

1 **Metabolomic and transcriptomic analyses reveal the effects of grafting on**
2 **anthocyanin synthesis in grapevine**

3

4 Running title: The grafting and anthocyanin synthesis in grapevine

5

6 Haixia Zhong^{1, #}, Zhongjie Liu^{2, #}, Fuchun Zhang^{1, #}, Xiaoming Zhou¹, Xiaoxia Sun¹,
7 Wenwen Liu², Hua Xiao², Nan Wang², Mingqi Pan^{1*}, Xinyu Wu^{1*} & Yongfeng Zhou^{2*}

8

9 ¹*Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi,*
10 *830091, China*

11 ²*Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome*
12 *Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural*
13 *Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen,*
14 *China*

15

16 #These authors contributed equally to this work

17

18 *Corresponding authors: Mingqi Pan, e-mail: panmq3399@sohu.com; Xinyu Wu, e-
19 mail: wuxy@xaas.ac.cn; Yongfeng Zhou, e-mail: zhouyongfeng@caas.cn

20

21

22

23

24

25

26

27

28

29 **ABSTRACT**

30

31 The grafting has been commonly used in viticulture, which joints the scion from a
32 cultivar with the stem of a rootstock. Grafting has crucial impacts on various
33 phenotypes of the cultivar including berry metabolome and berry coloring, however,
34 the genetics and regulation mechanisms are largely unexplored. In this study, we
35 analyzed the phenotypic, metabolomic and transcriptomic profiles at three stages (45,
36 75 and 105 days after flowering) of the Crimson Seedless (*Vitis vinifera*, CS) cultivar
37 grafted to four rootstocks (three heterografting: CS/101-14MG, CS/SO4, CS/110R and
38 one self-grafting CS/CS) with an own-rooted grafting-free Crimson Seedless (CS) as a
39 control. All the heterografting plants had a significant influence on berry reddening as
40 early as ~45 days after flowering. The grafting of rootstocks promoted anthocyanin
41 synthesis and accumulation in grape berries. The metabolomic features showed that
42 Cyanidin 3-O-glucoside, Delphinidin 3-O-glucosid, Malvidin 3-O-glucoside, Peonidin
43 3-O-glucoside and Petunidin 3-O-glucoside were the pigments responsible for the
44 purplish-red color peels. Transcriptomic analyses revealed that the anthocyanins
45 biosynthetic related genes from the upstream (phenylalanine ammonia-lyase) to the
46 downstream (anthocyanidin 3-O-glucosyltransferase and anthocyanidin synthase) were
47 upregulated with the accumulations of anthocyanins in CS/101-14MG, CS/SO4 and
48 CS/110R. At the same time, all these genes were also highly expressed and more
49 anthocyanin was accumulated in CS/CS samples compared to CS samples, suggesting
50 that self-grafting rootstocks might also have promoted berry reddening in grapevine.
51 Our results provide global transcriptomic and metabolomic features in berry coloring
52 regulation under different grafting conditions for improving the berry quality in
53 grapevine production.

54

55 **Keywords:** viticulture, heterografting, self-grafting, grape, *Vitis*, metabolome

56

57 **Introduction**

58

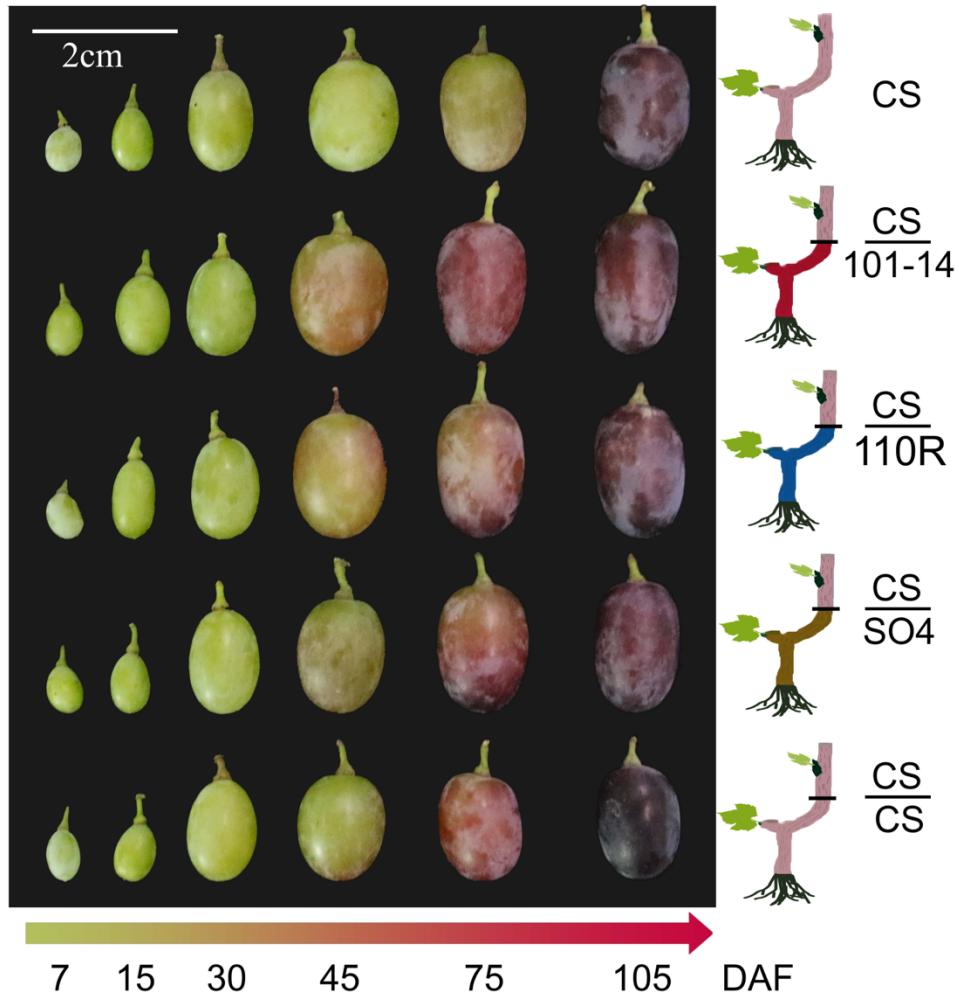
59 The grafting had been practiced in horticultural plants ~4000 years ago in China¹, which
60 established a vascular continuity by joining the scion of one plant with the stock of
61 another plant. The rootstocks could benefit the scion plant on enhancing the resistance
62 to biotic and abiotic stresses, and elevating desired agronomic traits. The stem grafting
63 in grapevine production could be traced back to ~2500 years ago². The practice of
64 grafting in grapevine using the wild *Vitis* species as rootstocks, which bring advantages
65 to the scion cultivar, including flowering time, berry quality, dwarfing, disease or pest
66 resistance and environmental adaptation.

67 Grapevine coloring is a very important agronomic trait that are required for adaptation
68 to the markets including table grapes and wine making. There are two types of grape
69 berry coloring: peel coloring and flesh coloring. In general, most red grapes are
70 pigmented in the peel, and the accumulation of anthocyanins in ripening grape berries
71 only occurs in epidermal and subepidermal cells^{4,5}. Recent studies revealed that the
72 grape peel color was mainly determined by the composition and content of
73 anthocyanins⁶, and the relative proportion of anthocyanins in each grape variety is
74 stable⁷. The anthocyanins in grapes mainly include anthocyanin, delphinidin,
75 petunidin, peonidin and malvidin, which are composed of aminoglycosides or
76 glycosides and acylation¹⁶. In grapevine, the content of anthocyanins in interspecific
77 hybrids were lower than the wild *Vitis* species, and table grapes were lower than wine
78 grapes¹⁷. Moreover, the biosynthesis of anthocyanins is affected by light⁸, temperature⁹,
79 moisture¹⁰, mineral nutrients¹¹, cultivation measures^{12,13}, growth regulators^{14,15} and
80 other external factors. The VvMYBA1 binds to VvWDR1 and activates three promoters
81 (*VvCHI3*, *VvOMT*, and *VvGST4*), which positively regulates berry flesh color, while
82 *VvMYBC2-L1* negatively regulates this process by competing the binding site with the
83 R2R3-MYB transcriptional activators or by repressing the expression level of *VvOMT*
84 and *VvGST4*¹⁷. Genomic structural variants showed that the QTL region underlying

85 berry color is hemizygous and convergent evolution was associated with the origin of
86 the green coloring in grapevine¹⁸. It is known that grafting connects two different
87 genomes and introduces complex genomic regulations in long-living perennials³. A
88 subclade of β -1,4-glucanases contributed to the grafting among a tomato scion, a
89 *Nicotiana benthamiana* middleman and an *Arabidopsis* rootstock by facilitating cell
90 wall reconstruction¹⁹. In addition, heterografting by using the scion of sweet orange and
91 rootstock *P. trifoliata* was performed to investigate the sRNA-mediated graft-
92 transmissible epigenetic modifications in citrus grafting²⁰. Rootstock influenced the
93 pigment on grape peel of scion cultivar was overserved²¹. However, the genetic basis
94 and molecular mechanism of effects of grafting on grape peel color is still unknown.

