

1 **Dwarf-shrubs dynamics in Mediterranean high mountain ecosystems**

2

3 Andrea De Toma¹, Marta Carboni¹, Manuele Bazzichetto², Marco Malavasi³, and Maurizio
4 Cutini¹

5 ¹Department of Science, Roma Tre University, Rome, Italy;
6 <https://orcid.org/0000-0001-7181-7294>;
7 <https://orcid.org/0000-0002-9348-4758>;
8 <http://orcid.org/0000-0002-8597-8221>

9

10 ²Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain;
11 <http://orcid.org/0000-0002-9874-5064>

12

13 ³Department of Applied Geoinformatics and Spatial Planning, Faculty of Environmental
14 Sciences, Czech University of Life Sciences, Prague, Czech Republic;
15 <https://orcid.org/0000-0002-9639-1784>

16

17 Correspondence:

18 Maurizio Cutini, Department of Science, Roma Tre University, Rome, Italy. Email:
19 maurizio.cutini@uniroma3.it

20 Manuele Bazzichetto, Centro de Investigaciones sobre Desertificación, Valencia, Spain.
21 Email: manuele.bazzichetto@gmail.com

22

23 **Abstract**

24 **Question:** Vegetation in the alpine and treeline ecotone faces changes in both climate and
25 land use. Shrub encroachment is considered an effect of these changes, but it's still
26 unclear how this effect is mediated by environmental heterogeneity. Our goal is to

27 determine which environmental factors shape the fine-scale spatial distribution and
28 temporal trends of alpine dwarf shrub.

29 **Location:** Three sites in the Central Apennine, Italy.

30 **Methods:** We used a comprehensive set of environmental factors across a broad temporal
31 span to model, at a fine-scale, both (1) the current spatial distribution and (2) the change in
32 shrub cover over the past 60 years.

33 **Results:** Our results show that dwarf shrubs have generally increased in our study sites
34 over the past 60 years, yet their distribution is strongly shaped by the joint influence of the
35 fine-scale topography, productivity, land use and micro-climate. In particular, shrubs have
36 been locally favored in areas with harsher alpine environmental constraints and stronger
37 resource limitation. Instead, contrary to expectations, at this fine scale, warmer
38 temperatures and the decline in grazing have not favored shrub encroachment.

39 **Conclusion:** Dwarf shrubs appear as a stress-tolerant, pioneer vegetation that is currently
40 distributed mainly over areas that are otherwise sparsely vegetated. It appears that shrubs
41 exhibit poor competitive ability to invade grasslands and, though they have increased
42 overall, they remain restricted to the least productive areas. Fine-scale environmental
43 heterogeneity may strongly influence future responses of dwarf shrubs in changing alpine
44 ecosystems.

45 **Keywords:** dwarf shrubs, Mediterranean mountains, Apennine, alpine and subalpine
46 zone, *Juniperus communis* subsp. *nana*, climate and land-use changes, shrub
47 encroachment, alpine greening.

48

49 **Introduction**

50 In the last two decades, a growing body of literature has investigated the factors driving
51 the distribution and temporal trends of alpine shrubs (e.g. Myers-Smith et al. 2011). In
52 particular, the existing literature focuses on shrub encroachment, which is defined as the
53 trend of shrubs increase in density and cover at high elevation (Auken 2009). In fact, the
54 related “greening” dynamics (i.e. the increase in productivity related to upslope migration
55 of vascular plants, and in particular of woody species; Carlson et al. 2017) has been
56 observed worldwide in alpine and arctic ecosystems and is often ascribed to climate
57 warming (e.g. Hudson et al. 2011; Elmendorf et al. 2012; Ylänne et al. 2015; Francon et al.
58 2017; Myers-Smith & Hik 2018; García Criado et al. 2020). A significant increase in shrub
59 cover in these ecosystems has the potential to dramatically alter the microclimate, nutrient
60 cycling, and species composition (Myers-Smith et al. 2011). Despite the growing attention
61 to shrub encroachment (e.g. Dullinger et al. 2003; Tape et al. 2006; Komac et al. 2013;
62 Francon et al. 2017), the factors shaping the local distribution and temporal trends of
63 shrubs in arctic and alpine areas remain poorly understood (Hallinger et al. 2010). Indeed,
64 divergent temporal trends have been so far observed for dwarf and tall shrubs (Elmendorf
65 et al. 2012): while tall, woody and deciduous shrub species generally follow the much-
66 described encroachment trend, the dynamics of dwarf shrubs is less consistent, often
67 showing evidence of exposure to increased physiological stress on mountain summits or in

68 Arctic regions. In some areas, this can even result in a significant decline of their
69 representation (García et al. 1999; García 2007; Wipf et al. 2009; Wheeler et al. 2014;
70 Pellizzari 2014; Pellizzari et al. 2017; Gamm et al. 2020; Buchwal et al. 2020). Dwarf
71 shrubs are evergreen growth-forms occurring up to and above the treeline that grow
72 prostrate to the ground (0.1 - 0.4 m). They typically form “cushions” to withstand the
73 extreme environmental conditions encountered at high altitudes (Körner 2003). In this way,
74 dwarf shrubs are potentially decoupled from the environmental conditions that drive the
75 encroachment of taller shrubs; their growth is likely more associated with and controlled by
76 the exposure to microclimatic and local soil and snow cover conditions (Körner 2012).

77 Thus, in order to understand the ongoing dwarf shrub dynamics, it is important to consider
78 multiple potential drivers simultaneously and at a fine scale. Yet, such a comprehensive
79 approach is still rare (Filippa et al. 2019). Indeed, most studies investigating the
80 distribution and temporal trends of alpine dwarf shrubs took into account only a few
81 factors, mainly focusing on the individual influence of either climate change or land-use
82 abandonment (mainly, the abandonment of traditional grazing practices; Bjorkman et al.
83 2020). Moreover, these studies largely overlooked the effect of other fine-scale drivers of
84 shrub distribution such as local soil conditions related to topography and productivity, snow
85 cover and microclimate, and, above all, the interactions existing among these factors in
86 alpine environmental mosaic (Myers-Smith 2020). Disregarding these has so far prevented
87 comprehensive understanding of the true drivers of dwarf-shrub dynamics and the
88 potential for encroachment in alpine and arctic regions. Also, as dwarf shrubs are long-

89 lived and clonal species, the analysis of their encroachment dynamics should focus on a
90 wide temporal span (i.e. from decades to centuries), which further complicates their
91 investigation (Myers-Smith et al. 2015).

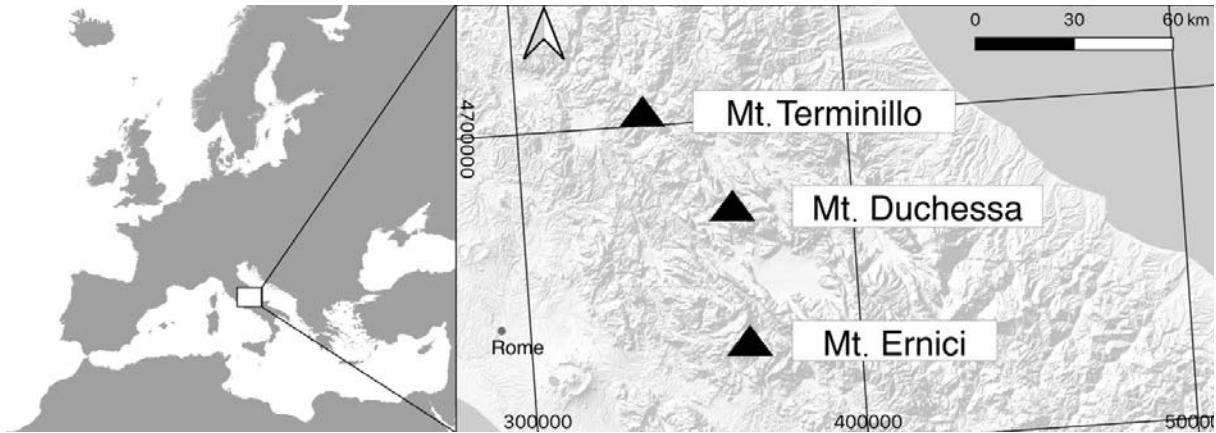
92 Among dwarf-shrub species, *Juniperus communis* var. *saxatilis* (also known as *J.*
93 *communis* subsp. *nana* or subsp. *alpina*, *sensu* World Check-List of Selected Plant Families,
94 hereafter referred to as *J. communis*) occurs throughout the northern hemisphere (Farjon
95 2010). It is a light demanding, drought and frost tolerant species adapted to the alpine and
96 arctic climate. In the past decades, the temporal trends of *J. communis* have greatly varied
97 across the northern hemisphere: on British islands and in Spanish mountains, populations
98 have declined (Ward 1977; García et al. 1999; Verheyen et al. 2009; Broome & Holl 2017),
99 whereas in Greenland and southern Mediterranean, *J. communis* has shown an
100 encroachment trend (Rosen & Barthlott 1991; Pellizzari et al. 2017). This broad variation,
101 which appears largely unrelated to the latitudinal (i.e. climatic) gradient, suggests that local
102 factors are likely to be important in determining the fine-scale spatial distribution of this
103 dwarf-shrub species, ultimately influencing its overall regional increase or decrease
104 (Tumajer et al., 2021). Thus, *J. communis* represents an ideal species for studying how
105 dwarf-shrubs respond to fine-scale variation in soil condition, micro-climate, and land use
106 (Carrer et al. 2019).

107 To improve our understanding of dwarf shrubs-related processes, it is thus crucial to: (i)
108 take into account the simultaneous influence of multiple fine-scale distribution drivers; (ii)
109 use a set of environmental variables derived at a fine resolution to perform analyses at the

110 local spatial scale; and (iii) consider a wide temporal scale (e.g. using data on present and
111 past dwarf shrubs distribution).

112 In view of this, here we aim at analyzing fine-scale temporal trends and current local
113 patterns of *J. communis* in three Mediterranean alpine areas in the Central Apennines.
114 Specifically, we: (i) investigate whether the distribution of *J. communis* has generally
115 increased or decreased over the last 60 years; (ii) explore what shapes the current local
116 distribution of *J. communis*; (iii) identify from a comprehensive set of land-use, climate,
117 topographical and productivity factors those that have locally driven the potential
118 encroachment or decline observed over the last 60-yrs;

119 The reason we focus on the Mediterranean mountains is that they preserve fragments of
120 alpine summit vegetation within a peculiar semi-arid climate and land-use context. These
121 climatic conditions have progressively exacerbated over the past decades as the
122 Mediterranean area is particularly affected by climate change, which is 20% faster in this
123 region than in the rest of the globe (Giorgi & Lionello 2008).


