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ABSTRACT

The neural underpinning of human fluid intelligence (Gf) has gathered a large interest in the
scientific community. Nonetheless, previous research did not provide a full understanding of
such intriguing topic. Here, we studied the structural (from diffusion tensor imaging, DTI)
and functional (from magnetoencephalography (MEG) resting state) connectivity in
individuals with high versus average Gf scores. Our findings showed greater values in the
brain areas degree distribution and higher proportion of long-range anatomical connections
for high versus average Gfs. Further, the two groups presented different community
structures, highlighting the structural and functional integration of the cingulate within frontal
subnetworks of the brain in high Gfs. These results were consistently observed for structural
connectivity and functional connectivity of delta, theta and alpha. Notably, gamma presented
an opposite pattern, showing more segregation and lower degree distribution and connectivity
in high versus average Gfs. Our study confirmed and expanded previous perspectives and
knowledge on the “small-worldness’ of the brain. Further, it complemented the widely
investigated structural brain network of highly intelligent individuals with analyses on fast-
scale functional networks in five frequency bands, highlighting key differences in the
integration and segregation of information flow between slow and fast oscillations in groups
with different Gf.
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I ntroduction

A fundamental characteristic of the human brain is the ability to compute high-level logical,
abstract reasoning and manipulate complex information to flexibly adapt to the
environmental demands . This requires a set of cognitive skills, also referred to as fluid
intelligence (Gf), that are present across the population with measurable inter-individual
differences . Indeed, Gf refers to the ability of reasoning and solving logical and visual-
spatial problems *®°, involving a number of fine-grained cognitive abilities related to learning
and memory. Due to their complex and fascinating nature, the investigation of Gf and
cognitive ahilities have captured the attention of a large body of psychologica and
neuroscientific research 4, aiming to understand what is in the human brain that allows
some individuals to outperform others in complex cognitive tasks. Nonetheless, the neural
underpinning of individual differences in intellectual abilities is still far from being fully
understood.

The human brain can be conceptualized as a complex system, whose efficiency arises from
the balanced integration of activity coming from spatially segregated regions. In this
framework, imbalances in brain network coordination have been linked to several psychiatric
and neurological conditions *> and modest network alterations have also been associated to
the fine-grained differences in cognitive performances '°*’. Indeed, converging evidence
suggests that human intelligence might depend on the organization of brain connectivity in a
small-world network %, a particular type of network where high connectivity between

nodes is obtained with a relatively small number of connections %%

, optimizing
information flow across brain areas. This configuration implies a segregation of the network
into independent, densely connected subnetworks (or modules) which are linked to other
modules by a few, fundamental edges that allow to optimally integrate the information **.
Segregation properties of brain modules can be described by graph theory measures such as
clustering coefficient and modularity. Conversely, we refer to integration as the property of
the network to connect the non-overlapping modules through long-distance, cruciad
connections . In this case, cross-module functional integration properties can be described
by characteristic path length, global efficiency, degree centrality and distribution and the
presence of connector and provincial hubs ?°. Thus, the key to fully understand the neural
underpinning of fluid intelligence may relate to the configuration and flexibility of brain
networks.
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Nevertheless, classical studies on the neural basis of fluid intelligence provided evidence that
has been organized within the framework of the Parieto-Frontal Integration Theory of
intelligence (P-FIT) (Colom et al, 2010; Jung and Haier, 2007). According to this theory,
cognitive performances arise from a chain of brain processes located in different regions such
as occipital, temporal, parietal and frontal lobes. Indeed, incoming sensory information from
temporal and occipital areas is first elaborated in parietal regions and subsequently integrated
and abstracted in the frontal areas of the brain. The P-FIT theory is intriguing and coherent
with several results described in years of research on intelligence. However, its approach
tends to localise the main brain areas progressively involved in cognitive processes and did
not directly considers the brain as a holistic dynamic system where integration and
segregation are crucia to allow information flow and thus resolution of complex cognitive
tasks. Along this line, other studies investigated the brain as a balanced network where
integration and segregation of information play a crucial role. For instance, a growing body

of evidence based on lesion #%°

and functional magnetic resonance imaging (FMRI) studies
pointed at a close link between fluid intelligence and a specific subset of brain regions that
behave as brain hubs, which presumably mediate the information flow across different brain
networks *2**3, This set of brain areas involves a widespread network comprising bilateral
temporal, parietal and frontal regions, forming what is also referred to as “ multiple demand”
(MD) network *2**3 Furthermore, previous research studied the anatomical connectivity
derived from fractional anisotropy (FA), a parameter commonly used to estimate the integrity
of white matter tracts from diffusion tensor imaging (DTI) data *2. Studying such parameter is
one of the main solutions to detect the strongest/weakest structural connections between brain
areas as well as to estimate the network properties of the whole-brain. Remarkably, previous
studies have associated enhanced FA in the superior longitudinal fasciculus, an association
tract connecting frontal, parietal, temporal and occipital lobes, to greater scores in the
Weschler Adult Scale of Intelligence (WAIS) for the fluid intelligence tasks %%, What is
more, analysis of white matter network with graph theory reported higher global efficiency
and shorter characteristic path length in participants with high versus average Gf scores 3*°,
Taken together, these studies suggested that the understanding of the neural underpinning of
Gf is progressively moving toward the network configuration of the whole-brain. However,
the current available evidence did not return a clear picture of the brain organization of highly
intelligent individuals. Further, there is not a full consensus about the most relevant
properties of the brain networks to explain Gf. On top of this, while previous works mainly

focused on anatomical or functional connectivity using DTI and fMRI, evidence of functional
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connectivity based on electrophysiological methods is largely missing and needed. Indeed,
although providing spatially accurate information, fMRI tempora resolution is extremely
poor. In addition, it only provides an indirect measure of neural activity based on oxygen
consumption and not on neuronal activity * . In contrast, neurophysiological methods such
as electroencephalography (EEG) and magnetoencephalography (MEG) detect direct brain
activity with excellent temporal resolution, providing information at the milliseconds (ms)
timescale *%. However, only a very limited number of studies explored the functional brain
networks of Gf using graph theory and EEG ?**'. The results of these studies pointed toward
a small-world network configuration in individuals with greater Gf scores and a main role of
the parietal and frontal cortex for fluid intelligence, coherently with both the P-FIT and the
MD network theories. Langer and colleagues ?* also reported that the clustering coefficient
and characteristic path length of the functional brain network correlated to intelligence
scores. Nonetheless, these studies relied on high-density EEG, and did not have an
anatomical counterpart to confirm the results obtained from the neurophysiological results.

