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Abstract 
 

Background 

We developed the Stem Cell Educator therapy among multiple clinical trials based on the 

immune modulations of multipotent cord blood-derived stem cells (CB-SC) on different 

compartments of immune cells such as T cells and monocytes/macrophages in diabetes 

and other autoimmune diseases. However, the effects of CB-SC on the B cells remained 

unclear. To better understand the molecular mechanisms underlying the immune 

education of CB-SC, we explored the modulations of CB-SC on human B cells.  

Methods 

CB-SC were isolated from human cord blood units and confirmed by flow cytometry with 

different markers for their purity. B cells were purified by using anti-CD19 

immunomagnetic beads from human peripheral blood mononuclear cells (PBMC). Next, 

the activated B cells were treated in the presence or absence of coculture with CB-SC for 

7 days before undergoing flow cytometry analysis of phenotypic change with different 

markers. RT-PCR was utilized to evaluate the levels of galectin expressions with or 

without treatment of activated B cells in order to find the key galectin contributing to the 

B-cell modulation.  

Results 

Flow cytometry demonstrated that the proliferation of activated B cells was markedly 

suppressed in the presence of CB-SC, leading to the down-regulation of immunoglobulin 

productions from the activated B cells. Phenotypic analysis revealed that treatment with 

CB-SC increased the percentage of IgD+CD27- naïve B cells, but decreased the 

percentage of IgD-CD27+ switched B cells. Transwell assay showed that the immune 
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suppression of CB-SC on B cells was dependent on the manner of cell-cell contact via 

Gal-9 molecule, as confirmed by the blocking experiment with the anti-Gal-9 monoclonal 

antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and 

mitochondria were down-regulated after the treatment with CB-SC, causing the decline 

of mitochondrial membrane potential in the activated B cells. Western blot exhibited that 

the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells 

were also markedly reduced in the presence of CB-SC.  

Conclusions 

CB-SC displayed multiple immune modulations on B cells through the Gal-9-mediated 

cell-cell contact mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data 

advances current understanding about the molecular mechanisms underlying the Stem 

Cell Educator therapy to treat autoimmune diseases in clinics.  

 

Keywords: cord blood-derived stem cells, Stem Cell Educator therapy, B cells, Galectin-

9, immune modulation, Type 1 Diabetes, autoimmune diseases 
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Introduction 

Human cord blood-derived stem cells (CB-SC) display a unique phenotype with both 

embryonic and hematopoietic markers that distinguish them from other known types of 

stem cells, including hematopoietic stem cells (HSC) and mesenchymal stem cells 

(MSC)[1, 2]. Our previous studies demonstrated that human CB-SC display multiple 

immune modulations on T cells and monocytes/macrophages via surface molecules and 

released exosomes[3, 4]. Based on CB-SC’s immunomodulation, we developed the Stem 

Cell Educatorâ (SCE) therapy to treat immune dysfunction-associated diseases, including 

type 1 diabetes (T1D), type 2 diabetes (T2D) and alopecia areata (AA)[5-7], through the 

multicenter international clinical trials in the United States, China and Spain. SCE therapy 

circulates a patient’s peripheral blood mononuclear cells (PBMC) through a blood cell 

separator, cocultures their immune cells with adherent CB-SC in vitro, and then returns 

the “educated” immune cells back to the patient’s blood circulation. Our clinical data 

demonstrates the safety and clinical efficacy of SCE therapy in reversing the 

autoimmunity, promoting the regeneration of islet β cells, and improving the metabolic 

control in T1D and T2D patients[5, 6].  

    B cells have an important role in maintaining homeostasis and the adaptive immune 

response through antibody production, antigen presentation and the production of 

multiple cytokines [8, 9]. Dysfunctions of B cells actively contribute to the pathogenesis 

of diabetes [10-13] and multiple autoimmune diseases [14, 15]. For example, their roles 

as antibody-producing cells in systemic lupus erythematosus (SLE)[16] and antigen-

presenting cells in T1D and rheumatoid arthritis (RA) have been well recognized [10, 17]. 

Therefore, it is necessary to correct B cell-associated immune dysfunctions for the 
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treatment of autoimmune diseases. Additionally, galectins are a family of highly-

conserved glycan-binding proteins expressed in different tissues, including immune and 

non-immune cells. In the immune system, galectins are important regulators among 

innate and adaptive immune responses by regulating a variety of immune cell activations, 

maturations and other activities. Galectins (Gal)-1，-3, and -9 have shown different 

effects on the functioning of T cells by modulating their development, activation and 

differentiation [18-20]. However, the actions of galectins in B cells have only recently 

begun to be deciphered. Gal-9(Gal-9) is a 34-39 kDa tandem-repeat type protein, which 

is found in immune cells, endothelial cells, and stem cells [21, 22]. Increasing evidence 

demonstrated that Gal-9 could not only suppress T-cell activation via the Tim-3 or PD-1 

receptor on T cells [23], but also could suppress B-cell activation through the B-cell 

receptor[24, 25]. To date, our mechanistic studies have demonstrated the immune 

modulations of SCE therapy on the activated T cells, autoimmune memory T cells [26], 

regulatory T cells (Tregs) [5] and monocytes/macrophages [4, 6, 27]. The effects of CB-

SC on B cells remained elusive. Here, we demonstrated the direct immune modulation of 

CB-SC on the activated B cells via Gal-9-mediated cell-cell contact mechanism, leading 

to the marked suppression of B-cell proliferation and phenotypic changes.   

