

1 **Inter-species microbiota transplantation recapitulates microbial acquisition and**
2 **persistence in mosquitoes**

3

4 **Authors**

5 Kerri L. Coon^{1*}, Shivanand Hegde^{2*}, Grant L. Hughes²

6 *Equal contribution

7

8 **Author affiliations**

9 ¹Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706 USA

10 ²Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical
11 Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK

12

13 **Author emails**

14 Kerri L. Coon, kerri.coon@wisc.edu

15 Shivanand Hegde, shivanand.hegde@lstm.ac.uk

16 Grant L. Hughes, grant.hughes@lstm.ac.uk

17

18 **Corresponding authors**

19 Kerri L. Coon, kerri.coon@wisc.edu

20 Grant L. Hughes, grant.hughes@lstm.ac.uk

21

22

23

24

25

26

27

28 **Abstract**

29 *Background*

30 Mosquitoes harbor microbial communities that play important roles in their growth, survival,
31 reproduction, and ability to transmit human pathogens. Microbiome transplantation
32 approaches are often used to study host-microbe interactions and identify microbial taxa and
33 assemblages associated with health or disease. However, no such approaches have been
34 developed to manipulate the microbiota of mosquitoes.

35

36 *Results*

37 Here, we developed an approach to transfer entire microbial communities between mosquito
38 cohorts. We undertook transfers between (*Culex quinquefasciatus* to *Aedes aegypti*) and
39 within (*Ae. aegypti* to *Ae. aegypti*) species to validate the approach and determine the
40 number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored
41 mosquito development and microbiota dynamics throughout the life cycle. Typical
42 holometabolous lifestyle-related microbiota structures were observed, with higher dynamics
43 of microbial structures in larval stages, including the larval water, and less diversity in adults.
44 Microbiota diversity in recipient adults was also more similar to the microbiota diversity in
45 donor adults.

46

47 *Conclusions*

48 This study provides the first evidence for successful microbiome transplantation in
49 mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe
50 interactions and lay the foundation for future studies to elucidate the factors underlying
51 microbiota acquisition, assembly, and function in mosquitoes under controlled conditions.

52

53 **Keywords**

54 Microbiota; microbiome; transplantation; *Aedes aegypti*; *Culex quinquefasciatus*; insect;
55 mosquito; diversity

56

57 **Background**

58 A substantial body of evidence has emerged revealing the importance of microbiota to the
59 biology of the animal hosts they associate with, which has stimulated broad interest in
60 understanding the assembly of these communities. However, the daunting complexity of the
61 microbiota present in many higher eukaryotes and the lack of conventional microbiology
62 techniques to culture these microbes has limited our ability to address important questions in
63 the field. As such, the mechanisms facilitating host-microbe interactions and the functional
64 role of the microbiome as a holistic unit are poorly elucidated. Microbiota transplantation
65 approaches are one promising technique for basic research and therapeutics, but studies
66 employing these techniques have mainly been undertaken in mammalian systems [1-6] and
67 there has been little attempt to transfer these approaches to medically or agriculturally
68 important insects.

69 Microbiome research has expanded in mosquitoes given their medical relevance and
70 interesting biology. As holometabolous insects, mosquitoes have distinct aquatic and
71 terrestrial life stages, including larvae that molt through four aquatic instars before pupating
72 on the water's surface and emerging as terrestrial adults [7, 8]. All of these stages harbor gut
73 microbial communities dominated by bacteria that can vary tremendously in diversity and
74 abundance over time and space [9]. Larvae acquire their gut microbiota from their aquatic
75 environment during feeding [10-14], after which bacteria experience periods of extreme
76 turnover as parts of the larval gut are continuously shed and replaced during feeding,
77 molting, and metamorphosis to the adult stage [15, 16]. The adult gut, in contrast, is initially
78 seeded by bacteria from larvae and/or the larval environment but thereafter may be
79 modulated by adult sugar and blood feeding activities [9], the latter of which underlies the
80 ability of adult female mosquitoes to acquire and transmit disease-causing pathogens to
81 humans [17]. While most of the larval and adult mosquito microbiota is thought to be
82 restricted to the midgut [18-21], bacteria and other microbes are also known to colonize
83 other mosquito tissues [22-25]. These include the common bacterial endosymbiont

84 *Wolbachia*, which infects the germline of *Culex quinquefasciatus*, but not *Aedes aegypti*, and
85 is transovarially transmitted to offspring each generation [26].

86 Altogether, the microbiota associated with the mosquito gut and other tissues can
87 have profound impacts on mosquito biology by modulating larval growth and development
88 [10, 12, 27-29] as well as adult survival [30-32], reproduction [27, 33], and the competency
89 of adult female mosquitoes to transmit human pathogens [34]. As such, there is a growing
90 interest in exploiting microbes for vector control [35-37]. However, available tools to
91 manipulate the microbiota in mosquitoes are limited, lagging behind research in other
92 systems [38-41]. Antibiotic treatment has been commonly used to perturb microbiota for
93 experiments investigating tripartite interactions between mosquitoes, their microbiota, and
94 human pathogens. While these experiments have provided insights into the role of bacteria
95 in mosquito vector competence [34, 42-44], the use of antibiotics has its limitations. For
96 example, some bacteria may not be susceptible to the antibiotics, meaning these
97 approaches alter the microbiota rather than eliminate all microbiota [12, 45]. Furthermore,
98 antibiotics can have off-target effects on host physiology and can affect mitochondria [46-
99 49]. Alternatively, introduction of specific bacterial taxa into mosquito larvae or adults can be
100 achieved by spiking the larval water or sugar solution, respectively [50-52]. However, while
101 these approaches are effective at transferring specific bacterial taxa to mosquitoes, they
102 likely do not reflect acquisition processes that occur in the field and can only be undertaken
103 with culturable microbes.

104 We previously developed an approach to generate and maintain gnotobiotic
105 mosquitoes colonized by individual bacterial taxa by sterilizing the surface of mosquito eggs
106 and inoculating water containing bacteria-free (axenic) larvae hatched from surface-sterilized
107 eggs under sterile conditions [10]. Similarly, the generation of axenic adult mosquitoes that
108 can thereafter be inoculated with individual bacterial taxa via a sugar meal has been
109 undertaken using heat-killed bacteria, supplementation of axenic larval cultures with
110 eukaryotes, or reversible colonization [28, 53-55]. While these approaches have been used
111 to broadly examine the biology of mosquito-microbe interactions and decipher the role of

112 bacterial microbiota on host biology [10, 12, 21, 27, 28, 56-58], expanding these techniques
113 to transfer complete or tailored microbial communities would be highly desirable.

114 Here, we developed an approach to transfer entire microbial communities between
115 mosquito cohorts. We undertook transfers between (*Cx. quinquefasciatus* to *Ae. aegypti*)
116 and within (*Ae. aegypti* to *Ae. aegypti*) species to validate the approach and determine the
117 number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored
118 mosquito development and microbiota dynamics throughout the life cycle. Typical
119 holometabolous lifestyle-related microbiota structures were observed, with higher dynamics
120 of microbial structures in larval stages, including the larval water, and less diversity in adults.
121 Furthermore, the diversity of microbiota present in recipient adults was more similar to the
122 microbiota present in donor adults. Altogether, our results effectively demonstrate the
123 transfer of a complete microbiota from one mosquito cohort to another and lay the
124 foundation for future studies to examine microbiota assembly and function in mosquitoes
125 colonized by defined microbiomes with potential for exploitation for mosquito and disease
126 control.

127

128 **Methods**

129 *Donor sample collection and preparation of donor pools for microbiota transplantation*
130 *Ae. aegypti* (Galveston) and *Cx. quinquefasciatus* (Houston) mosquitoes used as donors in
131 this study were reared under conventional conditions as described previously [57]. In order
132 to characterize microbiota diversity in both donor species, 150 individual three-to-four-day-
133 old sugar-fed adult females of each species were collected, surface sterilized by immersing
134 in 70% ethanol for five minutes followed by three five minute washes in sterile 1X PBS, and
135 stored at -20°C for downstream sequencing. Adult mosquitoes from both species were also
136 used to generate donor pools for microbiota transplantation. In brief, cohorts of 10, 20, 40, or
137 80 three-to-four-day-old adult female mosquitoes were collected, surface-sterilized in 70%
138 ethanol for five minutes, rinsed three times in sterile 1X PBS for five minutes, and
139 transferred individually to sterile 2 ml safe lock tubes (Eppendorf, Hamburg, Germany)

140 containing 5 mm steel beads and 500 μ l of sterile 1X PBS (Fig. 1). Tubes were then
141 homogenized at a frequency of 26 Hz/sec for one minute, briefly centrifuged to collect
142 debris, and 50 μ l of the homogenate from each tube was pooled (Fig. 1). Pooled
143 homogenates were subsequently centrifuged at 5000 \times g for five minutes to pellet any
144 remaining debris, and the resulting supernatant was passed through a 5 μ m filter to produce
145 a final filtrate for transplantation. Filtrates, which ranged in volume from 500 μ l (pool of 10) to
146 4 ml (pool of 80), were finally adjusted to a total volume of 50 ml using sterile water, and we
147 repeated the entire process a total of three times to produce a total of 150 ml of each donor
148 pool prior to use in downstream experiments (Fig. 1). A 200 μ l aliquot of each pool was also
149 retained and immediately subjected to genomic DNA isolation using a NucleoSpin Tissue Kit
150 (Machery-Nagel, Düren, Germany). The resulting DNA was then stored at -20°C for
151 downstream sequencing.

