

1 Assessing microbial growth monitoring
2 methods for challenging strains and
3 cultures

4

5 Damon Brown¹, Raymond J. Turner^{1*}

6

7

8

9 ¹ Biological Sciences, University of Calgary, Calgary, Alberta, Canada

10

11 * Corresponding author

12 E-mail: turnerr@ucalgary.ca (RT)

13

14 **Abstract**

15 This is a paper focusing on the comparison of growth curves using field relevant testing methods
16 and moving away from colony counts. Challenges exist to explore antimicrobial growth of fastidious
17 strains, poorly culturable bacterial and bacterial communities of environmental interest. Thus, various
18 approaches have been explored to follow bacteria growth that can be an efficient surrogate for classical
19 optical density or colony forming unit measurements.

20 Here we tested optical density, ATP assays, DNA concentrations and 16S rRNA qPCR as means to
21 monitor pure culture growth of six different species including *Acetobacterium woodii*, *Bacillus subtilis*,
22 *Desulfovibrio vulgaris*, *Geoalkalibacter subterraneus*, *Pseudomonas putida* and *Thauera aromatica*.
23 Optical density is an excellent, rapid monitoring method of pure culture planktonic cells but cannot be
24 applied to environmental or complex samples. ATP assays provide rapid results but conversions to cell
25 counts may be misleading for different species. DNA concentration is a very reliable technique which can
26 be used for any sample type and provides genetic materials for downstream applications. qPCR of the 16S
27 rRNA gene is a widely applicable technique for monitoring microbial cell concentrations but is susceptible
28 to variation between replicates. DNA concentrations were found to correlate the best with the other three
29 assays and provides the advantages of rapid extraction, consistency between replicates and potential for
30 downstream analysis, DNA concentrations is determined to be the best universal monitoring method for
31 complex environmental samples.

32

33 **Introduction**

34 Assessing growth is fundamental to nearly all microbial studies. On the surface this is an easy
35 procedure done in introductory courses worldwide [1]. However, it turns out this routine experiment is

36 not as trivial as one thinks. For easily culturable aerobic species, the process is relatively simple as the
37 growth medium need only contain the appropriate carbon sources and essential nutrients to culture the
38 typical well studied model microbes. After the appropriate growth medium has been selected, direct cell
39 counting on agar plates can be performed for accurate quantification providing colony forming units (CFU)
40 or viable cell count (VCC) values. However, it has become apparent that this method restricts the scope
41 of species possible for study and cannot but use to study complex environments [2–4]. For more rapid
42 analysis, optical density (OD) is evaluating the scattering of light by cells, either using the classical Klett meter
43 or an absorption spectrometer set to 550 or 600 nm. This however is also limiting due to suspended
44 material in various growth media and the inability to decipher living vs dead vs flocculation from
45 extracellular polysaccharides. Additionally, size and shape of cells effect scattering and can lead to
46 misinterpretation of cell numbers. Related rapid assays includes color dependant activity assays
47 (colloquially known as bug bottles or biological activity reaction test (BART) bottles [5]), microscopy (grid
48 cell counting and live dead staining) [6–8], dyes such as crystal violet or 5-(4,6-dichlorotriazinyl)
49 aminofluorescein (DTAF) for total biomass staining [9,10] or metabolic dyes to determine actively
50 respiring cells such as 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) [10]. Fluorescent *in situ* hybridization
51 (FISH) is a target-specific approach which relies on a fluorescent reporter attached to a nucleic probe to
52 determine the presence and abundance of the target sequence. This can be used for total or genera-
53 specific cell enumeration when targeting a gene such as 16S rRNA [11,12]. Now in our genomics era, 16S
54 rRNA quantification using quantitative PCR (qPCR) is gaining popularity with [13] or without sequencing
55 databases [14,15].

56

57 For anaerobes, accurate cell enumeration becomes increasingly more difficult as different
58 anaerobes will require different oxidation-reduction potentials (ORP) to thrive; ≤ -100 mV for obligate
59 anaerobes [16] and ≤ -330 mV for strict anaerobes [17]. Following the improved Hungate culturing

60 technique of anaerobes [18,19], it is possible to isolate and enumerate pure culture anaerobes [20,21]
61 but direct microscopy and fluorescent in-situ hybridization (FISH) and more common enumeration
62 techniques [22–25]. A review of anaerobic culturing and quantification is available elsewhere [26]. In
63 many instances, the difficulty of culturing anaerobes forces researchers to choose indirect methods to
64 assess growth and activity, such as rates of substrate consumption or end-product production, where an
65 easily quantified chemical is sampled and measured at time points in favor of actual cell counting [27,28].
66 The rate of consumption or production relates to cell growth through the Monod equation [29]. It should
67 be noted that there is a distinction between cell counting and microbial activity, and the need to monitor
68 one or the other or both depends on the research, environmental, industrial, or medical question being
69 asked.

70 The above exemplify the issues of accurate quantification of aerobic and anaerobic pure cultures.
71 This task becomes exponentially more difficult when considering environmental samples which have
72 diverse, unspecified microbial species present. In such examples, highly specific monitoring methods are
73 no longer viable to determine accurate cell counts so general techniques must be used. The typical trade
74 off when transitioning to general monitoring from selective is the loss of specificity (e.g. the presence of
75 a specific pathogen) for the gain of total cell counts. General quantification is an important technique for
76 the monitoring of hydrocarbon remediation efforts and wastewater treatments [30,31].

77 In this study, we take the opportunity to review the various methods to evaluate microbial
78 growth. We then compare select testing methods used in environmental/industrial applications. From
79 our groups interest we will look at ATP levels and 16S rRNA qPCR which are being adapted in oil and
80 gas industries in western Canada. These are then compared to traditional OD₆₀₀ and qPCR targeting 16S
81 rRNA to determine how reliable, complementary and efficient these differing methods are.

83 Materials and methods

84

85 Cultures and media

86 Six pure cultures were used in this study acquired from DSMZ. The cultures are *Acetobacterium*
87 *woodii* (DSM 1030), *Bacillus subtilis* (DSM 10), *Desulfovibrio vulgaris* (DSM 644), *Geoalkalibacter*
88 *subterraneus* (DSM 29995), *Pseudomonas putida* (DSM 291), and *Thauera aromatica* (DSM 6984). Each
89 of the chosen species has a representative genome sequenced on NCBI and their details are in Table 1.
90 Pure cultures were recovered from -70 °C freezer stocks (10% glycerol) into the suggested media (DSM
91 medium 135, medium 1, medium 63, medium 1249, medium 1a, and medium 586, respectively) prepared
92 in 20 mL aliquots and sealed in 26 mL Hungate tubes with anaerobic headspaces (either N₂ or N₂/CO₂).
93 Fresh media tubes were inoculated with the freezer recovery culture and incubated at the recommended
94 temperatures for 7 days, then fresh media tubes were inoculated in triplicate with a 10% inoculant.

95 **Table 1. Representative sequenced genome chosen and identified 16S rRNA copy numbers**

Species and strain	NCBI accession number	Genome length (bp)	16S rRNA copy number*
<i>Acetobacterium woodii</i> DSM 1030	CP002987.1	4044777	5
<i>Bacillus subtilis subtilis</i> 168	CP010052	4215619	10
<i>Desulfovibrio vulgaris</i> Miyazaki F	CP001197.1	4040304	4
<i>Geoalkalibacter subterraneus</i> Red1	CP010311	3475523	4
<i>Pseudomonas putida</i> KT2440	AE015451.2	6181873	7
<i>Thauera aromatica</i> MZ1T	CP001281.2	4496212	4

96 *Counted manually from NCBI sequences

97

98 **Sampling and testing**

99 Once inoculated, the fresh cultures were sampled in a time course for testing. At each point,
100 sterile syringe and needles were used to aseptically remove 2 mL. This aliquot was split, 1 mL used to
101 measure OD₆₀₀ in a Hitachi U-2000 Spectrophotometer (reference sample was uninoculated media) and
102 was then recovered and used for DNA extraction in the MPBio FastDNA® Spin Kit. The DNA concentration
103 was measured using Invitrogen Qubit™ fluorometer and the Quant-iT™ dsDNA HS assay kit. Following
104 quantification, DNA was cleaned using the OneStep™ PCR inhibitor removal kit (Zymo Research) prior to
105 being used in quantitative PCR (qPCR). The other 1 mL was consumed to measure ATP using the LifeCheck
106 ATP test kits (OSP).

107 **Quantitative PCR**

108 qPCR was done targeting the 16S rRNA gene, specifically 515-809 (variable region 4) using
109 modified primers from Caporaso *et al.* [32]. Primer sequences are provided in Table 2. Starting
110 quantification was determined using synthetic gBlocks purchased from IDT (IDT dna.com) at
111 concentrations of 10⁸⁻³ copies/µL. The gBlock used contained the target 16S rRNA sequence flanked by
112 two multidrug resistance genes (for use in other studies), separated by sequences of ten thymines. The
113 entire gBlock sequence is provided in Table 3. Reaction mixtures were prepared to a total volume of 20
114 µL, with 10 µL PowerUp™ SYBR™ Green 2X Master Mix (appliedbiosystems), 1.2 µL 10 µM 515_F, 0.6 µL
115 10 µM 806_R, 6.2 µL nuclease free water and 2 µL DNA template. Thermocycling was performed in a
116 BioRad CFX96 Real-Time PCR System with the following protocol: 50 °C – 2 minutes, 95 °C – 2 minutes
117 followed by 50 cycles of 95 °C for 45 seconds, 55 °C for 30 seconds and 72 °C for 45 seconds.

118 **Table 2. Primer sequences used in quantitative PCR**

Primer name	Sequence (5'-3')	Melting Temperature (°C)
519_F	CAG CMG CCG CGG TAA	57.6
806_R	GGA CTA CHV GGG TWT CTA AT	50.7

119 Nucleotide codes: H = A/C/T; M = A/C; V = A/C/G; W = A/T

120 **Table 3. gBlock DNA sequence**

gBlock DNA sequence (5'-3') (Multidrug resistance efflux pump gene A - Universal 16S rRNA – Multidrug resistance efflux pump gene A)
Multidrug resistance gene A amplicon <u>TTTTTTTTTTT</u> <u>GTG CCA GCA GCC GCG GTA ATA CAG AGG GTG</u> <u>CAA GCG TTA ATC GGA ATT ACT GGG CGT AAA GCG CGC GTA GGT GGT TTG TTA AGT TGG ATG TGA AAG</u> <u>CCC CGG GCT CAA CCT GGG AAC TGC ATC CAA AAC TGG CAA GCT AGA GTA CGG TAG AGG GTG GTG</u> <u>GAA TTT CCT GTG TAG CGG TGA AAT GCG TAG ATA TAG GAA GGA ACA CCA GTG GCG AAG GCG ACC</u> <u>ACC TGG ACT GAT ACT GAC ACT GAG GTG CGA AAG CGT GGG GAG CAA ACA GGA TTA GAT ACC CTG</u> <u>GTA GTC C</u> <u>TTTTTTTTT</u> Multidrug resistance gene B amplicon

121

122

123 **Cell count calculations**

124 For direct comparison, cell counts, such as they are inferred and calculated for each method, were
125 calculated. OD₆₀₀ was not converted to cell count equivalent in presented data. The chosen ATP method
126 produces relative light units (RLU) per milliliter, as 1 mL of each culture was used in the assay, the microbial
127 equivalents (ME) produced are used directly as calculated cell counts. DNA concentrations were converted
128 into a cell count proxy using the assumption of 2 fg of DNA per cell, taken as an average from values
129 reported by Bakken and Olson, 1989 [33]. To convert qPCR values into cell counts, the copies of 16S rRNA

130 genes per μL were converted to copies mL^{-1} , then divided by the 16S rRNA gene copies counted in the
131 NCBI sequenced genomes (see Table 1).