 

Materials and Methods 

B-cell isolation and culture  

Human peripheral blood mononuclear cells (PBMC) (N = 12, aged from 31 to 64 years 

with average at 46.83 ± 9.67 years old, male =7, female = 5) were isolated by ficoll-

hypaque density gradient (GE Healthcare, IL, USA) from the buffy coats purchased from 
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the New York Blood Center (New York, USA). PBMC cell suspensions were pre-treated 

with anti-CD19-conjugated microbeads (Miltenyi Biotec, CA, USA) according to the 

instructions of the manufacturer. The purity of positively selected CD19+ cells was more 

than 95%, as assessed by flow cytometry with Korman orange-conjugated mouse anti-

human CD19 monoclonal antibody (mAb) (Beckman Coulter, CA, USA).  The purified 

CD19+ B cells were cultured in the chemical-defined and serum-free X’VIVO 15 medium 

(Lonza, Walkersville, MD, USA), in the absence or presence of 100 U/ml penicillin, and 

100 µg/ml streptomycin.  

 

Proliferation Assay 

To examine the effects of CB-SC on B-cell proliferation, B cells were stimulated by the 

following combination at 37°C and 5% CO2 conditions: the goat anti-human IgM F (ab’)2 

(10 µg/mL), recombinant CD40L (rCD40L 1µg/mL), IL-2 (10 ng/mL), IL-10 (20 ng/mL), 

and IL-21 (50 ng/mL) in the presence of the treatment with CB-SC for 7 days at the CB-

SC:B cells ratios of 1:2, 1:5, and 1:10 in duplicates. The stimulated and unstimulated B 

cells in the absence of CB-SC served as positive and negative controls respectively. To 

detect the B-cell proliferation, the purified B cells were initially labeled with 

carboxyfluorescein succinimidyl ester (CFSE) (Life Technologies, CA, USA), according 

to the manufacturer protocol. Consequently, the proliferation of B cells was detected by 

flow cytometry.  

 

Cell culture for CB-SC 
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The culture of CB-SC was performed as previously described [4, 5, 27]. In brief, human 

umbilical cord blood units were collected from healthy donors and purchased from Cryo-

Cell international blood bank (Oldsmar, FL, USA). Cryo-cell has received all 

accreditations for cord blood collections and distributions, with hospital institutional review 

board (IRB) approval and signed consent forms from donors. Mononuclear cells were 

isolated with Ficoll-hypaque (γ = 1.077, GE Health) and red blood cells were lysed using 

ammonium-chloride-potassium (ACK) lysis buffer (Lonza, MD, USA). The remaining 

mononuclear cells were seeded in 150 x15 mm style non-tissue culture-treated petri 

dishes or non-tissue culture-treated 24-well plates at 1 x106 cells/mL. Cells were cultured 

in X’VIVO 15 chemically-defined serum-free culture medium and incubated at 37°C with 

8% CO2 for 10-14 days.  

 

Quantitative Real Time PCR assay 

The mRNA expressions of the galectin family were analyzed by quantitative real-time 

PCR (RT-PCR). Total RNA was extracted from CB-SC using RNeasy mini Kit (Qiagen, 

CA, USA). First-strand cDNA were synthesized from total RNA using an iScript gDNA 

Clear cDNA synthesis Kit according to the manufacturer’s instruction (Bio-Rad, Hercules, 

CA, USA). Real-time PCR was performed using the StepOnePlus Real-time PCR system 

(Applied Biosystems, CA, USA) under the following conditions: 95 °C for 10 min, then 40 

cycles of 95 °C for 15 s, and 60 °C for 60 s. cDNA was amplified with validated specific 

primers (Table 1)[28]. β-actin was used as control. 

 

Assay for antibody production  
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To detect the antibodies produced by B cells, B cells were stimulated by the following 

combination: goat anti-human IgM F (ab’)2 (10 µg/mL), recombinant CD40L (rCD40L 1 

µg/mL), IL-2 (10 ng/mL), IL-10 (20 ng/mL), and IL-21 (50 ng/mL) in the presence or 

absence of the treatment with CB-SC in 24-well plate, with 500 µL X’VIVO 15 chemical-

defined serum-free culture medium (Lonza, MD, USA) per well. After the treatment for 7 

days, the supernatants were collected to determine the levels of antibody productions 

(e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgM) by using LEGENDplexTM Human 

Immunoglobulin Isotyping Panel (Biolegend, CA, USA). The Gallios Flow Cytometer was 

utilized to analyze the data according to the manufacturer’s recommended protocol.  