124 **2. Material and methods**

125 **2.1. Study sites**

126 We conducted our study in the alpine zone and treeline-ecotone of three limestone
127 massifs located in the Central Apennines: Mt. Terminillo, Mt. Duchessa, and Mt. Ernici (Fig
128 1). These massifs occur along a latitudinal gradient that allows capturing the variation in

129 both land-use trends and climate features in our study system. The Apennines stretch
130 across the Italian peninsula and, due to their proximity to the Mediterranean Sea,
131 represent a transition from continental to sub-Mediterranean climate features, with warm
132 and dry summer seasons (Cutini et al. 2021). The mean annual temperature in our study
133 sites ranges from 6.4° to 4.5° and the mean annual rainfall from 1790 mm to 738 mm (for
134 Mt. Ernici and Mt. Terminillo respectively). In summers, lack of water may occur here as a
135 combined result of the climate, topography, calcareous lithotype, and historical land-use
136 that has led to thin and immature soil. Regarding land-use, though the Central Apennines
137 have historically been characterized by grazing, this activity has undergone a major
138 decline after the World War II due to the socio-economic transformations (appendix S1).
139 Despite this general trend, the three study sites show at present areas where grazing has
140 been abandoned as well as those where it still persists. Human activities, together with
141 natural environmental heterogeneity, lead to a finely grained vegetation matrix
142 intermingled with scattered woody-dwarf-shrublands, which are nearly exclusively
143 dominated by *J. communis* in a prostrate form.

144

145

146 *Figure 1. Map of Europe (scale 1:30,000,000, CSR: WGS-84 / UTM zone: 33N) with focus on Central Italy (1:300,000)*
147 *showing the three study sites. Mt. Terminillo (E335689, N470480), Mt. Duchessa (E362889, N4671881) and Mt. Ernici*
148 *(E364166, N4631951).*

149

150 **2.2 Sampling design**

151 First, in a Qgis 3.6 environment (QGIS.org, 2019), we defined the boundaries of each
152 study site by mapping the current treelines (1:900 resolution) using Google Satellite photos
153 from 2012. Following Körner (2003), we identified the alpine zone as the areas occurring
154 above the treeline. For brevity, along the text we will use alpine to include alpine and
155 subalpine space, i.e. also including the treeline ecotone. We defined the treeline by
156 connecting the highest patches of forests through photo interpretation. This led us to focus
157 on a total area of 33,557 km², with a mean elevation of 1845 m a.s.l. Second, we used a
158 5m resolution digital terrain model (DTM) derived from a regional technical map to stratify
159 our random sampling points by slope. This was done due to the relevance of the slope to
160 many factors (such as moisture, snow, soil accumulation) and to avoid the

161 underrepresentation of flat areas. We obtained three different classes of slopes (0-15%;
162 15-30%; 30-70%). Then, we randomly generated up to 100 points for each class in each
163 site (or, where less than 100 points were available, the maximum possible number of
164 points), thereby obtaining 860 sampling points. Around each point, we created a circular
165 buffer with a diameter of 100 m. Finally, within each 100 m-buffer, we mapped the present
166 (2012) and past (1954) dwarf-shrub patches (see 2.2.1) and summarized the information
167 on climate, snow cover, grazing, topography, and productivity (see 2.2.2).

168 **2.2.1. Present and past shrub distribution**

169 To gather information on the present and past shrubs distributions, we mapped the dwarf-
170 shrub patches (1:900 resolution) through photo-interpretation using Google Satellite
171 photos from 2012 and historical aerial high resolution (1:30,000, 2400 dpi) photos from
172 1954 available from the IGM (Italian Geographic Military Institute). The photo interpretation
173 of dwarf-shrubs was relatively easy thanks to their cushion form; these patches are mainly
174 composed by *J. communis* in a prostrate form which is an evergreen, procumbent and well
175 recognizable shrub often < 10 cm high (Thomas et al. 2007). However, tallgrass may form
176 similar cushion structures (e.g. *Brachypodium genuense*) which can hamper accurate
177 differentiation from perennial dwarf shrubs. To facilitate the classification, we used autumn
178 and winter satellite photos where necessary. We mapped the coalescent dwarf-shrub
179 patches into a single patch. Based on the recent map (2012), the other time point (1954)

180 was processed in reverse order by editing, with information being adapted to older time
181 levels.

182 Overall, we mapped over 12,500 dwarf-shrub patches (1954 and 2012). For each buffer,
183 we derived the current and past shrub occurrence (presence/absence within the buffer);
184 current and past shrub cover (area of patches mapped within the buffer); and the temporal
185 change of the shrub (computed as the cover area change between the present and the
186 past). The current shrub occurrence and cover were used to investigate the main drivers of
187 the current fine-scale distribution (Tab. 1), while the calculated temporal change was used
188 to 1) evaluate whether dwarf shrubs in the study area are generally encroaching or
189 declining, and 2) identify the fine-scale drivers of these temporal trends. Moreover, to take
190 into account the recruitment of shrubs (i.e. the process by which new individuals found a
191 population or are added to an existing population), we calculated the encroachment of
192 shrubs only in buffers that contained no shrub patches in 1954.

193 **2.2.2. Drivers of shrub distribution and encroachment**

194 To model shrub occurrence, cover and change, we derived environmental variables
195 representative of the main drivers thought to influence shrub encroachment within each
196 buffer and (where relevant) at the the two time points, namely grazing, climate, snow
197 cover, topography, and productivity (Bjorkman et al. 2020).

198 First, we computed a **grazing pressure** index using the Normalized Difference Vegetation
199 Index (NDVI) values calculated from multispectral images from 2012 (for the current

200 grazing pressure) and 1984-1987 (for the past grazing pressure). Specifically, we
201 computed grazing pressure (both in the present and in the past) as:

202 $\text{Grazing pressure} = (\text{NDVI (early June)} - \text{NDVI (early July)})$

203 which is, therefore, defined as the difference between NDVI at the time before grazing
204 starts and the time of an observable grazing impact on the biomass (while avoiding impact
205 of summer drought on the biomass). We were able to use this index because of the
206 traditional transhumance practice in our areas: shepherds usually start grazing in early
207 June due to regional laws. For the past interval (1984-1987) we used images from Landsat
208 4-5 (the oldest available multispectral images for our study area), while for the present
209 (2012) we used two sets of images: Landsat 8 (for the comparison between the present
210 and the past) and Sentinel 2 (for the present-time models, to achieve a better resolution).
211 We thus calculated the average grazing pressure and the difference in grazing within each
212 buffer. To check that this grazing index derived from remotely sensed data captured
213 grazing pressure in our study sites correctly, we also compared it with field-collected
214 grazing proxies (Appendix S2).

215 Second, we gathered present (2008-2012 mean) and past (1950-1954 mean) climate data.
216 In particular, we focused on four bioclimatic variables: (1) the average annual temperature,
217 since low temperatures are the most characteristic factor of alpine environments; (2) the
218 temperature of the warmest quarter since it can indicate the probability of the presence of
219 a summer water restriction, characteristic constraint of Mediterranean areas; (3) the

220 precipitation in the coldest quarter, part of which is snow that protects the soil and the low
221 vegetation from the constraint of frost events; (4) the annual temperature range, in order to
222 highlight whether the two types of environmental constraints differ in the cold and warm
223 seasons. Because global climate layers are not available at a resolution sufficient for
224 capturing local micro-climatic variability of mountain environments, we derived fine-scale
225 topoclimatic layers through downscaling techniques. Specifically, we first collected climate
226 layers at a ~1 km resolution from the CHELSA database. Then, to account for the micro-
227 climate heterogeneity, we carried out a 25 m-resolution downscaling using geographically
228 weighted regression models (GWR; Appendix S3). Finally, we obtained the present and
229 past average values of each downscaled variable within each buffer, as well as the
230 temporal difference in climate data between 1954 and 2012.

231 Third, to gather information on snow cover in springtime, we computed a normalized
232 difference snow index (NDSI) from Sentinel-2 multispectral images according to Dozier
233 (1989). The NDSI naturally ranges from 0 to 1 with high values indicating the presence of
234 snow. Following Dozier (1989), we transformed continuous spring NDSI into a binary
235 variable: we classified values above 0.4 as 1 (“snow present”), and those below 0.4 as 0
236 (“snow absent”), respectively. We used snow cover both in late winter and spring, where
237 early snowmelt left some areas without snow. Dwarf shrubs are known to be extremely
238 dependent on snowmelt time (Wipf & Rixen 2016). Unfortunately, due to the frequent
239 presence of the cloud cover in winter, satellite images suitable for calculation of past NDSI
240 were not available. Therefore, we were unable to calculate past snowmelt patterns and its

241 changes over time. However, we assume that the pattern of snow accumulation and
242 melting computed from the present data can be used as a proxy for the past data as this
243 variable is mainly affected by topography and microclimate (Tappeiner et al. 2001).

244 Fourth, to account for the alpine topographic heterogeneity, we obtained topographical
245 data from a digital terrain model (DTM) at a 5 m resolution. We subsequently computed
246 average elevation, slope, aspect, ruggedness (amount of elevation difference between
247 adjacent cells of a DTM) and general curvature (that represents the shape or curvature of
248 the relief, where positive values indicate upward concavity) within each buffer using SAGA
249 plugins (Riley et al. 1999). We chose this set of variables since they describe well the
250 accumulation, formation and erosion of soil, and more generally are good proxies for
251 environmental micro-heterogeneity in these environments (Geitner et al. 2020).

252 Finally, plant productivity (hereafter: productivity) has strong implications for ecosystem
253 services in alpine landscapes, such as erosion control through root systems (Löbmann et
254 al. 2020) and pasture resources for livestock. To obtain information about productivity, we
255 computed the NDVI at the peak of the growing season (i.e. late June). The NDVI is
256 generally used as a significant predictor of soil nutrients and moisture (Löfgren et al.
257 2018). As for the grazing index described above, we used multispectral images from both
258 the present (2012, Sentinel 2 and Landsat 8) and the past (Landsat 4-5). We computed
259 the average NDVI within each buffer (computed only outside the shrub patches, to avoid
260 circularity).