Thus, in this study we used MEG to explore the fine-grained differences in the brain
networks of high versus average Gf individuals as emerging from fast-scale whole-brain
functional connectivity. Based on resting-state neural activity, we computed functional
connectivity within five main frequency bands (delta: 0.1 — 2 Hz, theta: 2 — 8 Hz alpha: 8 —
12 Hz, beta: 12 — 32 Hz, gamma: 32 — 75 Hz) and investigated the properties of the emerging
fast-scale networks with graph theory measures. Using the same measures, we explored the
organization of the anatomical network and searched if the network (graph) properties of the

two groups could be confirmed by microstructural changes in white matter.
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Results

Experimental design and data analysis over view

In this study we aimed to characterize the neural correlates of fluid intelligence by using
graph theory measures on functional and structural connectivity. To this goal, we acquired
structural DTI using MRI and we measured brain activity with MEG during 10 minutes of
resting state. Next, we collected behavioural measures of intelligence using the Wechsler
Adult Intelligence Scale IV (WAIS-1V). The experimental procedures involved atotal of 71
participants, but two participants had to be excluded since they did not perform the WAIS- 1V
tests. Our 69 WAIS-1V participants were divided into two groups based on their mean Gf and
by considering at least one standard deviation (std; standardized WAIS-IV std = 15) apart, so
that the distinction between the two groups was psychometrically meaningful, as widely
suggested by previous literature on the topic *. The resulting groups were labelled as high Gf
(N = 38; mean Gf = 117.72 + 4.66) and average Gf (N = 31; mean Gf = 102.98 *+ 6.09). As
expected, the difference between the two groups was largely significant on a statistical level
(t-test: p < 1.0e-07, t(55) = 11.08) (See Methods for further background and statistical
information on the two groups). Finaly, since we had to discard a few participants due to
technical problems during the acquisition of DTI and MEG data, our final sample for WAIS-
IV and DTI analysis consisted of 67 participants, while the one for the WAIS-IV and MEG
analysis of 66 participants.

Back to the analysis, based on the non-cerebellar parcels of the automated anatomical
labelling (AAL) brain parcellation, we constructed functional and structural connectivity
matrices for each participant. The structural connectivity matrix was created based on the
probabilistic tractography computed across all the 90 AAL regions of interest (ROIS) of the
DTI images. The functional connectivity matrix was realized by reconstructing the sources of
the neurophysiological signal acquired with MEG (using a beamforming agorithm) and by
parcellating it with AAL. Importantly, the functional brain data was reconstructed in five
different frequency bands (delta: 0.1 — 2 Hz, theta: 2 — 8 Hz alpha: 8 — 12 Hz, beta: 12 — 32
Hz, gamma: 32 — 75 Hz), returning a rather complete picture of the fast-scale information
flow in the brain during resting state. Next, we computed graph theoretical measures of the
individual brain structural and functional networks and compared them between the two

groups of participants (high versus average Gf).
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Specifically, we were interested in the brain organization in terms of ROIs degree,
segregation in different subnetworks (communities) and intra- and inter-subnetworks
connectivity. Moreover, we aimed to detect how the brains of high versus average Gf
participants were organized in terms of structural connections and fast-scale information flow
during resting state. Finally, we have complemented our network analysis with a comparison
between high versus average Gf groups in terms of white-matter tracts obtained computing
tract-based spatial statistics (TBSS). The overview of the analysis pipeline is illustrated in
Figure 1.

INSERT FIGURE 1

Structural connectivity

After pre-processing the DTI data, matrices of structural connectivity were constructed for
every participant using the output of the probabilistic tractography, which was normalized for
the size of the brain ROIs (see Methods for details). We constrained the structural matrices to
the non-cerebellar parcels of AAL parcellation (where each of the 90 regions represented a
node of the brain network), resulting in a 90x90 matrix. The average structural connectivity

across participantsis showed in Figure 2A.

Functional connectivity

Individual matrices of functional connectivity were constructed based on the pre-processed
and source reconstructed MEG data, for each of the five frequency bands considered in the
study: delta, theta, alpha, beta and gamma. As done for the DTI data, the reconstructed neural
signal was constrained to the 90 non-cerebellar AAL parcellation. The resulting 90x90 matrix
contained the information regarding the correlations between the 90 AAL brain regions,
where each region represented a node of the brain network. The average functional
connectivity across participants is shown in Figure 2B, independently for each frequency
band.

INSERT FIGURE 2 HERE
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Graph theory measures

We analysed the two types of connectivity using graph theory measures between participants
who scored high versus average in the WAIS-I1V. For this purpose, we compared the various
measures of the two groups with Monte Carlo ssimulations (MCS) to test the statistical

significance.

Degree

First, we investigated whether the distribution of the ROIs degree was different among the
two Gf groups. Participants belonging to the high versus average Gf group showed
significantly higher distribution of degree in both structura (p = .007) and functional
networks for theta (p < .001), alpha (p < .001) and beta (p = .004) frequencies, indicating an
overall stronger level of connectivity between ROIs for the high Gf participants. Remarkably,
the main contributions to these values for structural connectivity and theta, alpha and beta
frequency bands were provided bilaterally by a widespread network involving fronta
(postcentral gyrus, superior frontal gyrus, postcentral gyrus, supplementary motor area),
parietal (inferior and superior parietal lobule), occipital regions (inferior, middle and superior
occipital gyrus) and temporal (middle and superior temporal gyrus) regions, as well as
multiple subcortical areas (parahippocampal gyrus in the structural and in the functional,
hippocampus, cingulum, thalamus in the functional). Conversely, individuals with average Gf
scores showed a greater degree distribution across the whole-brain compared to the high Gf
participants for the gamma frequency (p < .001). In this case, stronger degree centrality was
observed in frontal, medio-temporal and subcortical areas, regions that greatly overlap to
those that were more central for high versus average Gf scores. A detailed list of the most
central regions and the correspondent degree coefficients in structural and functional brain
networks in the two experimental groups can be found in Table ST1. No significant

difference was found for the distribution of degree in the delta frequency band.

