

1 Infection-induced miR-126 suppresses *tsc1*- and *cxcl12a*-dependent permissive macrophages
2 during mycobacterial infection

3

4 Running title: miR-126 suppresses mycobacterial-permissive macrophages

5

6 Kathryn Wright^{1,2}, Kumudika de Silva², Karren M. Plain², Auriol C. Purdie², Warwick J.
7 Britton^{1,4}, Stefan H. Oehlers^{1,5*}

8

9 ¹Tuberculosis Research Program at the Centenary Institute, The University of Sydney,
10 Camperdown NSW Australia

11 ²The University of Sydney, Faculty of Science, Sydney School of Veterinary Science,
12 Sydney NSW, Australia

13 ⁴Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW,
14 Australia

15 ⁵The University of Sydney, Faculty of Medicine and Health & Sydney Institute for Infectious
16 Diseases, Camperdown NSW Australia

17

18 * Corresponding author: Stefan Oehlers, stefan.oehlers@sydney.edu.au

19 Postal address: Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia

20 Telephone: +61 2 9565 6114

21

22 **Funding**

23 The work was supported by a Meat and Livestock Australia Grant (P.PSH.0813) to KdS,
24 KMP, and ACP; Higher Degree Research scholarship (P.PSH.0813) to KW, University of
25 Sydney Fellowship (G197581) and NSW Ministry of Health under the NSW Health Early-
26 Mid Career Fellowships Scheme (H18/31086) to SHO; the National Health and Medical
27 Research Council Centre of Research Excellence in Tuberculosis Control (APP1153493) and
28 The University of Sydney DVCR award to WJB.

29

30

31 **Abstract**

32 Regulation of host microRNA (miRNA) expression is a contested node that controls the host
33 immune response to mycobacterial infection. The host must overcome concerted subversive
34 efforts of pathogenic mycobacteria to launch and maintain a protective immune response.
35 Here we examine the role of miR-126 in the zebrafish model of *Mycobacterium marinum*
36 infection and identify a protective role for this infection-induced miRNA through multiple
37 effector pathways. Specifically, we analyse the impact of the miR-126 knockdown-induced
38 *tsc1a* and *cxcl12a/ccl2/CCR2* signalling axes during early host-*M. marinum* interactions. We
39 find a strong detrimental effect of *tsc1a* upregulation that renders zebrafish embryos
40 susceptible to higher bacterial burden and increased cell death despite dramatically higher
41 recruitment of macrophages to the site of infection. We demonstrate that infection-induced
42 miR-126 suppresses *tsc1* and *cxcl12a* expression thus improving macrophage function early
43 in infection, partially through activation of mTOR signalling and strongly through preventing
44 the recruitment of Ccr2+ permissive macrophages, resulting in the recruitment of protective
45 *tnfa*-expressing macrophages. Together our results demonstrate an important role for
46 infection-induced miR-126 in shaping an effective immune response to *M. marinum* infection
47 in zebrafish embryos.

48

49 **Introduction**

50 Manipulation and subversion of host signalling pathways is a hallmark of infection by
51 pathogenic mycobacteria, such as the causative agents of tuberculosis and leprosy ^{1,2}.
52 Infection with pathogenic mycobacteria results in dysregulated immune responses and
53 disruption of key signalling cascades, ultimately supporting the survival and persistence of
54 bacteria ³. A crucial element of mycobacterial persistence is the interaction between bacteria
55 and innate immune cells, primarily macrophages. Subversion of this normally protective
56 interaction between macrophage and bacterium leads to the formation of granulomas which
57 aid bacterial survival. Pleiotropic modulation of host gene expression and signalling cascades
58 by microRNA (miRNA) potentially act as master regulators of the immune cell response to
59 mycobacteria and may shape the outcome of infection.

60 miRNA are short single-stranded non-coding RNA molecules that post-
61 transcriptionally regulate gene expression. Through a process known as gene-silencing,
62 miRNA bind to the untranslated regions (UTRs) of target mRNA and reduce their stability.
63 Depending on the degree of complementarity in base pairing, miRNA may either degrade the
64 bound mRNA, or transiently suppress translation, reducing protein production ⁴. As master

65 regulators of gene expression, miRNA have been investigated in multiple pathologies to
66 identify their functional pathways and biomarker potential ^{5,6}. During mycobacterial
67 infections, miRNA are differentially regulated, and play significant biological roles during
68 infection ⁷⁻¹¹. The regulation of miRNA expression is a contested node, in that it is
69 multifaceted and driven by several opposing factors. Host control of miRNA is challenged by
70 pathogen-driven modulation of expression and the downstream impacts on host immunity
71 may result in either successful clearance or subversion by the pathogen to support infection.

72 Reduced expression of miR-126 has been reported in cattle suffering from Johne's
73 disease, an infection caused by *Mycobacterium avium* subspecies *paratuberculosis*, in
74 *Mycobacterium abscessus* and *Mycobacterium tuberculosis*-infected THP-1 cells, and in
75 patients with tuberculous meningitis, a severe manifestation of *M. tuberculosis* infection, and
76 pulmonary tuberculosis. ¹²⁻¹⁶. Although mapped targets suggest further roles in
77 haematopoiesis and inflammatory disorders, the function of miR-126 in infection has yet to
78 be defined ¹⁷⁻²⁰.

79 Zebrafish (*Danio rerio*) are a powerful model organism for studying host-
80 mycobacterial interactions, as they allow direct visualisation of cellular interactions and are
81 amenable to straightforward genetic manipulation ¹. An added benefit of the zebrafish-*M.*
82 *marinum* model is the ability to use a native pathogen of the zebrafish, which closely mirrors
83 histological aspects of human-*M. tuberculosis* pathogenesis ^{21,22}. Zebrafish provide an
84 established model for the investigation of miRNA function and responses to infection, with
85 well-developed genetic tools that facilitate the study of downstream host gene function. We
86 have recently used the zebrafish-*M. marinum* model to investigate the downstream targets of
87 miR-206 and identified the role of this conserved miR in controlling the multi-cellular
88 immune response to mycobacterial infection ⁷.

89 Here we use the zebrafish-*M. marinum* platform to examine the role of
90 mycobacterium infection-induced dre-miR-126a-3p (miR-126). We link infection-induced
91 miR-126 to Tsc1 via activation of the mTOR pathway, and improved macrophage function
92 due to regulation of a Cxcl12/Ccl2/Ccr2 signalling axis during the early stages of
93 mycobacterial infection.

94

95 **Results**

96 **Infection-induced miR-126 is host-protective against *M. marinum* infection**

97 Embryos were infected with *M. marinum* via caudal vein injection and analysed at 1- and 3-
98 days post infection (dpi) by quantitative (q)PCR to assess the responsiveness of miR-126

99 expression to infection. At both timepoints miR-126 was upregulated in *M. marinum*-infected
100 embryos in comparison to uninfected control embryos (Figure 1A).

101 To determine if antagomiR-mediated knockdown of miR-126 effectively reduced
102 transcript abundance and if this miR-126 knockdown was sustained following *M. marinum*
103 infection, embryos were injected with antagomiR at the single-cell stage and infected with *M.*
104 *marinum* at 1.5 days post fertilisation (dpf). Expression levels of miR-126 were measured at
105 1 and 3 dpi. AntagomiR knockdown reduced miR-126 levels at both timepoints and
106 prevented the infection-associated miR-126 expression (Figure 1B).

107 The effect of miR-126 expression on mycobacterial infection was assessed through
108 analysis of bacterial burden following infection in control and miR-126 knockdown embryos
109 (Figure 1C). There was a small, but statistically significant, increase in the bacterial burden of
110 miR-126 knockdown embryos at 1 dpi, which was much more apparent at 3 dpi (Figure 1D).
111 These results indicate that *M. marinum* infection induces upregulation of miR-126 and that
112 miR-126 has a host-protective effect.

113

114 **Infection-associated miR-126 expression is enhanced by mycobacterial virulence factors**
115 To investigate whether the increased bacterial burden observed in miR-126 knockdown
116 embryos was specific to mycobacterial infection or a universal response to invading
117 pathogens, embryos were infected with Δ ESX1 *M. marinum* or uropathogenic *Escherichia*
118 *coli* (UPEC). Δ ESX1 *M. marinum* lack a key mycobacterial type VII secretion system and are
119 therefore less virulent than wild-type (WT) *M. marinum* as they are unable to escape host
120 phagosomes (Conrad et al. 2017). UPEC are a predominately extracellular bacterium that, in
121 contrast to intracellular mycobacteria, cause acute sepsis infection²³.

122 Expression of miR-126 was analysed by qPCR at 1 dpi following infection with either
123 *M. marinum*, Δ ESX1 *M. marinum*, or UPEC. While infection with either Δ ESX1 *M.*
124 *marinum* or UPEC increased miR-126 expression in comparison to control uninfected
125 embryos, the level of miR-126 expression was significantly lower than WT virulent *M.*
126 *marinum* (Figure 2A).

127 Knockdown of miR-126 did not affect Δ ESX1 *M. marinum* burden compared to
128 control embryos at 1 or 3 dpi (Figure 2B). Likewise, there was no difference in UPEC burden
129 between control and miR-126 knockdown embryos at either 6 hours post infection (hpi) or 1
130 dpi (Figure 2C). These results suggest that although the induction of miR-126 is conserved
131 between types of infections, the host-protective action of miR-126 is only uncovered in the
132 context of infection with virulent *M. marinum*.

133

134 **miR-126 target gene mRNA expression patterns are conserved during *M. marinum***
135 **infection of zebrafish**

136 To uncover the biological pathways targeted by miR-126, expression of potential target
137 mRNAs was analysed by qPCR following antagomiR knockdown and infection with *M.*
138 *marinum*. Possible target genes were chosen based on published experimentally observed
139 targets and bioinformatic target prediction software (Supplementary File 1) ²⁴⁻³⁴. Increased
140 expression of a transcript in miR-126 knockdown embryos compared to uninfected scrambled
141 controls was expected to indicate targeting by miR-126 (Figure 3A-E).

142 Expression of *cxcr4b* was significantly increased in *M. marinum* infected and miR-
143 126 knockdown + *M. marinum* embryos compared to control at 1 dpi. Expression of *cxcr4a*
144 was increased in all treatments but was not significantly different from control uninfected
145 embryos. Expression of *cxcl12a* was higher in both miR-126 knockdown and *M. marinum*
146 infected embryos than control, but not knockdown infected embryos. miR-126 knockdown +
147 *M. marinum* embryos had reduced *cxcl12a* expression compared to control infected embryos.
148 While expression of *spred1* was increased in both knockdown groups compared to control,
149 there was no difference between knockdown infected and control infected embryos. Finally,
150 *tsc1a* was increased in all treatments from control embryos, while expression was
151 significantly higher in miR-12 knockdown and miR-126 knockdown + *M. marinum* embryos
152 than *M. marinum* alone.

153 From the gene expression analysis, *cxcr4b*, *cxcl12a*, and *tsc1a* were regarded as
154 potential target genes of miR-126 due to their increased expression in knockdown embryos
155 and differential regulation compared to *M. marinum* infected embryos. Both *cxcr4a/b* and
156 *cxcl12a* were of interest due to their previously identified role in mycobacterial and zebrafish
157 immunity ^{7,35,36}. Also of interest, *tsc1a* may be involved in mycobacterial pathogenesis as a
158 negative regulator of the mTOR signalling pathway, a key regulatory pathway of a variety of
159 cellular functions ^{37,38}. Expression of *cxcr4a*, *cxcr4b*, *cxcl12a*, and *tsc1a* was measured at 3
160 dpi, and showed that knockdown of miR-126 increased the expression of all target genes
161 even in *M. marinum*-infected knockdown embryos, when compared to control uninfected and
162 *M. marinum*-infected only embryos (Figure 3F-J).

163

164 **miR-126 suppression of *tsc1a* expression aids control of *M. marinum* infection**

165 Following expression profiling, *tsc1a* was selected for further investigation due to differential
166 expression between *M. marinum* infected and miR-126 knockdown embryos. Predicted

167 binding of miR-126 and *tsc1a* in zebrafish is summarised in (Figure 4A). To confirm the
168 interaction between miR-126 and *tsc1a*, we targeted *tsc1a* for knockdown using CRISPR-
169 Cas9 (Figure 4B). Knockdown of *tsc1a* significantly reduced transcript abundance at 1 and 3
170 dpi compared to both control uninfected and *M. marinum*-infected embryos (Figure 4C). At
171 both timepoints, *tsc1a* knockdown was sustained in *M. marinum*-infected knockdown
172 embryos. Knockdown of *tsc1a* significantly reduced *M. marinum* burden compared to control
173 embryos (Figure 4D). Double knockdown of both miR-126 and *tsc1a* significantly reduced
174 bacterial burden compared to miR-126 knockdown alone. There was no difference in
175 bacterial burden between double knockdown embryos and *tsc1a* knockdown alone embryos,
176 suggesting that *tsc1a* is driving the miR-126 knockdown-associated increase in burden
177 (Figure 4D). The opposing effects of miR-126 knockdown and *tsc1a* knockdown on *M.*
178 *marinum* burden suggested involvement of a potential miR-126/Tsc1 signalling axis in
179 mycobacterial infection.

180

181 **miR-126 knockdown alters the mTOR signalling axis in *M. marinum* infection**

182 As miR-126 knockdown increased expression of *tsc1a*, which encodes a negative regulator of
183 mTOR function, we investigated downstream mTOR activity. We utilised whole-mount
184 embryo immunofluorescent staining of phosphorylated ribosomal protein S6 (phospho-S6) as
185 a readout for mTOR activity following infection of miR-126 and *tsc1a* knockdown embryos
186 with *M. marinum* (Figure 5A). At 1 dpi, knockdown of miR-126 resulted in reduced
187 phospho-S6 staining, consistent with increased *tsc1a* transcript abundance and knockdown of
188 either *tsc1a* alone or double knockdown of miR-126 and *tsc1a* increased phospho-S6 staining
189 compared to both control and miR-126 knockdown embryos (Figure 5B). However, the bulk
190 changes in phospho-S6 staining occurred largely distal to the fluorescent *M. marinum*, with
191 no observed colocalization, suggesting a lack of specificity to infection (Figure 5A).

192 To assess the impact of decreased mTOR signalling in miR-126 knockdown, embryos
193 were treated with either an inhibitor (rapamycin) or activator (MHY1485) of mTOR.
194 Treatment of control embryos with rapamycin resulted in a similar increased burden to that
195 seen after knockdown of miR-126 (Figure 5C). The combination of miR-126 knockdown and
196 rapamycin treatment had an additive effect on the increased bacterial burden compared to
197 either treatment alone, suggesting the presence of infection-relevant, non-mTOR miR-126
198 activities.

199 Conversely, activation of mTOR signalling with MHY1485 significantly reduced the
200 bacterial burden in both control and miR-126 knockdown backgrounds (Figure 5D). The
201 combination of miR-126 knockdown and MHY1485 treatment only partially rescued the
202 miR-126 knockdown-induced increase in bacterial burden as compared to MHY1485
203 treatment alone, again indicating that these pathways are not fully interlinked and that
204 multiple miR-126 dependant mechanisms are functioning during infection.

205 As anticipated, inhibition of mTOR signalling through rapamycin treatment of *tsc1a*
206 knockdown embryos increased bacterial burden, however not to the levels seen in rapamycin-
207 treated scramble control embryos (Figure 5E). Also as anticipated, treatment with MHY1485
208 did not further decrease burden levels from *tsc1a* knockdown alone (Figure 5F). Together,
209 these data potentially place mTOR activation as one of the factors downstream of infection-
210 induced miR-126 repression of *tsc1a* expression and demonstrate that additional non-mTOR
211 factors mediate the infection phenotype downstream of the miR-126/*tsc1a* axis.

212

213 **miR-126 knockdown and inhibition of mTOR increase cell death in *M. marinum*
214 infection.**

215 Because of the pleiotropic effects of mTOR on apoptosis and cell death, we hypothesised that
216 increased mTOR activity caused by increased *tsc1a* expression in miR-126 knockdown
217 embryos might compromise the survival of *M. marinum*-infected macrophages ³⁹⁻⁴¹. To
218 explore this hypothesis, we performed TUNEL staining on 3 dpi miR-126 knockdown
219 embryos (Figure 6A). Knockdown of miR-126 did increase the number of TUNEL-stained
220 cells compared to control infected embryos (Figure 6B).

221 The increased cell death in miR-126 knockdown embryos was completely reversed by
222 double knockdown of miR-126 and *tsc1a* indicating the cell death phenotype is dependent on
223 *tsc1* expression (Figure 6C-D). Rapamycin treatment increased the number of TUNEL-
224 stained cells in control and *tsc1a* knockdown embryos, and in the miR-126 knockdown
225 embryos as expected from the bacterial burden data (Figure 6E).

226 Although these data confirm the independence between miR-126/*tsc1a* and mTOR
227 activity during mycobacterial infection, the increased cell death in miR-126 knockdown
228 embryos was completely suppressed by treatment of miR-126 knockdown embryos with the
229 mTOR activator MHY1485 demonstrating a role for mTOR activity in regulating cell death
230 at the host-mycobacterial interface (Figure 6F).

231

232 **miR-126 knockdown increases the migration of macrophages to sites of *M. marinum* 233 infection**

234 As knockdown of miR-126 also increased expression of the neutrophil-related genes, *cxcr4b*
235 and *cxcl12a*, and we had previously found a role for upregulation of these genes in protection
236 from *M. marinum* infection ⁷, we investigated the effect of miR-126 knockdown on
237 neutrophil motility. Neutrophil responses were first assessed via static imaging of whole-
238 body neutrophil numbers and then by time-lapse imaging of trunk-infected embryos for
239 analysis of neutrophil migration in the transgenic (Tg) *Tg(lyzC:GFP)^{nz117}* neutrophil reporter
240 line. Static imaging revealed no difference in total neutrophil numbers between *M. marinum*-
241 infected control and miR-126 knockdown embryos at either timepoint (Figure 7A). Migration
242 of neutrophils to the site of infection was also not altered between miR-126 knockdown and
243 control infected embryos (Figure 7B). This suggests that despite the increased abundance of
244 transcripts encoding the neutrophil chemotactic genes *cxcr4a/b* and *cxcl12a* in miR-126
245 knockdown embryos, neutrophil recruitment is unperturbed by miR-126 knockdown in *M.*
246 *marinum*-infected embryos.

247 Because of the role of CXCL12 in recruiting CCR2-expressing macrophages and
248 directing their function towards anti-inflammatory activities ^{42,43}, we next investigated the
249 macrophage response to *M. marinum* infection in miR-126 knockdown embryos. We first
250 estimated total macrophage number in *Tg(mfap4:turquoise)^{xt27}* and *Tg(mfap4:tdtomato)^{xt12}*
251 macrophage reporter lines embryos at baseline and following *M. marinum* infection. While
252 there was no difference in total macrophage number between control and miR-126
253 knockdown embryos in the absence of infection, *M. marinum*-infected miR-126 knockdown
254 embryos had significantly more macrophages than control infected embryos (Figure 7C).

255 To track the recruitment of macrophages to discrete *M. marinum* lesions, embryos
256 were infected with *M. marinum* via a trunk injection that embeds the bacteria away from the
257 caudal haematopoietic tissue (CHT) (Supplementary videos 1-2). Compared to control
258 embryos, miR-126 knockdown embryos had an increased number of macrophages at the site
259 of infection from 5 to 24 hpi (Figure 7D). The increased association of macrophages with *M.*
260 *marinum* was maintained at 3 dpi in miR-126 knockdown embryos (Figure 7E). There was
261 initially no difference in the number of macrophages present in the CHT at 1 dpi, however
262 CHT macrophage numbers were decreased in miR-126 knockdown embryos at 3 dpi,
263 suggesting that reduced miR-126 increases the migration of macrophages but does not
264 influence the production and maturation of immature progenitors (Figure 7F).

265 In order to determine if the increased migratory potential of macrophages in miR-126
266 knockdown embryos was specific to infection, we performed a sterile tail fin wounding assay
267 (Supplementary videos 3-4). There was no significant difference in the number of
268 macrophages at the wound site between miR-126 knockdown and control embryos,
269 suggesting the alteration of the macrophage response dynamics is dependent on specific
270 pathogen-derived signals (Figure 7G).

271

272 **Increased macrophage recruitment to *M. marinum* infection is independent of Tsc1a
273 induction in miR-126 knockdown embryos**

274 We next sought to determine if the Tsc1a/mTOR axis affected macrophage recruitment.
275 Following infection with *M. marinum*, *tsc1a* knockdown embryos did not display any
276 difference in total macrophage numbers compared to control embryos at either 1 or 3 dpi (Fig
277 8A). Double knockdown of miR-126 and *tsc1a* failed to prevent the increased macrophage
278 numbers seen in miR-126 knockdown at 1 dpi, indicating that the altered macrophage
279 response is independent of Tsc1a/mTOR (Fig 8B).

280

281 **Recruited macrophages are permissive to *M. marinum* infection**

282 To determine why miR-126 knockdown embryos were unable to contain *M. marinum* in
283 granulomas, despite increased macrophage recruitment, we assessed the activation state of
284 the macrophages. We hypothesised that increased *cxcl12* expression provides more ligand, by
285 heterodimerization with *Ccl2*, also known as monocyte chemoattractant protein-1 (Mcp-1),
286 for the recruitment of *Ccr2* positive (*Ccr2*+) permissive or non-bactericidal macrophages to
287 sites of infection⁴².

288 To investigate this, we first assessed *ccl2* and *ccr2* transcript abundance following
289 infection. Knockdown of miR-126 increased expression of *ccr2* compared to scramble
290 control embryos (Figure 9A). Expression of *ccr2* was also increased when miR-126
291 knockdown embryos were infected with *M. marinum* compared to infected, scramble control
292 embryos. While *ccl2* expression was not responsive to either miR-126 knockdown or
293 infection alone, infection of miR-126 knockdown embryos increased *ccl2* expression
294 compared to knockdown alone and *M. marinum*-infected only embryos (Figure 9B). Further,
295 *ccl2* but not *ccr2* expression was observed to be dependent on *cxcl12a* expression, with
296 double knockdown of miR-126 and *cxcl12a* rescuing *ccl2* expression (Supplementary Figure
297 1).

298 To determine if recruited macrophages were alternatively activated, and if this
299 mechanism was independent of TSC/mTOR, we next infected miR-126 knockdown and
300 *tsc1a* knockdown embryos with *M. marinum* in the trunk region and measured the level of
301 *tnfa* promoter activation around the site of infection using *TgBAC(tnfa:gfp)^{Pd1028}*⁴⁴.
302 Expression of *tnfa* is a marker of classically activated bactericidal macrophages in zebrafish
303⁴⁵; we therefore utilised *tnfa* promoter activation as a surrogate marker of protective
304 inflammatory, or classically activated, macrophages. At 1 dpi, miR-126 knockdown embryos
305 had significantly reduced activation of the *tnfa* promoter, while knockdown of *tsc1a* alone
306 increased *tnfa* promoter activation compared to control and miR-126 knockdown embryos
307 (Figure 9C-D). Double knockdown rescued *tnfa* promoter activation to an intermediate level,
308 indicating that *tsc1a*-independent mechanisms suppress *tnfa* promoter activation in miR-126
309 knockdown embryos.

310 Our data thus far indicates that miR-126 knockdown increases the recruitment of
311 macrophages to *M. marinum* infection, and these macrophages are unable to clear bacteria,
312 resulting in macrophage cell death. While the cell death phenotype can be attributed to
313 increased *tsc1a* expression in miR-126 knockdown embryos, and *tsc1a* is partially
314 responsible for the lack of *tnfa* promoter activation, there are clearly *tsc1a*-independent
315 mechanisms responsible for the bulk recruitment of non-*tnfa* promoter active macrophages.

316

317 **Recruitment of permissive macrophages to *M. marinum* infection is dependent on
318 Cxcl12a/Ccr2 signalling in miR-126 knockdown zebrafish embryos**

319 We hypothesised that the increase in expression of Cxcl12/Ccl2/Ccr2 signalling axis
320 components in miR-126 knockdown embryos is responsible for the recruitment of permissive
321 macrophages to infection. To confirm the active role of the Cxcl12/Ccl2/Ccr2 signalling axis
322 as a downstream effector mechanism of miR-126 expression and its involvement in the
323 increased migration of permissive macrophages to sites of mycobacterial infection, the
324 *cxcl12a* and *ccr2* genes were targeted for knockdown using Crispr-Cas9. Consistent with the
325 work of Cambier *et al.*, we did not observe any effect of *cxcl12a* or *ccr2* knockdown
326 compared to control embryos across the three phenotypes of bacterial burden, total
327 macrophage area, or *tnfa* promoter activity at sites of infection (Figure 10)^{46,47}.