152

153 *Microbiota transplantation and recipient sample collection*

154 Axenic (microbe-free) *Ae. aegypti* (Galveston) L1 larvae served as the recipient host for all
155 transplantations. In brief, axenic larvae were prepared by submerging eggs in 70% ethanol
156 for 5 minutes, then transferring to a solution of 3% bleach and 0.01% Decon-Quat 200V (Ab
157 Scientific Ltd) for 3 minutes, followed by a wash in 70% ethanol for 5 minutes, and finally
158 rinsing three times in sterile water (Fig. 1). Eggs were then transferred to sterile water and
159 vacuum hatched in sterile containers. Twenty axenic first instar larvae were then transferred
160 to each of five T75 vented tissue culture flasks (Thermo Fisher Scientific, Waltham, MA
161 USA) containing 50 ml suspension of a given donor pool (described above) and 60 μ l of
162 autoclaved powdered TetraMin pellets (Tetra, Melle, Germany) reconstituted with sterile
163 water to a final concentration of 1 mg/ml (Fig. 1). In addition to the donor treatments, a
164 negative control was done whereby larvae were transferred to flasks containing sterile water
165 and diet only (*i.e.*, no microbes) and maintained alongside experimental flasks. All larvae
166 (control and experimental) were provided sterilized diet every two days until the treatment
167 groups pupated (control group did not pupate and died at L2 or L3) while water from control

168 flasks was used to screen for contamination throughout the experiment as described
169 previously [10]. Flasks were maintained at 70% humidity and 27°C.

170 In order to assess successful microbiome transplantation, four sets of recipient
171 samples were collected for sequencing: (i) 200 μ l of larval water from each replicate flask,
172 collected when larvae had molted to the third instar, (ii) third instar larvae (pools of 5)
173 collected from the same flasks, and at least three individual sugar-fed adult females that had
174 emerged from pupae either (iii) three or (iv) six days prior to collection. Pupae produced from
175 replicate flasks containing the same donor pool were pooled and transferred to sterile water
176 in a sterile plastic chamber for adult emergence. Newly emerged adults were provided 10%
177 sucrose in sterile water *ad libitum* until collection as described above. Total genomic DNA
178 was extracted from all recipient samples using a NucleoSpin Tissue Kit (Machery-Nagel,
179 Düren, Germany). Larvae and adults were surface sterilized as described above before DNA
180 isolation.

181

182 *Amplicon library construction, sequencing, and data analysis*

183 Subsamples from the DNA extracts were used for amplifying the V3-V4 region of the
184 bacterial 16S rRNA gene using primers 341F (CCTACGGGNGGCWGCAG) and 805R
185 (GACTACHVGGGTATCTAATCC) [59], followed by PCR amplification for Illumina
186 sequencing. Samples were paired-end sequenced (2 x 250-bp) on an Illumina MiSeq.
187 Sequence reads were processed using the DADA2 pipeline in QIIME 2-2019.4 [60, 61]. In
188 brief, sequence reads were first filtered using DADA2's recommended parameters and an
189 expected error threshold of 0.5. Filtered reads were then de-replicated and denoised using
190 default parameters. After building the ASV table and removing chimeras and low-abundance
191 (<0.005%) ASVs, taxonomy was assigned using a Naive Bayes classifier natively
192 implemented in QIIME 2-2019.4 and pre-trained against the Greengenes reference
193 database (13.8) [62, 63]. A phylogenetic tree was built using FastTree (v2.1.3) [64] from a
194 multiple sequence alignment made with the MAFFT alignment tool [65] against the
195 Greengenes Core reference alignment [66]. Patterns of diversity within the ASV table were

196 analyzed using standard workflows in QIIME 2-2019.4, with a sampling depth of 1,000 reads
197 per sample and default parameters. Downstream statistical analyses were performed using
198 R (<http://www.r-project.org/>).

199

200 **Results**

201 *Adult mosquitoes harbor relatively complex bacterial communities that can be isolated for*
202 *transplantation*

203 For each donor species (*Ae. aegypti* and *Cx. quinquefasciatus*), we characterized the
204 microbiota of 40 individual adult mosquitoes by sequencing the V3-V4 regions of the 16S
205 rRNA gene. After filtering, denoising, merging, and removing chimeras, we obtained a total
206 of 2,544,303 reads with a median sequencing depth of 32,803 reads per sample (Additional
207 file 1). We obtained an unusually low number of reads (<1,000) for a single *Cx.*
208 *quinquefasciatus* sample (Additional file 1), which was removed from subsequent analyses.
209 We then assigned taxa and plotted relative abundance of taxa across samples.

210 We identified 103 and 120 ASVs across all of the *Ae. aegypti* and *Cx.*
211 *quinquefasciatus* individuals we sampled, respectively (Additional file 2). However, the vast
212 majority of our sequencing reads (>90%) were assigned to ASVs belonging to one of four
213 genera: *Serratia*, *Asaia*, *Cedecea* and another, unclassified genus within the
214 *Enterobacteriaceae* (Fig. 2a; Additional file 2). Considering both the presence/absence and
215 relative abundance of all of the ASVs we detected, bacterial communities present in both
216 donor species exhibited significant differences in both alpha diversity (as measured by
217 Shannon's H index and ASV richness) (Fig. 2b; Additional file 1) and beta diversity (as
218 measured by the Bray-Curtis dissimilarity index) (Fig. 2c), which were associated with shifts
219 in the relative abundance of specific community members detected in each species (Fig. 2a;
220 Additional file 2). As expected, these included the presence of *Wolbachia* in *Cx.*
221 *quinquefasciatus* donor individuals and the near complete absence of *Wolbachia* across the
222 *Ae. aegypti* donor individuals we sampled, which is consistent with no established natural
223 infection ever being observed in this species [67, 68]. *Cx. quinquefasciatus* donor individuals

224 further contained a notably greater percentage of taxa within the genus *Serratia*, while *Ae.*
225 *aegypti* donor individuals contained a greater percentage of *Asaia* spp. (Fig. 2a; Additional
226 file 2). Interestingly, we also detected significant negative correlations between the relative
227 abundance of ASVs belonging to the genus *Serratia* and ASVs belonging to other taxa
228 within the family *Enterobacteriaceae* across all *Ae. aegypti* and *Cx. quinquefasciatus* donors
229 we sampled (Additional files 2 & 3), which is consistent with previous results in field-
230 collected mosquitoes of the same species and our recent experimental findings [52, 57].

231 In order to determine how many individuals were required to transfer a representative
232 microbiome to recipients, we generated homogenates using pools of 10, 20, 40, or 80 *Ae.*
233 *aegypti* or *Cx. quinquefasciatus* donor individuals and assessed the diversity of ASVs
234 recovered in each pool relative to ASV diversity across the entire donor species populations
235 using 16S rRNA gene amplicon sequencing. We obtained a total of 438,839 sequences
236 representing 68 and 64 ASVs across the four *Ae. aegypti* and four *Cx. quinquefasciatus*
237 donor pools we sequenced, respectively, and each pool was dominated by the same four
238 genera detected in the subset of individuals we sequenced from each of our donor species
239 populations (Fig. 3a; Additional files 1 & 2). Each pool also captured the majority of donor
240 ASV diversity (>96%), although recovery varied with respect to how common a given ASV
241 was across all of the donor individuals we sequenced (Fig. 3b; Additional file 2). The number
242 of individuals used to generate each pool had the greatest impact on recovery of rare ASVs
243 (i.e., those present in <50% of the donor individuals we sequenced), with significantly fewer
244 rare ASVs being recovered in the pool generated using 10 individuals. However, there were
245 no significant differences in recovery of more common ASVs, which were present in ≥50% of
246 donor individuals and constituted >93% of individual donor sequences, between any of the
247 pools we generated (Fig. 3b; Additional file 2).

248
249 *Microbiota transplantation recapitulates donor microbial diversity in recipient individuals*
250 To assess our ability to transplant microbiota between different mosquito species, we
251 introduced each of our *Ae. aegypti* and *Cx. quinquefasciatus* donor pools into the water of

252 cultures containing axenic *Ae. aegypti* larvae. These cultures were subsequently maintained
253 under standard rearing conditions, and 16S rRNA gene amplicon sequencing was used to
254 assess bacterial diversity in replicate samples of the aquatic habitat (water in rearing flasks),
255 larvae (collected as third instars), and adults from each culture (collected 3- and 6-days
256 post-emergence). A total of 50, 40, and 108 water, larval, and adult samples were
257 sequenced, respectively, with a total of five samples being discarded prior to downstream
258 analyses due to low sequencing depth (<1,000 reads) (Additional file 1).

259 The resulting dataset, which contained a total of 4,540,617 sequences across all of
260 the recipient water, larval, and adult samples we sequenced (Additional file 1), revealed that
261 64 and 61 of the 68 and 64 ASVs found in *Ae. aegypti* and *Cx. quinquefasciatus* donor pool
262 communities, respectively, representing >99% of all donor pool sequences, were detected in
263 recipient samples (Additional file 2). The majority of these ASVs (>70%) also persisted in
264 recipient communities over time, although there were dramatic shifts in both alpha and beta
265 diversity across the different life stages and water samples we sequenced (Fig. 4 & Fig. 5;
266 Additional files 1, 2; 4 & 5). Alpha diversity (as measured by Shannon's H index and ASV
267 richness) was overall highest in water and larvae, while adult recipient individuals harbored
268 communities that did not significantly differ in alpha diversity from input donor communities
269 (Fig. 4b; Additional file 1), regardless of the size of the input donor pool (Additional files 1, 4
270 & 5). Differences in beta diversity, measured as average Bray-Curtis dissimilarity, were also
271 overall higher between input donor communities and the recipient water and larval samples
272 we collected than between input donor communities and recipient adult samples (Fig. 5),
273 although the degree of similarity between recipient adult and input donor communities varied
274 over time post emergence and as a function of the size of the input donor pool (Additional
275 file 6). More specifically, recipient water and larval communities displayed striking
276 amplification of taxa within the Chitinophagaceae, Microbacteriaceae (*Leucobacter* and
277 *Microbacterium* spp.), and Flavobacteriaceae (*Flavobacterium*, *Chryseobacterium*, and
278 *Elizabethkingia* spp.) that were less abundant in input donor communities (Fig. 4a; Additional
279 file 2). In contrast, adult recipient communities displayed striking amplification of taxa within

280 the genera *Serratia*, *Asaia*, *Cedecea*, and an unclassified genus within the
281 *Enterobacteriaceae*, consistent with input donor communities (Fig. 4a; Additional file 2).

