
phase occurs, Rb is needed to be phosphorylated indicating cross-talk of PTMs during
cell cycle progression (30). After S phase, during the G; to M phase transition,
increasing O-GIcNAcylation by OGA inhibition delays the advancement to M phase (10).
During mitosis, global O-GlcNAcylation levels decrease (10). Either increasing or
decreasing O-GIcNAc during mitosis will lead to aberrant spindle formation causing
mitotic defects (8, 31). We found that OGT deletion (reduction of O-GIcNAcylation) in
hepatocytes for seven days resulted in mild hepatomegaly due to hyperplasia as well as
hypertrophy (Fig. 1D, B). Importantly, this indicates that OGT regulates hepatocyte

proliferation without induction of proliferation by PHX.
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We found ballooning hepatocytes accompanied with significant liver injury in OGT-KO
mice at 14 and 28 days after PHX (Fig. 1C). Also, initial liver injury at 2 days post-PHX
was higher in OGT-KO mice as compared to WT. These data indicate that loss of O-
GIcNAcylation may make hepatocytes more vulnerable to cell death. These data are
consistent with previous studies by Zhang et al demonstrated that OGT deletion, in the
liver using a CRE governed by the albumin promoter, resulted in significant necroptosis
and fibrosis (7). They further showed that RIP3K undergoes O-GIcNAcylation which
reduces the stability of the protein (7). Our studies showed that delayed cell death in
OGT-KO mice after PHX is both necroptosis as well as apoptosis (Fig. S2A-C).
Interestingly, we observed an increase in p62, a marker of autophagy and Mallory-Denk
bodies, in OGT-KO mice after PHX, which is commonly found in metabolic disorders
and hepatocellular neoplasms (Fig. S2E) (32). It is well known that autophagy inhibits
apoptosis which suggests that the induction of p62 is probably due to Mallory-Denk
body formation (33). To determine if autophagy is contributing to cell death, more
studies will need to be done. However, the exact mechanisms of increased
spontaneous cell death at two weeks after PHX in OGT-KO mice are not known. It is
plausible that lack of hepatic redifferentiation, which is a critical component of

termination of regeneration, may trigger the cell death at such a delayed time point.

This argument is supported by the RNA-seq studies on 14- and 28-day time points,
which revealed significant decline in HNF4a target gene expression (Fig. S5A). HNF4a
is extremely critical in maintaining hepatocyte function, and we have previously shown

that deletion of HNF4a results in defective termination of liver regeneration (16, 27).
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HNF4q protein levels and its function are regulated by post-translational modifications.
Most PTMs of HNF4a reduce function and stability. For instance, the C-terminal of
HNF4a undergoes SUMOylation to promote degradation (34), acetylation of K458
attenuates the transcriptional activity, deactivating HNF4a (35) and phosphorylation
occurs on multiple residues. Other studies have shown that protein kinase A (PKA)-
mediated S142 phosphorylation decrease HNF4a protein levels (36). Extracellular
signal@regulated protein kinase 1/2 (ERK1/2) has been shown to phosphorylate multiple
residues on HNF4qo including S138/T139, S143, S147/S148, S151, T166/S167, and
S313 (37). Interestingly, the residue S142 was further found to be phosphorylated by
ERK1/2 indicating two kinases acting on the same residue (37). Here, we show that
HNF4a is O-GlcNAcylated and without this, HNF4a function is lost. It is known that
serine or threonine residue can be alternatively phosphorylated or O-GlcNAcylated (38).
Our studies give rise to the possibility that normally HNF4a is O-GlcNAcylated, which
prevents its degradation or cytoplasmic relocalization by inhibiting its phosphorylation.

If this dynamic relationship occurs, this could explain why increasing O-GlcNAcylation in
OGA-KO livers had no physiological phenotype. Further studies will need to be done to
map the specific O-GIcNAcylated residue(s) on HNF4a. Nonetheless, our studies have
uncovered a novel mechanism by which HNF4a stability and function are regulated.
Further, our studies show that O-GIcNAc mediated regulation of HNF4a function is

critical in termination of liver regeneration.

When OGA or OGT is deleted, a compensatory effect occurs, altering the expression of

the reciprocal enzyme (39). We observed this phenomenon for the first time in
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hepatocyte-specific OGT-KO and OGA-KO mice (Fig. 1A-B). In OGT-KO mice, this
compensatory effect cannot increase O-GIcNAcylation levels. However, in OGA-KO, the
compensatory effect of decreasing OGT levels will reduce global O-GIcNAcylation
closer to basal levels. This could potentially mitigate the adverse effects of exorbitant O-
GIcNAcylation and explain why OGA-KO mice had normal LR. Future experiments will
need to be done to artificially increase O-GlcNAcylation to prevent the compensatory

effects in OGA-KO mice to determine the effects of augmented O-GIcNAcylation.

In summary, our studies are the first to examine and manipulate O-GIcNAcylation over a
time course throughout the LR process after PHX. Our findings suggest that lack of O-
GIcNAcylation causes defects in the termination of liver regeneration. Ablation of O-
GIcNAcylation impedes the function and stability of HNF4a, which leads to decreased
hepatocyte redifferentiation, significant necroinflammation, early fibrotic changes and
formation of dysplastic nodules. These results confirm the role of O-GIcNAcylation in
termination of regeneration and preventing hepatic dysplasia and highlight O-

GIcNAcylation as a therapeutic target in hepatic regenerative medicine.
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Figure Legends

Figure 1. Decreased Hepatocyte O-GIcNAcylation lead to significant increase in
liver weight to body weight ratios and liver injury.