95 Crimson seedless grape is an important grape cultivar with bright red fruit grains,
96 and yellow flesh. It's natural seedless late-ripening European subspecies with thick fruit
97 powder, translucent flesh, hard flesh, high content of soluble solids. Understanding the
98 effects of grafting on anthocyanin synthesis pathway could be valuable for grapevine
99 production.

100 In our study, we aimed at understanding metabolic differences and significantly
101 differentially expressed genes in anthocyanin biosynthesis during berry development in
102 heterografting (CS/101-14MG, CS/SO4, CS/110R), self-grafting (CS/CS) and grafting-
103 free (CS) plants. We studied the association of grafting, berry coloring, metabolomic
104 and transcriptomic profiles and found the hub genes play critical roles in anthocyanin
105 biosynthesis.


106

107 **Materials and methods**

108

109 **Plant materials and treatments**

110 The grafting experiment was performed at the Xinjiang academy of agricultural
111 sciences anningqu comprehensive test field, national grape industry technology system
112 fruit quality control post base, Xinjiang, China. Scions were selected from thrive
113 annual branches on Crimson seedless self-root grapevine (CS). Four grafting
114 combinations were constructed: one with 101-14MG, (CS/101-14MG) grafted as
115 rootstock, one with SO4 (CS/SO4) grafted as rootstock , one with 110R (CS/110R)
116 grafted as rootstock and one with Crimson seedless (CS/CS) grafted as rootstock
117 (Figure. 1). Every grafting combination was performed more than ten repeats. Berry
118 skins were collected at three stages: 45, 75 and105 days after flowering (DAF) (Figure.
119 1). All samples with at least 50 berries were collected in randomized block designs and
120 three biological repeat. After being taken back to the laboratory and the peels were
121 carefully excised, and then collected and frozen in liquid nitrogen. After being roughly
122 ground, a total of 45 samples were stored at -80 °C for metabolome, mRNA sequencing
123 and RT-qPCR validation.

124
125 **Figure 1 The grafting design and berry phenotypes of Crimson Seedless grafted**
126 **on different rootstocks.** A schematic illustration of the grafting and Phenotypes of
127 grape berry in 6 development stages.

128
129 **Metabolite identification and quantification**

130 The anthocyanins profiles for each sample were conducted in the following three
131 steps: grinding, extraction and measurement. (i) Using mixer mill (MM 400, Retsch) to
132 crush the freeze-dried sample. (ii) The 50mg powder with extracting solution (methanol:
133 water: hydrochloric acid, 799:200:1, V/V/V) vortexed and ultrasound 10 min separately,
134 then centrifuged at 12, 000 g and 4 °C for 3 min, and collect the supernatants. The
135 precipitate was treated again using the same method to fully extract the components.
136 Combine the supernatants and filtrated (PTFE, 0.22 µm; Anpel) for UPLC-MS/MS

137 analysis. (iii) UPLC (ExionLC™ AD) and Tandem Mass Spectrometry (MS/MS)
138 (QTRAP® 6500+, N) used to detected the contents of Anthocyanins. Substituting the
139 integral peak area of all the detected samples into the linear equation of the standard
140 curve for calculation, and further putting it into the calculation formula, the absolute
141 content data of the substance in the actual sample is finally obtained.

142

143 **RNA-Seq and analysis of differentially expressed genes (DEGs)**

144 The total RNA was isolated by proceed as following: (i) add the preheated cracking
145 liquid and β - Mercaptoethanol; (ii) add equal volume chloroform / isoamyl alcohol (24
146 / 1); (iii) shaking and centrifugation, take the supernatant, add equal volume chloroform
147 / isoamyl alcohol (24/1) and then centrifugation; (iv) repeat iii again, add precipitant
148 for precipitation and centrifugation and wash with ethanol and recover RNA. The
149 obtained RNA was handed over to Shanghai Personal Biotechnology Cp. Ltd for
150 making library and RNA-sequencing.

151 By using fastp²⁹ with default parameters, the high-quality clean reads were filtered from
152 the raw reads). Then, the clean reads were aligned to the *Vitis vinifera* reference genome
153 (12X,http://plants.ensembl.org/Vitis_vinifera/Info/Index) using HISAT2³⁰. The
154 mapped reads were assembled using the software StringTie
155 ³¹(<http://ccb.jhu.edu/software/stringtie/>), then the read count value of each mapped gene
156 counted by using HTSeq³² as the original expression level of the gene, and FPKM was
157 used to normalized the expression level. Genes with $|\log_2\text{FoldChange}| > 1$ and
158 significant P-value < 0.05 calculated by DESeq³³ were identified as differentially
159 expressed.

160 The principal component analysis (PCA) was used to find associations in the
161 metabolome and transcriptome data set and revealed specific metabolite and transcripts
162 in categories³⁴⁻³⁶. The results were analyzed and visualized using R Studio software
163 (<https://www.rstudio.com/>) and two packages FactoMineR and factoextra.

164

165 **The enrichment analysis of gene function**

166 We used ClueGo+Cluepedia in Cytoscape³⁷ to classify genes functionally, and merge
167 related terms that share similar related genes to reduce redundancy. The GO-term fusion
168 function with default parameters was used to fuse similar items, and the threshold
169 P<0.05. Use Benjamini and Hochberg's FDR for hypergeometric testing. Kappa scores
170 were used to group terms using default parameters. The Cytoscape and R were used to
171 visualize the results.

172 **The hub gene identification using the WGCNA analyses**

173 The Weighted Correlation Network Analysis (WGCNA) ³⁸was used for detecting the
174 hub genes. Firstly, the cluster analysis was performed on the samples according to the
175 expression levels of all genes, Then the TomSimilarity module was used to calculate
176 the co-expression similarity coefficient among genes. To realize the functional
177 connection of genes, the PickSoftThreshold function of the software package was used
178 to select the parameters and carry out the weighted calculation to convert the expression
179 similarity coefficient of the intermediate parameters into the connection between genes.
180 The POWER value was selected when the correlation coefficient tends to be stable.
181 According to the network construction parameters selected above, a weighted co-
182 expression network model was established to classify genes and divide thousands of
183 genes into several modules. After the module is obtained, the gene expression in the
184 module is used to calculate the characteristic gene (ME) of the module, or the first main
185 component of the module. The correlation between the characteristic gene of the
186 module and the trait was further calculated, including the correlation between the gene
187 and the characteristic expression in the module (module membership, MM), the
188 correlation between each gene and the target trait (gene significance, GS).

189 Following a previous study³⁸, we used a passing threshold: GS.abs > 0.5 and
190 GS.pvalue < 0.001 to get genes or modules with significant correlation with traits, and
191 a passing threshold: GS.abs > 0.5 and MM .abs > 0.8 to get the hub gene of each module.
192 The transcription factor annotations were searched for the hub genes using

193 PlantTFDB³⁹ (v5.0, <http://plantfdb.gao-lab.org/>). The cytoscape software was used to
194 visualize the gene interaction network.