132

133 **Results**

134

135 **Optical Density**

136 Growth of each culture was monitored using OD_{600} (reference media was each species'
137 uninoculated media). The results of the time course sampling using OD_{600} for each species is shown in
138 Figure 1, panels A-F. It is important to note the time courses and the OD_{600} scales are all unique for each
139 species. *A. woodii*, *G. subterraneus* and *P. putida* (Fig. 1A, D, and E) followed a typical sigmoidal growth
140 curve although their lag phases varied in length. *B. subtilis* (Fig. 1B) showed a diauxic growth curve, likely
141 a result of the media not being fully anoxic but containing an anaerobic headspace. *D. vulgaris* is a steady
142 increase over the course of the 48-hour testing period rather than a sharp sigmoidal curve (Fig. 1C). Is it
143 interesting to note that the growth trend is still observable, though muted, in the *D. vulgaris* culture
144 despite having readings above 1.0 (Figure 1.C). *T. aromatica* (Fig. 1F) shows a modified sigmoidal curve,
145 however the peak occurs following the log phase before dipping then and plateauing into the stationary
146 phase.

147 A formula was created by Kim et al. (2012) studying *Pseudomonas aeruginosa* which found the
148 following relation of OD_{600} to colony forming units (CFU):

149 Colony forming units (CFU/mL) = $2 \times 10^8 * \text{OD}_{600} + 4 \times 10^6$ [34]

150 It is noted that this formula should be confirmed by plating cells at unique OD₆₀₀ values and validating the
151 formula for each pure culture. It is acknowledged that the differences in culture turbidity of the six species
152 used in this study and the inability to grow all six on plated media means converting OD₆₀₀ to CFU values
153 will be an inaccurate conversion, but this was still done to maintain uniformity between datasets and to
154 highlight the issue of using such conversion factors without confirming and modifying the equation
155 empirically for each species. Thus we used this to convert values for time zero, a time point to represent
156 the mid log phase and a time point to represent the stationary phase, which are reported in Table 5.

157 **Figure 1. Optical density time course for each species.** OD₆₀₀ time course of A) *A. woodii*, B) *B. subtilis*, C)
158 *D. vulgaris*, D) *G. subterraneus*, E) *P. putida* and F) *T. aromatica*. Blue lines are the species growth curves
159 (n=3), orange line is the inoculant value.

160

161 **Cellular ATP Levels**

162 ATP measurements were converted into microbial equivalents (ME) according to the
163 manufacturer's protocol using the relative light units (RLU) from manufacturer's luminometer as in
164 equation (1).

$$165 \text{Microbial equivalents (ME/mL)} = \frac{(sample \ RLU - blank \ RLU)}{standard \ RLU} * \frac{10,000}{Sample \ size \ (1 \ mL)} * 1000 \quad (1)$$

166 Calculated ME are plotted in Figure 2. Data is not displayed in log scale to better illustrate fluctuations in
167 data trends. *A. woodii* shows a gradual increase in ME/mL between time 0 and 24 hours, going from 8.77
168 x 10⁷ ME/mL (T = 0) to 7.48 x 10⁸ ME/mL at 24 hours (Fig. 2A). There was a sharp increase after this point
169 to 1.45 x 10⁹ ME/mL at 32 hours, after which readings remained relatively stable at 1.33 x 10⁹ ME/mL until
170 the final time point of 48 hours. *B. subtilis* readings were less constant, reaching peak values at 13 hours
171 (2.64 x 10⁸ ME/mL) before dipping to 8.26 x 10⁷ ME/mL at 24 hours and subsequently recovering to 2.47

172 $\times 10^8$ ME/mL at 37 hours. After this point readings gradually decrease to 1.58×10^8 ME/mL at the final
173 timepoint of 48 hours (Fig. 2B). *D. vulgaris* ME/mL readings did not follow a typical sigmoidal growth curve,
174 rather they peaked at 31 hours (3.01×10^8 ME/mL) before declining to 1.56×10^8 ME/mL at 44 hours
175 where it remained relatively stable for the remainder of the time points (Fig. 2C). *G. subterraneus* had a
176 similar trend in ME, with the peak occurring at 12 hours (2.41×10^8 ME/mL) before decreasing to $6.30 \times$
177 10^7 ME/mL at the final time point ($T = 36$ hours) (Fig. 2D). *P. putida* followed a sigmoidal curve with a short
178 lag phase in the first two hours (4.12×10^7 ME/mL at $T = 0$ to 1.17×10^8 at $T = 2$ hours) before reaching
179 5.77×10^8 ME/mL at 6 hours, after which it gradually increased for the remainder of the growth curve,
180 reaching 9.89×10^8 ME/mL at $T = 49.5$ hours (Fig. 2E). *T. aromatica* followed a sigmoidal curve with a lag
181 phase between 0 and 8 hours (5.81×10^7 ME/mL and 9.15×10^7 ME/mL, respectively) before increasing to
182 6.29×10^8 ME/mL at $T = 32$ hours where it remains until $T = 44$ hours, after which it drops to 4.41×10^8
183 ME/mL at $T = 48$ hours (Fig. 2E).

184 An interesting observation is the ATP values of the $T = 0$ hour time point is higher or near to the
185 value of the inoculant, as in the case of *G. subterraneus* (Fig. 2D), *T. aromatica* (Fig. 2F) and *P. putida* (Fig.
186 2E). It is hypothesized this is a result of the inoculant culture being in stationary and/or death phase at
187 the time of inoculation, lowering the ATP readings, but the cultures were capable of rapidly activating
188 their metabolism again when exposed to fresh media. This highlights that ATP levels reflect metabolizing
189 bacteria concentration only.

190 **Figure 2. Microbial equivalents time course as determined using luciferase-based ATP assay for each**
191 **species.** Microbial equivalents per milliliter calculated for a time course of A) *A. woodii*, B) *B. subtilis*, C) *D.*
192 *vulgaris*, D) *G. subterraneus*, E) *P. putida* and F) *T. aromatica*. Blue lines are the species growth curves
193 ($n=3$), orange line is the inoculant value.

194

195 DNA concentration

196 The DNA concentrations were measured from 1 mL aliquots sampled at each time point and are
197 reported in Figure 3. *A. woodii* DNA concentrations follow a typical sigmoidal curve but peaked at the mid-
198 point of the growth curve (24.9 $\mu\text{g/mL}$, $T = 24$ hours), after which the DNA concentration dipped slightly
199 to 21.1 $\mu\text{g/mL}$ at $T = 28$ hours then remained stable between 23.6 $\mu\text{g/mL}$ and 27.5 $\mu\text{g/mL}$ (Fig. 3A). *B.*
200 *subtilis* DNA concentrations followed a similar trend as the OD_{600} and ATP, indicating a diauxic growth
201 pattern (Fig. 3B), where DNA concentrations were at their highest at 24 and 48 hours (11.8 $\mu\text{g/mL}$ and
202 12.0 $\mu\text{g/mL}$ respectively). Between these time points the DNA concentrations dip to 7.2 $\mu\text{g/mL}$ at 37 hours.
203 *D. vulgaris* DNA concentrations followed more of a sigmoidal curve compared to the OD_{600} readings,
204 possibly owing to the high scattering properties of the *D. vulgaris* media particulates minimizing the effect
205 of the cells alone, as discussed above. DNA concentrations showed a lag phase between $T = 0$ hours and
206 $T = 19$ hours, where concentrations varied between 1.7-2.7 $\mu\text{g/mL}$ before increasing to 28.7 $\mu\text{g/mL}$ at $T =$
207 31 hours (Fig. 3C). DNA concentrations peaked at 44 hours (37.0 $\mu\text{g/mL}$) before decreasing to 30.0 $\mu\text{g/mL}$
208 at the final time point ($T = 52.5$ hours). *G. subterraneus* DNA concentrations followed a standard sigmoidal
209 curve, nearly identical to the OD_{600} curve. The lag phase occurred between 0 and 8 hours, during which
210 DNA concentrations were between 4.2-6.1 $\mu\text{g/mL}$ before increasing up to 32.7 $\mu\text{g/mL}$ at 24 hours and
211 decreasing to 28.5 $\mu\text{g/mL}$ at 32 hours (Fig. 3D). It should be noted DNA was not collected at the 36 hour
212 time point due to lack of supplies, thus DNA concentrations could not be collected for the final time point.
213 *P. putida* also exhibited a classic sigmoidal curve in the DNA concentrations as with the OD_{600} and ATP,
214 but there is a shorter lag phase and a longer stationary phase (Fig. 3E) than is typical of a sigmoidal curve.
215 The lag phase was between 0 and 2 hours (4.2 $\mu\text{g/mL}$ and 8.9 $\mu\text{g/mL}$, respectively), then DNA
216 concentrations increased to 63.9 $\mu\text{g/mL}$ at 9 hours, then gradually increasing to 86.4 $\mu\text{g/mL}$ by the final
217 time point at 49.5 hours. *T. aromatica* DNA concentrations follow a gradual sigmoidal curve, lacking
218 significant lag or stationary phases (Fig. 3F). The lag phase was between 0 and 8 hours (1.2 $\mu\text{g/mL}$ and 3.2

219 $\mu\text{g}/\text{mL}$ respectively), then a steady increase to 57.0 $\mu\text{g}/\text{mL}$ by 48 hours, after which there was a slight
220 decline to 55.3 $\mu\text{g}/\text{mL}$ at the last time point.

221 DNA concentrations were converted into a cell proxy estimation by assuming 2.0 fg DNA per cell
222 based on the average 1.6-2.4 fg/cell [33]. Converted cell proxy values for time zero, a time point
223 representative of mid log phase and a time point representative of the stationary phase are reported in
224 Table 5. An interesting point is that at all time points, even initial (0 hours), the calculated cell counts are
225 never below 10^8 cells/mL, and between initial time points and stationary phase, the calculated cell counts
226 increase by one or two orders of magnitude.

227 **Figure 3. DNA concentration time course for each species.** DNA concentrations in micrograms per
228 milliliter over a time course of A) *A. woodii*, B) *B. subtilis*, C) *D. vulgaris*, D) *G. subterraneus*, E) *P. putida*
229 and F) *T. aromatica* as measured by a Qubit fluorometer. Blue lines are the species growth curves (n=3),
230 orange line is the inoculant value.

