

1 Coral niche construction: coral recruitment
2 increases along a coral-built structural complexity
3 gradient

4 Viviana Brambilla^{*,1}, Andrew H. Baird², Miguel Barbosa^{1,3}, Inga Dehnert⁴, Joshua T.
5 Madin⁵, Clare Peddie⁶, Maria A. Dornelas^{1,7}

6

7 * corresponding author: vb42@st-andrews.ac.uk

8 ¹ Centre for Biological Diversity, University of St Andrews, St Andrews, Fife KY16
9 9TH, United Kingdom

10 ² ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville,
11 Queensland 4811, Australia

12 ³ CESAM, Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810
13 Aveiro, Portugal

14 ⁴ MaRHE Center (Marine Research and High Education Center), Magoodhoo Island,
15 Republic of Maldives

16 ⁵ Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe 96744,
17 Hawai'i

18 ⁶ School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United
19 Kingdom

20 ⁷ Scottish Ocean Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United
21 Kingdom

1 **Running page head**

2 Coral niche construction increases recruitment

3

4 **Abstract**

5 Niche construction is the process through which organisms modify environmental states in
6 ways favourable to their own fitness. Here, we test experimentally whether scleractinian corals
7 can be considered niche constructors. In particular, we demonstrate a positive feedback
8 involved in corals building structures which facilitate recruitment. Coral larval recruitment is
9 a key process for coral reef persistence. Larvae require low flow conditions to settle from the
10 plankton, and hence the presence of colony structures that can break the flow is expected to
11 facilitate coral recruitment. Here, we show an increase in settler presence on artificial tiles
12 deployed in the field along a gradient of coral-built structural complexity. Structural
13 complexity had a positive effect on settlement, with an increase of 15,71% of settler presence
14 probability along the range of structural complexity considered. This result provides evidence
15 that coral built structural complexity creates conditions that facilitate coral settlement, while
16 demonstrating that corals meet the criteria for ecological niche construction.

17

18 **Keywords**

19 coral reefs, niche construction, ecosystem engineers, reef recovery, settlement, surface
20 rugosity

21

22

1 1. INTRODUCTION

2 Niche construction is the process by which organisms modify their surrounding
3 environment in ways that may affect their evolution, and/or the evolution of other organisms
4 that experience the modified conditions (Matthews et al. 2014, Laland et al. 2016). Niche
5 constructor organisms must meet three nested criteria, the first two characterizing niche
6 construction, and the third determining whether niche construction generates an evolutionary
7 response (Matthews et al. 2014). First, the niche constructor must change its external
8 environment, through behavioural, physical/chemical or other metabolic processes (Donohue
9 2014, Laland et al. 2016). Second, these modifications must bias natural selection upon the
10 organism itself and/or other organisms, either positively or negatively (Zahavi 1974, Matthews
11 et al. 2014). Third, the modifications must leave a trace in the evolutionary history of the
12 organisms involved, in the form of an evolutionary response to the environmental modification.
13 (Matthews et al. 2014). While criteria 1 and 2 can be tested in an ecological framework,
14 criterion 3 applies to an evolutionary time scale. The first two criteria describe an ecological
15 feedback loop that can lead to diverse consequences, ranging from the local extinction of the
16 responding population, to triggering trait fixation (criterion 3).

17 Ecosystem engineering species are a class of putative niche constructors (Matthews et
18 al. 2014, Laland et al. 2016) since by producing long-term environmental changes they can
19 affect macroevolutionary patterns and biodiversity (Erwin 2008). Scleractinian corals, as
20 autogenic bioengineers (Jones et al. 1994), are a prime example of ecosystem engineering since
21 they physically create reefs that harbour some of the most biodiverse communities in the world
22 (Hughes et al. 2017). Yet, there are no explicit tests of their niche construction capability. Here,
23 we focus on the effects of skeletal three-dimensional structures on corals themselves,
24 examining whether this trait facilitates recruitment, thereby establishing a positive ecological

1 feedback. We aim to advance understanding of coral niche construction by testing whether
2 corals meet the second criterion of niche construction (Fig.1).

3 Scleractinian corals build complex and heterogeneous environments, which harbour
4 some of the most biodiverse and threatened communities in the world (Hughes et al. 2017).
5 Corals have a planktonic life stage and larval recruitment success is key to the persistence of
6 the reef ecosystem (Bellwood et al. 2004). At the end of the planktonic stage, coral larvae need
7 to settle on suitable substratum, metamorphose and start the benthic life. As with other benthic
8 marine organisms, corals undergo severe early-life stage bottlenecks, and recruitment success
9 depends on both abiotic and biotic factors (Ritson-Williams et al. 2009). For example, crustose
10 coralline algae (CCA) release chemical cues that induce the coral to settle and metamorphose
11 (Heyward & Negri 1999). In contrast, macroalgae can compete with coral for space occupancy
12 and negatively affect coral recruitment (Mumby et al. 2006). Once metamorphosized, post-
13 settlement processes transform a settled polyp into a coral colony, which through its hard
14 skeleton modifies the topography of the reef. Coral colonies modify the overall complexity of
15 reef habitats both when alive and after death, when they leave behind their hard skeleton
16 (Richardson et al. 2017) as ecological inheritance (Odling-Smeel et al. 2013). Reef structural
17 complexity is a measure of how corals engineer the environment, and is important for
18 ecosystem function and maintenance from an ecological perspective (Graham & Nash 2013,
19 Zawada et al. 2019b). For example, reef structural complexity provides microhabitats and
20 determines fish assemblage structure (Nash et al. 2014). Furthermore, heterogeneity in coral
21 colonies change the local environmental conditions, such as light (Brakel 1979) and water flow
22 (Hench & Rosman 2013) to create a range of microhabitats and niches. All this demonstrates
23 that corals meet the first niche construction criterion suggesting that coral niche construction
24 may might be one process influencing the evolution of this diverse and productive ecosystem
25 (Laland et al. 2015).