195

196 **RT-qPCR validation**

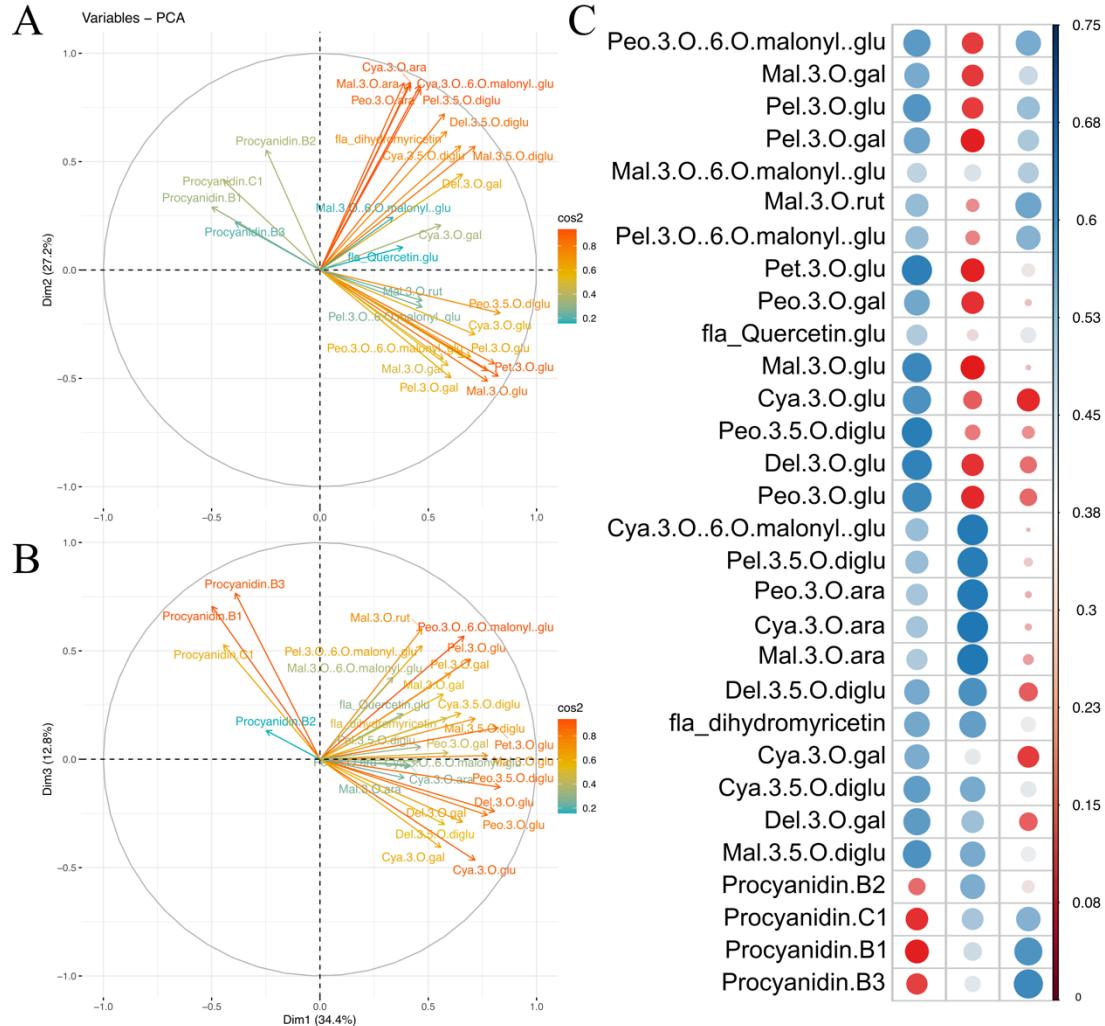
197 The extraction and quality detection of RNA used for RT-qPCR and RNA-Seq were
198 carried out in the same batch. Primer3 (v4.0, <https://bioinfo.ut.ee/primer3-0.4.0/>) and
199 NCBI Primer-BLAST (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi>)
200 were used to design primers for RT-qPCR analyses (Table S1). The *VvGADPH* gene
201 was selected as the housekeeping gene to correct and compute the relative expression
202 of other genes. The PCR assay was performed according to the following conditions:
203 (i) 95 °C for 2 minutes; (ii) 40 cycles at 95 °C for 5 seconds, 60°C for 30 seconds, and
204 72 °C for 10 seconds; (iii) 72 °C for 10 min.

205

206 **Results**

207

208 **Berry development and coloring**


209 We collected berry skin samples from Crimson-Seedless self-rooted and grafted on 4
210 different rootstocks, including three widely used commercial varieties, and one
211 Crimson-Seedless itself to erase the influence of grafting. Berry on grapes grafted with
212 the three commercial rootstocks showed an earlier start (38.5 days after flowering) of
213 berry coloring and bigger fruit size than CS and CS/CS, in which the heterografting
214 plant CS/101-14MG, performed most obvious (Figure 1). Under the constant
215 observation, three developmental periods were identified based on phenotypic features
216 and color changes. The first stage identified was 45 days after flowering (DAF), in
217 which the skin of the three heterografting grafted samples (CS/101-14MG, CS/SO4 and
218 CS/110R) showed visible color but no difference in fruit size (Figure 1). At 75 DAF,
219 All samples are going to veraison with the berry skin turn to red except CS, and the

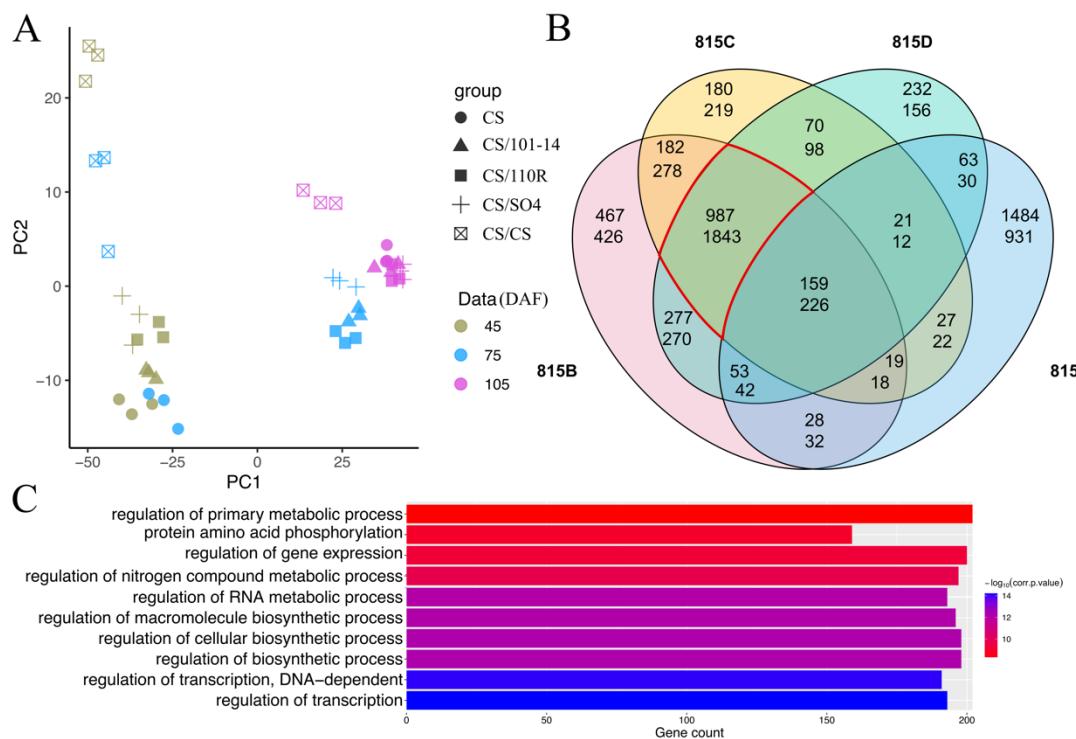
220 fruit size of the heterografting samples (CS/101-14MG, CS/SO4 and CS/110R) is
221 bigger than self-grafting CS/CS and grafting-free CS. At the final stage (105 DAF), all
222 samples finished veraison, in which the CS/CS showed the darkest red and smallest
223 fruit size, and the fruit size in sample CS/101-14MG, was biggest, which suggested all
224 the three commercial rootstocks promote fruit development and the best rootstock is
225 101-14 (Figure 1).

