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Abstract— Gene expression, the production of protein from
DNA and mRNA in the biological cell, is inherently stochastic.
Cells with identical DNA exhibit fluctuations or ‘noise’ in
gene expression. This noise propagates over gene regulatory
networks (GRNs), which encode gene-gene interactions. The
propagated ‘extrinsic’ noise interacts and combines with ‘in-
trinsic’ noise to affect biological decisions. Consequently, it
is essential to understand how GRN topology affects total
noise. Recently, uncertainty principles were established for noise
propagation over GRN. In particular, in ring GRNs, exactly
one node can have noise reduction below the intrinsic limit. We
establish necessary and sufficient conditions for noise reduction
in ring GRN. Specifically, for two- and three-node rings, an
odd number of negative regulations is necessary for noise
reduction. Further, sufficiency is ensured if sensitivities to input
for feedforward and feedback regulations are bounded from
below and above, respectively. These constraints are valid even
if the ring GRN are regulated by an upstream gene. Finally, we
use graph theory to decompose noise propagation in a general
directed network over its strongly connected components. The
combination of graph theory and stochastic processes may be
a general framework for studying noise propagation.

I. INTRODUCTION

Gene expression is the process by which proteins are pro-
duced from DNA (deoxyribonucleic acid) and mRNA (mes-
senger ribonucleic acid). Proteins carry out all the essential
functions in the biological cell. Mean protein levels can be
evolutionarily tuned; deviations from the optimal values can
be detrimental [1], [2]. However, mRNA and protein levels
are inherently stochastic and heterogeneous, even across a
population of cells having the same DNA [3]–[15]. These
fluctuations or ‘noise’ in gene expression have important
consequences for biological decisions, such as fate-switching
in viruses [16], development in embryonic stem cells [16]
and drug resistance in cancer [17]. Consequently, extensive
research has focused on understanding gene expression noise
[5]–[10], [12], [13], [18]–[27].

Sources of noise can be intrinsic or extrinsic. Intrinsic
sources comprise the stochastic events associated with tran-
scription (production of mRNA from DNA) and translation
(production of protein from mRNA). Quantitative exper-
iments spanning single-cell and single-molecule measure-
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ments have studied contribution of intrinsic sources [5]–[7],
[9], [10], [20], [26]–[28]. Extrinsic sources can comprise
gene regulatory networks (GRNs) [22], [29]–[35], global
transcription factors (TFs) (proteins controlling expression
of other genes), cell-cycle [36] and extracellular environ-
ment. GRN encodes interactions between TFs and their
target genes. Noise propagates over GRN as documented
experimentally for small networks [29], [30], [37], [38].
Several studies have developed stochastic models for noise
propagation in GRNs. For instance, Singh and Hespanha [34]
and Hooshangi et al. [31] studied noise propagation in linear
cascades. Feedback and feedforward loop (FFL) networks
have also been analyzed. Based on these insights, strategies
have been proposed for controlling noise in GRNs [39], [40].

Nonetheless, systematic theorems to explain noise propa-
gation did not exist until recently. Yan et al. [41] established
uncertainty principles for noise propagation. They show that
irrespective of GRN topology, noise cannot be uncondition-
ally reduced below the intrinsic limit. Specifically, for ring
GRNs, exactly one node can exhibit Lower-than-Intrinsic
Noise Control (LINC). However, they do not establish nec-
essary and sufficient conditions for LINC.

We establish necessary and sufficient conditions for LINC
in ring networks of sizes two and three. We show that it
is necessary to have an odd number of negative regulations
for LINC. We conjecture that this necessary condition holds
for a finite ring of any size. For sufficiency with two nodes,
the feedforward edge must respond faster to inputs than the
feedback edge. In a three-node ring, the upper bound on
the feedback edges is stricter. We hypothesize that bigger
rings have more restrictive constraints. We also combine
graph theory with stochastic processes to decompose noise
propagation over general GRNs. Yan et al. [41] had shown
that at least one node cannot have LINC in a general GRN.
We refine this lower bound to the number of strongly con-
nected components in the GRN. In conclusion, we propose
the combination of graph theory and stochastic processes
as a general framework for studying noise propagation over
molecular interaction networks.