1 Moving to the second criterion, positive ecological feedbacks to niche-constructing
2 populations have been identified in other organisms (Matthews et al. 2014), but not in corals.
3 In the tundra, for example, plant species of all growth forms (i.e. forbs, grasses, sedges,
4 deciduous shrubs and evergreen shrubs) collectively modify niches independently of local
5 environmental conditions, increasing taxonomic diversity (Bråthen & Ravolainen 2015).
6 These environmental modifications bias natural selection upon the niche constructor and other
7 associated species with important evolutionary consequences (Laland et al. 2015). Another
8 example is the sediment bioturbation and thickness of shell beds in paleoecological records,
9 which increased over geological time as result of increased ability of the organisms to modify
10 ecosystems (Erwin 2008). This process resulted in greater evolutionary diversification of
11 benthic niche constructors and ecosystem engineers as well (Erwin 2008). In modern coral
12 reefs, we can focus on how corals increase their own fitness modifying the environment in
13 predictable and favourable ways. Identifying coral traits that capture these modifications and
14 feed back to coral fitness would allow us to show that the second criterion for coral niche
15 construction is met.

16 Settlement success plays a key role in coral fitness, because this is the life stage with
17 lowest success rate. There is evidence that millimetre-scale rugosity of the substratum enhances
18 settlement success (Birkeland & Randall 1981, Hata et al. 2017). However, the extent to which
19 coral settlement is affected by increased habitat complexity (at the centimetre to meter scale)
20 built by coral colonies remains unclear. Coral larvae are poor swimmers, and often rely on
21 eddies created by small structural obstacles, such as sea urchin burrows in the field (Birkeland
22 & Randall 1981) or 1-cm blocks in the lab (Hata et al. 2017), to be able to find suitable
23 substratum and attach. On coral reefs, these flow conditions can be built by adult coral colonies
24 with different structural complexity (Zawada et al. 2019a b). Areas of flow recirculation and
25 of reduced current created by the presence of structural 3D complex coral assemblages (Hench

1 & Rosman 2013, Zawada et al. 2019a) can play an important role in creating ideal
2 hydrodynamic conditions for settlement and attachment of the larvae. Thus, high structural
3 complexity built by corals is predicted to be favourable for coral settlement and recruitment.

4 Here, we show that assemblages of higher coral 3D complexity structures have higher
5 probability of settlement of coral larvae. Specifically, we measured settlement on tiles used to
6 hold either dead or alive corals during a reciprocal transplant experiment. We predicted that
7 tiles in more complex coral assemblages (coral-built structural environments) will have greater
8 probability of having coral settlers than tiles in less complex assemblages. Dead skeleton
9 persisting over generational time as ecological inheritance can affect the evolutionary
10 trajectories of the niche constructor as well. As such, we further investigate the effect of the
11 status of the coral on tile (alive or dead) on recruitment success.

12

13 2. MATERIALS & METHODS

14 A coral reciprocal transplant experiment was set up in the South-East lagoon of
15 Maghoodoo Island (3°04'N, 72°57'E, Republic of Maldives) in January 2017 (Fig.2). The
16 experiment used 370, ~10 cm long fragments of colonies belonging to four species of branching
17 corals commonly found in the lagoon (*Acropora divaricata*, *A. muricata*, *Porites rus*, *P.*
18 *cylindrica*). Each fragment was cemented with reef cement (NYOS © reef cement) to a
19 concrete disk tile (7x2,5cm) and then attached to one of 10 racks in either a shallow (5 racks,
20 5-6 m) or a deep (5 racks, 16-18m) site. At the start of the experiment, each rack had 37 concrete
21 tiles with same-size same-species living fragments attached (Fig.2). All the racks had similar
22 structural complexity in January 2017, but each one of them was left in different experimental
23 conditions (deep site = low light, shallow site = high light) for 15 months (Fig.2). As a result,
24 coral growth rate and mortality were different among racks, reflecting different environmental

1 conditions experienced by the coral fragments. By the end of the experiment (May 2018), each
2 rack had a different number of living fragments that grew into colonies (Fig.2), while the dead
3 ones had different sizes and shapes depending on the time of death. Thus, the complexity of
4 each rack increased during the experiment, but each rack displayed a different degree of
5 structural complexity at the end.

6 A significant coral spawning event was observed in the Maldives on April 1st 2017 (ID,
7 personal observation). The coral larvae pool was expected to be approximately the same for all
8 the racks, since they were in the same enclosed lagoon. Given the coral assemblage present on
9 the island (Montano et al. 2012), we predicted that more than just the species used in the
10 experiment were spawning simultaneously in the lagoon. All the racks were retrieved and
11 brought in the lab for tile analysis in the second week of May 2018 (6th and the 11th of May
12 2018). Settlers were found on the bottom and lateral surface of the concrete tiles used for the
13 transplant experiment (Fig.2). Crustose coralline algae (CCA), bryozoans, molluscs, and
14 sponges were also observed on the tiles, but cover was not quantified. The status (alive or dead)
15 of the fragment attached to every tile was recorded. 26 to 37 tiles per rack were analysed,
16 corresponding to a total of 214 tiles with a live coral attached, and 125 with a dead coral
17 attached. Tiles were bleached overnight in a 10% commercial bleach solution, rinsed and dried,
18 and then examined under microscope as per [15]. Bigger settlers (> 2 mm) were considered
19 juvenile corals that settled in 2017 and left out of the analysis (Babcock et al. 2003). Smaller
20 settlers (< 2mm, Fig.2) provided an estimate of settlers from the larval supply of 2018 (Babcock
21 et al. 2003) and were used as a measure of fitness (Hunt & Hodgson 2010).