282

283 *Both host and environmental factors impact microbiota transplantation efficacy*

284 To assess whether microbiota transplantation recapitulated observed differences in
285 microbiota diversity between donor species in recipient individuals, we last compared alpha
286 and beta diversity of donor *Ae. aegypti* and *Cx. quinquefasciatus* individuals to recipient *Ae.*
287 *aegypti* adults emerging from cultures inoculated with pools generated from each donor
288 species. Consistent with our previous results comparing bacterial communities in donor
289 individuals of each species (Fig. 2), communities in recipient adults that emerged from
290 cultures inoculated with pools generated from each donor species exhibited significant
291 differences in both alpha diversity (as measured by Shannon's H index and ASV richness)
292 (Fig. 6b) and beta diversity (as measured by the Bray-Curtis dissimilarity index) (Fig. 6c).
293 However, these differences were associated with shifts in the relative abundance of
294 community members that were relatively rare in input donor communities (e.g., taxa within
295 the genera *Elizabethkingia*, *Acinetobacter*, *Pseudomonas*, and *Stenotrophomonas*) (Fig. 2 &
296 Fig. 6a; Additional file 2). More specifically, the predominance of *Asaia* in *Ae. aegypti* donor
297 communities was not observed in recipient individuals, likely owing to the inability of this
298 bacterium to reliably persist in the water of larval cultures (Fig. 6a & Additional file 2).
299 *Wolbachia* from *Cx. quinquefasciatus* donor communities did not infect recipient individuals
300 (Fig. 6a & Additional file 2), although this was expected given that transfections of *Wolbachia*
301 into mosquitoes requires access through the germline. While these patterns were generally
302 similar between groups of recipient individuals inoculated with input donor pools generated
303 using different quantities of mosquitoes, adult recipients inoculated with pools generated
304 using fewer individuals exhibited more variable bacterial communities overall, due to the
305 stochastic proliferation of rare donor taxa and/or antagonism of *Serratia* by
306 *Enterobacteriaceae*, consistent with our previous observations across donor individuals (Fig.
307 6a; Additional files 2 & 7).

308

309 **Discussion**

310 Numerous studies describing the diversity and function of mosquito-associated microbial
311 taxa and assemblages have been published recently, leading to the discovery of potential
312 interactions between mosquitoes and their microbiota that could be manipulated to enhance
313 or reduce mosquito fitness and/or vector competency (reviewed in [36]). However, questions
314 remain about the reproducibility, applicability, and physiological relevance of these data
315 owing to discrepancies in experimental technique, lack of standardization, and the use of
316 laboratory-colonized mosquito strains and species that harbor microbiota that vary
317 substantially within and between different laboratories and that differ substantially from
318 naturally occurring mosquitoes in the field [12, 13, 69-74]. In this study, we developed a
319 simple approach to successfully isolate donor microbial communities from adult mosquitoes.
320 We then used this approach to transfer microbiota within (*i.e.*, *Ae. aegypti* donors to *Ae.*
321 *aegypti* recipients) and between (*i.e.*, *Cx. quinquefasciatus* donors to *Ae. aegypti* recipients)
322 different donor and recipient species in order to assess our ability to recapitulate donor
323 microbial diversity in adult recipients. We selected these donor and recipient species for two
324 reasons. First, both *Ae. aegypti* and *Cx. quinquefasciatus* are biomedically relevant vector
325 species that are commonly studied in the laboratory [7]. Previous studies have also carefully
326 characterized microbiota acquisition and assembly across *Ae. aegypti* life history [10].
327 Second, while *Cx. quinquefasciatus* mosquitoes are readily infected by *Wolbachia* in the
328 laboratory and commonly exhibit natural infections in the field [75 76], *Ae. aegypti*
329 mosquitoes are generally recalcitrant to infection and are not known to harbor natural
330 infections [67, 68]. By introducing microbiota derived from both *Ae. aegypti* and *Cx.*
331 *quinquefasciatus* donors into *Ae. aegypti* recipients, we could therefore also establish
332 whether our transplantation approach (*i*) recapitulated patterns of microbiota assembly and
333 persistence previously observed in *Ae. aegypti* (positive control), and (*ii*) supported the
334 expectation that we would not be able to successfully transfer *Wolbachia* from *Cx.*
335 *quinquefasciatus* donors to *Ae. aegypti* recipients (negative control).

336 Our results demonstrate the successful transfer of bacteria from donor to recipient
337 populations of mosquitoes, with recipient adult individuals retaining the vast majority of
338 donor bacterial diversity. Our results also demonstrate that relatively small pools of donor
339 microbiota (*i.e.*, derived from ≥ 10 donor individuals) are sufficient to capture taxa that are
340 highly abundant and/or common in a given donor mosquito population. This suggests that
341 our methods could readily be applied to study microbiota isolated from field populations,
342 even in cases where large-scale mosquito collections are difficult. However, future work will
343 be necessary to confirm that the patterns observed using our approach are indeed the same
344 for donor microbiota generated from field mosquitoes that harbor microbial communities that
345 are more diverse than those present in laboratory mosquitoes and that are not adapted to
346 the laboratory environment [12, 13, 69-74]. Recently developed methods to generate axenic
347 adults [28, 53-55] also strongly position us to examine the potential to adapt our protocol to
348 introduce field-derived donor microbiota pools directly into adults via a sugar meal and
349 therefore avoiding selective pressures exerted on introduced microbes by standard
350 laboratory larval diets and larval growth and molting.

351 These results also highlight the value of our approach for studying the underlying
352 bases of mosquito-microbe interactions, as has been demonstrated in other animals. For
353 example, microbiome transplantation approaches have been employed in *Nasonia* wasps to
354 assess the selective pressures contributing to observed patterns of phylosymbiosis in the
355 system [41] as well as *Drosophila melanogaster* flies and *Bombus terrestris* bumblebees to
356 identify relationships between host microbiota composition and different thermotolerance or
357 immunity phenotypes [39, 40]. Reciprocal microbiome transplants have also been
358 performed across different vertebrate animal species. For example, reciprocal microbiota
359 transplants between zebrafish and mice have revealed factors specific to the host gut
360 habitat that shape microbial community structure in each species [38]. Indeed, our results
361 point to both host and environmental factors in shaping microbiota acquisition and
362 persistence in mosquitoes. That the microbiota in recipient adult individuals looked most
363 similar to the microbiota of donor individuals supports previous studies in *Ae. aegypti*

364 identifying life stage as a dominant factor shaping mosquito microbiota [10, 11, 14, 69, 70,
365 77-82]. Additionally, there were differences in microbiota diversity between our donor
366 species in recipient adults which supports previous findings indicating that while community
367 membership may be largely driven by the environment and life stage, community features
368 such as total and taxon-specific abundances may also be shaped by host genetics [83, 84].
369 Future studies could employ microbiome transplantation to improve our understanding of the
370 factors shaping microbiome acquisition and assembly in mosquitoes and the mechanisms by
371 which specific microbial taxa and assemblages contribute to different mosquito traits under
372 controlled conditions.

373 Future work is also warranted to determine if the approach developed herein is
374 relevant for other microbes such as fungi or viruses, which are also known to impact
375 mosquito biology [85, 86]. The applicability of this approach for other microbes likely
376 depends on their biology, and in particular, their mode of transmission. For example,
377 extracellular members of the mosquito gut microbiota that are commonly detected in
378 environments where mosquitoes persist in the laboratory are likely to be transferred, while
379 those that are intracellular may not be. In line with this, our results supported the expectation
380 that the intracellular bacterium *Wolbachia*, which was present in the *Cx. quinquefasciatus*
381 donors used in this study, would not be successfully transferred to *Ae. aegypti* recipients.
382 We also appreciate that tissue localization of bacteria and other microbes may be pertinent
383 for the transplantation process. Here, we prepared donor microbiota from whole-body
384 mosquitoes and similarly assessed microbiota assembly and persistence in whole-body
385 recipient individuals. Additional work will be necessary to establish patterns of donor
386 microbiota colonization across recipient host tissues and/or to validate methods for isolation
387 of microbiota from specific donor tissues. Methods for long-term preservation of donor
388 microbiota will also be necessary to facilitate long-term studies and intra- and inter-
389 laboratory comparisons of microbiota assembly across different host strains. Nevertheless,
390 our results provide a critical first step toward the standardization of microbiome studies in the
391 field of vector biology to include mosquito hosts colonized by defined microbiota that can be

392 replicated within and between labs. They also provide a critical first step toward our ability to
393 recapitulate and study field-derived microbiota in laboratory settings.

394

395 **Conclusions**

396 We have successfully isolated and transplanted microbiomes from donor to recipient
397 mosquitoes. This approach lays the foundation for future work to facilitate standardized
398 studies of mosquito-microbe interactions, examine host-microbe interactions, and to identify
399 effective strategies for manipulating mosquito microbiota to control mosquito populations
400 and mosquito-borne diseases.

401

402 **List of Abbreviations**

403 Not applicable.

404

405 **Declarations**

406 *Ethics approval and consent to participate*

407 Not applicable.

408

409 *Consent for publication*

410 Not applicable.

411

412 *Availability of data and materials*

413 Raw Illumina reads are available in the NCBI Sequence Read Archive
414 (<http://www.ncbi.nlm.nih.gov/sra>) under BioProject ID PRJNA767109.

415

416 *Competing interests*

417 The authors declare that they have no competing interests.

418

419 *Funding*

420 GLH and KLC were supported by an NIH grant (R21AI138074) to conduct these studies.
421 Additional support to KLC was provided by the NSF (2019368), the USDA NIFA (2018-
422 67012-28009), and the University of Wisconsin-Madison. Additional support to GLH was
423 provided by the NIH (R21AI129507), the BBSRC (BB/T001240/1 and V011278/1), the UKRI
424 (20197 and 85336), the EPSRC (V043811/1) a Royal Society Wolfson Fellowship
425 (RSWF\R1\180013), and the NIHR (NIHR2000907). SH was supported by a James W.
426 McLaughlin postdoctoral fellowship from the University of Texas Medical Branch and a
427 Liverpool School of Tropical Medicine Director's Catalyst Fund award. The views expressed
428 herein are those of the author(s) and do not necessarily reflect those of any agency of the
429 US or UK government.

