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The brain’s structural connectivity supports the propagation of electrical impulses, manifesting as pat-
terns of co-activation, termed functional connectivity. Functional connectivity emerges from the un-
derlying sparse structural connections, particularly through poly-synaptic communication. As a result,
functional connections between brain regions without direct structural links are numerous, but their
organization is not completely understood. Here we investigate the organization of functional connec-
tions without direct structural links. We develop a simple, data-driven method to benchmark functional
connections with respect to their underlying structural and geometric embedding. We then use this
method to re-weigh and re-express functional connectivity. We find evidence of unexpectedly strong
functional connectivity within the canonical intrinsic networks of the brain. We also find unexpectedly
strong functional connectivity at the apex of the unimodal-transmodal hierarchy. Our results suggest
that both phenomena – functional modules and functional hierarchies – emerge from functional inter-
actions that transcend the underlying structure and geometry. These findings also potentially explain
recent reports that structural and functional connectivity gradually diverge in transmodal cortex. Col-
lectively, we show how structural connectivity and geometry can be used as a natural frame of reference
with which to study functional connectivity patterns in the brain.

INTRODUCTION

Axonal wiring among neurons and neuronal populations
promotes signal exchange and information integration.
At the mesoscale, signaling via the complex network of
anatomical projections manifests as patterns of temporal
correlations, termed functional connectivity (FC). Func-
tional connectivity is highly organized [5, 13, 47], repro-
ducible [18, 33] and related to individual differences in
behaviour [31, 42].

Most pairwise functional connections are not sup-
ported by a direct structural connection. By definition,
functional networks are fully connected, while structural
networks are sparse (Fig. 1). Across species, reconstruc-
tion techniques and spatial scales, structural connection
density is typically reported to be between 2% and 40%
[48] (but see also [26]), meaning that the majority of
functional connections between two regions are not ac-
companied by a corresponding direct structural connec-
tion. These “indirect” functional connections are thought
to emerge from polysynaptic communication in the struc-
tural network [4, 45].

Importantly, structural and functional connectivity are
fundamentally constrained by the spatial embedding of
brain regions [44]. Structural connection probability is
inversely correlated with spatial separation, such that
proxmimal neural elements are more likely to be struc-
turally connected, while distant neural elements are less
likely to be connected [21, 26, 37]. A similar distance
dependence is also observed for functional connectivity
[24, 30, 39, 41]. The over-representation of low-cost,
short-range connections is thought to reflect finite ma-
terial and metabolic resources (Fig. 1) [8]. Altogether,
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structural connectivity and spatial proximity constitute a
natural frame of reference for understanding and inter-
preting functional connectivity.

Here we investigate the organization of functional con-
nections without direct structural links (Fig. 1). We de-
velop a simple method that uses robust relationships be-
tween geometry, structure and function as the baseline
to re-weigh and re-express functional connectivity. We
use the method to identify functional connections that
are greater than expected given their structural and geo-
metric embedding. We then show that the arrangement
of these connections systematically follows the func-
tional modules (intrinsic networks) [47] and the puta-
tive unimodal-transmodal hierarchy of the brain [24].

RESULTS

The results are organized as follows. We first establish
a method to quantify how unexpectedly strong a func-
tional connection is given the physical Euclidean distance
between its connected areas. We then describe the or-
ganizational principles of these structurally-unconnected
functional connections by characterizing their (1) statis-
tical properties, (2) correspondence with intrinsic net-
works, and (3) correspondence with cortical hierarchies.
Data sources include (see Materials and Methods for de-
tailed procedures):

• Structural connectivity. Structural and functional
connectivity were derived from N = 66 healthy
control participants (source: Lausanne Univer-
sity Hospital; https://doi.org/10.5281/zenodo.
2872624) using the 1000-node Lausanne parcel-
lation [10]. Participants were randomly divided
into a Discovery and Validation cohort (N = 33
each). Structural connectivity was reconstructed
using diffusion spectrum imaging and determin-
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Figure 1 | Functional connections with and without direct structural links. Left: structural connectivity (SC) and functional
connectivity (FC) matrices in the 1000-node Lausanne parcellation [10]. Middle: Functional connections with and without under-
lying structural connections. Right: The weight and anatomical (Euclidean) distance distribution of the two types of functional
connections.

istic streamline tractography. A consistency- and
length-based procedure was then used to assemble
a group-representative structural connectivity ma-
trix [7, 28, 29].