22 Given the slow growth rate of corals it is plausible to assume that the rugosity of the
23 racks did not change significantly in the last month of underwater permanence. We used surface
24 rugosity (SR) of the rack at the end of the experiment as a measure of local structural
25 complexity at time of settlement, which occurred less a month before we retrieved the racks.

1 SR was estimated as the ratio between the 3D surface area and its planar orthogonal projection
2 of the surface on the horizontal plane (Friedman et al. 2012), with values that range from 1
3 (perfectly flat surface) to infinity. 3D digital models of each rack surface (Fig 2) were obtained
4 through structure-from-motion photogrammetric techniques (Westoby et al. 2012). A total of
5 160 to 190 pictures were taken of each rack from different angles underwater (House et al.
6 2018) with a Powershoot camera (Canon 5X). Pictures were then analysed in Agisoft
7 Photoscan Professional (Agisoft LLC 2018). The surface area of each rack was computed with
8 the built-in function and used to calculate SR. The values of SR were mean standardized for
9 analysis.

10 We fitted binomial Bayesian generalized linear mixed models to examine the effect of
11 SR on explaining the presence of settlers. To control for the effect of the status of the fragment
12 attached to the tile (i.e. alive or dead) and the depth of the rack (i.e. shallow or deep), we fitted
13 a total of 7 models: a model including SR, depth and the status of the fragment; 3 models with
14 any combination of 2 of the variables, and 3 models including the effects of one variable at the
15 time. Rack ID was included in all models as random effect to account for unexplained
16 environmental differences between experimental racks. All the priors were left as default
17 values, and for each model four chains for 20000 iterations were run, with a warm-up period
18 of 1000 iterations and a thinning rate of 10 iterations. We ensured that R^{\wedge} values were almost
19 1 and goodness of fit was assessed by visual inspection of the chains. We used the Widely
20 Applicable Information Criterion (WAIC) to evaluate the relative goodness of the fit (Vehtari
21 et al. 2017), and check consistency of best fit with the leave-one-out cross-validation (LOOic)
22 (Vehtari, A., Gelman, A., and Gabry 2016). All analyses were performed in R (version 3.3.2,
23 (R Core Team 2018)). Models were fitted with the probabilistic language RStan using the
24 ‘brms’ (Bürkner 2017) and ‘loo’ (Vehtari, A., Gelman, A., and Gabry 2016) packages.

25

1 3. RESULTS & DISCUSSION

2 Racks surface rugosity (SR) ranged from 1,85 to 3,66. Some corals died before the
3 end of the experiment, and some of these had begun to erode. Therefore, as expected, lower
4 levels of coral fragment mortality led to more structurally complex racks. Values of SR were
5 well distributed along the range, which is representative of a healthy Indo-Pacific reef.

6 Similar SR values were found on Australian reefs (Bryson et al. 2017) and the presence of
7 grown branching corals with convoluted shapes led to higher SR values on the most complex
8 racks (Figueira et al. 2015).

9 Settlers were found on 50 out of 339 tiles. We consistently detect an effect of SR,

10 regardless depth or presence of live coral on the same tile (Table 1). Models that included rack
11 SR had lower WAIC and LOOic (Table 1). Moreover, the model with SR as the only predictor
12 variable (Fig.4 a-b) had the best goodness of fit according to both criteria (Table 1). In this
13 model, the estimated effect size of SR on settlement probability was 0,38, with credible
14 intervals not overlapping zero (Fig.4 b). This corresponds to an increase of 15,71 % of settler
15 presence probability along the range of complexity considered. Together our results show that
16 the probability of settlement increased with local structural complexity and highlight the
17 importance of coral-generated structures for the beginning of benthic life stage of these
18 organisms. Greater micro-scale complexity of the substratum enhances coral larval settlement
19 (Hata et al. 2017), our study provides evidence that larger scale coral-built habitat complexity
20 has a positive effect on coral settlement as well, enhancing coral fitness.

21 We failed to detect and effect of status of the coral attached to the tile on settling

22 probability (Table 1, Fig.4 c). This suggests that there was probably no biotic interaction
23 between adults and settlers on sides and bottom surfaces of the tiles. As predicted, the presence
24 of corals itself did not have an effect, but more importantly the complexity of their forms
25 determined the positive ecological feedback that we found. Higher complexity has higher

1 chances of diminishing water flow and creating eddies that lead the larvae towards the bottom
2 (Zawada et al. 2019b). Skeleton structures from previous generations of corals can be
3 considered as ‘ecological inheritance’ (Odling-Smee et al. 2003) regardless of colony survival.
4 An ecosystem engineer leaves ecological inheritance when the modification of the environment
5 persists longer than the life-time of the ecosystem engineer (Odling-Smee et al. 2003). Here,
6 this modification (i.e. structural complexity of the skeleton) potentiates coral fitness
7 intergenerationally, and ecological inheritance contributes to the niche construction process.