261

262 *Table 1. Environmental predictors used in the study, indicating the type of variable (con= continuous vs. cat=*
 263 *categorical), the time resolution (the time interval to which the variable refers), the spatial resolution of the environmental*
 264 *layer, the data source and the method used to derive the variable (with reference where appropriate). Δ indicates a range*
 265 *or change in the time interval. "Code" refers to the code used in Fig. 3 and in supplementary materials for the variable..*
 266 *"Data source" refers to the primary source from which the data is derived (see details in the main text and Appendix S3)*

267

environmental predictor	code	type	time res.	spatial res.
1) topography				
Slope	slp	con	-	5m
Aspect	asp	con	-	5m
Curvature	gen_crv	con	-	5m
2) productivity				
present productivity	prd	con	2012 - 2016	5m
past productivity	P_prd	con	1984 - 1987	25m
Δ productivity	prd	con	Δ 1984 - 2016	5m
3) land use				
present Grazing pressure	grz	con	2012 - 2016	5m
past Grazing pressure	P_grz	con	1984 - 1987	25m
Δ Grazing pressure		con	Δ 1984 - 2016	25m
4) climate				
present Summer temperature	smmT	con	2012 - 2016	25m
present Winter Precipitation	winP	con	2011 - 2016	25m
past Summer temperature	P_smmT	con	2009 - 2016	25m
past Winter Precipitation	P_winP	con	2008 - 2016	25m
Δ Summer temperature	Δ_smmT	con	Δ 1950 - 2012	25m
Δ Winter Precipitation	Δ_winP	con	Δ 1950 - 2011	25m
5) spring snow				
spring snow cover	spr_snw	cat	2012 - 2014	5m

data source	method
DTM (regional map)	technical SAGA plugin (Riley, 1999)
BaP (regional map)	technical SAGA plugin (Riley, 1999)
Sentinel 2	NDVI (Pearson, R. L. & Miller, L. D., 1972)
Landsat 4,5	NDVI (Pearson, R. L. & Miller, L. D., 1972)
Sentinel 2	Δ productivity = present productivity - past productivity
Sentinel 2	Grazing pressure index (sup. mat.)
Landsat 4,5	Grazing pressure index (sup. mat.)
Landsat 4,5 - 8	Δ grazing pressure (GP) = present GP - past GP
CHELSA climate	Geographically weighted regression models (sup. mat.)
CHELSA climate	Geographically weighted regression models (sup. mat.)
CHELSA climate	Geographically weighted regression models (sup. mat.)
CHELSA climate	Geographically weighted regression models (sup. mat.)
CHELSA climate	Δ summer T = present summer T - past summer T
CHELSA climate	Δ winter P = present winter P - past winter P
Sentinel 2	NDWI (Dozier, 1989)

269

270 **2.3 . Models of shrub distribution and dynamics**

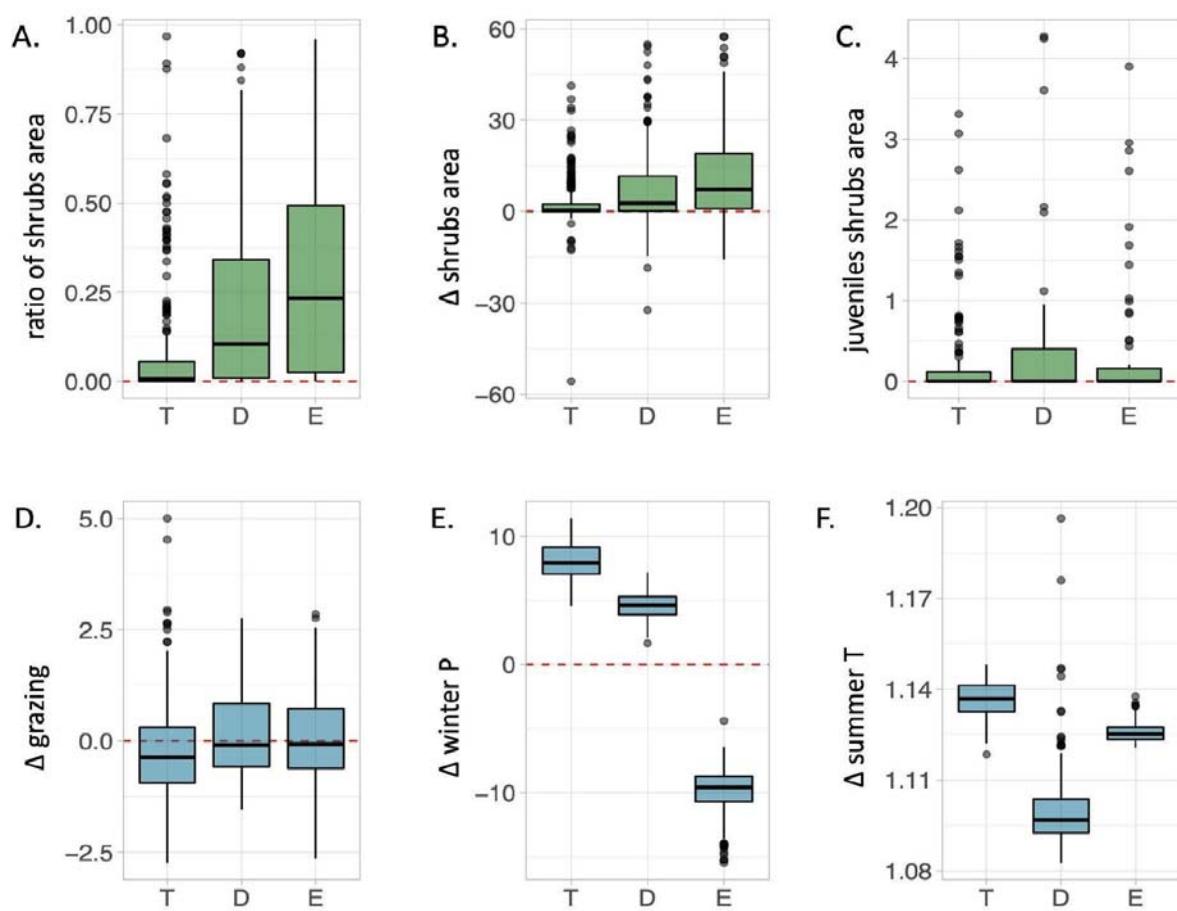
271 We modelled the current occurrence and cover (distribution) of the shrubs as well as shrub
272 encroachment separately as a function of the predictors related to grazing, climate, snow
273 cover, topography, and productivity. Predictors were standardized (i.e., rescaled so that
274 the mean is 0 and standard deviation corresponds to the normal distribution standards) to
275 make them vary on a comparable scale. To reduce multicollinearity, we tested pairwise
276 Pearson correlations among predictors, eventually retaining the least correlated ($r < 0.35$)
277 and most ecologically meaningful ones. Specifically, out of the original fourteen variables,
278 we retained seven predictors for fitting the models: winter precipitation, summer
279 temperature, spring snow cover, grazing pressure, slope, general curvature and
280 productivity.

281 To model current shrub distribution, we used a two-step approach. First, we modelled the
282 presence/absence of shrubs within 100 m buffers using a binomial generalized linear
283 mixed model (GLMM, function *glmer* in R, package *lme4*) with logit link (hereafter referred
284 to as the “occurrence model”). Second, we fitted a linear mixed model (LMM,
285 function *lme* in R, package *lme4*) assuming normally distributed errors to model the current
286 (logit-transformed) shrub cover (hereafter referred to as “cover model”). The cover was
287 modelled only considering buffers where shrubs were present (i.e. 678 out of the 860
288 buffers). Third, we modelled the temporal trends in shrub cover from 1954 to 2012,

289 expressed as a binary variable, using a binomial GLMM (hereafter referred to as
290 “encroachment model”). In particular, we calculated the change in cover (encroachment)
291 as the difference in shrub cover between 2012 and 1954, divided by the cover in 1954 in
292 order to account for how shrubs of different sizes in 1954 changed in relative terms. Then,
293 as preliminary analyses showed that declines in cover were extremely rare (see results
294 and Fig. 2), we transformed the ratio within each buffer into a binary variable: values of
295 cover change above 1, indicating encroachment, were classified as 1, while values below
296 1, indicating absence of encroachment, were classified as 0.

297 In all three models, we included all seven uncorrelated predictors as main fixed effects as
298 well as interactions between the productivity and all other predictors. Indeed, the effect of
299 other environmental factors on dwarf shrubs depend on productivity, e.g. high
300 temperatures during the growing season will likely not have the same effect in highly
301 productive sites and in poor arid soils. At the same time, productivity affects other factors,
302 such as grazing – on a landscape scale, livestock can choose the most productive areas
303 to graze (Adler et al. 2001). Modeling productivity interactions with other environmental
304 factors enabled us, therefore, to take into account the moderating influence of productivity
305 on the relationship between shrubs and other environmental features. Further, we included
306 the site as a random intercept to account for the lack of independence among
307 observations collected in the same area. Moreover, we included random slopes for grazing
308 pressure and summer temperature across sites, to account for the fact that the three sites
309 differ markedly in climate and average grazing pressure.

310 The encroachment model, compared to the previous two, takes into account the same set
311 of main effect terms, interactions and random slopes, but in this case, we used the
312 variables calculated from the historical time points. In addition, in order to take into account
313 the degree of land-use changes and climate change relative to the past conditions, we
314 also included the difference between the present and the past as additional terms in the
315 case of the productivity, climatic, and grazing variables. For example, Δ summer
316 temperature was calculated as $T_{\text{present}} - T_{\text{past}}$, so that positive values indicate an increase in
317 temperature over time and vice versa.


318 For all models, we performed backward model selection, on interactions first, using
319 maximum likelihood (function `lrtest` in R, package `lme4`) to compare hierarchically nested
320 models. This test determines whether a reduced, simpler model (i.e., one formulated by
321 constraining a given number of parameters to 0) fits the data equally well as a more
322 complex model (where parameters are not assumed to have value 0). We evaluated the
323 goodness-of-fit of the models computing marginal and conditional adjusted-R-square
324 (function `r.squaredGLMM` in R, package `MuMIn`). Model assumptions were checked
325 visually inspecting residuals plots.