430

431 *Authors' contributions*

432 KLC, SH, and GLH conceived and designed the experiments. SH performed the
433 experiments. KLC carried out the data analysis. KLC wrote the initial manuscript, and SH
434 and GLH contributed to revisions.

435

436 *Acknowledgements*

437 We thank George Golovko, Kamil Khanipov, and Maria Pimenova of the Department of
438 Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas
439 Medical Branch (Galveston, TX USA) for assistance with sequencing. We also thank the
440 insectary staff at the University of Texas Medical Branch for assistance in rearing
441 mosquitoes.

442

443 **References**

- 444 1. Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. Gut microbes of mammalian
445 herbivores facilitate intake of plant toxins. *Ecol Lett.* 2014;17:1238-46.
- 446 2. Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex
447 C, et al. Gut microbiota orchestrates energy homeostasis during cold. *Cell.*
448 2015;163:1360-74.
- 449 3. Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J,
450 Newgard CB, Fröbert O, Bäcked F. The gut microbiota modulates energy
451 metabolism in the hibernating brown bear *Ursus arctos*. *Cell Rep.* 2016;14:1655-
452 61.
- 453 4. Lee STM, Kahn SA, Delmont TO, Shaiber A, Esen ÖC, Hubert NA, Morrison HG,
454 Antonopoulos DA, Rubin DT, Eren AM. Tracking microbial colonization in fecal
455 microbiota transplantation experiments via genome-resolved metagenomics.
456 *Microbiome.* 2017;5:50.
- 457 5. Hu J, Chen L, Tang Y, Xie C, Xu B, Shi M, et al. Standardized preparation for fecal
458 microbiota transplantation in pigs. *Front Microbiol.* 2018;9:1328.
- 459 6. Blyton MDJ, Soo RM, Whisson D, Marsh KJ, Pascoe J, Le Pla M, Foley W,
460 Hugenholtz P, Moore BD. Faecal inoculations alter the gastrointestinal microbiome
461 and allow dietary expansion in a wild specialist herbivore, the koala. *Animal*
462 *Microbiome.* 2019;1:6.
- 463 7. Clements AN. The biology of mosquitoes, volume 1: development, nutrition, and
464 reproduction. New York: Chapman & Hall; 1992.
- 465 8. Foster WA. Mosquito sugar feeding and reproductive energetics. *Ann Rev*
466 *Entomol.* 1995;40:443–74.
- 467 9. Vogel KJ, Coon KL. Functions and mechanisms of symbionts of insect disease
468 vectors. In: Oliver KM, Russell JA, editors. *Advances in Insect Physiology*. Vol 58.
469 London: Academic Press; 2020. p. 233-75.

470 10. Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota
471 for development. *Mol Ecol*. 2014;23:2727–39.

472 11. Gimonneau G, Tchioffo MT, Abate L, Boissiere A, Awono-Ambene PH, Nsango
473 SE, Christen R, Morlais I. Composition of *Anopheles coluzzii* and *Anopheles*
474 *gambiae* microbiota from larval to adult stages. *Infect Genet Evol*. 2014;28:715–24.

475 12. Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are
476 essential for development but vary greatly between local habitats. *Mol Ecol*.
477 2016;25:5806–26.

478 13. Bascuñán P, Niño-Garcia JP, Galeano-Castañeda Y, Serre D, Correa MM. Factors
479 shaping the gut bacterial community assembly in two main Colombian malaria
480 vectors. *Microbiome*. 2018;6:148.

481 14. Wang Z, Liu T, Wu Y, Zhong D, Zhou G, Su Z, et al. Bacterial microbiota assemblage
482 in *Aedes albopictus* mosquitoes and its impacts on larval development. *Mol Ecol*.
483 2018;27:2972–85.

484 15. Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K.
485 Meconial peritrophic membranes and the fate of midgut bacteria during mosquito
486 (Diptera: Culicidae) metamorphosis. *J Med Entomol*. 2001;38:29–32.

487 16. Moncayo A, Lerdthusnee K, Leon R, Robich R, Romoser W. Meconial peritrophic
488 matrix structure, formation, and meconial degeneration in mosquito pupae/pharate
489 adults: histological and ultrastructural aspects. *J Med Entomol*. 2005;42:939–44.

490 17. Briegel H. Physiological bases of mosquito ecology. *J Vector Ecol*. 2003;28:1–11.

491 18. Walker ED, Olds EJ, Merritt RW. Gut content analysis of mosquito larvae (Diptera:
492 Culicidae) using DAPI stain and epifluorescence microscopy. *J Med Entomol*.
493 1988;25:551–4.

494 19. Merritt RW, Olds EJ, Walker ED. Natural food and feeding ecology of larval
495 *Coquillettidia perturbans*. *J Am Mosq Control Assoc*. 1990;6:35–42.

496 20. Gusmão D, Santos A, Marini D, Bacci M, Berbert-Molina M, Lemos F. Culture
497 dependent and culture-independent characterization of microorganisms associated

498 with *Aedes aegypti* (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in
499 the midgut. *Acta Trop.* 2010;115:275–81.

500 21. Vogel KJ, Valzania L, Coon KL, Brown MR, Strand MR. Transcriptome sequencing
501 reveals large-scale changes in axenic *Aedes aegypti* larvae. *PLoS Negl Trop Dis.*
502 2017;11:e0005273.

503 22. Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the
504 genus *Asaia* stably associate with *Anopheles stephensi*, an Asian malarial mosquito
505 vector. *Proc Natl Acad Sci USA.* 2007;104:9047-51.

506 23. Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Paternal transmission
507 of symbiotic bacteria in malaria vectors. *Curr Biol.* 2008;18:R1087-8.

508 24. Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, et al. *Asaia*, a versatile
509 acetic acid bacterial symbiont, capable of cross-colonizing insects of
510 phylogenetically-distant genera and orders. *Environ Microbiol.* 2009;11:3252-64.

511 25. Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs
512 Lorena M. Driving mosquito refractoriness to *Plasmodium falciparum* with
513 engineered symbiotic bacteria. *Science.* 2017;357:1399-1402.

514 26. Yen JH. Transovarial transmission of Rickettsia-like microorganisms in
515 mosquitoes. *Ann N Y Acad Sci.* 1975;266:152–61.

516 27. Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in
517 the anautogenous mosquito *Aedes aegypti* and facultatively autogenous mosquito
518 *Aedes atropalpus* (Diptera: Culicidae). *Parasit Vectors.* 2016;9:1–12.

519 28. Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, et al. Both
520 living bacteria and eukaryotes in the mosquito gut promote growth of larvae. *PLoS
521 Negl Trop Dis.* 2018;12:e0006638.

522 29. Wang Y, Eum JH, Harrison RE, Valzania L, Yang X, Johnson JA, Huck DT, Brown
523 MR, Strand MR. Riboflavin instability is a key factor underlying the requirement of
524 a gut microbiota for mosquito development. *Proc Natl Acad Sci USA.*
525 2021;118:e2101080118.

526 30. Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S. et al.
527 *Chromobacterium Csp_P* reduces malaria and dengue infection in vector
528 mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS
529 Pathog. 2014;23:e1004398.

530 31. Wei G, Lai Y, Wang G, Chen H, Li F, Wang S. Insect pathogenic fungus interacts
531 with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci USA.
532 2017;114:5994-9.

533 32. Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. Whole metagenome sequencing
534 reveals links between mosquito microbiota and insecticide resistance in malaria
535 vectors. Sc Rep. 2018;8:2084.

536 33. Gaio AD, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PFP, Lemos FJA.
537 Contribution of midgut bacteria to blood digestion and egg production in *Aedes*
538 *aegypti* (Diptera: Culicidae) (L.). Parasit Vectors. 2011;4:105.

539 34. Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus
540 transmission in mosquitoes. Curr Opin Virol 2015;15:97-102.

541 35. Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease.
542 Mem Inst Oswaldo Cruz. 2017;112:81-93.

543 36. Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and
544 mosquito vectorial capacity: rich potential for discovery and translation. Microbiome.
545 2021;9:111.

546 37. Huang W, Wang S, Jacobs-Lorena M. Use of microbiota to fight mosquito-borne
547 disease. Front Genet. 2020;11:196.

548 38. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota
549 transplants from zebrafish and mice to germ-free recipients reveal host habitat
550 selection. Cell. 2006;127:423-33.

551 39. Näpflin K, Schmid-Hempel P. Immune response and gut microbial community
552 structure in bumblebees after microbiota transplants. Proc Biol Sci.
553 2016;283:20160312-20160318.

554 40. Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal
555 H, Nielsen JL. Strong responses of *Drosophila melanogaster* microbiota to
556 developmental temperature. *Fly*. 2018;12:1-12.

557 41. Van Opstal EJ, Bordenstein SR. Phylosymbiosis impacts adaptive traits in *Nasonia*
558 wasps. *mBio*. 2019;10:e00887-19.

559 42. Song X, Wang M, Zhu H, Wang J. PGRP-LD mediates *A. stephensi* vector
560 competency by regulating homeostasis of microbiota-induced peritrophic matrix
561 synthesis. *PLoS Pathog*. 2018;14:e1006899.

562 43. Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A gut symbiotic bacterium
563 *Serratia marcescens* renders mosquito resistance to *Plasmodium* infection through
564 activation of mosquito immune responses. *Front Microbiol*. 2019;10:1580.

565 44. Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C. et al. A gut commensal bacterium
566 promotes permissiveness to arboviruses. *Cell Host Microbe*. 2019;25:101-12.

567 45. Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez MG, Cohuet A,
568 Christophides GK. Antibiotics in ingested human blood affect the mosquito
569 microbiota and capacity to transmit malaria. *Nat Commun*. 2015;6:5921.

570 46. Ballard JWO, Melvin RG. Tetracycline treatment influences mitochondrial metabolism
571 and mtDNA density two generations after treatment in *Drosophila*. *Insect Mol Biol*.
572 2007;16:799-802.

573 47. Ridley EV, Wong CAN, Douglas AE. Microbe-dependent and nonspecific effects of
574 procedures to eliminate the resident microbiota from *Drosophila melanogaster*.
575 *Appl Environ Microbiol*. 2013;79:3209-14.