• Functional connectivity. Functional connectiv-
ity was estimated in the same individuals using
resting-state functional MRI (rs-fMRI). A functional
connectivity matrix was constructed using pair-
wise Pearson correlations among regional time
courses. A group-average functional connectivity
matrix was then estimated as the mean connectiv-
ity of pair-wise connections across individuals.

Long-range functional connections are unexpectedly
strong

To quantify how unexpectedly strong a functional con-
nection is, we first seek to establish a baseline. Fig. 2a
shows the relationship between the spatial separation
of two nodes (abscissa) and the functional connectivity
between them (ordinate). Functional connections that
are supported by an underlying structural connection
are shown in red, and all other functional connections,
which we refer to as indirect or structurally-unconnected
FCs, are shown in grey. We note the classical exponen-
tial decrease in magnitude with increasing spatial sepa-
ration [38, 44]. We also note that connected (monosy-
naptic) and unconnected (polysynaptic) FCs have simi-

lar distributions at short distances, but that they diverge
considerably at long distances. Namely, when the spatial
separation between two regions is greater than approx-
imately 125 mm, there is greater variability among un-
connected FCs, with many unconnected FCs marked by
greater magnitude than connected FCs spanning compa-
rable distances.

We therefore set the magnitude of connected FCs at
a given distance as the baseline for unconnected FCs at
a comparable distance. The goal is to identify uncon-
nected FC that are unexpectedly large relative to con-
nected FCs. To operationalize this intuition, we first bin
FCs according to their spatial proximity (Fig. 2b). Within
each bin, we record the distribution of connected FCs, in-
cluding their mean and standard deviation. Finally, we
express each unconnected FC as a z-score relative to the
distribution of connected FCs in the same distance bin
(Fig. 2c). This measure reflects how unexpectedly strong
a functional connection is, given its length. Importantly,
z-scores for unconnected FCs are estimated based on mo-
ments of a distribution estimated for connected FCs. For
simplicity, we term the re-expressed unconnected FCs as
structure- and geometry-informed FC (sgFC).

Fig. 2d shows the re-weighing of unconnected FCs.
Across the entire range of distances, there exist many un-
connected FCs that are disproportionately strong relative
to their length. A population of unconnected positive FCs
spanning distances greater than 125 mm are particularly
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Figure 2 | Benchmarking FC by structure and geometry. (a) FC connection weight-to-distance relationship shown for FC with
(red) and without (gray) direct SC connections, respectively. (b) FCs grouped into distances bins (blue lines), and the mean value
within each bin of those with direct SCs (dotted red line). (c) Within a sample bin, unconnected (polysynaptic) FCs are expressed
as a z-score relative to connected (monosynaptic) FCs. We refer to this z-score as structure- and geometry-informed FC (sgFC).
(d) sgFCs shown as a smoothly-transitioning spectrum after the procedure is applied for each distance bin. See Methods for more
technical details and Fig. S1 for details about smoothing and bin size selection.

prominent, suggesting the existence of multiple strong
functional interactions above and beyond what would be
expected on the basis of their length. In the following
sections we explore the organization of these connec-
tions in greater detail. For sensitivity analyses regarding
bin sizes, preprocessing choices and validation, please
see Control analyses and Figs. S1,S2. For replication in
individual participants, please see Fig. S3

Contribution to intrinsic network architecture

We first ask how conventional FC and sgFC are re-
lated to each other, and how they are distributed within
and between intrinsic functional networks [47]. Fig. 3a
shows the correlation between FC and sgFC connection
weights. As expected, the re-weighing of FCs accentuates
some connections and attenuates others.

To investigate whether the re-weighing of FCs re-
flects any organizational features of the brain, we first
display FC and sgFC, now re-ordered by the canoni-
cal intrinsic networks (Fig. 3b) [47]. The figure shows
prominent weights for uncorrected FCs within the diag-
onal blocks, suggesting that the re-weighing emphasizes
within-network connections. Fig. 3c confirms this intu-
ition, showing that re-weighing makes within-network
connectivity more prominent. In other words, the well-
studied community structure (modules) of functional
networks appears to be supported by FCs that are un-
expectedly strong given their length.

Interestingly, the largest differences between uncor-
rected and corrected FCs are observed within trans-
modal networks (default mode and ventral attention),
while more modest differences are observed in the uni-
modal networks (visual and somatomotor) (Fig. 3c).
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Figure 3 | Contribution to intrinsic network architecture. (a) sgFC correlated with FC, colored by scatter density. Only polysy-
naptic FCs are shown. (b) FC and sgFC shown side-by-side, re-ordered according intrinsic networks [47]. VIS = visual, SM =
somatomotor, DA = dorsal attention, VA = ventral attention, LIM = limbic, FP = frontoparietal, DMN = default mode. (c) Com-
parison of within- and between-network mean positive-valued connectivity with a dissection of within-network connectivity for
intrinsic networks. In panels b and c, polysynaptic FCs are standarized by the overall average and standard deviation of FCs with
direct SCs to facilitate comparison.