328 Knockdown of *cxcl12a* and double knockdown of both miR-126 and *cxcl12a*
329 significantly reduced bacterial burden compared to miR-126 knockdown alone (Figure 10A).
330 Similarly, knockdown of *ccr2* and double knockdown of both miR-126 and *ccr2* significantly
331 reduced bacterial burden compared to miR-126 knockdown alone (Figure 10B). There was no

332 difference in bacterial burden between double knockdown embryos and *cxcl12a* or *CCR2*
333 knockdown alone embryos, suggesting the Cxcl12/Ccl2/Ccr2 signalling axis is driving the
334 miR-126 knockdown-associated increase in burden.

335 Knockdown of *cxcl12a* and double knockdown of both miR-126 and *cxcl12a*
336 significantly reduced total macrophage area compared to miR-126 knockdown alone (Figure
337 10C). Similarly, knockdown of *CCR2* and double knockdown of both miR-126 and *CCR2*
338 significantly reduced total macrophage area compared to miR-126 knockdown alone (Figure
339 10D). Again, there was no difference in total macrophage area between double knockdown
340 embryos and *cxcl12a* or *CCR2* knockdown alone embryos, suggesting the Cxcl12/Ccl2/Ccr2
341 signalling axis is driving the miR-126 knockdown-associated increase in macrophage
342 numbers.

343 Following knockdown of *cxcl12a* and double knockdown of both miR-126 and
344 *cxcl12a* restored *tnfa* promoter activation in granulomas to the levels in scramble control
345 embryos (Figure 10E). Similarly, knockdown of *CCR2* and double knockdown of both miR-
346 126 and *CCR2* restored *tnfa* promoter activation in granulomas to scramble control embryos
347 (Figure 10F). As with the other phenotypes, there was no difference in *tnfa* promoter
348 activation in granulomas between double knockdown embryos and *cxcl12a* or *CCR2*
349 knockdown alone embryos.

350 Finally, we examined cell death in miR-126 and either *cxcl12a* or *CCR2* knockdown
351 embryos to determine if the permissive nature of recruited macrophages further contributes to
352 the increased cell death observed in miR-126 knockdown embryos (Figure 10G). As
353 previously observed, miR-126 knockdown alone increased cell death compared to control
354 infected embryos. Knockdown of both *cxcl12a* and *CCR2* was protective, decreasing the
355 number of TUNEL-stained cells at 3 dpi. Further, double knockdown of miR-126 and either
356 *cxcl12a* or *CCR2* reduced cell death and from miR-126 knockdown alone, demonstrating that
357 the Cxcl12/Ccl2/Ccr2 signalling axis is driving the miR-126 knockdown-associated increase
358 in permissive macrophage recruitment to mycobacterial infection.

359

360 **Discussion**

361 The ability of mycobacteria to evade host immunity is central to their pathogenicity and
362 ability to establish a chronic infection. Control of miRNA is contested by host and invading
363 mycobacteria as miRNA represent key nodes that are capable of exerting pleiotropic effects
364 on the host immune response. Here, we show that increased abundance of miR-126 following
365 infection with *M. marinum* is beneficial to the zebrafish host and prevents dissemination of

366 bacteria during the early stages of infection. Through suppressing the target gene, *tsc1a*, and
367 inhibiting the Cxcl12a/Ccl2/Ccr2 signalling pathway, miR-126 suppresses macrophage death
368 and the recruitment of permissive macrophages. Our experiments demonstrate that decreasing
369 miR-126 expression early during infection increases the recruitment of permissive
370 macrophages which favours infection by failing to clear intracellular mycobacteria and
371 facilitating mycobacterial release.

372 The expression of miR-126 was increased following infection with *M. marinum*,
373 Δ ESX1 *M. marinum*, and UPEC suggesting an early host-response to systemic infection.
374 However knockdown of miR-126 increased the burden of WT *M. marinum*, not Δ ESX1 *M. marinum* or UPEC.
375 Thus, we considered the protective effect of miR-126 upregulation to be
376 dependent on the mycobacterial ESX1 secretion system that is also present in *M. tuberculosis*, and this is a specific response to counteract the virulence of WT *M. marinum*.
377

378 The downstream effects of altered miR-126 expression were mediated in part, by the
379 target gene *tsc1a*. As this gene negatively regulates mTORC1 activity, we were encouraged
380 to find that the miR-126 knockdown phenotype was recapitulated by inhibition of mTOR and
381 restored by co-knockdown of *tsc1a*. However, our data showing mTORC1 activity on distal
382 to sites of infection, that inhibition of mTOR further exacerbated bacterial burden and cell
383 death phenotypes in the miR-126 knockdown background, and that the small molecule
384 activation of mTOR only partially rescued the miR-126 knockdown phenotypes suggest that
385 while the miR-126/Tsc1a/mTOR axis is likely, it falls short of fully explaining the effects of
386 miR-126 on the host response to *M. marinum* infection. While decreased phosphorylation of
387 ribosomal protein S6 was observed in miR-126 knockdown embryos, indicating decreased
388 mTOR activity, further experiments to assess the relative abundance of mTOR targets are
389 required to provide conclusive evidence of a functional miR-126/Tsc1a/mTOR axis.

390 We observed that inhibition of mTOR with rapamycin is detrimental to the host,
391 enhancing cell death and allowing for uncontrolled growth, whereas small molecule
392 activation of mTOR is beneficial in the zebrafish-*M. marinum* infection model. Previous
393 investigations into the role of mTOR in mycobacterial infection have uncovered a protective
394 role for decreased mTOR signalling through improving mycobacterial killing^{48,49}, so that
395 mTOR inhibitors, such as rapamycin, were considered potential host-directed therapies for
396 the treatment of tuberculosis⁵⁰. While our results counter those observed in *in vitro* murine
397 cell culture experiments, they are in agreement with observations from similar *M. marinum*-
398 zebrafish models, where mTOR deficient zebrafish were more susceptible to mycobacterial
399 infection, displaying severe disease and non-bactericidal macrophages³⁷. This further

400 reinforces the necessity of *in vivo* whole organism models of natural mycobacterial infection
401 to capture the complex cellular interactions resulting from alterations of key signalling
402 pathways.

403 We have previously identified a miRNA-mediated Cxcr4/Cxcl12 signalling axis
404 which increased protective neutrophil responses in mycobacterial infection ⁷. Despite an
405 increase in expression of these same genes following knockdown of miR-126, we found no
406 change in neutrophil recruitment to infection in the current study. This led us to investigate
407 alternative receptors for the Cxcl12 ligand in our miR-126 knockdown embryos that may
408 contribute to the enhanced macrophage influx. Mammalian CXCL12 can form heterodimers
409 with CCL2 to bind to the CCR2 receptor ⁵¹.

410 Pathogenic mycobacteria utilise membrane lipids to recruit non-bactericidal Ccr2+
411 permissive macrophages and ensure bacterial persistence ^{46,47,52}. However, this observation of
412 Ccr2-dependant macrophage recruitment has only been previously observed in zebrafish
413 infected with *M. marinum* in the hindbrain protected by the blood-brain barrier, and not in
414 systemic infection despite the upregulation of *ccl2* after infection of either site ⁴⁷. In this
415 study we observed increased bacterial burden associated with the lack of *tnfa:gfp* positive
416 inflammatory macrophages in the contexts of systemic infection and at localised sites of
417 infection in the trunk musculature only when miR-126 was depleted. The miR-126
418 knockdown-induced increase in *ccr2* transcription was independent of infection suggesting
419 miR-126 is required for the physiological suppression of Ccr2+ macrophage differentiation,
420 thus the pool of available macrophages in our miR-126 knockdown embryos is skewed
421 towards permissive macrophages even before infection.

422 While we have associated miR-126 with *tsc1* and the *cxcl12a/ccl2/CCR2* axis by
423 combinatorial gene depletion studies, miR-126 has been documented to be involved in
424 additional pathways that may impact the outcome of infection. miR-126 has well
425 characterised roles in the formation of blood vessels and lymphatics ⁵³⁻⁵⁷. Angiogenesis is a
426 major host pathway appropriated by pathogenic mycobacteria to promote pro-angiogenic
427 programmes and increase vascular permeability, enabling bacterial dissemination ^{58,59}. It is
428 therefore possible that although increased miR-126 is host protective through preventing
429 permissive macrophage accumulation, pathogenic mycobacteria may co-opt this pathway to
430 increase infection-induced angiogenesis around mature granulomas after the time period
431 studied in our present work.

432 Another identified target gene of miR-126 which may be active in mycobacterial
433 infection is *spred1*, and this could further contribute to angiogenic signalling through a

434 Spred1/Vegf axis^{60,61}. Beyond the recognised angiogenic role, Spred1 has been associated
435 with host immunity through regulation of haematopoietic homeostasis, mast cell activation,
436 and eosinophil infiltration⁶²⁻⁶⁴. The involvement of both mast cell- and eosinophil-related
437 bactericidal mechanisms during mycobacterial infection has been established, and the
438 mediation of these cellular responses by upstream miR-126 may further contribute to the
439 host-protective effect of infection-induced miR-126⁶⁵⁻⁶⁷. It is evident that miR-126 has
440 numerous target genes involved in a variety of cellular pathways relevant to mycobacterial
441 infection, and that its effect on angiogenesis during disease certainly warrants further
442 investigation in a model with established mycobacterial granulomas.

443 miR-126 has previously been identified as having decreased expression in both
444 plasma from pulmonary tuberculosis patients, and PBMCs of tuberculous meningitis patients
445^{13,16}. We have observed that a reduction in miR-126 transcript alters normal macrophage
446 phenotype and function through its involvement in the Cxcl12/Ccl2/Ccr2 axis, and coupled
447 with concurrent mTOR inhibition, increases death of permissive macrophages. The lack of
448 bacterial containment and failure to control infection seen in our miR-126 knockdown
449 embryos may provide an insight into the effect of reduced miR-126 transcript abundance in
450 *M. tuberculosis* infection. As macrophages are a primary intracellular niche for pathogenic
451 mycobacteria, the subversion and disruption of their normally protective function towards a
452 permissive state by miRNA adds another level to their complex regulatory networks.
453 Identification of these networks and the molecules targeted by pathogenic mycobacteria may
454 provide new avenues for host-directed therapies to prevent progression to chronic disease.

455 In this study we have identified several mechanistic functions of miR-126 in
456 mycobacterial infection. The analysis of potential target genes revealed a link between altered
457 miR-126 expression and the dysregulation of host macrophage responses. We demonstrate
458 that infection-induced miR-126 suppresses *tsc1* and *cxcl12a* expression thus improving
459 macrophage function during the early stages of infection, partially through activation of
460 mTOR signalling and strongly through preventing the recruitment of Ccr2+ permissive
461 macrophages. The increased macrophage responses are likely to be mediated by a
462 combination of Tsc1/mTOR suppression of cell death, enhanced activation of bactericidal
463 macrophages, and suppression of permissive macrophage recruitment. Through utilising a
464 zebrafish-*M. marinum* model, we were able to identify complex multicellular interactions
465 from converging biological pathways that alter the course of mycobacterial infection. These
466 responses appear to be conserved across mycobacterial infection in vertebrate hosts and
467 provide further insight into the intricate regulation of immunity by miRNA.

468

469 **Methods**

470 **Zebrafish husbandry**

471 Adult zebrafish were housed at the Centenary Institute and breeding was approved by Sydney
472 Local Health District AWC Approval 17-036. Embryos were obtained by natural spawning
473 and were raised in E3 media and maintained at 28-32°C.

474

475 **Zebrafish lines**

476 Zebrafish were AB strain. Transgenic lines used were: *Tg(lyzC:GFP)^{nz117}* and
477 *Tg(lyzC:DsRed2)^{nz50}* for neutrophil imaging experiments⁶⁸, and *Tg(mfap4:turquoise)^{xt27}* and
478 *Tg(mfap4:tdtomato)^{xt12}* for macrophage imaging experiments⁶⁹.

479

480 **Embryo microinjection with antagomiR**

481 Embryos were obtained by natural spawning and were injected with either miR-126
482 antagomiR (-GCAUUUUACUCACGGUACGA-) or a scramble control (-
483 CAGUACUUUUGUGUAGUACAA-) (GenePharma, China) at 200 pg/embryo at the single
484 cell stage and maintained at 32°C.

485

486 **miRNA target prediction**

487 Prediction of target mRNA was performed using TargetScan. dre-miR-126a-3p was entered
488 into TargetScanFish 6.2 (http://www.targetscan.org/fish_62/), hsa-miR-126-3p entered into
489 TargetScan 7.2 (http://www.targetscan.org/vert_72/), and mmu-miR-126a-3p entered into
490 TargetScanMouse 7.2 (http://www.targetscan.org/mmu_72/). Experimentally validated
491 targets were compiled using miRTarBase (release 8.0) (<http://mirtarbase.cuhk.edu.cn>).
492 Prediction of binding of miR-126 and *tscl1a* in zebrafish was performed using RNAhybrid
493 (<https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid>)⁷⁰.

494

495 ***M. marinum* culture**

496 *M. marinum* was cultured as previously described⁷¹. Briefly, *M. marinum* M strains
497 expressing Wasabi, Katushka, or tdTomato fluorescent protein were grown at 28°C in 7H9
498 supplemented with OADC and 50 µg/mL hygromycin to an OD600 of approximately 0.6
499 before being washed and sheared by aspiration through a 32 G needle into single cell
500 preparations. These were then aliquoted and frozen in 7H9 at -80°C until needed. The

501 concentration of bacteria was quantified from thawed aliquots by CFU recovery onto 7H10
502 supplemented with OADC and 50 µg/mL hygromycin and grown at 28°C.

503

504 **UPEC culture**

505 Uropathogenic *Escherichia coli* (UPEC) carrying the mCherry PGI6 plasmid ^{72,73} was
506 cultured as previously described ^{7,74}. Briefly, bacteria were cultured in LB supplemented with
507 50 µg/mL of spectinomycin overnight at 37°C with shaking at 200 rpm. Bacteria were then
508 further diluted 1:10 with LB + spectinomycin (50 µg/ml) and incubated for 3 hours at 37°C
509 with 200 RPM shaking. Culture medium/broth (1 ml) was centrifuged (16,000 x g for 1
510 minute), and the pellet washed in PBS. The bacterial pellet was resuspended in 300 µl of PBS
511 + 10% glycerol and aliquoted for storage. Enumeration of bacteria was performed by serial
512 dilution on LB + spectinomycin agar plates and culturing at 37°C overnight. Bacterial
513 concentration was determined by CFU counts.

514

515 **Bacterial infections**

516 Embryos were dechorionated and anesthetised in tricaine (160 µg/ml) and staged at
517 approximately 1.5 dpf. Working solutions of *M. marinum* or UPEC (diluted with 0.5% w/v
518 phenol red dye) were injected into either the caudal vein or trunk to deliver approximately
519 200 CFU *M. marinum* or 250 CFU UPEC. Embryos were recovered in E3 media + PTU
520 (0.036 g/L) and maintained at 28°C.

521

522 **Crispr-Cas9 mediated knockdown**

523 Embryos were injected at the 1-2 cell stage with 1 nl of Crispr mixture containing 1 µg/µl
524 gRNA, 500 µg/mL Cas9. For double knockdowns with Crispr-Cas9 and antagomiR, mixtures
525 contained 1 µg/µl gRNA, 100 pg/nl antagomiR, 500 µg/mL Cas9. gRNA was synthesised as
526 previously described (47). Embryos were transferred to E3 containing methylene blue and
527 maintained at 32°C.

528

529 **Gene expression analysis**

530 Groups of 10 embryos were lysed and homogenised using a 27-gauge needle in 500 µl Trizol
531 (Invitrogen) for RNA extraction. cDNA was synthesised from 500 ng RNA using the
532 miScript II RT kit with HiFlex buffer. qPCR was carried out on an Mx3000p Real-time PCR
533 system using Quantitect SYBR Green PCR Mastermix and primer concentration of 300 nM
534 (Table 2.). For miRNA qPCRs, the miScript Universal Primer was used alongside miR

535 specific miScript primer assays (miR-126 GeneGlobe ID MS00005999 and U6 cat. no.
536 MS00033740).

537

538 Cycling conditions for miRNA were: 95°C for 15 minutes; 40 cycles of 95°C for 20 seconds,
539 56°C for 30 seconds, 72°C for 30 seconds with fluorescence data acquisition occurring at the
540 end of each cycle, followed by 1 cycle of 95°C for 1 minute, 65°C for 30 seconds, and 97°C
541 for 30 seconds. For mRNA, conditions were: 95°C for 15 minutes; 40 cycles of 94°C for 15
542 seconds, 55°C for 30 seconds, 70°C for 30 seconds with fluorescence data acquisition
543 occurring at the end of each cycle, followed by 1 cycle of 95°C for 1 minute, 65°C for 30
544 seconds, and 97°C for 30 seconds.

545 U6 or β -actin was used as an endogenous control for normalisation and data analysed
546 using the $2^{-\Delta\Delta Ct}$ method.

547

548 **Drug treatment**

549 Embryos were treated with either 50 nM rapamycin (Sigma-Aldrich, USA) or 5 μ m
550 MHY1485 (Sigma-Aldrich, USA) dissolved in DMSO and refreshed daily.

551

552 **Static imaging and burden analyses**

553 Live imaging was performed on anaesthetised embryos on a depression microscope slide.
554 Images were acquired using a Leica M205FA Fluorescent Stereo Microscope equipped with
555 a Leica DFC365FX monochrome digital camera (Leica Microsystems, Germany). Images
556 were analysed using ImageJ software to quantify the fluorescent pixel count, defined as
557 fluorescent signal above a consistent set background determined empirically for each
558 experimental dataset ⁷¹. Data are presented as total fluorescent area (pixels) above
559 background level.

560 For static imaging of granuloma associated macrophages, cells within a 200 μ m box
561 surrounding bacterial granulomas were measured and classified as “granuloma-associated
562 macrophages”. Expression of GFP in the *tnfa:gfp* line was measured within a 500 μ m box
563 around infection foci.

564

565 **Macrophage and neutrophil tracking analyses**

566 Time-lapse imaging was performed on a DeltaVision Elite at 28°C (GE, USA). Following
567 infection with *M. marinum* into the trunk, embryos were mounted in a 96-well black-walled
568 microplate in 1% low-melting point agarose topped up with E3. Images were captured every

569 60-180 seconds for 16-24 hours. Analysis was performed using ImageJ software. Briefly,
570 every 10-30 images were analysed for the quantity of neutrophils or macrophages in a 1000 x
571 500 μm box around infection foci by quantifying the fluorescent pixel count (total area) at
572 each time point.

573

574 **TUNEL cell death staining**

575 Embryos were infected with *M. marinum* via caudal vein injection and analysed for apoptotic
576 cells at 1- and 3- dpi using the Click-iT™ Plus TUNEL Assay (Thermo Fisher, USA)
577 according to the manufacturers protocol. Briefly, embryos were fixed in 10% neutral buffered
578 formalin (NBF) overnight at 4°C. Embryos were permeabilised with proteinase K (10
579 $\mu\text{g/mL}$) for 30 minutes at room temperature and re-fixed in 10% NBF. edUTP and Alexa
580 Fluor™ 488 incorporation reactions were performed at 37°C protected from light. Embryos
581 were imaged on a DeltaVision Elite (GE, USA) and TUNEL stained cells counted using the
582 Multi-point tool in ImageJ.

583

584 **Embryo whole-mount immunofluorescence**

585 Embryos were infected with *M. marinum* via caudal vein injection and stained for
586 phosphorylated ribosomal protein S6. At 1 dpi, embryos were fixed in 4% paraformaldehyde
587 (PFA) overnight at 4°C followed by several washes with PBS + Tween 20 (PBST), and
588 permeabilisation with proteinase K (10 $\mu\text{g/mL}$) for 15 minutes. Embryos were then washed
589 with PBST and refixed in 4% PFA for 20 minutes. Samples were blocked in 5% goat serum
590 prior to incubation with the primary antibody (P-S6 Ser235/236 1:100, 4856S Cell Signalling
591 Technologies, USA) overnight at 4°C with gentle rocking. Embryos were then washed with
592 PBST and blocked with 5% goat serum before addition of the secondary antibody (Goat anti-
593 rabbit IgG H&L DyLight 650, 1:200, 84546 Invitrogen, USA) and incubated overnight at
594 4°C with gentle rocking. Embryos were thoroughly washed with PBST and transferred to a
595 1:1 PBS/glycerol solution prior to imaging. Embryos were imaged on a DM600B (Leica
596 Microsystems, Germany), and phospho-S6 quantified using the fluorescent pixel count (total
597 area).

598

599 **Statistics**

600 Statistical analysis was performed in GraphPad Prism (v. 9.0.0). All data were analysed by t-
601 test or ANOVA depending on the experimental design, and comparisons between groups
602 performed using Tukey's multiple comparisons test. For time-lapse data, group comparisons

603 were computed using the Sidak test. Outliers were removed prior to statistical analysis using
604 ROUT, with Q=1%.

605

606 **Acknowledgements**

607 The authors would like to acknowledge and thank Dr Angela Kurz of the BioImaging Facility
608 and Sydney Cytometry at Centenary Institute for technical assistance with imaging, Drs
609 Pradeep Manuneedhi Cholan and Kaiming Luo for assistance with imaging, and Dr Elinor
610 Horte for assistance with image analysis. We would like to acknowledge Ms Lina Daniel and
611 A/Prof Carl Feng for providing reagents. We would also like to thank Professor Lalita
612 Ramakrishnan and Dr Antonio Pagan for valuable insights.

613

614 **Funding**

615 The work was supported by a Meat and Livestock Australia Grant (P.PSH.0813) to KdS,
616 KMP, and ACP; Higher Degree Research scholarship (P.PSH.0813) to KW, University of
617 Sydney Fellowship (G197581) and NSW Ministry of Health under the NSW Health Early-
618 Mid Career Fellowships Scheme (H18/31086) to SHO; the National Health and Medical
619 Research Council Centre of Research Excellence in Tuberculosis Control (APP1153493) and
620 The University of Sydney DVCR award to WJB.

621

622 **Author contributions**

623 KW designed and performed experiments, wrote draft manuscript, secured funding. KdS,
624 KMP, and ACP secured funding, edited manuscript. WJB secured funding, edited
625 manuscript. SHO designed experiments, secured funding, wrote draft manuscript.

626

627 **Conflict of interest**

628 The authors declare no competing financial interests.

629

630 **References**

- 631 1 Ramakrishnan, L. Mycobacterium tuberculosis pathogenicity viewed through the
632 lens of molecular Koch's postulates. *Curr Opin Microbiol* **54**, 103-110,
633 doi:10.1016/j.mib.2020.01.011 (2020).
- 634 2 Horte, E. & Oehlers, S. H. Host-directed therapies targeting the tuberculosis
635 granuloma stroma. *Pathogens and Disease* **78**, doi:10.1093/femspd/ftaa015 (2020).
- 636 3 Stutz, M. D., Clark, M. P., Doerflinger, M. & Pellegrini, M. Mycobacterium
637 tuberculosis: Rewiring host cell signaling to promote infection. *Journal of leukocyte
638 biology* **103**, 259-268, doi:10.1002/JLB.4MR0717-277R (2018).

639 4 Duchaine, T. F. & Fabian, M. R. Mechanistic Insights into MicroRNA-Mediated Gene
640 Silencing. *Cold Spring Harbor Perspectives in Biology* (2018).

641 5 Wang, H., Peng, R., Wang, J., Qin, Z. & Xue, L. Circulating microRNAs as potential
642 cancer biomarkers: the advantage and disadvantage. *Clinical Epigenetics* **10**, 59,
643 doi:10.1186/s13148-018-0492-1 (2018).

644 6 Correia, C. N. *et al.* Circulating microRNAs as Potential Biomarkers of Infectious
645 Disease. *Frontiers in immunology* **8**, 118, doi:10.3389/fimmu.2017.00118 (2017).

646 7 Wright, K. *et al.* Mycobacterial infection-induced miR-206 inhibits protective
647 neutrophil recruitment via the CXCL12/CXCR4 signalling axis. *PLOS Pathogens* **17**,
648 e1009186, doi:10.1371/journal.ppat.1009186 (2021).

649 8 Wright, K., Plain, K., Purdie, A., Saunders, B. M. & de Silva, K. Biomarkers for
650 Detecting Resilience against Mycobacterial Disease in Animals. *Infection and*
651 *Immunity* **88**, e00401-00419, doi:10.1128/IAI.00401-19 (2019).

652 9 Han, S. A. *et al.* miRNA Expression Profiles and Potential as Biomarkers in
653 Nontuberculous Mycobacterial Pulmonary Disease. *Scientific reports* **10**, 3178,
654 doi:10.1038/s41598-020-60132-0 (2020).

655 10 Mehta, M. D. & Liu, P. T. microRNAs in mycobacterial disease: friend or foe?
656 *Frontiers in Genetics* **5**, doi:10.3389/fgene.2014.00231 (2014).

657 11 Ruiz-Tagle, C., Naves, R. & Balcells, M. E. Unraveling the Role of MicroRNAs in
658 *Mycobacterium tuberculosis* Infection and Disease: Advances and Pitfalls. *Infect.*
659 *Immun.* **88**, e00649-00619, doi:10.1128/IAI.00649-19 (2020).