231

232 qPCR of 16S rRNA

233 As with the ATP data, we have not plotted the qPCR data in log format. Each of the three biological
234 replicates collected at each timepoint were ran in duplicate on the thermocycler, raising the N value to
235 six. The 16S rRNA copies measured per μL are shown in Figure 4. A key point to highlight in all the trends
236 is an increase in the error bars, especially in the later time points of the graphs. The trends of the 16S
237 rRNA qPCR results followed the DNA concentrations for all species. The 16S rRNA copy numbers for *A.*
238 *woodii* showed the same lag phase as DNA between 0 and 8 hours, where copy numbers were between
239 7.23×10^5 copies/ μL and 1.69×10^6 copies/ μL . The counts increase to 1.64×10^7 copies/ μL at 24 hours,
240 then dip slightly to 1.58×10^7 copies/ μL before increasing again to 2.07×10^7 copies/ μL at the final time

241 point of 48 hours (Fig. 4A). *B. subtilis* showed a lag phase up to 8 hours ($3.09 \times 10^5 - 8.85 \times 10^5$ copies/ μL)
242 before falling into the same diauxic growth curve seen in other monitoring methods. The initial increase
243 peaked at 24 hours (1.11×10^7 copies/ μL) before falling to 6.04×10^6 copies/ μL at 37 hours and increasing
244 again to 1.13×10^7 copies/ μL at 48 hours (Fig. 4B). The lag phase of *D. vulgaris* occurred between 0 and
245 19 hours ($2.35 \times 10^6 - 4.04 \times 10^6$ copies/ μL) before increasing to 3.99×10^7 copies/ μL at 31 hours, where
246 they remained relatively stable until 48 hours (3.63×10^7 copies/ μL) (Fig. 4C). At this point, the *D. vulgaris*
247 curve becomes skewed due to significant error bars on the final time point ($T = 52.5$ hours), owing to half
248 the replicates ($n = 3$) reporting values an order of magnitude less than the other three replicates ($1.52 \times$
249 10^8 copies/ $\mu\text{L} \pm 1.16 \times 10^8$). The *G. subterraneus* growth curve shows a lag phase between 0 and 8 hours
250 ($1.17 \times 10^7 - 1.72 \times 10^7$ copies/ μL) before increasing to 5.38×10^7 copies/ μL at 24 hours then decreasing
251 to 4.70×10^7 copies/ μL at 32 hours (Fig. 4D). As with the DNA concentrations, no DNA was available for
252 the final time point ($T = 36$ hours) and therefore no values are reported. *P. putida* 16S rRNA copies/ μL
253 show a far less tidy sigmoidal curve compared to the other monitoring methods. The lag phase occurred
254 between 0 and 2 hours ($3.00 \times 10^6 - 9.64 \times 10^6$ copies/ μL) before it increased to 5.57×10^7 copies/ μL at
255 the start of stationary phase ($T = 6$ hours) (Fig. 4E). After $T = 6$ hours where other lines of evidence show
256 a gradual increase into a plateau, the 16S rRNA data fluctuate between $3.36 \times 10^7 - 7.20 \times 10^7$ copies/ μL
257 with the peak values occurring at $T = 24$ hours (7.20×10^7 copies/ μL). *T. aromatica* 16S rRNA copies/ μL
258 show a lag phase between 0 and 8 hours ($2.80 \times 10^6 - 6.79 \times 10^6$ copies/ μL) before increasing to 9.57×10^7
259 copies/ μL at 28 hours then enter stationary phase for the remainder of the growth curve, which increased
260 slightly to 1.05×10^8 copies/ μL at 48 hours (Fig. 4F).

261 Cell count equivalents for 16S qPCR readings are reported in Table 5 and were calculated using
262 the unique 16S rRNA gene copy numbers (per cell) as reported in Table 1.

263 **Figure 4. Quantitative PCR results targeting 16S rRNA of a time course for each species.** 16S rRNA copies
264 per microliter as detected by qPCR over a time course of A) *A. woodii*, B) *B. subtilis*, C) *D. vulgaris*, D) *G.*

265 *subterraneus*, E) *P. putida* and F) *T. aromatica*. Blue lines are the species growth curves (n=6, three
266 biological each with two technical replicates), orange line is the inoculant value.

267

268 **Discussion**

269 First let's take the opportunity to do a 'mini' review of cell quantitation (count) methods for
270 bacterial growth. In laboratory-based research, it is taken for granted the simplicity of assessing microbial
271 growth. This is typically performed using direct counting methods such as colony forming units (CFU)
272 plated on appropriate agar, where after each incubation each cell can be visualized as a unique colony on
273 the agar. Other metabolic or growth specific methods exist such as dilution series (colloquially known as
274 "bug bottles") [35] and bacteriological activity reaction test (BART) bottles [5], both of which produce a
275 colour change resulting from specific microbial growth and metabolism where the time until detectable
276 change (i.e. a change in the colour of the media) is used to approximate the initial microbiological cell
277 count. These are commercially available for sulfate reducing bacteria, acid producing bacteria, iron
278 reducing bacteria and others. All these methods are dependent on the culturability of the microbes in
279 question and are not applicable when the species in question cannot be cultured easily or conveniently.
280 Due to the nature of these techniques and their estimation of culturable microorganisms and not
281 quantitative enumeration, these techniques are more commonly used in industry where exact cell counts
282 are not required as opposed to scientific endeavours which typically require more precise counts.

283 During planktonic growth, optical density (OD) is frequently used as a rapid monitoring method
284 where the turbidity of the media is correlated to the cell density. If a sample or culture has high turbidity,
285 the effect of light scattering by the cells is diminished and the measured OD becomes too high to provide
286 a linear application of the Beer-Lambert law. Studies have shown that OD measurements to assess cell

287 counts are highly dependent on the spectrophotometer, wavelength, media type, growth stage, cell
288 morphology and the presence and concentration of secreted compounds, and thus OD measurements
289 should be taken as a proxy and not as concrete correlations [36]. Klett units are a similar means of
290 determining cell concentrations using turbidity, where the turbidity of a liquid culture has been correlated
291 to a colony forming unit value, and this is commonly done on a per strain basis via wavelength filters as
292 part of this older tool [37,38]. Direct comparison of OD for different species is difficult due to changes in
293 turbidity resulting from cell shape such as rod compared to coccoid and cell agglomeration to flocculation
294 issues and thus not individual cell density which can lead to incorrect assumptions at the same OD. This
295 will not pose an issue while studying a pure culture of known shape as comparisons are direct. However,
296 for cross comparisons or for mixed cultures this becomes a significant issue and lowers the utility and
297 accuracy of OD as a tool for growth measurement.

298 Moving away from the culture-dependant methods, dyes and stains can be used to visualize and
299 semi-quantitatively measure growth. Crystal violet is used as a biofilm assessment assay [39] but Safranin
300 has been found to be more reproducible [40]. These stains do not provide true cell counts but produce
301 quantifiable biomass measurements, which depending on the research question posed is sufficient to
302 monitor microbial growth.

303 Other, less direct methods exist which can approximate cell counts through quantification of
304 other components such as key metabolites including ATP or major biochemical compositions such as
305 protein concentration, DNA concentration, or lipid composition. Each of these techniques relies on an
306 average quantity of the target molecule being present in each cell and have similar trends and limitations
307 as DNA, where fluctuating concentrations may be a reflection of a specific stage of cellular division, but
308 largely the absolute concentrations are maintained at a steady state [41–43]. Lipids can also be used to
309 determine growth rates by tracking the incorporation of heavy water into lipids using gas chromatography
310 [44]. In the case of ATP, assays use an average quantity of ATP per cell based on *E. coli* where one *E. coli*

311 cell contains approximately 1 femtogram of ATP [45], while other studies have shown ATP concentrations
312 are stable throughout all growth rates, although exact ATP concentrations per cell were not calculated
313 [46]. These assumptions do not take into account periods of external stress (e.g. biocide exposure) or
314 temperature increases which may increase the intracellular ATP concentrations in response [47]. An
315 added benefit of these methods when considering non-defined environmental samples is that they are
316 only present in biochemically active cells, and free molecules do not survive for long outside of a living
317 cell. As such, in environmental samples these lines of evidence can be reasonably used to estimate total
318 biomass without having to consider the types or diversity of species present.

319 More advanced methods of quantifying the number of organisms present in complex samples
320 have arisen from molecular methods such as quantifying specific gene copy numbers including 16S rRNA
321 genes, housekeeping genes other species-specific marker genes. Many databanks exist which have
322 developed different 16S rRNA primer sets, each with their own biases towards detecting or omitting
323 certain microbial clades and are reviewed elsewhere [48–50]. Primer sets are often chosen if there is an
324 indication as to the types of organisms expected to be present (e.g. a predisposition towards
325 methanogenic microorganisms). These primers can be used in quantitative PCR (qPCR) for total cell
326 counts, or in sequencing to acquire relative abundance values.

327 Further expanding on the applications of qPCR is the customization of the primers used. While
328 16S rRNA is a universal gene target and been used dating back to 1999 [51], other housekeeping genes
329 specific to a species or interest may be used to get cell counts of targeted populations. For example, the
330 use of primers targeting dissimilatory sulfate reductase, *dsrA*, to monitor sulfate reducing organisms [52]
331 or nitrite reductase, *nirS*, to quantify *Pseudomonas stutzeri* [53], aromatic oxygenases [54] and
332 hydrocarbon hydroxylases [55]. An important consideration when using genes as a cell count proxy is the
333 copy number of the gene in each cell. For 16S rRNA specifically, bacteria can have anywhere from a single
334 copy up to 15, with an average of 3.82 ± 2.61 [56].

335

336 **Comparison of methods**

337 To compare how the different methods agree with each other, scatter plots were used and linear
338 correlation values were calculated (supplementary Figures 1-6). The R^2 values were calculated for the full
339 datasets of each monitoring method for each species and are reported in Table 4. From these values we
340 can see that the different methods have stronger correlations within certain species, such as *A. woodii*,
341 which has strong correlation between all methods ($R^2 = 0.85 - 0.99$), while *B. subtilis* has poor correlation
342 across almost all methods where R^2 values range from 0.41 to 0.79 (with the exception of DNA vs. 16S
343 rRNA, $R^2 = 0.96$). Other species show a strong correlation between some methods such as OD_{600} vs. DNA
344 (*G. subterraneus*, $R^2 = 0.98$) but poor correlation with others (OD_{600} vs. ATP, $R^2 = 0.06$, and ATP vs. DNA R^2
345 = 0.02).

346 **Table 4. Linear correlation* values determined from scatter plots of each growth monitoring technique**

Species	OD_{600} vs ATP	OD_{600} vs DNA	OD_{600} vs 16S	ATP (ME/mL) vs DNA	ATP (ME/mL) vs 16S	DNA vs 16S
<i>A. woodii</i>	0.94	0.93	0.96	0.85	0.87	0.99
<i>B. subtilis</i>	0.79	0.71	0.74	0.41	0.44	0.96
<i>D. vulgaris</i>	0.43	0.87	0.55	0.55	0.25	0.38
<i>G. subterraneus</i>	0.06	0.98	0.97	0.02	0.02	1.00
<i>P. putida</i>	0.96	0.99	0.51	0.97	0.54	0.59
<i>T. aromatica</i>	0.94	0.81	0.90	0.79	0.84	0.97
Average	0.69	0.88	0.77	0.60	0.49	0.82

347 *Reported as the R^2 value from XY scatter plots of each data set against each other.

348

349 After converting to microbial equivalents (ME), the ATP measurements follow very similar trends
350 as the OD₆₀₀ readings (average R² = 0.69, Table 4). The most marked differences in the ATP compared to
351 the OD₆₀₀ graphs occurs in *D. vulgaris* (R² = 0.43) and *G. subterraneus* (R² = 0.06) where the shapes of the
352 curves are significantly different owing to the peak in ATP occurring before the stationary phase.
353 Comparing the OD₆₀₀ and ATP values for *A. woodii* (R² = 0.94), *B. subtilis* (R² = 0.79), *P. putida* (R² = 0.96)
354 and *T. aromatica* (R² = 0.94), we see a strong correlation with slight variations and more variability in the
355 ATP values than seen in OD₆₀₀. These data agree with the observation that the amount of ATP is consistent
356 at all stages of growth curve [46], while the *D. vulgaris* and *G. subterraneus* datasets disrupt the expected
357 sigmoidal growth curve and shows ATP concentrations are highest during mid log phase, indicating this
358 isn't a universal rule. This is further exemplified in the *G. subterraneus* dataset, whose ATP values were
359 markedly different from other approaches, and correspondingly the linear correlations with ATP are all
360 very low (OD₆₀₀ vs. ATP R² = 0.06; ATP vs. DNA R² = 0.02; and ATP vs. 16S R² = 0.02).

