O© 00 N O O & W DN -

e
= O

[y
N

e
g~ W

N NN DD NN DNDDNDNDNDNDNREPR PP
O 00 N O Ol WNNPFP O OWOo0WwNO®

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463245; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Title
e Power dynamics of theta oscillations during goal-directed navigation in freely moving
humans: A mobile EEG-virtual reality T-maze study
e Theta dynamics during navigation in freely moving humans

Authors
Mei-Heng Lin,* Omer Liran,? Neeta Bauer,! Travis E. Baker,*

Affiliations
!Center for Molecular and Behavioral Neuroscience, Rutgers University, New Jersey
2Department of Psychiatry & Behavioral Neurosciences, Cedars-Sinai, California

Abstract

Theta oscillations (~4-12 Hz) are dynamically modulated by speed and direction in freely moving
animals. However, due to the paucity of electrophysiological recordings of freely moving
humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully
immersive virtual-reality to investigate theta dynamics in twenty-two healthy adults (aged 18-29
years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods
of theta modulation: 1) theta power increases coincided with the participants’ decision-making
period; 2) theta power increased for fast and leftward trials as subjects approached the goal
location; and 3) feedback onset evoked two phase-locked theta bursts over the right temporal and
frontal-midline channels. These results suggest that recording scalp EEG in freely moving
humans navigating a simple virtual T-maze can be utilized as a powerful translational model by
which to map theta dynamics during “real-life” goal-directed behavior in both health and disease.
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Introduction

Decades of single-unit electrophysiological recordings of freely moving rodents navigating
towards a selected goal (e.g. food, water, mates, shelter or avoiding danger) have produced a
wealth of information about the neural mechanisms underlying goal-directed navigation (1-4).
From this work, the consensus view is the precise firing rates of hippocampal place cells and
parahippocampal grid cells with respect to the theta rhythm (4-12 Hz in rodents) constitute a
temporal mechanism for encoding spatial position and information during navigation (1). In
particular, theta oscillations have been shown to encode movement speed, direction, distance
traveled, and proximity to spatial boundaries(1, 5). When salient events or cues such as rewards
and navigationally-relevant landmarks are presented in the animal's environment, the phase of the
theta rhythm is reset, a process that appears to facilitate the encoding of salient information within
the hippocampal-parahippocampal circuitry (6). Further, recent studies suggest that resetting the
phase of the ongoing theta rhythm to endogenous or exogenous cues facilitates coordinated
information transfer within hippocampal-parahippocampal circuits and between distributed brain
areas involved in navigation (7). Computational work leverages such theta mechanisms to
simulate the spatial distribution of firing fields of place and grid cells (8, 9). For example,
computational models integrating spatial representations in the hippocampal-parahippocampal
circuit explicitly require velocity-dependent modulation of theta oscillations (both frequency and
power) in their contribution to path integration and navigation (6, 10, 11). Further, grid cell
models require an input conveying the speed and direction of motion (i.e. velocity), information
carried by theta rhythmicity, so that this spatial information can be integrated to estimate changes
in location based on the distance and direction travelled(8, 9). Grid cells models also require
phase-resetting of velocity dependent theta oscillations by location-specific input from place cells
to prevent accumulation of error (6, 8, 10). Although theta dynamics during navigation have been
well studied in non-human animal and computational work, whether theta oscillations are
fundamental components of the brain’s navigation system in freely moving humans remains
elusive.