This suggests that unexpectedly strong FCs may occur
more frequently between brain regions at the apex of the
unimodal-transmodal cortical hierarchy. We investigate
this possibility in the next section.

Contribution to the cortical hierarchy

We next investigate the arrangement of unconnected
FCs in macroscale cortical hierarchies. Recent work sug-
gests that the functional architecture of human brain
networks can be summarized by a small number of
smooth topographic gradients, with the most prominent
such gradient spanning unimodal to transmodal cortex
[24]. This putative hierarchy is thought to support a
sensory-fugal representational hierarchy [27], and cor-
relates with spatial variation in cytoarchitecture [34],
myelination [22] and gene expression [9].

To place each cortical node along this putative hier-
archy, we adapted the diffusion embedding method de-
scribed by Margulies and colleagues [11, 24, 50] (see
Materials and Methods for more detail). Fig. 4a shows the
topography of the first gradient, differentiating primary
sensory and transmodal cortices, replicating the original
report [24].

To assess the hypothesis that unexpectedly strong FCs
are more concentrated in transmodal cortex, we first
compare node strengths (the sum of all weights incident
on a given region) computed using FC and sgFC. Fig. 4b
shows the relationship between node strength for the
original FC matrix and for the sgFC matrix. Nodes are
coloured by their position in the hierarchy (gradient 1;
red = transmodal, blue = unimodal). The relationship is
well-fit by an exponential function (y = ex; R2 = 0.44).
Importantly, a cloud of red points are consistent outliers,

residing above the curve. In other words, brain regions
at the apex of the hierarchy are more likely to participate
in unexpectedly strong functional interactions.

We further confirm the link between the cortical hi-
erarchy and unexpectedly strong FCs by computing the
residual of each node relative to the exponential trend
shown in Fig. 4c (Pearson’s r = 0.34). Large posi-
tive residuals indicate that the node is disproportionately
central in the sgFC functional network. Mean residu-
als for each intrinsic network, ordered by the unimodal-
transmodal hierarchy, are shown in Fig. 4d. The great-
est increases appear in the frontoparietal (T = 5.96, p =
1.26 × 10−7, d = 0.62) and default mode networks (T =
5.45, p = 1.13×10−7, d = 0.42), when compared to a null
model that permutes region labels while preserving their
spatial autocorrelation [1, 25]. Collectively, these results
show that transmodal cortex participates in polysynaptic
FCs that are stronger than expected given their length.

Control analyses

The results presented in the preceding subsections
are potentially contingent on a number of methodolog-
ical choices, which we explore in detail here. We first
replicate the major findings — the distribution of sgFC
weights and their involvement in cortical hierarchies —
in a validation cohort constructed from N = 33 par-
ticipants. Fig. 5 shows the Pearson correlation of the
two results in the Discovery and Validation cohorts (see
Fig. S2 for reproduced result figures). The correlation
coefficients for both measures are greater than 0.8 in all
cases.

We next seek to determine the extent to which global
signal regression could influence the findings. This par-
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Figure 4 | Contribution to the cortical hierarchy. (a) First principal connectivity gradient estimated using diffusion map embed-
ding applied to the FC matrix [24]. Cold colors indicate unimodal regions and warmer colors indicate transmodal regions. (b)
Correlation of positive strengths (sum of all weights incident on a given node) between sgFC and FC. Points are regions and are
colored by their position in the unimodal-transmodal gradient. An exponential curve is fitted to the points (red line). (c) Residuals
of the fitted curve in (b) correlated with gradient 1. (d) Residuals grouped by intrinsic networks and benchmarked against spatial
autocorrelation-preserving null models [1, 25]. Statistically significant differences (with Bonferroni correction) are marked with a
red asterisk.

ticular preprocessing step induces negative correlations
in FC, profoundly changing the distribution of weights
[2, 32]. We re-generated regional time series, correct-
ing for fluctuations in the global signal, and repeated the
analysis. Fig. 5 shows the effects of the procedure, in
both the Discovery and Validation cohorts (Fig. S2). As
before, there appears to be minimal change in the results,
with correlations at approximately 0.9 (for weights) and
0.8 (for strength). In addition, correlations between
data cohorts with different processing (e.g. Discovery set
with no global signal regression correlated with Valida-
tion set with global signal regression) were also greater
than 0.75.

