

1 **Kilometer-scale larval dispersal processes predict metapopulation
2 connectivity pathways for *Paramuricea biscaya* in the northern Gulf of Mexico**

3 Guangpeng Liu¹, Annalisa Bracco¹, Andrea M. Quattrini², Santiago Herrera³

4 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 First Dr, Atlanta, GA 30332,
5 USA

6 2 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington,
7 DC 20560, USA

8 3 Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA

9

10 **Abstract**

11 Fine-scale larval dispersal and connectivity processes are key to species survival, growth, recovery
12 and adaptation under rapidly changing disturbances. Quantifying both are required to develop any
13 effective management strategy. In the present work, we examine the dispersal pattern and potential
14 connectivity of a common deep-water coral, *Paramuricea biscaya*, found in the northern Gulf of
15 Mexico by evaluating predictions of physical models with estimates of genetic connectivity. While
16 genetic approaches provide estimates of realized connectivity, they do not provide information on
17 the dispersal process. Physical circulation models can now achieve kilometer-scale resolution
18 sufficient to provide detailed insight into the pathways and scales of larval dispersal. A high-
19 resolution regional ocean circulation model is integrated for 2015 and its advective pathways are
20 compared with the outcome of the genetic connectivity estimates of corals collected at six locations
21 over the continental slope at depths comprised between 1000 and 3000 meters. Furthermore, the
22 likely interannual variability is extrapolated using ocean hindcasts available for this basin. The
23 general connectivity pattern exhibits a dispersal trend from east to west following 1000 to 2000-
24 meter isobaths, corresponding to the overall westward near-bottom circulation. The connectivity
25 networks predicted by our model were mostly congruent with the estimated genetic connectivity
26 patterns. Our results show that although dispersal distances of 100 km or less are common, depth
27 differences between tens to a few hundred meters can effectively limit larval dispersal. A
28 probabilistic graphic model suggests that stepping-stone dispersal mediated by intermediate sites
29 provides a likely mechanism for long-distance connectivity between the populations separated by
30 distances of 300 km or greater, such as those found in the DeSoto and Keathley canyons.

31

32

33

34

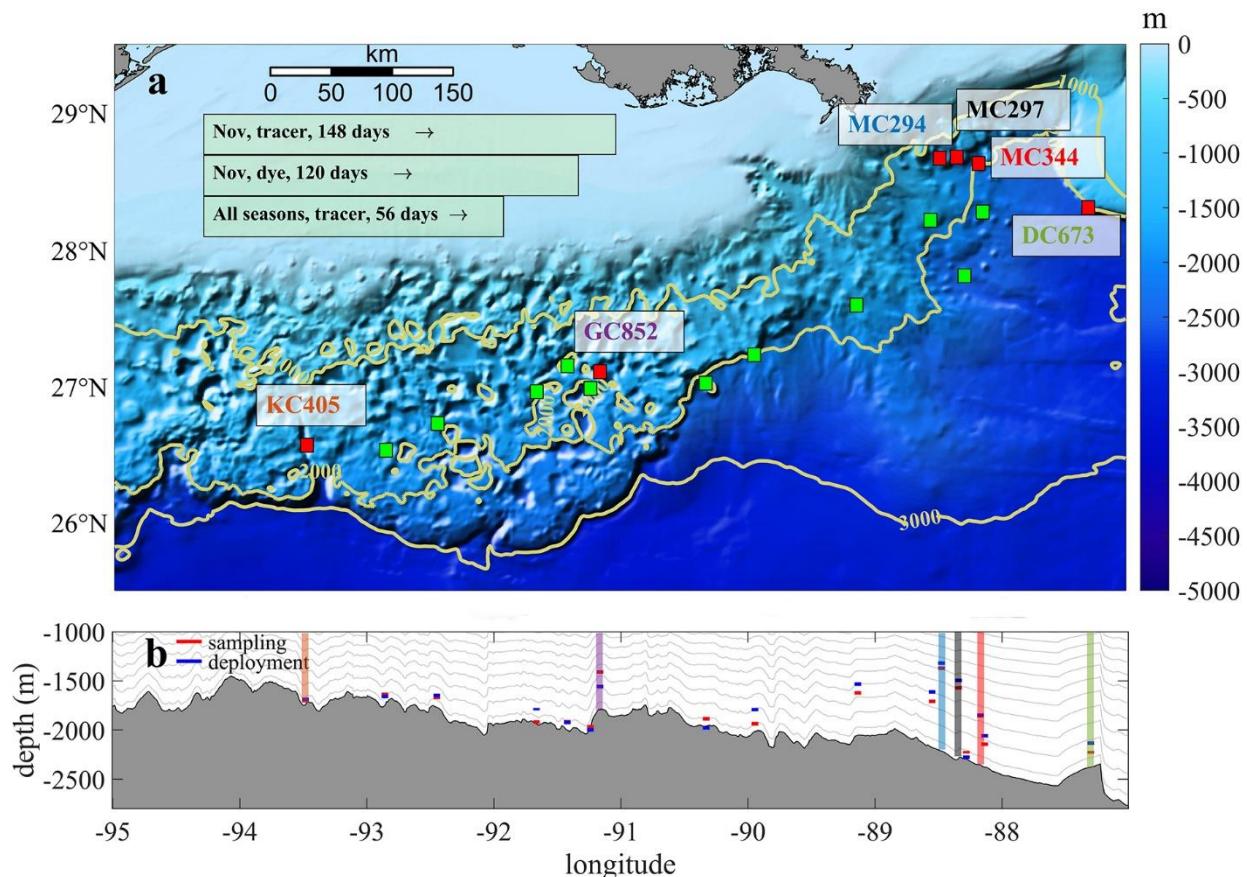
35

36 Introduction

37 Deep-water or cold-water corals are long-lived and slow-growing organisms commonly found at
38 depths greater than 50 m (Cairns 2007; Roark et al., 2009; Sherwood and Edinger, 2009). They
39 play an essential role in providing habitats for a diversity of vertebrate and invertebrate species
40 and are highly susceptible to natural and anthropogenic disturbances (Guinotte et al., 2006; White
41 et al. 2012; Hoegh-Guldberg et al., 2017; Turley et al., 2007). Understanding larval dispersal and
42 connectivity patterns of deep-water corals is a first, necessary step for their conservation and
43 management in response to the multiple threats they face (Botsford et al., 2009; Cowen et al., 2007;
44 Palumbi, 2003).

45 While shallow corals are generally well sampled, direct surveys of deep corals are scarce because
46 of the substantial cost and logistical difficulties (Doughty et al., 2014; Girard et al., 2019; Quattrini
47 et al., 2015). The integration of biological data and physical ocean models has helped predict coral
48 habitat suitability (Hu et al., 2020; Kinlan et al., 2020; Tong et al., 2013) and identify larval
49 dispersal and connectivity patterns (Bracco et al., 2019; Breusing et al., 2016; Cardona et al., 2016;
50 Etter and Bower, 2015; Fobert et al., 2019; Gary et al., 2020; Hilario et al., 2015; Nolasco et al.,
51 2018; Ross et al., 2020; Storlazzi et al., 2017). Recent studies suggest that this biophysical
52 framework offers meaningful predictions of connectivity (Gary et al., 2020; Ross et al., 2020),
53 despite the uncertainties related to the sparsity of in-situ measurements and model biases in the
54 representation of bottom boundary layer dynamics (see Bracco et al., 2020 for a recent review
55 pertinent to the Gulf of Mexico).

56 Numerous shallow and deep-water corals populate the northern Gulf of Mexico (GoM) and
57 contribute to the functionality and biodiversity of marine ecosystems (Cordes et al., 2008; Gil-
58 Agudelo et al., 2020; Precht et al., 2014). Deep-water corals in the GoM are subject to various
59 natural and anthropogenic stresses such as increasing water temperatures, acidification,
60 overfishing, and pollution. For example, the 2010 Deep-water Horizon (DWH) oil spill released ~
61 4.1 million barrels of oil into the Gulf (McNutt et al., 2012) and dramatically impacted the
62 vulnerable coral communities in the proximity of the spill site (Fisher et al., 2014; Girard et al.,
63 2019; White et al. 2012). This event and its ecological consequences pointed to the need for
64 restoration actions and improved management strategies, raising interest for a better understanding
65 of the biological and physical processes that affect coral connectivity in the deep-sea.


66 For deep-water corals, both mesoscale eddies (10 to 200 Km) and submesoscale circulations (1 to
67 10 Km), together with bottom boundary layer turbulence, influence their dispersal (Bracco et al.,
68 2019; Cardona et al. 2016). Near-bottom submesoscale circulations such as fronts, vorticity
69 filaments and small eddies, form due to instabilities induced by shear layers. These circulations
70 can isolate larvae by trapping them inside their cores and transport them to other locations along
71 the continental slope (Bracco et al., 2016). Additionally, the large vertical velocities and diapycnal
72 mixing associated with submesoscale motions can contribute to the vertical transport of the larvae
73 (Bracco et al., 2018; Vic et al., 2018).

74 Despite the growing number of studies focusing on biophysical dispersal models, connectivity
75 studies that combine genetic data with models resolving the physical circulation and bathymetry
76 at kilometer-scale resolution (submesoscale) are scarce (Bracco et al., 2019; Cardona et al., 2016;
77 Fobert et al., 2019; Gary et al., 2020; Nolasco et al., 2018; Ross et al., 2020). This scarcity is due
78 to the high computational costs of high-spatial resolution models, which limit them short temporal
79 scales (days to months), and the challenges in obtaining sufficiently large sample sizes of deep-
80 sea species for population genetics.

81 In this work we focus on *Paramuricea biscaya*, an octocoral in the family Plexauridae.
82 *Paramuricea biscaya* is one of the most common and abundant corals in the GoM between 1200
83 and 2500 m (Doughty et al., 2014). Populations of this species were directly impacted by the 2010
84 Deep-water Horizon oil spill (DWH), particularly in the Mississippi Canyon area (White et al.
85 2012; Fisher et al. 2014), and thus are considered primary targets for restoration (Deep-water
86 Horizon Natural Resource Damage Assessment Trustees, 2016). We investigate the
87 metapopulation connectivity of *P. biscaya* in the northern GoM using a submesoscale permitting
88 ocean circulation and larval dispersal model. We also evaluate the performance of the model by
89 comparing potential connectivity probabilities with genetic connectivity estimates.

90 This paper is a companion to the paper by Galaska et al. (submitted) that describes the analyses of
91 genetic connectivity and seascape genomics. Here, we compare the modeled current velocities to
92 those of mesoscale resolving HYCOM-NCODA reanalysis. Furthermore, we explore the factors
93 controlling the larval dispersal pathways and connectivity networks at the sites where *P. biscaya*
94 occurs, in off-line Lagrangian particle integrations and on-line Eulerian dye simulations through
95 spatial density analysis and a probabilistic graphic model. We also evaluate the potential role of
96 intermediate populations predicted by habitat suitability models (Georgian et al., 2020) as
97 stepping-stones for dispersal. Finally, we discuss the role of annual and inter-annual seasonality in
98 modulating *P. biscaya* connectivity patterns in the GoM by means of a coarser mesoscale resolving
99 data-assimilative hindcast.

100

101

102 Figure 1. (a) Topography map of the study area showing the sampled and predicted sites hosting *P. biscaya*
103 populations. (a) Red boxes ($0.05 \times 0.05^\circ$) with colored textbox indicates six main sites (from east to west,
104 DC673, MC344, MC297, MC294, GC852, and KC405). Green boxes with black edge are predicted
105 intermediate suitable habitats selected from models by Georgian et al. (2020). Yellow contours indicate
106 1000m, 2000m, and 3000m isobaths. Light green boxes at the up left corner summary three release
107 strategies in this work. (b) The grey shaded area shows the topographic profile of the northern GoM
108 averaged between 1000 m – 3000 m. The colored boxes indicate the depth where corals were collected
109 (red) or larval particles released (blue). Grey lines show the average depth of the s-layers in our model.

110 Data and Methods

111 Large-scale circulation of the study area

112 Our study area comprises the region of the northern Gulf of Mexico that includes six sites, named
113 after the lease blocks, where *Paramuricea biscaya* populations are known. These sites are: DeSoto
114 Canyon 673 (DC673), Mississippi Canyon 344 (MC344), Mississippi Canyon 297 (MC297),
115 Mississippi Canyon 294 (MC294), Green Canyon 852 (GC852), and Keathley Canyon 405
116 (KC405) (Doughty et al., 2014; Girard et al., 2019; Vohsen et al., 2020) (Figure 1). The 2010
117 Deepwater Horizon oil spill directly impacted *P. biscaya* populations at the Mississippi Canyon
118 sites MC294, MC297, and MC344 (Fisher et al., 2014; White et al., 2012).

119 The large-scale circulation of the study area (shown in Figure 1) is dominated in the upper 800 –
120 1000 m by the presence of the anticyclonic Loop Current (LC) that enters the basin through the
121 Yucatan Channel and leaves through the Florida Straits. The LC penetrates northward to about
122 26.5–27.5°N and usually extends longitudinally east of 86°W (Vukovich, 1988; 2007). Large
123 anticyclonic mesoscale eddies with diameters of about 200 kilometers spin off the main LC at
124 irregular intervals and populate the basin until they dissipate by interacting with the continental
125 slope in the western GoM (Cardona and Bracco, 2016; Donohue et al., 2016). At depth, below
126 1000 m, the large-scale circulation is cyclonic (DeHaan and Sturges, 2005; Weatherly et al., 2005).
127 Along the continental slope, bottom currents are highly variable, and can intensify due to vortex
128 stretching and topographic Rossby waves (Hamilton, 2009; Kolodziejczyk et al., 2012; Bracco et
129 al., 2016).