660 12 Gupta, S. K. *et al.* Detection of microRNA in cattle serum and their potential use to
661 diagnose severity of Johne's disease. *Journal of Dairy Science* **101**, 10259-10270,
662 doi:<https://doi.org/10.3168/jds.2018-14785> (2018).

663 13 Pan, L. *et al.* Genome-Wide miRNA Analysis Identifies Potential Biomarkers in
664 Distinguishing Tuberculous and Viral Meningitis. *Frontiers in Cellular and Infection*
665 *Microbiology* **9**, doi:10.3389/fcimb.2019.00323 (2019).

666 14 Aulicino, A. *et al.* High-throughput transcriptomics reveals common and strain-
667 specific responses of human macrophages to infection with *Mycobacterium*
668 *abscessus* Smooth and Rough variants. *BMC Genomics* **16**, 1046,
669 doi:10.1186/s12864-015-2246-1 (2015).

670 15 Wang, X. *et al.* Phosphorylated STAT3 suppresses microRNA-19b/1281 to aggravate
671 lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis.
672 *J Cell Mol Med* **24**, 13763-13774, doi:<https://doi.org/10.1111/jcmm.15954> (2020).

673 16 Barry, S. E. *et al.* Identification of a plasma microRNA profile in untreated pulmonary
674 tuberculosis patients that is modulated by anti-mycobacterial therapy. *Journal of*
675 *Infection* **77**, 341-348, doi:<https://doi.org/10.1016/j.jinf.2018.03.006> (2018).

676 17 Grabher, C. *et al.* Zebrafish microRNA-126 determines hematopoietic cell fate
677 through c-Myb. *Leukemia* **25**, 506-514, doi:10.1038/leu.2010.280 (2011).

678 18 Oglesby, I. K. *et al.* miR-126 Is Downregulated in Cystic Fibrosis Airway Epithelial Cells
679 and Regulates TOM1 Expression. *The Journal of Immunology* **184**, 1702,
680 doi:10.4049/jimmunol.0902669 (2010).

681 19 Zernecke, A. *et al.* Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-
682 Dependent Vascular Protection. *Science signaling* **2**, ra81,
683 doi:10.1126/scisignal.2000610 (2009).

684 20 Shen, W.-F., Hu, Y.-L., Uttarwar, L., Passegue, E. & Largman, C. MicroRNA-126
685 regulates HOXA9 by binding to the homeobox. *Molecular and cellular biology* **28**,
686 4609-4619, doi:10.1128/MCB.01652-07 (2008).

687 21 Davis, J. M. *et al.* Real-Time Visualization of Mycobacterium-Macrophage
688 Interactions Leading to Initiation of Granuloma Formation in Zebrafish Embryos.
689 *Immunity* **17**, 693-702, doi:[https://doi.org/10.1016/S1074-7613\(02\)00475-2](https://doi.org/10.1016/S1074-7613(02)00475-2) (2002).

690 22 Stinear, T. P. *et al.* Insights from the complete genome sequence of *Mycobacterium*
691 *marinum* on the evolution of Mycobacterium tuberculosis. *Genome Research* **18**,
692 729-741 (2008).

693 23 Hannan, T. J. *et al.* Host-pathogen checkpoints and population bottlenecks in
694 persistent and intracellular uropathogenic *Escherichia coli* bladder infection. *FEMS*
695 *Microbiology Reviews* **36**, 616-648, doi:10.1111/j.1574-6976.2012.00339.x (2012).

696 24 Agudo, J. *et al.* The miR-126-VEGFR2 axis controls the innate response to pathogen-
697 associated nucleic acids. *Nature immunology* **15**, 54-62, doi:10.1038/ni.2767 (2014).

698 25 Yuan, X. *et al.* MiR-126-3p promotes the cell proliferation and inhibits the cell
699 apoptosis by targeting TSC1 in the porcine granulosa cells. *In Vitro Cell Dev Biol Anim*
700 **54**, 715-724, doi:10.1007/s11626-018-0292-0 (2018).

701 26 Liu, Y. *et al.* MicroRNA-126 functions as a tumor suppressor in colorectal cancer cells
702 by targeting CXCR4 via the AKT and ERK1/2 signaling pathways. *Int J Oncol* **44**, 203-
703 210, doi:10.3892/ijo.2013.2168 (2014).

704 27 Liu, Y. *et al.* Low expression of microRNA-126 is associated with poor prognosis in
705 colorectal cancer. *Genes Chromosomes Cancer* **53**, 358-365, doi:10.1002/gcc.22146
706 (2014).

707 28 Fish, J. E. *et al.* miR-126 Regulates Angiogenic Signaling and Vascular Integrity.
708 *Developmental Cell* **15**, 272-284, doi:<https://doi.org/10.1016/j.devcel.2008.07.008>
709 (2008).

710 29 Meng, S. *et al.* Downregulation of microRNA-126 in endothelial progenitor cells from
711 diabetes patients, impairs their functional properties, via target gene Spred-1. *J Mol*
712 *Cell Cardiol* **53**, 64-72, doi:10.1016/j.yjmcc.2012.04.003 (2012).

713 30 Zhang, Y. *et al.* miR-126 and miR-126* repress recruitment of mesenchymal stem
714 cells and inflammatory monocytes to inhibit breast cancer metastasis. *Nat Cell Biol*
715 **15**, 284-294, doi:10.1038/ncb2690 (2013).

716 31 Li, Z. *et al.* Expression of miR-126 suppresses migration and invasion of colon cancer
717 cells by targeting CXCR4. *Mol Cell Biochem* **381**, 233-242, doi:10.1007/s11010-013-
718 1707-6 (2013).

719 32 Ulitsky, I. *et al.* Extensive alternative polyadenylation during zebrafish development.
720 *Genome research* **22**, 2054-2066, doi:10.1101/gr.139733.112 (2012).

721 33 Grimson, A. *et al.* MicroRNA targeting specificity in mammals: determinants beyond
722 seed pairing. *Mol Cell* **27**, 91-105, doi:10.1016/j.molcel.2007.06.017 (2007).

723 34 Huang, H. Y. *et al.* miRTarBase 2020: updates to the experimentally validated
724 microRNA-target interaction database. *Nucleic Acids Res* **48**, D148-d154,
725 doi:10.1093/nar/gkz896 (2020).

726 35 Isles, H. M. *et al.* The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at
727 Inflammatory Sites in Zebrafish. *Frontiers in immunology* **10**,
728 doi:10.3389/fimmu.2019.01784 (2019).

729 36 Torraca, V., Tulotta, C., Snaar-Jagalska, B. E. & Meijer, A. H. The chemokine receptor
730 CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced
731 angiogenesis programme. *Scientific Reports* **7**, 45061, doi:10.1038/srep45061 (2017).
732 37 Pagan, A. J. *et al.* mTOR deficiency reveals an immunological trade-off in innate
733 resistance to mycobacterial infection *in vivo*. *The Journal of Immunology* **196**,
734 200.206-200.206 (2016).
735 38 Cardenal-Muñoz, E. *et al.* *Mycobacterium marinum* antagonistically induces an
736 autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-
737 dependent manner. *PLOS Pathogens* **13**, e1006344,
738 doi:10.1371/journal.ppat.1006344 (2017).
739 39 Byles, V. *et al.* The TSC-mTOR pathway regulates macrophage polarization. *Nature
740 communications* **4**, 2834-2834, doi:10.1038/ncomms3834 (2013).
741 40 Zhang, M. *et al.* The MTOR signaling pathway regulates macrophage differentiation
742 from mouse myeloid progenitors by inhibiting autophagy. *Autophagy* **15**, 1150-1162,
743 doi:10.1080/15548627.2019.1578040 (2019).
744 41 Dossou, A. S. & Basu, A. The Emerging Roles of mTORC1 in Macromanaging
745 Autophagy. *Cancers* **11**, 1422, doi:10.3390/cancers11101422 (2019).
746 42 Giri, J., Das, R., Nylen, E., Chinnadurai, R. & Galipeau, J. CCL2 and CXCL12 Derived
747 from Mesenchymal Stromal Cells Cooperatively Polarize IL-10+ Tissue Macrophages
748 to Mitigate Gut Injury. *Cell Rep* **30**, 1923-1934.e1924,
749 doi:10.1016/j.celrep.2020.01.047 (2020).
750 43 Sánchez-Martín, L. *et al.* The chemokine CXCL12 regulates monocyte-macrophage
751 differentiation and RUNX3 expression. *Blood* **117**, 88-97, doi:10.1182/blood-2009-
752 12-258186 (2011).
753 44 Marjoram, L. *et al.* Epigenetic control of intestinal barrier function and inflammation
754 in zebrafish. *Proc Natl Acad Sci U S A* **112**, 2770-2775, doi:10.1073/pnas.1424089112
755 (2015).
756 45 Nguyen-Chi, M. *et al.* Identification of polarized macrophage subsets in zebrafish.
757 *eLife* **4**, e07288-e07288, doi:10.7554/eLife.07288 (2015).
758 46 Cambier, C. J. *et al.* Mycobacteria manipulate macrophage recruitment through
759 coordinated use of membrane lipids. *Nature* **505**, 218-222, doi:10.1038/nature12799
760 (2014).
761 47 Cambier, C. J., O'Leary, S. M., O'Sullivan, M. P., Keane, J. & Ramakrishnan, L. Phenolic
762 Glycolipid Facilitates Mycobacterial Escape from Microbicidal Tissue-Resident
763 Macrophages. *Immunity* **47**, 552-565.e554, doi:10.1016/j.jimmuni.2017.08.003
764 (2017).
765 48 Zullo, A. J. & Lee, S. Mycobacterial induction of autophagy varies by species and
766 occurs independently of mammalian target of rapamycin inhibition. *J Biol Chem* **287**,
767 12668-12678, doi:10.1074/jbc.M111.320135 (2012).
768 49 Zullo, A. J., Jurcic Smith, K. L. & Lee, S. Mammalian target of Rapamycin inhibition
769 and mycobacterial survival are uncoupled in murine macrophages. *BMC
770 Biochemistry* **15**, 4, doi:10.1186/1471-2091-15-4 (2014).
771 50 Singh, P. & Subbian, S. Harnessing the mTOR Pathway for Tuberculosis Treatment.
772 *Frontiers in microbiology* **9**, 70-70, doi:10.3389/fmicb.2018.00070 (2018).
773 51 Sommer, F., Ortiz Zacarías, N. V., Heitman, L. H. & Meijer, A. H. Inhibition of
774 macrophage migration in zebrafish larvae demonstrates *in vivo* efficacy of human

775 CCR2 inhibitors. *Developmental & Comparative Immunology* **116**, 103932,
776 doi:<https://doi.org/10.1016/j.dci.2020.103932> (2021).

777 52 Antonelli, L. R. *et al.* Intranasal Poly-IC treatment exacerbates tuberculosis in mice
778 through the pulmonary recruitment of a pathogen-permissive
779 monocyte/macrophage population. *J Clin Invest* **120**, 1674-1682,
780 doi:10.1172/jci40817 (2010).

781 53 Qu, M.-J. *et al.* MicroRNA-126 is a prospective target for vascular disease.
782 *Neuroimmunology and Neuroinflammation* **5**, 10, doi:10.20517/2347-8659.2018.01
783 (2018).

784 54 Chen, J. *et al.* MicroRNA-126a Directs Lymphangiogenesis Through Interacting With
785 Chemokine and Flt4 Signaling in Zebrafish. *Arteriosclerosis, thrombosis, and vascular*
786 *biology* **36**, 2381-2393, doi:10.1161/ATVBAHA.116.308120 (2016).

787 55 Fish, J. E. *et al.* miR-126 regulates angiogenic signaling and vascular integrity. *Dev Cell*
788 **15**, 272-284, doi:10.1016/j.devcel.2008.07.008 (2008).

789 56 Kontarakis, Z., Rossi, A., Ramas, S., Dellinger, M. T. & Stainier, D. Y. R. Mir-126 is a
790 conserved modulator of lymphatic development. *Developmental Biology* **437**, 120-
791 130, doi:<https://doi.org/10.1016/j.ydbio.2018.03.006> (2018).

792 57 Zou, J. *et al.* Two Functional MicroRNA-126s Repress a Novel Target Gene p21-
793 Activated Kinase 1 to Regulate Vascular Integrity in Zebrafish. *Circulation Research*
794 **108**, 201-209, doi:10.1161/CIRCRESAHA.110.225045 (2011).

795 58 Oehlers, S. H. *et al.* Infection-Induced Vascular Permeability Aids Mycobacterial
796 Growth. *The Journal of Infectious Diseases* **215**, 813-817, doi:10.1093/infdis/jiw355
797 (2017).

798 59 Oehlers, S. H. *et al.* Interception of host angiogenic signalling limits mycobacterial
799 growth. *Nature* **517**, 612-615, doi:10.1038/nature13967 (2015).

800 60 Zhu, N. *et al.* Endothelial-specific intron-derived miR-126 is down-regulated in
801 human breast cancer and targets both VEGFA and PIK3R2. *Mol Cell Biochem* **351**,
802 157-164, doi:10.1007/s11010-011-0723-7 (2011).

803 61 Ji, J.-S. *et al.* Inhibition of microRNA-126 promotes the expression of Spred1 to
804 inhibit angiogenesis in hepatocellular carcinoma after transcatheter arterial
805 chemoembolization: in vivo study. *Onco Targets Ther* **9**, 4357-4367,
806 doi:10.2147/OTT.S106513 (2016).

807 62 Inoue, H. *et al.* Spred-1 negatively regulates allergen-induced airway eosinophilia
808 and hyperresponsiveness. *Journal of Experimental Medicine* **201**, 73-82,
809 doi:10.1084/jem.20040616 (2005).

810 63 Ishizaki, T. *et al.* miR126 positively regulates mast cell proliferation and cytokine
811 production through suppressing Spred1. *Genes to Cells* **16**, 803-814,
812 doi:<https://doi.org/10.1111/j.1365-2443.2011.01529.x> (2011).

813 64 Tadokoro, Y. *et al.* Spred1 Safeguards Hematopoietic Homeostasis against Diet-
814 Induced Systemic Stress. *Cell Stem Cell* **22**, 713-725.e718,
815 doi:10.1016/j.stem.2018.04.002 (2018).

816 65 Garcia-Rodriguez, K. M., Goenka, A., Alonso-Rasgado, M. T., Hernández-Pando, R. &
817 Bulfone-Paus, S. The Role of Mast Cells in Tuberculosis: Orchestrating Innate
818 Immune Crosstalk? *Frontiers in immunology* **8**, 1290-1290,
819 doi:10.3389/fimmu.2017.01290 (2017).

820 66 Khatun, A. *et al.* Mycobacterial infection induces eosinophilia and production of α -
821 defensin by eosinophils in mice. *J Vet Med Sci* **81**, 138-142, doi:10.1292/jvms.18-
822 0619 (2019).

823 67 Bohrer, A. C. *et al.* Eosinophils are part of the granulocyte response in tuberculosis
824 and promote host resistance in mice. *J Exp Med* **218**, doi:10.1084/jem.20210469
825 (2021).

826 68 Hall, C., Flores, M. V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C
827 promoter drives myeloid-specific expression in transgenic fish. *BMC Developmental
828 Biology* **7**, 42, doi:10.1186/1471-213X-7-42 (2007).

829 69 Walton, E. M., Cronan, M. R., Beerman, R. W. & Tobin, D. M. The Macrophage-
830 Specific Promoter *mfap4* Allows Live, Long-Term Analysis of Macrophage Behavior
831 during Mycobacterial Infection in Zebrafish. *PLOS ONE* **10**, e0138949,
832 doi:10.1371/journal.pone.0138949 (2015).

833 70 Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective
834 prediction of microRNA/target duplexes. *Rna* **10**, 1507-1517,
835 doi:10.1261/rna.5248604 (2004).

836 71 Matty, M. A., Oehlers, S. H. & Tobin, D. M. in *Zebrafish: Methods and Protocols* (eds
837 Koichi Kawakami, E. Elizabeth Patton, & Michael Orger) 207-223 (Springer New York,
838 2016).

839 72 Duggin, I. G. *et al.* CetZ tubulin-like proteins control archaeal cell shape. *Nature* **519**,
840 362-365, doi:10.1038/nature13983 (2015).

841 73 Iosifidis, G. & Duggin, I. G. Distinct Morphological Fates of Uropathogenic *Escherichia
842 coli* Intracellular Bacterial Communities: Dependency on Urine Composition and pH.
843 *Infect. Immun.* **88**, e00884-00819, doi:10.1128/IAI.00884-19 (2020).

844 74 Tran, V. L. T., Horte, E., Britton, W. J. & Oehlers, S. H. Common anti-hemostatic
845 medications increase the severity of systemic infection by uropathogenic
846 *Escherichia coli*. *bioRxiv*, 2021.2001.2018.425391,
847 doi:10.1101/2021.01.18.425391 (2021).

848

849 **Figure legends**

850 **Figure 1. Infection-induced miR-206 expression alters bacterial burden.** (A) Expression
851 of miR-206 following *M. marinum* infection analysed by qPCR at 1 and 3 dpi relative to
852 uninfected embryos. (B) Expression of miR-206 in uninfected and infected, antagonmir-
853 injected embryos (miR-206 knockdown). (C) Representative images of *M. marinum* infection
854 at 3 dpi in control and miR-126 knockdown embryos. Scale bar represents 200 μ m. (D) *M.
855 marinum* burden in miR-206 knockdown embryos at 1 and 3 dpi. Each data point represents a
856 single measurement, with the mean and SEM shown. For qPCR analysis, each data point
857 represents 10 embryos, and contains 2 biological replicates. Bacterial burden analysis data
858 points represent individual embryos (n=40-50 embryos per group) and are representative of 2
859 biological replicates.

860

861 **Figure 2. Mycobacterial virulence factors drive the induction and protective effects of**
862 **miR-126.** (A) Expression of miR-126 at 1 dpi following infection with either WT *M.*
863 *marinum*, Δ ESX1 *M. marinum*, or UPEC. (B) Δ ESX1 *M. marinum* burden at 1 and 3 dpi in
864 miR-126 knockdown embryos. (C) UPEC burden at 6 hpi and 1 dpi in miR-126 knockdown
865 embryos. For qPCR analysis, data points are representative of a single measurement of 10
866 pooled embryos and 2 experimental replicates, with the mean and standard error of the mean
867 (SEM) shown. For bacterial burden analysis, each data point represents a single measurement
868 (n=35-45 embryos per group for Δ ESX1 *M. marinum* and n=15-35 embryos per group for
869 UPEC), and 2 experimental replicates with the mean and SEM shown.

870

871 **Figure 3. Expression of potential miR-126 mRNA targets is conserved in zebrafish *M.***
872 ***marinum* infection.** (A-E) Expression of candidate genes at 1 dpi in miR-126 knockdown
873 measured by qPCR. (F-J) qPCR analysis of zebrafish CXR4/CXCL12 and TSC1 ortholog
874 genes at 3 dpi. Each data point represents a single measurement of 10 pooled embryos and 2
875 technical replicates, with the mean and SEM shown.

876

877 **Figure 4. miR-126 targets *tsc1a* to worsen *M. marinum* infection burden.** (A) Binding
878 kinetics of *tsc1a* and dre-miR-126a-3p as predicted by RNAhybrid. (B) Brightfield images of
879 *tsc1a* knockdown embryos at 3 dpf showing no abnormal developmental phenotypes. Scale
880 bar represents 200 μ m. (C) *tsc1a* expression was measured by qPCR at 1 and 3 dpi following
881 CRISPR-Cas9 knockdown of *tsc1a* and infection with *M. marinum*. (D) *tsc1a* knockdown
882 embryos were infected with *M. marinum* via caudal vein injection and bacteria burden was
883 analysed at 1 and 3 dpi. (E) *tsc1a* and miR-126 double knockdown embryos were infected
884 with *M. marinum* via caudal vein injection and bacterial burden was analysed at 3 dpi. For
885 qPCR analysis, data points are representative of a single measurement of 10 pooled embryos
886 and 2 experimental replicates, with the mean and standard error of the mean (SEM) shown.
887 Bacterial burden data points represent a single measurement (n=27-44 embryos per group [C]
888 and n=11-20 embryos per group [D]), and 2 experimental replicates with the mean and SEM
889 shown.

890

891 **Figure 5. miR-126 acts on *tsc1a* to influence mTOR signalling during infection.** (A)
892 Representative images of phospho-S6 fluorescent staining in miR-126 and *tsc1a* knockdown
893 embryos at 1 dpi. *M. marinum* is green and phosphorylated ribosomal protein S6 is magenta.

894 Scale bar represents 100 μ m. (B) Phospho-S6 staining in *M. marinum*-infected control, miR-
895 126 knockdown, and *tsc1a* knockdown at 1 dpi (C) miR-126 knockdown embryos were
896 infected with *M. marinum* via caudal vein injection and treated with mTOR inhibitor
897 rapamycin. Bacterial burden was analysed at 1 dpi. (D) miR-126 knockdown embryos were
898 infected with *M. marinum* via caudal vein injection and treated with mTOR activator
899 MHY1485. (E) *tsc1a* knockdown embryos were infected with *M. marinum* via caudal vein
900 injection and treated with mTOR inhibitor rapamycin. Bacterial burden was analysed at 1 dpi.
901 (F) *tsc1a* knockdown embryos were infected with *M. marinum* via caudal vein injection and
902 treated with mTOR activator MHY1485. Bacterial burden was analysed at 1 dpi. Bacterial
903 burden was analysed at 1 dpi. Each data point represents a single measurement (n=11-36
904 embryos per group) with the mean and SEM shown. Phospho-S6 staining is a single
905 experimental replicate, while rapamycin and MHY1485 treatments represent 2 experimental
906 replicates each.

907

908 **Figure 6. Decreased mTOR signalling alters cell death dynamics in mycobacterial**
909 **infection.** (A) Representative images of TUNEL staining in miR-126 knockdown embryos at
910 3 dpi. TUNEL +ve cells are green and *M. marinum* is blue. Scale bar represents 100 μ m. (B)
911 TUNEL +ve cells in *M. marinum*-infected control and miR-126 knockdown embryos were
912 counted at 3 dpi. (C) Representative images of TUNEL staining in *tsc1a* and double
913 knockdown embryos at 3 dpi. TUNEL +ve cells are green and *M. marinum* is blue. Scale bar
914 represents 100 μ m. (D) TUNEL +ve cells in *M. marinum*-infected *tsc1a* and double
915 knockdown embryos were counted at 3 dpi. (E) TUNEL +ve cells in rapamycin-treated, *M.*
916 *marinum*-infected knockdown embryos were counted at 3 dpi. (F) TUNEL +ve cells in
917 MHY1485-treated, *M. marinum*-infected knockdown embryos were counted at 3 dpi. Each
918 data point represents a single measurement, with the mean and SEM shown (n=20-25
919 embryos per group). Graphs are representative of 2 experimental replicates with the
920 exception of rapamycin/MHY1485 experiments, which were performed in a single replicate.

921

922 **Figure 7. Mycobacterial infection-induced miR-126 expression alters the host**
923 **macrophage response.** (A) Measurement of whole-body neutrophil fluorescent area at 1 and
924 3 dpi in control and miR-126 knockdown infected embryos. (B) Measurement of neutrophil
925 levels following trunk infection with *M. marinum* in miR-126 knockdown embryos. (C)
926 Measurement of whole-body macrophage fluorescent area at 1 and 3 dpi in uninfected and

927 infected miR-126 knockdown embryos. (D) Measurement of macrophage levels following
928 trunk infection with *M. marinum* in miR-126 knockdown embryos. (E) Ratio of macrophage
929 fluorescent area per bacterial fluorescent area at granulomas in miR-126 knockdown embryos
930 at 1 and 3 dpi. (F) Measurement of macrophage recruitment to a tail wound in miR-126
931 knockdown embryos. Each data point represents a single measurement with the mean and
932 SEM shown. For neutrophil analysis 10-20 embryos per group were analysed, and 15-50
933 embryos per group for macrophage analysis. For neutrophil time-lapse imaging, each data
934 point represents the mean of 6 foci of infection from 6 separate embryos, and the graph is
935 representative of 2 experimental replicates. For macrophage time-lapse imaging, each data
936 point represents the mean of 3 foci of infection from 3 separate embryos, and the graph is
937 representative of 2 experimental replicates. * P < 0.05, ** p < 0.01, *** p < 0.001, **** p <
938 0.0001.

939

940 **Figure 8. miR-126-dependent macrophage responses to infection are not controlled by**
941 **the Tsc1a/mTOR signalling axis.** (A) Measurement of whole-body macrophage fluorescent
942 area at 1 and 3 dpi in *M. marinum*-infected control and *tsc1a* knockdown embryos. (B)
943 Measurement of whole-body macrophage fluorescent area at 1 dpi in *M. marinum*-infected
944 control and knockdown embryos. Each data point represents a single measurement, with the
945 mean and SEM shown (n=7-56) embryos per group). Graph is representative of 2
946 experimental replicates.