576 48. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, et al.
577 Tetracyclines disturb mitochondrial function across eukaryotic models: a call for
578 caution in biomedical research. *Cell Rep*. 2015;10:1681–91.

579 49. Chabanol E, Behrends V, Prévet G, Christophides GK, Gendrin M. Antibiotic
580 treatment in *Anopheles coluzzii* affects carbon and nitrogen metabolism. *Pathogens*.
581 2020;9: 679.

582 50. Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, et al. Delayed larval
583 development in *Anopheles* mosquitoes deprived of *Asaia* bacterial symbionts. *BMC*
584 *Microbiol.* 2012;12:S2.

585 51. Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ,
586 Chandra R, Dimopoulos G. Exploring *Anopheles* gut bacteria for *Plasmodium*
587 blocking activity. *Environ Microbiol.* 2014;16:2980-94.

588 52. Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, et al.
589 Microbial interactions in the mosquito gut determine *Serratia* colonization and
590 blood feeding propensity. *ISME J.* 2020;15:93-108.

591 53. Munderloh UG, Kurtti TJ, Maramorosch K. *Anopheles stephensi* and *Toxorhynchites amboinensis*: aseptic rearing of mosquito larvae on
592 cultured cells. *J Parasitol.* 1982;68:1085-91.

593 54. Correa MA, Matusovsky B, Brackney DE, Steven B. Generation of axenic *Aedes aegypti* demonstrate live bacteria are not required for mosquito development. *Nat Comm.* 2018;9:R37.

594 55. Romoli O, Schönbeck JC, Hapfelmeier S, Gendrin M. Production of germ-free
595 mosquitoes via transient colonisation allows stage-specific investigation of host
596 microbiota interactions. *Nature Comm.* 2021;12:942.

597 56. Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR, Strand MR. Bacteria
598 mediated hypoxia functions as a signal for mosquito development. *Proc Natl Acad
599 Sci USA.* 2017;114:E5362–9.

600 57. Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, Rojas
601 MM, Hornett EA, Motl GC, Fredregill CL, Dennett JA, Debboun M, Fofanov Y,
602 Hughes GL. Microbiome interaction networks and community structure from
603 laboratory-reared and field-collected *Aedes aegypti*, *Aedes albopictus*, and *Culex
604 quinquefasciatus* mosquito vectors. *Front Microbiol.* 2018;9:715.

605

606

607

608 58. Valzania L, Coon KL, Vogel KJ, Brown MR, Strand MR. Hypoxia-induced
609 transcription factor signaling is essential for larval growth of the mosquito *Aedes*
610 *aegypti*. *Proc Natl Acad Sci USA*. 2018;115:457–65.

611 59. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF.
612 Transitions in bacterial communities along the 2000 km salinity gradient of the
613 Baltic Sea. *ISME J*. 2011;5:1571-9.

614 60. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.
615 Reproducible, interactive, scalable and extensible microbiome data science using
616 QIIME 2. *Nat Biotechnol*. 2019;37:852–7.

617 61. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
618 High-resolution sample inference from Illumina amplicon data. *Nat Methods*.
619 2016;13:581-3.

620 62. McDonald D, Prince MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A,
621 Andersen GL, Knight R, Hugenholtz P. An improved Greengenes taxonomy with
622 explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
623 *ISME J*. 2011;6:610-8.

624 63. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG,
625 Angenent LT, Knight R, Ley RE. Impact of training sets on classification of high
626 throughput bacterial 16S rRNA gene surveys. *ISME J*. 2012;6:94-103.

627 64. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood
628 trees for large alignments. *PLoS One*. 2010;5:e9490.

629 65. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
630 improvements in performance and usability. *Mol Biol Evol*. 2013;30:772-80.

631 66. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T,
632 Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene
633 database and workbench compatible with ARB. *Appl Environ Microbiol*.
634 2006;72:5069-72.

635 67. Gloria-Soria A, Chiodo TG, Powell JR. Lack of evidence for natural *Wolbachia*
636 infections in *Aedes aegypti* (Diptera: Culicidae). *J Med Entomol.* 2018;55:1354-6.

637 68. Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, Nazni WA,
638 Hoffmann AA. An elusive endosymbiont: Does *Wolbachia* occur naturally in *Aedes*
639 *aegypti*? *Ecol Evol.* 2020;10:1581-91.

640 69. Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro
641 P, Mavingui P. Bacterial diversity of field-caught mosquitoes, *Aedes albopictus* and
642 *Aedes aegypti*, from different geographic regions of Madagascar. *FEMS Microbiol*
643 *Ecol.* 2011;75:377-89.

644 70. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut
645 microbiota of the malaria mosquito vector *Anopheles gambiae* and interactions with
646 *Plasmodium falciparum* infection. *PLoS Pathog.* 2012;8:e1002742.

647 71. Buck M, Nilsson LK, Brunius C, Dabire RK, Hopkins R, Terenius O. Bacterial
648 associations reveal spatial population dynamics in *Anopheles gambiae*
649 mosquitoes. *Sci Rep.* 2016;10:22806.

650 72. Muturi EJ, Lagos-Kutz D, Dunlap C, Ramirez JL, Rooney AP, Hartman GL. Mosquito
651 microbiota cluster by host sampling location. *Parasit Vectors.* 2018;11:468.

652 73. Tchioffo MT, Boissière A, Abate L, Nsango SE, Bayibéki AN, Awono-Ambéné PH, et
653 al. Dynamics of bacterial community composition in the malaria mosquito's epithelia.
654 *Front Microbiol.* 2016;5:1500.

655 74. Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rúa A, et al. Diverse
656 laboratory colonies of *Aedes aegypti* harbor the same adult midgut bacterial
657 microbiome. *Parasit Vectors.* 2018;11:207.

658 75. De Almeida F, Moura AS, Cardoso AF, Winter CE, Bijovsky AT, Suesdek L. Effects
659 of *Wolbachia* on fitness of *Culex quinquefasciatus* (Diptera; Culicidae). *Infect Genet*
660 *Evol.* 2011;11:2138-43.

661 76. Ant TH, Herd C, Louis F, Failloux AB, Sinkins SP. *Wolbachia* transinfections in *Culex*
662 *quinquefasciatus* generate cytoplasmic incompatibility. *Insect Mol Biol.* 2020;29:1-8.

663 77. Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic Gut Microbiome across Life
664 History of the Malaria Mosquito *Anopheles gambiae* in Kenya. PLoS One.
665 2011;6:e24767.

666 78. Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals
667 extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol.
668 2012;21:5138–50.

669 79. Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD,
670 Walton WE. Developmental succession of the microbiome of *Culex* mosquitoes.
671 BMC Microbiol. 2015;15:140.

672 80. Muturi EJ, Kim C, Bara J, Bach EM, Siddappaji MH. *Culex pipiens* and *Culex*
673 *restuans* mosquitoes harbor distinct microbiota dominated by few bacterial taxa.
674 Parasit Vectors. 2016;9:18.

675 81. Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative analysis of gut microbiota
676 of mosquito communities in central Illinois. PLoS Negl Trop Dis. 2017;11:e0005377.

677 82. Thongsripong P, Chandler JA, Green AB, Kittyapong P, Wilcox BA, Kapan DD,
678 Bennett SN. Mosquito vector-associated microbiota: Metabarcoding bacteria and
679 eukaryotic symbionts across habitat types in Thailand endemic for dengue and other
680 arthropod-borne diseases. Ecol Evol. 2017;8,1352-68.

681 83. Charan SS, Pawar KD, Severson DW, Patole MS, Shouche YS. Comparative
682 analysis of midgut bacterial communities of *Aedes aegypti* mosquito strains varying
683 in vector competence to dengue virus. Parasitol Res. 2013;112:2627–37.

684 84. Short SM, Mongodin EF, MacLeod HJ, Talyuli OAC, Dimopoulos G. Amino acid
685 metabolic signaling influences *Aedes aegypti* midgut microbiome variability. PLoS
686 Negl Trop Dis. 2017;11:e0005677.

687 85. Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal
688 immunity. Insect Biochem Mol Biol. 2019;111:103182.

689 86. Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-
690 specific viruses as a novel strategy to control vector-borne disease. *Curr Opin Insect
691 Sci.* 2020;39:50-6.
692

693 **Figure legends**

694 **Figure 1.** Overview of methodology used to perform inter- and intra-species microbiota
695 transplantations in mosquitoes. (Left) Preparation of *Ae. aegypti* and *Cx. quinquefasciatus*
696 donor pools. Individual 3-4-day-old sugar-fed adult females from our standard laboratory
697 colonies were collected, surface-sterilized, and homogenized (1). Individual homogenates
698 were then pooled and centrifuged to collect debris prior to filtering of the resulting
699 supernatant to produce a final filtrate (2). Filtrates, which ranged in volume from 500 μ l (Pool
700 10) to 4 ml (Pool 80), were then adjusted to a total volume of 50 ml using sterile water prior
701 to transplantation (2). (Right) Transplantation of donor pools into a focal host species (*Ae.*
702 *aegypti*). Eggs laid by blood-fed adult females from the standard laboratory colony were
703 surface-sterilized and hatched in sterile water to produce axenic larvae (3). Larvae were
704 then transferred to replicate flasks ($n=5$) containing a 50 ml suspension of a given donor
705 pool and provided sterilized diet every other day until pupation (4). Pupae produced from
706 replicate flasks containing the same donor pool were finally pooled in water from the larval
707 rearing flasks and transferred to a sterile plastic chamber for adult emergence (5). Donor
708 and recipient samples collected for sequencing are indicated in bold. See *Methods* for more
709 information. Created with BioRender.com.