Western blot analysis of (A) OGT-KO and (B) OGA-KO mice of total liver O-
GIcNAcylation levels, OGA, OGT and GAPDH over a time course of 0-28 days after
PHX with corresponding densitometry normalized to the loading control. Protein was
pooled from 3-5 mice. Line graphs show serum ALT levels in (C) OGT-KO mice and (E)
OGA-KO mice and liver weight to body weight ratio for (D) OGT-KO and (F) OGA-KO
mice at various time points after PHX. Data are mean + SEM, * p < 0.05, ** p < 0.01 and

**** p < 0.0001.

Figure 2. Sustained cell proliferation in OGT-KO mice after PHX.

(A) Representative photomicrographs (200x) of PCNA-stained liver sections from OGT-
KO and control mice throughout the PHX time course. (B) Western blot analysis of the
pro-mitogenic factors p-Rb, PCNA, Cyclin D1 and CDK4 (left panel) in pooled (n=3-5)
OGT-KO liver lysates at all time points post-PHX accompanied with the calculated

densitometry normalized to GAPDH (right panel).

Figure 3. Hepatic Dysplasia is exhibited in OGT-KO mice 28 days after PHX.

(A) Hematoxylin and eosin (H&E) representative photomicrographs of liver sections
from control and OGT-KO mice 0 hour, 2, 7 and 14 days after PHX at 200x
magnification. (B) H&E staining of 28 days after PHX at 200x and 400x magnification

with arrow heads indicating mitotic figures. # represents central vein and * represents
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portal triad. (C) gPCR analysis of Cyclin D1, A2, E1 and B1 in OGT-KO and control
livers from mice 28 days post-PHX, normalized to 18S and median of the control.
Western blot analysis of liver lysate from 28 days after PHX OGT-KO mice of (D) cyclin
D1, Al, E1, B1, and (E) PCNA with their corresponding densitometry. Bars represents

the mean £ SEM, * p < 0.05 and ** p < 0.01.

Figure 4. Increased inflammation and fibrosis in OGT-KO mice after completion of
LR

(A) gPCR analysis of pro-inflammatory markers (Tnfa, 116, II1b, Ifng), anti-inflammatory
marker (1110) and Kupffer cell marker F4/80 (Adgrel). (B) Representative
immunofluorescence images (400x) of F4/80 staining, DAPI and merged images of liver
sections in OGT-KO mice 28 days after PHX. (C) gPCR analysis of markers of stellate
cell activation Des, Acta2, Tgfb, Collal and Colla2 of livers from OGT-KO mice 28
days after PHX. (D) Photomicrographs (200x) of picrosirius red stained liver sections
showing significant fibrosis (E) Hydroxyproline assay of liver tissue from OGT-KO mice
28 days after PHX. qPCR was normalized to 18S and the median of the control group.
Bars represents the mean = SEM, * p < 0.05, * p < 0.01, ** p < 0.001 and **** p <

0.0001.

Figure 5. IPA of RNA-Seq data from 14 and 28 days after PHX revealed decrease
activation of HNF4a.
Venn diagrams showing (A) upregulated and (B) downregulated differentially expressed

genes at 14 and 28 days after PHX using a 2-fold change cut off. Dot plots of upstream
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regulators that are common between (C) OGT-KO 14 days and (D) 28 days post PHX.
The red dotted line indicates Z-Score of 0, the size of the dot represents the number of

altered genes within that pathway and the color signifies the p-value.

Figure 6. HNF4a expression and function is decreased in OGT-KO mice 28 days
after PHX.

(A) Western blot analysis of HNF4a protein levels in livers of control and OGT-KO mice
28 days after PHX, with corresponding densitometry. (B) Representative
photomicrographs (400x) of HNF4a IHC of control and OGT-KO mice 28 days post
PHX. gPCR analysis of HNF4a (C) positive target genes and (D) HNF4o negative target
genes at 28 days after PHX. gPCR was normalized to 18S and median of the control
group. Bars represents the mean + SEM, * p < 0.05, ** p < 0.01 and **** p < 0.0001. (E)
IP pull-down of HNF4a from WT and OGT-KO mice. Western blots analysis was
performed on HNF4a to show successful pulldown (upper blot) and O-GIcNAcylation

(lower blot).

Figure 7. Metabolomic analysis show significant change in OGT-KO mice at 28
days after PHX.

(A) PCA plot of control and OGT-KO mice for 14 and 28 days after PHX derived from
targeted metabolomics. Ellipses represent clusters for each group. Metabolite Set
Enrichment Analysis of OGT-KO mice (B) 14 days and (C) 28 days after PHX, color
represents p-value and size corresponds to enrichment ration. (D) Significantly altered

metabolites in methionine and cysteine metabolism in OGT-KO mice 28 days after PHX.
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Bars represents the mean = minimum and maximum normalized value, * p < 0.05, ** p <
0.01 and **** p < 0.0001. (E) Metabolic pathway of methionine and cysteine with red
and blue indicated increased or decreased metabolite in OGT-KO mice 28 days after

PHX, respectively.
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