947

948 **Figure 9. Mycobacterial infection-induced miR-126 expression increases**
949 **proinflammatory bactericidal macrophage recruitment.** (A-B) Expression of *ccr2* and
950 *ccl2* was analysed by qPCR at 1 dpi following miR-126 knockdown and infection with *M.*
951 *marinum* (C) Measurement of *tnfa* promoter activation following trunk infection with *M.*
952 *marinum* in knockdown embryos at 1 dpi. infected with *M. marinum* via caudal vein injection
953 and bacterial burden was analysed at 3 dpi (D) Representative images of *tnfa* promoter-drive
954 GFP expression at 1 dpi in knockdown embryos following trunk infection with *M. marinum*.
955 *M. marinum* is red, and *tnfa* is green. Scale bar represents 100 μ m. For qPCR analysis, data
956 points are representative of a single measurement of 10 pooled embryos and 2 experimental
957 replicates, with the mean and standard error of the mean (SEM) shown. For bacterial burden,
958 each data point represents a single measurement, with the mean and SEM shown (n=9-26)
959 embryos per group). Graphs are representative of 2 experimental replicates.

960

961 **Figure 10. Infection-induced miR-126 regulates Cxcl12/Ccl2/Ccr2 signalling to prevent**
962 **permissive macrophage recruitment to sites of infection.** (A-B) Bacterial burden measured
963 at 1 dpi in miR-126 and (A) *cxcl12a* or (B) *ccr2* knockdown embryos infected with *M.*
964 *marinum*. (C-D) Whole-body macrophage levels measured at 1 dpi in miR-126 and (C)
965 *cxcl12a* or (D) *ccr2* knockdown embryos infected with *M. marinum*. (E-F) *tnfa* fluorescent
966 area at sites of infection measured at 1 dpi in miR-126 and (E) *cxcl12a* and (F) *ccr2*
967 knockdown embryos infected *M. marinum*. (G) TUNEL +ve cells counted at 3 dpi in miR-
968 126 and *cxcl12a* or *ccr2* knockdown embryos infected *M. marinum*. Each data point
969 represents a single measurement, with the mean and SEM shown (n=10-45) embryos per
970 group. Bacterial burden, macrophage analysis and granuloma *tnfa* graphs are representative
971 of 2 experimental replicates, while TUNEL staining is presented as a single replicate.

972

973 **Supplementary File legends**

974

975 **Supplementary File 1**

976 Possible gene targets of miR-126 from database sources as annotated.

977

978 **Supplementary Figure 1**

979 Expression of *ccl2* as measured by RT-qPCR in (A) uninfected and (B) *M. marinum*-infected
980 *cxcl12a* and miR-126 knockdown embryos.

981

982 **Supplementary Video 1**

983 Time lapse imaging of macrophage (magenta) recruitment to *M. marinum* (green) in
984 *Tg(mfap4:turquoise)* control embryo.

985

986 **Supplementary Video 2**

987 Time lapse imaging of macrophage (magenta) recruitment to *M. marinum* (green) in
988 *Tg(mfap4:turquoise)* miR-126 knockdown embryo.

989

990 **Supplementary Video 3**

991 Time lapse imaging of macrophage (magenta) recruitment to a tail wound on the right edge
992 of the field of view in *Tg(mfap4:turquoise)* control embryo.

993

994 **Supplementary Video 4**

995 Time lapse imaging of macrophage (magenta) recruitment to a tail wound on the right edge
996 of the field of view in *Tg(mfap4:turquoise)* miR-126 knockdown embryo.

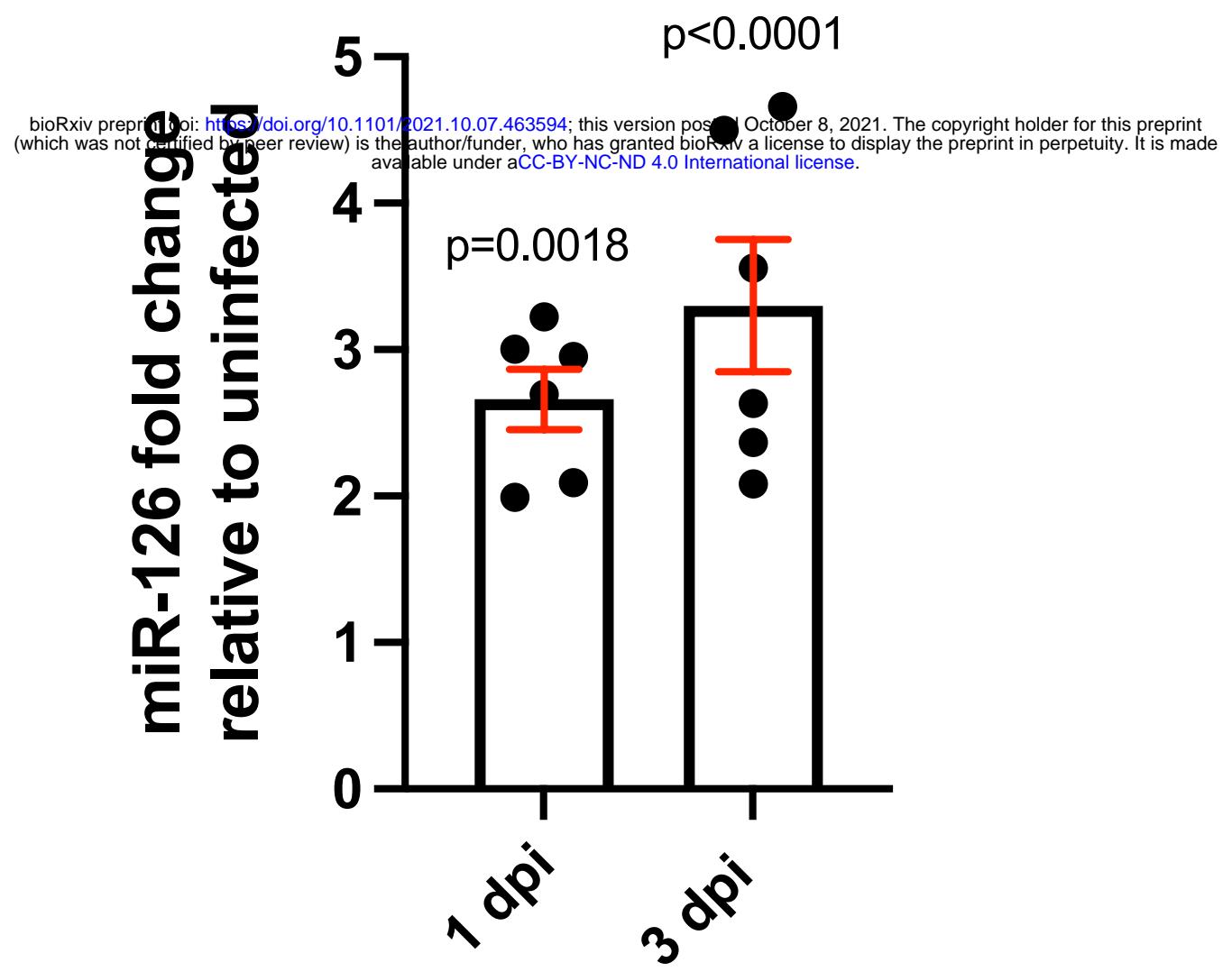
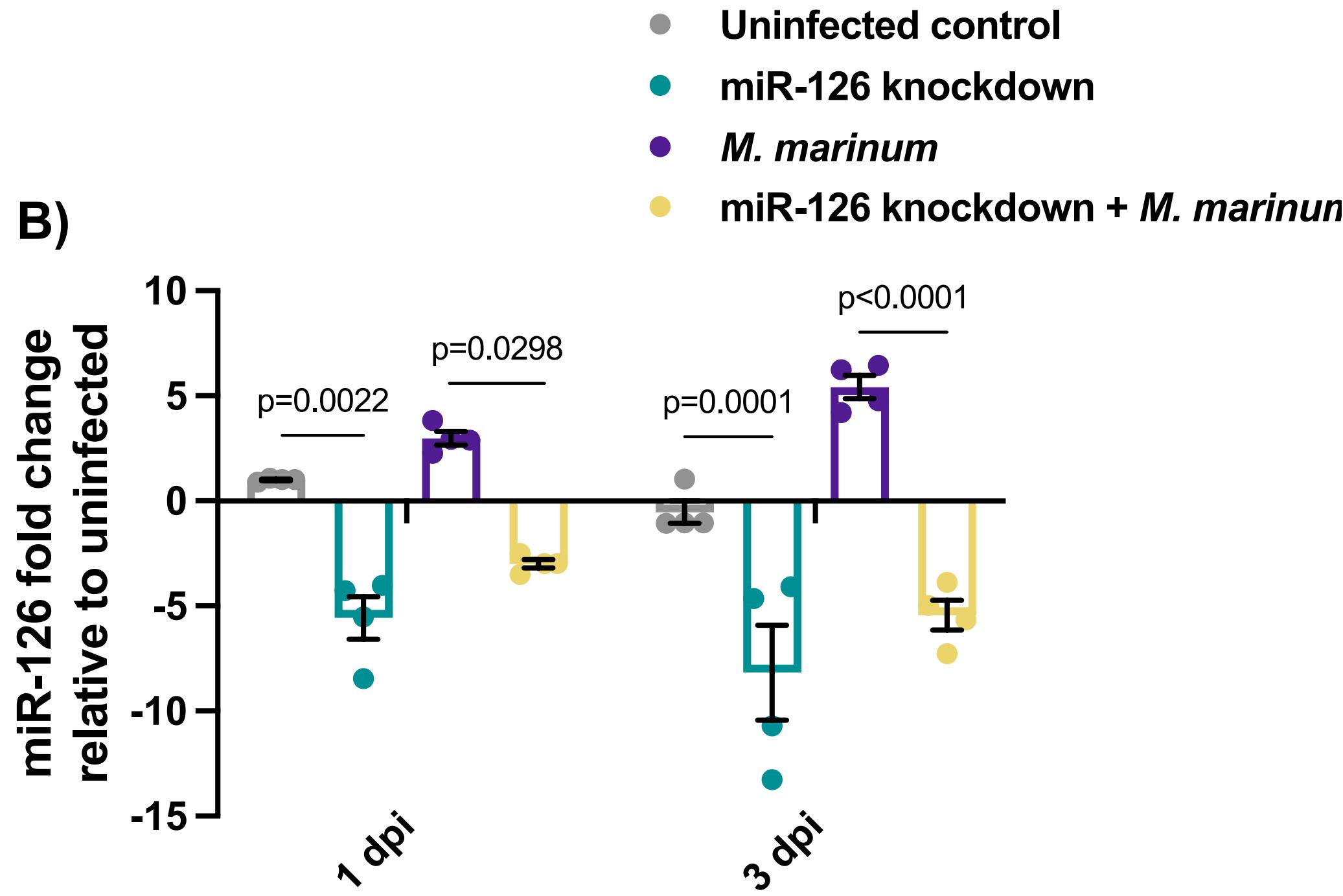
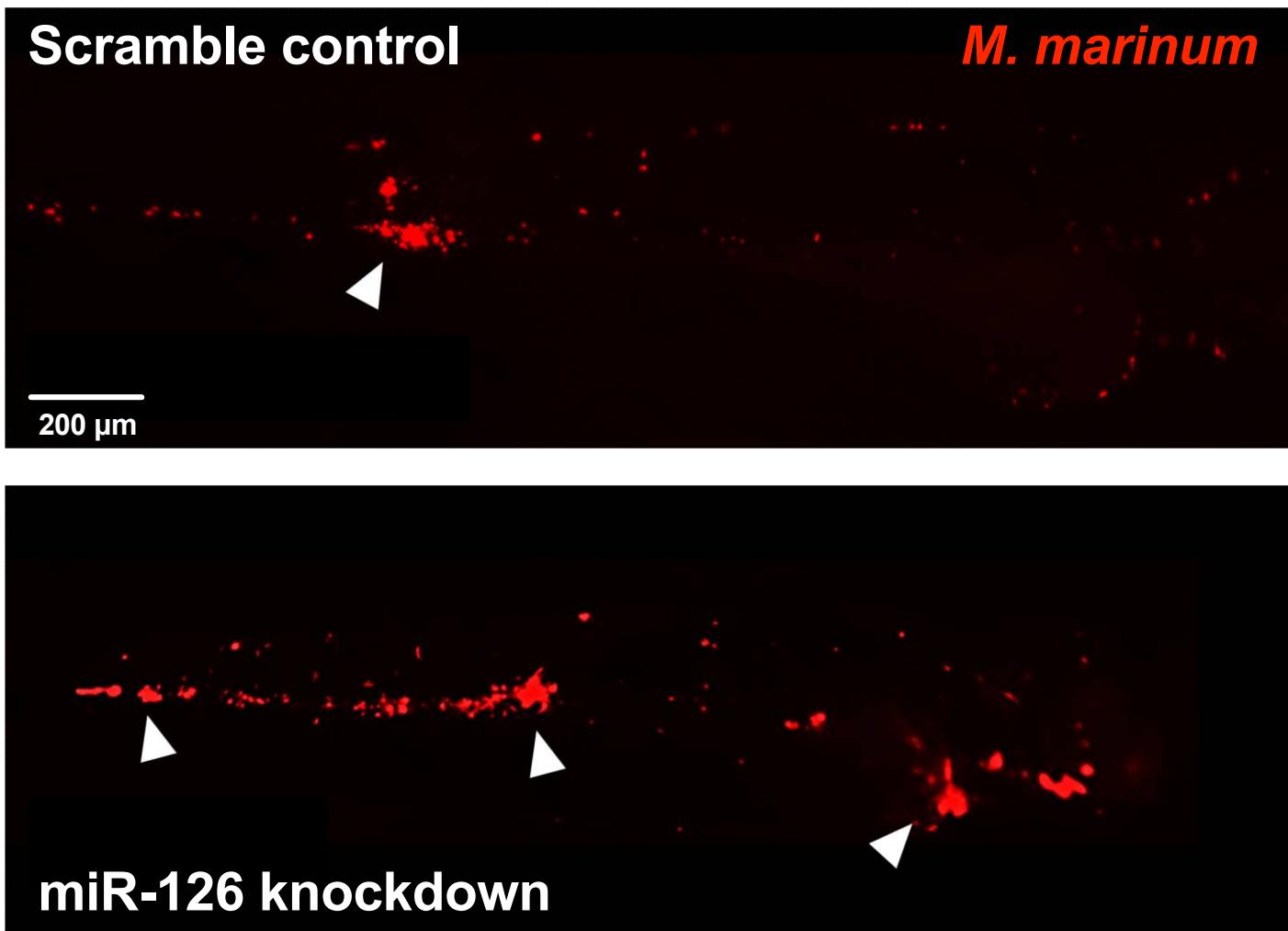
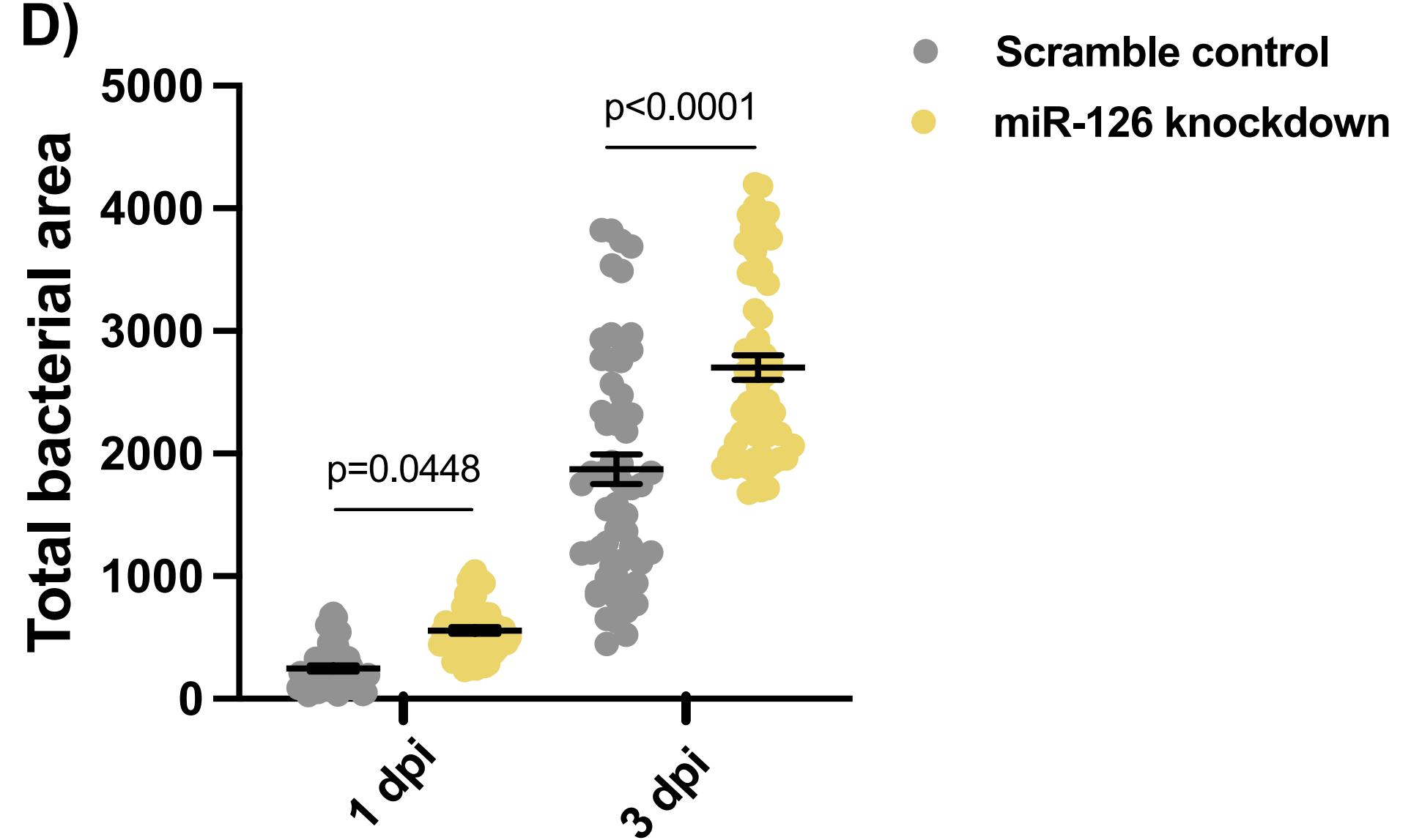
997

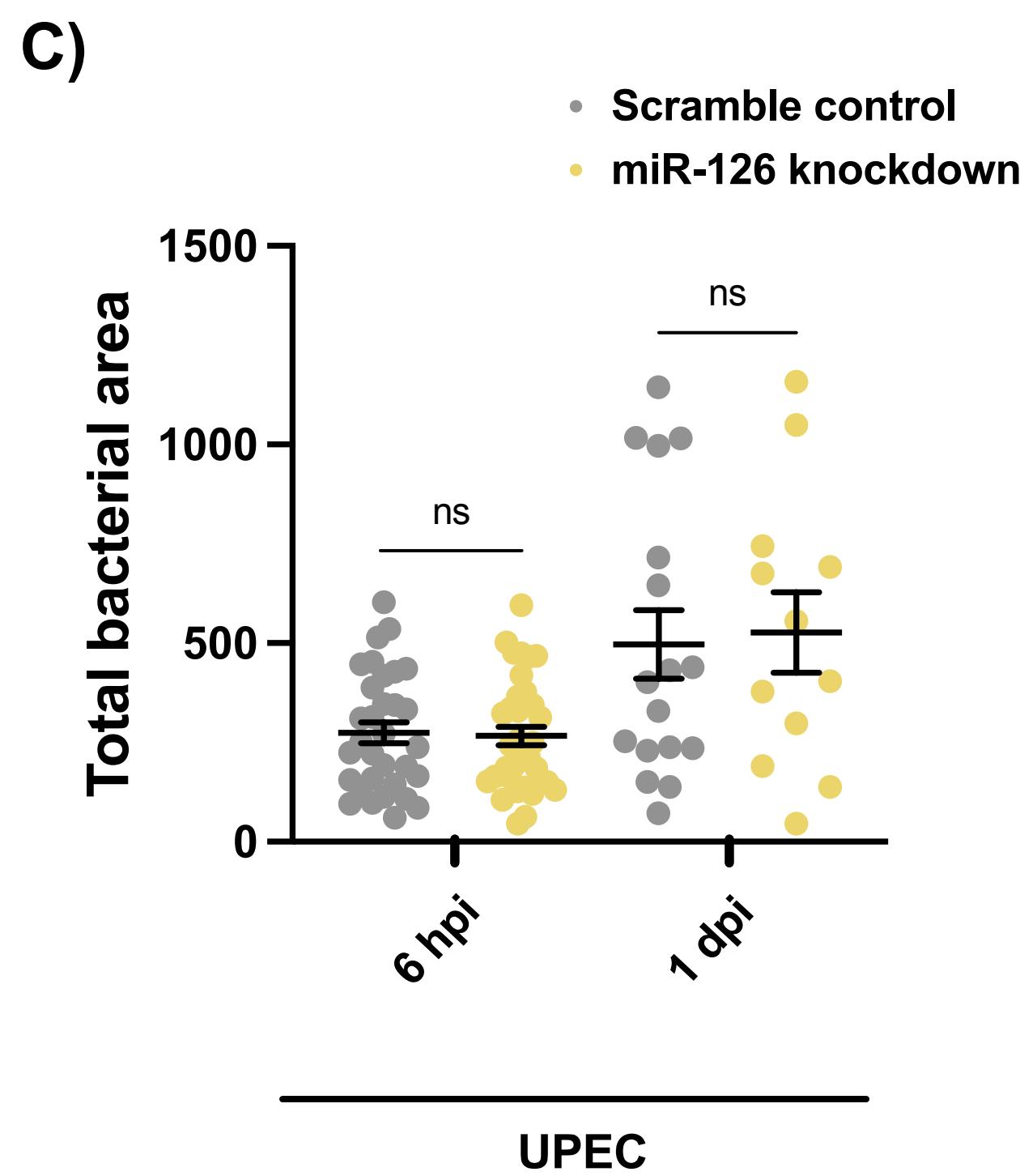
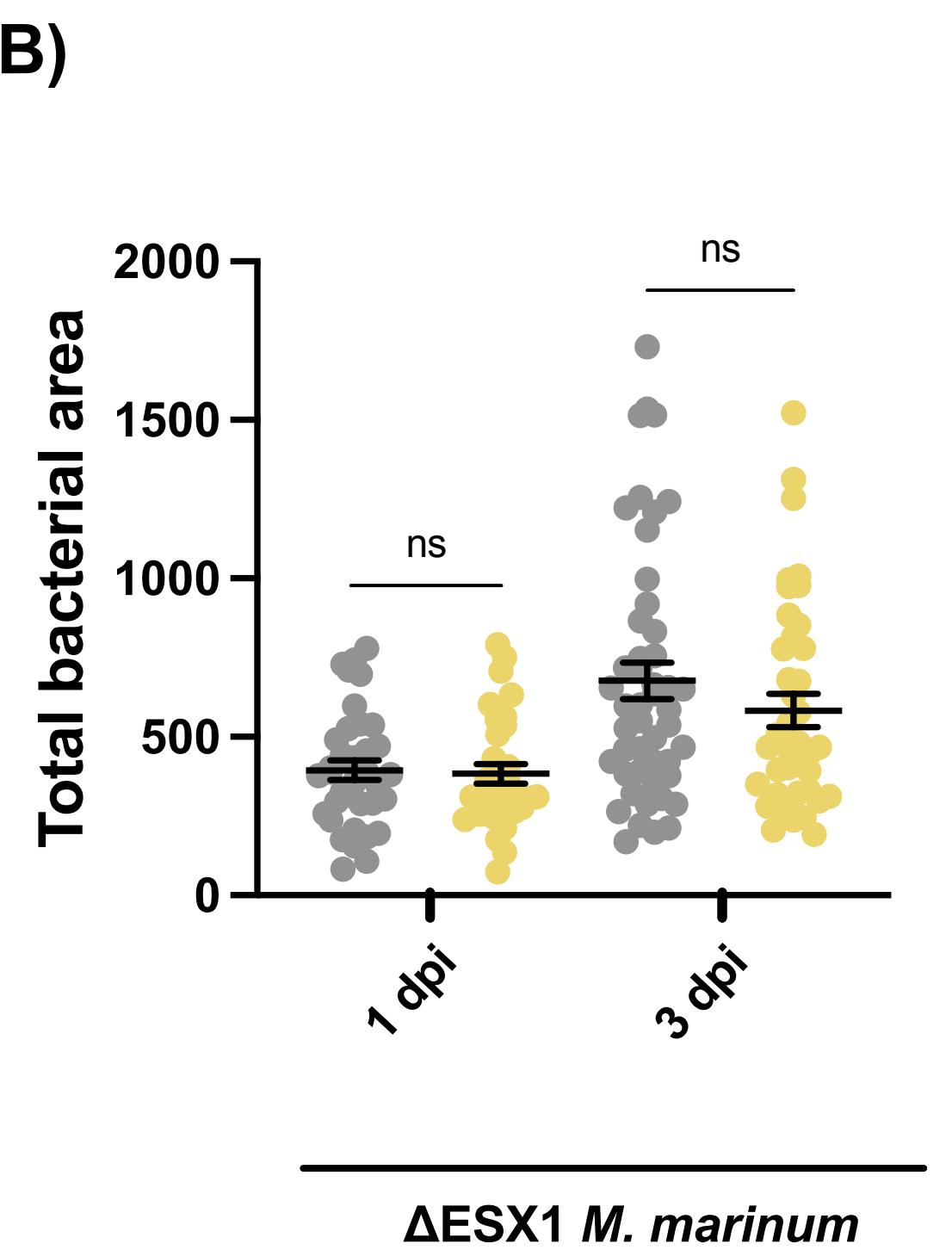
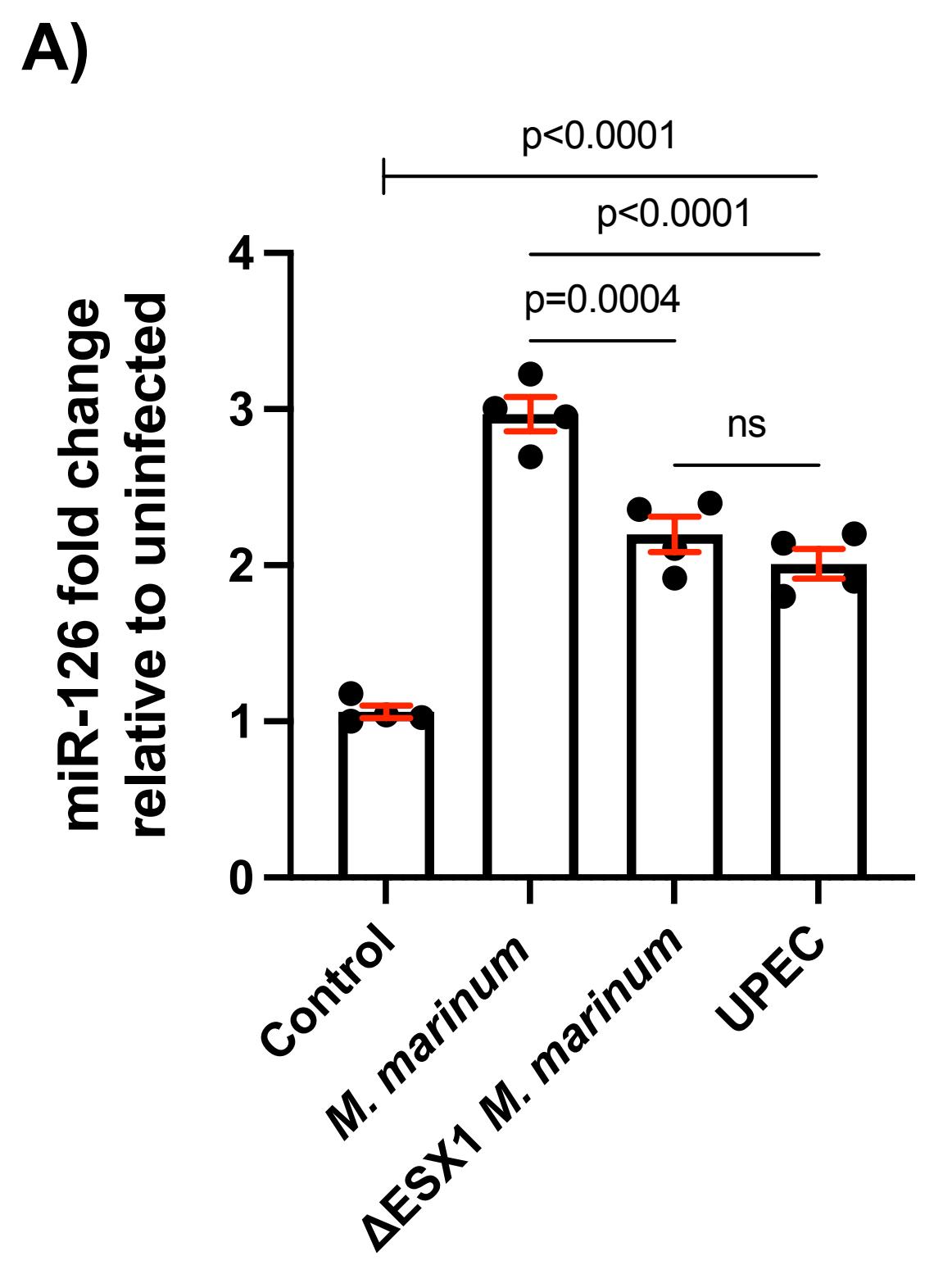
998