Participation coefficient

First, we estimated the optimal community structure and modularity (depicted in Figure 5
and reported in Table ST2) using the modularity algorithm introduced by Newman *%, Here,
using MCS we tested the modularity values of structural and functional connectivity matrices
(for the five frequency bands independently) against chance, to detect whether the brain

networks were more modulable (more divisible into subgroups) than random configurations
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of the same origina brain networks. The test was largely significant for both structural and
functional connectivity matrices (p < .001).

Then, we computed the participation coefficient and compared it between the Gf groups.
This coefficient, ranging from zero to one, shows the level of connectivity of an ROl with the
ROIs belonging to the same community when tending to one (provincial hub) or to ROIs of
other communities when tending to zero (connector hub). Here, we studied the distribution of
the participation coefficient in the high versus average Gf participants. The results showed
that high versus average Gfs presented a higher distribution of connector than provincial hubs
for both structural connectivity (p < .001) and delta (p < .001), theta (p < .001) and apha (p <
.001) bands of the functional networks. Main connector hubs for high Gf individuals in these
frequencies were found bilaterally in parietal, temporal, cingulate and subcortical areas (see
Table ST3). Conversely, more provincia hubs (and thus more intra- than inter-community
connections) were found in participants with average versus high Gf for the gamma
frequency band (p = .003) in frontal, temporal and subcortical regions (Table ST3). No
differences were found between the two groups for the functional connectivity in the beta

frequency band.

Modularity, Density, Characteristic path length, Global and Local efficiency

Modularity, density, characteristic path length, global and local efficiency were not
significantly different between the two groups, neither in the structural nor in the functional
networks. Nonetheless, before correcting for multiple comparisons, a significantly greater
modularity distribution was found for the high versus average Gf group in the theta (p = .046)
and alpha (p = .029) frequency bands.

Tract-based spatial statistics (TBSS)

Finally, to complement our network anayses, we performed TBSS to assess whether
differential levels of fluid intelligence were associated to microstructural differences in white
matter tracts.

The high versus average Gf contrast revealed 38 clusters of significantly increased white
matter, mostly located in frontal (postcentral gyrus, superior frontal gyrus, postcentral gyrus,
supplementary motor area, precuneus, cingulum), temporal (temporal gyrus,
parahippocampal gyrus,) and occipital (Calcarine fissure) regions. (see Table ST1). Instead,
the average versus high Gf contrast revealed 32 significant clusters in anaogous regions to

those found in the first contrast (Table ST2) but with smaller dimensions, suggesting an
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overall modest, but noticeable, increase of white matter in high versus average Gf

individuals.
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Discussion

In this study, we investigated the fine-grained structural (DTI) and functional differences
(MEG resting state) in individuals with high versus average Gf scores. We found an overall
increased degree in high compared to average Gf individuals. Further, the two groups
presented different community structures. Overall, in both structural and functional graphs
the frontal brain areas of high Gfs were grouped together in compact subnetworks including
the cingulate gyrus and prefrontal regions. Conversely, frontal brain areas of average Gfs
belonged to more extended subnetworks which aso included occipital and parietal regions.
On top of these community structures, we have computed the participation coefficient, telling
us if a brain area was principally connected to its own community or presented a high
connectivity to external communities. Notably, brain areas of high versus average Gfs were
more connected to external communities, suggesting a stronger integration of brain
subnetworks. Finaly, microstructura analyses of white matter indicated a moderate but

noticeable increase of white matter in high compared to average Gf group.

I ntelligence and small-worldness of the brain

In this study, structural connectivity based on white matter tracts revealed an overall greater
degree in the high versus average Gf groups, as well as a greater trend of the brain areas to be
connector instead of provincia hubs. This evidence suggests that the brain network
configuration of individuals scoring the highest in Gf tests is prevalently characterized by
intermodular connections. Interestingly, although we computed analysis on the whole-brain
distribution of degrees and participation coefficients, the brain regions that mainly
contributed to such distribution were in frontal, hippocampal and cingulate areas, which were
previously shown highly implicated in Gf and cognitive processes %4 A further
difference between the brain structural network of high and average Gfs occurred in ther
community structure. Indeed, our modularity analyses grouped the frontal brain areas of high
Gfs together in compact subnetworks, while average Gfs exhibited more extended
subnetworks including at the same time frontal, parietal, and a few occipital regions. Notably,
the medial cingulate gyrus of high Gf belonged to a frontal subnetwork, while was segregated
out from the rest of the brain areas in average Gf. This finding suggests that the structural
integration of the cingulate with fronta regions may be of key importance for fluid
intelligence, coherent with several studies highlighting the role of the cingulate as a

fundamental hub of the brain and its involvement in a plethora of cognitive processes *#4%,
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In conclusion, the structural configuration of the brain of high Gfs present properties of

small-world networks, coherent with previous studies 2334

Furthermore, such
organization may provide the ideal wiring for efficient, long-range functional connections,
and communication and integration between brain aress.

In line with thisidea and differently from previous literature, we complemented our structural
results with functional analyses of MEG resting state. Coherent with the structural
organization that we have previously described, analyses of the functional graphs showed a
higher functional degree across the whole-brain for three frequency bands: theta, apha and
beta. Additionally, we observed greater connector hub values in functional networks in delta,
theta, and apha power, reflecting the presence of more inter- than intra-module connections
for the high Gf group compared to the average Gf group. In this case, the brain areas that
mainly contributed to these results were sparser than in the structural graphs and belonged to
temporal, frontal, parietal, and subcortical areas. Regarding the optimal community structure
estimated for the two categories of participants, the results were compatible with the ones
obtained for the structural graphs. Indeed, high Gfs presented an overall stronger functional
integration of the cingulate gyrus within frontal subnetworks of the brain, especially for delta,
alpha, and beta. These findings suggest that better performance in fluid intelligence tasks is
associated to an overall increased brain connectivity, which might reflect a more efficient
signal integration favoured by a better inter- rather than intramodule communication
between brain areas. Furthermore, the integration of the cingulate within frontal subnetworks
of the brain suggests that the network organization of the cingulate may be of critical
importance for individual differencesin cognitive abilities and fluid intelligence.