Section II introduces some simple models of gene ex-
pression and regulation. Section III generalizes section II to
arbitrary GRNs, and particularly to ring GRNs. Section IV
provides the necessary and sufficient conditions for noise
propagation in ring networks. Section V gives the result
on decomposition of noise propagation. Finally, section VI
offers a discussion on the key results of the paper and
postulates future directions.
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II. SIMPLE MODELS OF GENE EXPRESSION AND
REGULATION

To motivate the key ideas of the paper, we start with a
simple model of gene expression as shown in Fig. 1a. In this
model, we only track protein counts. This is predicated on
the fact that when the promoter ON state (promoter actively
transcribing mRNA) is unstable relative to the OFF state
(inactive promoter) and mRNA half-life is much shorter than
protein half-life, protein expression can be modeled as a
bursty stochastic birth-death process [7], [10], [42]–[49]. In
Fig. 1a, production of protein X is a poisson process that
occurs with a rate f , and each production event creates β

copies of X . For many genes, β is geometrically distributed
[49]–[51]. If genes have complex kinetics, β could deviate
from the geometric distribution [52]. For ease of analysis,
we assume β to be constant. Nonetheless, the results of this
study are also valid when β is distributed according to a
distribution. We also assume that once a protein performs its
function, it is degraded at a rate 1/τ , where τ is the average
lifetime of X . This model is a continuous-time, integer-
valued stochastic process. The rates represent probabilities
per unit time.

protein X

(a)

protein X2

protein X1

2

1

(b)

Fig. 1: (a) A bursty stochastic birth-death model of gene expression. Protein
is produced in bursts of size β at a rate f and degraded at a rate 1/τ , where
τ is the protein degradation rate, respectively. (b) (left) A two-gene cascade
GRN represented using the bursty stochastic birth-death model defined in
(a). X1 regulates the production rate f2 for X2. (right) Graph representation
of the two-gene cascade.

Time evolution of the probability distribution for this birth-
death process is given by the following chemical master
equation (CME) [53]:

∂P(x, t)
∂ t

=

(
f P(x−β , t)+

x+1
τp

P(x+1, t)
)

−
(

f P(x, t)+
x
τp

P(x, t)
)
,

(1)

where P(x, t) is the probability of observing x proteins at
time t,

At steady-state, (1) can be exactly solved and mean and
variance are given by

〈x〉= f βτp, (2)

σ
2
x =
〈x〉(β +1)

2
, (3)

where the angled brackets represent expectation. Noise can
be quantified by two metrics–coefficient of variation (CV)
and fano factor. These are defined as follows:

CV: η
2 ≡ σ2

x

〈x〉2
=

β +1
2〈x〉 , (4)

Fano: F≡ σ2

〈x〉 =
β +1

2
. (5)

(4) and (5) represent ‘intrinsic’ noise for protein X . This is
the noise in the amount of X when it is not regulated by any
upstream TF.

To define ‘extrinsic’ noise created by propagation over
GRN, we consider a simple two-gene cascade as shown in
Fig. 1b. There are two protein species, X1 and X2 (left, Fig.
1b). Production of X1 is a poisson process that occurs with
a rate f1, and each production event creates β1 copies of X1.
Whereas, production of X2 is conditionally a poisson process
that occurs with a rate f2 (x1), which is an arbitrary function
of the count of X1 molecules x1. The conditioning is on x1,
capturing the regulation of X2 by X1. Each production event
for X2 creates β2 copies. Per-protein degradation rates for
X1 and X2 are 1/τ1 and 1/τ2, respectively. The two-gene
cascade can be respresented as a two node graph (right, Fig.
1b), where nodes are the proteins and the edge represents
the regulation of the burst frequency of X2 by X1.

The CME for the two-gene cascade can be written as
∂P(x1,x2, t)

∂ t
=

[
f1P(x1−β1,x2, t)+ f2(x1)P(x1,x2−β2, t)

+
x1 +1

τ1
P(x1 +1,x2, t)+

x2 +1
τ1

P(x1,x2 +1, t)
]

−
[

f1P(x1,x2, t)+ f2(x1)P(x1,x2, t)

+
x1

τ1
P(x1,x2, t)+

x2

τ1
P(x1,x2, t)

]
.