DISCUSSION

In the present report we introduce a simple data-
driven method to benchmark functional connections
with respect to their underlying structural and geomet-
ric embedding. We find evidence for unexpectedly strong
functional connectivity within the canonical intrinsic net-
works and among transmodal brain regions. These
results suggest a hidden but highly organized pattern
among polysnaptic FCs.

Our findings build on an emerging literature about the
importance of geometry and structural connectivity for
functional connectivity in the brain. Although the ef-
fect of spatial proximity on the probability and weight
of connections is well-known [21, 37], in practice it is
less obvious how this information should be taken into
account when representing functional connectivity. Like-
wise, multiple studies report significant correlations be-
tween structural and functional connectivity between re-
gions that share direct structural links [20], but how
polysynaptic or multi-hop structural connectivity shapes
functional connectivity is less well known. Indeed, com-
putational models of structure-function coupling tend to

perform more poorly when predicting functional con-
nections between regions that are not structurally con-
nected [17]. More recent communication models of
structure-function coupling explicitly account for polysy-
naptic communication [40, 51]. Here we show that in-
formation about structural connectivity and spatial prox-
imity can be naturally used as a frame of reference to de-
scribe functional connectivity between regions without
direct structural connections.

Interestingly, we find that unexpectedly strong FCs are
highly organized with respect to the modular [43] and
hierarchical [22] organization of the brain. Although
both modules and hierarchies or “gradients” are robust
and well-studied features of functional networks, their
anatomical origin is less clear [45]. Our results sug-
gest that both phenomena emerge from functional in-
teractions or co-activations that transcend the underly-
ing structure and geometry. In other words, this class of
polysynaptic functional connections may be physiologi-
cally unique, and future empirical and theoretical stud-
ies could potential stratify direct and indirect FCs prior
to analysis.

The fact that unexpectedly strong FCs are over-
represented in transmodal cortex may potentially ex-
plain recent reports that structure-function relationships
are regionally heterogeneous. Namely, multiple reports
have found that structure-function coupling is greater
in unimodal cortex and smaller in transmodal cortex
[3, 4, 16, 19, 36, 50, 52]. Our results suggest that the
reason for this heterogeneity is that regions in trans-
modal cortex tend to participate in polysynaptic func-
tional connections that are much stronger than expected
given the underlying anatomical constraints. As a re-
sult, models relating structural and functional connec-
tivity may be disadvantaged when applied to transmodal
cortex relative to unimodal cortex.

In summary, we show how fundamental structural
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Figure 5 | Validation and global signal removal. Correlation matrices shown for sgFC weight (values in Fig. 2d) and sgFC positive
node strength (values in Fig. 4b) between controls. Values of sgFC are calculated from Discovery and Validation datasets, with and
without global signal regression (GSR). Reproduced Fig. 2d and Fig. 4b with these values are shown in Fig. S2.

and geometric priors can be used to re-weigh and re-
represent the functional connectivity matrix. Our results
show that the canonical features of functional connec-
tivity – modules and hierarchies – are delineated by un-
expectedly strong functional connections between nodes
without underlying structural links. The biological origin
of this class of connections remains an exciting question
for future research.

MATERIALS AND METHODS

Data acquisition

A total of N = 66 healthy young adults (16 fe-
males, 25.3 ± 4.9 years old) were scanned at the De-
partment of Radiology, University Hospital Center and
University of Lausanne. The scans were performed in
3-Tesla MRI scanner (Trio, Siemens Medical, Germany)
using a 32-channel head-coil. The protocol included
(1) a magnetization-prepared rapid acquisition gradient
echo (MPRAGE) sequence sensitive to white/gray matter
contrast (1 mm in-plane resolution, 1.2 mm slice thick-
ness), (2) a diffusion spectrum imaging (DSI) sequence
(128 diffusion-weighted volumes and a single b0 vol-
ume, maximum b-value 8000 s/mm

2, 2.2× 2.2× 3.0 mm
voxel size), and (3) a gradient echo EPI sequence sensi-
tive to BOLD contrast (3.3 mm in-plane resolution and
slice thickness with a 0.3 mm gap, TR 1920 ms, result-
ing in 280 images per participant). Participants were not
subject to any overt task demands during the fMRI scan.