361 The trends in the DNA concentrations closely follow the OD₆₀₀ trends (average R² = 0.88, Table 4),
362 but have more variance between replicates, possibly owing to the DNA extraction and recovery
363 procedure. As with the DNA concentrations, the trends of the 16S rRNA copy numbers closely followed
364 the OD₆₀₀ readings (average R² = 0.77) but have a lower linear correlation due to the increased variability
365 between 16S rRNA replicates. Unsurprisingly, DNA vs. 16S rRNA had a strong correlation (average R² =
366 0.82), but the strongest correlation between any two methods is the OD₆₀₀ and DNA (average R² = 0.88).
367 The DNA vs. 16S correlation value is dropped by the high variability of the 16S rRNA copies for the final
368 time point of *D. vulgaris*, but with this final time point removed the average R² value improves to 0.91
369 (data not shown). The *P. putida* 16S rRNA vs. DNA correlation is also poor but this is again owing to the
370 variability of the replicates for 16S rRNA during the stationary phase. ATP vs. 16S rRNA methods had the

371 lowest correlation on average between the six pure cultures with an average R^2 value of 0.49 (Table 4),
372 which was mirrored in the correlation between DNA vs. ATP (average $R^2 = 0.60$, Table 4).

373 From these comparisons, we can see that both ATP vs. 16S rRNA and ATP vs. DNA concentrations
374 have poor correlation with each other. However, the R^2 values of these averages is skewed downwards as
375 a result of the extremely poor values of *G. subterraneus*. With those values removed, the R^2 values
376 improve to 0.71 for ATP vs. DNA and 0.59 for ATP vs. 16S rRNA. It is tempting to consider the R^2 values
377 with the omissions of the *G. subterraneus*, however they provide a realistic comparison of the diversity of
378 values one might expect in an environmental sample, even in such a small pool as the six species chosen
379 here.

380

381 **Direct comparison of cell counts**

382 For direct comparisons, we shall look at three time points for each species, chosen to reflect the
383 initial time point ($T = 0$ hours), mid-log phase (variable) and stationary phase (variable) for each species.
384 For easier direct comparison, all testing methods have been calculated into their unique cells mL^{-1} (Table
385 5). CFU calculations from all four monitoring methods showed variability of a magnitude lower than the
386 reading, however and on occasion the same order of magnitude or in the case of OD_{600} two orders below.
387 Comparing across the ATP, DNA and 16S rRNA measurements, the ATP microbial equivalents are an order
388 of magnitude or two below calculated DNA and 16S rRNA values. Looking at a single measurement type
389 of a single species, the change between the initial time point to the stationary phase is typically an order
390 of magnitude regardless of the monitoring method. *B. subtilis* had the largest discrepancies between DNA
391 and 16S rRNA calculated cell counts, varying by an order of magnitude. The lowest calculated cell count
392 from all species along all time points is the microbial equivalents of *B. subtilis* at $T = 0$ hours, which was
393 three to four orders of magnitude below other methods but the discrepancy was closed by mid log phase

394 and was similar to the calculated values of the other methods and species (Table 5). Stationary phases for
395 DNA and 16S rRNA plateaued primarily at 10^{9-10} cells mL⁻¹ (*B. subtilis* 16S rRNA being the exception at 8.4
396 $\times 10^8$ cells/mL). ATP and OD₆₀₀ values plateaued at 10^{7-8} CFU/mL with the single exception of *A. woodii* ATP
397 value (1.45×10^9 ME/mL). This indicates that following these calculations, DNA and 16S rRNA calculations
398 will likely overestimate cell counts compared to OD₆₀₀ and ATP.

399

400 **Table 5. Summary of the calculated cell counts per milliliter from each monitoring method at the initial**
401 **time point, mid log phase and stationary phase for all species tested**

Species	Time point (hours)	Testing method			
		Converted CFU/mL from OD ₆₀₀	ATP (ME/mL)	Calculated cells from DNA (cells/mL)	Calculated cells from 16S rRNA (cells/mL)
<i>A. woodii</i>	0	$4.55 \times 10^7 \pm 6.60 \times 10^5$	$8.77 \times 10^7 \pm 8.29 \times 10^6$	$3.02 \times 10^8 \pm 2.16 \times 10^7$	$1.45 \times 10^8 \pm 3.48 \times 10^7$
	13	$9.77 \times 10^7 \pm 8.77 \times 10^6$	$2.74 \times 10^8 \pm 7.05 \times 10^7$	$3.99 \times 10^9 \pm 6.71 \times 10^8$	$1.42 \times 10^9 \pm 1.96 \times 10^8$
	32	$2.63 \times 10^8 \pm 1.12 \times 10^7$	$1.45 \times 10^9 \pm 3.74 \times 10^8$	$1.18 \times 10^{10} \pm 1.35 \times 10^9$	$3.41 \times 10^9 \pm 2.92 \times 10^8$
<i>B. subtilis</i>	0	$2.07 \times 10^7 \pm 4.99 \times 10^5$	$3.23 \times 10^4 \pm 2.98 \times 10^4$	$2.71 \times 10^8 \pm 6.29 \times 10^7$	$8.85 \times 10^7 \pm 1.79 \times 10^7$
	13	$9.57 \times 10^7 \pm 2.08 \times 10^7$	$2.64 \times 10^8 \pm 1.08 \times 10^8$	$3.28 \times 10^9 \pm 1.79 \times 10^9$	$8.44 \times 10^8 \pm 3.79 \times 10^8$

	30	$8.03 \times 10^7 \pm 4.76 \times 10^6$	$2.30 \times 10^8 \pm 5.61 \times 10^7$	$4.98 \times 10^9 \pm 2.40 \times 10^9$	$8.40 \times 10^8 \pm 4.24 \times 10^8$
<i>D. vulgaris</i>	0	$3.03 \times 10^8 \pm 2.26 \times 10^7$	$5.59 \times 10^6 \pm 9.61 \times 10^4$	$7.32 \times 10^9 \pm 8.65 \times 10^9$	$7.24 \times 10^8 \pm 3.32 \times 10^8$
	28	$3.54 \times 10^8 \pm 3.88 \times 10^7$	$2.00 \times 10^8 \pm 4.28 \times 10^7$	$1.08 \times 10^9 \pm 2.41 \times 10^8$	$4.08 \times 10^9 \pm 8.04 \times 10^8$
	48	$4.06 \times 10^8 \pm 2.96 \times 10^7$	$1.53 \times 10^8 \pm 5.43 \times 10^7$	$1.78 \times 10^{10} \pm 1.10 \times 10^9$	$9.08 \times 10^9 \pm 1.93 \times 10^9$
<i>G. subterraneus</i>	0	$2.71 \times 10^7 \pm 9.43 \times 10^4$	$8.15 \times 10^7 \pm 8.02 \times 10^6$	$2.23 \times 10^9 \pm 2.24 \times 10^8$	$3.77 \times 10^9 \pm 4.51 \times 10^8$
	12	$4.41 \times 10^7 \pm 2.19 \times 10^6$	$2.41 \times 10^8 \pm 8.28 \times 10^7$	$6.00 \times 10^9 \pm 7.82 \times 10^8$	$6.12 \times 10^9 \pm 6.02 \times 10^8$
	32	$6.74 \times 10^7 \pm 4.81 \times 10^6$	$9.16 \times 10^7 \pm 1.75 \times 10^7$	$1.43 \times 10^{10} \pm 2.95 \times 10^9$	$1.17 \times 10^{10} \pm 2.62 \times 10^9$
<i>P. putida</i>	0	$2.58 \times 10^7 \pm 1.63 \times 10^5$	$4.12 \times 10^7 \pm 2.55 \times 10^6$	$2.09 \times 10^9 \pm 1.21 \times 10^8$	$4.29 \times 10^8 \pm 1.47 \times 10^8$
	6	$1.09 \times 10^8 \pm 1.61 \times 10^7$	$5.77 \times 10^8 \pm 1.08 \times 10^8$	$2.47 \times 10^{10} \pm 5.26 \times 10^9$	$7.96 \times 10^9 \pm 2.59 \times 10^9$
	33.5	$2.04 \times 10^8 \pm 4.39 \times 10^7$	$8.65 \times 10^8 \pm 1.46 \times 10^8$	$3.99 \times 10^{10} \pm 9.48 \times 10^9$	$4.79 \times 10^9 \pm 1.55 \times 10^9$
<i>T. aromatica</i>	0	$3.35 \times 10^7 \pm 1.39 \times 10^6$	$5.81 \times 10^7 \pm 2.97 \times 10^6$	$2.90 \times 10^{10} \pm 4.08 \times 10^8$	$7.01 \times 10^8 \pm 2.83 \times 10^8$

	20	$1.45 \times 10^8 \pm 6.38 \times 10^6$	$3.51 \times 10^8 \pm 2.64 \times 10^7$	$6.11 \times 10^8 \pm 1.11 \times 10^8$	$1.41 \times 10^{10} \pm 7.54 \times 10^9$
	48	$1.65 \times 10^8 \pm 2.30 \times 10^6$	$4.41 \times 10^8 \pm 2.90 \times 10^7$	$1.41 \times 10^{10} \pm 1.53 \times 10^9$	$2.62 \times 10^{10} \pm 7.66 \times 10^9$

402

403

404 **Conclusion**

405 This work set out to compare monitoring techniques readily employed in the field and compare
406 them to methods best suited for lab cultures. OD_{600} is poorly suited for field samples due to the
407 requirement for a liquid medium and the presence of non-biological materials frequently present in
408 environmental samples which will artificially increase OD_{600} values. This is illustrated by the *D. vulgaris*
409 dataset, where the scattering of light is increased due to the precipitation of iron sulfide resulting from
410 sulfide production by *D. vulgaris*. Even without the presence of a precipitate in the media, direct OD_{600}
411 comparisons have little value such as with *G. subterraneus*, where OD_{600} values peaked at 0.317 while the
412 other species reached readings of 1.001 and 1.296 in the stationary phase (*P. putida* and *A. woodii*
413 respectively). As a result, OD_{600} is only suited for rapid monitoring of a pure culture and has no value for
414 cross comparisons.

415 As shown in Table 5, the trends are consistent but the actual converted cell counts can vary on
416 the order of magnitudes. This indicates that while any single method can be used with reasonable
417 confidence to assess the microbial cell density in a particular system or environment, comparing multiple
418 methods will lead to false assumptions regarding changes in cell concentrations.

419 Due to the need of including additional values for converting ATP, 16S rRNA copy numbers and
420 DNA into cell count equivalents, it is more reasonable to leave these readings as their true output (i.e. pg
421 ATP, copy number 16S rRNA and μ g DNA respectively) rather than adding converting values using
422 equations containing general assumptions, which certainly can skew output values, especially in mixed
423 environmental samples where the factors (e.g. DNA amount per cell) may vary between species.

424 This work shows that using DNA concentrations as a proxy for cell counts could be considered the
425 best universal indicator for microbial cells numbers. It carries a strong correlation to OD_{600} values in pure
426 cultures in liquid media, is not as susceptible to large variation between replicates as 16S rRNA qPCR and
427 theoretically isn't overly susceptible to calculation bias as the range of DNA concentrations within a single
428 cell is 1.6-2.4 fg [33]. Using DNA as a cell count proxy has the only reproducible DNA recovery as a potential
429 issue, where Gram positive cells may not lyse as easily as Gram negative cells in which case DNA
430 concentrations may underestimate the total cell counts.