710

711 **Figure 2. a** Relative abundance of bacterial genera in individual adult mosquitoes sampled
712 from conventionally maintained populations of each of the donor species used in the study
713 (i.e., *Ae. aegypti* and *Cx. quinquefasciatus*). Adults were provided 10% sucrose in water
714 (wt/vol) *ad libitum* prior to being sampled 3-4 days post-emergence. Each bar represents an
715 individual mosquito. Low abundance genera (<1%) are represented by the 'Other' category.
716 **b & c** Alpha and beta diversity of *Ae. aegypti* (*Aa*) and *Cx. quinquefasciatus* (*Cq*) donor
717 individuals. Panel **b** shows the difference in alpha diversity between *Ae. aegypti* and *Cx.*
718 *quinquefasciatus* donor individuals as measured by Shannon's H index (left) and ASV
719 richness (right). Box-and-whisker plots show high, low, and median values, with lower and
720 upper edges of each box denoting first and third quartiles, respectively. Asterisks (***)

721 indicate significant differences between *Ae. aegypti* and *Cx. quinquefasciatus* donor
722 individuals (Kruskal-Wallis test, $P < 0.05$). Panel **c** shows the difference in beta diversity
723 between *Ae. aegypti* and *Cx. quinquefasciatus* donor individuals. Principal coordinates
724 analysis using the Bray-Curtis dissimilarity index identified significant clustering by donor
725 species (PERMANOVA, $P = 0.001$).

726

727 **Figure 3. a** Relative abundance of bacterial genera in *Ae. aegypti* and *Cx. quinquefasciatus*
728 donor pools. Low abundance genera (<1%) are represented by the ‘Other’ category. **b**
729 Proportion of rare ASVs (left) and common ASVs (right) found in at least one donor
730 individual that were present in a given donor pool. An ASV was considered “rare” if it was
731 detected in <50% of donor individuals, while an ASV was considered “common” if it was
732 detected in $\geq 50\%$ of donor individuals. Pools that do not share a letter above the bars had
733 significantly different results as determined by paired Fisher’s Exact tests ($P < 0.05$); ns,
734 pools not significantly different ($P > 0.05$).

735

736 **Figure 4. a** Relative abundance of bacterial genera in donor pools and recipient samples.
737 Biological replicates were pooled for the bar graphs presented. Low abundance genera
738 (<1%) are represented by the ‘Other’ category. **b** Alpha diversity of donor pools and recipient
739 samples, as measured by Shannon’s H index and ASV richness. Box-and-whisker plots
740 show high, low, and median values, with lower and upper edges of each box denoted first
741 and third quartiles, respectively. Asterisks (*** indicate samples that significantly differed
742 from the donor pools (Dunn’s test with Bonferroni correction, $P < 0.0125$).

743

744 **Figure 5. a** Principal coordinates analysis using the Bray-Curtis dissimilarity index. Circles
745 are colored by sample source (donor pools: orange, water: purple, larvae: green, 3-day old
746 adults: blue, 6-day old adults: red). **b** Average Bray-Curtis dissimilarity between (b/w) donor
747 pools versus between a given donor pool and recipient samples. Mean values \pm standard

748 errors are shown. Asterisks (*** indicate comparisons for which the average dissimilarity
749 between a given donor pool and group of recipient samples was significantly higher than that
750 expected as a result of the transplantation procedure itself (i.e., between donor pools)
751 (Dunn's test with Bonferroni correction, $P < 0.0125$).

752

753 **Figure 6. a** Relative abundance of bacterial genera in 3-day and 6-day old *Ae. aegypti*
754 recipient adults that emerged from cultures inoculated with donor pools generated from
755 either *Ae. aegypti* or *Cx. quinquefasciatus* individuals. Each bar represents an individual
756 mosquito. Genera representing >1% of reads from any one donor individual are listed in the
757 legend; all other taxa are grouped together under 'Other'. **b & c** Alpha and beta diversity of
758 recipient *Ae. aegypti* adults emerging from cultures inoculated with pools generated from *Ae.*
759 *aegypti* (*Aa*) or *Cx. quinquefasciatus* (*Cq*) donor individuals. Panel **b** shows the difference in
760 alpha diversity between *Aa* and *Cq* recipient adults as measured by Shannon's H index (left)
761 and ASV richness (right). Box-and-whisker plots show high, low, and median values, with
762 lower and upper edges of each box denoting first and third quartiles, respectively. Asterisks
763 (*** indicate significant differences between *Aa* and *Cq* recipient adults (Kruskal-Wallis test,
764 $P < 0.05$). Panel **c** shows the difference in beta diversity between *Aa* and *Cq* recipient
765 adults. Principal coordinates analysis using the Bray-Curtis dissimilarity index identified
766 significant clustering by donor species (PERMANOVA, $P = 0.001$).

767

768

769

770

771

772

773

774

775 **Additional files**

776 **Additional file 1: Supplementary Table 1.** Sequencing and diversity statistics for 16S

777 rRNA gene amplicon libraries prepared from donor and recipient samples.

778

779 **Additional file 2: Supplementary Table 2.** Taxonomic assignments and prevalence of
780 each ASV in each sample, along with whether a particular ASV was considered 'rare' or
781 'common' among individuals of a particular donor species.

782

783 **Additional file 3: Supplementary Figure 1.** Significantly negative correlation between
784 relative abundance of ASVs belonging to the bacterial family Enterobacteriaceae and ASVs
785 belonging to the genus *Serratia* across all *Ae. aegypti* and *Cx. quinquefasciatus* donor
786 individuals (Spearman's rank test, $P < 0.05$).

787

788 **Additional file 4: Supplementary Figure 2.** (Left) Relative abundance of bacterial genera
789 in *Ae. aegypti* donor pools and recipient samples. Biological replicates were pooled for the
790 bar graphs presented. Low abundance genera (<1%) are represented by the 'Other'
791 category. (Right) Alpha diversity of donor pools and recipient samples, as measured by
792 Shannon's H index and ASV richness. Box-and-whisker plots show high, low, and median
793 values, with lower and upper edges of each box denoting first and third quartiles,
794 respectively. Asterisks (**) indicate samples that significantly differed from the donor pools
795 (Dunn's test with Bonferroni correction, $P < 0.0125$).

796

797 **Additional file 5: Supplementary Figure 3.** (Left) Relative abundance of bacterial genera
798 in *Cx. quinquefasciatus* donor pools and recipient samples. Biological replicates were pooled
799 for the bar graphs presented. Low abundance genera (<1%) are represented by the 'Other'
800 category. (Right) Alpha diversity of donor pools and recipient samples, as measured by
801 Shannon's H index and ASV richness. Box-and-whisker plots show high, low, and median
802 values, with lower and upper edges of each box denoting first and third quartiles,

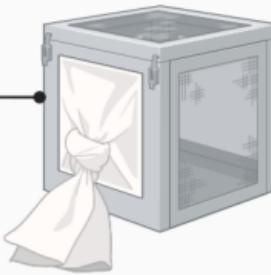
803 respectively. Asterisks (***) indicate samples that significantly differed from the donor pools
804 (Dunn's test with Bonferroni correction, $P < 0.0125$).

805

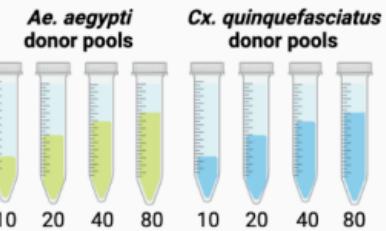
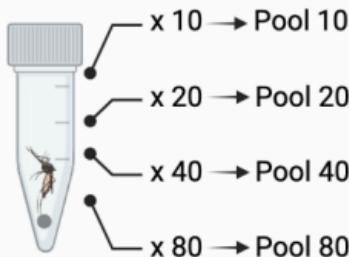
806 **Additional file 6: Supplementary Figure 4.** Average Bray-Curtis dissimilarity between
807 (b/w) donor pools versus between a given donor pool and recipient samples. Mean values \pm
808 standard errors are shown. Asterisks (***) indicate comparisons for which the average
809 dissimilarity between a given donor pool and group of recipient samples was significantly
810 higher than that expected as a result of the transplantation procedure itself (i.e., between
811 donor pools) (Dunn's test with Bonferroni correction, $P < 0.0125$).

812

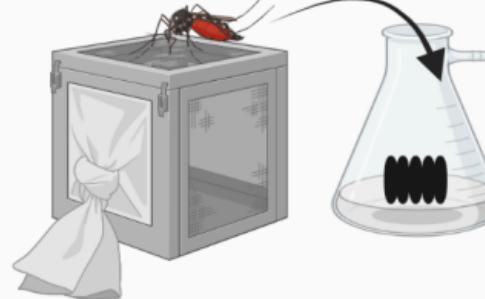
813 **Additional file 7: Supplementary Figure 5.** Significantly negative correlation between
814 relative abundance of ASVs belonging to the bacterial family Enterobacteriaceae and ASVs
815 belonging to the genus *Serratia* across all recipient *Ae. aegypti* adults (Spearman's rank
816 test, $P < 0.05$).