8 Although light is a major factor affecting coral growth (Buddemeier & Kinzie 1976,
9 Hoogenboom & Connolly 2009) and zonation (Wellington 1982), we failed to detect an
10 effect of light on settlement. Effects of light would likely have been more detectable when
11 considering recruitment on tile topsides (Vermeij 2006), which did not occur during our
12 experiment. Furthermore, coral structures can also shadow the benthos, modulating the effect
13 of light on the bottom surface (Brakel 1979). Here, we measured fitness as settlement success
14 (Hunt & Hodgson 2010). Light may play a more important role in later coral ontogeny and
15 certainly the effect of structural complexity on settler survivorship needs further
16 investigation. Further experiments including non-coral-built structures and zero-complexity
17 structures as controls could elucidate about the role of coral-built structures in enhancing
18 coral fitness when compared to natural conditions. Nonetheless, our findings provide strong
19 evidence that along a gradient of increasing structural complexity, settler presence increases
20 as well.

21 As a metaphor, environmental filtering has been used to describe specific values of
22 abiotic environmental variables that “filter out” certain species or traits, not allowing them to
23 persist in specific areas (Keddy 1992, Kraft et al. 2015). In coral reefs, the environmental
24 filtering concept can explain some aspects of reef zonation. For example flow conditions can
25 filter out morphs not suited to face specific hydrodynamic forces and leave structurally

1 clustered species coexisting under similar flow regimes (Madin & Connolly 2006). The concept
2 of environmental filtering (Keddy 1992) has recently been criticized for being used incorrectly
3 (Kraft et al. 2015, Cadotte & Tucker 2017, Thakur & Wright 2017), especially when
4 considering ecosystem engineers (Thakur & Wright 2017). Problems arise when inferring the
5 environmental filter from species or trait observational data, since environmental gradients can
6 simultaneously affect other coexistence mechanisms, like competition for resources, or
7 bioengineer activity (Kraft et al. 2015, Cadotte & Tucker 2017). Niche construction can sustain
8 micro-modifications of the local environment at a small (individual) scale, affecting the local
9 community interactively with the macro-environment (Cadotte & Tucker 2017, Thakur &
10 Wright 2017). The latter seems to be the case for corals, since the differences in growth rates
11 and forms of corals caused by environmental conditions promote heterogeneity in ecosystem
12 functions (Zawada et al. 2019b). This results in an increase in the heterogeneity of community
13 assemblages that in turn shape the overall environment in multitude ways. The environment
14 cannot be considered independently, since reef habitats are literally built by their foundational
15 organisms. The findings of our experiment imply that different recruitment rates resulted from
16 the dynamic construction of different microenvironments (as a consequence of the presence of
17 different coral colonies) within the same macro-environment (two sites in the same lagoon).
18 Since dependent on engineering activity, recruitment and new coral occurrence cannot be
19 explained by biotic, abiotic or dispersal local conditions separately, but rather by a positive
20 feedback interaction of all of the above. Focusing on environmental filtering overlooks this
21 intricate network of reciprocal causation between corals and the environment.

22 Coral facilitation of settlement has also implications for recovery from disturbances.
23 Human induced disturbances to coral reefs, such as temperature and acidification, are predicted
24 to increase (Hughes et al. 2017), together with the scale of the impacts on the reefs (Hughes et
25 al. 2003). Nonetheless, reef recovery from mass mortality is possible and coral larvae

1 settlement is a necessary process for this recovery. Our findings offer a mechanistic explanation
2 for increased rates of recovery at sites with higher levels of structural complexity due to coral
3 presence (Graham & Nash 2013). Nevertheless, rigorous experimental tests and a better
4 understanding of the mechanisms underlying coral niche construction is urgent and timely in
5 order to promote ecosystem post-disturbance recovery. Indeed, by regulating habitats at a local
6 scale, ecosystem engineering and niche construction can establish population and ecosystem
7 feedbacks and maintain ecosystem health and resilience (Boogert et al. 2006). The
8 experimental system developed here, which can flexibly manipulate the composition, structure
9 and species identity of coral pieces on racks, offers considerable potential to explore these
10 issues further.

11 The ecological and evolutionary implications of our findings deserve attention. In
12 forest ecology, wildfires, which were considered a purely extrinsic factor, have been shown
13 to be dependent on a set of niche-constructing flammability traits (e.g. branch-morphologies,
14 self-pruning ability, leaf-size, oil content) (Schwilke 2003, Schwilk & Caprio 2011). This
15 demonstrates how organism features can influence external environment in ways that modify
16 selective feedback and eventually their evolution (Schwilke 2003, Post & Palkovacs 2009,
17 Schwilk & Caprio 2011). Coral shapes have an important role in shaping the evolutionary
18 history of other taxa. For example, the emergence of coral branching morphologies are key
19 for the diversification of small-size fish (Bellwood et al. 2017). Yet, whether morphological
20 coral traits affect the evolutionary history of coral groups remained undetermined. Given the
21 three criteria for niche construction (Matthews et al. 2014), we now show that corals meet
22 criterion 2: they modify selection pressure upon themselves through modification of the
23 environment. Defining traits that enhance population fitness enables to look at the
24 evolutionary history of such traits, creating the ground for the test of criterion 3, i.e. studying
25 the evolutionary history and phylogeny of such traits. Models that can predict a range of coral

1 complexity traits from size and species are becoming available in the literature (House et al.
2 2018, Zawada et al. 2019b a). This allows the use of geological datasets to investigate the
3 evolution and prevalence of 3D traits of interest and the role of niche construction in coral
4 evolution. Here, we make the first step forward in defining coral niche construction,
5 presenting structural complexity as a niche-constructing trait in coral reef ecosystems.

6

7

1 **Acknowledgements**

2 This work was funded by the School of Biology of the University of St Andrews and the
3 Templeton Foundation (grant #60501, 'Putting the Extended Evolutionary Synthesis to the
4 Test'). MB was supported by a postdoctoral fellowship from Fundação para a Ciência e a
5 Tecnologia (SFRH/BPD/82259/2011). The funders had no role in study design, data
6 collection and analysis, decision to publish, or preparation of the manuscript. The research
7 approved by the Ministry of Fisheries and Agriculture of Maldives (protocol numbers:
8 (OTHR)30-D/INDIV/2016/537 and (OTHR)30-D/INDIV /2078/739).