999

1000 **Tables**

1001 **Table 1. Guide RNA sequences used for Crispr-Cas9 mediated knockdown experiments**

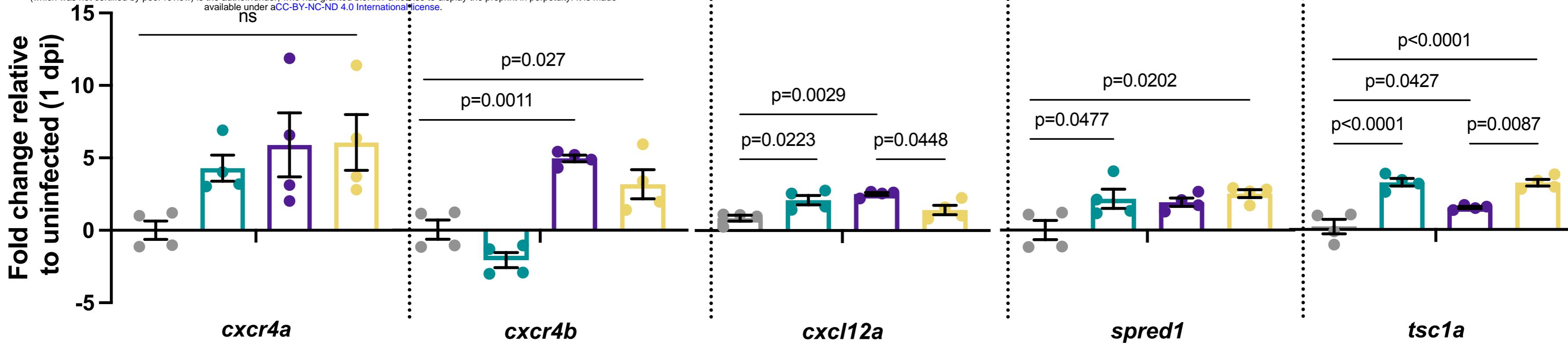




	Primer
tsc1a target 1	TAATACGACTCACTATAGGGTCTGTAGGCCATGCTGTTTAGAGCTAGAAATAGC
tsc1a target 2	TAATACGACTCACTATAGGTCAAATCCTCAGGGATGAGTTAGAGCTAGAAATAGC
tsc1a target 3	TAATACGACTCACTATAGGCTGCTGAGGCCTTCGGAGTTAGAGCTAGAAATAGC
tsc1a target 4	TAATACGACTCACTATAGGTGGCCCTGAGGCGCACAGTTAGAGCTAGAAATAGC
ccl2 target 1	TAATACGACTCACTATAGGGAGGACTGTTCCATCTGTTTAGAGCTAGAAATAGC
ccl2 target 2	TAATACGACTCACTATAGGTCAACAAACGCAACCATGGTTTAGAGCTAGAAATAGC
ccl2 target 3	TAATACGACTCACTATAGGAGCACTATCGGACTCTGTTAGAGCTAGAAATAGC
ccl2 target 4	TAATACGACTCACTATAGGCAGCACTATCGGACTCGTTAGAGCTAGAAATAGC
ccr2 target 1	TAATACGACTCACTATAGGGTGCCATTGTCATGGTTTAGAGCTAGAAATAGC
ccr2 target 2	TAATACGACTCACTATAGGTTGCCATTAGCATGTTAGAGCTAGAAATAGC
ccr2 target 3	TAATACGACTCACTATAGGAAACGATACTGTACAGGGTTTAGAGCTAGAAATAGC
ccr2 target 4	TAATACGACTCACTATAGGTTAGGTAGGGACGCAAACGTTAGAGCTAGAAATAGC
scramble target 1	TAATACGACTCACTATAGGCAGGCAAAGAACCTGCGTTTAGAGCTAGAAATAGC
scramble target 2	TAATACGACTCACTATAGGTACAGTGGACCTCGGTGCGTTTAGAGCTAGAAATAGC
scramble target 3	TAATACGACTCACTATAGGCTTCATACAATAGACGATGGTTTAGAGCTAGAAATAGC
scramble target 4	TAATACGACTCACTATAGGTCGTTGCAGTAGGATCGGTTAGAGCTAGAAATAGC




1002

1003 **Table 2. qPCR primer sequences**

qPCR Primer	Sequence 5'-3'	Ensembl ID
ccl2 forward	GTCTGGTCTTCGCTTTC	ENSDARG00000041835
ccl2 reverse	TGCAGAGAAGATCGTCGTA	
ccr2 forward	GCAACAATGGCAACGCAAAG	OTTDARG00000033131
ccr2 reverse	GTGAGCCCAGAACCGGAAGTG	(si:ch211-207g17.2 gene)
cxcr4a forward	CAGTTGGACCGGTACCTCG	ENSDARG00000057633
cxcr4a reverse	CCAGGTGACAAACGAGTCCT	
cxcr4b forward	TCGCAGACCTCTGTTGTC	
cxcr4b reverse	CCTTCCCGCAAGCAATTCC	ENSDARG00000041959
cxcl12a forward	ATTCGCGAGCTCAAGTTCC	
cxcl12a reverse	ATATCTGTGACGGTGGGCTG	ENSDARG00000037116
spred1 forward	TCTCCCTCCACAGGTTCC	
spred1 reverse	CGCACTTCTTACCGTCCAGT	ENSDARG00000041449
tsc1a forward	CCTTTCGGAGGGTTGAAGGA	
tsc1a reverse	CTGCAGGCACAAGACCTTCA	ENSDARG00000026048
vegfaa forward	TCCCGACAGAGACACGAAAC	
vegfaa reverse	TTTACAGGTGAGGGGGCCT	ENSDARG00000045971
b-actin forward	CCTTCCAGCAGATGTGGATT	ENSDARG00000037870

b-actin reverse	CACCTTCACCGTTCCAGTTT	
1004		
1005		


A)**B)****C)****D)**

- Uninfected control
- miR-126 knockdown
- *M. marinum*
- miR-126 knockdown + *M. marinum*

A)

bioRxiv preprint doi: <https://doi.org/10.1101/2021.10.07.463594>; this version posted October 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B)

p=0.027

p=0.0011

C)

p=0.0029

p=0.0223

p=0.0448

D)

p=0.0202

p=0.0477

E)

p<0.0001

p=0.0427

p<0.0001

p=0.0087

*cxcr4a**cxcr4b**cxcl12a**spred1**tsc1a*

F)

p=0.0001
p=0.0005
p=0.0071
p=0.0337

G)

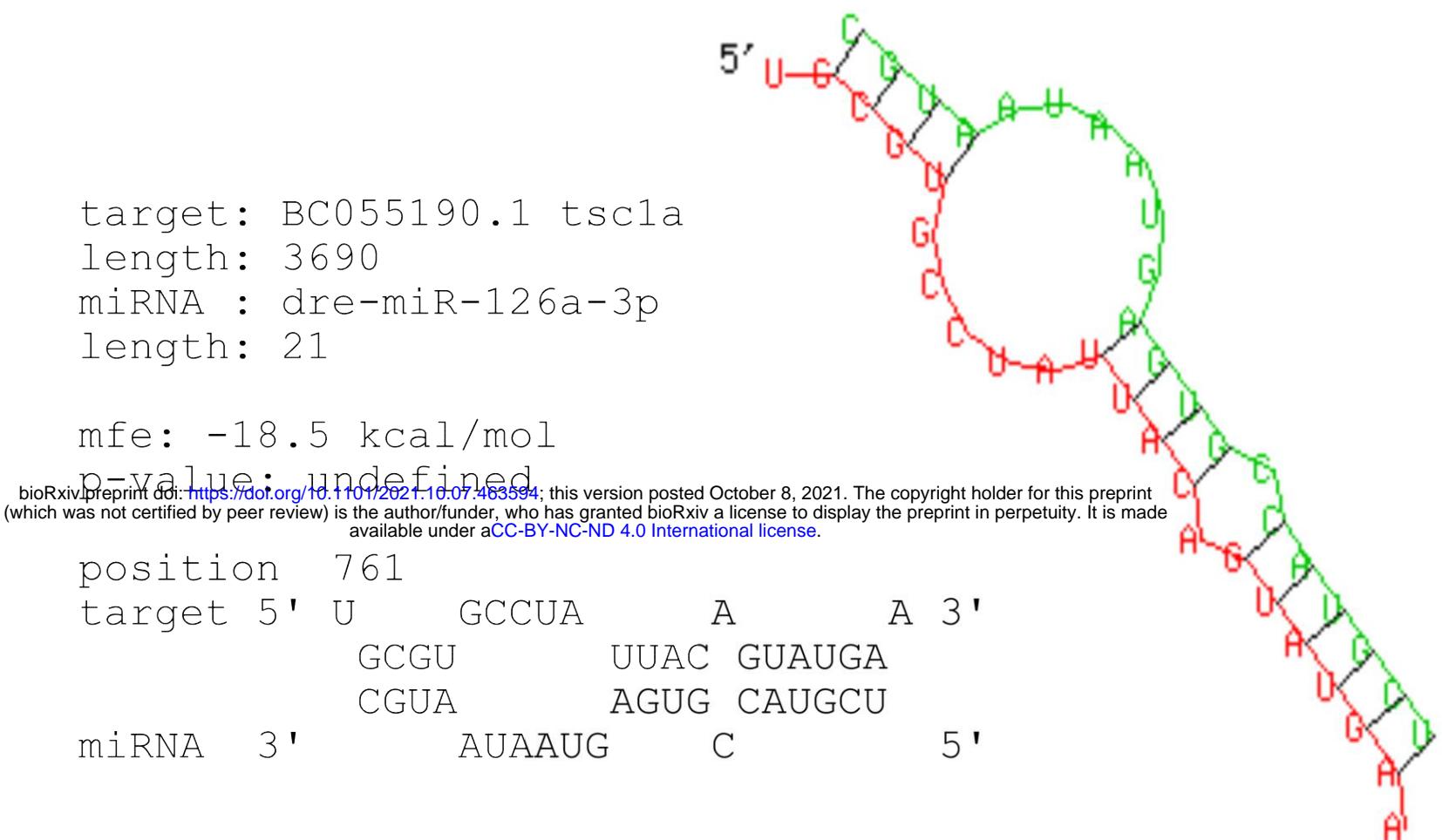
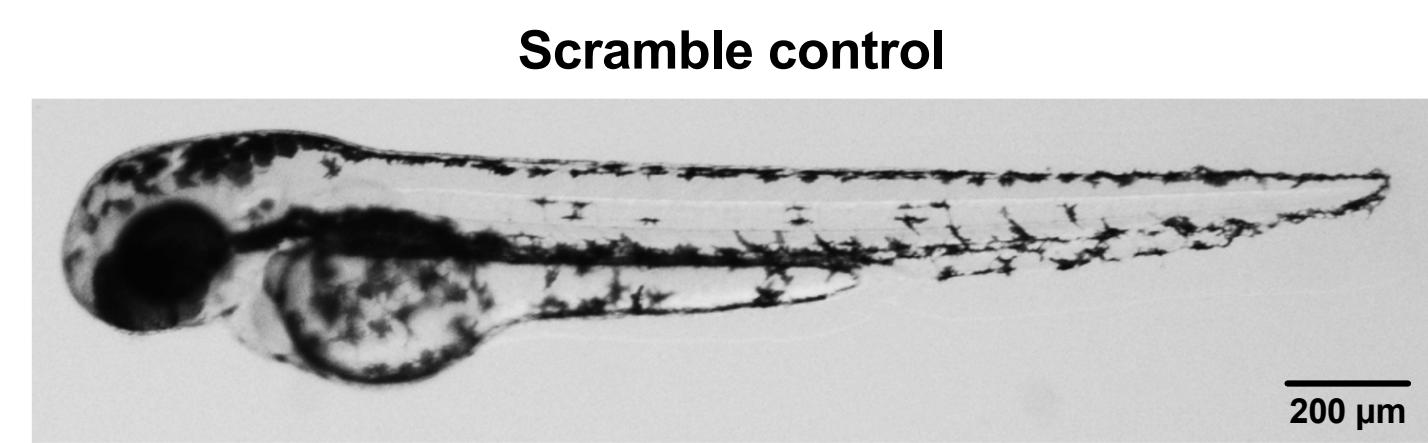
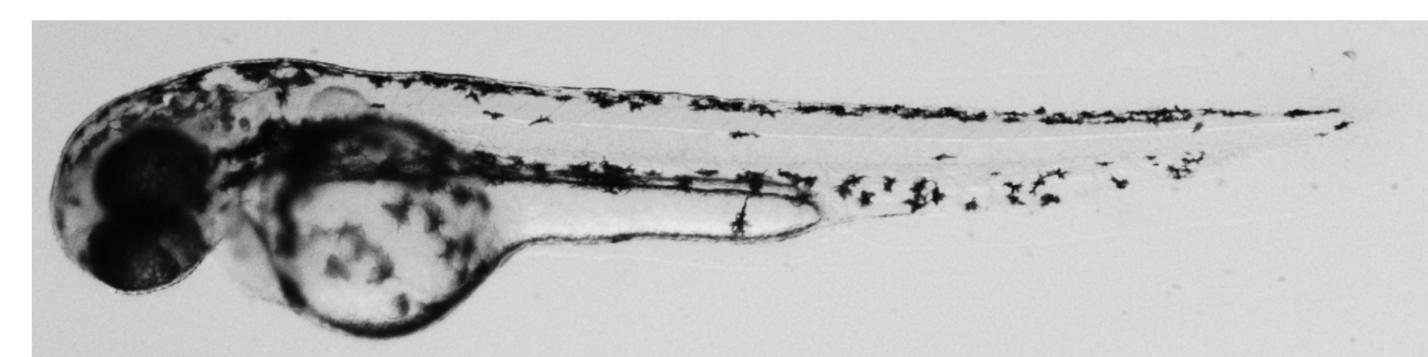
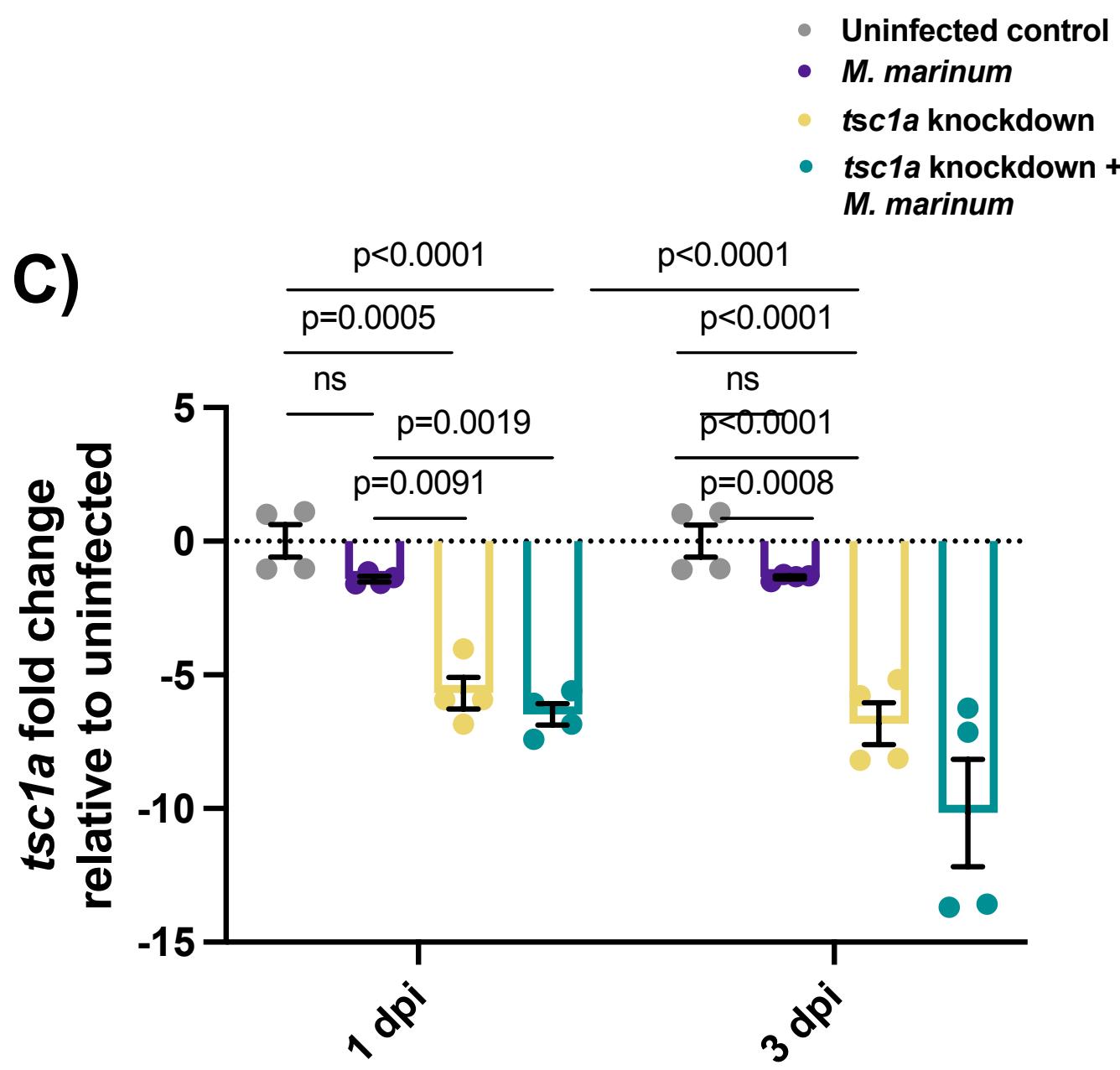
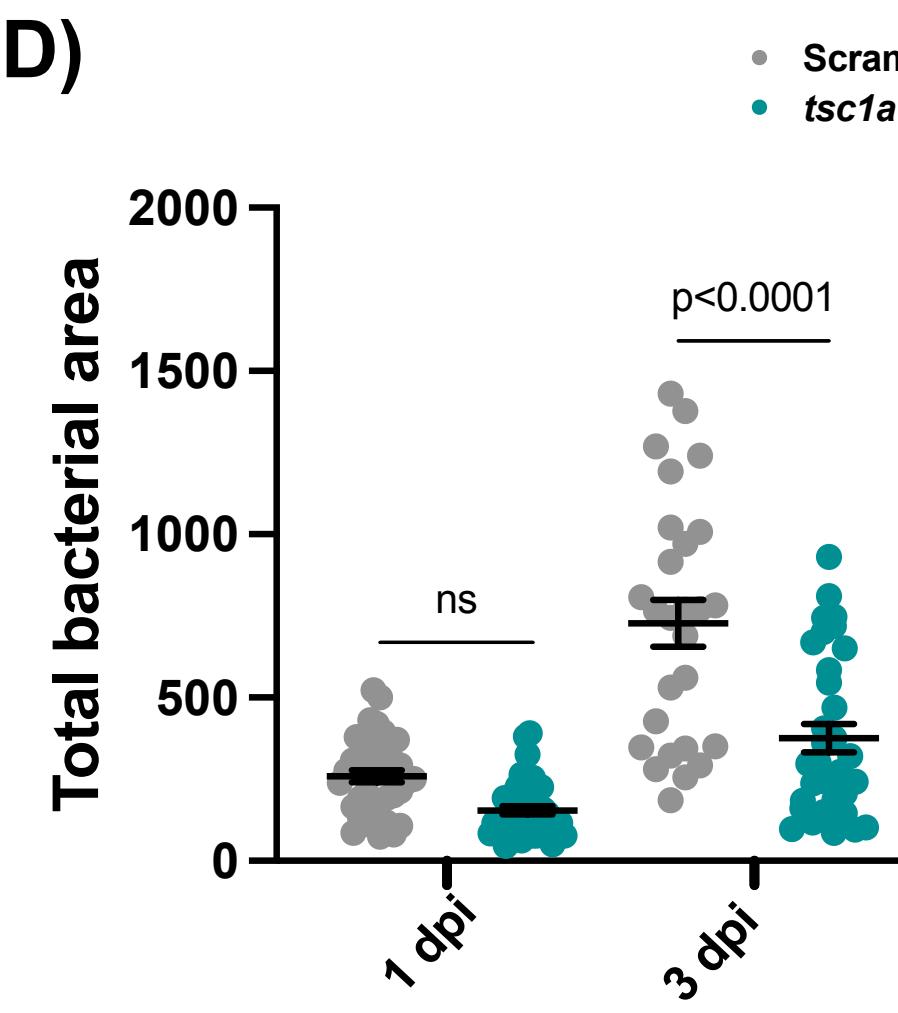
p=0.0005
p=0.0052
p=0.0032
p=0.0379