This apparent lack of knowledge is likely due to the necessarily limited options for using invasive
recording techniques in healthy humans subjects (12), and whilst animals can be examined during
free movement, human studies employing virtual reality to simulate aspects of “real-world”
navigation rarely achieve equivalent realism (13). Virtual reality can refer to one of three types of
system: a virtual environment presented on a flat screen display (2D), a room-based system such
as a CAVE, or a head-mounted VR display (3D). Traversing through any rendered environment
via button presses or a joystick while physically immobile can result in motion sickness, sensory
conflict, impair spatial navigation, and clearly influence the degree of immersion and presence in
the virtual environment (13, 14). Notwithstanding, intracranial EEG recording in epilepsy patients
have demonstrated the presence of movement-related theta oscillations in both the neocortex and
hippocampus during immobile virtual navigation(15, 16). EEG and MEG studies have also
identified functional parallels between theta oscillations (4-8 Hz in humans) recorded during
immobile virtual navigation and those found in rodents during active navigation (e.g. self-initiated
movement, processing of landmarks, path integration, orientation) (17-23). And two decades of
fMRI studies have consistently demonstrated the involvement of several nodes of the navigation
network (e.g. hippocampus, parahippocampal cortex, posterior parietal cortex, precuneus, the
retrosplenial complex, and a region around the transverse occipital sulcus) during immobile
virtual navigation tasks(1, 2, 24-26). Notably, Doeller et al. (2010) observed that the fMRI BOLD
response in human right parahippocampal cortex exhibited a speed-modulated six-fold rotational
symmetry in running direction as predicted by theoretical models of theta phase coding of grid
cells(27).
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78  While there is no doubt that the integration of neuroimaging and videogame design techniques

79  have advanced our understanding of spatial navigation in humans, fMRI data lack the temporal

80  and frequency information needed to study theta oscillations during navigation tasks(28), and

81  immobile navigation lacks the self-motion information from visual, vestibular, proprioceptive and
82  motor systems needed to generate the theta-dependent firing patterns of place and grid cells

83  observed in rodent studies(13, 29). Thus, previous research has been unable to fully address

84  whether freely moving humans also exhibit theta dynamics (e.g. phase-reset, movement speed and
85  direction modulation) during mobile navigation. In recent years, several technological and

86  methodological advances in electrophysiological research (mobile-EEG) and fully immersive

87  virtual-reality (head mount display) have made mobile spatial navigation amenable for

88  investigation in humans(13, 14, 30). Such investigation have already shown compelling results.
89  For example, relative to standing still, delta-theta (2—7.21 Hz) power has been shown to increase
90  during walking in an immersive virtual city (omnidirectional treadmill)(30) and in an virtual Y-
91  maze housed in a large physical room(14), findings consistent with intra-hippocampus EEG

92  recordings during real and virtual navigation(31).

93  Here, we leveraged this advancement to investigate theta dynamics in humans freely navigating a

94  T-maze to find rewards. T-maze paradigms have been used extensively across several animal

95  species (e.g. mice, rodents, ferrets, cats, squirrel monkeys, horses, cows, goats and sheep) to

96 investigate “real-life” goal-directed navigation(4, 32, 33). The simplicity of the T-maze paradigm

97  belies its utility and versatility for examining goal-directed navigation, and such investigations

98  have produced a wealth of information about spatial learning and memory, reinforcement

99 learning, and effort-based decision-making(4, 32, 34-36). Thus, the T-maze constitutes a natural
100  application for mobile-EEG and immersive VR, providing a means for building a translational
101 model of goal-directed navigation across species. Here, we recorded EEG from humans actively
102 navigating a fully immersive virtual reality T-maze task to find rewards. Our purpose was 2-fold.
103 First, given the novelty of the task, we wished to demonstrate that reward cues presented in the T-
104  maze would evoke two well-established phase-locked theta responses, frontal-midline theta
105  (FMT)(37) and right-posterior theta (RPT)(17). Second, in line with animal and computational
106  work, we wish to demonstrate that the participant’s walking trajectory (leftward vs rightward
107  trials) and speed (fast vs slow trials) towards the feedback location would differently modulate
108  theta activity. Taken together, these results provide converging evidence for the proposal that task
109  and behavioral variables (reward, direction, and speed) are responsible for modulating theta
110  activity during active navigation, and hold out promise for integrating experimental,
111 computational, and theoretical analyses of goal-directed navigation in animals within the field of
112 human EEG research.
113
114  Results