226

227 **The metabolomic analyses detected metabolites related to anthocyanin synthesis**

228 The metabolome of a total of 45 samples from five groups (at three stages with three
229 replicates each) of grapevine plants were evaluated, and thirty kinds of metabolites
230 related anthocyanins were identified and classified in seven groups, including Cyanidin,
231 Procyanidin, Peonidin, Delphinidin, Malvidin, Pelargonidin and Petunidin (Figure 2).
232 The content of 26 metabolites (86.7%) was increasing during the development process,
233 which showed a strong correlation with the berry coloring phenotypes. The association
234 of phenotype and metabolomics revealed a capture of critical period associated with the
235 grafting (Figure 2). The unsupervised multivariate principal component analysis of the
236 metabolites showed the first three principal components explained 74.4% of the
237 variance, while PC1 (34.4%) and PC2 (27.2%) described the compounds distribution
238 of samples (Figure 2A and 2B). The results revealed that the increased content primarily
239 showed a low level but gradually accumulated until the highest in third stage. There are
240 18 and five compounds, mostly colored anthocyanins, explained better in PC1 and PC2,
241 respectively (Figure 2A and 2B, Variable correlation > 0.6). Three Procyanidins and
242 two Cyanidins were separated by PC3, showed a decreasing pattern during the
243 development of grafting.

244


245 **Figure 2. The unsupervised multivariate PCA analyses of the metabolites and its**
246 **association with berry coloring.** The variable correlation plots of 30 metabolites, the
247 distance between variables and the origin measures the quality of the variables on the
248 factor map, and colored by cos2 value (A and B). The Heatmap of cos2 of variables
249 on all the dimensions (C).

250

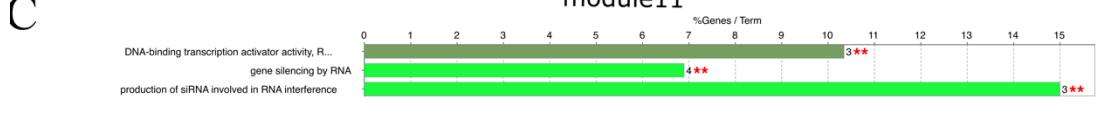
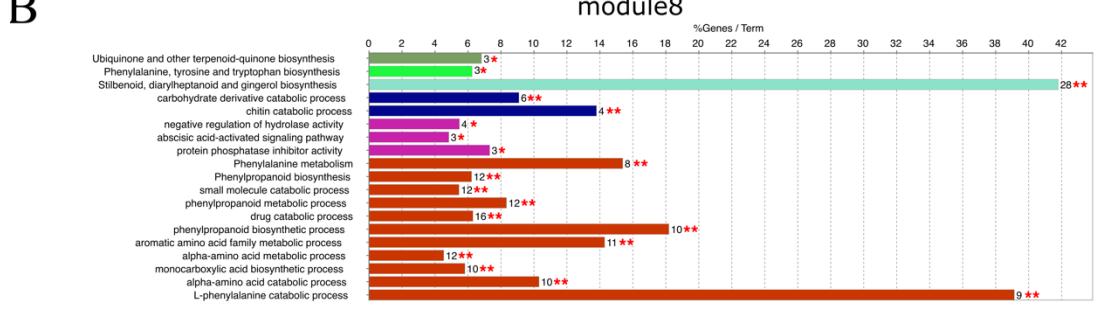
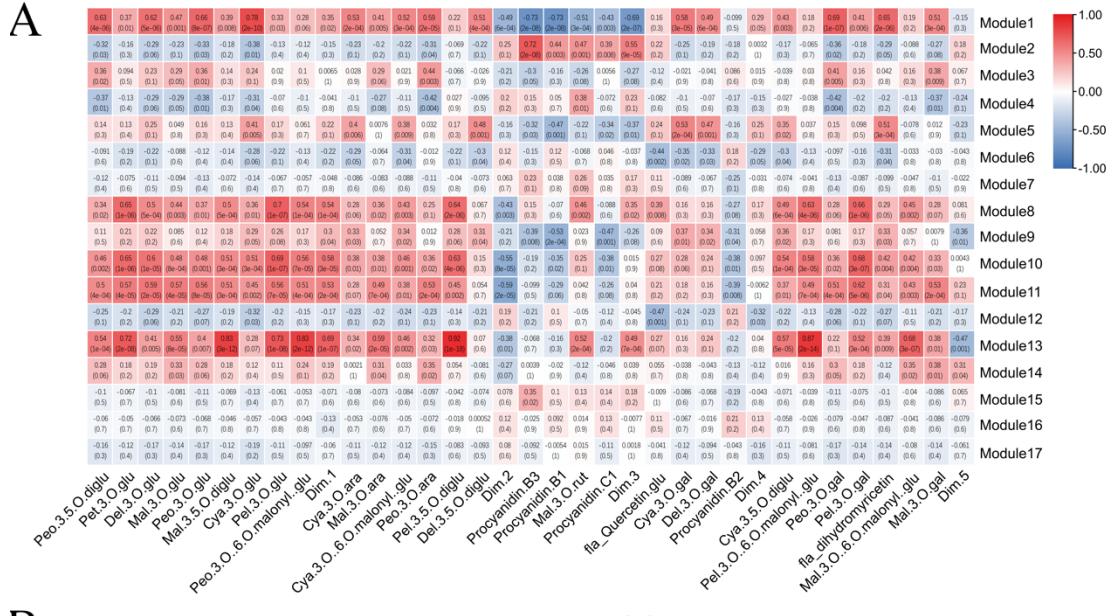
251 An overview of the transcriptomic data

252 A total of 1.89 billion clean paired-end reads with a length of 150 bp were obtained
253 from the RNA-sequencing dataset of 45 samples. All clean reads were mapped to the
254 PN40024 reference genome (Ensembl; *Vitis vinifera* 12X). The uniquely mapped rate
255 was > 90% in all samples (Table S2). PCA was used to visualize and evaluate the
256 overall changes in gene expression on different drafting situation. First two PC
257 explained 86.2% of the variation, the first PC (72.6%) separated samples according to

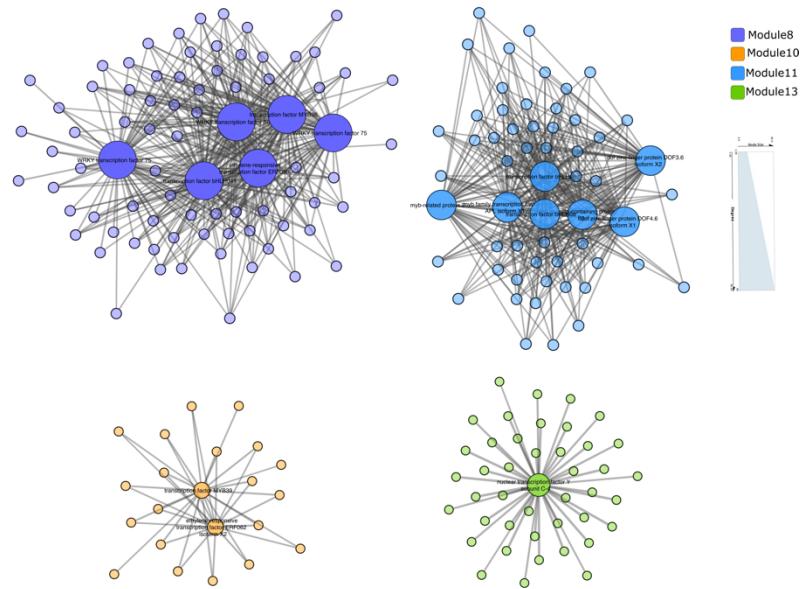
258 development stages for all samples, and the second PC (13.6%) separated the self-
259 grafting CS/CS and the other four groups of samples (Figure 3A). According to the
260 PCA, the distance between the three replicates of each sample was close, suggesting
261 the data is of high quality. In addition, the five samples at 45 DAF showed the similar
262 PC1 value from -25~50, at 75 DAF PC1 value of the three heterografting samples
263 (CS/101-14MG, CS/SO4, and CS/110R) were around 25, while the PC1 value of self-
264 grafting CS/CS and grafting-free CS only were < -20, and at 105 DAF the three
265 heterografting and grafting-free samples gathered a on the far right while the self-
266 grafting sample CS/CS had the most significant changes compared to 75 DAF. It
267 revealed that the significant transcriptional changes of three heterografting rootstock
268 varieties compared with the two control samples occurred mainly in the second stages
269 (75 DAF).