Our results are overall coherent with previous literature. For instance, enhanced FA in long-
range white matter tracts such as the superior longitudinal fasciculus have been associated to
greater scores in intelligence tests 3. Further, measures of integration, segregation and
“small-worldness’ of the brain network have been associated to intelligence. Although we
did not find significant differences for these measures in our cohort, higher global efficiency
and shorter characteristic path length were found in participants with high versus average Gf
scores ***. Additional studies showed how modest network alterations were associated to the
fine-grained differences in individual cognitive performances '**'.

Taken together, previous works and our findings point at the idea that human intelligence
depends on the organization of brain connectivity in a small-world network. Particularly, the
key for understanding human intelligence may reside in the optimization of information flow

across brain areas, which is made possible by balanced levels of integration and segregation,
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and short- and long-range connections in the human brain 2%, In our study, on the one hand
we further refined the understanding of such structural organization of the brain in relation to
Gf. On the other hand, for the first time we showed that the fast-scale functional networks
detected with MEG presented similar features.

In contrast with previous studies >

, we did not find any significant difference regarding
measures of modularity, characteristic path length, global and local efficiency. This might be
due to the modest difference in the behavioural scores of Gf in the two groups or may suggest
that such broad whole-graph measures are not ideal to characterize the fine-grained essence
of the brain of high-level performers in cognitive tests. Indeed, degree and participation
coefficients might be more sensitive measures of integration and segregation network
properties, being able to capture subtle but critical individual differences.

Finaly, it is worth mentioning that microstructural analyses of white matter showed a
moderate increase of white matter in the high compared to the average Gf group. This
increase in white matter might contribute to the greater scores in cognitive tests and the
increased ability to integrate information across spatially distant brain areas in the high Gf
group. This finding would be coherent with studies showing a reduction of white matter

integrity in ageing “® and with declined cognitive abilitiesin clinical conditions *.

Network organization, intelligence and the role of cortical oscillations

While our results on the brain structural network organization confirmed and expanded
previous literature, the finding on the brain functional networks provided rather new evidence
that needs a deeper discussion. Indeed, our results showed a solid correspondence between
brain structural and functional organization for what concerns delta, theta, alpha and beta
frequency bands. In these cases, we observed very similar patterns of connectivity in high
versus average Gf individuals (e.g. enhanced degree and connector hub whole-brain
distribution in high Gf participants). Interestingly, we found an inverse pattern for the gamma
frequency, where the average compared to the high Gf group showed a greater degree
distribution as well as atendency of the brain nodes to be connector hubs.

Our results can be framed within the literature on cortical oscillations, which are thought to
coordinate neuronal activity favouring communication across different brain structures “*°.
Specifically, delta (0.1-3 Hz) theta (4-8 Hz), and apha (8-12 Hz) frequency bands have been
repeatedly associated to complex cognitive functions. Delta and theta waves have been linked
to response inhibition during attentional tasks >* and to memory encoding and recognition

tasks, respectively. Notably, the frequency peak for the theta frequency was found in the

13


https://doi.org/10.1101/2021.10.14.464389
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.14.464389; this version posted October 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

parietal cortex *>°2. Alpha frequency has been associated not only to sensory processes > but
also to performance in academic results, memory and intelligence tests % In this respect,
Langer and colleagues # reported an association between alpha power and psychometric
intelligence scores, with strongest alpha activity in the right parietal cortex. Smilarly, beta
power has been reported to be positively associated to the strength of frontoparietal
connectivity during visual search tasks >*. Although mostly based on task-related activity,
previous evidence seems to point to a role for these frequency bands in cognitive functions
contributing to fluid intelligence. In particular, the frequency peaks found in the frontal and
parietal areas reported by these previous studies are coherent with the increased functiona
connectivity that we found in frontal, parietal, and temporal areas in our study.
Spontaneously active brain regions are thought to reflect intrinsic properties of the brain,
which in resting state may show the baseline functional organization of the information flow
in the human brain. Notably, our results suggest that differences in terms of functional
network organizations may represent a key to understanding human intelligence. Further, the
nodes that we found to have significantly greater degree of connectivity and participation
coefficient might well be important hubs for Gf and consequently greater for high Gf scores
than for average ones. Thus, athough our work points to a focus on integration and
segregation of brain areas at the basis of fluid intelligence, our results are also coherent with
the P-FIT theory, as well as the multiple demand network model for fluid intelligence that we
have presented earlier.

Interestingly, gamma band presented a different behaviour when comparing high versus
average Gf people. Indeed, average compared to high Gf had a greater degree distribution as
well as a tendency of the brain nodes to be functional connector hubs. These results are in
contrast with the other frequency bands and show that the functional resting state network in
the gamma frequency presents more segregation and less information flow across the whole-
brain in high versus average Gf. Our results show differences between slower and faster
cortical oscillation and may suggest that the most efficient brains (i.e. brains of more
intelligent people) rely on gamma band for segregation of information within local
subnetworks, while long-range functional communication and integration of information is
mainly related to slower frequencies. Such evidence is coherent with previous literature
which proposed gamma band for local communication of brain areas and slower frequencies
such as alpha and theta for long-range functional connections *°. Nonetheless, future studies

are called to replicate these results and expand our understanding of information flow across
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different frequency bands in relation to different levels of cognitive abilities and fluid

intelligence.