9 We thank Kevin Laland for comments and feedback on the niche construction angle, and
10 Fabio Guzzo for help in producing conceptual figures. We thank MaRHE center for support
11 in the field and the Behaviour and Biodiversity group at University of St Andrews, especially
12 Laura Antão for feedback and suggestions during the data analysis.

13

14

15

16 **LITERATURE CITED**

17 Agisoft LLC (2018) Agisoft PhotoScan User Manual. Prof Ed Version 14.

18 Babcock RC, Baird AH, Piromvaragorn S, Thomson DP, Willis BL (2003) Identification of
19 scleractinian coral recruits from Indo-Pacific reefs. *Zool Stud* 42:211–226.

20 Bellwood DR, Goatley CHR, Bellwood O (2017) The evolution of fishes and corals on reefs:
21 Form, function and interdependence. *Biol Rev* 92:878–901.

22 Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis.
23 *Nature* 429:827–833.

24 Birkeland C, Randall RH (1981) Facilitation of coral recruitment by echinoid excavations. In:
25 *Proceedings of the 4th International Coral Reef Symposium*. p 1:695-698

1 Boogert NJ, Paterson DM, Laland KN (2006) The Implications of Niche Construction and
2 Ecosystem Engineering for Conservation Biology. *Bioscience* 56:570.

3 Brakel WH (1979) Small-scale spatial variation in light available to coral reef benthos:
4 Quantum irradiance measurements from a Jamaican reef. *Bull Mar Sci* 29:406–413.

5 Bråthen KA, Ravolainen VT (2015) Niche construction by growth forms is as strong a
6 predictor of species diversity as environmental gradients. *J Ecol* 103:701–713.

7 Bryson M, Ferrari R, Figueira W, Pizarro O, Madin J, Williams S, Byrne M (2017)
8 Characterization of measurement errors using structure-from-motion and
9 photogrammetry to measure marine habitat structural complexity. *Ecol Evol*:5669–5681.

10 Buddemeier RW, Kinzie RA (1976) Coral growth. *Ocean Mar Biol Ann Rev* 14:183–225.

11 Bürkner P-C (2017) **Brms** : An *R* Package for Bayesian Multilevel Models Using *Stan*. *J Stat*
12 Softw

13 Cadotte MW, Tucker CM (2017) Should Environmental Filtering be Abandoned? *Trends*
14 *Ecol Evol* 32:429–437.

15 Donohue K (2014) Why ontogeny matters during adaptation: Developmental niche
16 construction and pleiotropy across the life cycle in *arabidopsis thaliana*. *Evolution (N Y)*
17 68:32–47.

18 Erwin DH (2008) Macroevolution of ecosystem engineering, niche construction and
19 diversity. *Trends Ecol Evol* 23:304–310.

20 Figueira W, Ferrari R, Weatherby E, Porter A, Hawes S, Byrne M (2015) Accuracy and
21 Precision of Habitat Structural Complexity Metrics Derived from Underwater
22 Photogrammetry. *Remote Sens* 7:16883–16900.

23 Friedman A, Pizarro O, Williams SB, Johnson-Roberson M (2012) Multi-Scale Measures of
24 Rugosity, Slope and Aspect from Benthic Stereo Image Reconstructions. *PLoS One* 7.

25 Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef

1 ecosystems. *Coral Reefs* 32:315–326.

2 Hata T, Madin JS, Cumbo VR, Denny M, Figueiredo J, Harii S, Thomas CJ, Baird AH

3 (2017) Coral larvae are poor swimmers and require fine-scale reef structure to settle. *Sci*

4 *Rep* 7:2249.

5 Hench JL, Rosman JH (2013) Observations of spatial flow patterns at the coral colony scale

6 on a shallow reef flat. *J Geophys Res Ocean* 118:1142–1156.

7 Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. *Coral*

8 *Reefs*:273–279.

9 Hoogenboom MO, Connolly SR (2009) Defining fundamental niche dimensions of corals :

10 synergistic effects of colony size , light , and flow. *Ecology* 90:767–780.

11 House JE, Brambilla V, Bidaut LM, Christie AP, Pizarro O, Madin JS, Dornelas M (2018)

12 Moving to 3D: relationships between coral planar area, surface area and volume. *PeerJ*

13 6:e4280.

14 Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-

15 Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR,

16 Pandolfi JM, Rosen B, Roughgarden J (2003) Climate Change, Human Impacts, and the

17 Resilience of Coral Reefs. *Science* (80-) 301:929–933.

18 Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J,

19 Leemput IA van de, Lough JM, Morrison TH, Palumbi SR, Nes EH Van, Scheffer M

20 (2017) Coral reefs in the Anthropocene. *Nature* 546:82–90.

21 Hunt J, Hodgson D (2010) What is fitness, and how do we measure it? In: *Evolutionary*

22 *Behavioral Ecology*. p 46–70

23 Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem Organisms engineers.

24 *Oikos* 69:373–386.

25 Keddy PA (1992) Assembly and response rules : two goals for predictive community

1 ecology. *J Veg Sci* 3:157–164.

2 Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community

3 assembly, coexistence and the environmental filtering metaphor. *Funct Ecol* 29:592–

4 599.

5 Laland K, Matthews B, Feldman MW (2016) An introduction to niche construction theory.

6 *Evol Ecol* 30:191–202.