431 While this work focused on pure cultures of diverse environmental strains, we believe these
432 results can be extrapolated to mixed species and field samples with highly diverse microbial populations.
433 The simplest and most impactful conclusion from this is that there is no true, or best method for
434 monitoring microbial growth, rather being consistent with a monitoring technique is the most important
435 factor and to understand the used approaches limitations as illustrated here.

436 **References**

437 1. Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. *Brock Biology of Microorganisms*.
438 15th ed. Harlow, United Kingdom: Pearson Education; 2019. 1 online resource (1064 pages) :
439 illustrations.

440 2. Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM. Viable but Non-Culturable
441 *Vibrio cholerae* and Related Pathogens in the Environment: Implications for Release of
442 Genetically Engineered Microorganisms. *Bio/Technology*. 1985;3(9):817–20. DOI:
443 10.1038/nbt0985-817

444 3. Byrd JJ, Xu HS, Colwell RR. Viable but nonculturable bacteria in drinking water. *Appl Environ
445 Microbiol*. 1991;57(3):875–8. DOI: 10.1128/AEM.57.3.875-878.1991

446 4. Xu H, Roberts N, Singleton F, Attwell R, Grimes D, Colwell R. Survival and viability of
447 nonculturable *Escherichia coli* and *Vibrio cholerae* in the estuarine and marine environment.
448 *Microb Ecol*. 1982;8:313–23.

449 5. Razban B, Nelson KY, Cullimore DR, Cullimore J, McMartin DW. Quantitative bacteriological
450 assessment of aerobic wastewater treatment quality and plant performance. *J Environ Sci Heal
451 Part A*. 2012;47(5):727–33. DOI: 10.1080/10934529.2012.660093

452 6. Sharpe AN, Michaud GL. Enumeration of High Numbers of Bacteria Using Hydrophobic Grid-
453 Membrane Filters. *Appl Microbiol*. 1975;30(4):519–24. DOI: 10.1128/AM.30.4.519-524.1975

454 7. Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C. Comparison of different
455 live/dead stainings for detection and quantification of adherent microorganisms in the initial oral
456 biofilm. *Clin Oral Investig*. 2012;17(3):841–50. DOI: 10.1007/S00784-012-0792-3

457 8. Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic
458 visualization and quantification of initial bacterial colonization on enamel in situ. *Arch Oral Biol.*
459 2007;52(11):1048–56. DOI: 10.1016/J.ARCHORALBIO.2007.05.006

460 9. Djordjevic D, Wiedmann M, McLandsborough LA. Microtiter plate assay for assessment of *Listeria*
461 *monocytogenes* biofilm formation. *Appl Environ Microbiol.* 2002;68(6):2950–8. DOI:
462 10.1128/AEM.68.6.2950-2958.2002

463 10. Bhupathiraju VK, Hernandez M, Krauter P, Alvarez-Cohen L. A new direct microscopy based
464 method for evaluating in-situ bioremediation. *J Hazard Mater.* 1999;67:299–312.

465 11. Harmsen HJM, Wildeboer-Veloo ACM, Grijpstra J, Knol J, Degener JE, Welling GW. Development
466 of 16S rRNA-based probes for the *Coriobacterium* group and the *Atopobium* cluster and their
467 application for enumeration of *Coriobacteriaceae* in human feces from volunteers of different
468 age groups. *Appl Environ Microbiol.* 2000;66(10):4523–7. DOI: 10.1128/AEM.66.10.4523-
469 4527.2000

470 12. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MHF, et al. Quantitative
471 fluorescence in situ hybridization of *Bifidobacterium* spp. with genus-specific 16S rRNA-targeted
472 probes and its application in fecal samples. *Appl Environ Microbiol.* 1995;61(8):3069–75. DOI:
473 10.1128/AEM.61.8.3069-3075.1995

474 13. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and
475 accessible method for quantitative microbiota profiling. *PLoS One.* 2020;15(1):e0227285. DOI:
476 10.1371/JOURNAL.PONE.0227285

477 14. Smith CJ, Nedwell DB, Dong LF, Osborn AM. Evaluation of quantitative polymerase chain
478 reaction-based approaches for determining gene copy and gene transcript numbers in

479 environmental samples. *Environ Microbiol*. 2006;8(5):804–15. DOI: 10.1111/J.1462-
480 2920.2005.00963.X

481 15. Suzuki MT, Taylor LT, DeLong EF. Quantitative analysis of small-subunit rRNA genes in mixed
482 microbial populations via 5'-nuclease assays. *Appl Environ Microbiol*. 2000;66(11):4605–14. DOI:
483 10.1128/AEM.66.11.4605-4614.2000

484 16. Breznak JA, Costilow RN. Physicochemical Factors in Growth. In: Methods for General and
485 Molecular Microbiology. Washington, DC, USA: ASM Press; 2014. p. 309–29. DOI:
486 10.1128/9781555817497.ch14

487 17. Hungate RE. Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes. *Methods*
488 *Microbiol*. 1969;3(PART B):117–32. DOI: 10.1016/S0580-9517(08)70503-8

489 18. Hungate RE. The Anaerobic Mesophilic Cellulolytic Bacteria. *Bacteriol Rev*. 1950;14(1):1.

490 19. Balch W, Wolfe R. New approach to the cultivation of methanogenic bacteria: 2-
491 mercaptoethanesulfonic acid (HS-CoM)-dependent growth of *Methanobacterium ruminantium* in
492 a pressureized atmosphere. *Appl Environ Microbiol*. 1976;32(6):781–91. DOI:
493 10.1128/AEM.32.6.781-791.1976

494 20. Chan ECS, Siboo R, Touyz LZG, Qiu Y-S, Klitorinos A. A successful method for quantifying viable
495 oral anaerobic spirochetes. *Oral Microbiol Immunol*. 1993;8(2):80–3. DOI: 10.1111/J.1399-
496 302X.1993.TB00549.X

497 21. Martins CHG, Carvalho TC, Souza MGM, Ravagnani C, Peitl O, Zanotto ED, et al. Assessment of
498 antimicrobial effect of Biosilicate® against anaerobic, microaerophilic and facultative anaerobic
499 microorganisms. *J Mater Sci Mater Med*. 2011;22(6):1439–46. DOI: 10.1007/S10856-011-4330-7

500 22. Salanitro JP, Fairchilds IG, Zgornicki YD. Isolation, Culture Characteristics, and Identification of

501 Anaerobic Bacteria from the Chicken Cecum. *Appl Microbiol.* 1974;27(4):678–87. DOI:
502 10.1128/AM.27.4.678-687.1974

503 23. Montero B, Garcia-Morales JL, Sales D, Solera R. Evolution of microorganisms in thermophilic-dry
504 anaerobic digestion. *Bioresour Technol.* 2008;99(8):3233–43. DOI:
505 10.1016/J.BIOTECH.2007.05.063

506 24. Himmelberg AM, Brüls T, Farmani Z, Weyrauch P, Barthel G, Schrader W, et al. Anaerobic
507 degradation of phenanthrene by a sulfate-reducing enrichment culture. *Environ Microbiol.*
508 2018;20(10):3589–600. DOI: 10.1111/1462-2920.14335

509 25. Pronk JT, De Bruyn JC, Bos P, Kuenen JG. Anaerobic growth of *Thiobacillus ferrooxidans*. *Appl*
510 *Environ Microbiol.* 1992;58(7):2227–30. DOI: 10.1128/AEM.58.7.2227-2230.1992

511 26. Mauerhofer LM, Pappenreiter P, Paulik C, Seifert AH, Bernacchi S, Rittmann SKMR. Methods for
512 quantification of growth and productivity in anaerobic microbiology and biotechnology. *Folia*
513 *Microbiol (Praha)*. 2019;64(3):321–60. DOI: 10.1007/s12223-018-0658-4

514 27. Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, et al. Carbon and Sulfur
515 Cycling by Microbial Communities in a Gypsum-Treated Oil Sands Tailings Pond. *Environ Sci*
516 *Technol.* 2010;45(2):439–46. DOI: 10.1021/ES1028487

517 28. Stams AJM, Sousa DZ, Kleerebezem R, Plugge CM. Role of syntrophic microbial communities in
518 high-rate methanogenic bioreactors. *Water Sci Technol.* 2012;66(2):352–62. DOI:
519 10.2166/WST.2012.192

520 29. Monod J. The Growth of Bacterial Cultures. *Ann Rev Microbiol.* 1949;3(1):371–94. DOI:
521 10.1146/ANNUREV.MI.03.100149.002103

522 30. Maloney LC, Nelson YM, Kitts CL. Characterization of aerobic and anaerobic microbial activity in

523 hydrocarbon-contaminated soil. In: Gavaskar A, Chen A, editors. *Remediation of Chlorinated and*
524 *Recalcitrant Compounds - 2004*. Battelle Press; 2004. p. 3E – 02.

525 31. Manti A, Boi P, Falcioni T, Canonico B, Ventura A, Sisti D, et al. Bacterial cell monitoring in
526 wastewater treatment plants by flow cytometry. *Water Environ Res*. 2008;80(4):346–54. DOI:
527 10.2175/106143007X221418

528 32. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global
529 patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proc Natl Acad Sci.*
530 2011;108(Supplement_1):4516–22. DOI: 10.1073/pnas.1000080107

531 33. Bakken LR, Olsen RA. DNA-content of soil bacteria of different cell size. *Soil Biol Biochem*.
532 1989;21(6):789–93. DOI: 10.1016/0038-0717(89)90172-7

533 34. Kim D-J, Chung S-G, Lee S-H, Choi J-W. Relation of microbial biomass to counting units for
534 *Pseudomonas aeruginosa*. *African J Microbiol Res*. 2012;6(21):4620–2. DOI: 10.5897/AJMR10.902

535 35. Bracho M, Araujo I, de Romero M, Ocando L, García M, Sarró MI, et al. Comparison Of Bacterial
536 Growth Of Sulfate Reducing Bacteria Evaluated By Serial Dilution, Pure Plate And Epifluorescence
537 Techniques. In: *CORROSION 2007*. OnePetro; 2007. p. NACE-07530.