Conclusions

Altogether, our findings pointed to a different whole-brain configuration of connectivity
between individuals scoring high versus average in Gf tests. This was indicated by greater
values in the brain areas degree distribution and by a higher proportion of long-range
connections for the high versus average Gf group. Further, the two groups presented different
community structure, highlighting the structural and functional integration of the cingulate
within frontal subnetworks of the brain in high versus average Gfs. These results were
consistently observed for structural connectivity and functional networks across slower
frequency bands, especially delta, theta and alpha. Notably, only the faster frequency band,
gamma, presented opposite results, showing more segregation and lower degree distribution
and connectivity in high versus average Gfs. In conclusion, this study confirmed and
expanded previous perspectives and knowledge on the “small-worldness’ of the brain.
Further, it complemented the widely investigated structural brain network with analyses on
fast-scale functional networks of five frequency bands, highlighting key differences in the

integration and segregation of information flow between slow and fast oscillations.
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Methods

Participants

We recruited a total of 71 heathy volunteers, 35 females and 36 males (aged 18-42, mean
age: 25.06 £ 4.11 years) of different nationalities. Two participants had to be excluded since
they did not perform the WAIS-IV tests. Further, for the DTI data (Tract-Based Spatial
Statistics (TBSS) and the brain structural connectivity analyses), two participants were
excluded from the sample due to the poor quality of the data, after the computation of the
pre-processing pipeline. Thus, the final sample for DTI consisted of 67 healthy volunteers (34
females, 33 males, mean age: 24.94 + 4.05 years). Regarding MEG, three participants were
excluded because it was not possible to record their MEG resting state data. Thus, the final
sample for the MEG functional connectivity analyses consisted of 66 healthy volunteers (34
females, 32 males, 24.95 + 4.24 years).

All the experimental procedures were approved by the Ethics Committee of the Central
Denmark Region (De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-72-411-
17), in compliance with the declaration of Helsinki — Ethical Principlesfor Medical Research.

Experimental design and Gf measures

Participants underwent the acquisition of functional (magnetoencephalography, MEG) and
structural  (magnetic resonance imaging, MRI) data. We recorded resting-state
neurophysiological activity throughout 10 minutes of MEG recordings, during which
participants were not engaged in any task and kept their eyes open. Regarding MRI, we
acquired T1-anatomical and diffusion-weighted (DTI) brain images.

After acquiring the neuro-functional and -structural data, we collected behavioural measures
to estimate the participants' fluid intelligence measure (Gf) along the following main scales
of the fourth edition of the Wechsler Adult Intelligence Scale (WAIS-IV)*®: perceptual
reasoning, working memory and speed processing. All the tests were carried out in English,
which was spoken fluently as a second language by the participants.

The mean Gf score across the 69 (WAIS-1V subsample), 67 (WAIS-IV and DTI subsample)
or 66 (WAIS-IV and MEG subsample) participants was nearly identical (111.10 + 9.09;
111.45 + 9.13 and 110.76 £ 9.05, respectively). Thus, the following numerical information
about the two Gf groups that we have used in our experiment will be reported for the full

sample of 69 participants who were administered the WAIS-1V. Indeed, our sample was
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divided in two groups based on their mean Gf and by considering at least one standard
deviation (standardized WAIS-IV std = 15) apart, so that the distinction between the two
groups was psychometrically meaningful, as widely suggested by previous literature on the
topic *%. This procedure yielded two groups: the high Gf group (N = 38; mean Gf = 117.72 +
4.66); the average Gf group (N = 31; mean Gf = 102.98 = 6.09). As conceivable, the
difference between the two groups was also statistically largely significant (p < 1.0e-07, t(55)
= 11.08). Importantly, we controlled that the two groups were matched in terms of socio-
economical, demographic, and educational status. In both groups, participants were mainly of
Danish nationality and all of them came from a Western cultural country. The High Gf group
comprised 15 females and 23 males with an average age of 25.86 + 4.89. The Average Gf
group comprised 18 females and 13 males with an average age of 24.00 + 2.69. The age
difference was not significant (p = .05). Furthermore, the mean of the education years was
14.73 + 4.25 for the high Gf and 14.56 + 5.87 for the average Gf. Neither this difference was
significant (p = .37).

Back to the analysis pipeline, for each participant, we reconstructed the sources of the MEG
signal by combining the MEG with the structural T1 MRI data in automated anatomical
labelling (AAL) *’ space and estimated the functional connectivity between each pair of non-
cerebellar brain areas of AAL. Similarly, we computed individual structural connectivity
matrices based on the DTl images. Then, using graph theory measures, we analysed group
differences for high versus average Gf values in both structural and functional brain

networks. The next paragraphs provide details about these procedures.

Data acquisition

We acquired both MRI and MEG data at the Aarhus University Hospital (Denmark) in two
independent sessions. MEG data were acquired with a 306-channel (204 planar gradiometers
and 102 magnetometers) Elekta Neuroimag TRIUX system (Elekta Neuromag, Finland), with
a sampling rate of 1000Hz and an analog filter of 0.1-330Hz. Prior to the measurements, the
head shape and spatial coordinates of each participant were digitalizaed with a 3D digitizer
(Polhemus FastrakColchester, VT - USA). The head localization was determined using four
Head Position Indicator coils (cHPI) that were registered with respect to three anatomical
landmarks (fiducials), namely the nasion, left and right preauricular areas. The cHPI allowed
to continuously track the head position in respect to the MEG sensors and to correct for head

movements. Furthermore, the digitalization of the participants’ head provided the information
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for co-registering the functional data recorded by the MEG with the anatomical data acquired
with the MRI.

Whole-brain T1-weighted and diffusion-weighted images were acquired with a Siemens
Magnetom Skyra 3T MRI scanner (20-channel head coils) located at Aarhus University
Hospital, Denmark. T1 images were acquired with the following parameters: 1.0x1.0x1.0mm
voxel size (1.0 mm?®); 256x256 reconstructed matrix size; 2.96ms echo time (TE); 5000ms
repetition time (TR); 240Hz/Px bandwidth. For the reconstruction of the MEG functional
data, each T1-weighted scan was co-registered to the standard brain template from the
Montreal Neurological Institute (MNI) using an affine transformation. Next, it was
referenced to the MEG sensors space with the data about the head shape that was previously
digitalized.

Diffusion-weighted images were acquired using echo-planar imaging (EPI), with the
following parameters: 2.0x2.0x2.0mm voxel size (2.0mm°); 104ms TE; 3300ms TR;
100x100x72 matrix size; 221 volumes in anterior-posterior (AP) direction; 1 volume in
posterior-anterior (PA) direction; 2500/mm? b-value; 29.41Hz/Px bandwidth.