130 *Larval dispersal model*

131 Predicting larval dispersal is complicated by the limited knowledge of larvae's behaviors,
132 especially for deep-sea corals, and by strong, often poorly characterized, variability in deep ocean
133 currents. The application of an integrated biophysical model remains a practicable approach to
134 address this challenge, even though there are notable differences in the estimation of larval travel
135 distance and dispersal pattern among different models (Cowen et al., 2007; Edmunds et al., 2018;
136 Ross et al., 2020; Werner et al., 2007). A typical modeling framework for connectivity studies
137 includes an ocean physical model that provides circulation, or sometimes temperature and salinity,
138 information as background forcing field, and a module for particle (i.e., larvae) tracking those
139 accounts for behavioral characteristics (e.g., age, life span, swimming abilities, larval buoyancy).

140 In this work, we adopted the three-dimensional Coastal and Regional Ocean Community model
141 (CROCO) that is built upon the Adaptive Grid Refinement in Fortran (AGRIF) version of the
142 Regional Ocean Modeling System (ROMS) (Debreu et al., 2012; Shchepetkin and McWilliams,
143 2005). It is a split-explicit, hydrostatic, and terrain-following model that is designed for simulating
144 high-resolution nearshore and offshore dynamics and has been used successfully in larval dispersal
145 studies (Bani et al., 2020; Bracco et al., 2019; Cardona et al., 2016; Kim and Barth, 2011; Nolasco
146 et al., 2018; Vic et al., 2018). Here, CROCO covers a large portion of the GoM between 98°–82°
147 W and 24°–31° N, and has a grid resolution of about 1 km in the horizontal space and 50 sigma
148 layers in the vertical direction. The nonlinear K-Profile Parameterization (KPP) scheme
149 parameterizes vertical mixing (Large et al., 1994). Three-dimensional tracer advection is achieved
150 through a split and rotated 3rd-order upstream-biased advection scheme, which minimizes
151 spurious diapycnal mixing but does not guarantee positive values of tracer concentration
152 (Marchesiello et al., 2009).

153 The model bathymetry is derived from the Global Multi-Resolution Topography (GMRT)
154 Synthesis (Ryan et al., 2009) smoothed with a maximum slope factor of 0.25 to reduce horizontal
155 pressure gradient errors (Sikirić et al., 2009). The southern and eastern open boundaries are nudged
156 to the six-hourly data from the Hybrid Coordinate Ocean Model - Navy Coupled Ocean Data

157 Assimilation (HYCOM-NCODA) Analysis system. Six-hourly atmospheric forcing files (wind
158 stresses, heat fluxes, and daily precipitation) are from the European Centre for Medium-Range
159 Weather Forecast ERA-Interim reanalysis (Poli et al., 2010). Daily freshwater discharges for the
160 five main rivers in the GoM (Mississippi, Atchafalaya, Colorado, Brazos, and Apalachicola) from
161 the United State Geological Survey (USGS) are converted to an equivalent surface freshwater flux
162 that decays away from the river mouths at a constant rate as in (Barkan et al., 2017). River
163 momentum flux and tidal forcing are neglected in this work because of their weak influences on
164 the deep-sea area which is the focus of this study (Bracco et al., 2019; Gouillon et al., 2010). Initial
165 conditions are created by interpolating the field of HYCOM on September 31th 2014 to the
166 CROCO grid; the first 4 months of the simulation are discarded as spin-up. CROCO fields are
167 saved every hour for offline particle tracking. At 1 km horizontal resolution, the use of hourly
168 averaged velocity fields introduces only a small error in the tracer advection (Choi et al., 2017;
169 Smith et al., 2011).

170 *Larvae tracking*

171 Three release experiments with different tracking periods and different types of tracers are
172 conducted in this work to investigate the connectivity pattern of *P. biscaya* in the northern GoM.
173 Specifically, 4489 neutrally buoyant Lagrangian tracers (hereafter referred to as larval particles or
174 particles) are deployed uniformly in $0.05 \times 0.05^\circ$ boxes centered at the location of known
175 populations (Table S1, Figure 1a, red box with a colored text box next to it) and at 11 intermediate
176 sites (green boxes) that could host *P. biscaya* populations according to habitat suitability modeling
177 predictions (Georgian et al., 2020). These particles are tracked off-line (*release type 1 and 2*) using
178 a Lagrangian tool developed to simulate ichthyoplankton dynamics (Ichthyop) (Lett et al., 2008)
179 and are recorded hourly. Although the actual size of coral larvae is not infinitesimally small and
180 could be slightly negatively buoyant (Brugler et al., 2013; Miller, 1998), the infinitesimally small
181 approximation holds given the 1 km model resolution. A previous study has shown that in an
182 environment with strong submesoscale features, slightly heavier/lighter (10%) buoyancy does not
183 affect the transport significantly (Zhong et al., 2012). No other biological behaviors such as
184 growth, mortality, settlement, and swimming are considered in this work, given that these are
185 unconstrained for *P. biscaya*. The CROCO release depths are shown in Figure 1b. There is a 73 m
186 difference on average between observations and model, and the largest discrepancy is found at
187 GC852 (~200 m), where the observed bathymetry is very steep and varies greatly laterally on
188 scales smaller than the model grid resolution.

189 A total of 76313 particles are released in the model layer above that at the seafloor on January 25th,
190 April 25th, July 24th, and November 1st, 2015, and tracked for 56 days (*release type 1*). The pelagic
191 larval duration (PLD) for *Paramuricea biscaya* is unknown, but Hilario et al. (2015) found that a
192 PLD between 35 and 69 days may be representative of 50% to 75% of deep-sea species. In
193 addition, the particles released at the 6 sampling locations on November 1st are followed for
194 another 92 days to evaluate connectivity over five months (~150 days in total, *release type 2*).
195 Finally, the evolution of a dye released near the bottom (in the first s-layer) at the 6 sampling

196 locations is simulated on-line (directly in CROCO) (release *type 3*) and followed for 120 days to
197 explore the consistency between Lagrangian off-line and Eulerian on-line experiments.

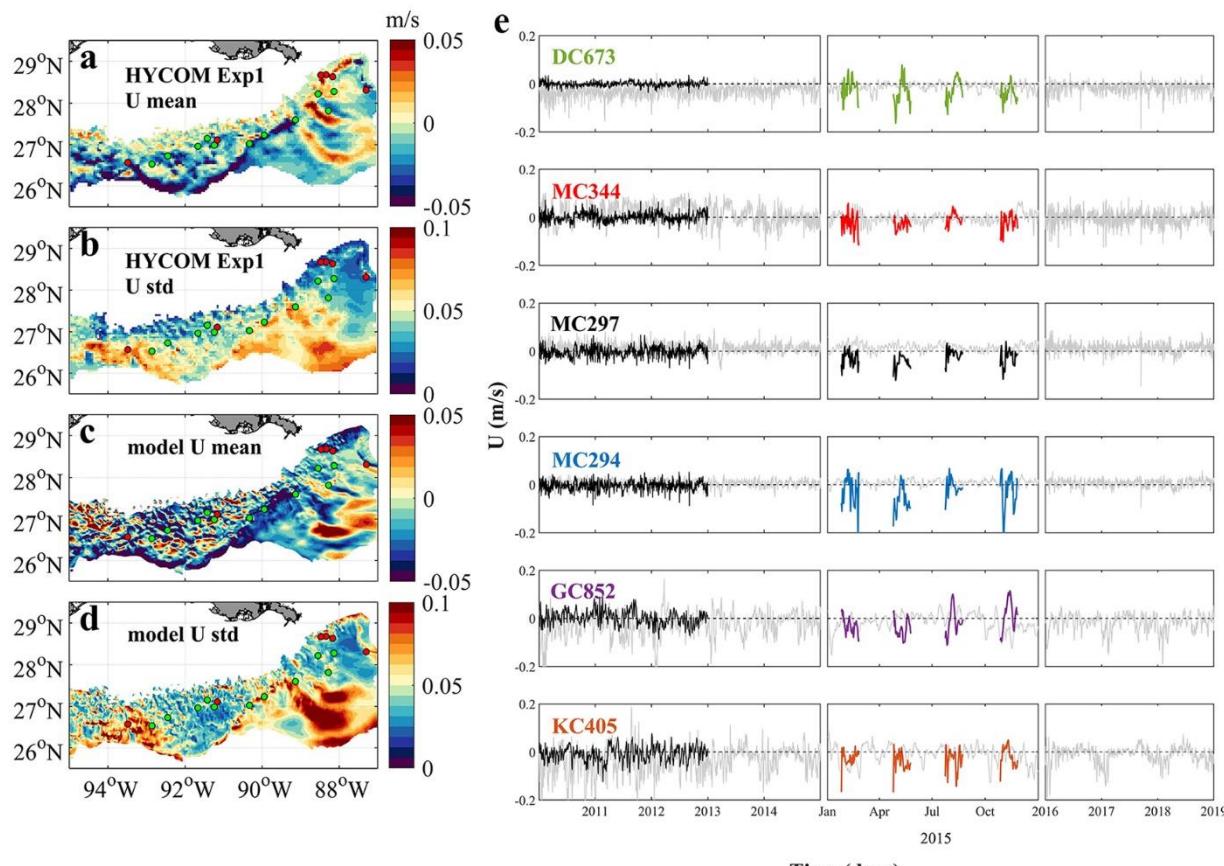
198 *HYCOM hindcast*

199 The inter-annual variability of the near-bottom currents is evaluated using the HYCOM hourly
200 analysis at 1/25° horizontal resolution from 2010 to 2018 (Exp1, HYCOM/GOMI0.04) and the
201 reanalysis data from 2010 to 2012 available at the same horizontal resolution but only at a three-
202 hourly frequency (Exp2, HYCOM/GOMu0.04). The local circulations of these two experiments
203 differ considerably over the common period because of the different choices regarding model
204 configuration, vertical discretization and data assimilation routines (see
205 <https://www.hycom.org/hycom/documentation>).

206 The velocity field is analyzed over the whole 2010-2018 period, and the dispersion patterns are
207 simulated off-line using the HYCOM data in 2011, when both experiments are available and the
208 derived near-bottom currents differ significantly between Exp1 and Exp2 and differ the most from
209 those in 2015. Practically, by considering 2015 in CROCO and 2011 in the two HYCOM
210 experiments we are exploring conditions as different as possible within the 2010-2018 period.
211 Particle trajectories in HYCOM are advected using only the 2-dimensional near-bottom velocity
212 field. To make the comparison with our simulations most relevant, we interpolated the original
213 HYCOM velocity field at the horizontal resolution of 5 km and with the same vertical
214 discretization used in the CROCO runs.

215 *Genetic data*

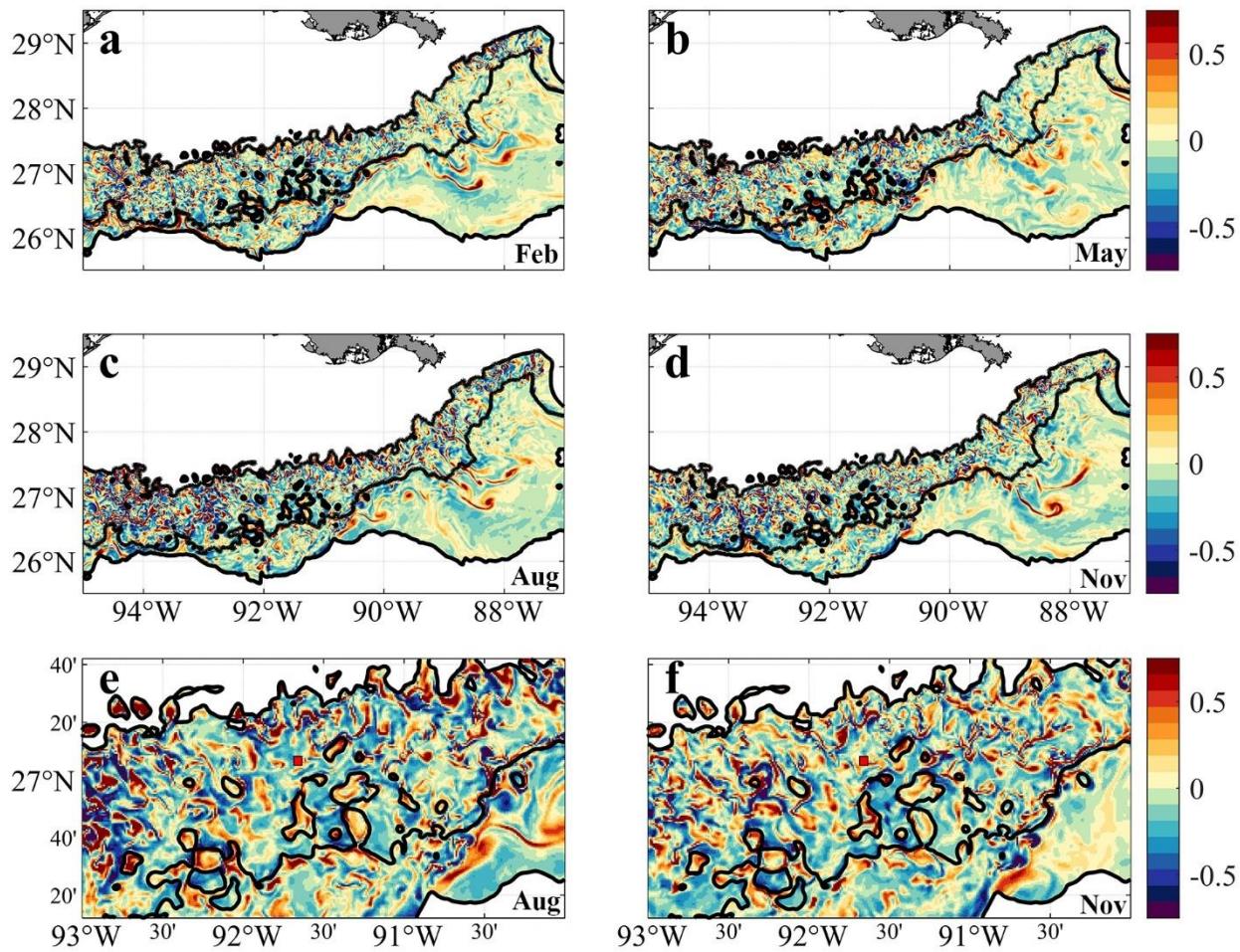
216 To evaluate the performance of our models in predicting connectivity, we compared our results
217 with the genetic connectivity estimates (migration rates m) by Galaska et al. (submitted). Briefly,
218 Galaska et al. (submitted) produced single nucleotide polymorphisms (SNPs) data from
219 individuals collected at the six main sites (DC673, MC344, MC297, MC294, GC852, and KC405)
220 using the reduced representation DNA sequencing (RAD-seq) method (Baird et al., 2008; Reitzel
221 et al., 2013). Migration rates (m), defined as the proportion of immigrant individuals in the last
222 two generations, were estimated using BAYESASS v3.0.4.2 (Wilson and Rannala, 2003).