(6)
(6) is exactly solvable only when f2(x1) is a first order poly-
nomial in x1. Therefore, for arbitrary functions, we take an
approximate approach called the linear noise approximation
(LNA) [53]–[55], which is valid in the high molecular count
and low noise limit. One way of applying LNA is to first
linearize the rate f2 (x1) around a deterministic concentration
defined over an arbitrary volume Ω ( [55]):

f2(x1) = Ωg
(x1

Ω

)
= Ωg(φ)+

∂g(φ)
∂φ

(x1−〈x1〉) , (7)

where φ = 〈x1〉/Ω is the deterministic term. Now, using
the extended moment generator from [56], it can be shown
that the evolution of the mean expression for the two-gene
cascade is given by ( [55]):

d〈xxx〉
dt

=−Q〈xxx〉+bbb, (8)

where Q is a diagonal matrix with entries Qii = 1/τi, and
bbb = ( f1β1, f2 (〈x1〉)β2)

T . Further, evolution of covariances
Ci j = 〈xix j〉−〈xi〉〈x j〉 is given by

dC
dt

= JC+CJT +K, (9)
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where J is the jacobian matrix with entries

J11 =−
1
τ1
, J22 =−

1
τ2
,

J12 = 0, J21 =
∂ ( f2 (x1)β2)

∂x1

∣∣∣∣
xxx=〈xxx〉

and K is the diagonal diffusion matrix with diagonal entries
K11 = β 2

1 f1 + 〈x1〉/τ1, K22 = β 2
2 f2 (〈x1〉)+ 〈x2〉/τ2.

At steady state,
〈xxx〉= Q−1bbb, (10)

and C is obtained by solving the following lyapunov equa-
tion:

JC+CJT +K = 0. (11)

Here, bbb, C, J and K are the values at steady state. From (11),
it can be shown that normalized covariaces Σ with entries
Σi j = Ci j/(〈xi〉〈x j〉) are found by solving the lyapunov
equation

AΣ +ΣAT +D = 0, (12)

where A has entries Ai j = Hi j/τi, and D is a diagonal matrix
with entries Dii = (βi +1)/(τi〈xi〉)> 0. H is called the log-
gain matrix, and its entries are given by

Hi j =





−1 if i = j,
0 if i = 1, j = 2
∂ ln( f2(x1)β2τ2)

∂ lnx1

∣∣∣
xxx=〈xxx〉

if i = 2, j = 1
(13)

The diagonal entries of Σ are the CV (η2) values for the
nodes. Therefore, (12) can be solved to show that

η
2
1 =

(β1 +1)
2〈x1〉

, (14)

and

η
2
2 =

(β2 +1)
2〈x2〉

+
τ1

τ1 + τ2
H2

21η
2
1 . (15)

Comparing (14) to (4), it is evident that the total noise
for X1 is equal to its intrinsic noise given by η2

1◦ ≡
(β1 +1)/(2〈x1〉). This makes sense since X1 is not reg-
ulated by any other protein in the two-gene cascade.
Comparing (15) to (4), we see that noise for X2 can
be decomposed as the sum of its intrinsic noise (η2

2◦ ≡
(β2 +1)/(2〈x2〉)) and the positive, propagated extrinsic
noise η2

ext ≡ τ1/(τ1 + τ2)H2
21η2

1 . η2
1 propagates to X2

weighted by the susceptibility of X2 to X1 given by H2
21 and

attenuated by a time-averaging factor. This decomposition
has been previously reported as well [57], [58]. From (14)
and (15), it is evident that a two-gene cascade cannot have
LINC.

III. GENE EXPRESSION AND REGULATION OVER
GENERAL GRN

For a general GRN with n proteins or nodes, (10) and (12)
are valid with

bbb =
(

f1(xxxpa(1)(t))β1, . . . , fn(xxxpa(n)(t))βn
)T
∣∣∣
xxx=〈xxx〉

,

where βi and fi(xxxpa(i)(t)) are the burst size and frequency for
node i, pa(i) is the set (called parents) of upstream regulator
nodes for protein i and fi are arbitrary functions. The entries
of H are given by

Hi j =





−1 if i = j,
∂ ln( fi(xxxpa(i)(t))βiτi)

∂ lnx j

∣∣∣∣
xxx=〈xxx〉

else.
(16)

Then, the non-zero entries of A encode the topological
structure of the GRN (Fig. 2): for two nodes i and j, i
regulates j ⇐⇒ A ji,H ji 6= 0. (Fig. 2).