326 We performed all statistical analyses in R, version 3.6.2 (R Core Team, 2019).

327 **3. Results**

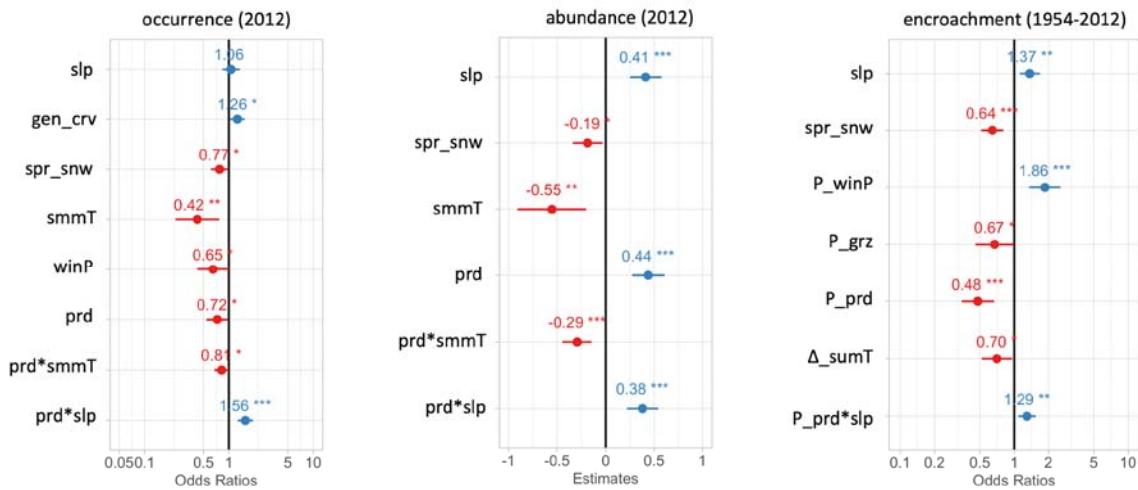
328 **3.1 Overall shrub distribution and temporal trends**

329 Results showed that shrubs are currently widely distributed in our study area. In our
330 analyses, we found shrub patches in 78.5% of our 860 sampling buffers, with
331 heterogeneous distribution between the three sites (on average, shrub cover was greatest
332 in the southernmost Ernici site, Fig. 2a). Regarding shrub cover change, we observed an
333 overall increase in cover (encroachment trend) between 1954 and 2012. Wilcoxon Signed-
334 Ranks test indicated that this increase is significantly different from zero ($V=211950$, $p <$
335 0.0001). We observed an increase in shrub cover in 492 of 860 plots with an average
336 increase of 6.94% in the cover across the three sites (Fig. 2b). This cover change was
337 correlated (Pearson's $R = 0.497$) with an increase in the mean size of shrub patches within
338 the buffers (Fig. 2c). To account not only for the expansion of already existing shrubs but
339 also for the establishment of juvenile shrubs, we also tracked the subset of sampling
340 buffers where patches of *J. communis* were absent in 1954. We observed *J. communis*
341 recruitment in 11.74% of the overall 860 sampling buffers. Recruitment occurred in 30.77%
342 of the northernmost site (Mt. Terminillo), compared to 33.87% of the southernmost site
343 (Mt. Ernici) and with the highest rate in Mt. Duchessa (49.23%).

344

345 *Figure 2. Overall distribution of shrub (green) and environmental (blue) time trends across the three sampling sites. We*
 346 *refer to sites as T = Mt. Terminillo, D = Mt. Duchessa, E = Mt. Ernici. A) ratio of average shrub cover within buffers at*
 347 *present (2012). B) average shrubs cover change between the present (2012) and the past (1954). C) average shrub*
 348 *cover recruitment, taking into account the average shrubs area in the present (2012) only in the sampling buffers without*
 349 *shrub patches in the past (1954). D) average grazing pressure change between the present (2012) and the past (1986).*
 350 *E) average winter precipitation changes between the present (2012) and the past (1954). F) average summer T change*
 351 *between the present (2012) and the past (1954).*

352


353 **3.2. Models of shrubs distribution**

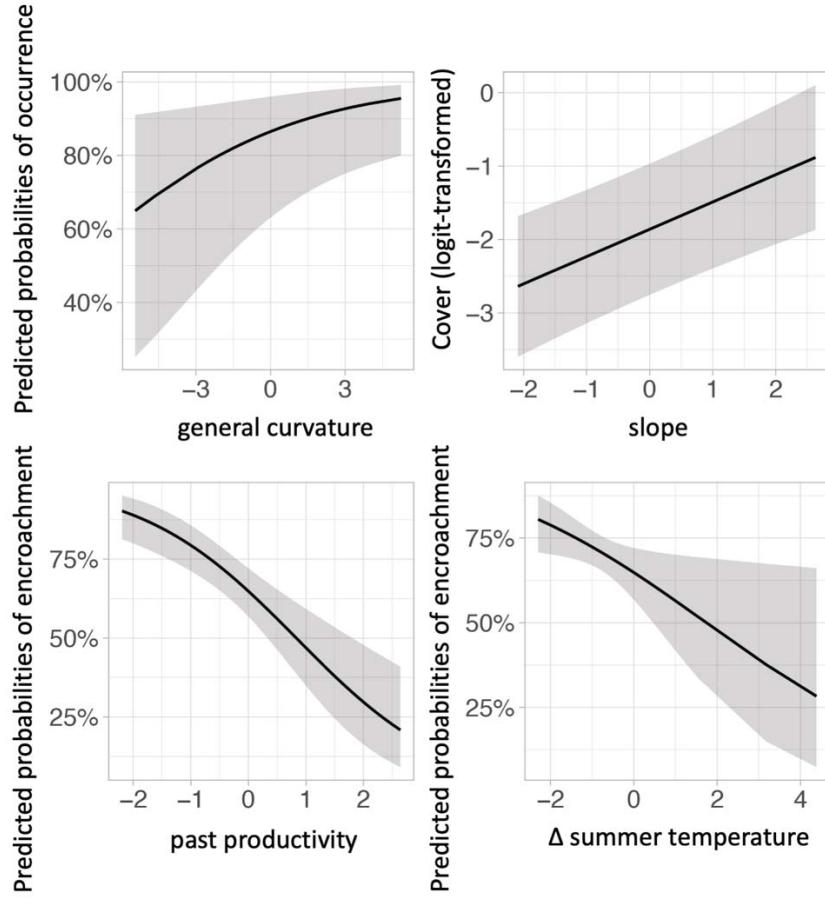
354 The best model explained 54.45% of the total variance in shrub occurrence (18.51%
355 marginal R^2). Variables retained in the final model were: summer temperature, winter
356 precipitation, spring snow cover, slope, general curvature and productivity (Fig. 3). Shrub
357 occurrence was positively related to general curvature (Fig. 3a), indicating that shrubs tend
358 to occur in hilly surfaces associated with runoff and thinner soils. In contrast, shrub
359 presence is less likely in buffers where spring snow, summer temperature, winter
360 precipitation and productivity are high. Finally, the productivity significantly interacts with
361 summer temperature and slope in the sense of areas with high productivity being much
362 more susceptible to the negative effect of summer temperature and the positive effect of
363 slope.

364 For shrub cover, the best model explained 47.99% of the total variance (9.12% marginal
365 R^2), and included the same predictors as the occurrence model, except for winter
366 precipitation and general curvature. Where shrubs were present, the cover was strongly
367 positively related to slope and NDVI (Fig. 4b). In contrast, shrub cover decreased with the
368 increase of summer temperature and spring snow. Finally, there was a significant
369 interaction of NDVI with summer precipitation and slope, indicating, similar to the shrub
370 occurrence, that the effect of temperature and slope on shrub cover was dependent on

371 local

productivity.

372


373 *Figure 3. Forest plots of occurrence (a), cover (b) and encroachment (c) regression models estimates. Numbers refer to*
374 *the effect size, the line to the confidence interval. In detail: slp = slope; gen_crv = general curvature; spr_snw = spring*
375 *snow; winP = winter precipitation; prd = productivity; P_winP = past winter precipitation; P_grz = past grazing; P_prd =*
376 *past productivity; Δ_smmT = difference in summer temperature.*

377

378 3.3. Models of shrub encroachment

379 The final shrub encroachment model explains 25.70% of the total variance (23.98%
380 marginal R²). Shrub encroachment since the 1950s in our study area is best explained by
381 slope and snow cover, but also by past winter precipitation, grazing pressure, productivity
382 and by the increase in summer temperature (Fig. 3). Shrub encroachment is particularly
383 strongly positively associated with slope and past winter precipitation. By contrast,
384 encroachment is negatively associated with spring snow cover, past grazing pressure,

385 past productivity and increase in summer temperature (Fig. 3 c-d). Finally, there is a
386 significant interaction of past productivity with slope, indicating that positive effects of slope
387 are more pronounced where local productivity is higher.

388

389 *Figure 4. Partial effects of regression models (values of predictors on the x-axis are centered and scaled): A) relationship*
390 *of the probability of occurrence with the general curvature (positive values indicate concave areas); B) relationship of*
391 *probabilities of occurrence with slope (positive values indicate steeper slopes); C) relationship of probability of*
392 *encroachment with past productivity (positive values indicate more productive areas); D) relationship of probability of*
393 *encroachment with variation in summer temperature (positive values indicate a temperature increase (C°)).*

394

395 **4. Discussion**

396 **4.1 Overall shrub distribution and temporal trends**

397 In our study area, dwarf-shrubs of *J. communis* represent a widely and heterogeneously
398 distributed vegetation type. This current widespread distribution of dwarf shrubs in the
399 alpine zone appears to be partially the result of large cover increases of *J. communis* since
400 the 1950s in the three sites. Indeed, between 1954 and 2012, we observed an increase in
401 shrub cover in more than half of our sampling buffers, suggesting a generalized
402 encroachment trend of dwarf shrubs rather than decline as observed in other areas (Ward
403 1977; García et al. 1999; Verheyen et al. 2009; Broome & Holl 2017).

404 Dwarf-shrubs are more widespread in the southernmost site (Mt. Ernici) than in the other
405 two, which is also the warmest, least productive and most grazed one. Temporal increases
406 in the cover across sites mirrored the present distribution patterns, with the greatest
407 increases occurring in the southernmost site (Mt. Ernici) and the lowest increases in the
408 northernmost site (Mt. Terminillo). These findings are partially in contrast with data
409 reported across latitudinal gradients in other Mediterranean mountains region (García et
410 al. 1999), where higher temperatures, overgrazing and summer drought were related to
411 declining populations of *J. communis* dwarf shrubs in the southernmost sites (Verheyen et
412 al. 2009). García (2007) has ascribed the *J. communis* decline to a strong recruitment
413 limitation under the summer drought stress, leading to seed abortion and mortality, and
414 reduced germination. Contrary to García (2007), recruitment does not seem to have been
415 limited by these factors in our sites: we observed the same high rate of recruitment (~30-

416 34%) in the northernmost and less grazed site and the southernmost and most grazed
417 site. These findings add to a large set of contrasting temporal trends of dwarf shrubs in the
418 alpine and arctic areas and suggest that, under certain conditions, encroachment by *J.*
419 *communis* may occur even at the boundary of their ecological tolerances.