223 **Results and Discussion**

224 *Circulation features in the GoM and its annual and inter-annual variability*

225 Figure 2 shows the time-averaged near-bottom lateral velocities over the continental slope between
226 1000 and 3000 m, and their time-series where the coral sites are located, for CROCO in 2015 and
227 for the HYCOM-NCODA analysis from 2010 to 2019. The spatial resolution difference among
228 the two models implies that CROCO partially resolves submesoscale dynamics, while HYCOM-
229 NCODA does not. The horizontal patterns of the averaged zonal current (west-east) of HYCOM
230 outputs and our model result in 2015 (Figure 2a and 2c) illustrate the differences in current speed
231 and, especially, variability (standard deviation) owing to CROCO's higher resolution (Bracco et

232 al., 2016). At the same time, some similarities are evident. For example, the prevalence of
233 positive/negative velocities around (93.5°W, 27°N)/(93.5°W, 26.5°N), intermittent positive
234 (eastward) and negative (westward) values between 94°W to 90°W, the presence of a westward
235 velocity ‘belt’ following the 3000 m isobaths. The variability patterns between HYCOM and
236 model outputs are also similar, just of stronger amplitude in CROCO, with the largest variability
237 found between 94.5°W-93°W, near the Sigsbee Escarpment (89°W-91°W) and the Mississippi Fan
238 (east of 90°W and south of 27°N). Energetic currents and large variability in the vicinity of the
239 Sigsbee Escarpment are supported by field observations (Hamilton and Lugo-Fernandez, 2001).
240 In the De Soto Canyon region (89°W-87°W, 27°N north), on the other hand, currents are weaker
241 and less variable, as documented in previous studies (Bracco et al., 2016; Cardona et al., 2016).


242 Figure 2e depicts the time series of zonal near-bottom velocity at the six coral sites. In the period
243 considered, there is some interannual variability but it is not much greater than across different
244 seasons. Currents differ more for amplitude and direction between Exp1 and Exp2, than between
245 Exp1 and CROCO. In 2015, the flow was westward (negative) in the monthly averaged HYCOM
246 output (black thin line) and in the same direction, but generally stronger in CROCO. MC294 is the
247 exception, and the directionality is reversed in HYCOM, but with a small amplitude. Overall in
248 CROCO and Exp1 westward currents prevail around the coral sites.

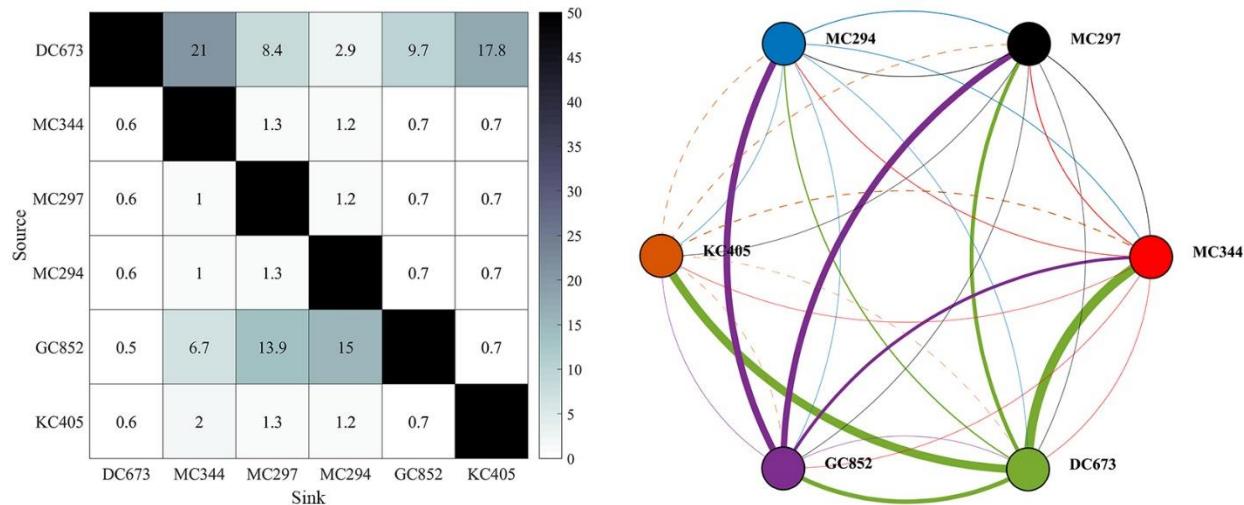
249

250 Figure 2. Near-bottom circulation in the northern GoM between 1000 m-3000 m. (a) averaged hourly
251 HYCOM Exp1 zonal current (west–east) from 2010 – 2018, (b) the corresponding standard deviation (std),
252 (c) daily averaged model zonal current, dataset is collected from February, May, August and November
253 2015 with a time period of 30 days for each simulation, and (d) the std of the modeled zonal current. The
254 six sampling sites are colored by red dots, while the intermediate sites are shown in green. (e) shows the
255 near-bottom zonal current at each sampling location during the period of 2010-2014 (left), 2015 (middle)
256 and 2016-2018 (right). Grey, black and color lines indicate result of HYCOM Exp1, HYCOM Exp2 and
257 CROCO, respectively. Positive values indicate an eastward current, and negative values westward.

258 Mesoscale and submesoscale circulations that may influence the transport of deep-water coral
259 larvae can be seen in the normalized relative vorticity ζ/f plots in Figure 3. $\zeta = \partial v / \partial x - \partial u / \partial y$, where
260 f is the Coriolis parameter. u and v denote the zonal (west-east) and meridional (south-north)
261 velocity components, respectively. x and y are the corresponding distances. The near-bottom
262 vorticity indicates more intense submesoscale circulations over the continental slope in the western
263 side of the domain compared to the eastern one, in agreement with previous work (Cardona et al.,
264 2016). In 2015 slightly stronger submesoscale eddies are found in August compared to the other
265 months, but this is likely the result of interactions between local currents and topography at that
266 time, and is not indicative of a robust seasonal signal. Zoom-in fields of August and November
267 results (Figure 3e and 3f) provide more details of the interactions between the near-bottom currents
268 and topographic features. Overall, strong cyclonic submesoscale vortices (i.e., positive relative
269 vorticity) are found in “valley” regions outlined by the close seafloor depth contours (see Figure
270 1a for better visualization) in both seasons. The formation of these small cyclones involves the
271 shear layers and centrifugal instabilities associated with the mean flows and sloping boundary. The
272 generation mechanism is beyond the scope of the present study but is discussed in previous works
273 (Bracco et al., 2016; Gula et al., 2015; Molemaker et al., 2015). Away from these intense cyclonic
274 vortices, GC852 locates in a less stable region with numerous weak, intermittent submesoscale
275 structures.

276

277 Figure 3. Relative vorticity near bottom in February (a), May (b), August (c) and November (d) calculated
278 from model simulation. Negative values are anticyclonic or clockwise rotation. (e) and (f) are the zoom-in
279 regions between 93-90° W, 26.2-27.7° N in August (c) and November (d). Red box with black edge shows
280 the location of GC852.


281

Genetic connectivity

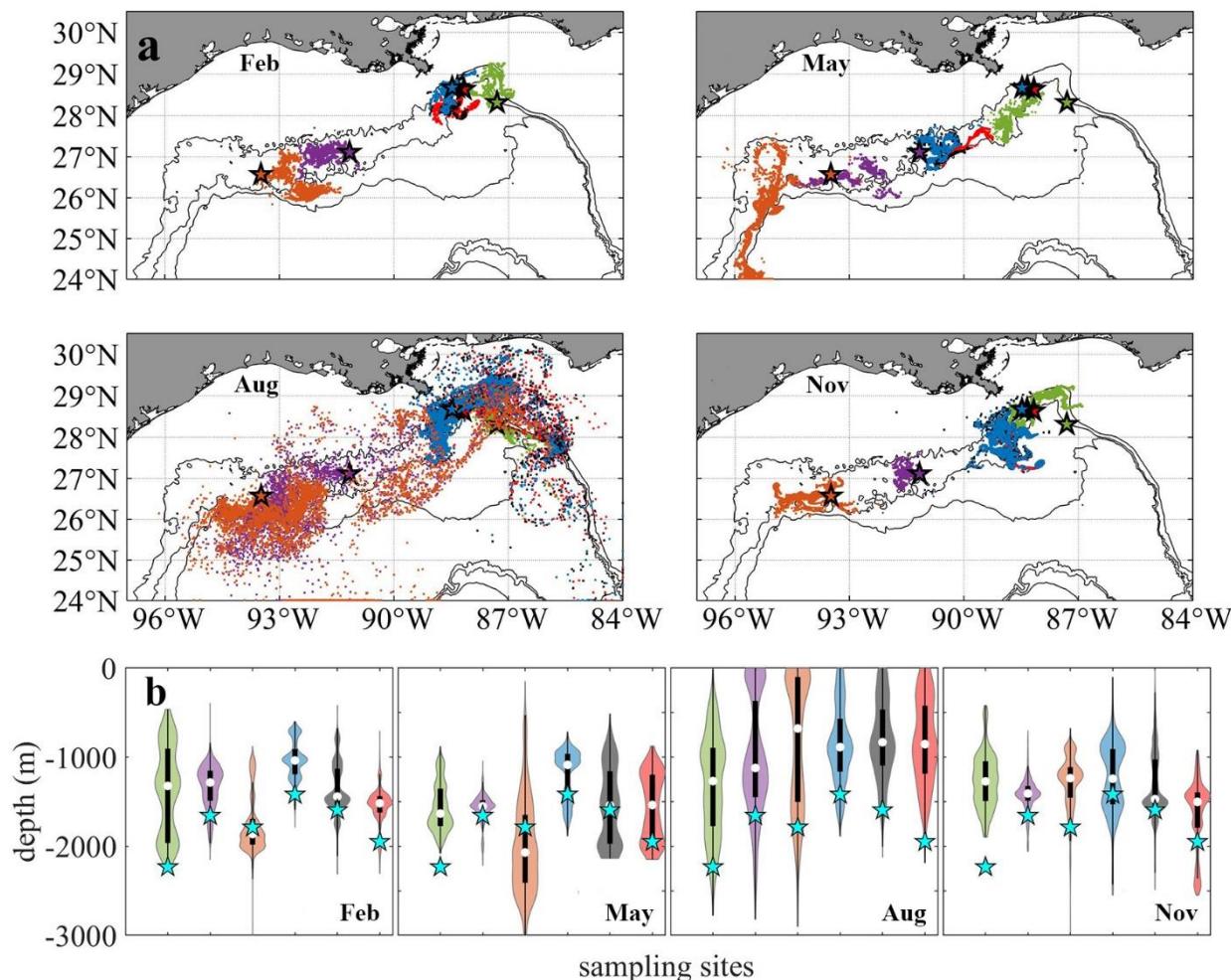
282 The genetic analysis of the *Paramuricea* samples by Galaska et al (submitted) shows that
283 migration rates are generally low (average $m = 0.011$), with a few exceptions (Figure 4).
284 Considering the relative locations of sampled sites and the magnitude of the connectivity network,
285 we can infer that the three sites in the Mississippi Canyon (i.e., MC344, 1853m; MC297, 1571m;
286 and MC294, 1371m) are not well connected to each other ($m < 1.5\%$). This is consistent with the
287 depth-differentiation hypothesis that posits that genetic differentiation is greater across depth than
288 geographic distance, even between sites relatively close by (Bracco et al., 2019; Quattrini et al.,
289 2015; Galaska et al., submitted). Secondly, gene flow is predominantly westward. The DeSoto
290 Canyon site DC673 is a source of genetic material to the Mississippi Canyon sites, particularly the
291 deepest one (MC344). DC673 and KC405 (Keathley Canyon) appear well connected, despite being
292 separated by 635 km of distance and 522 m of depth. These analyses also indicate that the Green

293 Canyon site GC852 may also be an important source of immigrants to the Mississippi Canyon area
 294 because of eastward migration rates.