115 Behavior: In this study, twenty-two young adults (20 right-handed [laterality index = 68], 9 male
116  and 13 female, aged 18-29 years old [M = 21, SE =.61]) freely navigated a T-maze to find

117 rewards (Fig. 1A). On average, participants completed 148 trials (SE = 7.03, range = 100 — 238),
118  and took 4.2 seconds (SE = .14, range = 2.97 — 5.63) to reach the feedback location (1.83 m).
119  Overall, no differences were observed between the percentage of leftward (M = 48%, SE = 4.3)
120  and rightward (M = 52%, SE = 3.6) trajectories, t(21) = -1.6, p = .123, nor their velocity

121 (leftward: M =.449 m/s, SE =.015 | rightward: M = .448 m/s, SE = .016) towards the feedback
122 location, t(21) = .364, p = .719. It is worth noting that participant first 15 trials were biased

123 towards rightward turns, t(21) = 2.6, p <.01. In regards to post-feedback behavior, participants
124  adopted a Lose-shift strategy (M = 71%, SE = 3.28), t(21) = -6.05, p < .001, and were faster for
125  Win-stay trials (M = .46 m/s, SE = .017) relative to Win-shift trials (M = .44 m/s, SE = .016),
126 t(21) =3.7, p<.001.
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127
128 ***Ejgure 1.%**
129

130  Feedback-related Theta Responses: Given the novelty of the mobile-EEG T-maze paradigm, a
131 necessary precursor would be to replicate two well-studied feedback-related EEG responses

132 observed using conventional computer-based 2D tasks, frontal-midline theta (FMT)(37) and right-
133 posterior theta (RPT)(17, 26). FMT describes an obligatory pattern of phase reset and power

134  enhancement in frontal-midline electrodes (4—8 Hz: 220-300 msec) found to be sensitive to the
135  valence of the feedback (e.g. increase in power and phase consistency following negative

136 feedback), and has been associated with midcingulate cortex processes related to cognitive control
137 and reinforcement learning (37, 38). This phenomenon is also observed in the time domain as a
138 component of the event-related brain potential (ERP), called the feedback-related negativity or
139  N200. RPT describes a pattern of phase reset and power enhancement in right-posterior electrodes
140  (4-8 Hz: 160-220 msec) found to be sensitive to the spatial position of the feedback (e.g. greater
141  power and phase consistency for feedback found following rightward turns relative to leftward
142 turns), and associated with parahippocampal processes related to spatial navigation(17, 26, 39,

143 40). This phenomenon is also observed in the time domain as an ERP component called the

144  topographical N170. To examine these two oscillatory components, we computed a standard

145  single trial wavelet-based time-frequency analysis to the EEG signal time-locked to the onset of
146  positive and negative feedback (FMT) following leftward and rightward turns (RPT).

147

148 ***Eigure 2.***

149

150 Visual inspection of Fig. 2 reveals a clear enhancement of FMT power between 220 and

151 260 ms (peak power: M = 250 msec, SE = +.14) and RPT power between 180 and 220 ms (peak
152 power: M = 211 msec, SE = +.14) following the onset of feedback stimulus. In regards to FMT, a
153  repeated measures ANOVA on mean band power measured at Fz as function of Frequency (delta,
154  theta, alpha, beta) and Valence (positive vs negative feedback) revealed a main effect of

155  Frequency (F@s, 63 = 19.67, p <.001, np?= .48), and Valence (Fq,21) = 5.13, p <.05, np?=.20), and
156 an interaction between Frequency and Valence, F, 63 = 3.31, p < .05, np?= .144. Post-hoc

157 analysis indicated that the EEG was characterized by greater power in the theta band (FMT, M =
158 .30 dB, SE = £.05) than at each of the other frequency bands (p < .01), and FMT power was

159  greater for negative feedback (M = .36 dB, SE = £.06) relative to positive feedback (M = .24 dB,
160 SE =+.04), t(21) =-2.3, p < .05, Cohen's d = .52 (See Figure 2A). No other frequency bands