 

Blocking Experiments with Gal-9 Antibody 

To determine whether Gal-9 contributes to the immune suppression of CB-SC on the 

activated B cells, the purified CD19 positive B cells were activated with goat anti-human 

IgM F(ab’)2 (10 µg/mL), recombinant CD40L(rCD40L 1 µg/mL), IL-2(10 ng/mL), IL-10(20 

ng/mL), and IL-21(50 ng/mL) in the presence or absence of CB-SC at the ratio of 1:2 in 

24-well plate or 6-well plate, with or without adding Gal-9 mAb (10 µg/mL, Biolegend, CA, 

USA).). The blocking effects of Gal-9 mAb on the B-cell proliferation were examined by 

flow cytometry with CFSE staining.   

 

    To further explore the blocking effects of Gal-9 mAb, the activated B cells were 

characterized with cytoplasmic and mitochondrial Ca2+ levels as well as mitochondrial 

membrane potential (Dym) by using flow cytometry as previously described[4]. Briefly, 

after the 4-hour treatment, B cells were stained with fluorescence dyes including Fluo-4 
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(ThermoFisher Scientific, MA, USA) for cytoplasmic Ca2+, Rhod-2 (ThermoFisher 

Scientific, MA, USA) for mitochondrial Ca2+, and tetramethylrhodamine ethyl ester 

(TMRE) (Abcam, MA, USA) for detection of mitochondrial membrane potential, 

respectively.  

 

Western blot 

Cells were prepared with radioimmunoprecipitation assay (RIPA) buffer. Protein 

concentration was determined by a bicinchoninic acid (BCA) protein assay. The proteins 

were separated by 10% Tris-HCl gel(Bio-Rad, CA, USA) and transferred to the 

polyvinylidene fluoride (PVDF) membrane. The proteins were then blotted overnight with 

anti-human phospho-Akt and anti-human phospho-Erk1/2 mAbs (Cell Signaling, MA, 

USA), followed by anti-rabbit or anti-mouse horseradish peroxidase(HRP)-conjugated 

secondary mAb (ThermoFisher scientific) [4]. The membrane was incubated with the 

chemiluminescent substrate (ThermoFisher Scientifc, CA, USA) and chemiluminescent 

signal was detected by using ChemiDoc Imaging System (Bio-Rad, CA, USA). β-actin 

served as an internal control. 

 

Flow cytometry 

Phenotypic characterization of B-cell subsets was performed by flow cytometry [4, 27] 

with specific markers including PE-conjugated mouse anti-human CD27 (Biolegend, CA, 

USA) and APC-conjugated mouse anti-human IgD (Biolegend, CA, USA). To determine 

the purity of CB-SC, CB-SC were examined by flow cytometry with CB-SC-associated 

markers, including PE-Cy7-conjugated mouse anti-human CD45 (Beckman Coulter, CA, 
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USA), efluor660-conjugated rat anti-human OCT3/4 (ThermoFisher Scientific, MA, USA), 

FITC-conjugated mouse anti-human SOX2 (ThermoFisher Scientific, MA, USA), BV421-

conjugated mouse anti-human CD34 (Biolegend, CA, USA), PE-conjugated mouse anti-

human CD270 (ThermoFisher Scientific, MA, USA), and Pacific Blue-conjugated mouse 

anti-human CD274 (ThermoFisher Scientific, MA, USA) mAbs. Isotype-matched 

immunoglobulin (IgGs) served as controls. 

 

Statistical Analysis 

Statistical analysis of data was performed with GraphPad Prism 8 (version 8.0.1) 

software. The normality test of samples was evaluated using the Shapiro-Wilk test. 

Statistical analysis of data was performed using the two-tailed paired student’s t-test to 

determine statistical significance for parametric data between untreated and treated 

groups. The Mann-Whitney U test was utilized for non-parametric data. Values were given 

as mean ± SD (standard deviation). Statistical significance was defined as P < 0.05.   

 

Results 

CB-SC suppressed the proliferation of activated B cells. 