295

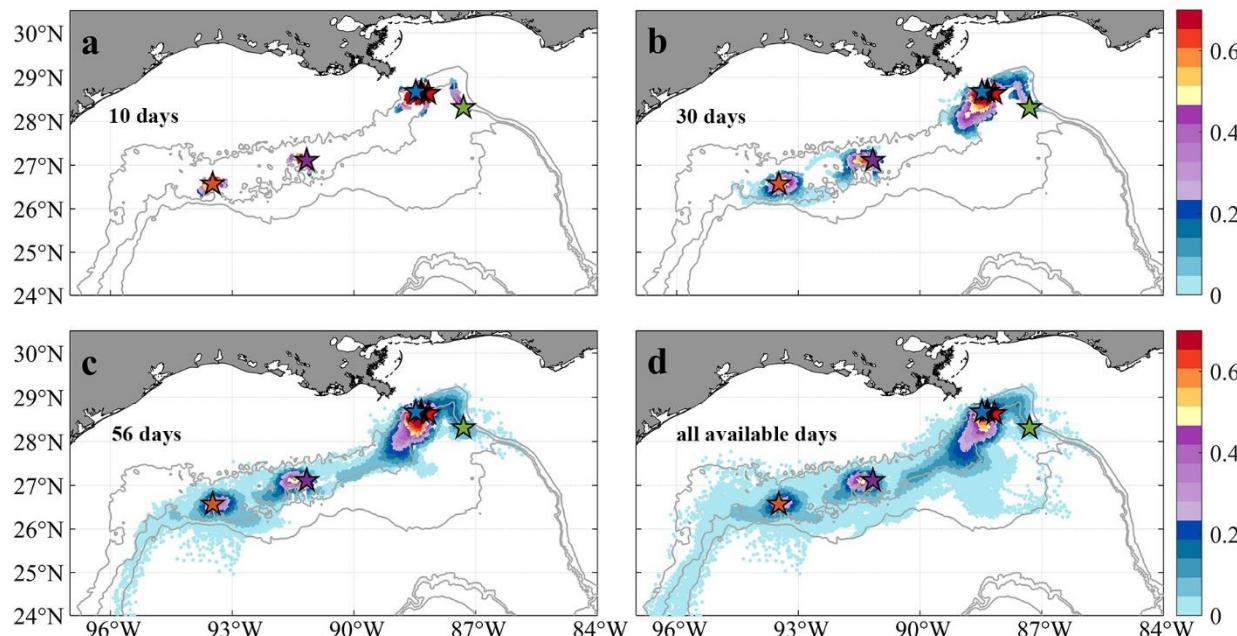
296

297 Figure 4. Connectivity matrix (left) and network (right) calculated from genetic data sampled at the six
 298 locations shown in Figure 1a. Figures are modified from Galaska et al (submitted). a) Matrix values
 299 correspond to point estimates of migration rates (m) as percentages (%). b) Network lines represent
 300 connections (dash line for KC405) and dots sites. Dots are color-coded by site. The color of the lines
 301 indicates the source site for the connections. Linewidths are proportional to m values. Sites are arranged
 302 from east to west (from DC673 to KC405).


303 *Connectivity pattern in the physical circulation model*

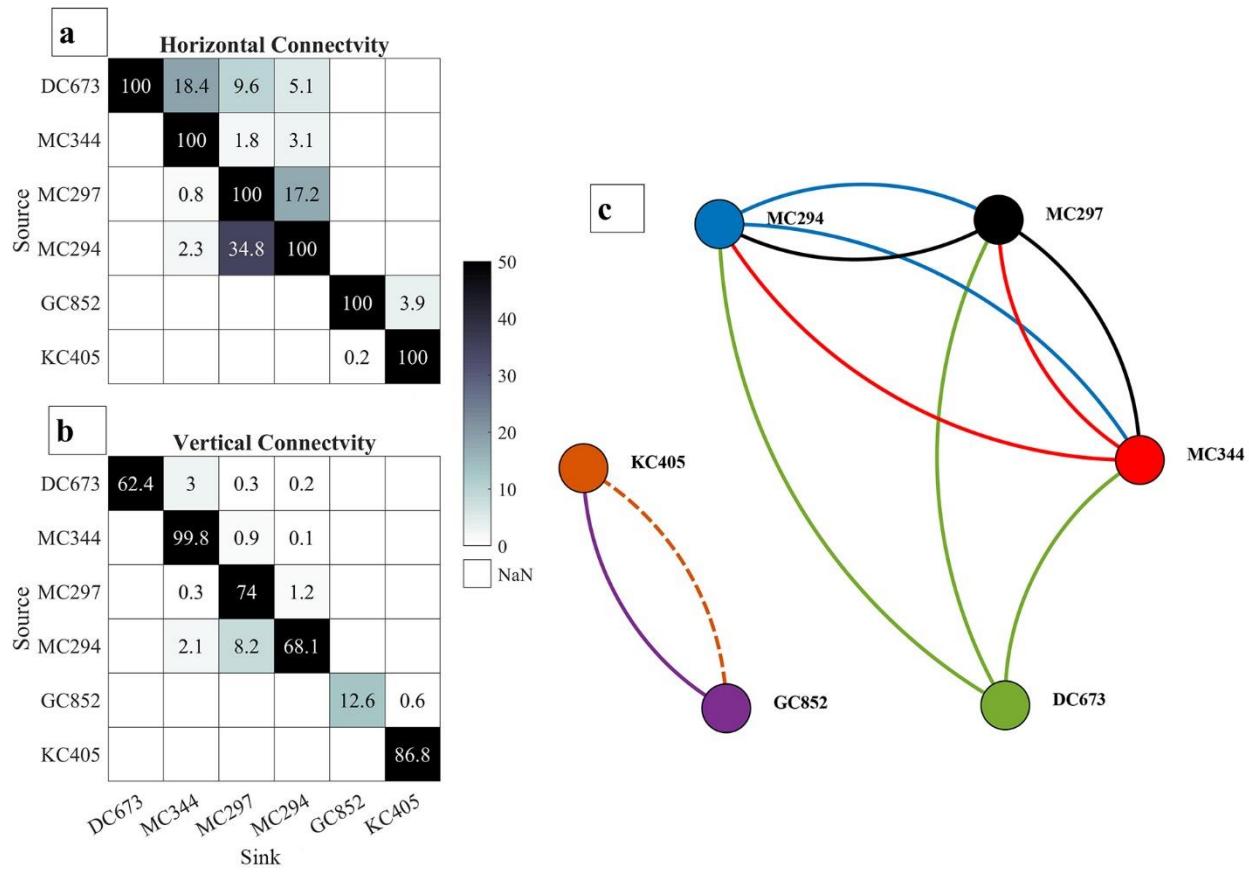
304 The 2015 modeled connectivity patterns among the six sites are illustrated in Figure 5 where the
 305 horizontal and vertical distribution of Lagrangian particles is shown after 56 days in each season
 306 (Figure 5, *release type 1*). The horizontal dispersion of particles, even though characterized by
 307 detectable differences in the direction of motion and spreading area among sites, is mostly confined
 308 between the 1000 m – 2000 m isobaths in all seasons (Figure 5a-d). No obvious seasonal
 309 dependency is detected except for the relatively wider distribution of particles released from
 310 GC852 and KC405 in August, in response to the stronger submesoscale near-bottom flows along
 311 the western continental slope compared to the other months (see Figure 3e). In February, May, and
 312 November, most particles travel as far as 100 km to 300 km from their release locations, while in
 313 August particles released at GC852 and KC405 can be found as far as 600 km.

314 As mentioned earlier, the near-bottom circulation at the GoM continental slope is predominately
 315 along depth contours, therefore larvae migration and connectivity are closely linked to the
 316 alongshore (lateral) direction of motion. Virtual larvae released at DC673, MC344, MC297, and
 317 MC294 move principally westward in all seasons, as also reported in Cardona et al. (2016). For
 318 KC405 and especially GC852 particles, on the other hand, eastward movement can be observed as
 319 their lateral velocity is more variable (Figure 2), especially for the February and August releases


320 in the CROCO run. The greater variability of the circulation in the central portion of the GoM
321 continental slope results from the many recirculation zones that occupy this area (see Bracco et al.,
322 2016, their Figures 3 and 10).

323 In the vertical direction (Figure 5e), the particle spreading is highly variable but without a seasonal
324 trend. For the August release, a large portion of particles that originated at GC852 and KC405 are
325 displaced by more than 500 m in two months. DC673 is a site characterized by strong eastward
326 and westward currents and high variance in particle displacement (Figure 2a-d) likely caused by
327 the steep slopes of the surrounding topography (Figure 1a). On the contrary, particles released at
328 the Mississippi Canyon sites in all seasons, and GC852 in February, May, and November show
329 smaller variances in their trajectories.

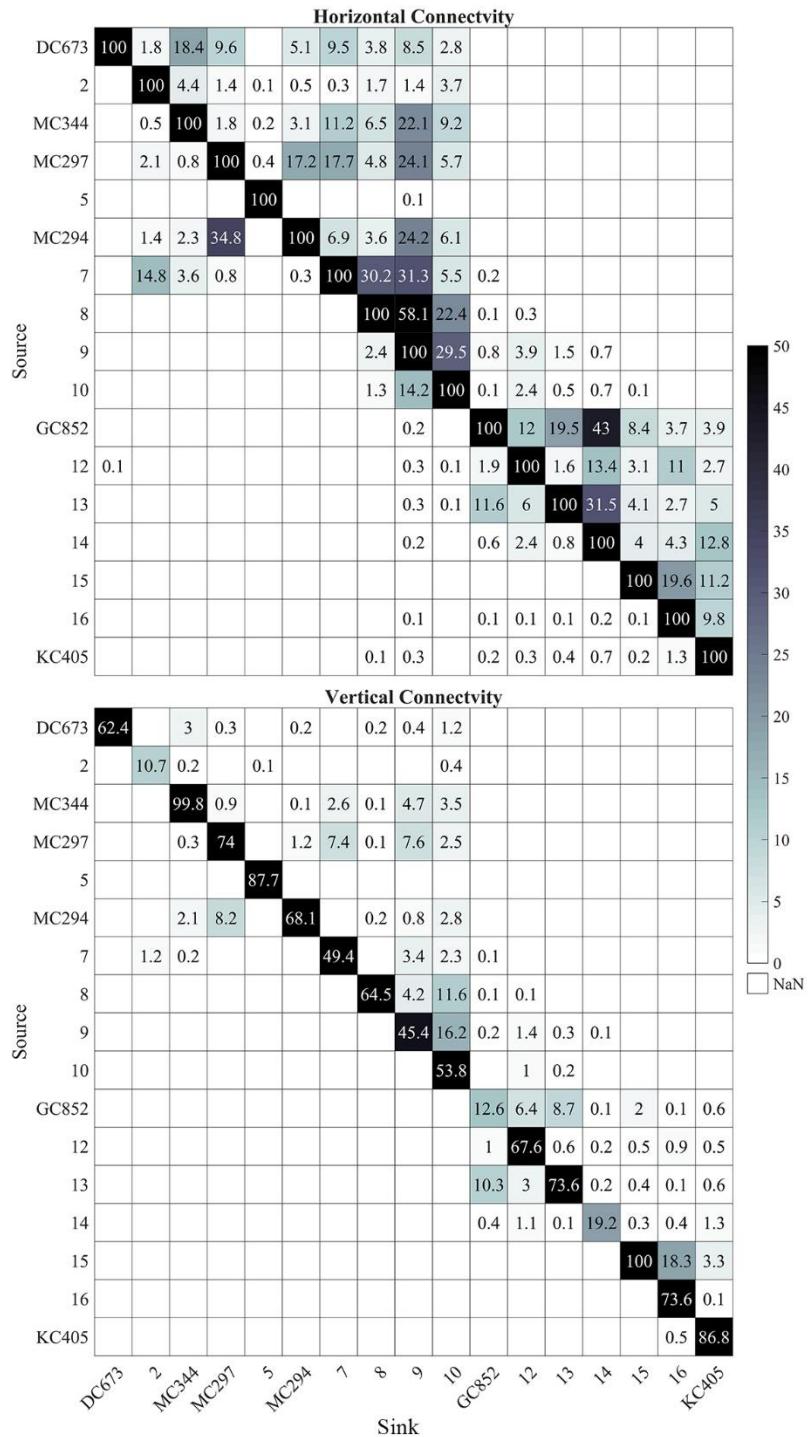
330
331 Figure 5. Distribution of Lagrangian larval particles released at the sampling sites after 56 days. Horizontal
332 (a). Vertical (b). Particles from different sites in (a) are colored consistently with previous figures. For each
333 violin in (b) the central white square indicates the median, and the bottom and top edges of the black box
334 indicate the interquartile range between 25th and 75th percentiles, respectively. Thin black line shows 95%
335 confidence level, and cyan stars indicate the initial release depth for each site. The width of each violin
336 represents frequency, i.e., density plot.


337 The horizontal dispersal patterns for 2015 are quantified by the 2-dimensional kernel density
338 estimation (KDE) using all four releases and the November extended one as well (Figure 6). The
339 KDE is a non-parametric technique to produce a smooth probability density function given a
340 random variable. The figure shows the heat map of particles' trajectories in the first 10, 30, 56
341 days and all available releases, i.e., 148 days in November and 56 days in all the other seasons.
342 Particles displaced in the vertical direction by more than 800 m depth are discarded (~20% of all
343 particles and mostly ending in very deep water). For all cases, high KDE values are found in
344 regions within ~100 km from the release points. A clear pathway from the northeast region near
345 the De Soto Canyon to the southwest area between KC405 and GC852 is outlined following the
346 2000 m isobath. In addition to the prevailing westward transport, an eastward branch stemming
347 from KC405 could be responsible for completing the east-to-west connectivity.

348
349 Figure 6. Horizontal probability distribution of Lagrangian larval particles after their release at the six
350 sampling sites (colors indicate probability values). Maps of the kernel density estimation (KDE) of
351 particles passages during periods of 10 days (a), 30 days (b), 56 days (c) and all available days (d, 56 days
352 in February, May and August, and 148 days in November) since release. Subsampling (sample every 20
353 particles spatially and 2 days temporally) has been applied for plotting. Few larval particles that are
354 displaced more than 800 m in the vertical direction away from the bottom are removed to focus on near-
355 bottom processes.