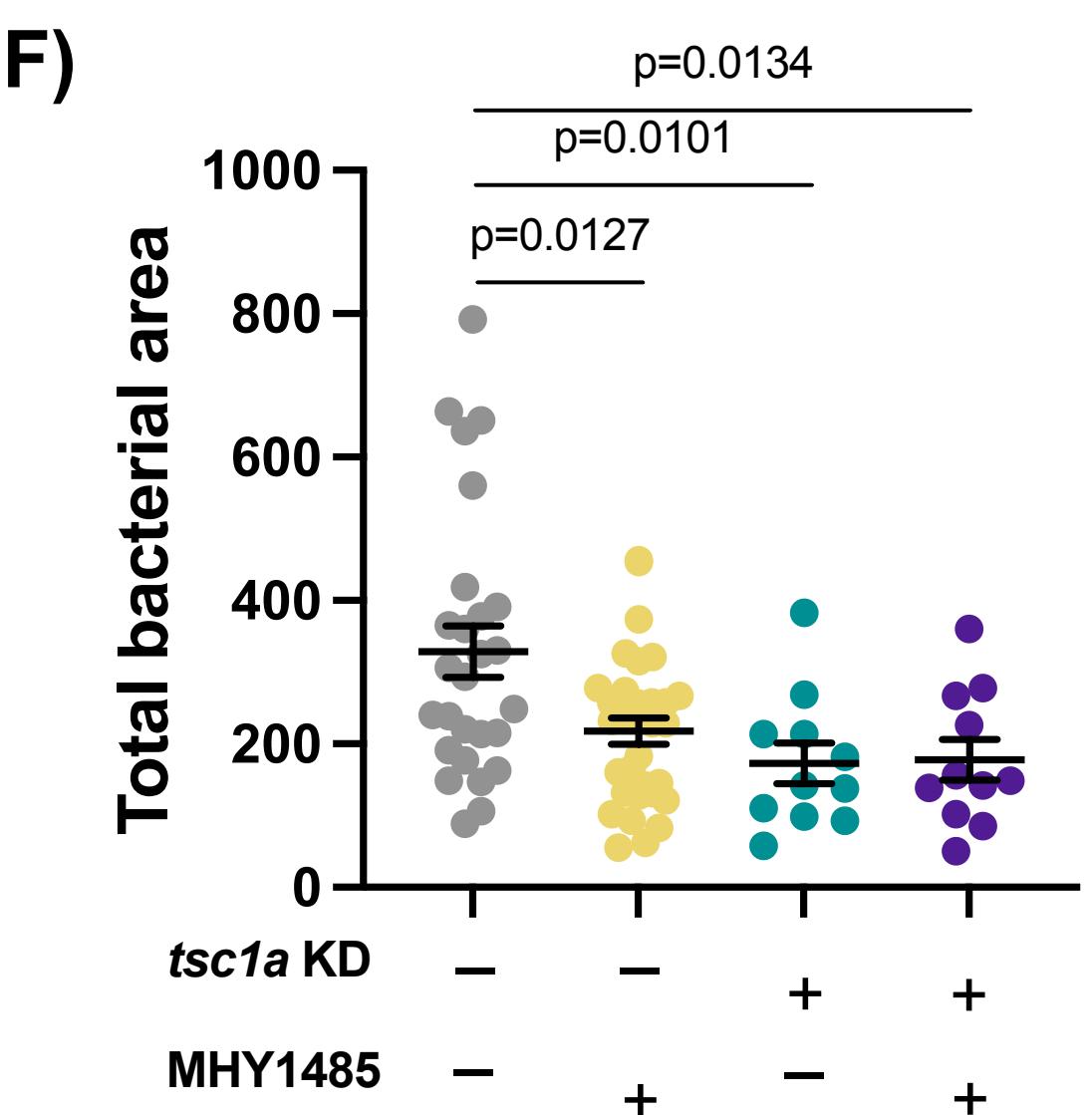
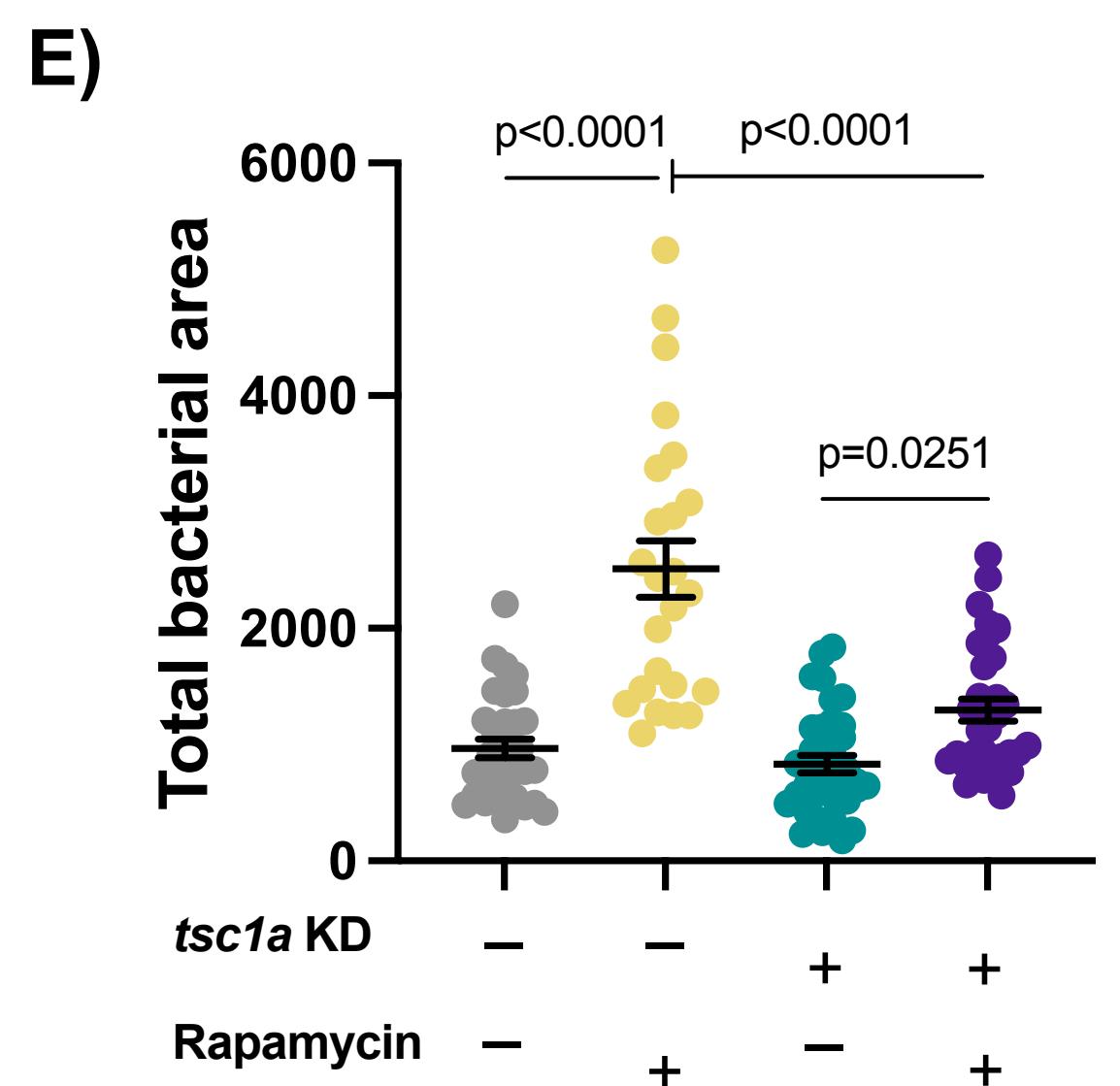
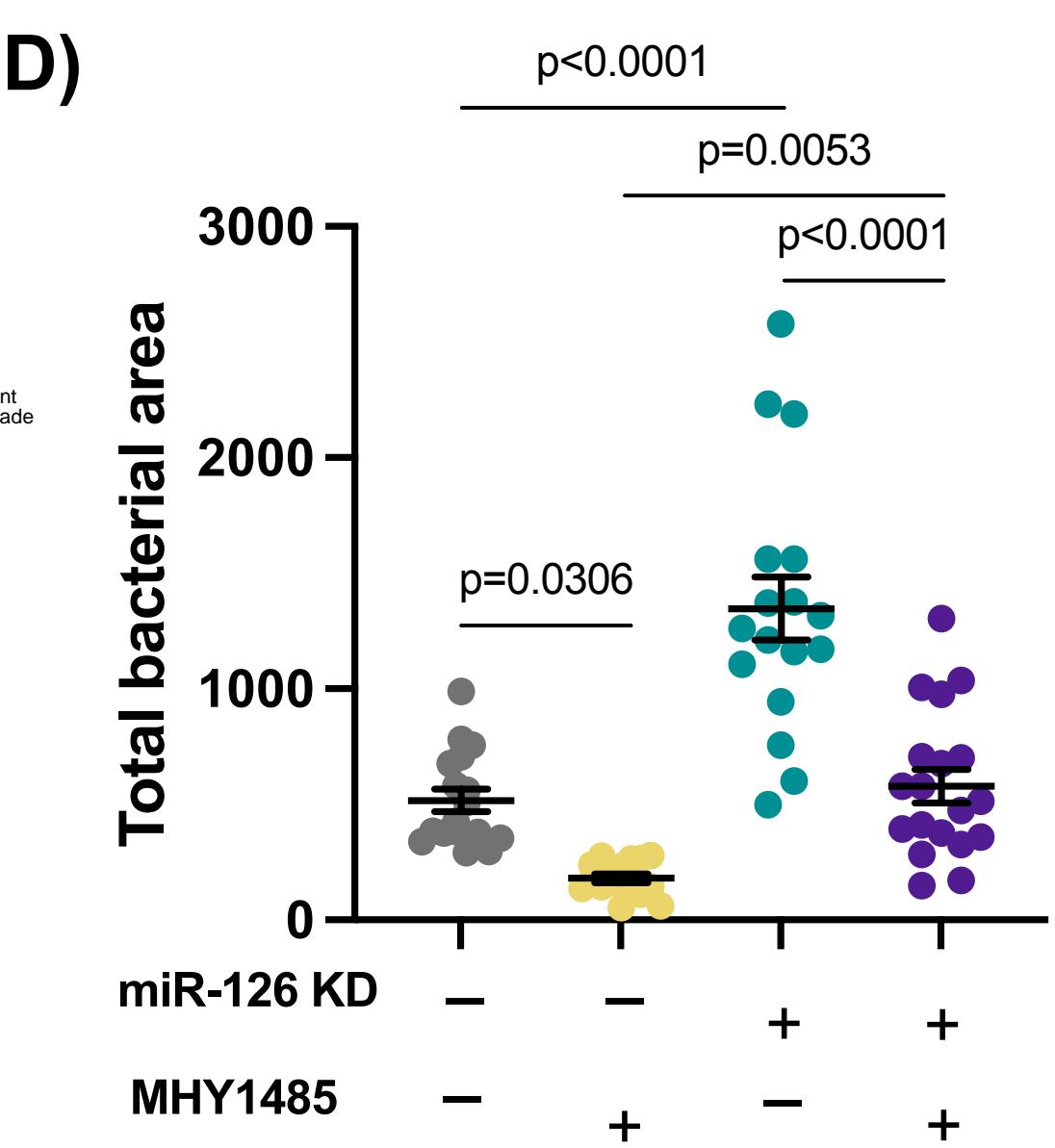
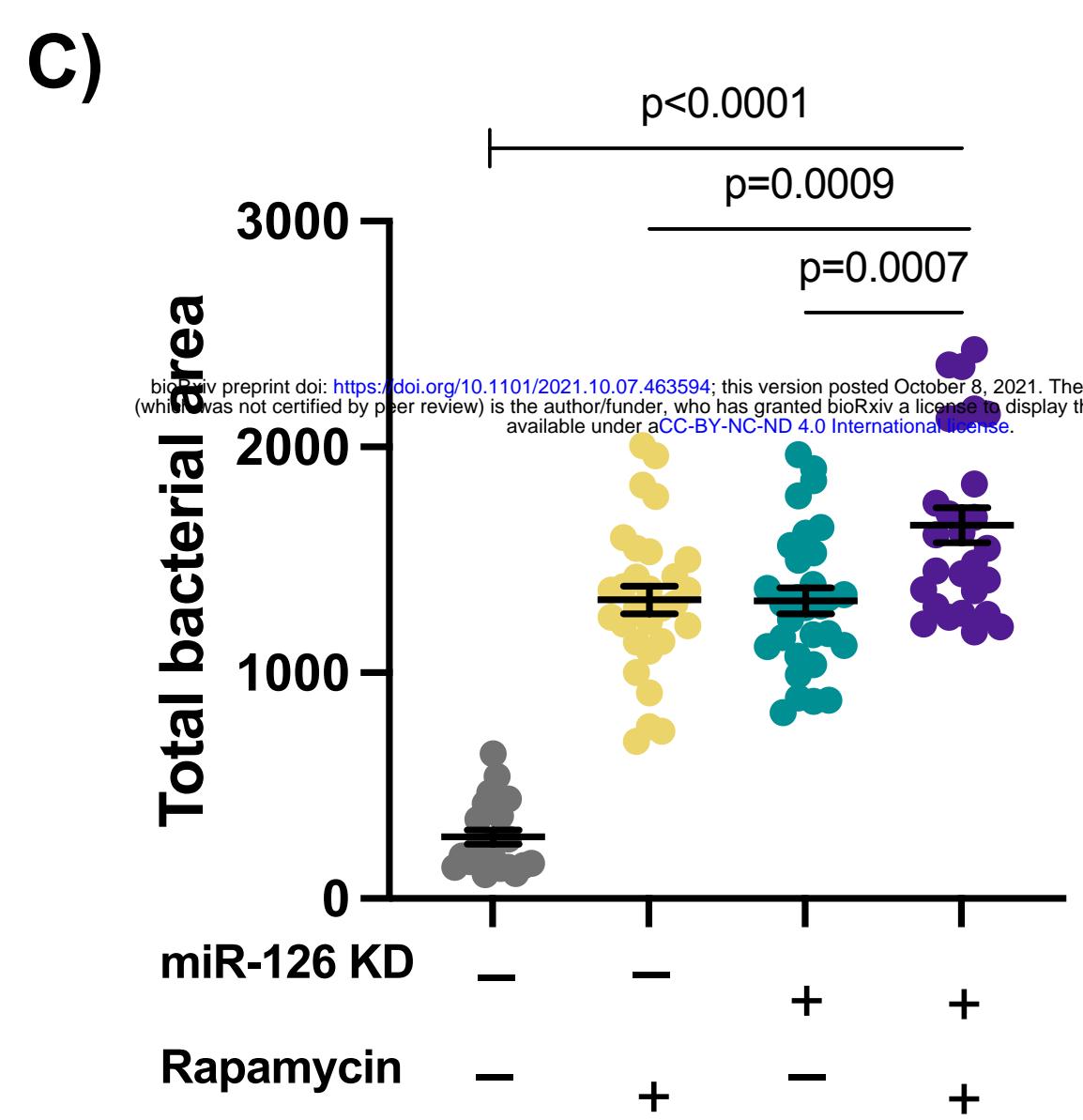
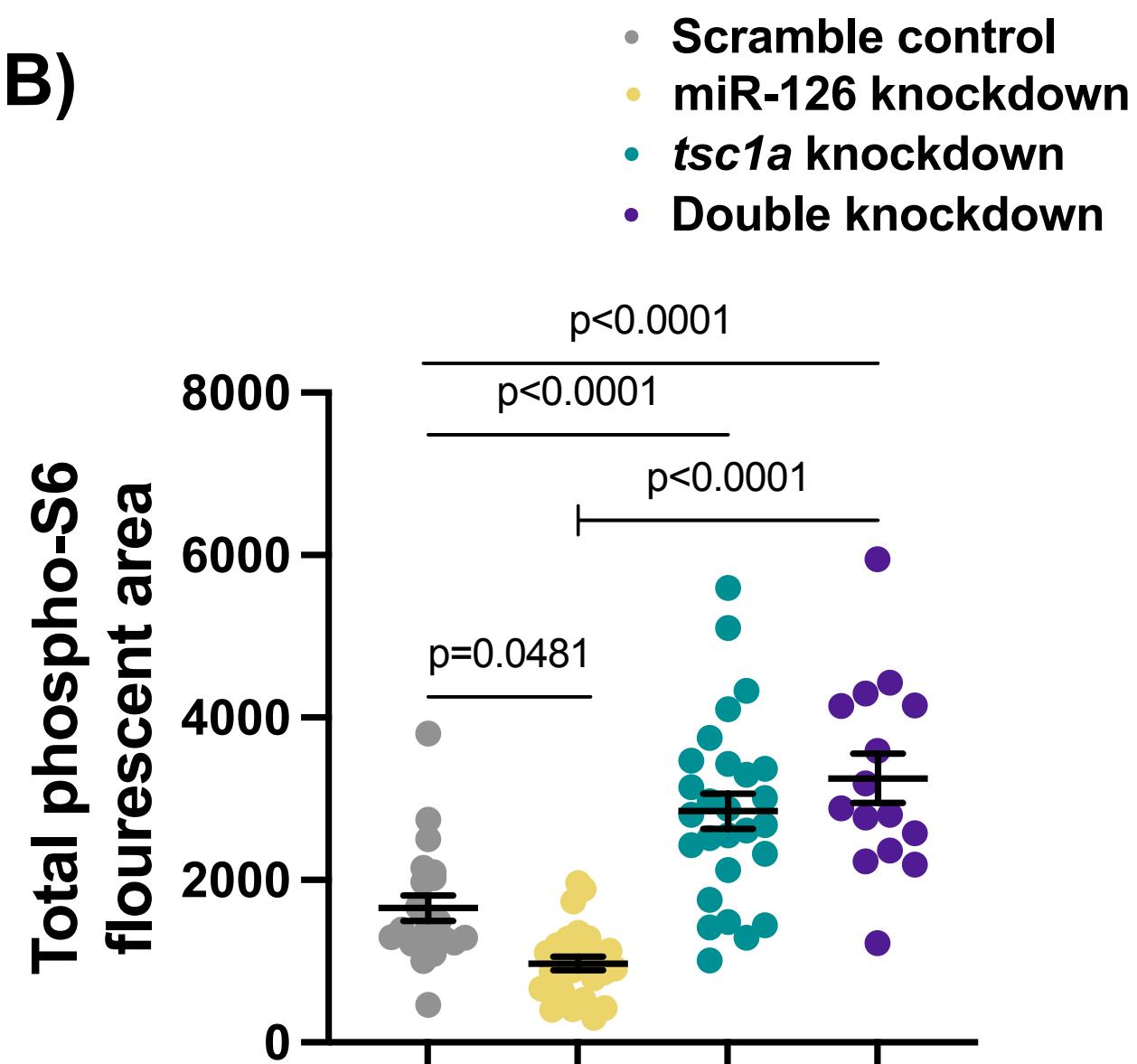
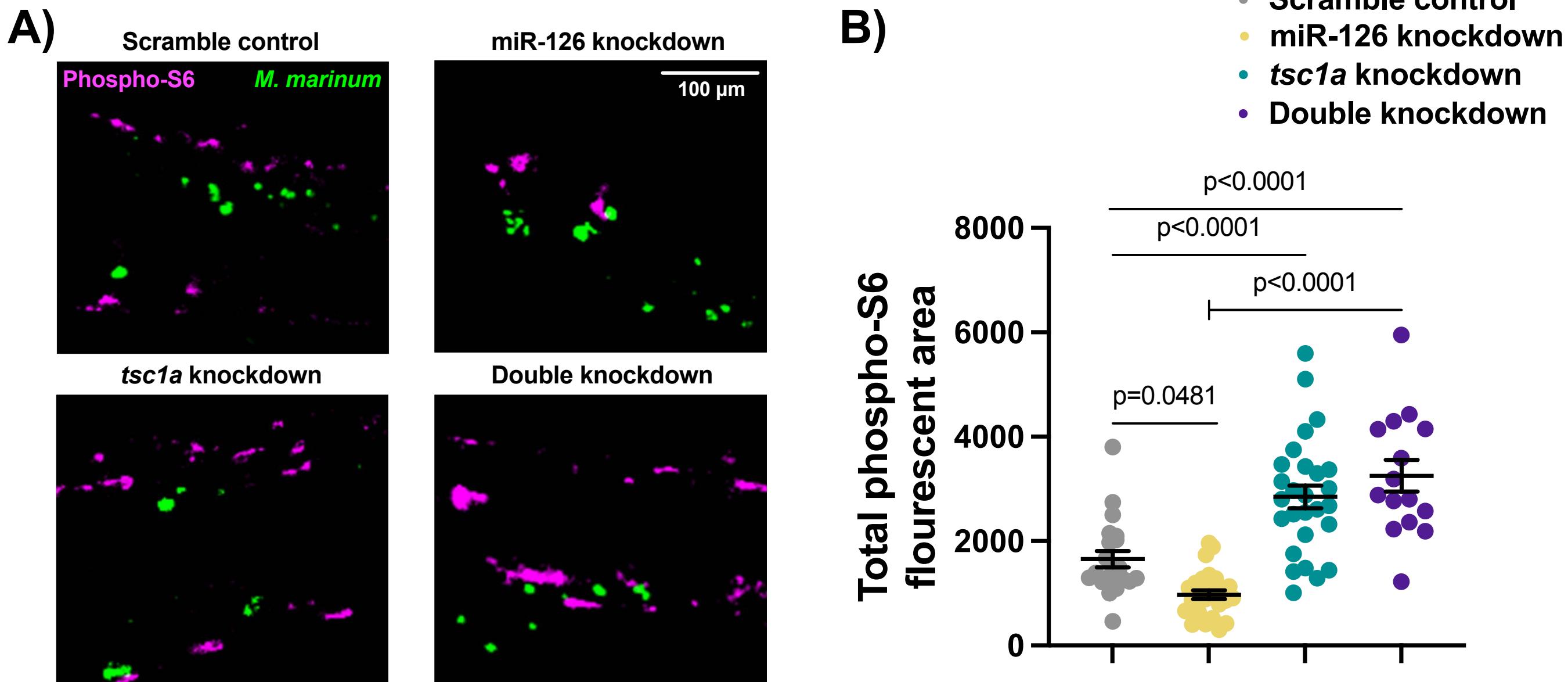
H)