538 36. Myers JA, Curtis BS, Curtis WR. Improving accuracy of cell and chromophore concentration
539 measurements using optical density. *BMC Biophys*. 2013;6(1):4. DOI: 10.1186/2046-1682-6-4

540 37. Snellen JE, Marr AG, Starr MP. A membrane filter direct count technique for enumerating
541 *Bdellovibrio*. *Curr Microbiol*. 1978;1(2):117–22. DOI: 10.1007/BF02605428

542 38. Duncan CL. Time of enterotoxin formation and release during sporulation of *Clostridium*
543 *perfringens* type A. *J Bacteriol*. 1973;113(2):932–6. DOI: 10.1128/JB.113.2.932-936.1973

544 39. Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, et al. Crystal Violet and XTT Assays on *Staphylococcus*
545 *aureus* Biofilm Quantification. *Curr Microbiol.* 2016;73(4):474–82. DOI: 10.1007/s00284-016-
546 1081-1

547 40. Ommen P, Zobek N, Meyer RL. Quantification of biofilm biomass by staining: Non-toxic safranin
548 can replace the popular crystal violet. *J Microbiol Methods.* 2017;141:87–9. DOI:
549 10.1016/j.mimet.2017.08.003

550 41. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and
551 transcriptomic analyses. *Nat Rev Genet.* 2012;13(4):227. DOI: 10.1038/NRG3185

552 42. Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of
553 different organic content. *J Microbiol Methods.* 1991;14(3):151–63. DOI: 10.1016/0167-
554 7012(91)90018-L

555 43. Nguyen TDP, Nguyen DH, Lim JW, Chang C-K, Leong HY, Tran TNT, et al. Investigation of the
556 Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae *Chlorella*
557 *Vulgaris* in Seafood Wastewater. *Energies.* 2019;12(12):2282. DOI: 10.3390/EN12122282

558 44. Neubauer C, Kasi AS, Grahl N, Sessions AL, Kopf SH, Kato R, et al. Refining the application of
559 microbial lipids as tracers of *Staphylococcus aureus* growth rates in cystic fibrosis sputum. *J*
560 *Bacteriol.* 2018;200(24). DOI: 10.1128/JB.00365-18

561 45. Hattori N, Sakakibara T, Kajiyama N, Igarashi T, Maeda M, Murakami S. Enhanced microbial
562 biomass assay using mutant luciferase resistant to benzalkonium chloride. *Anal Biochem.*
563 2003;319(2):287–95. DOI: 10.1016/S0003-2697(03)00322-1

564 46. Schneider DA, Gourse RL. Relationship between growth rate and ATP concentration in
565 *Escherichia coli*: A bioassay for available cellular ATP. *J Biol Chem.* 2004;279(9):8262–8. DOI:

566 10.1074/jbc.M311996200

567 47. Soini J, Falschlehner C, Mayer C, Böhm D, Weinel S, Panula J, et al. Transient increase of ATP as a
568 response to temperature up-shift in *Escherichia coli*. *Microb Cell Fact*. 2005;4(1):9. DOI:
569 10.1186/1475-2859-4-9

570 48. Cai L, Ye L, Tong AHY, Lok S, Zhang T. Biased Diversity Metrics Revealed by Bacterial 16S Pyrotags
571 Derived from Different Primer Sets. *PLoS One*. 2013;8(1):e53649. DOI:
572 10.1371/JOURNAL.PONE.0053649

573 49. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP. 16S rRNA gene-based profiling of the
574 human infant gut microbiota is strongly influenced by sample processing and PCR primer choice.
575 *Microbiome* 2015 31. 2015;3(1):1–11. DOI: 10.1186/S40168-015-0087-4

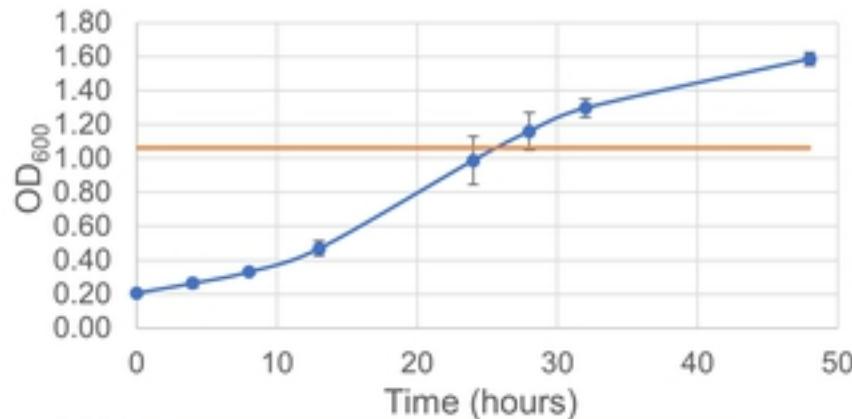
576 50. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. *J Microbiol*
577 *Methods*. 2003;55(3):541–55. DOI: 10.1016/j.mimet.2003.08.009

578 51. Edgcomb V, McDonald J, Devereux R, Smith D. Estimation of bacterial cell numbers in humic acid-
579 rich salt marsh sediments with probes directed to 16S ribosomal DNA. *Appl Environ Microbiol*.
580 1999;65(4):1516–23. DOI: 10.1128/AEM.65.4.1516-1523.1999

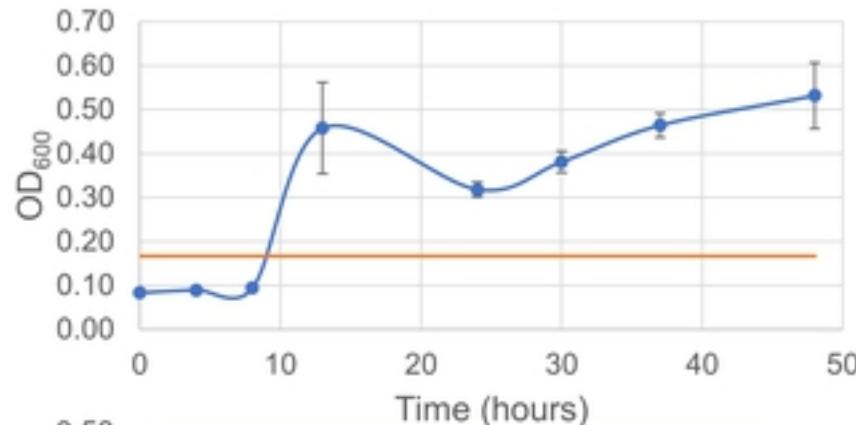
581 52. Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and environmental diversity of
582 DsrAB-type dissimilatory (bi)sulfite reductases. *ISME J*. 2015;9(5):1152–65. DOI:
583 10.1038/ismej.2014.208

584 53. Grüntzig V, Nold SC, Zhou J, Tiedje JM. *Pseudomonas stutzeri* nitrite reductase gene abundance
585 in environmental samples measured by real-time PCR. *Appl Environ Microbiol*. 2001;67(2):760–8.
586 DOI: 10.1128/AEM.67.2.760-768.2001

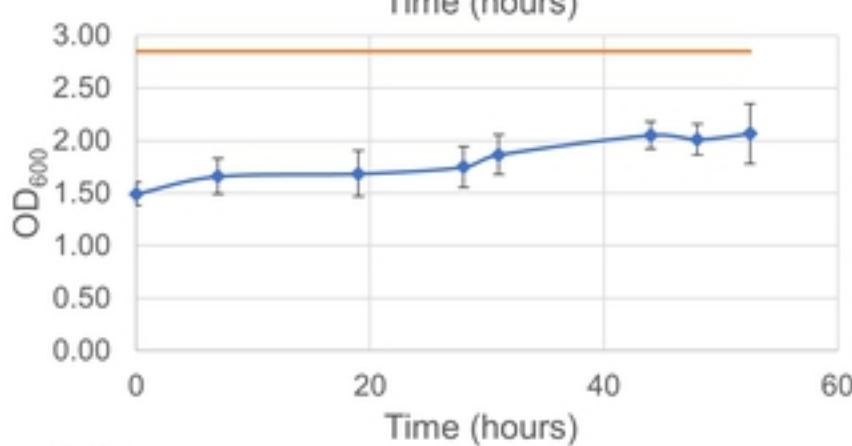
587 54. Baldwin BR, Nakatsu CH, Nies L. Detection and enumeration of aromatic oxygenase genes by

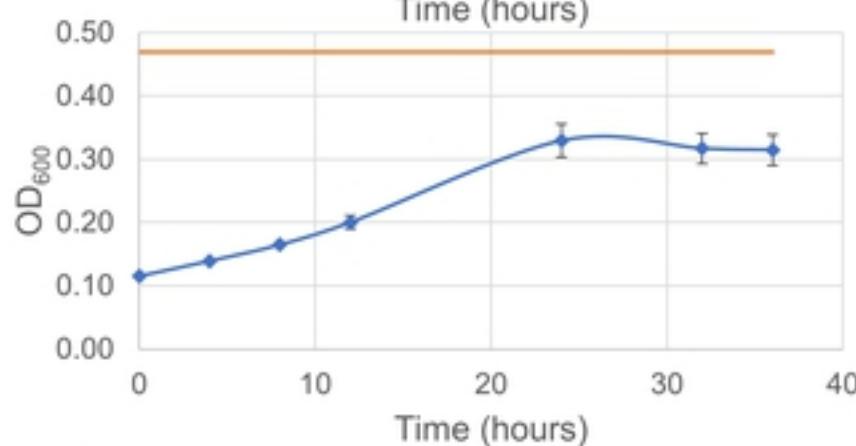

588 multiplex and real-time PCR. *Appl Environ Microbiol.* 2003;69(6):3350–8. DOI:
589 10.1128/AEM.69.6.3350-3358.2003

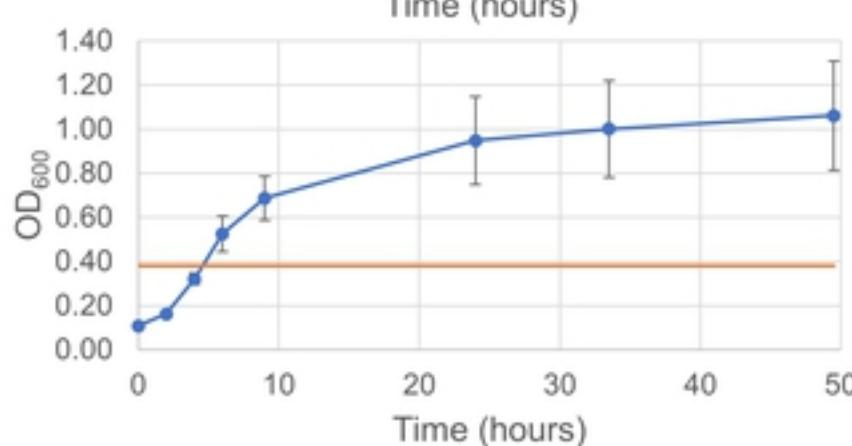
590 55. McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, et al. Efficacy of
591 intervention strategies for bioremediation of crude oil in marine systems and effects on
592 indigenous hydrocarbonoclastic bacteria. *Environ Microbiol.* 2007;9(6):1562–71. DOI:
593 10.1111/j.1462-2920.2007.01277.X

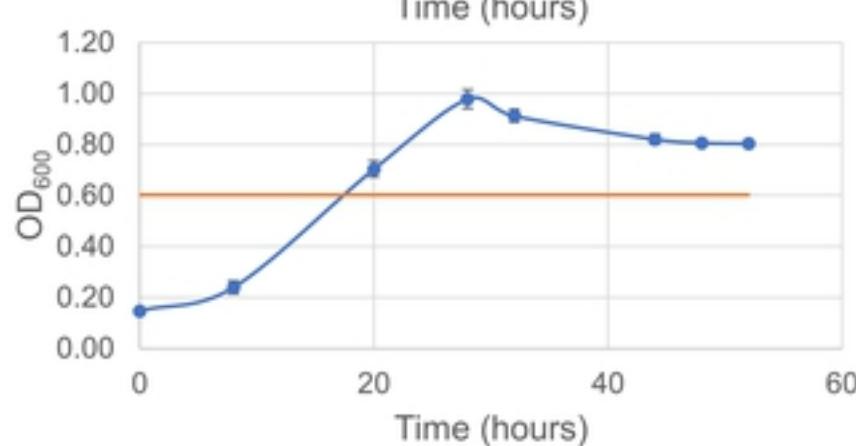

594 56. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes
595 overestimation of prokaryotic diversity. *Appl Environ Microbiol.* 2013;79(19):5962–9. DOI:
596 10.1128/AEM.01282-13