Initially, the purity of CB-SC was characterized by flow cytometry with CB-SC-associated 

markers including leukocyte common antigen CD45, embryonic stem (ES) cell markers 

OCT3/4 and SOX2, hematopoietic stem cell marker CD34, and immune tolerance-related 

markers CD270 and CD274. Findings revealed CB-SC highly expressed CD45, OCT3/4, 

SOX2, CD270 and CD274, but did not express CD34 (Figure 1A). CD45 and Oct3/4 are 

routinely utilized for the purity test of CB-SC, at ≥ 95% of CD45+ OCT3/4+ CB-SC.  
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    To explore the immune modulation of CB-SC on B cells, CB-SC were co-cultured with 

B cells at different ratios of CB-SC. B cells (e.g., 1:2, 1:5, and 1:10) were activated in the 

presence of cocktails (anti-IgM, rCD40L, IL-2, IL-4, IL-10, IL-21)[24]. The proliferation of 

B cells was examined by flow cytometry, after carboxyfluorescein succinimidyl (CFSE) 

staining and in combination with propidium iodide (PI) staining, to determine the dead 

cells. The results demonstrated that there were no differences in the percentages of dead 

cells among different groups of CB-SC treatments relative to that of CB-SC-untreated B 

cells (Figure S1). However, the percentages of B-cell proliferation markedly declined from 

91.52± 5.31 to 65.84 ± 8.24 at the ratio of 1:2 (p < 0.005), and 76.78 ± 7.44 at the ratio of 

1:5 (p < 0.05), respectively (Figure 1B and C). The data indicated the suppression of CB-

SC on the B-cell proliferation.   

 

CB-SC inhibited immunoglobulin production 

Immunoglobulin (Ig) are proteins secreted by plasma B cells and are present on the 

surface of B cells (e.g., IgD). They are assembled from identical couples of heavy (H) and 

light (L) chains. Based on the difference among heavy chains, immunoglobulins are 

characterized by 5 classes of Ig including IgM, IgG, IgA, IgE, and IgD. To explore the 

effects of CB-SC on B cells, Ig productions were examined by using flow cytometry. 

Comparing with Ig productions of CB-SC-untreated B cells, the data showed that CB-SC 

could markedly inhibit Ig productions at the ratio of CB-SC:B-cells at 1:5, including IgG1 

production (p = 0.019) (Figure 2A), IgG2 (p = 0.036) (Figure 2B), IgG3 (p = 0.037) 

(Figure 2C), IgG4 (p = 0.037) (Figure 2D), IgA (p = 0.008) (Figure 2E), and IgM 

(p=0.024) (Figure 2F).  
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Modulation of CB-SC on naïve and memory B cells 

CD27 and IgD are widely accepted biomarkers used to characterize B cells into memory 

and naive subsets, such as naïve B cells (CD27-IgD+), switched memory B cells 

(CD27+IgD-), and non-switched memory B cells (CD27+ IgD+) [29]. To explore the action 

of CB-SC on memory B cells, the activated B cells were treated with or without CB-SC. 

Flow cytometry established that both percentages of naïve B cells and switched B cells 

were significantly downregulated after the B-cell activation. However, their percentages 

were markedly changed after the treatment with CB-SC (Figure 3A, B and D). The 

percentage of naïve B cells was increased from 8.79 ± 2.14 for CB-SC-untreated B cells 

to 28.23 ± 4.82 for CB-SC-treated B cells at the ratio of 1:2. (P = 0.003, Figure 3B). The 

percentage of switched memory B cells was decreased from 63.53 ± 6.85 for CB-SC-

untreated B cells to 48.75 ± 3.09 for CB-SC-treated B cells at the ratio of 1:2. (P = 0.0023, 

Figure 3D). Notably, the percentage of non-switched CD27+IgD+ memory B cells failed to 

mark changes before and after the treatment with CB-SC (Figure 3C). The data suggest 

the modulation of CB-SC on the B-cell differentiation. 

 

CB-SC mediate B cell suppression by cell-cell contact 

Our previous studies demonstrated that multiple mechanisms contribute to the immune 

modulations of CB-SC on T cells, such as PD-L1/PD1-mediated cell-cell inhibition and 

releasing soluble factors (e.g., nitric oxide and transforming growth factor-b1) [30]. To 

clarify whether cell-cell contact or soluble factors were involved in the immune 

modulations of CB-SC on B cells, we performed transwell experiments. Flow cytometry 
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demonstrated that the suppression of CB-SC on B-cell proliferation was abolished with 

the transwell co-culture system (Figure 4A and B), highlighting how the surface molecule 

expressed on CB-SC contributes to the suppression via cell-cell contact mechanism.  

 

Expression of Gal-9 on CB-SC acts as a key molecule contributing to the B-cell 

modulation 

Galectins have been recognized as essential regulators contributing to the induction of 

an immune tolerance and homeostasis, therefore functioning as the attractive therapeutic 

targets for attenuating autoimmune and inflammation disorders [20, 31]. To determine 

whether galectins were involved in the immune modulation of CB-SC on B cells, we 

initially analyzed the profile of galectin mRNA expressions including Gal-1, -2, -3, -4, -7, 

-8, -9, -10, -12, -13, and -14 (Figure 5A).  RT-PCR results showed that there were higher 

expressions of Gal-1, -2, -3, -4, -7, -8, and -9 mRNA than those of others (e.g., Gal-10, -

12, -13, and -14) in CB-SC (Figure 5A).  In comparison with the changes of other galectin 

mRNA levels, the level of Gal-9 mRNA expression was markedly increased approximately 

10-fold after being co-cultured with the activated B cells for 48 hours (Figure 5B).  To 

confirm whether the protein level of Gal-9 was upregulated, we performed flow cytometry 

with Gal-9 mAb. The flow data revealed that the median fluorescence intensity (MFI) in 

CB-SC was significantly increased in the presence of activated B cells (Figure 5C, 5D). 