1

2

3

4

GRN G

A =




− 1
τ1

0 0 H14

τ1

H21

τ2
− 1
τ2

H23

τ2
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H31

τ3

H32

τ3
− 1
τ3

0

0 0 H43

τ4
− 1
τ4



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Fig. 2: (a) A 4-node GRN G with edge-weights representing log-gains. (b)
The normalized jacobian matrix A for G. The structure of G is encoded in
the non-zero entries of A. For instance, since (2,1) is not an edge, therefore
A12 = 0. While, (1,2) is an edge, and hence, A21 6= 0. Diagonal entries of
A are non-zero because of protein degradation in Fig. 1a.

Now, for a general acyclic GRN without feedback, similar
to a two-gene cascade, it is easy to solve (12) to show
that each node can be decomposed as the sum of intrinsic
and extrinsic noises. Therefore, no node can have LINC,
i.e. η2

i ≥ η2
i◦. This makes intuitive sense since feedback

is necessary for noise reduction. In this work, we study
LINC for the simplest GRN with feedback: ring GRN. In
a ring GRN with n nodes, node i regulates node i+ 1 for
i ∈ {1, . . . ,n− 1}, and node n regulates node 1. We call a
ring with n nodes an n- ring. A 2- and 3-ring are shown in
Fig. 3. For a node in an n- ring to have LINC, η2

i < η2
i◦, and,

consequently, a decomposition like (15) must not exist. In the
next section, we establish necessary and sufficient conditions
for the existence of LINC in 2- and 3-rings.

Since total noise is computed from the lyapunov equation
(12), given a positive semi-definite (PSD) D, there is a
unique Σ iff A is stable and hurwitz. Therefore, we establish
necessary and sufficient conditions for the stability of the
jacobian matrix A for any n- ring in the following proposition.

Proposition 1 (Stability of the jacobian matrix for an
n- ringn- ringn- ring) For an n- ring, the jacobian matrix A is stable iff
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1
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H21 H12

(a) 1

2 3

H21

H32

H13

(b)

Fig. 3: General (a) 2- and (b) 3- rings with edge-weights representing log-
gains.

(17) and (18) hold.

necessary : 1−H1n

n−1

∏
i=1

H(i+1)i > 0 (17)

sufficient :
n

∏
i=1

(
λ +

1
τi

)
−

H1n ∏
n−1
i=1 H(i+1)i

∏
n
i=1 τi

= 0

satisfies the Routh-Hurwitz stability criterion,

where λ is an eigenvalue of A.
(18)

It is easy to show that (18) is the characteristic equation for
an n- ring. For stability, all eigenvalues must lie in the left of
the complex plane, and (18) must satisfy the Routh-Hurwitz
stability criterion. Further, the left hand side in (17) is the
coefficient of λ 0 in (18), and must be positive for stability.

Using Proposition 1, it can be shown that a 2- ring will be
stable iff (19) is true.

1−H12H21 > 0. (19)

Similarly, for a 3- ring, A is stable iff (20) is true.

1−H13H21H32 > 0
(τ1 + τ2)(τ2 + τ3)(τ3 + τ1)+ τ1τ2τ3H21H32H13 > 0.

(20)

IV. NOISE PROPAGATION IN RING GRNS

In the previous section, we demonstrated how the lya-
punov equation (12) can be used to track noise propagation
over a GRN. In this section, we use the same idea to
extricate noise propagation over 2- and 3-rings. We establish
necessary and sufficient conditions for LINC in 2- and
3-rings in Theorems 2 and 3, respectively.

Theorem 2 (Necessary and sufficient conditions for LINC
in 2-ring2- ring2- ring) For a stable 2- ring (Fig. 3a), with arbitrary
regulation functions, η2

1 < η2
1◦ iff (21) and (22) hold.

necessary : H12H21 < 0 (21)

sufficient :−τ1H12H21η
2
1◦ > τ2H2

12η
2
2◦ (22)

Proof of Theorem 2. For a 2- ring, we solve (12) using A, Σ

and D as given in (23).