420 **4.2 Drivers of shrubs distribution and temporal trends**

421 The drivers behind the current fine-scale spatial distribution in *J. communis* cover were
422 (with some exceptions) well aligned with the drivers of its temporal changes. Our models
423 confirmed that climatic conditions are important drivers of both shrub distribution and
424 encroachment, lending support to previous evidence of the role of the climate change as
425 an underlying cause of shrub dynamics in alpine areas (García Criado et al. 2020).
426 However, we showed that despite widespread encroachment of dwarf shrubs potentially
427 linked to large-scale climate and land-use changes, fine-scale distributional changes of *J.*
428 *communis* were highly dependent on topography and productivity. In fact, topographic
429 heterogeneity as well as variation in fine-scale productivity strongly shaped shrub patterns
430 in these Mediterranean summits, with an important modulating role of productivity on the
431 climate effects. Surprisingly, our results suggest that spatial variation in current grazing
432 pressure had no influence on the current dwarf-shrub distribution and encroachment.

433 **4.2.1. Grazing**

434 Although grazing and its abandonment is considered the main driver of shrub distribution
435 and encroachment in alpine areas (Theurillat & Guisan 2001; Dullinger et al., 2003; Kornac

436 et al., 2013), we found its effect significant only in the shrub encroachment model out of
437 the three constructed models (moreover, this was only true where the past grazing
438 intensity is concerned). Surprisingly, the signals of dwarf shrub encroachment were not
439 more significant in areas abandoned by grazing in the last decades, suggesting that
440 although land abandonment is an important driver of encroachment at a coarser scale, it
441 does not necessarily explain where encroachment will most likely occur at a fine scale. In
442 fact, moderate grazing appears even to promote *J. communis* invasion a) by creating open
443 spaces that can promote advancement and reducing competition with grasses and b) by
444 acting as a vector for juniper propagules (Broome & Holl 2017; Broome et al. 2017)

445 In particular, encroachment by *J. communis* was favored in the areas that were already
446 historically poorly grazed, while the probability of encroachment was lower in the areas
447 that were heavily grazed in the 1980s. This might be a long-lasting consequence of
448 grazing animals feeding on *Juniper* seedlings (Stankeva-Terziyska et al. 2020), which
449 caused high past seedling mortality and low recruitment in these areas of which we still
450 see the signals today. Another possible explanation is that it is a consequence of artificial
451 shrubs removal by shepherds in the historically most favorable grazing sites.

452 **4.2.2 Climate**

453 Contrary to our expectations, locally warmer summer conditions do not favor *J. communis*
454 in the central Apennines and dwarf-shrubs did not thrive where temperatures increased
455 the most as could be expected since climate warming has been previously pinpointed as

456 an important driver of shrub encroachment (Myers-Smith et al. 2011). Rather, their
457 distribution increased where warming effects were more moderate. The same lack of a
458 relationship of encroachment with higher increase in temperatures for *Juniperus communis*
459 was found in southwest Greenland (Trkal & Lehejček 2017, Lehejček et al., 2017).
460 However, in our case, these alpine shrubs in Mediterranean mountains are already at the
461 lower boundary of their geographical range and likely at the warm limits of their
462 temperature niche (Carrer et al. 2019). Our results suggest that further exacerbation of
463 heatwaves and drought events, as expected in climate change scenarios especially in
464 Mediterranean mountains, could eventually result in future generalized mortality and loss
465 of these shrubs, inverting the past encroachment trends. Although adult individuals are
466 highly drought-resistant, the reproduction of *J. communis* seems to be particularly
467 vulnerable to drought events and heat waves (García et al. 1999; Verheyen et al. 2009;
468 Gruwez et al. 2013; Gruwez et al. . For this reason, even though moderate temperature
469 increases seem to have led to the widespread *J. communis* encroachment in our sites,
470 conditions where temperatures have become too extreme were apparently not suitable for
471 new colonization and recruitment.

472 Another somewhat surprising result related to climate was that *J. communis* distribution
473 was negatively related to spring snow cover and winter precipitation. In alpine and arctic
474 biomes, winter snow cover and late (spring) snowmelt can be beneficial since this
475 combination results in high soil moisture that can be capitalized by plants during the next
476 growing season (Winkler et al. 2018) while offering protection from winter desiccation and

477 freezing events that can affect plants (Sturm et al. 2001; Sturm 2005; Hallinger et al. 2010;
478 Carlson et al. 2015; Francon et al. 2020) as well as the soil microbial community (Körner
479 2003). However, this advantage is not consistent across shrub species (Wheeler et al.
480 2014). In our study, *J. communis* distribution was indeed negatively related to spring snow
481 cover and winter precipitation, as also reported previously by Carrer (2019). Although
482 these may represent a benefit at the first sight, snow cover also prevents photosynthetic
483 activity of dwarf shrubs; thus, late spring snowmelt results in a delay in the beginning of
484 the growing season (Hallinger et al. 2010; Francon et al. 2017; Pellizzari et al. 2017) and
485 the advantage offered by snow cover seems to be counterbalanced by a shorter growing
486 season (García-Cervigón et al., 2018). In addition, *J. communis*' extreme tolerance to
487 winter drought stress (Mayr et al. 2010) allows it to inhabit snow-free areas and capitalize
488 on the benefits of a longer growing season. Suillivan's 2001 study (cited in Thomas et al.
489 2007) found a high mortality rate of *J. communis* under prolonged snow cover.

490 More in detail, in contrast to what we found for the current occurrence patterns of *J.*
491 *communis*, past winter precipitation seems to be a factor that favored the probability of
492 local shrub encroachment over time. A possible explanation is that *J. communis* juveniles,
493 the most fragile stages of the life cycle (Broome & Holl 2017), may have required snow
494 protection at least in the winter. This could explain why today we observe cover increases
495 where these juveniles best survived in the past. Also, areas with both higher winter
496 precipitation and early snowmelt may be affected by frequent freeze/thaw cycles (Freppaz
497 et al. 2007) which tend to increase the amount of available nutrients. This might represent

498 an additional mechanism through which early colonization by shrubs was favored in these
499 conditions. However, snow-cover in spring had also a negative effect on encroachment,
500 confirming that the positive effects of a longer growing season are overall greater than
501 those of snow protection for this hardy species.

502 **4.2.3. Topography and productivity**

503 Besides climatic factors, topography was another important driver of shrub distribution and
504 dynamics. In particular, the occurrence, cover and encroachment of shrubs were greater in
505 steeper conditions and in summit areas (positive, i.e. concave, curvature). This finding is in
506 line with previous evidence suggesting a strong ability of *J. communis* to colonize harsh
507 environments and infertile soils (Ward 1977). Indeed, higher slopes and positive
508 curvatures lead to increased erosion and wind desiccation (summit effect; Körner 2012)
509 that negatively affect soil formation, accumulation and persistence of snow as well as the
510 accumulation of surface runoff water (Geitner et al. 2021). Nonetheless, *J. communis* is a
511 typical shrub species of poor soils and harsh environments (Thomas et al. 2007) and, due
512 to its cushion form, can intercept runoff water, reducing soil erosion and wind desiccation
513 under its canopy. In this way, *J. communis* can create “islands of fertility” under its canopy
514 (DeLuca & Zackrisson 2007; Allegrezza et al. 2016) and decouple itself from local soil
515 conditions, thereby, once established, colonizing unfertile areas with higher slope and
516 curvature.

517 At the same time, locally high productivity generally reduced shrub occurrence and
518 encroachment, especially in warmer areas. The conservative strategy of *J. communis* and
519 its poor competitive ability (it suffers from the lack of light; Niinemets & Valladares 2010)
520 probably drives it to colonize areas where competition with other species is lower. Indeed,
521 the negative relation of shrub occurrence with productivity may support the hypothesis that
522 *J. communis*, like other light-demanding dwarf shrubs (e.g. *Pinus mugo*), may suffer if
523 shaded by dense grassland, especially in the early life stages (Dullinger et al. 2003).
524 Coherently, according to Broome & Holl (2017) and Broome et al. (2017), *J. communis*
525 may benefit from open space. Additionally, other studies support the hypothesis that these
526 aboveground patterns reflect belowground competition between herbaceous species and
527 shrubs based on their different root architecture systems. Indeed, Rosén (1988) found
528 strong belowground competition for water resources between *J. communis* individuals as
529 well as between *J. communis* and other woody and non-woody species. In particular,
530 shrubs may suffer from the better ability of shallow root systems of herbaceous plants to
531 capitalize on the spring and summer soil moisture (Morris et al. 2016) or the mechanical
532 resistance to the invasion of grassland root systems (Abbate et al. 1994). Moreover, *J.*
533 *communis* may remain relatively unaffected by poor soil productivity thanks to its ability to
534 obtain nitrogen and phosphorus from symbiosis with feather mosses (Houle & Babeux
535 1994; DeLuca & Zackrisson 2007), especially on the lateral branches. However, where
536 shrubs are able to survive competition with the surrounding herbaceous vegetation at the
537 juvenile stage (i.e. where they can establish and grow to maturity), soil productivity actually

538 favors juniper growth to cover greater areas (positive effect of productivity on shrub cover
539 in the cover model).

540

541 **5. Conclusion**

542 The overall goals of this work were to investigate the spatial and temporal patterns of a
543 widespread and characteristic alpine dwarf shrub in Mediterranean alpine environments,
544 and the drivers of these patterns using a comprehensive set of environmental factors
545 across a broad temporal span. Our results show that dwarf shrubs are widely distributed in
546 our study area and highlight a general encroachment trend over the last 60 years.
547 Nevertheless, we found that at a fine scale, these overall trends are strongly shaped by
548 the joint influence of the local topography, productivity, land use and micro-climate. In
549 particular, distribution and encroachment of dwarf shrubs appear to be particularly
550 associated with areas with harsher alpine environmental constraints and stronger resource
551 limitation (steep and summit areas with early snowmelt and lower productivity). Thus,
552 dwarf shrubs appear as a stress-tolerant, pioneer vegetation that is currently distributed
553 mainly over areas that are otherwise sparsely vegetated. Moreover, our study suggests
554 that dwarf shrubs could potentially cope with the future climatic conditions of high-altitude
555 environments, mainly in moderate temperature increase scenarios bringing about less
556 snow protection in winter combined with occasional heat waves and drought events in
557 summer. On the contrary, dwarf shrubs exhibit poor competitive ability to invade

558 grasslands compared to other woody vegetation and they are therefore likely to remain
559 restricted to the least productive areas. Overall, our study highlights that even where shrub
560 encroachment is widespread and appears linked to overall climatic and land-use changes,
561 fine-scale environmental heterogeneity may strongly influence the dynamics, spatial
562 distributions, and future responses of dwarf shrubs in the alpine vegetation mosaic.

563

564 **Acknowledgments**

565 We are also very grateful to Francesca Napoleone, Emanuele Pelella, Livia Benedini,
566 Giacomo Grosso and Giorgio Scarneccchia for their invaluable field and data collection
567 assistance. We are grateful to Jaroslav Janošek for improving the English language.
568 Finally, the Grant to the Department of Science Roma Tre University (MIUR-Italy,
569 Dipartimenti di Eccellenza, Articolo 1. Commi 314-337 Legge 232/2016) is gratefully
570 acknowledged.