To further prove the involvement of Gal-9 in the immune modulation of CB-SC on B cells, 

we performed the blocking experiment with neutralizing Gal-9 mAb. The data 

demonstrated that the suppression of CB-SC on the proliferation of activated B cells was 

markedly reversed after the treatment with the neutralizing Gal-9 mAb relative to that of 
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the Gal-9 mAb-untreated group (P = 0.025, Figure 5E). This finding indicated that Gal-9 

contributed to the immune modulation of CB-SC on activated B cells.  

 

Suppression calcium flux by CB-SC was Gal-9 dependent 

The activation and proliferation of B cells are initiated by the B cell receptor (BCR), which 

triggers a number of signaling cascades [32]. The increase in intracellular Ca2+ levels is 

one of the critical signaling pathways for tuning B-cell responses and development post 

the BCR activation [33]. To further explore the molecular mechanism underlying the 

inhibition of B-cell proliferation by the treatment with CB-SC, we examined the changes 

of cytosolic and mitochondrial Ca2+ levels in CB-SC-treated B cells by flow cytometry after 

being stimulated with B cell-dependent activation cocktails. Using the Fluor-4 staining for 

cytosolic calcium, the median fluorescence intensity of Fluo-4+ activated B cells was 

markedly downregulated in the presence of CB-SC at the ratio of 1:5 (P < 0.05). The 

suppressive effect on cytosolic Ca2+ levels was reversed after the blocking with Gal-9 

mAb (Figure 6A). The direct effect of Gal-9 on the changes of cytosolic Ca2+ levels was 

further confirmed by the treatment with recombinant Gal-9 at 0.5 µg/mL (Figure 6A). 

Using the Rhod-2 staining as an indicator for the mitochondrial calcium, flow cytometry 

demonstrated the mitochondrial Ca2+ levels in the stimulated B cells were significantly 

reduced after the treatment with CB-SC at the ratio 1:5 of CB-SC to B cells (Figure 6B). 

Similar to the changes of cytosolic Ca2+ levels, the mitochondrial Ca2+ levels in the CB-

SC-treated B cells were increased in the presence of Gal-9 mAb (Figure 6B). 

Mitochondrial membrane potential (Dym) was also decreased in the stimulated B cells 

after the treatment with CB-SC, but upregulated after the blocking with Gal-9 mAb (Figure 
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6C). The data indicated that the Gal-9-mediated Ca2+ signaling pathway contributed to the 

modulation of CB-SC on the activated B cells.  

    Additionally, Western blotting showed that both BCR downstream molecules phospho-

Akt and phospho-Erk1/2 were upregulated in the stimulated B cells without affecting their 

total protein levels, but markedly downregulated after the treatment with CB-SC or 

recombinant human Gal-9 (0.5 µg/mL). Such inhibitory effects of CB-SC on the phospho-

Akt and phospho-Erk1/2 were decreased after blocking with Gal-9 mAb (Figure 6D). 

These data suggest that Gal-9 expressed on CB-SC contributed to the immune 

modulation of CB-SC on B cells via the regulation of Ca2+ flux and phosphorylation of Akt 

and Erk1/2 signaling pathways.  

 

Discussion 

Over the last 10 years, CB-SC have been utilized in multicenter international clinical trials 

and designated to Stem Cell Educatorâ (SCE) therapy for the treatment of autoimmune 

disease including type 1 diabetes (T1D) [5, 26], alopecia areata (AA) [7], and other chronic 

metabolic inflammation-associated diseases (e.g., type 2 diabetes [6]). Mechanistic 

studies demonstrated that CB-SC displayed strong immune modulation on T cells and 

monocytes such as inhibition of T-cell activation and proliferation, percentage reductions 

of effector memory T cells (TEM) [26] and induction of the differentiation of monocytes into 

anti-inflammation type 2 macrophages (M2) [4, 27]. The modulation of CB-SC on B cells 

remains unclear. Here, we demonstrated the immunomodulation capabilities of CB-SC 

on activated B cells by inhibiting the B-cell proliferation and the activation of naïve B cells, 

down-regulating the differentiation of switched memory B cells, and reducing the 
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production of immunoglobulins. These findings advance our understanding about the 

molecular mechanism of Stem Cell Educator therapy for the treatment of T1D and other 

autoimmune diseases.  