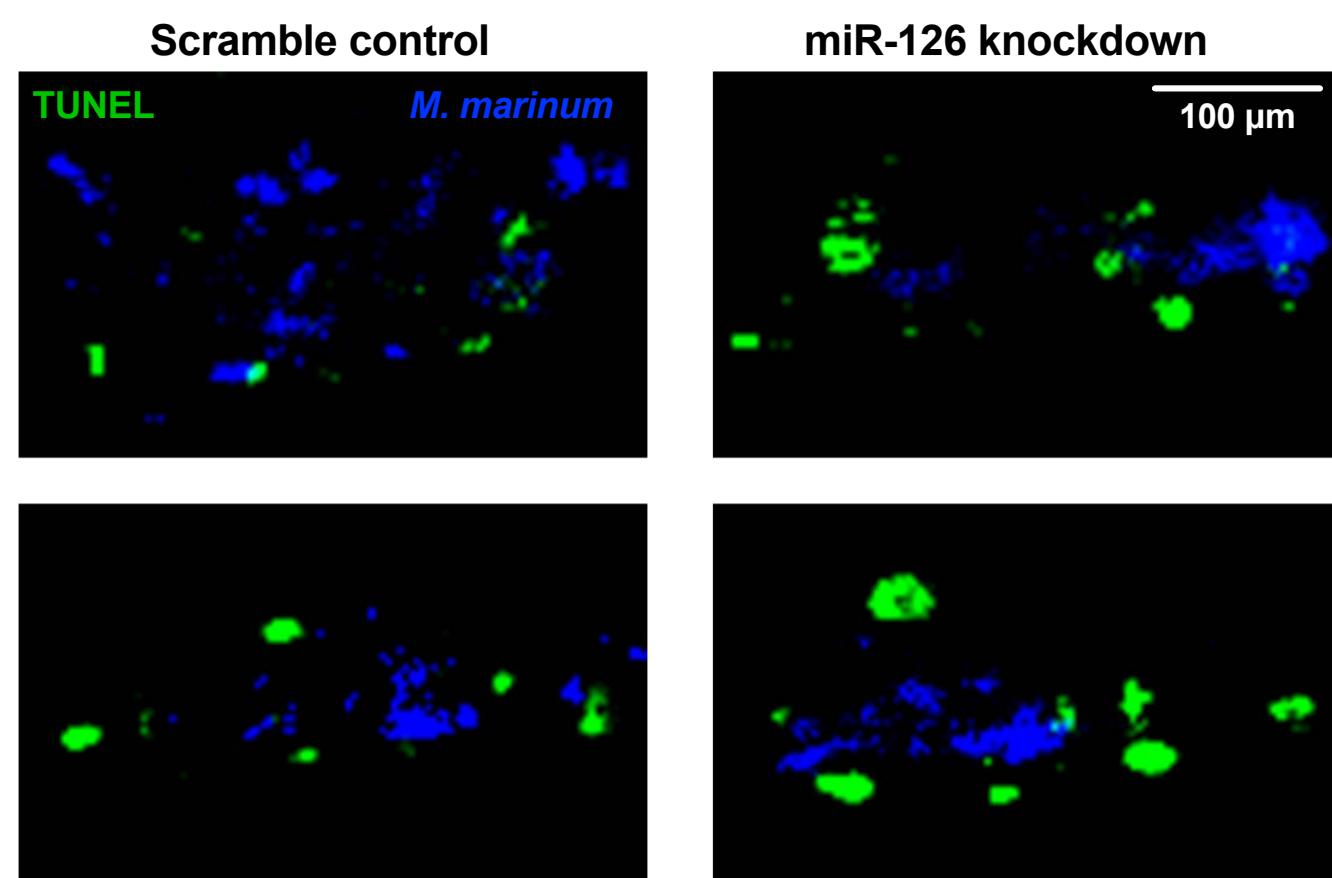
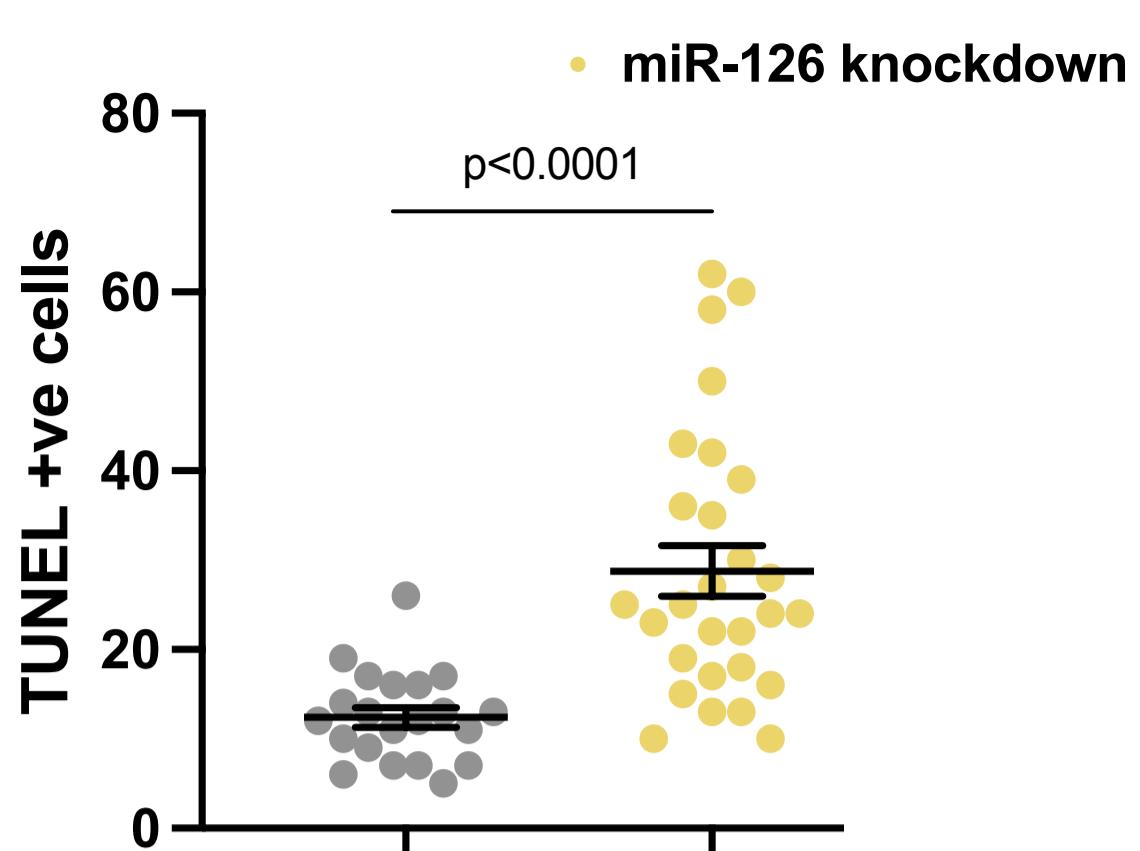
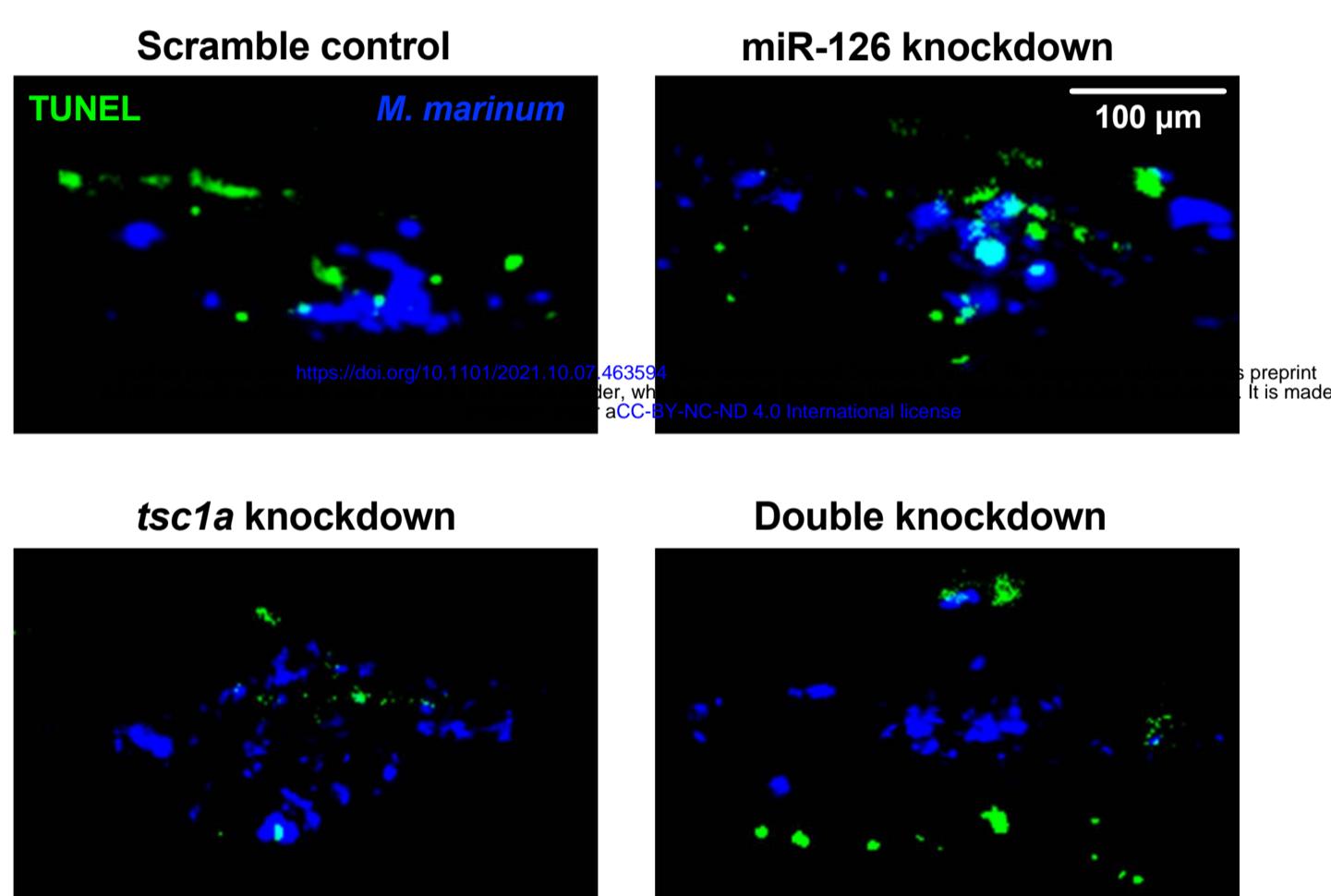
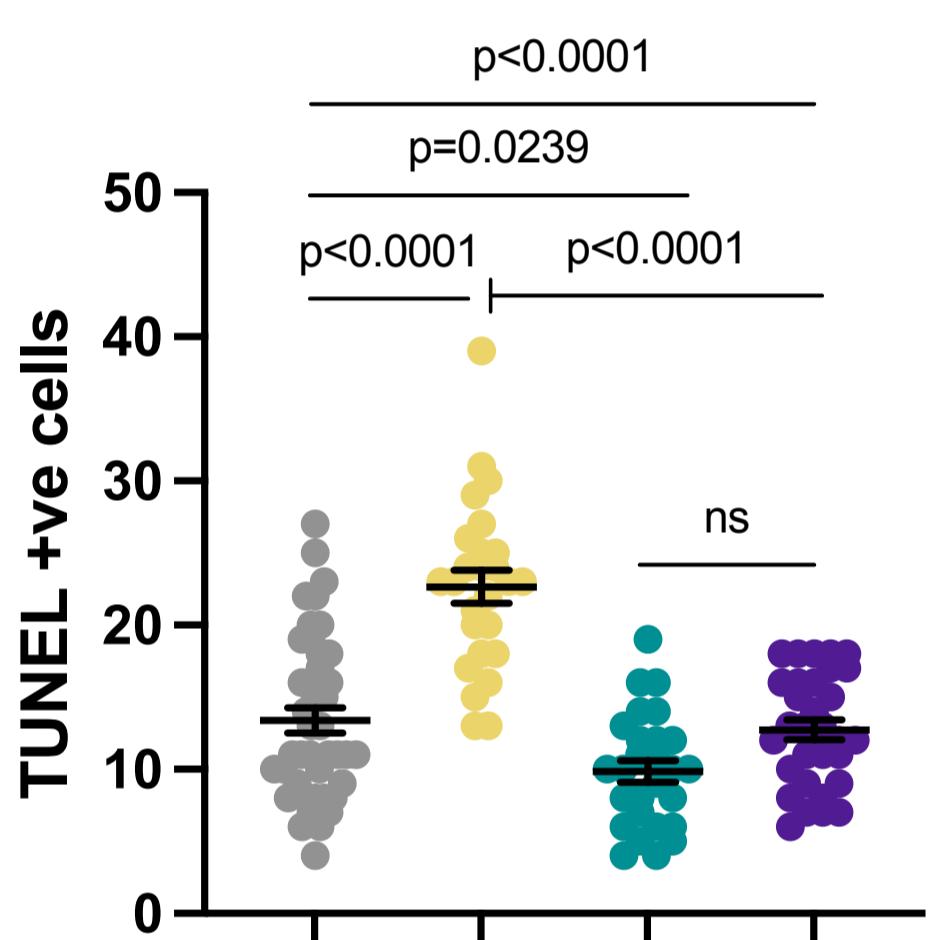
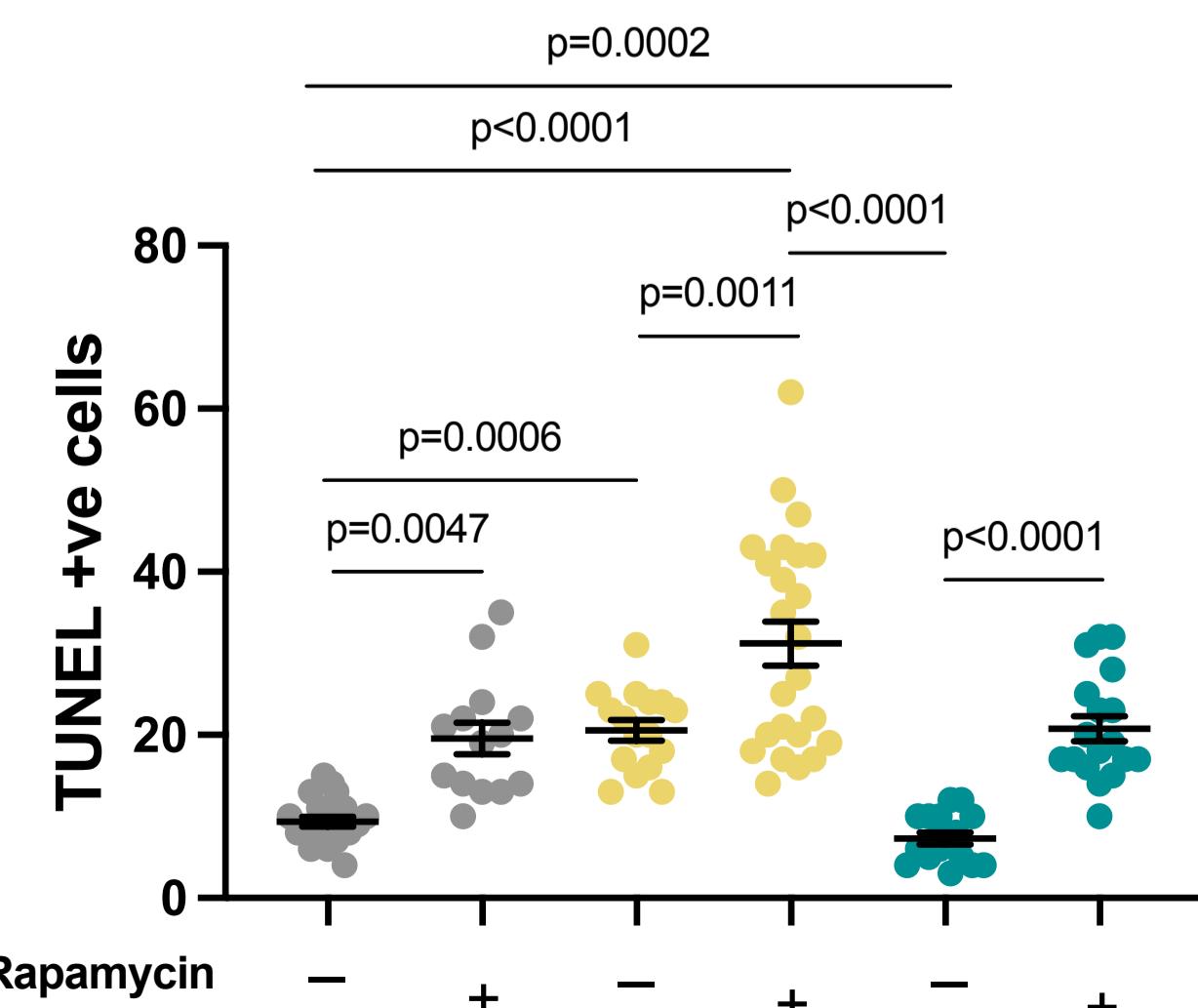
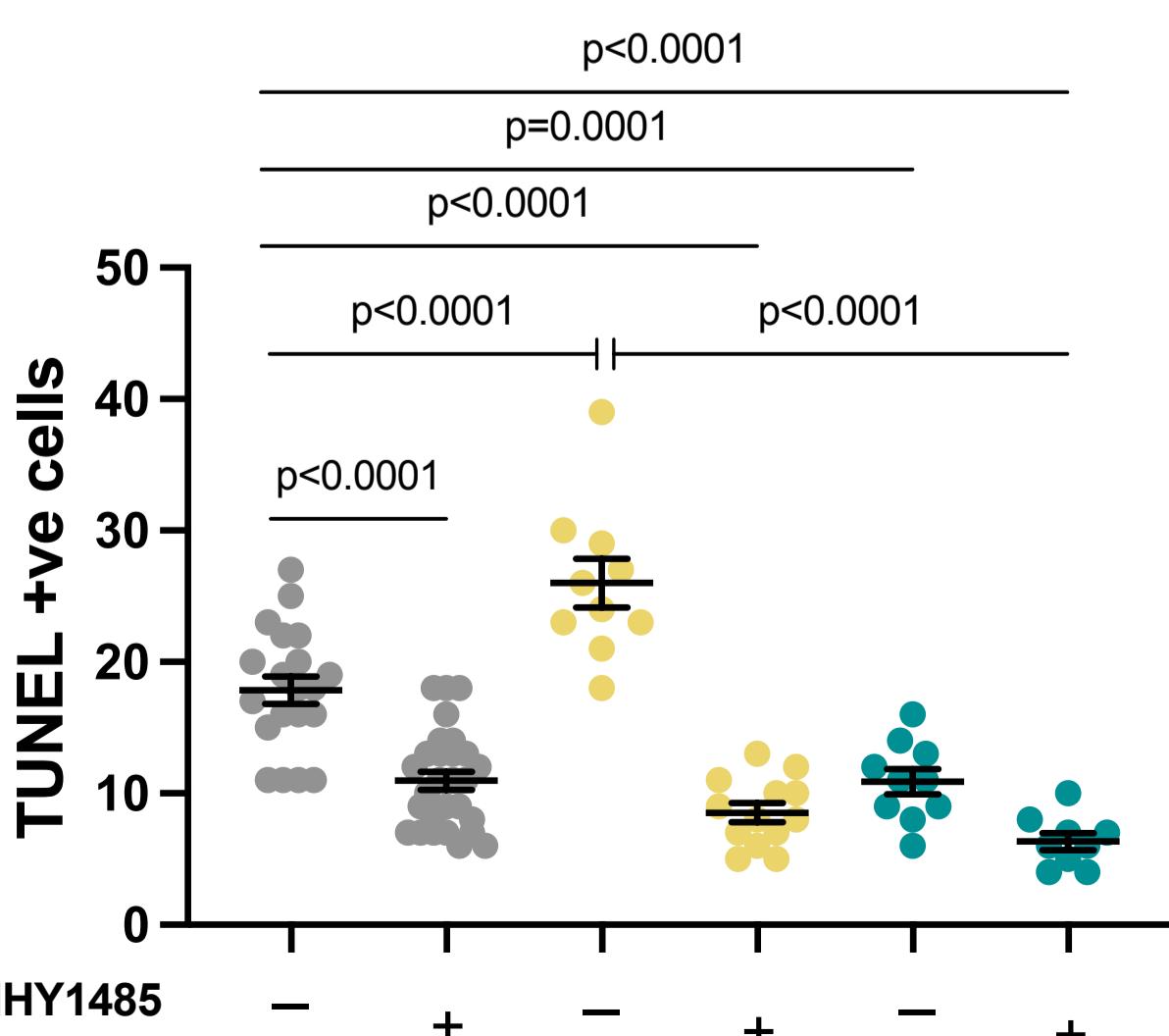
p=0.0035
p=0.0222
p=0.0043
p=0.0270

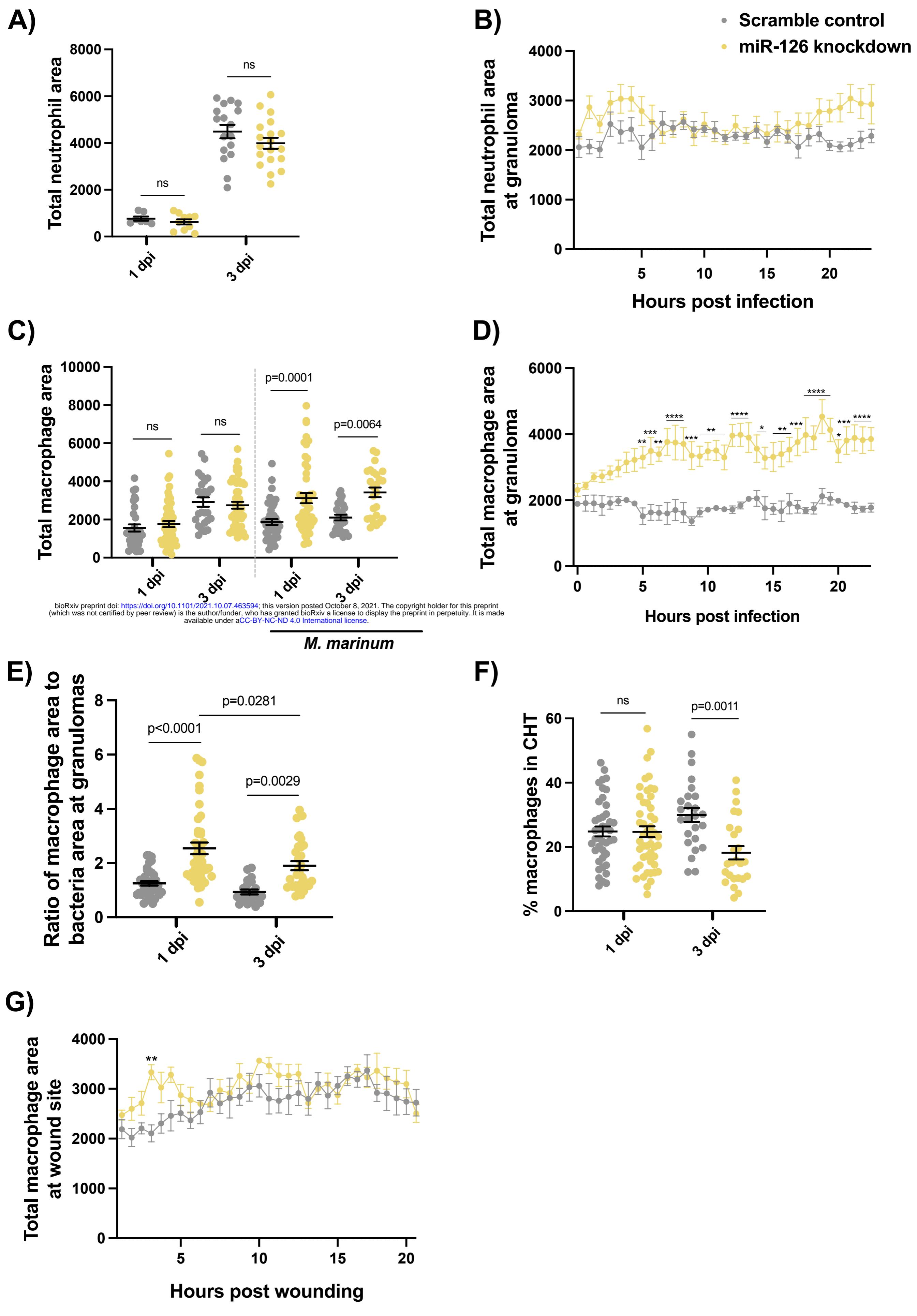
I)