571

572 **References**

573 Abbate, G., Di Marzio, P., & Gigli, M.P. (1994) Dynamics between *Nardus stricta* L.
574 grasslands and the *Vaccinium myrtillus* Willd. communities in the Monti Reatini
575 (Central Italy). *Fitosociologia* 26: 93-98.

576 Adler, P., Raff, D., & Lauenroth, W. (2001) The effect of grazing on the spatial
577 heterogeneity of vegetation. *Oecologia* 128: 465-479. 10.1007/s004420100737

578 Allegrezza, M., Corti, G., Cocco, S., Pesaresi, S., Chirico, G.B., Saracino, A., & Bonanomi,
579 G. (2016) Microclimate buffering and fertility island formation during *Juniperus*
580 *communis* ontogenesis modulate competition-facilitation balance. *Journal of*
581 *Vegetation Science* 27: 616-627. <https://doi.org/10.1111/jvs.12386>

582 Auken, O.W.V. (2009) Causes and consequences of woody plant encroachment into
583 western North American grasslands. *Journal of Environmental Management* 90
584 (10): 2931-2942. <https://doi.org/10.1016/j.jenvman.2009.04.023>

585 Bjorkman, A.D., García Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S.,
586 Westergaard, K.B., Lawler, J.P., et al. (2020) Status and trends in Arctic vegetation:
587 Evidence from experimental warming and long-term monitoring. *Ambio* 49: 678-692.
588 <https://doi.org/10.1007/s13280-019-01161-6>

589 Blasi, C., Di Pietro, R., Fortini, P., & Catonica, C. (2003) The main Plant community types
590 of the alpine belt of the Apennine chain. *Plant Biosystems* 137: 83–110.
591 <https://doi.org/10.1080/11263500312331351361>

592

593 Broome, A., & Holl, K. (2017) Can the site conditions required for successful natural
594 regeneration of juniper (*Juniperus communis* L.) be determined from a single
595 species survey? *Plant Ecology & Diversity* 10: 175-184.
596 <https://doi.org/10.1080/17550874.2017.1336186>

597 Broome, A., Long, D., Ward, L.K., & Park, K.J. (2017) Promoting natural regeneration for
598 the restoration of *Juniperus communis*: a synthesis of knowledge and evidence for
599 conservation practitioners. *Applied Vegetation Science* 20: 397-409.
600 <https://doi.org/10.1111/avsc.12303>

601 Buchwal, A., Sullivan, P. F., Macias-Fauria, M., Post, E., Myers-Smith, I. H., Stroeve, J. C.,
602 ... & Welker, J. M. (2020) Divergence of Arctic shrub growth associated with sea ice

603 decline. *Proceedings of the National Academy of Sciences*, 117(52), 33334-33344.
604 <https://doi.org/10.1073/pnas.2013311117>

605 Carlson, B.Z., Choler, P., Renaud, J., Dedieu, J.P., & Thuiller, W. (2015) Modelling snow
606 cover duration improves predictions of functional and taxonomic diversity for alpine
607 plant communities. *Annals of Botany* 116: 1023-1034. doi10.1093/aob/mcv041

608 Carlson, B.Z., Monica, C.C., Cédric, D., Richard, B., Wilfried, T., & Philippe, C. (2017)
609 Observed long-term greening of alpine vegetation -a case study in the French Alps.
610 *Environmental Research Letters* 12: 114006. <https://doi.org/10.1088/1748-9326/aa84bd>

612 Carrer, M., Pellizzari, E., Prendin, A.L., Pividori, M., & Brunetti, M. (2019) Winter
613 precipitation - not summer temperature - is still the main driver for Alpine shrub
614 growth. *Science of The Total Environment* 682: 171-179.
615 <https://doi.org/10.1016/j.scitotenv.2019.05.152>

616 Cutini, M., Marzialetti, F., Barbato, G., Rianna, R., & Theurillat, J.-P. (2021) Bioclimatic
617 pattern in a Mediterranean mountain area: assessment from a classification
618 approach on a regional scale. *International Journal of Biometeorology* 65: 1085-
619 1097. <https://doi.org/10.1007/s00484-021-02089-x>

620 DeLuca, T.H., & Zackrisson, O. (2007) Enhanced soil fertility under *Juniperus communis* in
621 arctic ecosystems. *Plant and Soil* 294: 147-155. DOI 10.1007/s11104-007-9242-4

622 Dullinger, S., Dirnböck, T., & Grabherr, G. (2003) Patterns of shrub invasion into high
623 mountain grasslands of the Northern calcareous Alps, Austria. *Arctic, Antarctic, and*
624 *Alpine Research* 35: 434-441. [https://doi.org/10.1657/1523-0430\(2003\)035\[0434:POSIIH\]2.0.CO;2](https://doi.org/10.1657/1523-0430(2003)035[0434:POSIIH]2.0.CO;2)

626 Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Boulanger-Lapointe, N.,
627 Cooper, E.J., et al. (2012) Plot-scale evidence of tundra vegetation change and
628 links to recent summer warming. *Nature Climate Change* 2: 453-457.
629 <https://doi.org/10.1038/nclimate1465>

630 Farjon, A. 2010. *A handbook of the world's conifers*. Brill, Leiden; Boston.

631 Filippa, G., Cremonese, E., Galvagno, M., Isabellon, M., Bayle, A., Choler, P., Carlson,
632 B.Z., et al. (2019) Climatic drivers of greening trends in the Alps. *Remote Sensing*
633 11: 2527. <https://doi.org/10.3390/rs11212527>

634 Fitter, A.H., & Jennings, R.D. (1975) The Effects of sheep grazing on the growth and
635 survival of seedling *Junipers (Juniperus communis L.)*. *Journal of Applied Ecology*
636 12 (2): 637-642. <https://doi.org/10.2307/2402179>

637 Francon, L., Corona, C., Roussel, E., Lopez Saez, J., & Stoffel, M. (2017) Warm summers
638 and moderate winter precipitation boost *Rhododendron ferrugineum* L. growth in the
639 Taillefer massif (French Alps). *Science of The Total Environment* 586: 1020-1031.
640 <https://doi.org/10.1016/j.scitotenv.2017.02.083>

641 Francon, L., Corona, C., Till-Bottraud, I., Choler, P., Carlson, B.Z., Charrier, G., Améglio,
642 T., et al. (2020) Assessing the effects of earlier snow melt-out on alpine shrub
643 growth: the sooner the better? *Ecological Indicators* 115: 106455.
644 <https://doi.org/10.1016/j.ecolind.2020.106455>

645 Freppaz, M., Williams, B.L., Edwards, A.C., Scalenghe, R., & Zanini, E. (2007) Simulating
646 soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P
647 availability. *Applied Soil Ecology* 35: 247-255.
648 <https://doi.org/10.1016/j.apsoil.2006.03.012>

649 Gamm, C.M., Sullivan, P.F., Buchwal, A., & Dial, R.J. (2018) Declining growth of
650 deciduous shrubs in the warming climate of continental western Greenland. *Journal
651 of Ecology* 106: 640-654. DOI: <https://doi.org/10.1111/1365-2745.12882>

652 García, D. (2007) Effects of seed dispersal on *Juniperus communis* recruitment on a
653 Mediterranean mountain. *Journal of Vegetation Science* 12: 839-848.
654 <https://doi.org/10.2307/3236872>

655 García Criado, M., Myers-Smith, I.H., Bjorkman, A.D., Lehmann, C.E.R., & Stevens, N.
656 (2020) Woody plant encroachment intensifies under climate change across tundra
657 and savanna biomes. *Global Ecology and Biogeography* 29: 925-943.
658 <https://doi.org/10.1111/geb.13072>

659 García, D., Zamora, R., Hódar, J.A., & Gómez, J.M. (1999) Age structure of *Juniperus
660 communis* L. in the Iberian peninsula: Conservation of remnant populations in
661 Mediterranean mountains. *Biological Conservation* 87: 215-220.
662 [https://doi.org/10.1016/S0006-3207\(98\)00059-7](https://doi.org/10.1016/S0006-3207(98)00059-7)

663 Geitner, C., Mayr, A., Rutzinger, M., Löbmann, M.T., Tonin, R., Zerbe, S., Wellstein, C., et
664 al. (2021) Shallow erosion on grassland slopes in the European Alps –
665 Geomorphological classification, spatio-temporal analysis, and understanding snow
666 and vegetation impacts. *Geomorphology* 373: 107446.
667 <https://doi.org/10.1016/j.geomorph.2020.107446>

668 Giorgi, F., & Lionello, P. (2008) Climate change projections for the Mediterranean region.
669 *Global and Planetary Change* 63: 90-104.
670 <https://doi.org/10.1016/j.gloplacha.2007.09.005>

671 Gruwez, R., De Frenne, P., De Schrijver, A., Leroux, O., Vangansbeke, P., & Verheyen, K.
672 (2014) Negative effects of temperature and atmospheric depositions on the seed

673 viability of common juniper (*Juniperus communis*). Annals of Botany 113: 489-500.
674 <https://doi.org/10.1093/aob/mct272>

675 Gruwez, R., Leroux, O., De Frenne, P., Tack, W., Viane, R., & Verheyen, K. (2013) Critical
676 phases in the seed development of common juniper (*Juniperus communis*). Plant
677 Biology 15: 210-219. <https://doi.org/10.1111/j.1438-8677.2012.00628.x>

678 Hallinger, M., Manthey, M., & Wilmking, M. (2010) Establishing a missing link: warm
679 summers and winter snow cover promote shrub expansion into alpine tundra in
680 Scandinavia. New Phytologist 186: 890-899. [10.1111/j.1469-8137.2010.03223.x](https://doi.org/10.1111/j.1469-8137.2010.03223.x)

681 Houle, G., & Babeux, P. (1994) Fertilizing and mulching influence on the performance of
682 four native woody species suitable for revegetation in subarctic Quebec. Canadian
683 Journal of Forest Research 24: 2342-2349. <https://doi.org/10.1139/x94-302>

684 Hudson, J.M.G., Henry, G.H.R., & Cornwell, W.K. (2011) Taller and larger: shifts in Arctic
685 tundra leaf traits after 16 years of experimental warming. Global Change Biology
686 17: 1013-1021. <https://doi.org/10.1111/j.1365-2486.2010.02294.x>

687 Wheeler, J.A., Hoch, G., Cortés, A.J., Sedlacek, J., Wipf, S., & Rixen, C. (2014) Increased
688 spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175:
689 219-229. DOI 10.1007/s00442-013-2872-8

690 Komac, B., Kefi, S., Nuche, P., Escós, J., & Alados, C.L. (2013) Modeling shrub
691 encroachment in subalpine grasslands under different environmental and
692 management scenarios. Journal of Environmental Management 121: 160-169.
693 <https://doi.org/10.1016/j.jenvman.2013.01.038>

694 Körner, C. (Ed.) (2003) Alpine Plant Life. 2nd edition. Springer-Verlag Berlin Heidelberg.

695 Körner, C. (Ed.) (2012) Alpine treelines. 1nd edition. Springer Basel.

696

697 Lehejček, J., Buras, A., Svoboda, M., & Wilmking, M. (2017) Wood anatomy of *Juniperus*
698 *communis*: a promising proxy for palaeoclimate reconstructions in the Arctic. *Polar*
699 *Biology*, 40(5), 977-988.