A =

(
− 1

τ1

H12
τ1

H21
τ2

− 1
τ2

)
,Σ =

(
Σ11 Σ12
Σ12 Σ22

)
,D =


2 η2

1◦
τ1

0

0 2 η2
1◦

τ1


 .

(23)

This yields a system of three linear equations in the elements
of Σ, which can be solved for Σ11 to yield

η
2
1 = Σ11 =

−(τ1 + τ2)+ τ2H12H21

∆
η

2
1◦−

τ2H2
12

∆
η

2
2◦, (24)

where ∆=−(τ1 + τ2)(1−H12H21)< 0. If X1 exhibits LINC,
then η2

1 < η2
1◦. The LINC condition for (24) leads to (25),

τ1H12H21η
2
1◦ <−τ2H2

12η
2
2◦, (25)

which is true only if the following is true:

H12H21 < 0 (26)

Since the ring is symmetric, the LINC condition for X2 leads
to the following:

τ2H12H21η
2
2 <−τ1H2

21η
2
1◦, (27)

which is also true only if (26) holds. However, it should be
noted that (25) and (27) cannot be simultaneously true. This
is in agreement with Yan et al. [41], where it was shown
that in a ring GRN the maximum number of nodes which
can have LINC is one.

If we assume that nodes/genes in a 2- ring have identi-
cal timescales and intrinsic noises, then (21) and (22) are
reduced to the following:

necessary : H12H21 < 0 (28)

sufficient : |H21|> |H12| (29)

This agrees with intuition. For noise reduction, there must
be an overall negative feedback along the ring. Additionally,
X2 must be sensitive to changes in X1 so that an appropriate
feedback can be quickly applied to reduce fluctuations. (29)
shows that there is a lower bound on this sensitivity. X2 must
respond to changes in X1 faster than X1 responds to changes
in X2. If we assume that |H12| = y and |H21| = x, then (29)
is depicted in Fig. 4a (region II + region III).

Theorem 3 (Necessary and sufficient conditions for LINC
in 3-ring3- ring3- ring) For a stable 3- ring (Fig. 3b), with arbitrary
regulation functions, η2

1 < η2
1◦ iff (30) and (31) hold.

necessary :−τ1 (τ2 + τ3)

τ2τ3
< H21H32H13 < 0 (30)

sufficient :−aη
2
1◦ > bη

2
2◦+ cη

2
3◦ (31)

where

a = τ1H21H32H13 [τ1 (τ2 + τ3)+ τ2τ3H21H32H13]< 0,

b = H2
13H2

32
[
τ1τ2τ3 + τ

2
2 (τ1 + τ3)

]
> 0,

c = H2
13τ3

[
(τ1 + τ2)(τ2 + τ3)− τ

2
2 H21H32H13

]
> 0.

(32)

Proof of Theorem 3. For a 3- ring, (12) can be expanded into
a system of six linear equations in the elements of Σ, which
can be solved for Σ11 to give

η
2
1 = Σ11 =

[
1− a

∆

]
η

2
1◦−

b
∆

η
2
2◦−

c
∆

η
2
3◦, (33)
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where

a = τ1H21H32H13 [τ1 (τ2 + τ3)+ τ2τ3H21H32H13] , (34)

b = H2
13H2

32
[
τ1τ2τ3 + τ

2
2 (τ1 + τ3)

]
, (35)

c = H2
13τ3

[
(τ1 + τ2)(τ2 + τ3)− τ

2
2 H21H32H13

]
, (36)

and

∆ =−
[
(τ1 + τ2)(τ2 + τ3)(τ3 + τ1)+

τ1τ2τ3H21H32H13
][

1−H21H32H13
] (37)

For a stable ring, b,c > 0. Using (20), it can be shown that
the 3-ring is stable only if ∆ < 0 . Then, for X1 to exhibit
LINC, (33) yields the following inequality:

aη
2
1◦ <−bη

2
2◦− cη

2
3◦, (38)

which is true only if a< 0 and H21H32H13 ∈
(
− τ1(τ2+τ3)

τ2τ3
,0
)

.
Since the ring is symmetric, similar results can be derived

for X2 and X3. However, only one node can have LINC at
most.