356 The potential connectivity network from the model integrations is compared to the observed one
357 from the genetic data in Figure 7. Even though the extended tracking period in November leads to
358 more horizontal (increased from 5 to 6 connections) and vertical (from 2 to 4 connections)
359 connections among the six sampling sites, the modeled network is still less dense than the
360 measured one (genetic), possibly indicating an overall underestimation of coral connectivity.
361 When the vertical dimension is considered, the connectivity from KC405 to GC852 is lost (dash

362 line) and the probability values of several other connections decrease significantly. In line with the
 363 genetic evidence, the three MC sites are all connected horizontally, but their connectivity decreases
 364 by 64.6% when depth is considered. Connections between the easternmost DC673 and the three
 365 MC sites are also observed in the modeled network and are most evident for the DC673-MC344
 366 pair. The model, however, fails to simulate both the long-distance bi-directional communication
 367 between DC673 and KC405 and the connectivity out of GC852. In other words, KC405 and
 368 GC852 are statistically isolated from the eastern sites in the 2015 CROCO simulation, contrary to
 369 the outcome from the genetic inferences.

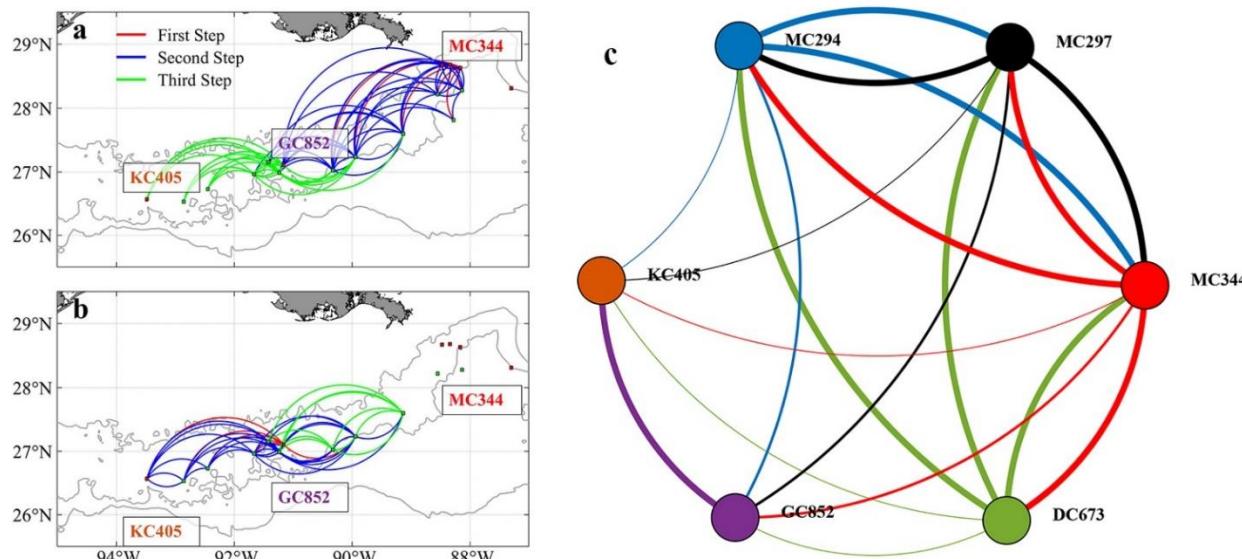


370
 371 Figure 7. Horizontal l_h (a) and 3D l_v (b) connectivity probability (%) matrices and connectivity network
 372 (c) calculated from the Lagrangian simulations performed over 56 days in February, May and August, and
 373 148 days in November. Line colors indicates the source site for each connection. Solid lines indicate three-
 374 dimensional connectivity and the dash line represents horizontal connection only. Line width does not
 375 correspond to the magnitude of connectivity. Sites are arranged from east to west (from DC673 to KC405).

376 *The potential role of intermediate populations*

377 The six sampled sites do not represent the only sites hosting *P. biscaya* populations in the northern
 378 GoM. A habitat suitability model recently published by Georgian et al. (2020) predicted a broad
 379 distribution of habitat areas where *P. biscaya* is likely present. Using this model, we selected
 380 eleven other potential sites distributed between 1,600 and 2,300 meters deep, and roughly

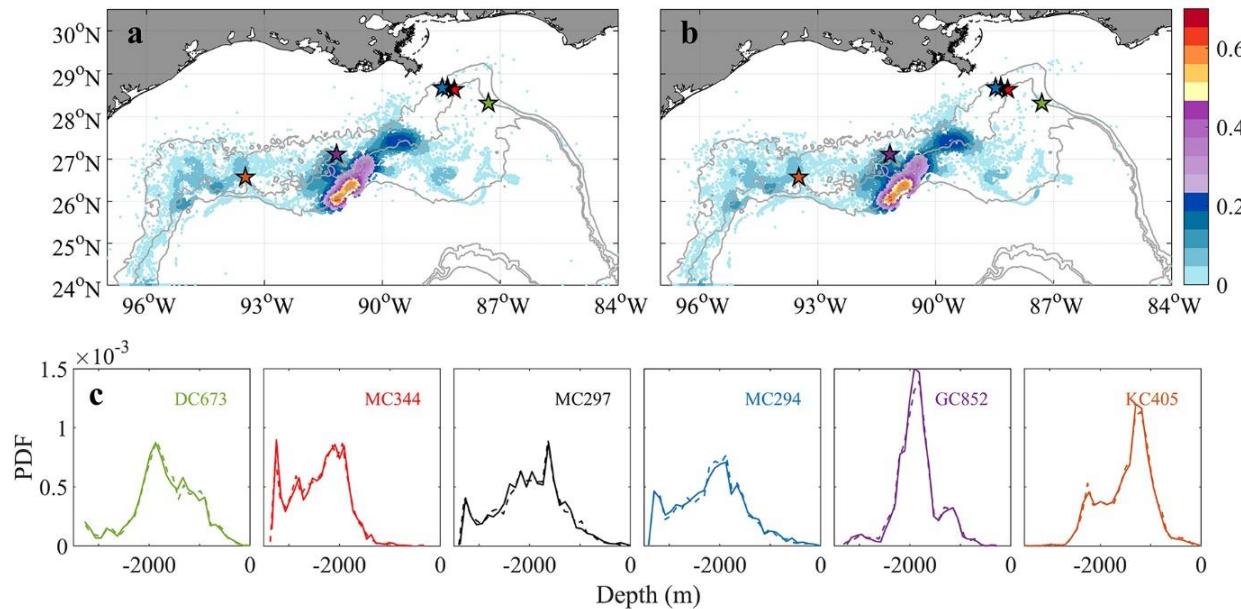
381 equidistantly between the six sampled sites (distances among all sites ranging between
382 approximately 50 and 100 km, Figure 1a). We integrated larvae trajectories from these sites and
383 investigated potential connectivity, under the assumption that these locations are indeed populated
384 by *P. biscaya* and can thus participate in larval exchange. The connectivity matrices in Figure 8
385 show the probabilities of the larval exchange among all sites (sampled and predicted). These results
386 clearly show that predicted connectivity is predominantly westward across the region. The
387 probability of connectivity decreases as a function of distance, but depth ultimately dictates
388 whether or not neighboring sites are connected. This is because the connectivity among sites that
389 are relatively close, geographically, is limited by diapycnal mixing across depth.


390

391 Figure 8. Heat maps of horizontal l_h (a) and 3D l_v (b) connectivity probability (%) calculated from all 17
392 sites (six sampled and eleven predicted). The connectivity is calculated from 56 days output in February,
393 May and August and 148 days output in November, 2015. Connectivity values below 0.1% are not shown.
394 Sites are arranged from east to west (from DC673 to KC405).

395 We built a probabilistic graphic model to quantify the role of intermediate sites in metapopulation
396 connectivity and visualize the modified connectivity matrices. We adopted a directed cyclic graph,

397 instead of the most commonly used Bayesian network, which is a directed acyclic graph (Ben-Gal,
398 2007). Based on the concepts of conditional probability and chain rule, the joint probability of
399 three events from A (source) to B (intermediate site) to C (sink) can be represented as $P(A, B, C)$
400 $= P(A) \times P(B|A) \times P(C|A, B)$. The cyclic network built here allows us to understand the dependency
401 among events (nodes) and assigns probabilities (edges) to them. Our goal was to identify as many
402 connections as possible using the current matrix rather than quantifying the probability/strength of
403 each connection after certain iterations, therefore connections (graph edges) that occur more than
404 once are excluded for the following iterations.


405 Figure 9 presents the 3-dimensional connectivity pattern and network (based on the vertical matrix
406 in Figure 8) after three iterations/steps (no new connections are found after four or more iterations).
407 Long-distance east to west connections are resolved after three steps (two intermediate sites acting
408 as stepping stones) for particles released from MC344 (Figure 9a). Meanwhile, GC852 particles
409 show both eastward and westward predicted connections despite the direct exchange terminates at
410 an intermediate site around 89°W (Figure 9b). The complete connectivity network (Figure 9c)
411 resolves 19 out of the total 30 possible connections and provides a mechanism for long-distance
412 connectivity between MC344 and DC673 through stepping-stone dispersal mediated by
413 intermediate sites. However, the inferred eastward gene flow from GC852 to the Mississippi
414 Canyon sites remains unexplained by the model.

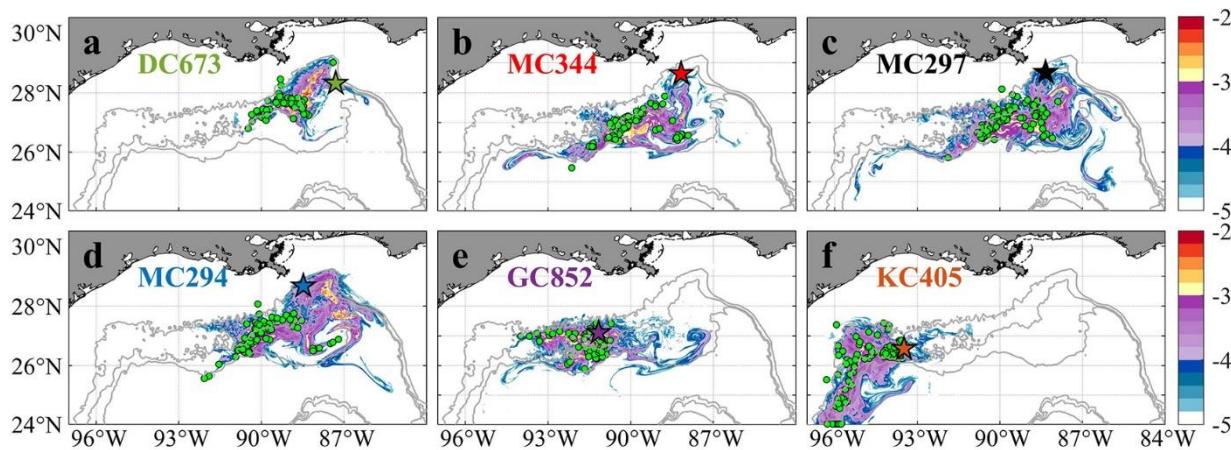
415
416 Figure 9. Predicted 3D patterns of metapopulation connectivity considering the suitable intermediate sites.
417 Connections found after three steps for larval particles released from sites MC344 (a) and GC852 (b). Line
418 colors in (a) and (b) indicate the step at which a connection between two sites was found. Connectivity
419 network among the six sampled sites calculated after including intermediate sites (c). Line colors in (c)
420 indicate the source site for each connection. Linewidth in (c) indicates direct (thick lines, first step) or
421 mediated connections (regular and thin lines, second and third steps, respectively).

422 *Connectivity with extra vertical diffusion*

423 In the work presented so far, vertical and horizontal diffusivities are parameterized at the CROCO
 424 grid size. In CROCO, the modeled k_z is comparable to observed values (1.3×10^{-4} - $4 \times 10^{-4} \text{ m}^2 \text{s}^{-1}$)
 425 calculated from a dye injection experiment conducted in 2012 at the Deep-water Horizon site
 426 (Ledwell et al., 2016) (see e.g. Figure A1 in Bracco et al., (2019)). Following previous studies, an
 427 additional vertical diffusion coefficient k_z of $10^{-4} \text{ m}^2 \text{s}^{-1}$ is introduced to the tracking model to
 428 recognize the uncertainty associated with larval buoyancy and a likely underestimation of
 429 diapycnal mixing very close to the bottom at the continental slope. Since we are exploring the
 430 potential impacts of extra perturbation other than simulating the actual marine environment where
 431 k_z varies spatially (Visser, 1997), a naïve random walk model with constant diffusivity (Hunter et
 432 al., 1993) is adopted to track larval particles released in November 2015 for 148 days (Figure 10).
 433 Both horizontal KDE and vertical probability density function (PDF) are nearly indistinguishable
 434 from the ones obtained without added vertical diffusivity after five months. The additional vertical
 435 diffusion increases only slightly (by 0.1%) the chances of horizontal connectivity from MC297 to
 436 MC344 (not shown).

437
 438 Figure 10. Horizontal kernel density estimation (KDE) pattern of particle locations after 148 days
 439 tracking in November without (a) and with (b) extra vertical diffusion (colors indicate probability values).
 440 A comparison of the probability density function (PDF) of the depth of particles released at each location
 441 is shown in (c). Solid/dash line indicates without/with vertical diffusion. All available particles are retained
 442 to show a thorough comparison.