 

    B cells are important effector cells involved in the pathogenesis of autoimmune 

diseases through the production of autoantibodies, the promotion of CD4+ T cell 

responses via antigen presentation, and the release of inflammatory cytokines (e.g., TNF-

α and IL-6) [15, 34]. Increasing evidence indicates the importance of B cell-mediated 

autoimmunity in the pathogenesis of T1D, even though T cells are generally considered 

the major pathogenic effector cells contributing to the destruction of islet b cells. 

Researchers found that blocking B cells or impairing B cell function will significantly 

decrease the incidence of diabetes in NOD mice [35, 36]. Additionally, the depletion of B 

cells with anti-human CD20 antibody (Rituximab) markedly preserved islet β-cell function 

and improved C-peptide levels after 1 year follow-up in recent-onset T1D patients [37]. 

The current study demonstrated that CB-SC markedly suppressed the proliferation of 

activated B cells and reduced the antibody productions in these activated B cells. 

Therefore, these data suggest the clinical translational potential of Stem Cell Educator 

therapy to treat other B cell-mediated autoimmune diseases.  

    To date, the characterization of B-cell phenotype with multiparameter flow cytometry 

has identified several B-cell subpopulations including CD27+IgD+ non-switched memory 

B cells and CD27+IgD- switched memory B cells, which may represent a biomarker for 

some autoimmune diseases. For instance, the percentage of switched memory B cells 

increased in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) [38-40]. 
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Our flow cytometry analysis substantiated that the percentage of switched memory B cells 

was markedly reduced after the treatment with CB-SC in a dose-dependent manner. 

Notably, the percentage of naïve B cells (CD27-IgD+) was increased, highlighting the 

modulation of CB-SC on B-cell differentiation with the reduction of memory B cells. 

    To elucidate the molecular basis of SCE therapy, previous studies have identified 

several molecular and cellular pathways that alter autoimmune T cells and the functions 

of pathogenic monocytes/macrophages (Mo/Mfs) to elicit immune tolerance via: (1) the 

expression of autoimmune regulator (AIRE) in CB-SC, which is a master transcriptional 

regulator that acts to eliminate the self-antigen reactive T cells in the thymus and is 

controlled by the activation of the receptor activator of NF-kB (RANK) signaling pathway 

[41]; (2) secretion of CB-SC-derived exosomes (cbExosomes), which polarize human 

blood Mo/Mf into type 2 macrophages (M2) [4, 27], further contributing to immune 

tolerance and preventing b-cell destruction; and (3) migration of platelet-derived 

mitochondria (pMitochondria) to islets, which are absorbed by pancreatic islets and 

contribute to an improved proliferation of human islet b cells [42].  

    Our current studies revealed the direct immune modulation of CB-SC on activated B 

cells through the expression of Gal-9 on CB-SC, as demonstrated by trans-well coculture 

and blocking experiment with anti-Gal-9 mAb. What’s more, further mechanistic studies 

confirmed that Gal-9 expressed on CB-SC directly contributed to the regulation of Ca2+ 

flux and phosphorylation of Akt and Erk1/2 signaling pathways in the stimulated B cells.  

Waters and colleagues reported an increase in the oxidative phosphorylation and 

mitochondrial membrane potential (Dym) among the stimulated B cells [43], which was 

consistent with our current data showing the enhanced median fluorescence intensity of 
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TMRE staining. Notably, the Dym of stimulated B cells was substantially reduced in the 

Gal-9-dependent manner.  

 

    Galectins are β-galcotosid-bind lectins which can be expressed by different types of 

stem cells and act as regulators of immune cell function [44], especially galectin-3 and 

Gal-9. Galectin-3 suppresses the activation of TCR-mediated signal transduction [45], 

while Gal-9 binds T cell Ig mucin-3 (Tim-3) and induces negative regulate T helper 1(Th1) 

immunity [46]. Our current data confirmed that galectin-1, 2, 3, 4, 7, 8, and 9 were highly 

expressed on CB-SC, but only Gal-9 primarily contributed to the immune modulation of 

CB-SC on activated B cells. Gal-9 was not only located on the cellular membrane, but 

also acted as a soluble factor involved in the immune modulation [23]. To test this 

possibility, we found that CB-SC-released Gal-9 was less than 10% of total CB-SC-

derived Gal-9 after 3 days culture (Figure S2). Therefore, Gal-9 expressed on CB-SC’s 

membrane displayed more potential than the soluble form of CB-SC-secreted Gal-9 

during the B-cell immune modulation. Giovannone et al reported that Gal-9 can directly 

bind to the poly-LacNAc-containing N-glycans on leukocyte common antigen CD45 of B 

cells, leading to the diminished intracellular calcium levels and ultimately inhibiting B cell 

activation [24]. This report was consistent with the reduction of cytosolic Ca2+ levels in our 

current study. Additionally, several studies revealed the distribution of IgM on B-cell 

surface membranes which form the nanoscale clusters and act as BCR of primary B cells 