Similar to 2- rings, there must be an overall negative
feedback for LINC in 3-rings. To make intuitive sense of
(31), we assume that all the nodes have identical timescales
and intrinsic noises. Also, assume that |H32|= |H13|= y and
|H21|= x. Then, (31) can be reduced to

y <

√
2x−4

x2 + x+3
<
√

x, x > 2. (39)

(39) is graphically shown in region III in Fig. 4a where
it is evident that there is an upper bound on the feedback
log-gain (|H32| or |H13|) as a function of the feedforward
log-gain (|H21|). Comparing the LINC regions for 2- and
3-rings in Fig. 4a, it can be easily established that the
3- ring imposes a stricter bound than the 2- ring. For a given
value of feedforward log-gain, feedback log-gain can assume
much larger values for the 2- ring compared to the 3- ring.
Moreover, for the 2- ring, feedback log-gain can achieve any
large value as long as feedforward log-gain is large enough.
However, for the 3- ring, y <

√
2/11 is always true. We

also verified Theorem 3 by numerically solving the lyapunov
equaton (12). We randomly sampled 3∗106 combinations of
parameters for the 3- ring, and plotted the ratio between total
and intrinsic noise for X1 and X2 (Fig. 4b).

As mentioned earlier, directed acyclic GRN without feed-
back cannot have LINC. For a general directed GRN with
feedback, an interesting situation is the propagation of noise
from upstream acyclic components to downstream subnet-
works with feedback. We explore this question for 2- and
3-rings with a single upstream regulatory protein. Necessary
and sufficient conditions for LINC in this scenario are given
in Theorems 4 and 5.

Theorem 4 (Necessary and sufficient conditions for LINC
in 2-ring2- ring2- ring with upstream regulation) For a stable 2- ring,

with arbitrary regulation functions and which has an up-
stream regulator (Fig. 5a), η2

2 < η2
2◦ iff (40) and (41) hold.

necessary : H23H32 < 0 (40)

sufficient :−τ2H23H32η
2
2◦−δ1 > τ3H2

23η
2
3◦ (41)

where

δ1 =
τ1Σ11

∆1

[
(τ1τ2 + τ2τ3 + τ3τ1)(H21 +H23H31)

2+

τ
2
3 H2

21 (1−H23H32)]> 0,

∆1 = (τ1 + τ2)(τ1 + τ3)− τ
2
1 H23H32 > 0.

(42)

Theorem 4 can be easily proved using steps similar to
those used for Theorem 2. The necessary condition (40)
is identical to the necessary condition (21) for 2- ring in
isolation. However, the sufficient condition (41) defines a
smaller feasible region than (22). To see this, assume that
all proteins in the network have identical intrinsic noises
and timescales. Also, let |H23| = y and |H32| = x, and
δ1/
(
τ2η2

2◦
)
≈ constant. Then, (41) is given by

y2− xy+ constant < 0. (43)

For a given x, y is bounded from both above and below.
Whereas for (29), y is bounded only from above. Further,
the upper bound is larger without upstream regulation. This
shows that upstream regulation reduces the feasible param-
eter region for LINC.

From (41), it is easy to show that −τ2H23H32η2
2◦ >

τ3H2
23η2

3◦, since δ1 > 0. With X2 showing LINC,
−τ3H23H32η2

3◦ < τ2H2
32η2

2◦, and the equivalent of (41) for
X3 cannot be true. Hence, X2 and X3 cannot simultaneously
have LINC.