443 *Lagrangian and Eulerian tracking comparison*

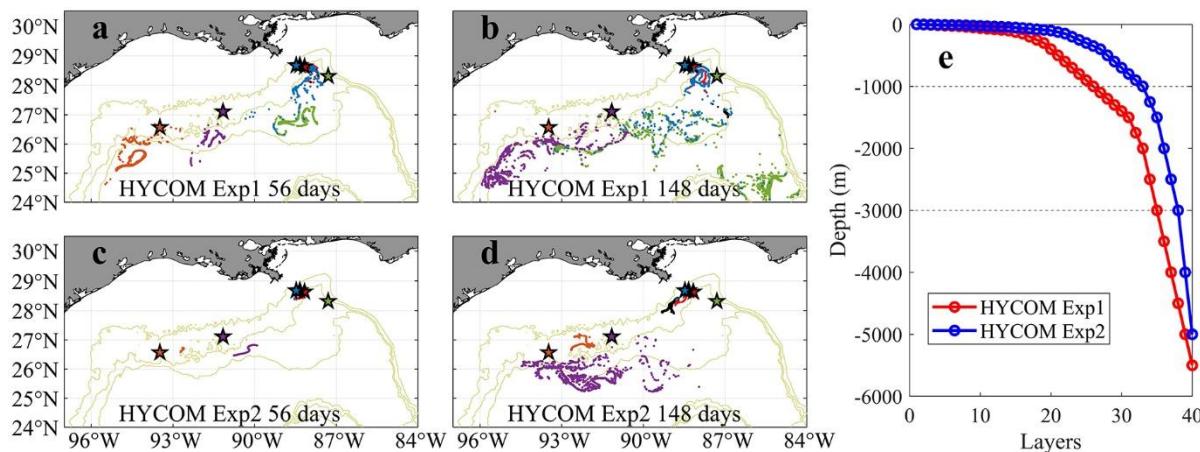

444 To further validate the off-line Lagrangian larval particle integrations, we released a dye on-line
 445 in the bottom model layer at the six sites in a $0.05 \times 0.05^\circ$ box in November and tracked it for 120
 446 days (*release type 3*). Figure 11 compares the Lagrangian and Eulerian dispersion based on the
 447 distribution of larval particles and the absence/presence of connectivity among sites (Table 1). We

448 stress that the release depths for the Lagrangian larval particles and the dye differ, and that
 449 diffusion is included in the dye momentum equations, while this is not the case for the Lagrangian
 450 particles (see e.g., Bracco et al., 2009 and more recently Paparella and Vichi, 2020 for pros and
 451 cons of using Eulerian versus Lagrangian approaches). Figure 11 shows the dye concentration field
 452 with superimposed particle positions from *release type 2* after 120 days of simulation. The results
 453 demonstrate that although Lagrangian particles cover a smaller area, they capture the main
 454 dispersal features successfully in most cases, e.g., MC344, MC297, GC852, and KC405. For
 455 DC673 and MC294, the notable differences are due to the fact that particle positions are plotted at
 456 a specific time step (after 120 days), rather than displaying the overall trajectories that would better
 457 match the dye pattern. In the end, when comparing connectivity using larval particle trajectories
 458 and the 3D dye distribution, it is apparent that the first provides a lower bound to both the
 459 horizontal and vertical dispersal due to the lack of subgrid diffusion and not perfectly resolved
 460 vertical velocities when using hourly averaged outputs (Wagner et al., 2019).

461 Table 1. Difference in Eulerian and Lagrangian connectivity results, H or V indicates that horizontal or
 462 vertical connectivity exists in Eulerian but not in Lagrangian result, while HV indicates both horizontal and
 463 vertical connectivity are observed in Eulerian but not in Lagrangian result. Note blank cell means Eulerian
 464 and Lagrangian return same predictions (either connections exist or not exist).

Source	Sink	DC673	MC344	MC297	MC294	GC852	KC405
DC673	-						
MC344	H	-		H	H	HV	
MC297	H	H	-			HV	
MC294	HV	HV		-		HV	
GC852		HV		H	H	-	V
KC405						HV	-

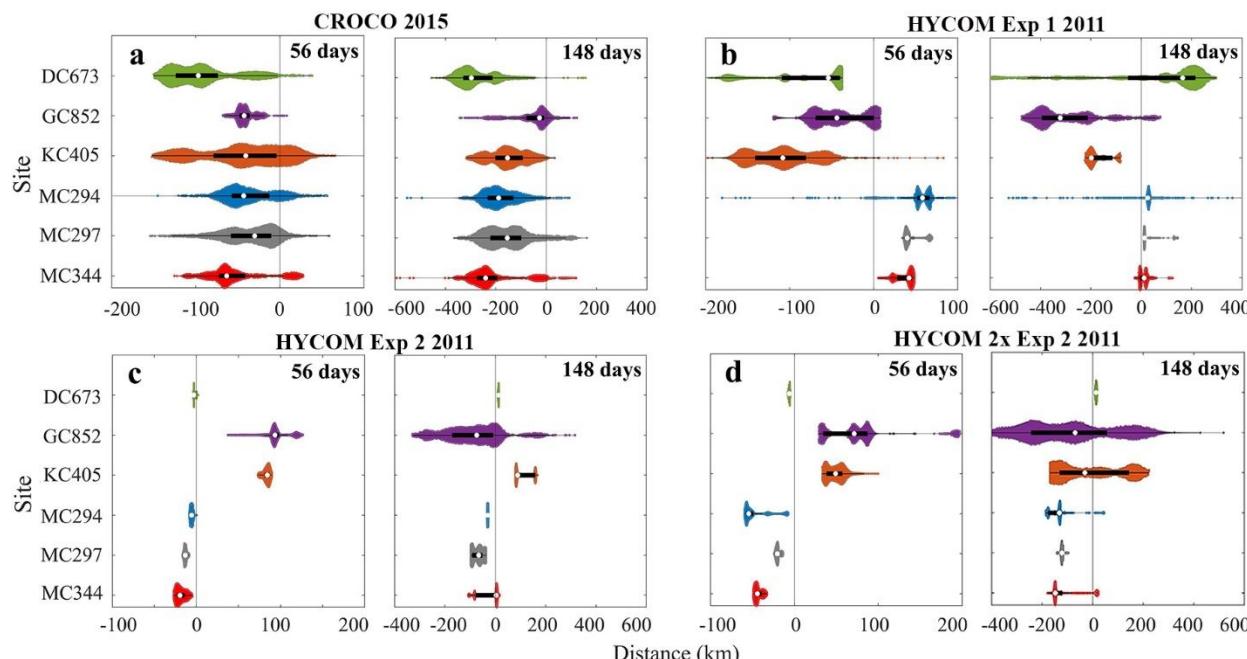
465



466
 467 Figure 11. Horizontal distribution of integrated Eulerian dye concentration normalized by initial tracer
 468 concentration (log₁₀ scale, same as Bracco et al., 2018) and Lagrangian larval particles after 120 days from
 469 their release on November 1st, 2015 for sampling site at DC673 (a), MC344 (b), MC297 (c), MC294 (d),

470 GC852 (e), and KC405 (f). Colored pentagram with black edge shows release location. Green circles
471 indicate the positions of Lagrangian particles on the same day. Again, particles displaced vertically more
472 than 800 m from the bottom are not included in the calculation to focus on near bottom processes. The
473 number of particles is randomly subsampled for visualization purposes.

474 *Inter-annual variability investigation using ocean hindcast data*


475 Even in the Eulerian dye approach, the direct connections from GC852 to the Mississippi Canyon
476 site inferred from the genetic data are missing because of the prevailing westward near-bottom
477 current in 2015. While the submesoscale permitting resolution allows for a better representation
478 of the bathymetry and circulation, it increases the computational time and limits the time period of
479 the exploration. To partially address this issue, we examine the *Paramuricea* connectivity in 2011
480 when a more persistent eastward circulation was found in the HYCOM hindcast data, especially
481 in Exp2. Using only the near bottom horizontal velocity components for the advection, we released
482 the same number of larval particles as done for CROCO on April 1st 2011, when the mean currents
483 are eastward along the 1000 – 2000 m slopes, and follow them for 148 days. Given the lower
484 frequency at which velocities are saved in Exp2 (3 hourly only), and the underestimation of mean
485 velocities and their standard deviations compared to CROCO results, we also attempted to track
486 the particles by using twice the velocities values reported in the hindcast. Figure 12 provides the
487 horizontal distribution of larval particles after 56-day and 148-day tracking for Exp1 and Exp2
488 horizontal velocities. The prevalent spreading direction for the particles remained westward, as in
489 CROCO. Greater spreading is found in Exp1 compared to Exp2, and patterns are significantly
490 different. We speculated that the choice of vertical discretization, with better near-bottom vertical
491 resolution in Exp1, explains the differences. Results from Exp1 compare well in terms of overall
492 connectivity patterns with those of CROCO, despite the different times considered (2011 in
493 HYCOM Exp1 and 2015 in CROCO).

494
495 Figure 12. Near-bottom distribution of Lagrangian larval particles released in 2-dimensional HYCOM
496 Exp1 (a, b) and HYCOM Exp2 (c, d) fields in April 2011 after 56 days (a, c) and 148 days (b, d) tracking,
497 respectively. Each dot represents the position of a particle. Particles from different sites are colored
498 consistently with previous figures. The setup of vertical layers in each experiment is shown in (e).

499 The traveled distance of the larval particles released at each site in 2015 (CROCO) and 2011
500 (HYCOM) is shown quantitatively in Figure 13, where the outcome for doubling the horizontal
501 velocities in Exp2 is also displayed. As to be expected, given our selection of a year with
502 conspicuously different currents, inter-annual variability is observed.

503 The 75th percentiles of the distance traveled by KC405 particles in the 2011 HYCOM simulation
504 and DC673 particles in the 2015 CROCO run are ~180 km and ~ 300 km (148 days), respectively.
505 These numbers suggest that at least a 10-18 months pelagic larval duration (PLD) is needed to
506 achieve long-distance direct connectivity between KC405 and DC673 if no intermediate sites are
507 considered and without including the vertical aspect. Westward spreading of larval particles in
508 both 2011 and 2015, the generally westward currents in the nine years considered for HYCOM
509 Exp1, and the weak standard deviation detected in Figure 2 suggest the predominance of an east-
510 to-west along-isobath pathway of dispersal for the three Mississippi Canyon sites. Finally, it is
511 worth noting that by examining the difference between 56-day and 148-day results, a fraction of
512 the released particles, e.g., at GC852 (~17%) in 2015, and at MC344 (~ 22-61%) and DC673 (~
513 70-89%) in 2011, change their traveling directions with respect to their initial locations, indicating
514 a role of seasonal variability.

516 Figure 13. Distribution of horizontal dispersal distances for larval particles after 56 and 148 days. November
517 2015 release using CROCO (a), and April 2011 release using HYCOM for Exp1 (b), Exp2 (c) and Exp2
518 with doubled zonal velocity (d). Positive values represent eastward movement and negative westward.
519 Particles with a vertical displacement larger than 800 m are removed in CROCO result. The definition of
520 color and violin plot is consistent with Figure 5.

521 **Summary and Conclusions**

522 In this work, an integrated larval dispersal framework consisting of a high-resolution regional
523 hydrodynamic model (ROMS-CROCO) and a Lagrangian larval particle tracking model
524 (Ichthyop) were performed to predict the dispersal patterns and potential metapopulation
525 connectivity of *Paramuricea biscaya* in the northern GoM. Lagrangian deployments with 76313
526 larval particles were conducted in different seasons for up to ~150 days and validated by a
527 comparable Eulerian dye experiment in November. The potential contributions of vertical
528 diffusion and intermediate sites to larval connectivity were also studied. The role of inter-annual
529 variability of near-bottom circulations was investigated using HYCOM hindcast data.

530 The output of our biophysical model showed a mostly congruent agreement with the estimated
531 genetic connectivity patterns (Galaska et al. submitted). In CROCO we found a prevailing
532 westward pathway following the ~1000 – 2000 m isobath along the continental slope of the
533 northern GoM regardless of seasons in 2015. In general, our estimations of dispersal distances
534 (less than 100 km in 56 days to 300 km in 148 days) agreed well with previous deep-sea studies
535 that considered pelagic larvae duration from 40 days to 1 year (Breusing et al., 2016; Cardona et
536 al., 2016). Strong horizontal but significantly reduced vertical, and therefore 3-dimensional,
537 connectivity among sites near the De Soto Canyon (i.e., DC673, MC344, MC297, and MC294)
538 further confirms the depth differentiation hypothesis in agreement with previous studies (Bracco
539 et al., 2019; Quattrini et al., 2015). The predominantly westward currents and weak variance near
540 the 1000 m isobath in the De Soto Canyon region found both in HYCOM and in the CROCO
541 model explain the westward confined pathway along the geographic feature shown in Figure 6. In
542 contrast to the relatively stable hydrodynamic environment around the MC sites (also reported in
543 Bracco et al. (2016)), highly variable currents over complex topography occupy the central and
544 western portion of the continental slope, around GC852 and KC405 (Figure 1a and Figure 2). Such
545 variability can result at times in eastward transport, as verified in CROCO in February and August
546 2015 (Figure 5 and Figure 6) and in HYCOM in April 2011, with high variance in the modeled
547 displacement of larval particles in both models, and contributes to the diversity of connectivity
548 patterns found in this region.

549 The inter-annual variability in the near-bottom circulation may be responsible for the few
550 incongruences with the genetic connectivity estimates, for example, the fact that eastward gene
551 flows from GC852 and KC405 is underestimated by the model. Inter-annual variability in the
552 study region has been partially documented by Cardona et al. (2016) in their 3-year simulations
553 from 2010 to 2012. In agreement with our 2011 HYCOM findings, they found several eastward
554 transport events of larval particles originating at ~92W° to the central Mississippi Canyon (~89W°)
555 and a predominant westward transport between 600 and 1000 meters depth near the De Soto
556 Canyon.

557 The long-distance genetic connectivity between DC673 and KC405 may be explained by direct
558 dispersal if we assume a pelagic larval duration of at least one year for *Paramuricea biscaya*.
559 However, this possibility seems unlikely. Pelagic larval durations (PLD) of more than a year have
560 been documented for a few deep-sea invertebrate species (Young et al. 2012), but not for deep-sea

561 corals. Shorter PLDs, between 35 and 69 days, may be representative for most deep-sea species
562 (Hilario et al. 2015). A probabilistic graphic model suggests that stepping-stone dispersal mediated
563 by intermediate sites provides a more likely mechanism for long-distance connectivity between
564 the populations in De Soto and Keathley canyons.