270
271 **Figure 3. Variability of transcriptional levels among grapes grafted with**
272 **different rootstocks.** A, PCA results of the transcriptome data. B, the Overlap of the
273 DEGs in 4 rootstocks compared with self-root, upper number and lower number
274 means the number of up-regulated down-regulated genes. C, The first ten GO terms
275 enriched in the DEGs of the common part (highlighted in B) of three rootstocks.
276

277 The differentially expressed genes (DEGs) screened with $|FPKM| > 1$ and $FDR \leq$
278 0.05 and resulted in 11972 DEGs identified in different stage compared with self-rooted
279 grafting-free (CS) samples, representing 52.27% of the whole-genome transcripts. The
280 number of DEGs in every group ranged from 550-4539, and at the 75 DAF stage, the
281 DEGs number is bigger than other stages (Figure S1). Therefore, the differences of gene
282 expression observed in PCA were well supported by the DEG analyses (Figure 3A).
283 According to the Venn diagram at 75 DAF, the differential expressed genes was 815
284 CS/CS specific/815 common in the three heterografting samples, with 1484/987
285 upregulated genes and 931/1843 downregulated genes, respectively (Figure 3B).
286 Further, we categorized the functions by the singular enrichment analysis of the DEGs
287 overlapped in the three heterografting samples at 75 DAF. The results showed 136 and
288 5 enriched GO terms derived from the upregulated and downregulated DEGs,
289 respectively. A total of 66 of the 136 upregulated terms belonged BP catalogue, in
290 which “regulation of transcription”, “regulation of biosynthetic process”, “regulation
291 of primary process”, “response to abiotic stimulus”, “response to carbohydrate stimulus”
292 and “response to mechanical stimulus” were the most enriched ones (Figure 3C, Table
293 S3).




294

295 **Gene screening using the WGCNA analysis**


296 To classify the co-expression modules and identify hub genes based on transcriptomic
297 and metabolomic data, a weighted correlation network was constructed using 25038
298 transcripts. In the present study, a thresholding power of 3 was selected, which was the
299 lowest power that properly fits the scale-free topological index, and 17 modules
300 revealed after the merged dynamic analysis (Figure S2A). The modules were sorted and
301 numbered according to the gene number assigned to each module. Most of the genes
302 (16948) fell into the first module while the module 2-5 includes genes more than 500,
303 and genes in the other 12 modules were distributed between 252-51.

304

305 The correlation coefficients between the modules and anthocyanin content varied
306 widely from -0.73 to 0.92. Four intriguing modules (module 8, 10, 11 and 13) with GS-
307 value greater than 0.5 in multiple compounds or PCs were screened, indicating genes
308 in these modules have significant correlation with the anthocyanin content. The
309 biological functions of the intrinsic genes in the four modules were further analyzed
310 (Figure 4A). First, due to these four modules were in a same cluster, so we analyzed
311 the function of all genes. The result revealed four term related chitin catabolic process,
312 stilbenoid, diarylheptanoid and gingerol biosynthesis, abscisic acid binding, and
313 phenylalanine ammonia-lyase activity (Figure S2B). Next each module were checked
314 and the two modules we focused on were module 8 and module 11. In module 8, five
315 KEGG terms and 14 GO terms were enriched, in which five terms related to
316 "Phenylalanine", such as KEGG:00940 (Phenylpropanoid biosynthesis) and
317 GO:0009699 (Phenylpropanoid biosynthesis) showed genes in this module participated
318 in the synthesis and metabolism of compounds related anthocyanin. In addition,
319 KEGG:00945 (Stilbenoid, diarylheptanoid, and gingerol biosynthesis) and
320 GO:0009738 (abscisic acid-activated signaling pathway) indicated this module play
321 other roles in berry development. In module 11, only 3 GO term were enriched
322 including DNA-binding transcription activator activity, production of siRNA involved
323 in RNA interference, and gene silencing by RNA, indicating that these modules were
324 mainly associated with the siRNA activities. Connectivity, MM and GS value of genes
325 in each module was calculated and combed to screen the hub genes (Figure S3). In this
326 study, 82, 22, 57 and 43 hub genes were identified in modules 8, 10, 11, and 13
327 respectively (Figure 5). A total of 16 Hub-TF genes were detected and classified into 8
328 TF families by using PlantTFDB. Based on Hub-TF genes and correlation network, we
329 built and visualized the network highly related the anthocyanin synthesis (Figure 5).

330
331 **Figure 4. The module-anthocyanin association analysis.** A, Heatmap shows the
332 correlation between modules and anthocyanin. Abbreviations and full names
333 correspond to Table S4 . The GS-value between a given module and anthocyanin is
334 indicated by the color of the cell and the text inside cells (upper number is the value
335 and lower number is P-value). Red and blue indicated positive and negative
336 correlation, respectively. B and C, The GO-enrichment analysis of Module 8 and 11,
337 respectively. *, P < 0.05; **, P < 0.01; and ***, P < 0.001.
338

339

340

341

342

343

Figure 5. The correlation network in modules highly related to anthocyanin synthesis. The size of node represents the number of genes connected. The transparency of edges means the weight value between two genes.

344

345

The expression pattern and the validation of anthocyanins' biosynthetic pathway genes

346

347

We selected 19 genes in anthocyanin biosynthetic pathway belonged to 11 gene

families. We found all the genes expressed differently in all samples (Figure 6, S4).

348

349

During fruit coloring, most of genes of anthocyanin biosynthetic pathway were

upregulated with the highest expression level at 105 DAF. However, each gene family

350

has more than one gene from two genes (DFR) to 13 genes (PAL) with high expression

351

levels. It is indicated that although they might have the similar functions, but only a few