Theorem 5 (Necessary and sufficient conditions for LINC
in 3-ring3- ring3- ring with upstream regulation) For a stable 3- ring,
with arbitrary regulation functions and which has an up-
stream regulator (Fig. 5b), η2

2 < η2
2◦ iff (44) and (45) hold.

necessary :−τ2 (τ3 + τ4)

τ3τ4
< H32H43H24 < 0. (44)

sufficient :−aη
2
2◦−δ2 > bη

2
3◦+ cη

2
4◦. (45)

where
a = τ2H32H43H24 [τ2 (τ3 + τ4)+ τ3τ4H32H43H24]< 0,

b = H2
24H2

43
[
τ2τ3τ4 + τ

2
3 (τ2 + τ4)

]
> 0,

c = H2
24τ4

[
(τ2 + τ3)(τ3 + τ4)− τ

2
3 H32H43H24

]
> 0,

δ2 =
τ1Σ11

∆2

[
e+ f + τ

2
1 g+ τ1τ

2
3 τ

2
4 (H32H43H24)

2
]
> 0,

e = τ2τ3τ4 (τ2 + τ4)(τ3 + τ4)+ τ1τ
2
2
(
τ

2
3 + τ

2
4
)
+

2τ1τ2τ3τ4 (τ2 + τ3 + τ4)> 0,

f = (τ3 + τ4)
[
τ1τ2

(
τ

2
3 + τ

2
4
)
+ τ3τ

2
4 (τ1 + τ3)+

τ
2
3 τ4 (τ1 + τ2)

]
(1−H32H43H24)> 0,

g =
[
(τ2 + τ3)(τ3 + τ4)(τ4 + τ2)+ τ2τ3τ4H32H43H24

]
> 0,

∆2 = (τ1 + τ2)(τ1 + τ3)(τ1 + τ4)− τ
3
1 H32H43H24 > 0.

(46)
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Fig. 4: (a) Plot of sufficient conditions for LINC for 2- ring (region II+ region III) and 3- ring (region III). For 2- ring and 3-ring, y-axis represents |H12|
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Fig. 5: General (a) 2- and (b) 3- rings with one upstream regulator. Edge-
weights represent log-gains.

Theorem 5 can be easily proved using steps similar to
those used for Theorem 3. The necessary condition (44)
is identical to the necessary condition (30) for 3- ring in
isolation. However, the sufficient condition (45) defines a
smaller feasible region than (31). To see this, assume that
all proteins in the network have identical intrinsic noises
and timescales. Also, let |H43| = |H24| = y, |H32| = x, and
δ2/
(
η2

2◦
)
≈ constant. Then, (45) reduces to

√
α(x)

2(x2 + x+3)
< y <

√
2(2x−4)−α(x)

2(x2 + x+3)
<
√

x,

α(x)> 0, x > 2+
α(x)

4
,

(47)

where α(x) is a function of x. Similar to a 2- ring, y now has
both upper and lower bounds compared to an isolated ring,
which only has an upper bound. Further, the upper bound is
lower than that for the isolated ring.

It is easy to show that only one node can have LINC at
most in a 3- ring with upstream regulation.

V. NOISE PROPAGATION OVER GENERAL GRNS
In the previous section, we demonstrated that 2- and

3-rings with a single upstream regulator can have LINC in

at most one node. This is identical to the situation with the
rings in isolation. In this section, we provide a lower bound
on the number of nodes without LINC for general GRNs.

Previously, Yan et al. [41] established the following con-
straint for noise propagation over general GRNs:

∑
i∈V

1
τi

(
ηi

ηi◦

)−2

≤ ∑
i∈V

1
τi
, (48)

which sets the lower bound to one. We provide a better lower
bound. Informally, the minimum number of nodes which
cannot have LINC equals the number of strongly connected
components (SCCs) in the GRN. An SCC is a subgraph of
the GRN such that for any pair of nodes (i, j) in it, there
exists a directed path from i to j and in the reverse direction.
We formalize the bound in Theorem 6.

Theorem 6 (Decomposition of noise propagation over
SCCs) For a GRN G, the following is true:

∑
i∈S

1
τi

(
ηi

ηi◦

)−2

≤∑
i∈S

1
τi
, S ∈ sccG, (49)

where sccG is the set of all SCCs in G.

For lack of space, we omit a formal proof of Theorem 6.
Instead, we provide an intuitive argument. Any general
directed graph with feedback can be represented as a directed
acyclic graph by collapasing all the SCCs to single nodes.
This new graph is called the condensation of the original
graph. (12) can now be decomposed over the condensation
graph, and (48) can be applied to all the SCCs to obtain
(49). Then, it is evident that for each SCC, at least one node
will have η2

i > η2
i◦, and cannot have LINC. Hence, the lower

bound for no-LINC nodes is equal to the number of SCCs.
We represent the set of nodes which are not part of any SCC
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by not-sccG. Each such node is a trivial SCC. For a network
with one SCC, and no not-sccG, (48) and (49) are equivalent.