565 We briefly compared Lagrangian and Eulerian approaches in estimating larval dispersal patterns
566 (Figure 11 and Table 1). Our results implied that the Lagrangian larval particle trajectories
567 computed by interpolating the model's hourly averaged velocity underestimate vertical velocity
568 and sub-grid diffusion compared to the Eulerian approach (Ali Muttaqi Shah et al., 2017; Wagner
569 et al., 2019). The Lagrangian-derived connectivity represents therefore a lower bound of the
570 Eulerian one. The Lagrangian method presents, on the other hand, several advantages, providing
571 the opportunity to perform multiple sensitivity integrations off-line, and add at low computation
572 cost biological and behavioral constraints, such as mortality, swimming, growing, and settlement.
573 The choice of approach should be done considering the application domain and question(s) in
574 hand.

575 Our results emphasize the need for multi-year simulations, or at least multi-year analyses of the
576 velocity field, to quantify dispersal patterns in the deep ocean, especially for bi-directional and
577 long-distance connectivity. It is also known that depth and topographic slope are key factors
578 determining the suitability of a habitat for many deep-water corals (Hu et al., 2020; Kinlan et al.,
579 2020; Georgian et al. 2020). Thus, detailed topographic mapping, high horizontal resolution and
580 the fine-scale vertical resolution near the ocean bottom should be adopted to reduce uncertainty in
581 the model representation of bottom currents. Finally, in this work we focused on dispersal
582 processes, but larval traits, e.g., swimming, settlement, and mortality, should be further
583 investigated to improve the realism of modeling studies of coral connectivity.

584 **Acknowledgement**

585 Funding support for this project was provided by the National Oceanic and Atmospheric
586 Administration's RESTORE Science Program award NA17NOS4510096 to Lehigh University
587 (Herrera, Bracco and Quattrini co-PIs). Sampling was supplemented by previous sampling efforts
588 under the Lophelia II Project funded by BOEM and NOAA-OER (BOEM contract
589 #M08PC20038) led by TDI-Brooks International, the NSF RAPID Program (Award #1045079),
590 the NOAA Damage Assessment, Response, and Restoration Program, and ECOGIG (Gulf of
591 Mexico Research Initiative). We thank Chuck Fisher, Erik Cordes, Illiana Baums for leading those
592 supplemental field efforts and providing access to samples and dive time. We thank Cathy
593 McFadden, Cheryl Morrison, and Frank Parker for project support.

594
595
596
597
598
599
600

601 References

602 Ali Muttaqi Shah, S. H., Primeau, F.W., Deleersnijder, E., and Heemink, A.W. (2017). Tracing the
603 ventilation pathways of the deep north Pacific Ocean using Lagrangian particles and Eulerian tracers,
604 *J. Phys. Oceanogr.*, 47(6), 1261-1280, doi:10.1175/jpo-d-16-0098.1.

605 Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shver, A.L., Lewis, Z.A. et al. (2008). Rapid SNP
606 discovery and genetic mapping using sequenced RAD markers. *PloS One*, 3(10), e3376.
607 Doi:10.1371/journal.pone.0003376.

608 Bani, R., Marleau, J., Fortin, M.-J., Daigle, R. M., and Guichard, F. (2020). Dynamic larval dispersal can
609 mediate the response of marine metapopulations to multiple climate change impacts, *bioRxiv*. doi:
610 <https://doi.org/10.1101/2020.12.05.413062>

611 Barkan, R., McWilliams, J.C., Molemaker, M.J., Choi, J., Srinivasan, K., Shchepetkin, A. F., et al.
612 (2017). Submesoscale dynamics in the northern Gulf of Mexico. Part II: Temperature–salinity
613 relations and cross-shelf transport processes, *J. Phys. Oceanogr.*, 47(9), 2347-2360, doi:10.1175/jpo-
614 d-17-0040.1.

615 Ben-Gal, I. (2007). Bayesian Networks, *John Wiley & Sons*, doi:10.1002/9780470061572.eqr089.

616 Botsford, L.W., White, J.W., Coffroth, M.A., Paris, C.B., Planes, S., Shearer, T.L., et al. (2009).
617 Connectivity and resilience of coral reef metapopulations in marine protected areas: matching
618 empirical efforts to predictive needs, *Coral Reefs*, 28(2), 327-337, doi:10.1007/s00338-009-0466-z.

619 Bracco, A., Choi, J., Joshi, K., Luo, H., and McWilliams, J.C. (2016). Submesoscale currents in the
620 northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope, *Ocean Model.*,
621 101, 43-58, doi:10.1016/j.ocemod.2016.03.002.

622 Bracco, A., Choi, J., Kurian, J., and Chang, P. (2018). Vertical and horizontal resolution dependency in
623 the model representation of tracer dispersion along the continental slope in the northern Gulf of
624 Mexico, *Ocean Model.*, 122, 13-25, doi:10.1016/j.ocemod.2017.12.008.

625 Bracco, A., Liu, G., Galaska, M.P., Quattrini, A.M., and Herrera, S. (2019). Integrating physical
626 circulation models and genetic approaches to investigate population connectivity in deep-sea corals, *J.
627 Mar. Syst.*, 198, doi:10.1016/j.jmarsys.2019.103189.

628 Bracco, A., Clayton, S., and Pasquero, C. (2009). Horizontal advection, diffusion, and plankton spectra at
629 the sea surface, *J. Geophys. Res.*, 114(C2), doi:10.1029/2007jc004671.

630 Breusing, C., Biastoch, A., Drews, A., Metaxas, A., Jollivet, D., Vrijenhoek, R.C., et al. (2016).
631 Biophysical and population genetic models predict the presence of "Phantom" stepping stones
632 connecting Mid-Atlantic Ridge Vent Ecosystems, *Curr Biol*, 26(17), 2257-2267,
633 doi:10.1016/j.cub.2016.06.062.

634 Brugler, M.R., Opresco, D.M., and France, S.C. (2013). The evolutionary history of the order
635 Antipatharia (Cnidaria: Anthozoa: Hexacorallia) as inferred from mitochondrial and nuclear DNA:
636 implications for black coral taxonomy and systematics, *Zool. J. Linnean. Soc.*, 169(2), 312-361,
637 doi:10.1111/zoj.12060.

638 Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P., et al.
639 (2010). Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean
640 margins, *Mar. Ecol.*, 31(1), 21-50, doi:<https://doi.org/10.1111/j.1439-0485.2010.00359.x>.

641 Cairns, S.D. (2007). Deep-water corals: An overview with special reference to diversity and distribution
642 of deep-water scleractinian corals. *Bull. Mar. Sci.*, 81 (3): 311–22.

643 Cardona, Y., Ruiz-Ramos, D.V., Baums, I.B., and Bracco, A. (2016). Potential connectivity of coldwater
644 black coral communities in the northern Gulf of Mexico, *PLoS One*, 11(5), e0156257,
645 doi:10.1371/journal.pone.0156257.

646 Choi, J., Bracco, A., Barkan, R., Shchepetkin, A.F., McWilliams, J.C., and Molemaker, J.M. (2017).
647 Submesoscale dynamics in the northern Gulf of Mexico. Part III: Lagrangian implications, *J. Phys.*
648 *Oceanogr.*, 47(9), 2361-2376, doi:10.1175/jpo-d-17-0036.1.

649 Cordes, E.E., McGinley, M.P., Podowski, E.L., Becker, E.L., Lessard-Pilon, S., Viada, S.T., et al. (2008).
650 Coral communities of the deep Gulf of Mexico, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 55(6), 777-
651 787, doi:10.1016/j.dsr.2008.03.005.

652 Cowen, R.K., Gawarkiewicz, G., Pineda, J., Thorrold, S.R., and Werner, F.E. (2007). Population
653 connectivity in marine systems: An overview, *Oceanogr.*, 20(3), 14-21,
654 doi:<https://doi.org/10.5670/oceanog.2007.2>.

655 Debreu, L., Marchesiello, P., Penven, P., and Cambon, G. (2012). Two-way nesting in split-explicit ocean
656 models: Algorithms, implementation and validation, *Ocean Model.*, 49-50, 1-21,
657 doi:10.1016/j.ocemod.2012.03.003.

658 Deepwater Horizon Natural Resource Damage Assessment Trustees (2016). Deepwater Horizon oil spill:
659 Final Programmatic Damage Assessment and Restoration Plan and Final Programmatic Environmental
660 Impact Statement. Retrieved September 5, 2021, from
661 <https://www.gulfspillrestoration.noaa.gov/restoration-planning/gulf-plan>

662 DeHaan, C.J., and Sturges, W. (2005). Deep cyclonic circulation in the Gulf of Mexico, *J. Phys.*
663 *Oceanogr.*, 35(10), 1801-1812, doi:<https://doi.org/10.1175/JPO2790.1>.

664 Donohue, K.A., Watts, D.R., Hamilton, P., Leben, R., and Kennelly, M. (2016). Loop Current Eddy
665 formation and baroclinic instability, *Dyn. of Atmospheres and Oceans*, 76, 195-216,
666 doi:10.1016/j.dynatmoce.2016.01.004.

667 Doughty, C.L., Quattrini, A.M., and Cordes, E.E. (2014). Insights into the population dynamics of the
668 deep-sea coral genus *Paramuricea* in the Gulf of Mexico, *Deep Sea Res. Part II Top. Stud. Oceanogr.*,
669 99, 71-82, doi:10.1016/j.dsr2.2013.05.023.

670 Edmunds, P.J., McIlroy, S.E., Adjeroud, M., Ang, P., Bergman, J., Carpenter, R.C., et al. (2018). Critical
671 information gaps impeding understanding of the role of larval connectivity among coral reef islands in
672 an era of global change, *Front. Mar. Sci.*, 5, doi:10.3389/fmars.2018.00290.

673 Etter, R.J., and Bower, A.S. (2015). Dispersal and population connectivity in the deep North Atlantic
674 estimated from physical transport processes, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 104, 159-172,
675 doi:10.1016/j.dsr.2015.06.009.

676 Fisher, C.R., Hsing, P.-Y., Kaiser, C.L., Yoerger, D.R., Roberts, H.H., Shedd, W.W., et al. (2014).
677 Footprint of Deep-water Horizon blowout impact to deep-water coral communities, *Proc Natl Acad*
678 *Sci U S A*, 111(32), 11744-11749, doi:10.1073/pnas.1403492111.

679 Fobert, E.K., Treml, E.A., and Swearer, S.E. (2019). Dispersal and population connectivity are phenotype
680 dependent in a marine metapopulation, *Proc Biol Sci*, 286(1909), 20191104,
681 doi:10.1098/rspb.2019.1104.

682 Galaska, M.P., Liu, G., West, D., Quattrini, A.M., Bracco, A., Herrera, S. (2021). Population connectivity
683 and seascape genomics of *Paramuricea biscaya* in the northern Gulf of Mexico. Submitted.

684 Gary, S.F., Fox, A.D., Biastoch, A., Roberts, J.M., and Cunningham, S.A. (2020). Larval behaviour,
685 dispersal and population connectivity in the deep sea, *Sci. Rep.*, 10(1), 10675, doi:10.1038/s41598-
686 020-67503-7.

687 Georgian, S.E., Kramer, K., Saunders, M., Shedd, W., Roberts, H., Lewis, C., et al. (2020). Habitat
688 suitability modelling to predict the spatial distribution of cold-water coral communities affected by the
689 Deep-water Horizon oil spill, *J. Biogeogr.*, 47(7), 1455-1466, doi:10.1111/jbi.13844.

690 Gil-Agudelo, D.L., Cintra-Buenrostro, C.E., Brenner, J., González-Díaz, P., Kiene, W., Lustic, C. et al.
691 (2020). Coral reefs in the Gulf of Mexico large marine ecosystem: conservation status, challenges, and
692 opportunities, *Front. Mar. Sci.*, 6, doi:10.3389/fmars.2019.00807.

693 Girard, F., Cruz, R., Glickman, O., Harpster, T., and Fisher, C.R. (2019). In situ growth of deep-sea
694 octocorals after the Deep-water Horizon oil spill, *Elem. Sci. Anth.*, 7, 19,
695 doi:10.1525/journal.elementa.349.

696 Gouillon, F., Morey, S.L., Dukhovskoy, D.S., and O'Brien, J.J. (2010). Forced tidal response in the Gulf
697 of Mexico, *J. Geophys. Res.: Oceans*, 115(C10), doi:<https://doi.org/10.1029/2010JC006122>.

698 Guinotte, J.M., Orr, J., Cairns, S., Freiwald, A., Morgan, L., and George, R. (2006). Will human-induced
699 changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? *Front. Ecol.*
700 *Environ.*, 4(3), 141-146, doi:[https://doi.org/10.1890/1540-9295\(2006\)004\[0141:WHCISC\]2.0.CO;2](https://doi.org/10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2).

701 Gula, J., Molemaker, M.J. and McWilliams, J.C. (2015). Topographic vorticity generation, submesoscale
702 instability and vortex street formation in the Gulf Stream, *Geophys. Res. Lett.*, 42(10), 4054-4062,
703 doi:10.1002/2015gl063731.

704 Hamilton, P. (2009). Topographic Rossby waves in the Gulf of Mexico, *Prog. Oceanogr.*, 82(1), 1-31,
705 doi:10.1016/j.pocean.2009.04.019.

706 Hamilton, P., and Lugo-Fernandez, A. (2001). Observations of high speed deep currents in the northern
707 Gulf of Mexico, *Geophys. Res. Lett.*, 28(14), 2867-2870, doi:10.1029/2001gl013039.

708 Hilario, A., Metaxas, A., Gaudron, S.M., Howell, K.L., Mercier, A., Mestre, N.I.C., et al. (2015).
709 Estimating dispersal distance in the deep sea: challenges and applications to marine reserves, *Front.*
710 *Mar. Sci.*, 2, doi:10.3389/fmars.2015.00006.