352

genes were functional. Comparing with self-grafting CS/CS and grafting-free CS

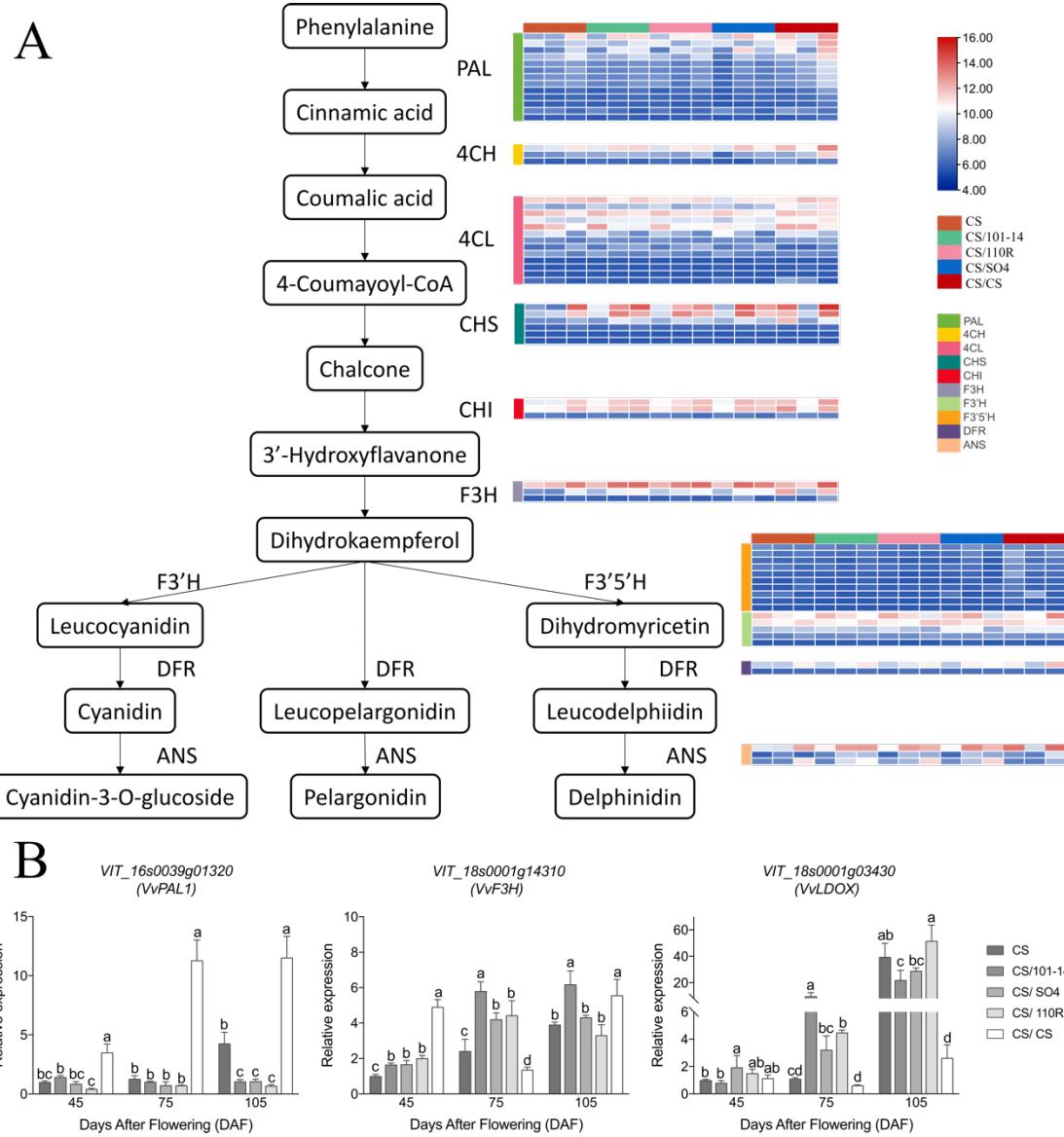
353

samples, genes in the rootstock group started upregulated earlier in the former than the

354

later, especially in a *PAL*, *4CH*, *4CL*, *CHS*, *CHI*, and *F3H*, which participate the

355


anthocyanin precursor synthesis in the anthocyanin pathway. And, the same with the

356

trend of phenotype processes and anthocyanin content were observed, the highest gene

357

expression in CS/CS at 105 DAF than the other four groups (Figure 6, S4).

Figure 6. The transcript profiling (A) and RT-PCR(B) of genes in the anthocyanin biosynthetic pathway. Grids with color-scale from blue to white to red represented the RPKM values of DEGs from low to middle to high. PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3'H, flavonoid 3'-hydroxylase; F3'5'H, flavonoid 3',5'-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase.

358

359

360

361

362

363

364

365

366

367

368

369

370

371

Finally, 19 DEGs including 4 transcription factors, 4 genes of phenylpropanoid biosynthetic pathway, and 12 genes of flavonoid biosynthetic pathway were selected to analyze their expression levels in all samples using RT-qPCR. The results validated the good consistency between RNA-Seq data and RT-qPCR, with a correlation coefficient was 0.9992 (Figure S5).

372

373 **Discussion**

374 The grafting in grapevine production can improve the fitness and phenotypes of the
375 scion plant, such berry quality, berry coloring, environmental adaptation, and disease
376 resistance. According to our field observation, the grafting of CS scion with the 101-
377 14MG rootstock had a positive influence on fruit coloring. However, the molecular
378 mechanism at the micro-level is unknown. We combined the berry color phenotypes,
379 metabolomic and transcriptomic data at three stages of berry development of CS grafted
380 to four rootstocks (three heterografting: CS/101-14MG, CS/SO4, CS/110R, and one
381 self-grafting CS/CS) with an own-rooted grafting-free Crimson Seedless (CS) as a
382 control. The results indicated that the heterografting had up-regulated the genes
383 expression that involved in the anthocyanin biosynthesis pathway and promoted an
384 earlier reddening of the berries in CS/101-14MG, CS/SO4, and CS/110R. The TF
385 factors are the hubs in regulation of the early reddening. The self-grafting plants (CS/CS)
386 also showed an earlier reddening, more anthocyanin content and upregulated of genes
387 in the anthocyanin synthesis pathway than the grafting-free plants (CS), suggesting the
388 grafting practice alone might have positive effects on berry reddening in grapevine.

389 The pigments responsible for the purplish-red color peels of the CS cultivar
390 included Cyanidin 3-O-glucoside, Delphinidin 3-O-glucoside, Malvidin 3-O-glucoside,
391 Peonidin 3-O-glucoside and Petunidin 3-O-glucoside (Figure 2). In the samples of
392 group CS/101-14MG, the content of anthocyanins significantly increased from 75 DAF,
393 while at 105 DAF, the accumulation of anthocyanins in groups CS/SO4 and CS/CS was
394 dramatically higher than that in group CS (Figure 1). The results showed that rootstock
395 grafting could improve the content of anthocyanins in grape berries and promote
396 coloration. The grafting material of rootstock 101-14MG could promote the
397 accumulation of anthocyanins in grape berries in advance.

398 Previous studies addressed the ‘MYB-bHLH-WDR’ regulatory complex
399 coordinately activated multiple genes of anthocyanin^{40,41}. In bright colored fruits, the

400 genes encoding key enzymes downstream of anthocyanin biosynthesis pathway are
401 often highly expressed, such as *DFR*, *ANS*, and *UFGT*⁴². The MBW complex consisted
402 of MYB transcription factor, basic helix-loop-helix (bHLH), and WD40 proteins was
403 demonstrated to regulate the expression of anthocyanin genes⁴³. In *Arabidopsis*
404 *thaliana*, some MYB transcription factors such as TT2, MYB75, MYB113, and
405 MYB114, some bHLH transcription factors such as TT8, GL3, and EGL3, and a WD40
406 repeat protein TTG1 can regulate the expression levels of several downstream genes,
407 such as *DFR*, *ANS*, and *UFGT* and affect the anthocyanin biosynthesis⁴³.

408 In this study, the anthocyanins biosynthetic related genes from the upstream
409 (phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate CoA ligase,
410 chalcone synthase, flavanone 3-hydroxylase, flavonoid 3' -hydroxylase, flavonoid 3',5
411 '-hydroxylase, flavonoid 3' -hydroxylase, flavonoid 3',5' '-hydroxylase, and
412 dihydroflavonol 4-reductase) to the downstream (anthocyanidin 3-O-
413 glucosyltransferase and anthocyanidin synthase) were almost upregulated with the
414 accumulating of anthocyanins and berry reddening. However, all these genes were also
415 highly expressed in CS/CS samples, the results suggested that self-grafting rootstocks
416 might have an earlier response to fruit color-related metabolism. The differentially
417 expressed MYBs, such as transcription factor *MYB44* and transcription factor *MYB4*
418 were hubs in PPI interacting network analysis. We predict that MYBs are the key
419 regulators involved in anthocyanin pathways in the interactions between grapevine and
420 rootstocks.

421 In apple, *CHS* is positively regulated by the expression of *MYB4* and *MYB5*⁴⁴. The
422 *FcMYB1* in strawberry switches the accumulations of anthocyanins and flavonoids on
423 and off⁴⁵. However, the deletion of MYB *cis*-elements in *CHS* promotor can cause
424 white crabapple morphs⁴⁶. In our PPI interacting network analysis, the *trans*-cinnamate
425 4-monoxygenase-like was directly interaction with transcription factors *MYB86* and
426 *MYB4*; the leucoanthocyanidin reductase 1 was directly interaction with *MYBPA1*
427 protein; the flavonoid 3'5' hydroxylase, anthocyanidin 3-O-glucosyltransferase 2, and

428 MYC anthocyanin regulatory protein were directly interaction with transcription factor
429 MYB90; the flavonoid 3' hydroxylase was directly interaction with MYB-related
430 protein 308 and MYB-related protein 305.