7 Laland KN, Uller T, Feldman MW, Sterelny K, Muller GB, Moczek A, Jablonka E, Odling-

8 Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and

9 predictions. *Proc Biol Sci* 282:20151019.

10 Madin JJS, Connolly SRS (2006) Ecological consequences of major hydrodynamic

11 disturbances on coral reefs. *Nature* 444:477–480.

12 Matthews B, De Meester L, Clive GJ, Ibelings BW, Bouma TJ, Nuutnen V, van del Koppel J,

13 Odling-Smee J (2014) Under niche construction: an operational bridge between ecology,

14 evolution, and ecosystem science. *Ecol Monogr* 84:245–263.

15 Montano S, Strona G, Seveso D, Galli P (2012) First report of coral diseases in the Republic

16 of Maldives. *Dis Aquat Organ* 101:159–165.

17 Mumby PJ, Dahlgren CP, Harborne AR, Kappel C V., Micheli F, Brumbaugh DR, Holmes

18 KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006)

19 Fishing, Trophic Cascades, and the Process of Grazing on Coral Reefs. *Science* (80-)

20 311:98–101.

21 Nash KL, Allen CR, Angeler DG, Barichievy C, Garmestani AS, Graham NAJ, Granholm D,

22 Knutson M, Nelson RJ, Nyström M, Stow CA, Sundstrom SM, Nash KL, Allen CR,

23 Angeler DG, Barichievy C, Eason T, Garmestani AS, Graham NAJ, Granholm D,

24 Knutson M, Nelson RJ, Nyström M, Stow CA, Sundstrom SM (2014) Discontinuities ,

25 cross-scale patterns , and the organization of ecosystems. *Ecology* 95:654–667.

1 Odling-Smee F, Laland K, Feldman M (2003) Niche construction. The neglected process in
2 evolution. Princeton University Press.

3 Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN (2013) Niche
4 Construction Theory: A Practical Guide for Ecologists. *Q Rev Biol* 88:3–28.

5 Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem
6 ecology : interactions between the ecological theatre and the evolutionary play. 1629–
7 1640.

8 R Core Team (2018) R: A language and environment for statistical computing.

9 Richardson LE, Graham NAJ, Hoey AS (2017) Cross-scale habitat structure driven by coral
10 species composition on tropical reefs. *Sci Rep* 7:7557.

11 Ritson-Williams R, Arnold S, Fogarty N, Steneck RS, Vermeij M, Paul VJ (2009) New
12 perspectives on ecological mechanisms affecting coral recruitment on reefs. *Smithson
13 Contrib Mar Sci*:437–457.

14 Schwilk DW (2003) Flammability Is a Niche Construction Trait: Canopy Architecture
15 Affects Fire Intensity. *Am Nat* 162:725–733.

16 Schwilk DW, Caprio AC (2011) Scaling from leaf traits to fire behaviour: Community
17 composition predicts fire severity in a temperate forest. *J Ecol* 99:970–980.

18 Thakur MP, Wright AJ (2017) Environmental Filtering, Niche Construction, and Trait
19 Variability: The Missing Discussion. *Trends Ecol Evol* 32:884–886.

20 Vehtari, A., Gelman, A., and Gabry J (2016) Loo: Efficient leave-one-out cross-validation
21 and WAIC for Bayesian models.

22 Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation using leave-one-
23 out cross-validation and WAIC. *Stat Comput* 27:1413–1432.

24 Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial
25 substratum : the importance of competition , growth and variation in life-history

1 strategy. *Coral Reefs* 25:59–71.

2 Wellington GM (1982) An Experimental Analysis of the Effects of Light and Zooplankton on

3 Coral Zonation. *Oecologia* 52:311–320.

4 Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-

5 Motion’ photogrammetry: A low-cost, effective tool for geoscience applications.

6 *Geomorphology* 179:300–314.

7 Zahavi A (1974) Mate Selection-A Selection for a Handicap Mate Selection-A Selection for a

8 Handicap. *J Theor Biol*:205–214.

9 Zawada KJA, Dornelas M, Madin JS (2019a) Quantifying coral morphology. *Coral Reefs*.

10 Zawada KJA, Madin JS, Baird AH, Bridge TCL, Dornelas M (2019b) Morphological traits

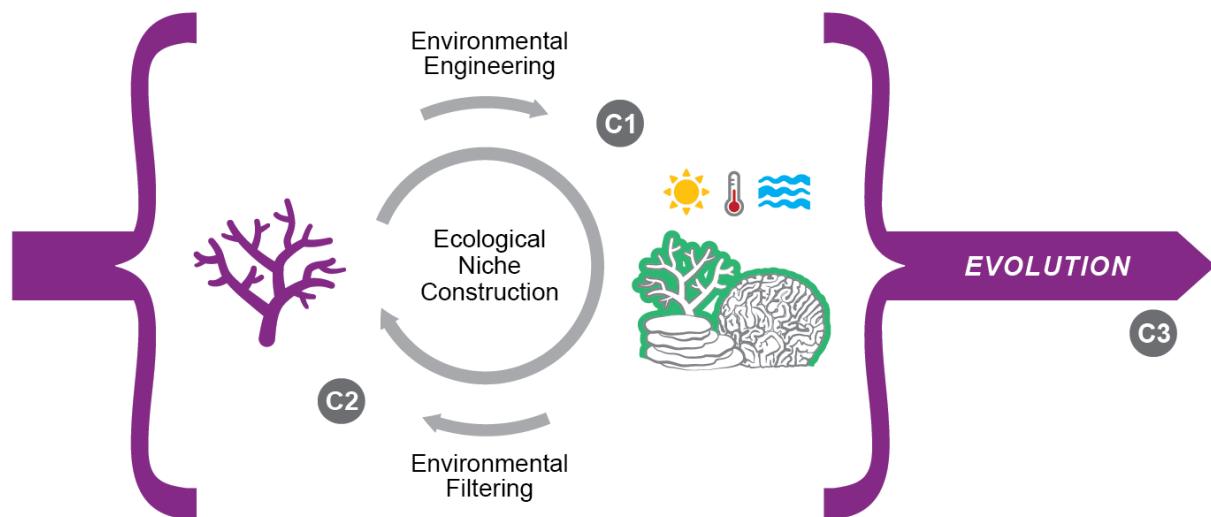
11 can track coral reef responses to the Anthropocene. *Funct Ecol*:962–975.