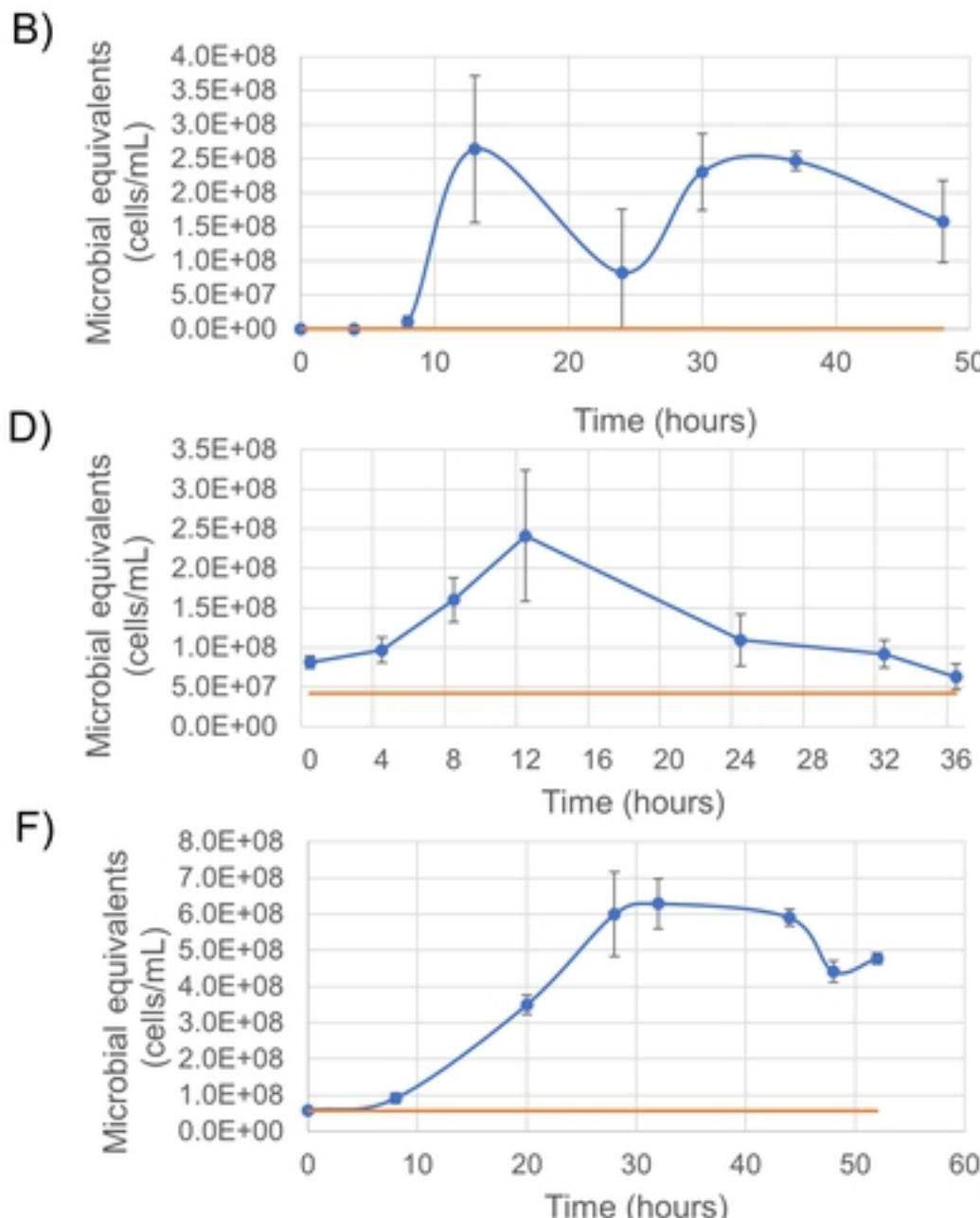
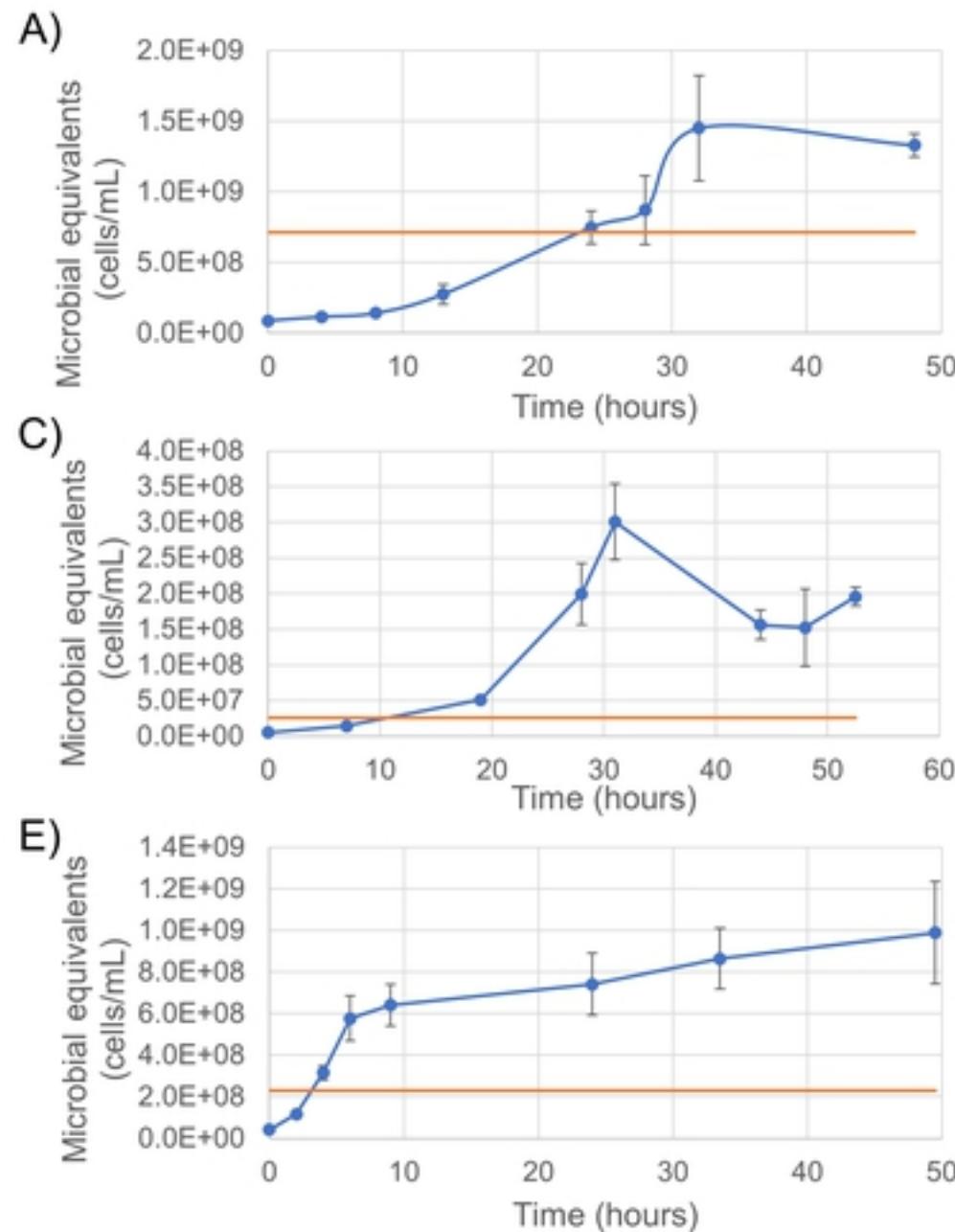
597


A)

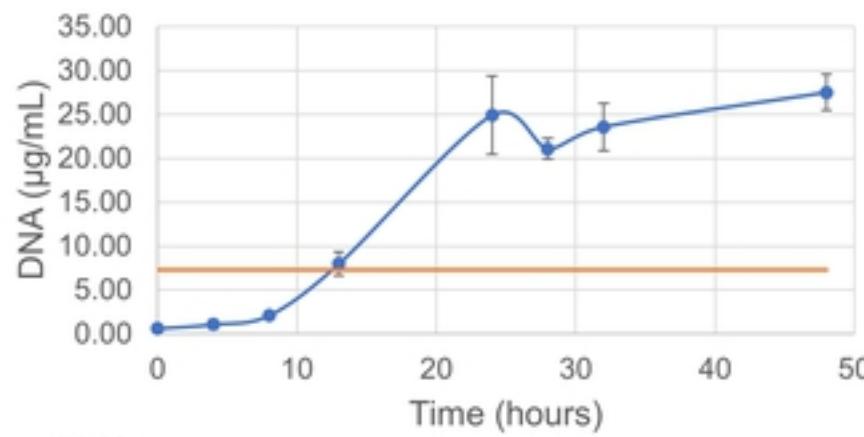

B)


C)

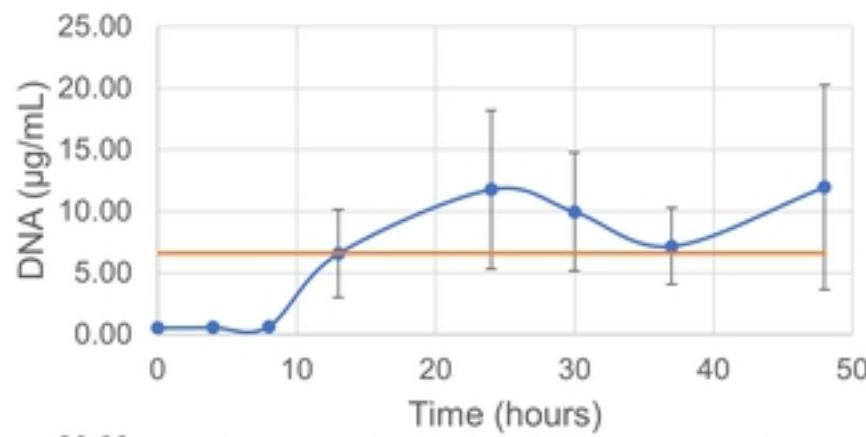

D)



E)

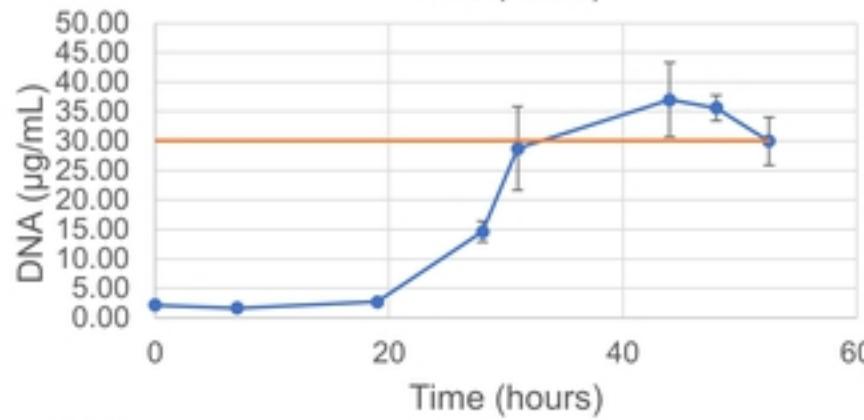
F)