431 The DELLA proteins positively regulate the biosynthesis of anthocyanin in
432 *Arabidopsis*. The DELLA proteins can directly interact with and sequester the
433 AtMYBL2 and AtJAZ repressors, resulting in higher MBW complex activities⁴⁷. A
434 considerable number of anthocyanin repressors have been consistently identified. In
435 *Arabidopsis* seedlings, miR858 inhibits the expression of anthocyanin repressor
436 *AtMYBL2*, thus regulating the anthocyanin biosynthesis positively⁴⁸. In tomatoes,
437 inversely, miR858 inhibits the expression of *SlMYB7*-like to regulates anthocyanin
438 biosynthesis negatively . Blocking miR858 function via ectopic expression of a small
439 tandem target mimic of miR858 enhanced anthocyanin accumulation in tomato
440 seedlings⁴⁹. high auxin concentration inhibits anthocyanin biosynthesis^{50,51}. A study of
441 red-fleshed apple calli⁵² demonstrated that Auxin Response Factor 13 (MdARF13)
442 inhibited the biosynthesis of anthocyanin. It was achieved both by the direct binding of
443 MdARF13 to the promoter of the ABP gene *MdDFR* to repress its expression and by
444 the physical interaction of MdARF13 with the subgroup 6 R2R3-MYB activator
445 MdMYB10 to destabilize the MBW complex. In PPI interacting network, transcription
446 repressor MYB4-like transcription factor was directly interaction with transcription
447 factor bHLH87, transcription factor bHLH106 and DEAD-box ATP-dependent RNA
448 helicase 42.

449 DEAD-box ATP-dependent RNA helicase 42 was situated hub of PPI interacting
450 network and directly related to all MYB genes including all MYB transcription factors,
451 MYB-related proteins, *MYBPA2* and transcription factor GAMYB. The DEAD-box
452 RNA helicases participate in ribonucleoprotein complexes rearrangement and RNA
453 structure modification, thereby participating in all aspects of RNA metabolism. The
454 DEAD-box RNA Helicase42 (OsRH42) is necessary to support effective splicing of
455 pre-mRNA during mRNA maturation at low temperatures⁵³. The importance of DEAD-

456 box ATP-dependent RNA helicase 42 in anthocyanin metabolism was to be expected.
457 The module 11 significantly correlated with anthocyanin content and enriched for
458 siRNA activities and siRNA had played important roles in the regulation networks
459 between the scions and the stocks³.

460 **Conclusions**

461 In summary, the combined phenotypes, transcriptome, and metabolome comprehensive
462 analyses provided large-scale information on gene-metabolite regulation networks
463 related to anthocyanin synthesis. Our results provide global transcriptional changes in
464 grape peel color regulation under different grafting conditions for improving the
465 production and breeding of grapevine.

466 **Author Contributions**

467 Conceptualization, HZ, ZL, and FZ; Data curation, HZ, ZL, FZ, XZ, XS, WL, HX, NW.
468 Formal analysis, HZ, WL, HX, and NW. Funding acquisition, HZ and MP.
469 Methodology, HZ, ZL, and FZ. Project administration, HZ. Resources, FZ, ZL XZ, and
470 XW; Supervision, MP, XW and YZ. Validation, HZ ZL, and FZ. Writing, review and
471 editing, HZ, ZL, FZ, and YZ.

472

473 **Data availability**

474 The RNA-Seq dataset in this study have been deposited in the NCBI under the project
475 number xxxx.

476

477 **Acknowledgments**

478 This research was financed by the National Natural Science Foundation of China
479 (32160682), the National Natural Science Foundation of China (31960575), the basic
480 scientific research funding project of Tianshan Youth-Excellence Youth Project (No.
481 2020Q028) funds project, Supported by China Agriculture Research System of MOF

482 and MARA, Forestry reform and Development from the central government (Xin [2021]
483 TG04).

484

485 **Competing interests statement**

486 We declare that none of the authors have any competing interests.

487

488 **References**

- 489 1. Meng, C., Xu, D., Son, Y.-J. & Kubota, C. Simulation-based Economic
490 Feasibility Analysis of Grafting Technology for Propagation Operation. *IIE
491 Annual Conference. Proceedings* 1-10 [https://www.proquest.com/scholarly-
495 journals/simulation-based-economic-feasibility-
496 analysis/docview/1151086818/se-
497 2?accountid=26514](https://www.proquest.com/scholarly-
492 journals/simulation-based-economic-feasibility-
493 analysis/docview/1151086818/se-
494 2?accountid=26514) [http://dx.doi.org/10.1146/annurev-genet-112618-043545](http://www.yidu.edu.cn/educhina/educhina.do?artifact=&s
value=IIE+Annual+Conference.+Proceedings&stype=2&s=onhttp://159.226.1
00.141/Reader/union_result.jsp?title=1&word=IIE+Annual+Conference.+Pro
ceedings (2012).498 2. Mudge, K., Janick, J., Scofield, S. & Goldschmidt, E.E. A History of Grafting
499 in Horticultural Reviews 437-493 2009).500 3. Gaut, B.S., Miller, A.J. & Seymour, D.K. Living with Two Genomes: Grafting
501 and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic
502 Variation, and Evolution. <i>Annual Review of Genetics</i> 53, 195-215
503 <a href=) (2019).
- 504 4. Li, X.-J. *et al.* Comparison of anthocyanin accumulation and morpho-
505 anatomical features in apple skin during color formation at two habitats.
506 *Scientia Horticulturae* **99**, 41-53
507 [http://dx.doi.org/https://doi.org/10.1016/S0304-4238\(03\)00086-4](http://dx.doi.org/https://doi.org/10.1016/S0304-4238(03)00086-4) (2004).
- 508 5. Shih, P.H., Yeh, C.T. & Yen, G.C. Effects of anthocyanidin on the inhibition of
509 proliferation and induction of apoptosis in human gastric adenocarcinoma cells.
510 *Food Chem Toxicol* **43**, 1557-1566 <http://dx.doi.org/10.1016/j.fct.2005.05.001>
511 (2005).
- 512 6. Cooper-Driver, G.A. Contributions of Jeffrey Harborne and co-workers to the
513 study of anthocyanins. *Phytochemistry* **56**, 229-236
514 [http://dx.doi.org/https://doi.org/10.1016/S0031-9422\(00\)00455-6](http://dx.doi.org/https://doi.org/10.1016/S0031-9422(00)00455-6) (2001).
- 515 7. Pomar, F., Novo, M. & Masa, A. Varietal differences among the anthocyanin
516 profiles of 50 red table grape cultivars studied by high performance liquid
517 chromatography. *Journal of Chromatography A* **1094**, 34-41
518 <http://dx.doi.org/10.1016/j.chroma.2005.07.096> (2005).
- 519 8. Kalt, W. *et al.* Phenolics of Vaccinium berries and other fruit crops. *J Sci Food
520 Agr* **88**, 68-76 <http://dx.doi.org/10.1002/jsfa.2991> (2008).

521 9. Spayd, S.E., Tarara, J.M., Mee, D.L. & Ferguson, J.C. Separation of sunlight
522 and temperature effects on the composition of *Vitis vinifera* cv. Merlot berries.
523 *Am. J. Enol. Vitic.* **53**, 171-182 <Go to ISI>://WOS:000178782800001 (2002).

524 10. Santestebasn, L.G., Miranda, C. & Royo, J.B. Regulated deficit irrigation
525 effects in Cv. 'Tempranillo' vineyards grown under semiarid conditions in Mid-
526 Ebro River Valley (Spain). (2007).

527 11. Wheeler, S.J., Black, A.S. & Pickering, G.J. Vineyard floor management
528 improves wine quality in highly vigorous *Vitis vinifera* 'Cabernet Sauvignon'
529 in New Zealand. *New Zealand Journal of Crop and Horticultural Science* **33**,
530 317-328 <http://dx.doi.org/10.1080/01140671.2005.9514365> (2005).

531 12. Pérez-Lamela, C., García-Falcón, M.S., Simal-Gándara, J. & Orriols-Fernández,
532 I. Influence of grape variety, vine system and enological treatments on the
533 colour stability of young red wines. *Food Chemistry* **101**, 601-606
534 <http://dx.doi.org/https://doi.org/10.1016/j.foodchem.2006.02.020> (2007).