817

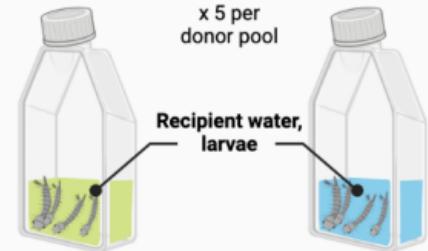
DONORS



Ae. aegypti ●

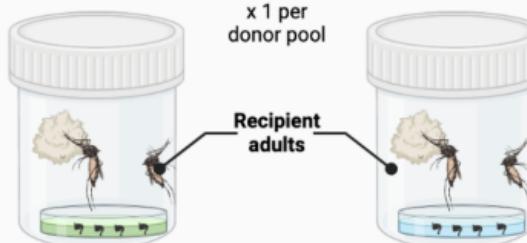
Cx. quinquefasciatus ●


1 Surface-sterilize and homogenize individual mosquitoes

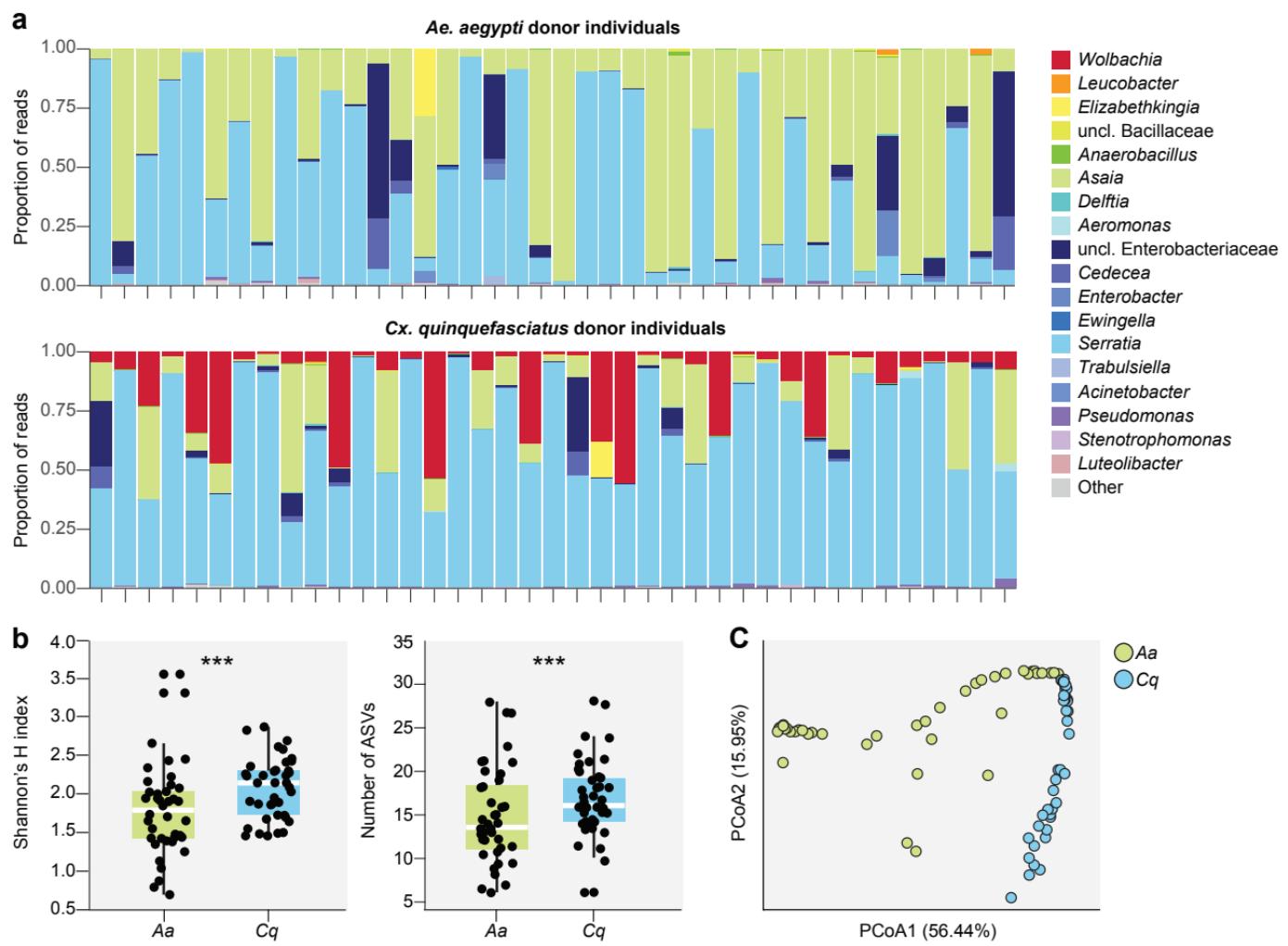
2 Pool homogenates, centrifuge to collect debris, filter supernatant, adjust to final volume of 50 ml

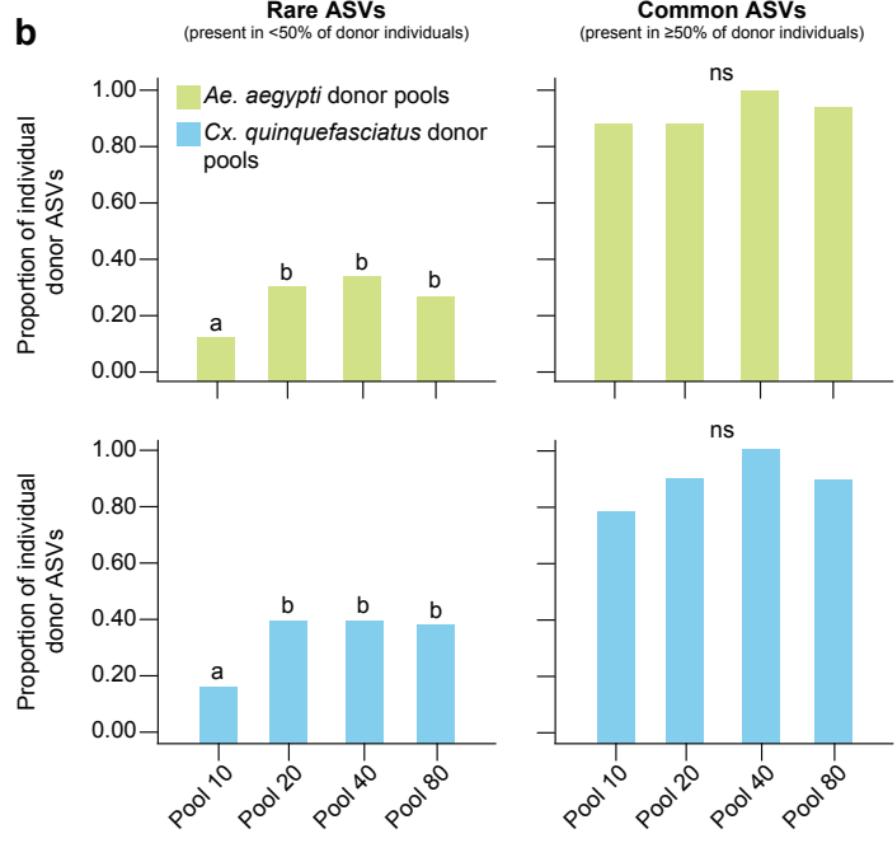
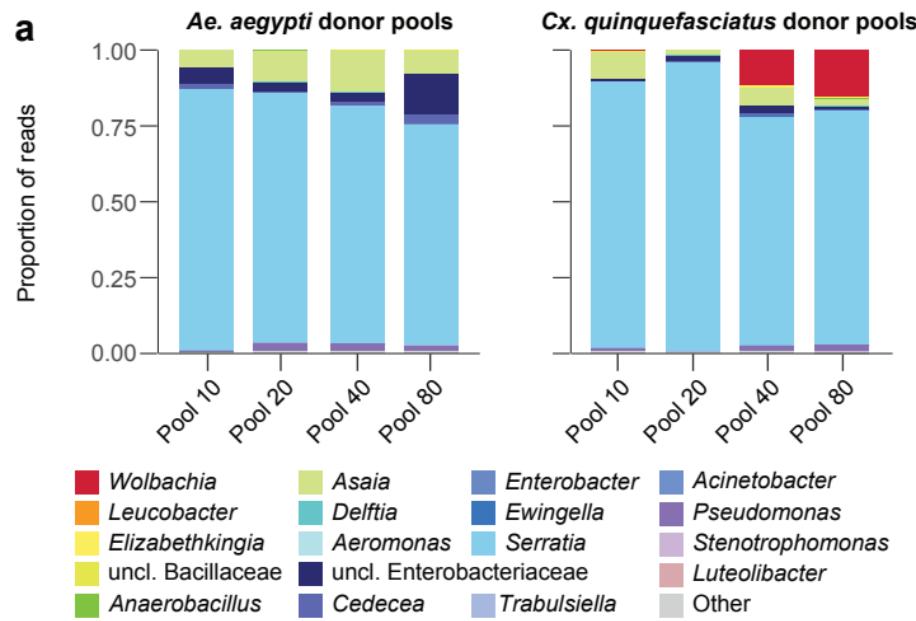