12

1 Tables

2 **Table 1.** Models results. Effect sizes of the variables, Widely Applicable Information Criterion
 3 (WAIC) and leave-one-out cross validation information criteria (LOOic) for all the models. In grey,
 4 variables whose 95% Credible Interval (CrI) do not overlap with 0. Models are arranged by increasing
 5 WAIC and LOOic. All the models included rack ID as random factor.

6

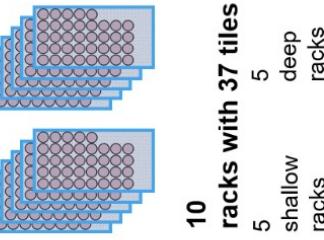
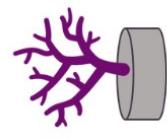

Model	Variable	Estimate	lower 95% CrI	upper 95% CrI	WAIC (se)	LOOic (se)
presence ~ SR	intercept	-1,84	-2,26	-1,47	283,38 (23,41)	283,54 (23,50)
	SR	0,38	0,02	0,78		
presence ~ SR + site	intercept	-2,13	-2,94	-1,43	284,47 (23,70)	284,58 (23,72)
	SR	0,57	0,02	1,19		
	site: shallow	0,54	-0,68	1,76		
presence ~ SR + status	intercept	-1,82	-2,31	-1,39	285,45 (23,72)	285,43 (23,72)
	SR	0,37	0,01	0,77		
	status: dead	-0,09	-0,78	0,59		
presence ~ status + SR + site	intercept	-2,11	-2,92	-1,39	286,53 (23,98)	286,55 (23,99)
	status: dead	-0,13	-0,83	0,54		
	SR	0,57	0,03	1,17		
presence ~ site	site: shallow	0,57	-0,63	1,85	287,24 (23,56)	287,46 (23,58)
	intercept	-1,68	-2,38	-1,07		
	site: shallow	-0,34	-1,31	0,58		
presence ~ status	intercept	-1,76	-2,31	-1,29	288,06 (23,63)	288,15 (23,64)
	status: dead	-0,21	-0,90	0,46		
presence ~ status + site +	intercept	-1,65	-2,30	-1,05	289,30 (23,82)	289,51 (23,90)
	status: dead	-0,13	-0,85	0,56		
	site: shallow	-0,31	-1,27	0,61		