[25, 47, 48]. Using dual-color direct stochastic optical reconstruction microscopy 

(dSTORM), Cao and colleagues confirmed that Gal-9 can also directly bind to IgM-BCR 

of murine B cells [25], nearly resulting in a complete abolishment of the BCR activation 
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[25]. Due to the BCR-mediated Ca2+ influx as the critical signal for B cell activation [49], 

the immune modulation of CB-SC on activated B cells primarily targets the regulation of 

intracellular Ca2+ levels through the Gal-9-mediated pathway, leading to dampened B-cell 

responses and shaping their differentiation. These novel molecular mechanisms will 

facilitate the clinical translation of Stem Cell Educator therapy to treat T1D and other 

autoimmune diseases.  

 

Conclusions 

Stem Cell Educator therapy has been unutilized to treat multiple autoimmune- and 

inflammation-associated diseases, which pathogenesis involve in T cells, B cells, and 

monocytes/macrophages. The current study revealed that CB-SC displayed multiple 

immune modulations on B-cell proliferation and differentiation and antibody productions 

through the Gal-9-mediated cell-cell contact mechanism and calcium flux/Akt/Erk1/2 

signaling pathways. These findings lead to a better understanding of the molecular 

mechanisms of Stem Cell Educator therapy to treat autoimmune diseases in clinics.  
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Table 1. List of primer sequences for RT-PCR analysis of human galectins 

 

 Forward Primer (5’ ¾ 3’) Reverse Primer (5’ ¾ 3’) 

Galectin 1 TGCAACAGCAAGGACGGC CACCTCTGCAACACTTCCA 

Galectin 2 GATGGCACTGATGGCTTTG AGACAATGGTGGATTCGCT 

Galectin 3 CAGAATTGCTTTAGATTTCCAA TTATCCAGCTTTGTATTGCAA 

Galectin 4 CGAGGAGAAGAAGATCACCC CTCTGGAAGGCCGAGAGG 

Galectin 7 CAGCAAGGAGCAAGGCTC AAGTGGTGGTACTGGGCG 

Galectin 8 CTTAGGCTGCCATTCGCT AAGCTTTTGGCATTTGCA 

Galectin 9 CTTTCATCACCACCATTCTG ATGTGGAACCTCTGAGCACTG 

Galectin 10 AGTGTGCTTTGGTCGTCGT ATGCTCAGTTCAAATTCTTGG 

Galectin 12 TGTGAGCCTGAGGGACCA GCTGAGATCAGTTTCTTCTGC 

Galectin 13 CTTTACCCGTGCCATACAA GTGGGTCATTGATAAAAGAGTG 

Galectin 14 CCTTGATGATTGTGGTACCAT GTGGGTCCTTGACAAAAGTG 

ACTB CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 
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Figure Legends: 

Fig.1 Immunosuppression of Cord blood-derived stem cell on the B cell. (A) 

Phenotypic characterization of CB-SC with high purity. CB-SC were analyzed by flow 

cytometry with associated markers, including leukocyte common antigen CD45, 

embryonic stem (ES) cell markers OCT3/4 and SOX2, hematopoietic stem cell marker 

CD34, and the immune modulation-related marker CD270 and CD274. Isotype matched 

immunoglobulin G (IgGs) served as control. Data were represented from four experiments 

with similar results.  (B) Suppression of B-cell proliferation by CB-SC. The 

carboxyfluorescein succinimidyl ester (CFSE)-labeled B cells were stimulated to 

proliferate with activation cocktails in the presence of different ratios of CB-SC. Untreated 

B cells served as negative control. Histograms of flow cytometry were representative of 

five experiments with similar results. (C) Quantitative analysis of B-cell proliferation shows 

a remarkable decrease in B cell expansion after the treatment with CB-SC at the different 

ratios of CB-SC:B cells of 1:10 (n.s, P > 0.05, N=6), 1:5 (P = 0.025, N=6), and 1:2 (P = 

0.002, N=6) 

 

Fig.2 Inhibition of B-cell immunoglobulin production by CB-SC. B cells were 

stimulated in the presence of cocktails (anti-IgM, rCD40L, IL-2, IL-4, IL-10, IL-21). CB-SC 

markedly inhibit Ig productions of stimulated B cells at the ratio of CB-SC : B-cells at 1:5. 