In a typical GRN, only transcription factor (TF) nodes
have out-going edges. Non-TF nodes belong to not-sccG,
and hence, cannot have LINC. Equivalently, only TF nodes,
which are in an SCC, can have LINC.

If S ∈ sccG is a 2-ring, then (49) reduces to

1
τv1

(
ηv1

ηv1◦

)−2

+
1

τv2

(
ηv2

ηv2◦

)−2

≤ 1
τv1

+
1

τv2

, (50)

where S = {v1,v2}. Consequently, irrespective of the place-
ment of a 2-ring in a GRN, only one node can exhibit LINC.

VI. DISCUSSION AND CONCLUSION

Noise propagation has been studied theoretically and ex-
perimentally for a while. For instance, Pedraza and Oude-
naarden [29] and Nevozhay et al. [38] have explored noise
propagation in genetic cascades using single-cell measure-
ments. Singh and Hespanha [34] and Hooshangi et al. [31]
theoretically and computationally analyzed noise propagation
in linear cascades. Hooshangi et al. [32] also showed that for
n- rings with odd number of nodes and negative regulations,
LINC is not possible. However, they did not systematically
vary all the parameters to explore a diverse set of rings. We
showed that for 3- rings, the feasible parameter range for
LINC is very restricted. Out of the 3∗106 different 3- rings
we considered in Fig. 4b, only ≈ 23% exhibited LINC.
We expect these constraints to be stricter for higher order
rings. Consequently, it is not surprising that Hooshangi et
al. [32] did not observe LINC in their simulations. We leave
the derivation of sufficient conditions for LINC in general
n- rings to future efforts.

We also showed that the necessary and sufficient condi-
tions for LINC for 2- and 3-rings are easily extendible to
rings with a single upstream regulator. However, contrary
to the rings in isolation, the feedback log-gain strength is
bounded from below as well. Intuitively, this makes sense.
Both the feedback and feedfoward log-gains must be greater
than a threshold to ensure that the ring is functional relative
to the regulations from the common upstream regulator. This
observation motivates a more general question about the
existence of LINC for rings having arbitrary upstream reg-
ulations. Generally, if LINC exists, we expect the sufficient
conditions to be much more stringent than the situations con-
sidered in this paper. A potential future research direction is
the identification of sufficient conditions for rings embedded
in arbitrary GRNs.

Characterizing LINC for rings embedded in arbitrary
GRNs is connected with the decomposition of noise propa-
gation. We demonstrated that there is a graph-theoretic lower
bound, equal to the number of SCCs, on the number of nodes
which cannot have LINC in any GRN. For 2- rings, this
immediately establishes the existence of at most one node
with LINC, irrespective of the placement of the ring in any
GRN. We speculate this to be true for a finite ring of any
size. Proving this hypothesis is a part of our future research
efforts.

We used an approximation of the CME in the high count
and low noise limit. Therefore, a priori, the results cannot
be expected to be valid for the low count and high noise
regime. CME can be exactly solved only for linear regulation
functions. Solving the CME for 2- and 3-rings with linear
regulation functions, we found Theorems 2 and 3 to be
valid. For arbitrary nonlinear regulation functions, one future
direction is the use of stochastic simulations to establish
the validity of the results all regimes over a wide range of
parameter values.

Another limitation of the current study is the quasi steady-
state assumption (QSSA) for mRNA. QSSA models are
generally not exact reductions of the complete model [59].
Including mRNA in the model will transform 2- and 3-rings
into 4- and 6-rings. Therefore, the general ideas from this
paper are still applicable. Establishing necessary and suffi-
cient conditions for LINC for the full model is a part of our
future efforts.

In this work, we have demonstrated how the combination
of graph theory and stochastic processes can be used to
identify constraints on noise propagation in GRNs. We
expect these results will motivate the development of a
graph-theoretic system for characterizing noise propagation
in arbitrary molecular networks.
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