700 Löbmann, M.T., Tonin, R., Stegemann, J., Zerbe, S., Geitner, C., Mayr, A., & Wellstein, C.
701 (2020) Towards a better understanding of shallow erosion resistance of subalpine
702 grasslands. *Journal of Environmental Management* 276: 111267.
703 <https://doi.org/10.1016/j.jenvman.2020.111267>

704 Löfgren, O., Prentice, H.C., Moechel, T., Schmid, B.C., Hall, K. (2018) Landscape history
705 confounds the ability of the NDVI to detect fine-scale variation in grassland
706 communities. *Method in Ecology and Evolution* 9: 2008-2019. DOI: 10.1111/2041-
707 210X.13036

708 Mayr, S., Hacke, U., Schmid, P., Schweinbacher, F., & Gruber, A. (2006) Frost Drought in
709 Conifers at the Alpine Timberline: Xylem Dysfunction and Adaptations. *Ecology*,
710 87(12), 3175–3185. [https://doi.org/10.1890/0012-9658\(2006\)87\[3175:fdicat\]2.0.co;2](https://doi.org/10.1890/0012-9658(2006)87[3175:fdicat]2.0.co;2)

711 Morris, C., Badik, K.J., Morris, L.R., & Weltz, M.A. (2016) Integrating precipitation, grazing,
712 past effects and interactions in long-term vegetation change. *Journal of Arid*
713 *Environments* 124: 111–117. <http://dx.doi.org/10.1016/j.jaridenv.2015.08.005>

714 Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., et al. (2020) Complexity revealed in the
715 greening of the Arctic. *Nature Climate Change* 10: 106-117.
716 <https://doi.org/10.1038/s41558-019-0688-1>

717 Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape,
718 K.D. et al. (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and

719 rese arch priorities. Environmental Research Letter 6: 045509.
720 <https://doi.org/10.1088/1748-9326/6/4/045509>

721 Myers-Smith, I.H., Hallinger, M., Blok, D., Sass-Klaassen, U., Rayback, S.A., Weijers, S.,
722 J., Trant, A.J., et al. (2015) Methods for measuring arctic and alpine shrub growth:
723 A review. Earth-Science Reviews 140: 1–13.
724 <http://dx.doi.org/10.1016/j.earscirev.2014.10.004>

725 Myers-Smith, I.H., & Hik, D.S. (2018) Climate warming as a driver of tundra shrubline
726 advance. Journal of Ecology 106: 547–560. DOI: 10.1111/1365-2745.12817

727 Niinemets, Ü., & Valladares, F. (2010) Tolerance to shade, drought, and waterlogging of
728 temperate Northern Hemisphere trees and shrubs. Ecological Monograph 76, 4:
729 521-547. [https://doi.org/10.1890/0012-9615\(2006\)076\[0521](https://doi.org/10.1890/0012-9615(2006)076[0521)

730 Pellizzari, E. (2014) Winter precipitation effect in a mid-latitude temperature-limited
731 environment: the case of common juniper at high elevation in the Alps.
732 Environmental Research Letters 9: 104021. <https://doi.org/10.1088/1748-9326/9/10/104021>

734 Pellizzari, E., Camarero, J.J., Gazol, A., Granda, E., Shetti, R., Wilmking, M., Moiseev, P.,
735 et al. (2017) Diverging shrub and tree growth from the Polar to the Mediterranean
736 biomes across the European continent. Global Change Biology 23: 3169–3180.
737 <https://doi.org/10.1111/gcb.13577>

738 Riley, S.J., De Gloria, S.D., & Elliot, R. (1999) Index that quantifies topographic
739 heterogeneity. Intermountain Journal of Science 5, 1-4: 23-27.

740 Rosén, E. (1988) Development and seedling establishment within a *Juniperus communis*
741 stand on Öland, Sweden. Acta Botanica Neerlandica 37: 193–201.
742 <https://doi.org/10.1111/j.1438-8677.1988.tb02128.x>

743 Rosen, D., & Barthlott, W. (1991) Ökologische Aspekte der Ultraviolett-Reflexion von
744 Blumen in Mitteleuropa, besonders der Eifel. *Decheniana* 144: 72–112.

745 Stankeva Terziyska, T., Tsakalos, J., Bartha, S., Apostolova, I., Sopotlieva, D.,
746 Zimmermann, M.Z., Szabo, G., & Wellstein, C. (2020) Species and functional
747 differences between subalpine grasslands with and without dwarf shrub
748 encroachment. *Plant Biosystems* 154: 568-577.
749 <https://doi.org/10.1080/11263504.2019.1651780>

750 Sturm, M., Douglas, T., Racine, C., Liston, G.E. (2005) Changing snow and shrub
751 conditions affect albedo with global implications. *Journal of Geophysical Research*
752 110: G01004. <https://doi.org/10.1029/2005JG000013>

753 Sturm, M., Mcfadden, J.P., Liston, G.E., Iii, F.S.C., Racine, C.H., & Holmgren, J. (2001)
754 Snow-shrub interactions in arctic tundra: a hypothesis with climatic implications.
755 *Journal of Climate* 14: 336-344.

756 Tape, K., Sturm, M., & Racine, C. (2006) The evidence for shrub expansion in Northern
757 Alaska and the Pan-Arctic. *Global Change Biology* 12: 686–702.
758 <https://doi.org/10.1111/j.1365-2486.2006.01128.x>

759 Tappeiner, U., Tappeiner, G., Aschenwald, J., Tasser, E., & Ostendorf, B. (2001) GIS-
760 based modelling of spatial pattern of snow cover duration in an alpine area.
761 *Ecological Modelling* 138, 1-4: 265-275. [https://doi.org/10.1016/S0304-3800\(00\)00407-5](https://doi.org/10.1016/S0304-3800(00)00407-5)

763 Theurillat, J.P., & Guisan, A. (2001) Potential impact of climate change on vegetation in
764 the European Alps: A review. *Climatic Change* 50: 77–109.
765 <https://doi.org/10.1023/A:1010632015572>

766 Thomas, P.A., El-Barghathi, M., & Polwart, A. (2007) Biological Flora of the British Isles:
767 *Juniperus communis* L. Journal of Ecology 95: 1404–1440.
768 <https://doi.org/10.1111/j.1365-2745.2007.01308.x>

769 Tumajer, J., Buras, A., Camarero, J. J., Carrer, M., Shetti, R., Wilmking, M., et al. (2021)
770 Growing faster, longer or both? Modelling plastic response of *Juniperus communis*
771 growth phenology to climate change. Global Ecology and Biogeography.
772 <https://doi.org/10.1111/geb.13377>

773 Verheyen, K., Adriaenssens, S., Gruwez, R., Michalczyk, I.M., Ward, L.K., Rosseel, Y.,
774 Van den Broeck, A., & García, D. (2009) *Juniperus communis*: victim of the
775 combined action of climate warming and nitrogen deposition? Plant Biology 11: 49–
776 59. <https://doi.org/10.1111/j.1438-8677.2009.00214.x>

777 Ward, L.K. (1977) The conservation of *Juniper*: the associated fauna with special
778 reference to southern England. The Journal of Applied Ecology 14: 81-120.
779 <https://doi.org/10.2307/2401829>

780 Winkler, D.E., Butz, R.J., Germino, M.J., Reinhardt, K., & Kueppers, L.M. (2018) Snowmelt
781 timing regulates community composition, phenology, and physiological performance
782 of alpine plants. Frontiers in Plant Science 9: 1140.
783 <https://doi.org/10.3389/fpls.2018.01140>

784 Wipf, S., & Rixen, C. (2016) A review of snow manipulation experiments in arctic and
785 alpine tundra ecosystems. Polar Research 29: 95–109.
786 <https://doi.org/10.1111/j.1751-8369.2010.00153.x>

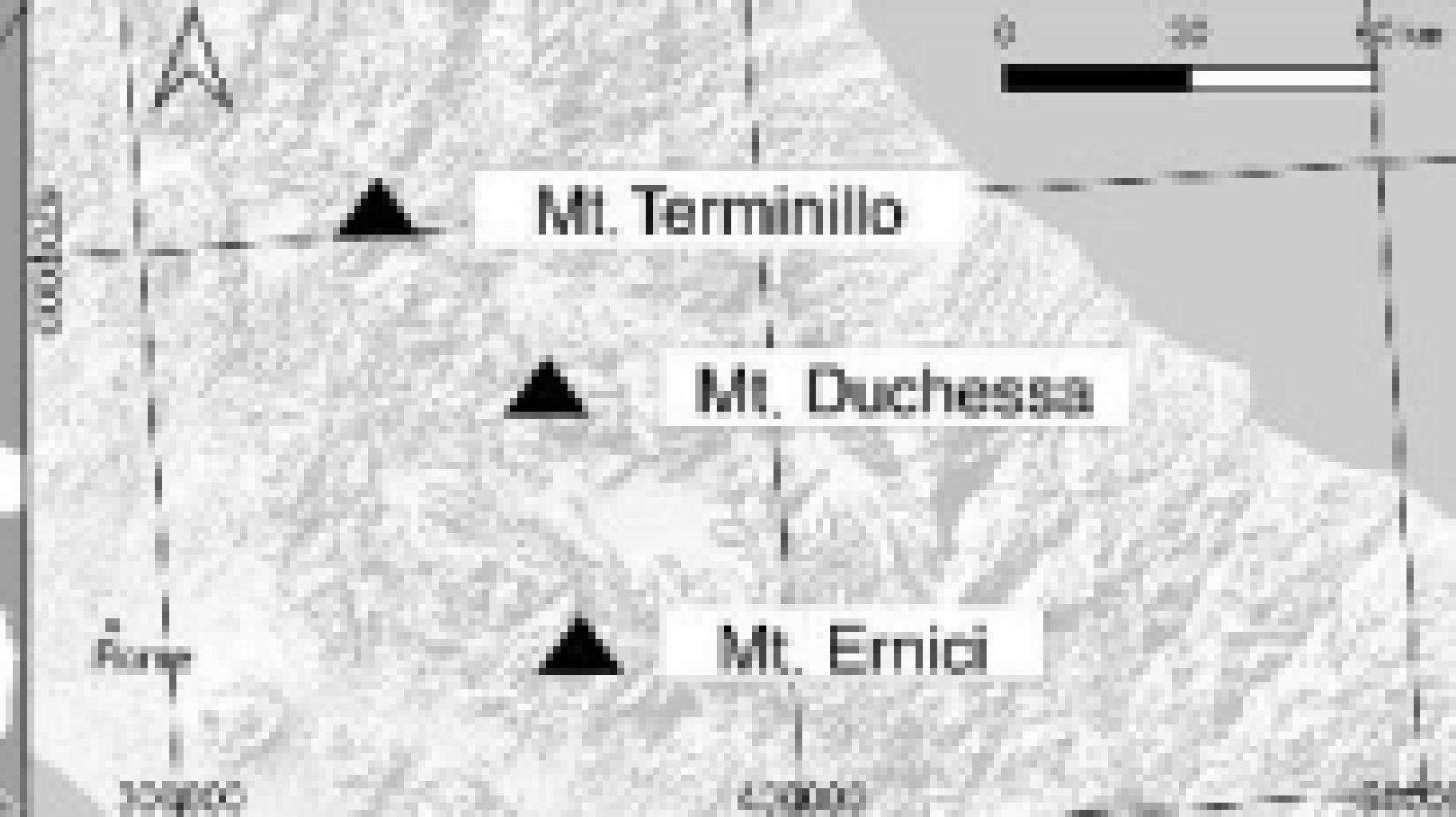
787 Wipf, S., Stoeckli, V., & Bebi, P. (2009) Winter climate change in alpine tundra: plant
788 responses to changes in snow depth and snowmelt timing. Climatic Change 94:
789 105–121. DOI 10.1007/s10584-009-9546-x