7

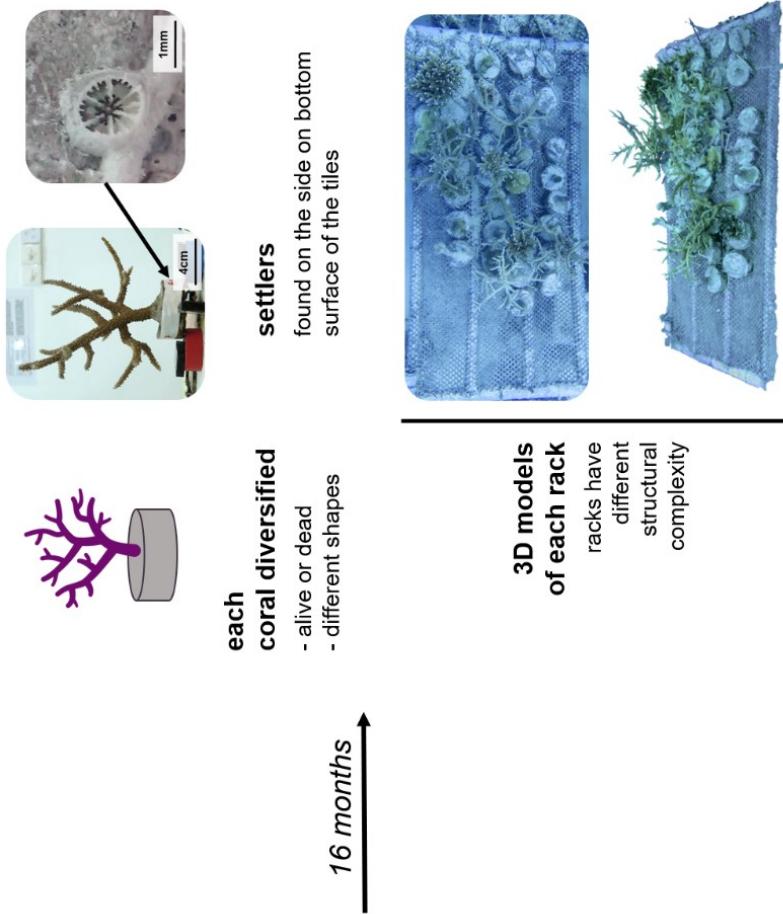
8

9

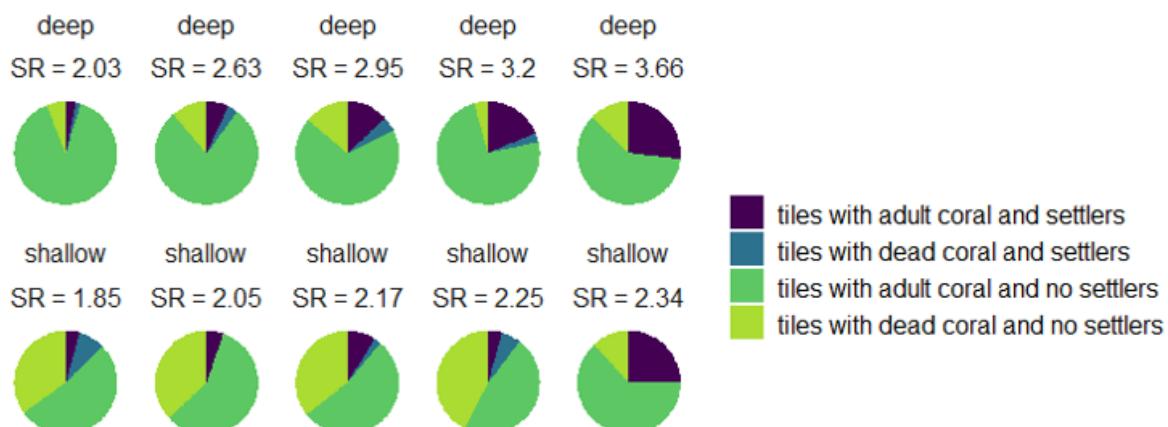
1 Figures



2 **Figure 1 – Evolution of coral through niche construction.** Ecological processes such as
3 ecosystem engineering and environmental filtering, both detectable at ecological time scales,
4 plausibly play an important role in coral evolution. Corals are obligate physical ecosystem
5 engineers, since they create and modify the habitat around themselves. Their physical
6 structures inherently modify the environmental conditions that the colonies themselves will
7 experience. Transforming the 3D structure of the reef is likely to bring changes in
8 environmental patterns (flow, light and temperature), as well as creating habitat and resources
9 that other marine species exploit and thereby impact community composition, which in turn
10 plausibly changes the selective pressures on the coral. Over time, these ecological processes
11 are likely to shape coral evolution. In the grey circles, the three criteria for niche constructions
12 outlined in the introduction are paired to the presented processes. C1 = criterion 1, C2 =
13 criterion 2, C3 = criterion 3.

14


1
2
3

January 2017


37 source colonies
10 nubbins per colony
10 tiles per colony
each tile on a different rack

Colony species	n
<i>Acropora divaricata</i>	9
<i>Acropora muricata</i>	10
<i>Porites cylindrica</i>	9
<i>Porites rus</i>	9
tot	37

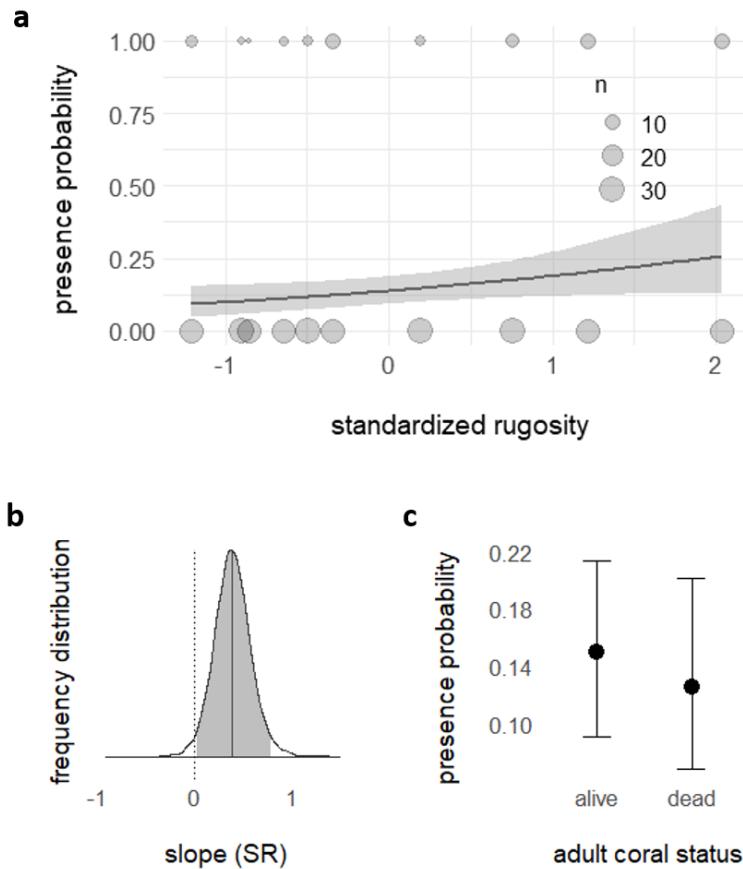


Figure 2 – Timeline of experimental setup, from January 2017 to May 2018.

1

2 **Figure 3 – Tile proportion in each rack.** Proportion of tiles with live corals and settlers
3 (dark blue), tiles live corals but without settlers (light green), tiles with dead coral and settlers (ocean
4 blue) and tiles with dead corals and no settlers (lettuce green) Racks are arranged by increasing SR at
5 each depth.

1
2 **Figure 4 – Relevant models results.** a) Marginal effect plot for the best fit model, which included
3 only surface rugosity (SR) as fixed effect. Dots represent the number of tiles where settlers and
4 juveniles were found or not. b) Posterior distribution of the slope of the best fit model with 95%
5 credible intervals. c) marginal effect plot for the model which included the status of the adult coral
6 attached to the tile as only explanatory variables, of which we did not detect an effect.

7