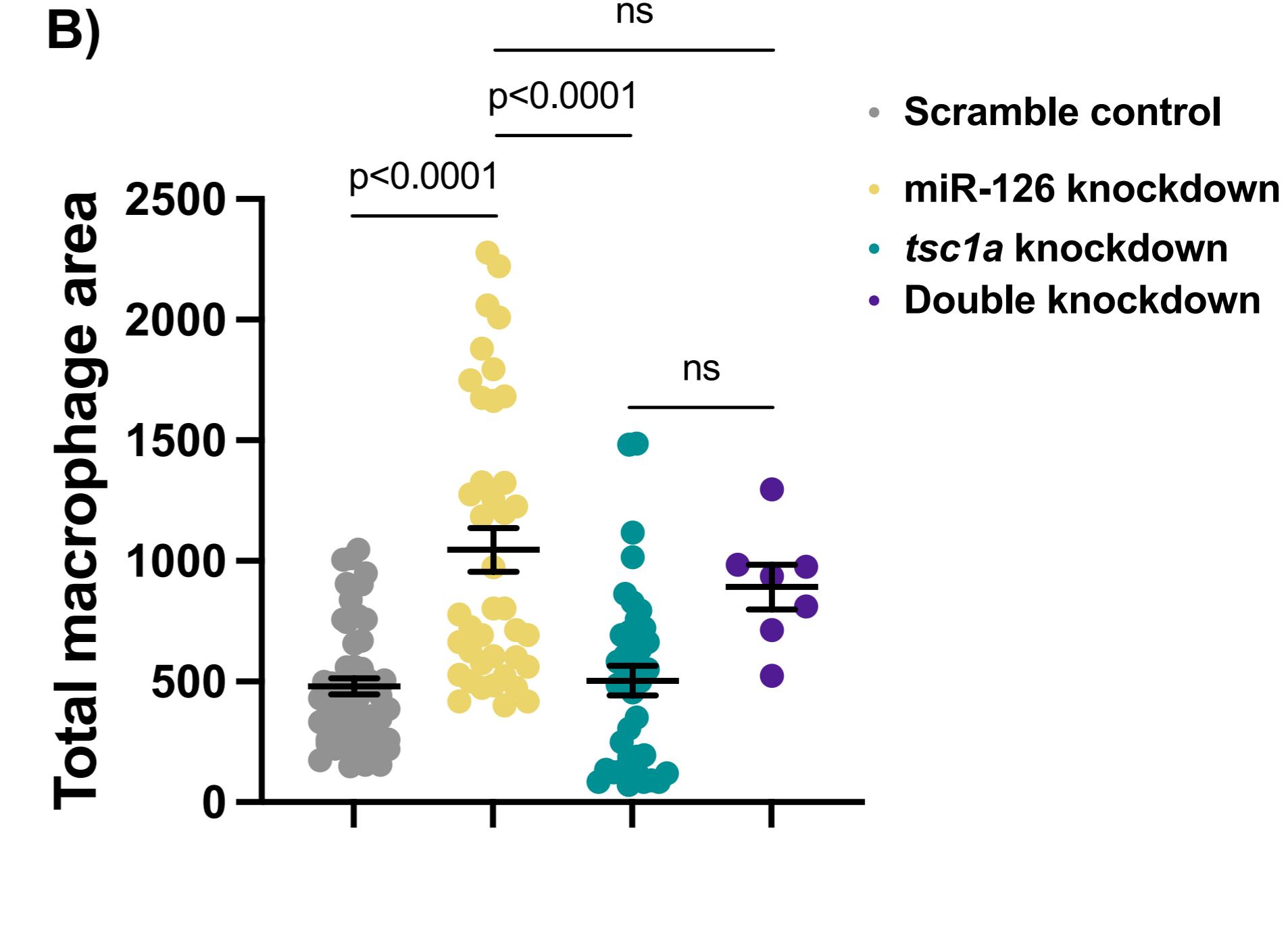
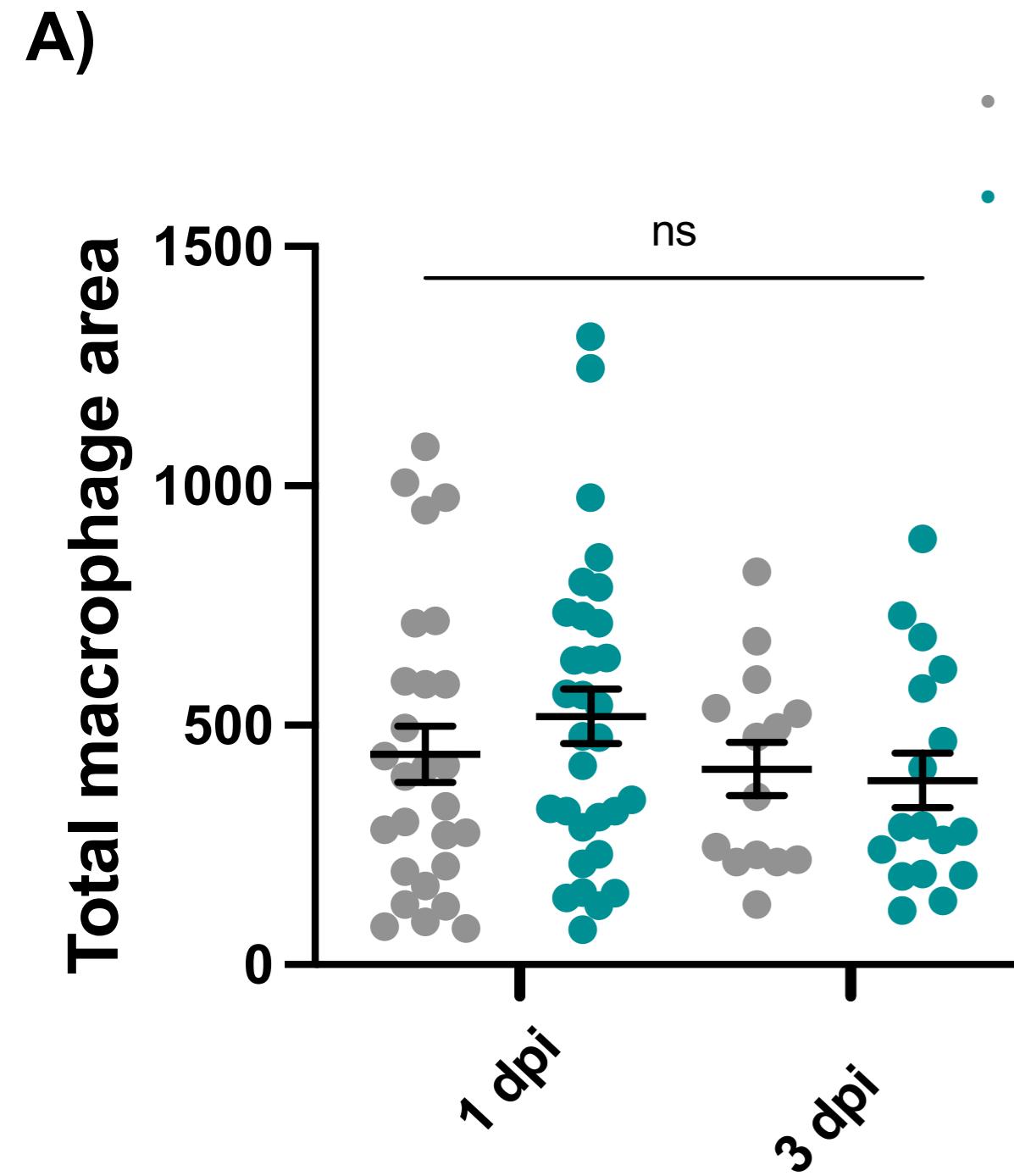
p=0.0024

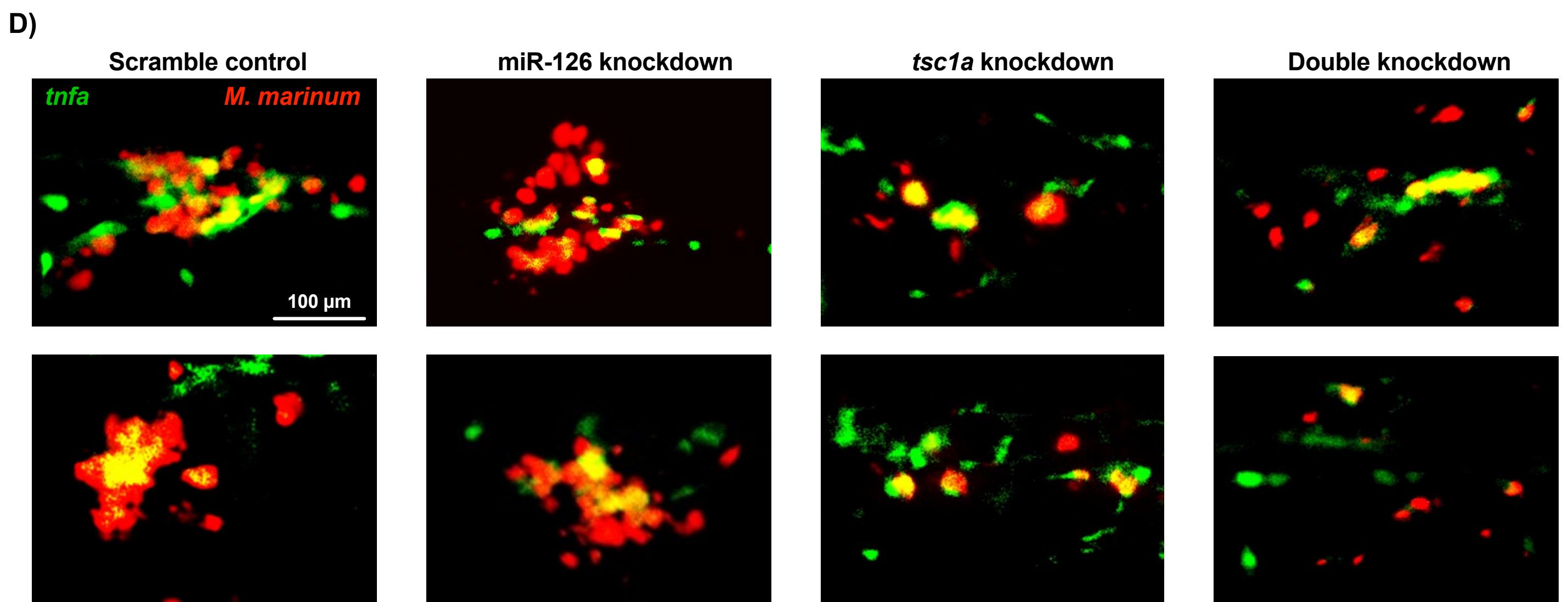
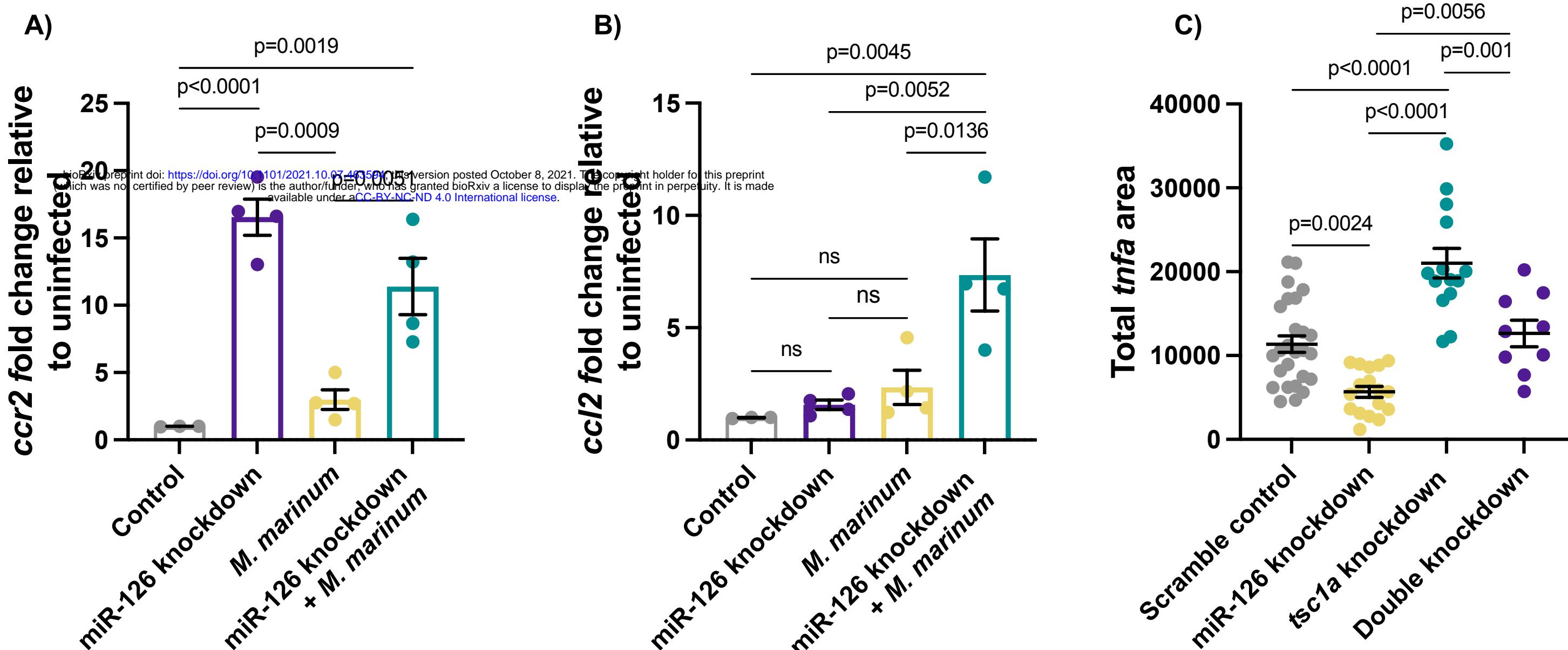





J)







p<0.0001
p=0.0495
p=0.0007
p<0.0001
p<0.0001

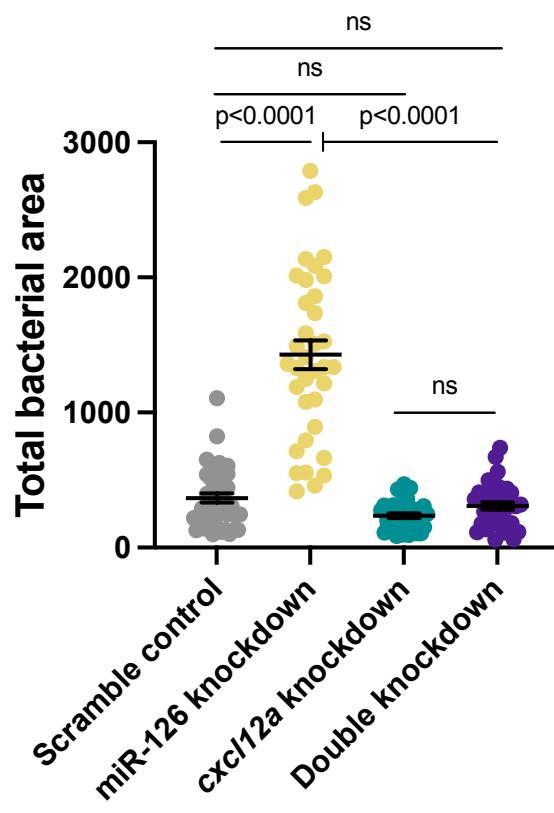
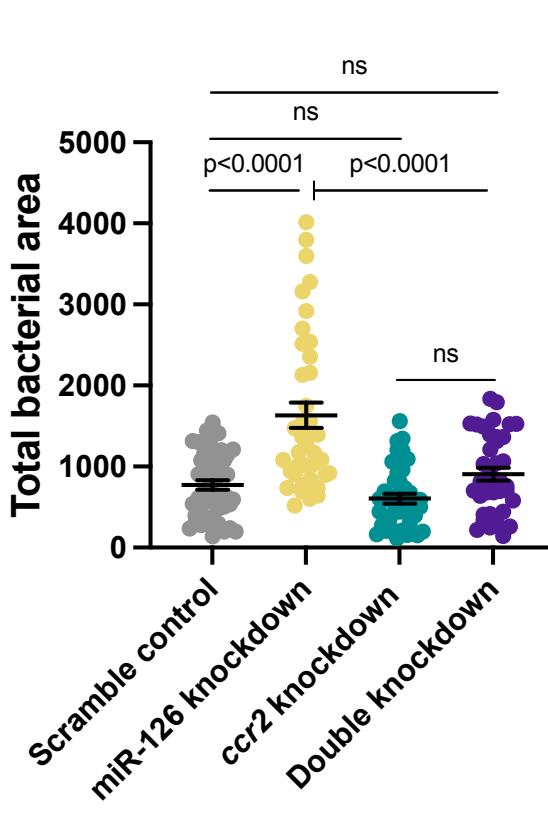
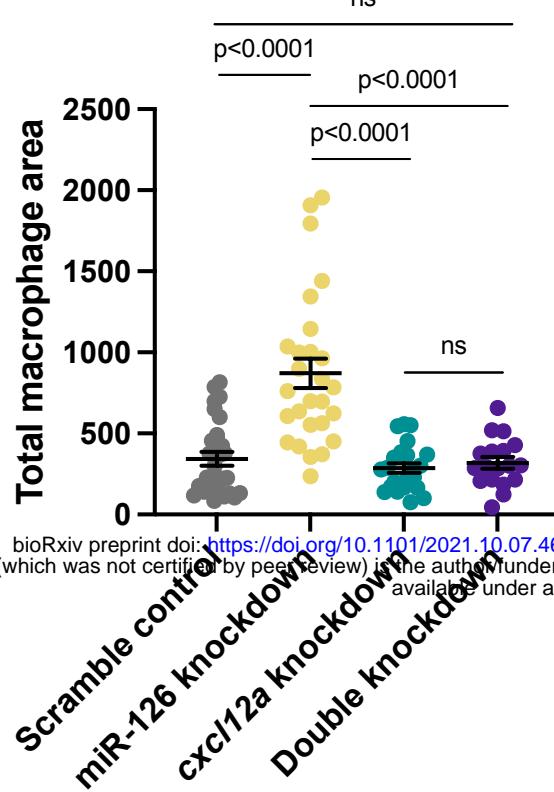
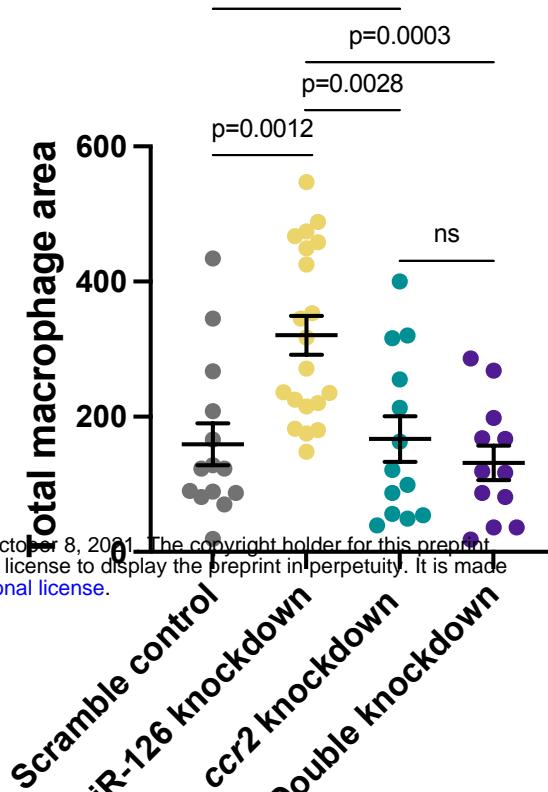
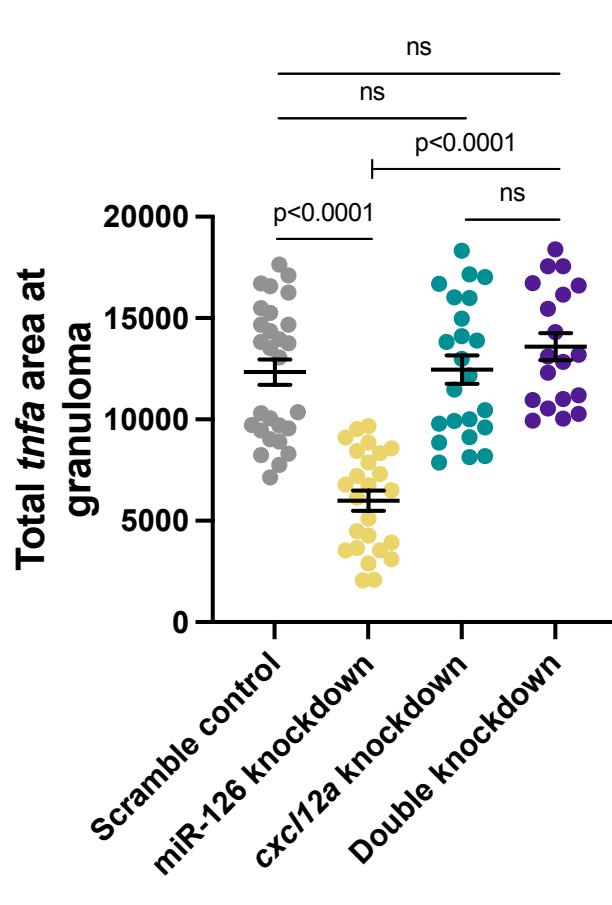
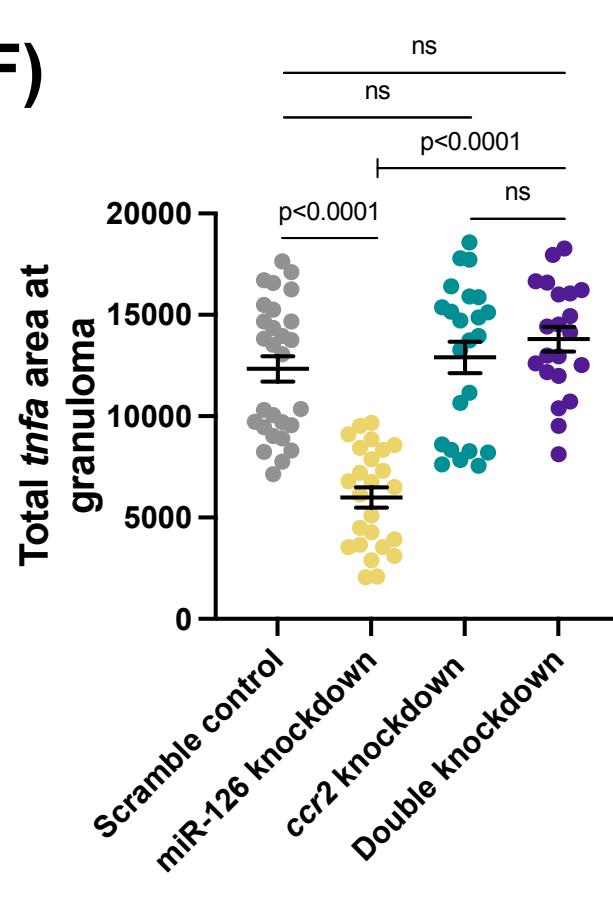
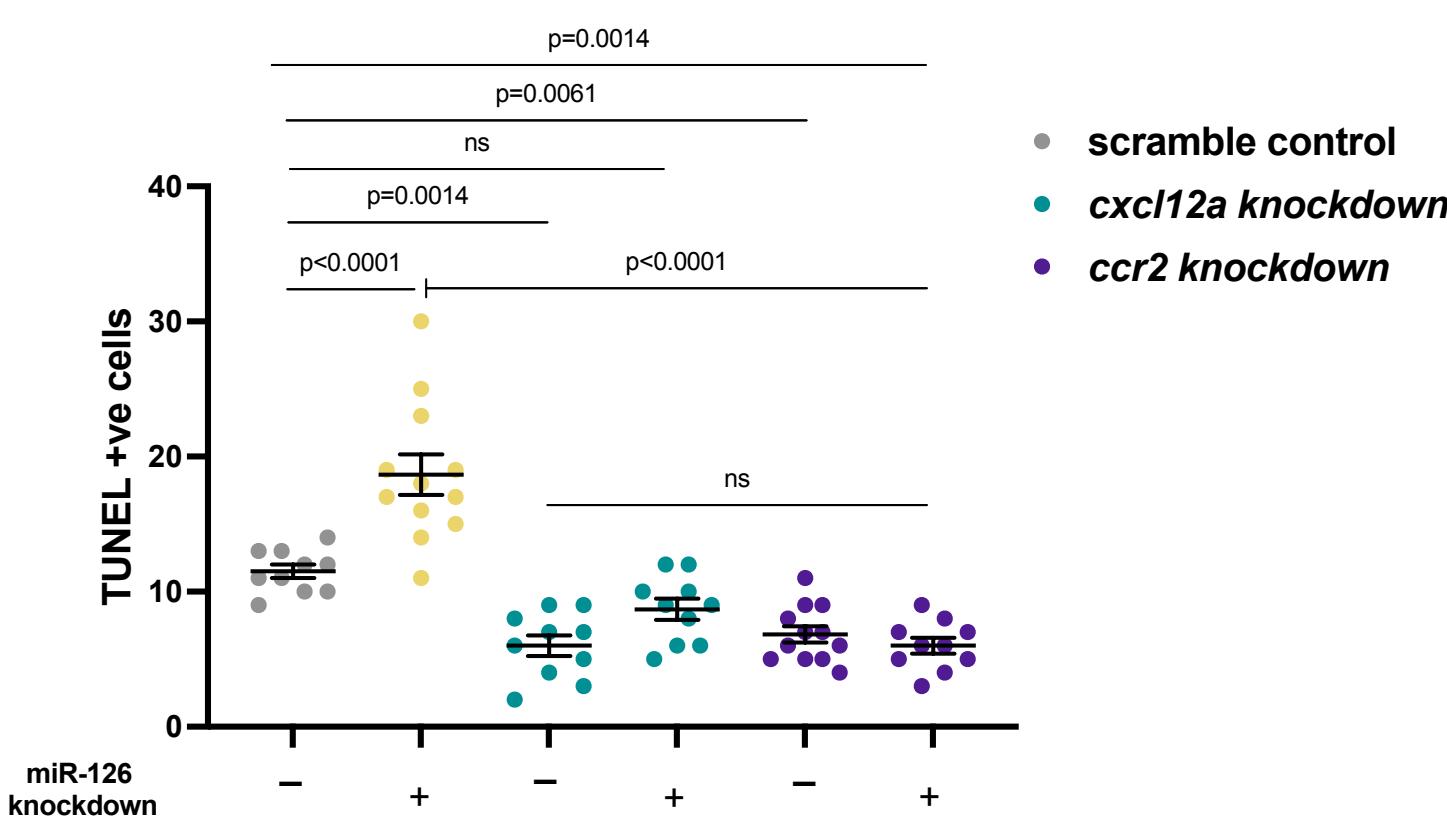






*cxcr4a**cxcr4b**cxcl12a**spred1**tsc1a*


Fold change relative to uninfected (3 dpi)



Fold change relative to uninfected (1 dpi)



A)**B)*****tsc1a* knockdown****C)****D)****E)**

A)**B)****C)****D)****E)****F)**

***cxc12a* knockdown**

***CCR2* knockdown**

A)**B)****C)****D)****E)****F)****G)**