Untreated B cells served as negative control. (A) CB-SC inhibit IgG1 production. P = 

0.019 (N=4). (B) CB-SC inhibit IgG2 production. P = 0.036 (N=6). (C) CB-SC inhibit IgG3 

production. P = 0.037 (N=4). (D) CB-SC inhibit IgG4 production. p=0.037 (N=6). (E) CB-

SC inhibit IgA production. P = 0.008 (N=4). (F) CB-SC inhibit IgM production. P = 0.024 

(N=4).   
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Fig.3 Modulation of different B cell subpopulation by CB-SC. (A) Upregulation of the 

percentage of naïve B cells by CB-SC and downregulation of the percentage of switched 

B cells. Histograms of flow cytometry were representative of four experiments with similar 

results. Isotype-matched IgGs served as negative controls. (B) Increase in the 

percentage of naïve B cells after the treatment with CB-SC at ratio of 1:5 (P = 0.01, N = 

4), 1:2 (P = 0.003, N = 4). (C) There is no significant effect on the percentage of non-

switched B cells. (D) Decrease in the percentage of switched B cells. Results were given 

as mean ± SD. P < 0.05 as a significant difference.  

 

Fig 4: Cell-cell contact mechanism contributes to the CB-SC-mediated immune 

suppression. (A) CB-SC cocultured with CFSE-labeled stimulated B cells in transwells. 

Both unstimulated and stimulated B cells without CB-SC coculture served as control. 

Histograms of flow cytometry were representative of four experiments with similar results. 

(B) CB-SC failed to suppress the proliferation of stimulated B cells in transwell coculture 

system at the ratio of CB-SC:B cells of 1:5. In contrast, the direct coculture of CB-SC with 

stimulated B cells displayed the marked inhibition of B-cell proliferation at the same ratio 

(P = 0.02, N=4).  

 

Fig. 5 Gal-9 expressed on CB-SC acts as the key mediator for the CB-SC-induced 

B-cell suppression. (A) RT-PCR analysis of galectin expressions in CB-SC. b actin 

served as control. (B) Changes in the levels of galectin expressions after coculture of CB-

SC with the stimulated B cells for 2 days (N = 3). (C) Upregulate the level of Gal-9 
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expression on CB-SC after coculture with stimulated B cells (red line) relative to that on 

the untreated CB-SC (green line). Isotype-matched IgG served as negative control. (D) 

Increase the level of Gal-9 expression (median fluorescence intensity, MFI) on CB-SC 

after coculture with stimulated B cells. The data were given as mean ± SD of three 

experiments with CB-SC (N = 3)-treated B cells (N = 3). (E) Stimulated B cells were 

coculture with CB-SC at ratio of 1:2 in the presence or absence of Gal-9 mAb blocking. 

The inhibition of CB-SC on B-cell proliferation was abolished after blocking with Gal-9 

mAb (stimulated B cells with CB-SC vs stimulated B cells + CB-SC + Gal-9 mAb, P = 

0.025, N=4). 

 

Fig. 6 Gal-9 expressed on CB-SC contributes to the modulation of Ca2+-associated 

signaling pathways in stimulated B cells.  (A) Flow cytometry analysis of cytoplasmic 

Ca2+ with Fluor-4 staining shows the remarkable decrease in the median fluorescence 

intensity (MFI) value of Fluor-4+ B cells after the treatment with CB-SC (P < 0.05) or 0.5 

µg/mL rGal-9 (P < 0.01), but markedly increased after blocking with Gal-9 mAb. (B) Flow 

cytometry analysis of mitochondrial Ca2+ with Rhod-2 staining shows the substantial 

decline in the MFI value of Rhod-2+ B cells after the treatment with CB-SC (P < 0.01) or 

0.5 µg/mL rGal-9 (P < 0.01), but clearly improved after blocking with Gal-9 mAb. (C) 

Downregulate the mitochondrial membrane potential in the stimulated B cells after the 

treatment with CB-SC, which was in the Gal-9-dependent manner as demonstrated by 

flow cytometry analysis after staining with tetramethylrhodamine, ethyl ester (TMRE). (D) 

Western blotting showed the reduced expression of phosphorylated AKT and ERK1/2 in 
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stimulated B cells after the treatment with CB-SC or rGal-9, but upregulated after blocking 

with Gal-9 mAb. b-actin served as control.  
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Figure S1: Flow cytometry showed that there were no marked differences on the 
percentages of viable cells after the treatment with different ratios of CB-SC:B cells, 
relative to that of stimulated B cells. 	The viable cells from different samples were gated 
for analysis after excluding the propidium iodide (PI)-positive dead cells.  The data were 
given as mean ± SD of six experiments with CB-SC (N = 4)-treated B cells (N = 6). 
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Figure S2: Compare the levels of galectin-9 expressed on CB-SC and released in 
the supernatants of CB-SC cultures. CB-SC (1 ́  107 cells/dish) were cultured in fresh 
chemical-defined and serum-free X’VIVO 15 medium (Lonza, Walkersville, MD, USA) 
at 37°C and 8% CO2 conditions. After culture for 3 days, CB-SC cells and supernatants 
were collected respectively for analysis Gal-9 protein concentration. The data were 
given as mean ± SD of three experiments 
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