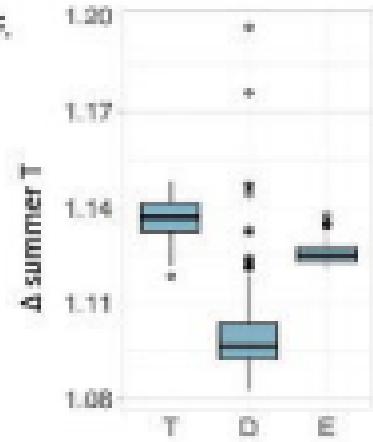
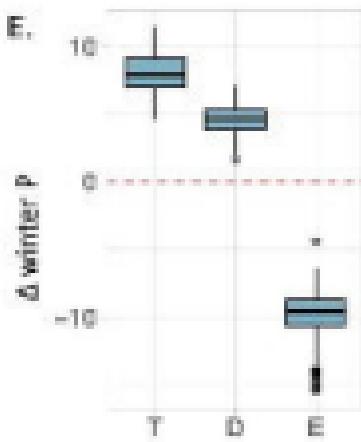
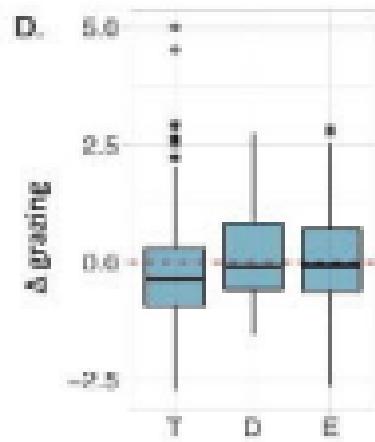
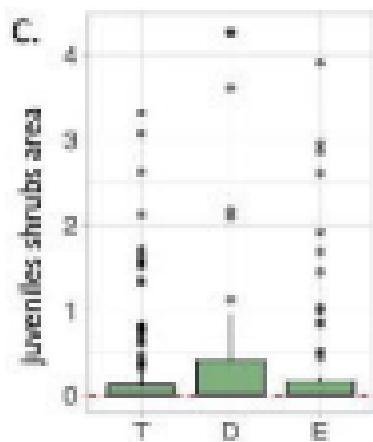
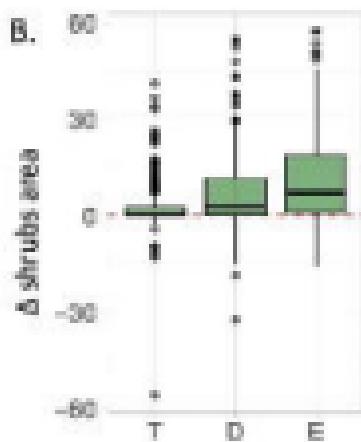
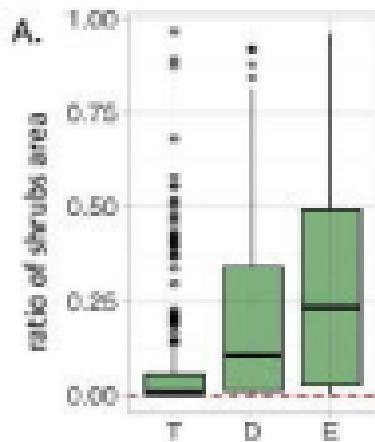
790 Ylänen, H., Stark, S., & Tolvanen, A. (2015) Vegetation shift from deciduous to evergreen
791 dwarf shrubs in response to selective herbivory offsets carbon losses: evidence
792 from 19 years of warming and simulated herbivory in the subarctic tundra. Global
793 Change Biology 21: 3696–3711. <https://doi.org/10.1111/gcb.12964>

794

795 Appendix S1: land-use change in the study area

796 Appendix S2: grazing index validation

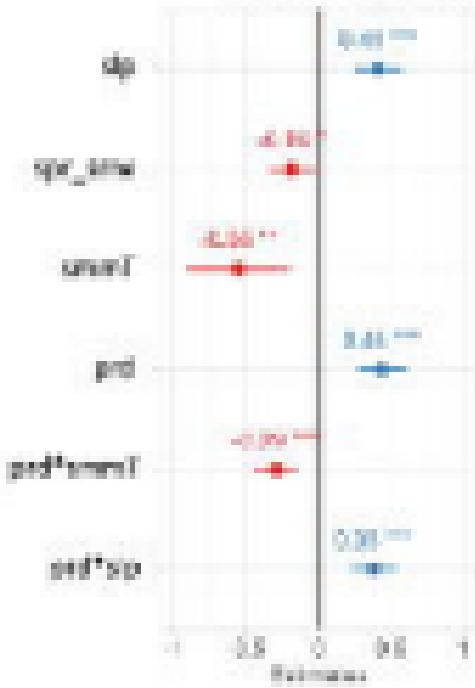

797 Appendix S3: downscaling of the climatic layer

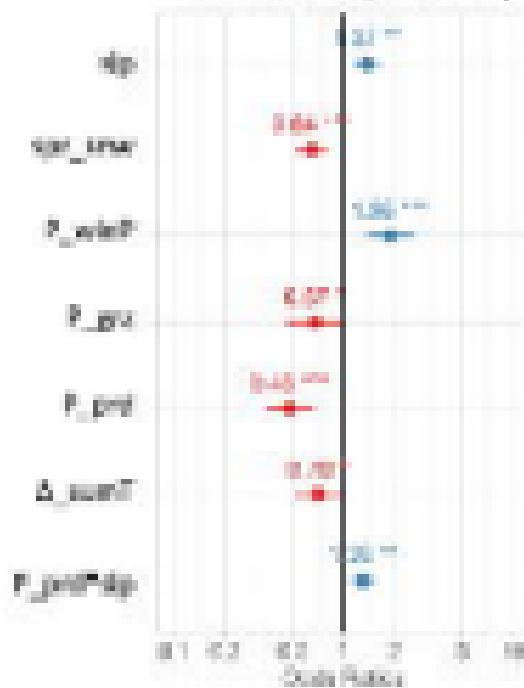






798

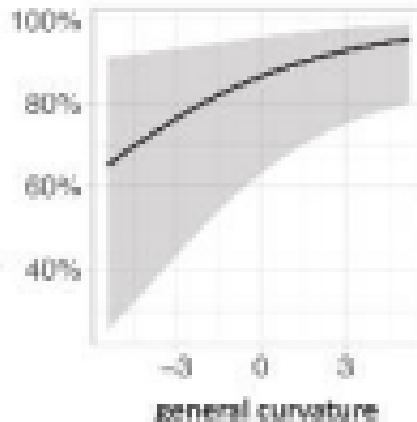
799

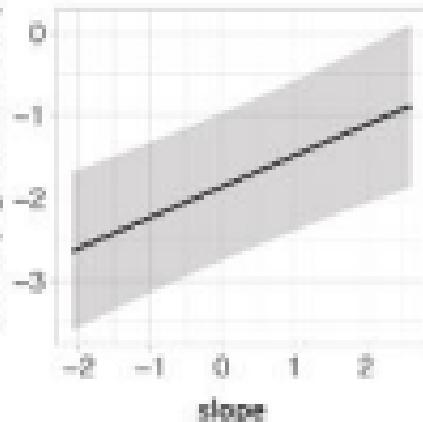

800

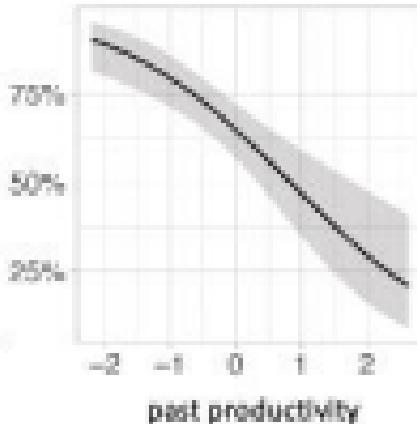
801

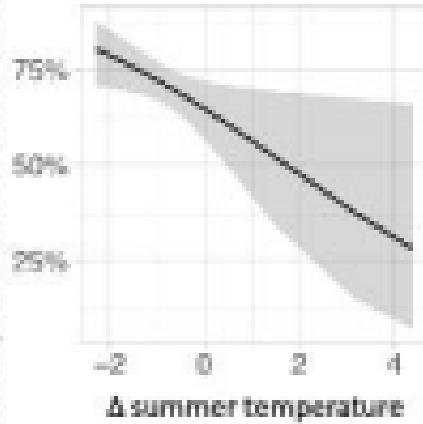



abundance (2012)


abundance (2012)


abundance (2014-2017)


Predicted probabilities of occurrence


Cover (logit-transformed)

Predicted probabilities of encroachment

Predicted probabilities of encroachment