DTI data pre-processing

We pre-processed the MRI diffusion data with the FMRIB’s Diffusion Toolbox (FDT)
toolbox in the FMRIB Software Library (FSL) ***°. First, we visually checked the data to
assess the good quality of the scans. After converting the files into nifti format, we created a
reference volume (b0) based on the first image of both the AP and PA files, which we used to
correct for susceptibility-induced distortions. Next, based on the corrected b0, we generated a
brain mask that we applied to correct for head motion and eddy currents. The pre-processed
and corrected data were subsequently used for the analysis of microstructural changes in
white matter composition with Tract-Based Spatial Statistics (TBSS) and for the estimation
of the main white matter tracts with probabilistic tractography.

Tract-Based Spatial Statistics (TBSS)

We first computed the average fractional anisotropy (FA) images of each participant by
fitting a tensor model to the pre-processed data. Next, we performed the analysis of
microstructural changes in FA with TBSS %, a series of functions of the FSL package that
allow to compare the white FA values between groups of participants. The TBSS proceeds as
follows. As afirst step, likely outliers were removed by eliminating brain-edge artefacts and

zeroing the end slices. Next, al the FA data were aligned into a common space, by means of
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a nonlinear registration performed on the FMRIB58 FA standard template (the
FMRIB58_FA was obtained from a high-resolution average of FA images with 2x2x2mm
spatial resolution, from 58 participants ®. Then, a mean skeleton representing the centers of
all tracts common to the experimental group was created and taken into standard space
(MNI152, 1x1x1mm). Finally, the skeletonized map of all participants was projected into a
mean FA skeleton, with a threshold of 0.2. This procedure resulted in a fina image
representing the thickness of the white matter tracts independently for each participant. To
compare such white matter tracts across the two Gf groups, we computed t-tests for each
white matter tracts voxel comparing values of high versus average Gf participants. To correct
for multiple comparisons, we adopted a cluster-based Monte-Carlo simulation (MCS)
approach ®%. This procedure assumes that the false positive results outputted by the t-tests
would occur randomly and would therefore not be arranged in spatial clusters, while true
significant results would form such clusters. Thus, in our MCS procedure, we have extracted
the cluster of neighbouring significant voxels (where the difference between high versus
average Gf was significant), in the original data. Then, we computed 1000 permutations of
the data. For each of the permutations, we have computed the clusters of significant values
and extracted only the maximum cluster sizes. Such sizes gave rise to a reference distribution
(built of the 1000 maximum cluster sizes extracted from the 1000 permutations) that we
subsequently used to assess whether our original clusters were significant or not. Specifically,
we have considered as significant the original clusters that were greater in size than 99.9% of

the cluster sizes forming the permuted-based reference distribution.

Tractography in AAL

We modelled the whole-brain structural connectivity with the FSL probabilistic tractography
for crossing fibres ®*%, using the AAL parcellation. Based on the pre-processed data and the
corrected reference volume b0, we estimated the fibre orientations of every voxel for each
participant. Subsequently, we created 90 seed masks - one for each AAL region — with voxels
sized 2x2x2mm. Using a Markov Chain Monte Carlo algorithm, we estimated the probability
distribution of fibre direction at each brain voxel, with 1000 fibres (streamlines) per voxel.
Whole-brain tracts (structural connectivity between each pair of AAL brain regions) were
estimated by considering the continuity between fibres of al the voxels contained in each

AAL region and all the other AAL regions.
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Structural connectivity network

After the estimation of the probabilistic tractography, we have computed a few normalization
steps to obtain afinal structural connectivity matrix, one for each participant.

In our brain networks, the nodes were defined according to the AAL parcellation, with each
non-cerebellar AAL parcel representing a node of the network. The networks that we
computed were undirected (i.e. a—> b =b - a). However, the FSL probabilistic tractography
estimates independently the two directions of the connectivity between two nodes (i.e.a=> b
= b > ameans the same, but are estimated with slightly different values). Thus, as previously
done °, we averaged the two directions to obtain only one value of connectivity between any
pair of brain areas and thus a truly symmetric undirected connectivity matrix. Finally, we
have normalized each connection between AAL brain areas for the sizes of the same brain
areas. This was done since larger AAL parcels may present more connections simply because
they are larger and not because they are actually more densely connected. Thus, we have
divided each connection between pairs of brain areas by the averaged size of those brain
areas (eg. a <> b/ ((size of at+ size of b)/2)). The resulting 90x90 matrix represented an
undirected, weighted brain structural network.

MEG data pre-processing

For the first pre-processing steps of the raw MEG data, we used MaxFilter ®. These steps
consisted in applying signal space separation (SSS) to attenuate interferences originated
outside the scalp, adjusting for head motion and down-sampling the signal from 1000Hz to
250Hz. Next, we converted the data into the Statistical Parametric Mapping (SPM) format
and further proceeded with the analyses using the Oxford Centre for Human Brain Activity
Software Library (OSL), a freely available toolbox that combines in-house-built functions
with existing tools from FSL %, SPM ® and Fieldtrip ® working in the Matlab environment
(MathWorks, Natick, Massachusetts, United States of America). The frequencies below
0.1Hz, too low for being originated by brain activity, were removed with a high-pass filter. In
addition, we applied a notch filter to correct for possible electric current-induced
interferences and further down-sampled to 150Hz. After visually inspecting the data, we
removed the parts of the signal that were atered by large artefacts. Then, we performed
independent-component analysis (ICA) ® to isolate and discard the artefacts generated by
eyeblinks and heartbeat.
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Sour ce reconstruction

The brain sources of the neural activity registered on the scalp by the MEG sensors were
estimated by using the OSL implementation of the beamforming algorithm. Specifically, the
forward solution was computed using an overlapping-spheres model in an 8-mm grid
(comprising 3559 brain voxels). This solution represented a simplified geometric model of
the MNI-co-registered anatomy of each participant, fitting a sphere separately for each MEG
sensor °. Then, we performed the inverse solution by using a beamforming algorithm. Such
procedure utilized a different set of weights sequentially applied to the source locations for
isolating the contribution of each source to the activity recorded by the MEG sensors at each
time-point “>*’. Our beamforming computation was performed using both magnetometers and
planar gradiometers.