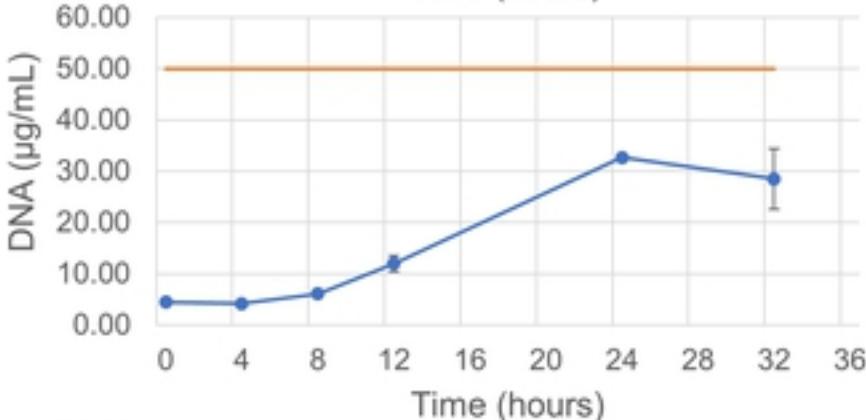


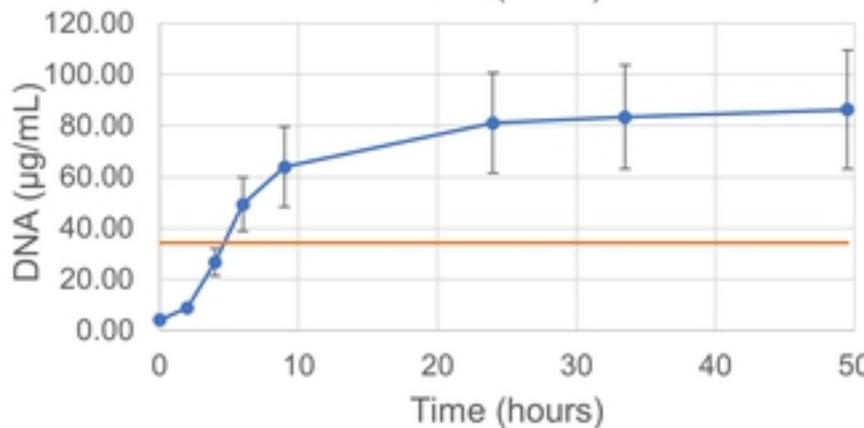
Figure

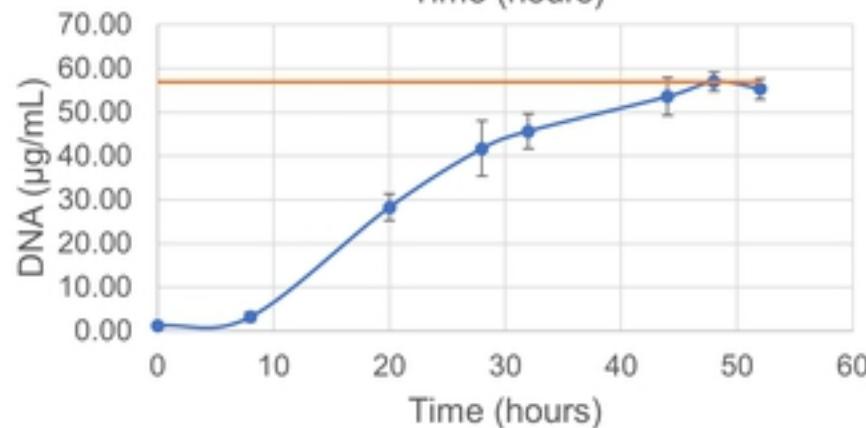


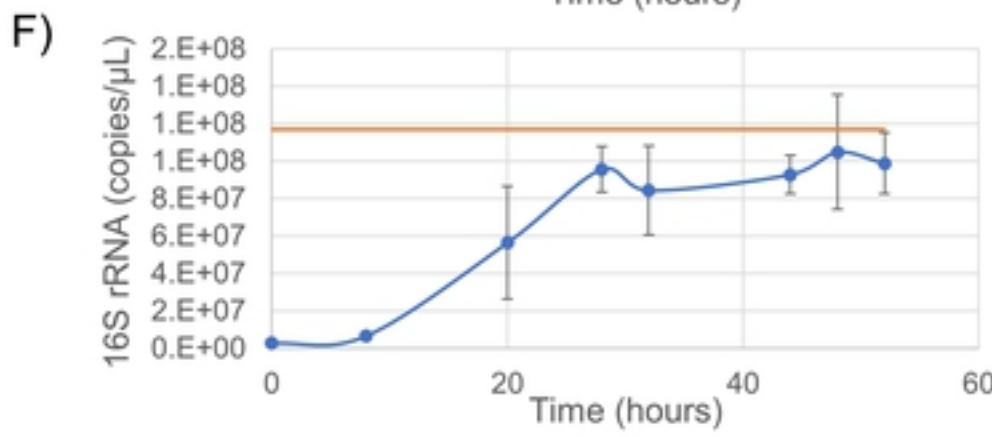
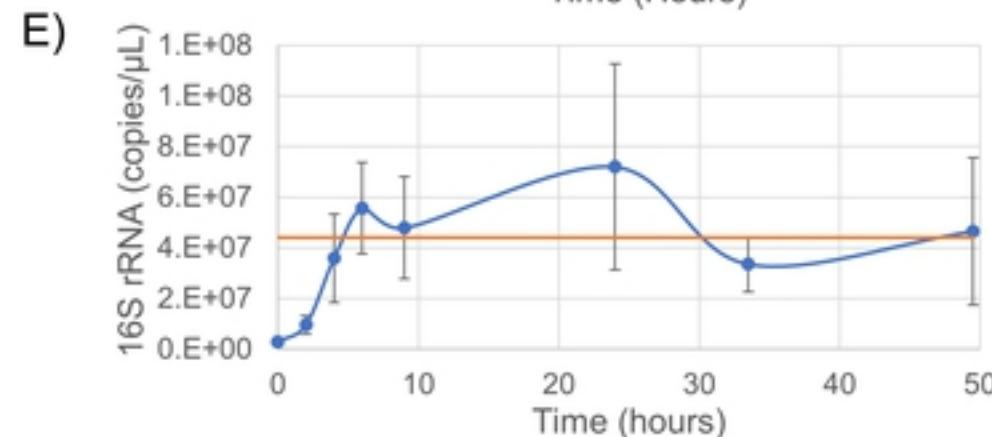
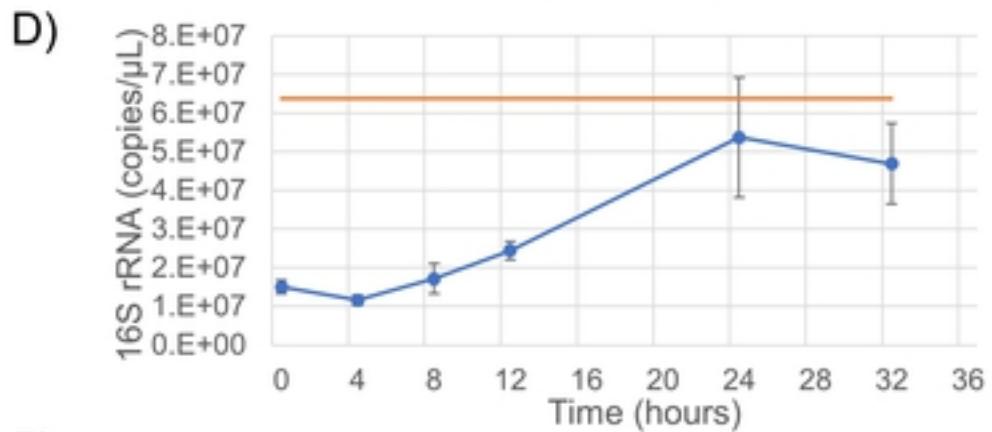
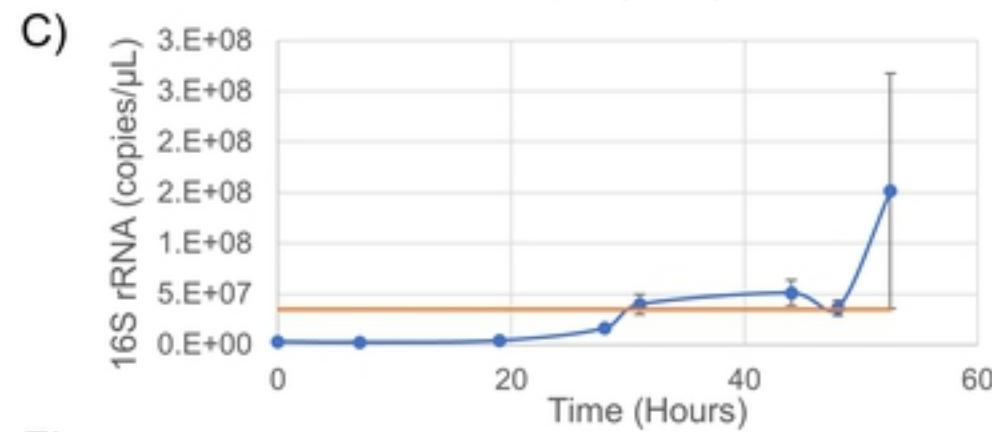
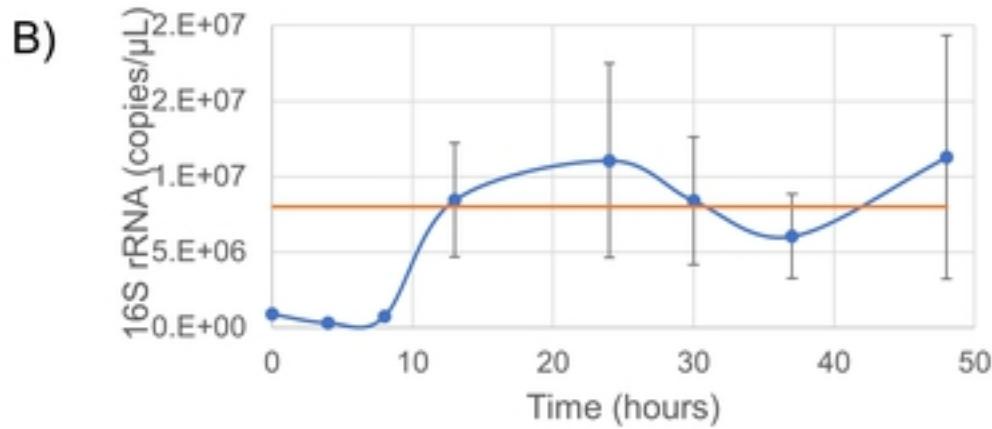
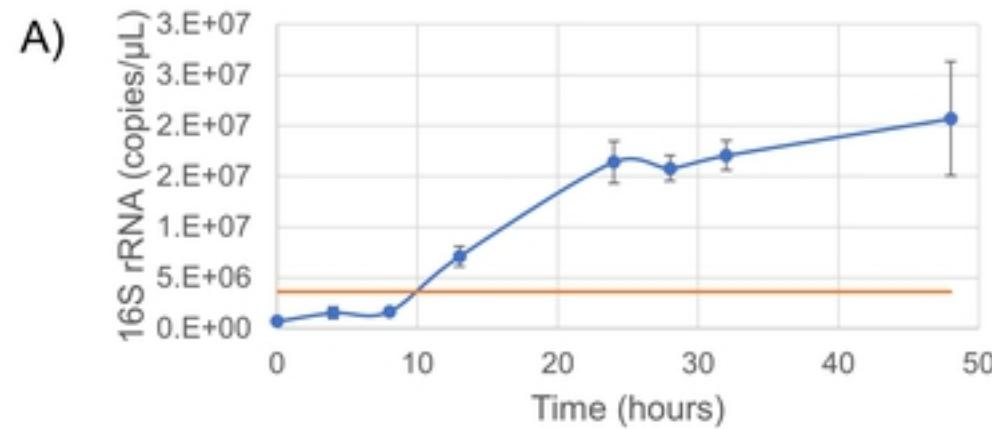
Figure


A)


B)


C)


D)







E)

F)

Figure

Figure