Structural network reconstruction

Grey matter was parcellated into 68 cortical nodes ac-
cording to the Desikan-Killiany atlas [15]. These regions
of interest were then further divided into four additional,
increasingly finer-grained resolutions, comprising 114,
219, 448 and 1000 approximately equally-sized nodes
[10]. Structural connectivity was estimated for individ-

ual participants using deterministic streamline tractogra-
phy. The procedure was implemented in the Connectome
Mapping Toolkit [12], initiating 32 streamline propaga-
tions per diffusion direction for each white matter voxel.

To mitigate concerns about inconsistencies in recon-
struction of individual participant connectomes [23, 46],
as well as the sensitive dependence of network measures
on false positives and false negatives [53], we adopted
a group-consensus approach [7, 14, 38]. In constructing
a consensus adjacency matrix, we sought to preserve (a)
the density and (b) the edge length distribution of the
individual participants matrices [6, 7, 29]. We first col-
lated the extant edges in the individual participant ma-
trices and binned them according to length. The number
of bins was determined heuristically, as the square root
of the mean binary density across participants. The most
frequently occurring edges were then selected for each
bin. If the mean number of edges across participants in
a particular bin is equal to k, we selected the k edges
of that length that occur most frequently across partic-
ipants. To ensure that inter-hemispheric edges are not
under-represented, we carried out this procedure sep-
arately for inter- and intra-hemispheric edges. The bi-
nary density for the final whole-brain matrix was around
2.1%.

Functional network reconstruction

Functional MRI data were pre-processed using proce-
dures designed to facilitate subsequent network explo-
ration [35]. FMRI volumes were corrected for physiolog-
ical variables, including regression of white matter, cere-
brospinal fluid, as well as motion (three translations and
three rotations, estimated by rigid body co-registration).
BOLD time series were then subjected to a lowpass filter
(temporal Gaussian filter with full width half maximum
equal to 1.92 s). The first four time points were excluded
from subsequent analysis to allow the time series to sta-
bilize. Motion “scrubbing” was performed as described
by Power and colleagues [35]. The data were parcellated
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according to the same atlas used for structural networks
[10]. Individual functional connectivity matrices were
defined as zero-lag Pearson correlation among the fMRI
BOLD time series. A group-consensus functional connec-
tivity matrix was estimated as the mean connectivity of
pair-wise connections across individuals.

Structure- and geometry-informed indirect FC modelling

To construct the structure- and geometry-informed FC
(sgFC), we apply equally-spaced bins to the dimension
of Euclidean distance. In each bin, we acquire the
mean and standard deviation of those FCs with direct
SC link. Then we take the z-score of FCs without direct
SC link using the acquired statistics. The final z-scores
are smoothed to get a robust representation by averag-
ing over a spectrum of bin numbers (±25%) centering
the optimal bin size decided by Freedman Diaconis Esti-
mator shown in Fig. S1. The resulting sgFC values cor-
responding to those without direct SC link are mapped
back to a 1000-by-1000 matrix and used for network
analysis through the article.

Diffusion map embedding

Diffusion map embedding is a nonlinear dimension-
ality reduction algorithm [11]. The algorithm seeks to
project a set of embeddings into a lower-dimensional Eu-

clidean space. Briefly, the similarity matrix among a set
of points (in our case, the correlation matrix represent-
ing functional connectivity) is treated as a graph, and
the goal of the procedure is to identify points that are
proximal to one another on the graph. In other words,
two points are close together if there are many relatively
short paths connecting them. A diffusion operator, rep-
resenting an ergodic Markov chain on the network, is
formed by taking the normalized graph Laplacian of the
matrix. The new coordinate space is described by the
eigenvectors of the diffusion operator. We set the diffu-
sion rate α = 1 and the variance of the Gaussian used
in affinity computation σ = 1. The procedure was im-
plemented using the Dimensionality Reduction Toolbox
(https://lvdmaaten.github.io/drtoolbox/) [49].
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Figure S1 | Influence of bin choice. Correlation matrix shown for sgFC values between choices of bin numbers. The number of
bins are taken ±25% centering the optimal bin size decided by Freedman Diaconis Estimator. The final sgFC values are averaged
over the choices of bin numbers to get a smoothed robust representation.

Figure S2 | Results of control analyses. Reproduced Fig. 2d and Fig. 4b under control analyses settings. Correlations between
the control cases for values in panel a (sgFC weight) and panel b (sgFC node strength) are shown in Fig. 5.
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Figure S3 | sgFC in individual participants. Distribution of correlation between group-level sgFC used in the main analysis and
those for N = 66 participants. Group-level sgFC values for the Discovery dataset are correlated with sgFC generated from each
participant in the Discovery and Validation dataset.
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