RECIPIENTS

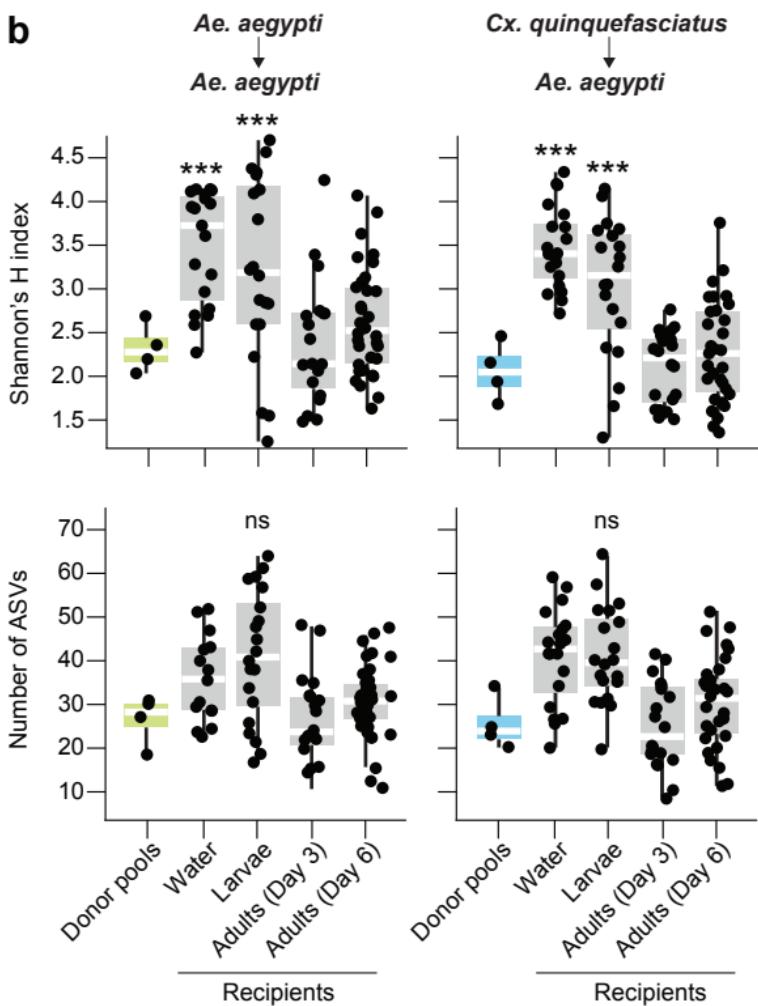
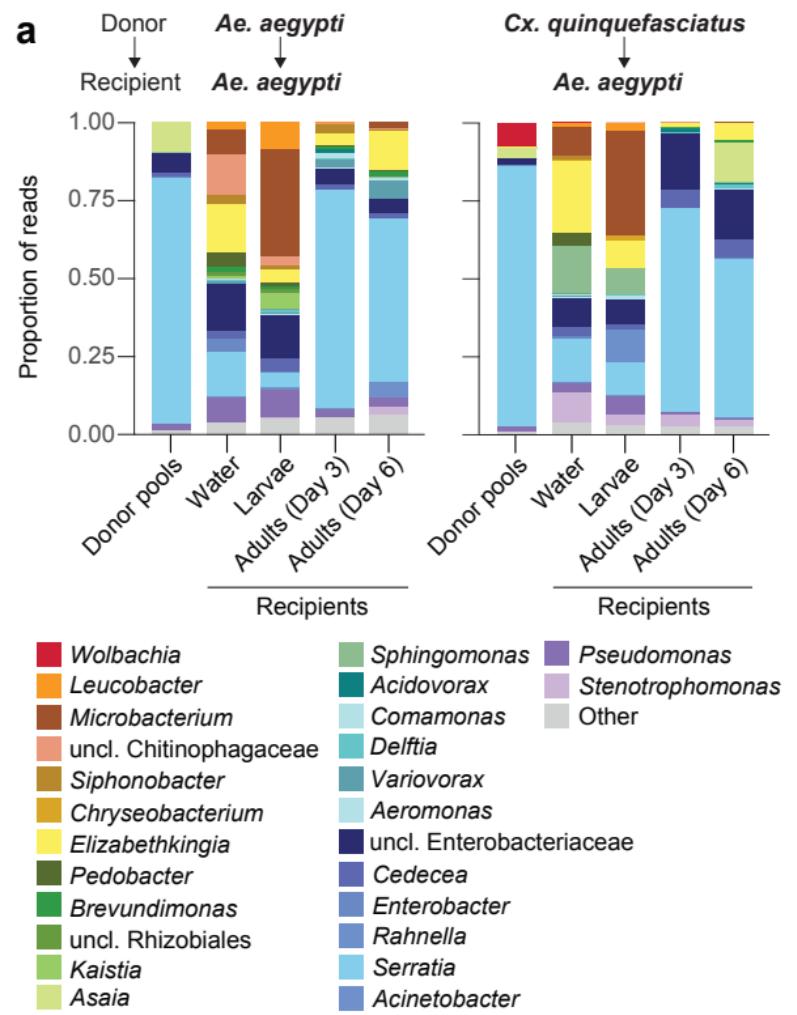
Ae. aegypti

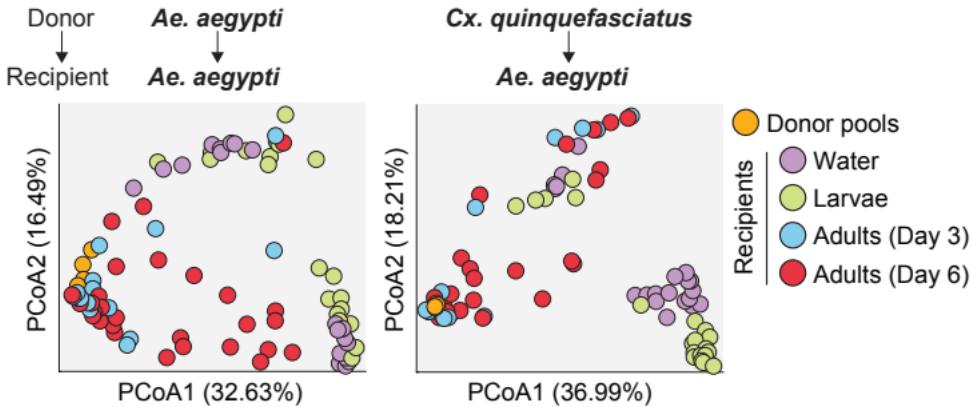
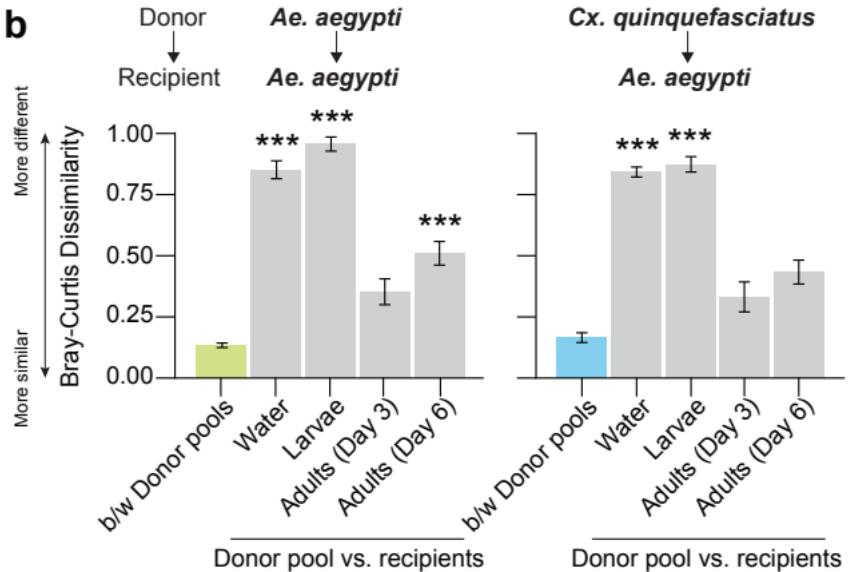

3

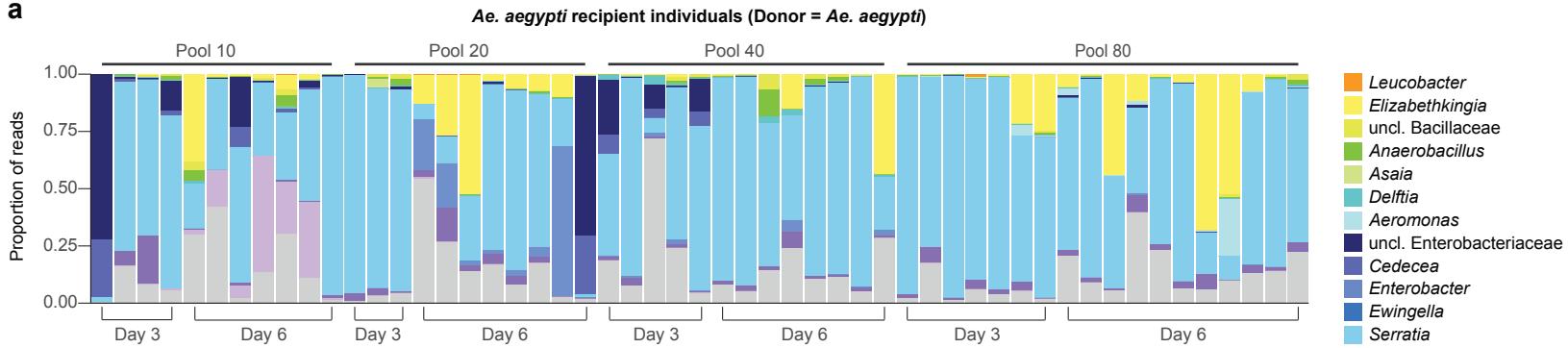
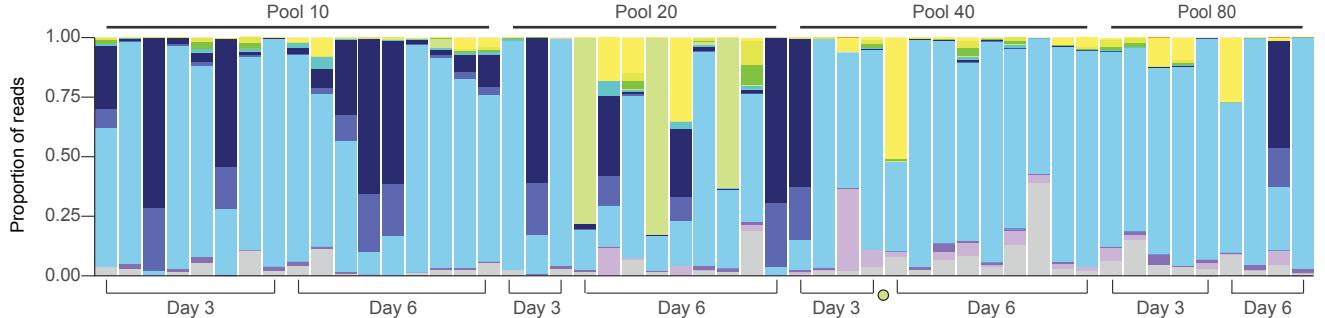
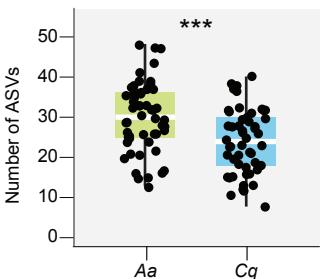
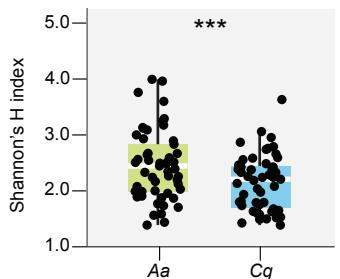
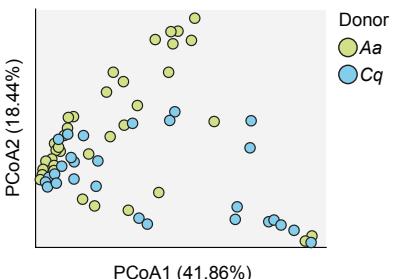
Surface-sterilize eggs, hatch in sterile water to produce axenic larvae


4



Transfer larvae to flasks containing donor pool, feed until pupation



5






Combine pupae, transfer to sterile chamber for adult emergence

a**b**

a**Ae. aegypti recipient individuals (Donor = Cx. quinquefasciatus)****b****c**