Importantly, the source reconstruction was computed for five different frequency bands that
were estimated after the ICA computation and subsequently reconstructed: delta: 0.1 — 2 Hz,
theta: 2 — 8 Hz alpha: 8 — 12 Hz, beta: 12 — 32 Hz, gamma: 32 — 75 Hz.

Functional connectivity network

After estimating the brain sources of the recorded MEG signal, we have computed one
functional connectivity matrix for each participant, similarly to what we did for the structural
connectivity based on the DTl data. First, the reconstructed functional data (3559 brain
voxels) were constrained to the 90 non-cerebellar parcels defined by AAL. Next, we
computed the envelope of the time-series from each brain region using the Hilbert transform.
Finally, we estimated the functional connections between each pair of brain areas by
computing Pearson’s correlations between the envelopes of the time-series of each pair of

AAL brain regions.

Graph theor etical measures

Degree of connectivity

The degree of connectivity describes how connected a node is to the other nodes of the
network and can provide information about the functional integration properties of the
network. We computed the degree (d;) of node n (here, an AAL ROI) as the sum of the
strength of the connections of that node to al other nodes . This provided us with a value
for each ROI indicating its degree of connectivity, and thus its centrality within the whole-

brain network.
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We tested the difference between high versus average Gf participants using an MCS
approach. Specifically, we computed the difference between the median of the degree of each
ROI for high versus average Gf. If the distribution of the degree is similar/equal between the
two groups, their difference would be approximately zero, with some ROIs slightly above
zero and some others slightly below, by random chance. Thus, in our MCS, we tested
whether the distribution of differences between high versus average Gf ROIs degree was
significantly different from zero. First, we computed the number of ROIs whose difference
degree was higher and lower than zero. Then we permuted the original data across
experimental groups and computed the difference between the median of ROIs degree for the
two permuted Gf groups and observed the distribution of the difference between the degrees
with respect to zeros. We re-iterated this operation for 10000 times, building a reference
distribution of the difference between the ROIs degree in the permuted scenarios. Finally, we
compared the origina distribution of differences between high versus average Gf ROIs
degree with the permuted distribution. Since we tested the original distribution considering
both tales of the permuted distribution (higher and lower than zero), the final MCS p-value
was obtained by dividing the MCS a level by two (.05/2 = .025). Similarly, for the degree of
functional connectivity, we performed 10 statistical tests: one for each of the two tales of the
reference distributions and for each of the five frequency bands considered in the study.
Thus, we corrected for multiple comparisons using the Bonferroni correction, by dividing the
MCSa level (.05) by 10 (MCS p-value = .05/10 = .005).

Modularity and optimal community structure

Modularity is a value describing the optimal segregation of a network into discrete, non-
overlapping clusters (modules) which optimize the network efficiency for specialized
processing. In other words, it quantifies the degree to which a network can be subdivided into
clearly defined, non-overlapping sub-networks. According to this definition, we computed
the optimal community structure by maximizing the intrasmodule connections within non-
overlapping sub-modules of the network and minimizing the inter-module connections. To
calculate this measure, we used the undirected measure of modularity developed by Newman
implemented in the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010), relying

on the eigenvector solution *

and returning a discrete value of modularity and the
corresponding optimal community structure, representing the division of the AAL ROIs into

distinct, non-overlapping sub-networks of the brain.
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We tested whether the modularity of the structural and functional brain data was significantly
different by an equivalent network with connections placed randomly. To do so, we
performed an MCS. First, we computed the modularity of the original data. Second, we
performed 1000 permutations and extracted the modularity for the permuted data. This
procedure yielded a reference distribution of permuted modularity values. Finaly, we
considered significant the original modularity value only if it was higher than the 99.9% of
the permuted modularity values. This procedure was computed independently for the
structural and functional data. A graphical depiction of the optimal community structure for
structural and functional brain networks is provided in Figure 5 and reported in detail in
Table ST2.

Participation coefficient

Based on the previously computed optimal community structure, we were interested to
observe whether the ROIs of high and average Gf participants differed in terms of
connectivity within and between the brain sub-networks. Specifically, we expected to find a
tendency of high versus average Gf individuals to have more pronounced connectivity
between brain sub-networks. Thus, we computed the participation coefficient, which
indicates whether an ROI is mainly connected to the other ROIs of the same sub-network or
is more connected to ROIs in other sub-networks. The coefficient is computed by dividing
the degree of the ROI a with regards to the ROIs of the same sub-network by the degree
computed for ROl a with regards to all other ROIs (so also the ones of other sub-networks of
the brain). Therefore, the coefficient values range between one and zero: the closer the
coefficient to zero, the more the ROI has connections outside the community, highlighting its
relevance as connector hub. Conversely, the closer the value to one, the greater the within-
community degree, indicating that the ROI is mainly central within its own sub-network.

To test the difference of the whole-brain distribution of the participation coefficient between
high versus average Gf individuals, we have performed an MCS anaogous to the one

described for the paragraph on the Degree of connectivity.

Characteristic path length

The Characteristic path length represents the average shortest path length between al pairs
of nodes composing the network (e.g. the minimum number of connections to connect two
nodes on average), providing a good estimate of how easily information flows through the

network (and therefore of the integration of the network).
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Global and Local efficiency
Local efficiency measures the average efficiency of integration within local clusters (e.g.
between the neighbours of a given node). Global efficiency is the inverse of the characteristic

path length and indicates how effectively the information flows across the network.

Density
Density represents the ratio between the number of actual edges of the network and the

number of all possible edges of the network.

Each one of the measures described above (characteristic path length, global and local
efficiency, and density) were statistically compared between high versus average Gf groups
by using two-sample t-tests. In this case, we corrected for multiple comparisons by using
Bonferroni correction (i.e. dividing the o level of .05 by the total number of 24 comparisons
(four measures x five frequency band of the functional networks plus one structural
connectivity network), resulting in .05/24 = .002).
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Data availability

The codes are available at the following link: https://github.com/leonardob92/L BPD-1.0.qit,
while the multimodal neuroimaging data from the experiment are available upon reasonable

request.
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Figure 1. Experimental design and analysis pipeline.