535 13. Orlandini, S., Dalla Marta, A. & Matti, G.B. Analysis and agrometeorological
536 modelling of grapevine responses to different trellising systems. *Vitis* **47**, 89-96
537 <Go to ISI>://WOS:000255370400003 (2008).

538 14. Wang, H.C., Huang, H.B. & Huang, X.M. Differential effects of abscisic acid
539 and ethylene on the fruit maturation of *Litchi chinensis* Sonn. *Plant Growth
540 Regulation* **52**, 189-198 <http://dx.doi.org/10.1007/s10725-007-9189-8> (2007).

541 15. Reynolds, A.G., Roller, J.N., Forgione, A. & De Savigny, C. Gibberellic acid
542 and basal leaf removal: Implications for fruit maturity, vestigial seed
543 development, and sensory attributes of sovereign coronation table grapes. *Am.
544 J. Enol. Vitic.* **57**, 41-53 <Go to ISI>://WOS:000236618800005 (2006).

545 16. Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits.
546 *Trends Plant Sci.* **18**, 477-483 <http://dx.doi.org/10.1016/j.tplants.2013.06.003>
547 (2013).

548 17. Liang, Z. *et al.* Anthocyanin composition and content in grape berry skin in
549 *Vitis* germplasm. *Food Chemistry* **111**, 837-844
550 <http://dx.doi.org/https://doi.org/10.1016/j.foodchem.2008.04.069> (2008).

551 18. Zhou, Y. *et al.* The population genetics of structural variants in grapevine
552 domestication. *Nature Plants* **5**, 965-979 [http://dx.doi.org/10.1038/s41477-019-0507-8](http://dx.doi.org/10.1038/s41477-019-
553 0507-8) (2019).

554 19. Notaguchi, M. *et al.* Cell-cell adhesion in plant grafting is facilitated by
555 β -1,4-glucanases. *Science* **369**, 698-702
556 <http://dx.doi.org/doi:10.1126/science.abc3710> (2020).

557 20. Huang, Y. *et al.* Genome of a citrus rootstock and global DNA demethylation
558 caused by heterografting. *Hortic Res* **8**, 69 [http://dx.doi.org/10.1038/s41438-021-00505-2](http://dx.doi.org/10.1038/s41438-
559 021-00505-2) (2021).

560 21. Gutiérrez-Gamboa, G. *et al.* Rootstock effects on grape anthocyanins, skin and
561 seed proanthocyanidins and wine color and phenolic compounds from *Vitis*

604 34. Fasoli, M. *et al.* The grapevine expression atlas reveals a deep transcriptome
605 shift driving the entire plant into a maturation program. *Plant Cell* **24**, 3489-505
606 <http://dx.doi.org/10.1105/tpc.112.100230> (2012).

607 35. Fasoli, M. *et al.* Timing and Order of the Molecular Events Marking the Onset
608 of Berry Ripening in Grapevine. *Plant Physiology* (Article) **178**, 1187-1206
609 <http://dx.doi.org/10.1104/pp.18.00559> (2018).

610 36. Zamboni, A. *et al.* Identification of Putative Stage-Specific Grapevine Berry
611 Biomarkers and Omics Data Integration into Networks. *Plant Physiology* **154**,
612 1439-1459 <http://dx.doi.org/10.1104/pp.110.160275> (2010).

613 37. Bindea, G., Galon, J. & Mlecnik, B. CluePedia Cytoscape plugin: pathway
614 insights using integrated experimental and in silico data. *Bioinformatics* **29**,
615 661-3 <http://dx.doi.org/10.1093/bioinformatics/btt019> (2013).

616 38. Fuller, T.F. *et al.* Weighted gene coexpression network analysis strategies
617 applied to mouse weight. *Mamm Genome* **18**, 463-72
618 <http://dx.doi.org/10.1007/s00335-007-9043-3> (2007).

619 39. Jin, J. *et al.* PlantTFDB 4.0: toward a central hub for transcription factors and
620 regulatory interactions in plants. *Nucleic Acids Research* **45**, D1040-D1045
621 <http://dx.doi.org/10.1093/nar/gkw982> (2016).

622 40. Davies, K.M., Albert, N.W. & Schwinn, K.E. From landing lights to mimicry:
623 the molecular regulation of flower colouration and mechanisms for
624 pigmentation patterning. *Functional Plant Biology* **39**, 619-638
625 <http://dx.doi.org/https://doi.org/10.1071/FP12195> (2012).

626 41. Lloyd, A. *et al.* Advances in the MYB-bHLH-WD Repeat (MBW) Pigment
627 Regulatory Model: Addition of a WRKY Factor and Co-option of an
628 Anthocyanin MYB for Betalain Regulation. *Plant and Cell Physiology* **58**,
629 1431-1441 <http://dx.doi.org/10.1093/pcp/pcx075> (2017).

630 42. Han, Y.P., Vimolmangkang, S., Soria-Guerra, R.E. & Korban, S.S. Introduction
631 of apple ANR genes into tobacco inhibits expression of both CHI and DFR
632 genes in flowers, leading to loss of anthocyanin. *Journal of Experimental
633 Botany* **63**, 2437-2447 <http://dx.doi.org/10.1093/jxb/err415> (2012).

634 43. Saito, K. *et al.* The flavonoid biosynthetic pathway in Arabidopsis: Structural
635 and genetic diversity. *Plant Physiology and Biochemistry* **72**, 21-34
636 <http://dx.doi.org/10.1016/j.plaphy.2013.02.001> (2013).

637 44. Clark, S.T. & Verwoerd, W.S. A systems approach to identifying correlated
638 gene targets for the loss of colour pigmentation in plants. *Bmc Bioinformatics*
639 **12**, <http://dx.doi.org/Artn 34310.1186/1471-2105-12-343> (2011).

640 45. Salvatierra, A., Pimentel, P., Moya-Leon, M.A. & Herrera, R. Increased
641 accumulation of anthocyanins in *Fragaria chiloensis* fruits by transient
642 suppression of FcMYB1 gene. *Phytochemistry* **90**, 25-36
643 <http://dx.doi.org/10.1016/j.phytochem.2013.02.016> (2013).

644 46. Dick, C.A. *et al.* Arctic Mustard Flower Color Polymorphism Controlled by
645 Petal-Specific Downregulation at the Threshold of the Anthocyanin

646 Biosynthetic Pathway. *Plos One* **6**, <http://dx.doi.org/ARTN e1823010.1371/journal.pone.0018230> (2011).

647 47. Xie, Y., Tan, H., Ma, Z. & Huang, J. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in *Arabidopsis thaliana*. *Molecular Plant* **9**, 711-721 (2016).

648 48. Wang, Y.L., Wang, Y.Q., Song, Z.Q. & Zhang, H.Y. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in *Arabidopsis*. *Molecular Plant* **9**, 1395-1405 <http://dx.doi.org/10.1016/j.molp.2016.07.003> (2016).

649 49. Jia, X. *et al.* Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. *Planta* **242**, 283-93 <http://dx.doi.org/10.1007/s00425-015-2305-5> (2015).

650 50. Ji, X.H., Zhang, R., Wang, N., Yang, L. & Chen, X.S. Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (*Malus sieversii* f. *niedzwetzkyana*). *Plant Cell Tiss Org* **123**, 389-404 <http://dx.doi.org/10.1007/s11240-015-0843-y> (2015).

651 51. Wang, Y.C. *et al.* Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. *Horticulture Research* **5**, <http://dx.doi.org/ARTN 5910.1038/s41438-018-0068-4> (2018).

652 52. Wang, Y.C. *et al.* Nitrogen Affects Anthocyanin Biosynthesis by Regulating MdLOB52 Downstream of MdARF19 in Callus Cultures of Red-Fleshed Apple (*Malus sieversii* f. *niedzwetzkyana*). *Journal of Plant Growth Regulation* **37**, 719-729 <http://dx.doi.org/10.1007/s00344-017-9766-7> (2018).

653 53. Lu, C.A. *et al.* DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. *Plant Physiology* **182**, 255-271 <http://dx.doi.org/10.1104/pp.19.00832> (2020).

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674