711 Hoegh-Guldberg, O., Poloczanska, E.S., Skirving, W., and Dove, S. (2017). Coral reef ecosystems under
712 climate change and ocean acidification, *Front. Mar. Sci.*, 4, doi:10.3389/fmars.2017.00158.

713 Hu, Z., Hu, J., Hu, H., and Zhou, Y. (2020). Predictive habitat suitability modeling of deepsea framework-
714 forming scleractinian corals in the Gulf of Mexico, *Sci Total Environ.*, 742, 140562,
715 doi:10.1016/j.scitotenv.2020.140562.

716 Hunter, J.R., Craig, P.D., and Phillips, H.E. (1993). On the use of random walk models with spatially
717 variable diffusivity, *J. Comput. Phys.*, 106(2), 366-376, doi:[https://doi.org/10.1016/S0021-9991\(83\)71114-9](https://doi.org/10.1016/S0021-9991(83)71114-9).

718 Kim, S., and Barth J.A. (2011). Connectivity and larval dispersal along the Oregon coast estimated by
719 numerical simulations, *J. Geophys. Res.*, 116(C6), doi:10.1029/2010jc006741.

720 Kinlan, B.P., Poti, M., Drohan, A.F., Packer, D.B., Dorfman, D.S., and Nizinski, M.S. (2020). Predictive
721 modeling of suitable habitat for deep-sea corals offshore the Northeast United States, *Deep Sea Res*
722 *Part I Res. Pap.*, 158, doi:10.1016/j.dsr.2020.103229.

723 Kolodziejczyk, N., Ochoa, J., Candela, J., and Sheinbaum, J. (2012). Observations of intermittent deep
724 currents and eddies in the Gulf of Mexico, *J. Geophys. Res.: Oceans*, 117(C9),
725 doi:10.1029/2012jc007890.

726 Large, W.G., McWilliams, J.C., and Doney, S.C. (1994). Oceanic vertical mixing: A review and a model
727 with a nonlocal boundary layer parameterization, *Rev. Geophys.*, 32(4), doi:10.1029/94rg01872.

729 Ledwell, J.R., He, R., Xue, Z., DiMarco, S.F., Spencer, L.J., and Chapman, P. (2016). Dispersion of a
730 tracer in the deep Gulf of Mexico, *J. Geophys. Res.: Oceans*, 121(2), 1110-1132,
731 doi:<https://doi.org/10.1002/2015JC011405>.

732 Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., et al. (2008). A Lagrangian tool for
733 modelling ichthyoplankton dynamics, *Environ. Modell. Software*, 23(9), 1210-1214,
734 doi:[10.1016/j.envsoft.2008.02.005](https://doi.org/10.1016/j.envsoft.2008.02.005).

735 Luo, H., Bracco, A., Cardona, Y., and McWilliams, J.C. (2016), Submesoscale circulation in the northern
736 Gulf of Mexico: Surface processes and the impact of the freshwater river input, *Ocean Model.*, 101,
737 68-82, doi:[10.1016/j.ocemod.2016.03.003](https://doi.org/10.1016/j.ocemod.2016.03.003).

738 Marchesiello, P., Debreu, L., and Couvelard, X. (2009). Spurious diapycnal mixing in terrain-following
739 coordinate models: The problem and a solution, *Ocean Model.*, 26(3-4), 156-169,
740 doi:[10.1016/j.ocemod.2008.09.004](https://doi.org/10.1016/j.ocemod.2008.09.004).

741 McNutt, M.K., Camilli, R., Crone, T.J., Guthrie, G.D., Hsieh, P.A., Ryerson, T.B., et al. (2012). Review
742 of flow rate estimates of the Deep-water Horizon oil spill, *Proc Natl Acad Sci U S A*, 109(50), 20260-
743 20267, doi:[10.1073/pnas.1112139108](https://doi.org/10.1073/pnas.1112139108).

744 Miller, K.J. (1998). Short-distance dispersal of black coral larvae: inference from spatial analysis of
745 colony genotypes, *Mar. Ecol. Prog. Ser.*, 163, 225-233, doi:[10.3354/meps163225](https://doi.org/10.3354/meps163225).

746 Miller, R.J., Hocevar, J., Stone, R.P., and Fedorov, D.V. (2012). Structure-forming corals and sponges
747 and their use as fish habitat in Bering Sea submarine canyons, *PLoS One*, 7(3), e33885,
748 doi:[10.1371/journal.pone.0033885](https://doi.org/10.1371/journal.pone.0033885).

749 Molemaker, M.J., McWilliams, J.C., and Dewar, W.K. (2015). Submesoscale instability and generation
750 of mesoscale anticyclones near a separation of the California Undercurrent, *J. Phys. Oceanogr.*, 45(3),
751 613-629, doi:[10.1175/jpo-d-13-0225.1](https://doi.org/10.1175/jpo-d-13-0225.1).

752 Nolasco, R., Gomes, I., Peteiro, L., Albuquerque, R., Luna, T., Dubert, J., et al. (2018). Independent
753 estimates of marine population connectivity are more concordant when accounting for uncertainties in
754 larval origins, *Sci Rep*, 8(1), 2641, doi:[10.1038/s41598-018-19833-w](https://doi.org/10.1038/s41598-018-19833-w).

755 Palumbi, S.R. (2003). Population genetics, demographic connectivity, and the design of marine reserves,
756 *Ecol. Appl.*, 13(sp1), 146-158, doi:[https://doi.org/10.1890/1051-0761\(2003\)013\[0146:PGDCAT\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2).

757 Parra-Salazar, A., Gomez, J., Lozano-Arce, D., Reyes-Herrera, P.H., and Duitama, J. (2021). Robust and
758 efficient software for reference-free genomic diversity analysis of genotyping-by-sequencing data on
759 diploid and polyploid species. *Mol. Ecol. Resour.* Doi:[10.1111/1755-0998.13477](https://doi.org/10.1111/1755-0998.13477)

760 Paparella, F., and Vichi, M. (2020). Stirring, mixing, growing: microscale processes change larger scale
761 phytoplankton dynamics, *Front. Mar. Sci.*, 7, doi:[10.3389/fmars.2020.00654](https://doi.org/10.3389/fmars.2020.00654).

762 Visser, A.W. (1997). Using random walk models to simulate the vertical distribution of particles in a
763 turbulent water column, *Mar. Ecol. Prog. Ser.*, 158, 275-281.

764 Poli, P., Healy, S.B., and Dee, D.P. (2010). Assimilation of Global Positioning System radio occultation
765 data in the ECMWF ERA-Interim reanalysis, *Q. J. R. Meteorolog. Soc.*, 136(653), 1972-1990,
766 doi:[10.1002/qj.722](https://doi.org/10.1002/qj.722).

767 Precht, W.F., Deslarzes, K.J.P., Hickerson, E.L., Schmahl, G.P., Nuttall, M.F., and Aronson, R.B. (2014).
768 Back to the future: The history of acroporid corals at the Flower Garden Banks, Gulf of Mexico, USA,
769 *Mar. Geol.*, 349, 152-161, doi:[10.1016/j.margeo.2013.12.012](https://doi.org/10.1016/j.margeo.2013.12.012).

771 Quattrini, A.M., Baums, I.B., Shank, T.M., Morrison, C.L., and Cordes, E.E. (2015). Testing the depth-
772 differentiation hypothesis in a deep-water octocoral, *Proc Biol Sci*, 282(1807), 20150008,
773 doi:10.1098/rspb.2015.0008.

774 Reitzel, A.M., Herrera, S., Layden, M.J., Martindale, M.O., and Shank, T.M. (2013). Going where
775 traditional markers have not gone before: utility of and promise for RAD sequencing in marine
776 invertebrate phylogeography and population genomics. *Mol. Ecol.*, 22(11), 2953-2970.
777 Doi:10.1111/mec.12228

778 Roark, E. B., Guilderson, T.P., Dunbar, R.B., Fallon, S.J., and Mucciarone, D.A. (2009). Extreme
779 longevity in proteinaceous deep-sea corals, *Proc. Natl. Acad. Sci. U.S.A.*, 106, 5204-5208.

780 Ross, R.E., Nimmo-Smith, W.A.M., Torres, R., and Howell, K.L. (2020). Comparing deep-sea larval
781 dispersal models: a cautionary tale for ecology and conservation, *Front. Mar. Sci.*, 7,
782 doi:10.3389/fmars.2020.00431.

783 Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian A., Arko, R., et al. (2009). Global
784 Multi-Resolution Topography synthesis, *Geochem. Geophys. Geosyst.* 10(3),
785 doi:10.1029/2008gc002332.

786 Shchepetkin, A.F., and McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a
787 split-explicit, free-surface, topography-following-coordinate oceanic model, *Ocean Model.*, 9(4), 347-
788 404, doi:10.1016/j.ocemod.2004.08.002.

789 Sherwood, O.A., and Edinger, E.N. (2009). Ages and growth rates of some deep-sea gorgonian and
790 antipatharian corals of Newfoundland and Labrador, *Can. J. Fish. Aquat.Sci.*, 66(1), 142-152,
791 doi:10.1139/f08-195.

792 Sikirić, M.D., Janečković, I., and Kuzmić, M. (2009). A new approach to bathymetry smoothing in sigma-
793 coordinate ocean models, *Ocean Model.*, 29(2), 128-136, doi:10.1016/j.ocemod.2009.03.009.

794 Smith, K.S., Keating, S.R., and Kramer, P.R. (2011). Diagnosing lateral mixing in the upper ocean with
795 virtual tracers: spatial and temporal resolution dependence, *J. Phys. Oceanogr.*, 41(8), 1512-1534,
796 doi:10.1175/2011jpo4580.1.

797 Storlazzi, C.D., van Ormondt, M., Chen, Y.-L., and Elias, E.P.L. (2017). Modeling fine-scale coral larval
798 dispersal and interisland connectivity to help designate mutually-supporting coral reef marine
799 protected areas: insights from Maui Nui, Hawaii, *Front. Mar. Sci.*, 4, doi:10.3389/fmars.2017.00381.

800 Tello, D., Gil, J., Loaiza, C.D., Riascos, J.J., Cardozo, N., and Duitama, J. (2019). NGSEP3: accurate
801 variant calling across species and sequencing protocols. *Bioinformatics*, 35(22), 4716-4723.
802 Doi:10.1093/bioinformatics/btz275

803 Tong, R., Purser, A., Guinan, J., and Unnithan, V. (2013). Modeling the habitat suitability for deep-water
804 gorgonian corals based on terrain variables, *Ecol. Inf.*, 13, 123-132, doi:10.1016/j.ecoinf.2012.07.002.

805 Turley, C.M., Roberts, J.M., and Guinotte, J.M. (2007). Corals in deep-water: will the unseen hand of
806 ocean acidification destroy cold-water ecosystems? *Coral Reefs*, 26(3), 445-448, doi:10.1007/s00338-
807 007-0247-5.

808 Vic, C., Gula, J., Roullet, G., and Pradillon, F. (2018). Dispersion of deep-sea hydrothermal vent effluents
809 and larvae by submesoscale and tidal currents, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 133, 1-18,
810 doi:10.1016/j.dsr.2018.01.001.

811 Vohsen, S.A., Gruber-Vodicka, H.R., Osman, E.O., Saxton, M.A., Joye, S.B., Dubilier, N., et al. (2020).
812 Deep-sea corals near cold seeps associate with chemoautotrophic bacteria that are related to the
813 symbionts of cold seep and hydrothermal vent mussels, *bioRxiv*.

814 Vukovich, F.M. (1988). Loop Current boundary variations, *J. Geophys. Res.*, 93(C12),
815 doi:10.1029/JC093iC12p15585.

816 Vukovich, F.M. (2007). Climatology of Ocean Features in the Gulf of Mexico Using Satellite Remote
817 Sensing Data, *J. Phys. Oceanogr.*, 37(3), 689-707, doi:10.1175/jpo2989.1.

818 Wagner, P., Rühs, S., Schwarzkopf, F.U., Koszalka, I.M., and Biastoch, A. (2019). Can Lagrangian
819 tracking simulate tracer spreading in a high-resolution ocean general circulation model? *J. Phys.*
820 *Oceanogr.*, 49(5), 1141-1157, doi:10.1175/jpo-d-18-0152.1.

821 Weatherly, G., Wienders, N., and Romanou, A. (2005). Intermediate-Depth Circulation in the Gulf of
822 Mexico Estimated from Direct Measurements, *Washington DC American Geophysical Union*
823 *Geophysical Monograph Series*, 161, 315-324, doi:10.1029/161GM22.

824 Werner, F.E., Cowen, R.K., and Paris, C.B. (2007). Coupled biological and physical models: present
825 capabilities and necessary developments for future studies of population connectivity, *Oceanogr.*
826 20(3), 54-69, doi:<https://doi.org/10.5670/oceanog.2007.29>.

827 White, H.K., Hsing, P.-Y., Cho, W., Shank, T.M., Cordes, E.E., Quattrini, A.M. et al. (2012), Impact of
828 the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. *Proc Natl*
829 *Acad Sci U S A*, 109 (50) 20303-20308; doi: 10.1073/pnas.1118029109

830 Wilson, G.A., and Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus
831 genotypes. *Genetics*, 163(3), 1177-1191. Retrieved from
832 <http://www.ncbi.nlm.nih.gov/pubmed/12663554>

833 Young, C.M., He, R., Emlet, R.B., Li, Y., Qian, H., Arellano, S.M., et al. (2012). Dispersal of deep-sea
834 larvae from the intra-American seas: simulations of trajectories using ocean models. *Integr. Comp.*
835 *Biol.*, 52(4), 483-496.

836 Zhong, Y., Bracco, A., and Villareal, T.A. (2012), Pattern formation at the ocean surface: Sargassum
837 distribution and the role of the eddy field, *Limnol. Oceanogr. Fluids Environ.*, 2(1), 12-27,
838 doi:10.1215/21573689-1573372.