A — Participants were divided into two experimental groups, namely average Gf and high Gf, based on their
scoring to perceptual reasoning, working memory and speed processing indexed by WAISIV. B — For both
groups, diffusion-tensor imaging (DTI) data were collected and pre-processed. Then, differences in white
matter microstructure were assessed with tract-based spatial dtatistics and the white matter bundles were
modelled using probabilistic tractography. C — For both groups, magnetoencephalographic (MEG) data were
collected during a 10-minute session of regting state. The data were filtered to analyse five different frequency
bands. 0.1-2Hz (delta), 2-8Hz (theta), 8-12Hz (alpha), 12-32Hz (beta), 32-74Hz (gamma). Next, they were
source-reconstructed with the beamforming algorithm. D — Connectivity was computed for both DTl and MEG
data for each subject. The connectivity matrix for the DTI data was created by computing the probabilistic
tractography based on AAL parcellation. The connectivity matrix for MEG data was estimated by computing the
Pearson’s correlations between the envelope of each pair of brain areas. E —Graph measures were used to
investigate the structural and functional brain networks of each group. Degree, provincial and connector hubs
and modularity provided the most insightful results.
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Figure 2. Structural and functional whole-brain connectivity. A — Structural connectivity computed from DTI
data. The circular connectogram and the connectivity matrix represent the connections between the 90 AAL
nodes. The different connection strengths are represented by different colour shades. The whole-brain figures
depict the whole-brain connections, with stronger connections being thicker. Colourbars indicate the
normalized average number of streamlines connecting the brain areas. B — Similarly, functional connectivity
computed from MEG data, for each of the five frequency bands analysed. Colourbars indicate the Pearson’s
correlations, showing the functional connectivity between brain areas.
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Figure 3. Degree of connectivity. A — Degree coefficients of structural and functional connectivity in
participants with high Gf. B — Degree coefficients of structural and functional connectivity in participants with
average Gf. C — Contrasts of the degree coefficients between the two groups. To be noted, high Gf individuals

are represented in red, while average Gf ones in blue. In the contrast, the red colour indicates that high Gf
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individuals had a stronger degree distribution, while the blue showed a stronger distribution for average Gf

participants. D — Degree coefficient distribution of high, average and high versus average Gf. Here, each dot
shows the degree of each of the 90 ROIs, independently for high and average Gf participants. Dashed lines
indicate the standard deviation with reference to zero, helping to identify how the degree distribution varied for

high versus average Gf participants.
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Figure 4. Connector and provincial hubs. A — Participation coefficient distribution computed from structural
and functional connectivity in participants with high Gf. B — Participation coefficient distribution computed

from structural and functional connectivity in participants with average Gf. C — Contrasts related to the
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Participation coefficient between the two groups. Positive results of the contrast indicate the presence of more
intra- than inter-module in high versus average Gf participants. Conversely, the negative result of the contrast
indicates more inter- than intra-module connections in high versus average Gf. To be noted, high Gf
individuals are represented in red, while average Gf ones in blue. In the contrast, the red colour indicates that
high Gf individuals had a more negative participation coefficient distribution, meaning that they presented a
Participation coefficient more polarized toward the connector side. Conversely, the blue colour showed a
stronger distribution of such coefficient for average versus high Gf participants. d — Participation coefficient
distribution of high, average and high versus average Gf. Here, each dot shows the participation coefficient of
each of the 90 ROIs, independently for high and average Gf participants. Dashed lines indicate the standard
deviation with reference to zero, helping to identify how the participation coefficient distribution varied for high

versus average Gf participants.
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Figure 5. Inter and Intra-module connectivity in high versus average Gf. A — Whole-brain structural

and functional connectivity in all participants. B — Circular connectogram representing inter- (in gray) and
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intra-module (different colors) connections in high Gf participants. C — Brain modules and intra-module
connections overlaid on a standard brain template, in individuals with high Gf. Different modules are
represented with different colors. D — Inter-module connections in individuals with high Gf. Different modules
are represented by dots in different colors. E — Circular connectogram representing inter- (in gray) and intra-
module (different colors) connections in average Gf participants. F — Brain modules and intra-module
connections in individuals with average Gf. Different modules are represented with different colors. G — Inter-

module connections in individuals with average Gf. Different modules are represented by dots in different

colors.
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Supplementary Tables

The supplementary tables can be found at the following link:
https://drive.google.com/drive/folders/10SdaAbNoCO5zpQJrCY RKiHWoY gi EI882?usp=sh

aring

Table ST1. Degree distribution

Brain areas (ROIs) one standard deviation above (or below, as depicted by dash line in Figure 3) the mean
degree. These ROIs provided the strongest contribution to the degree distribution that we tested statistically.
The ROIs with the strongest values are the ones that had the highest difference in terms of degree when
comparing High versus Average Gf groups (i.e. highest values correspond to ROIs that had a stronger degree
for High versus Average Gfs). These areas are depicted in Figure 3 in the brain templates. Table ST1 reports
ROIs independently for DTI and the five frequency bands from MEG.

Table ST2. Community structure

Brain areas (ROIs) reported in the different communities (modules) outputted by the modularity algorithm that
we used in the study (Newman, 2006). The community structures are reported independently for DTI and the
five frequency bands from MEG. These community structures are depicted in brain templatesin Figure 5.

Table ST3. Participation coefficient distribution

Brain areas (ROIs) one standard deviation above (or below, as depicted by dash line in Figure 4) the mean
participation coefficient. These ROIs provided the strongest contribution to the participation coefficient
distribution that we tested statistically. In this case, the ROIs with the smallest values are the ones that had the
highest difference in terms of participation coefficient when comparing High versus Average Gf groups (i.e.
smallest values correspond to ROIs that had many more inter- than intra-community connections for High
versus Average Gfs). These areas are depicted in Figure 4 in the brain templates. Table ST3 reports ROIs
independently for DTI and the five frequency bands from MEG.

Table ST4. TBSS — High versus Average Gf groups

Sgnificant clusters of stronger FA voxels when contrasting High versus Average Gf groups. The table reports
Hemisphere, t-stat and MNI coordinates of each of the FA voxel forming the significant clusters.

Table ST5. TBSS — Average versus High Gf groups

Sgnificant clusters of stronger FA voxels when contrasting Average versus High Gf groups. The table reports
Hemisphere, t-stat and MNI coordinates of each of the FA voxel forming the significant clusters.
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