161  displayed power differences between positive and negative feedback (p > .05). In regards to RPT,
162  arepeated measures ANOVA on mean band power measured at P8 as function of Frequency

163  (delta, theta, alpha, beta) and Trajectory (leftward vs rightward) revealed a main effect of

164  Frequency, F, 63 = 22.82, p <.001, n,?>= .50, indicating that the EEG was characterized by

165  greater power in the theta (M = .57 dB, SE = +.09) and alpha (M = .44 dB, SE = +.09) band than
166  at each of the other frequency bands (p<.001). However, no other main effects nor an interaction
167  were detected (p>.05). Together, these results are characteristic of FMT and RPT, and indicate
168  that the feedback processing in the virtual reality T-maze task is capable of eliciting these phased-
169  locked theta responses during active navigation.

170  Movement-related Theta Responses: In line with animal and computational work, which have
171 demonstrated that theta oscillations encode movement speed and direction during navigation, we
172 examined whether the participant’s trajectory (leftward vs rightward trials) and walking speed
173 (fast vs slow trials) towards the feedback location would differently modulate theta activity. We
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174  used the subjects median RT from start to feedback onset (distance travelled: 1.83 meters) to

175  create two speed-dependent conditions (e.g., fast [median = .385 m/s, SE =.019] vs slow [median
176  =.520 m/s, SE =.011]) and two direction-dependent conditions (e.g., leftward vs rightward

177  trajectories). Fig. 3 illustrates the topography results of the time frequency analysis from the start
178  location to the feedback location averaged across all conditions. Visual inspection of Fig. 3

179  reveals notable enhancements of theta power (as well as delta power) over frontal-midline (FCz
180  and Cz) and posterior (P3, Pz) channels while traversing the stem (Sla and S1b) and turn (S2a
181  and S2b) sections of the T-maze. We confined the statistical comparisons of the time-frequency
182  space to these frontal and posterior electrodes (see Fig. 4). We also included an analysis of P8

183  because of its robust theta responses during feedback processing in the maze (Fig. 2B and 2C).
184  Statistical comparisons of data for each grand averaged time-frequency plot were calculated using
185  paired-samples t-tests (left vs right; fast vs slow). Given the large search space and novelty of this
186  experiment, the alpha value was set at p < .05 (uncorrected) for each t-test conducted. To provide
187  partial control for Type I error inflation, at least two consecutive significant comparisons (2 Bins
188  of time data [approx. 50-100 ms] across two frequency steps [2 hz]) were required before a

189  specific value was portrayed on the graph (41). This value was chosen as it provided the best

190  visual representation of the differences between the conditions of interest, and a necessary

191 precursor if we are to begin developing empirically driven and realistic representations of the

192  oscillatory dynamics used to encode, represent, and process information during active navigation.

193

194 ***Ejgure 3. ***
195
196 To help visualize the subject’s location during their trajectory, we segmented the stem

197 (Sla[Bin 1-30]; S1b [Bin 31-60]) and turn (S2a [Bin 61-90]; S2b [91-120]) sections of the T-
198  maze (see Figure 3A). In regards to direction travelled, the first theta burst (6-7 Hz; channel Cz)
199  occurred as participant approached the junction region of the T-maze (S1b Bin 48-49; duration =
200 84 msec), and displayed a sensitivity to leftward relative to rightward trajectories (range: t(21) =
201 2.2-2.7,p=.04-.02). Channel FCz also displayed a similar pattern of results in the stem, but
202  closer to the junction point of the maze (6-8Hz, Bin 59-64; duration = 192 ms; range: t(21) = 2.1
203 —2.7,p=.05-.01). As subjects arrived at the junction point (S2a), a second burst of theta could
204  be seen across several channels, all of which maintaining a leftward sensitivity: Channel P3 (5-
205  8Hz, Bin 68-72; duration = 135 ms; range: t(21) = 2.1 — 2.8, p = .05 - .01); Channel Cz (5-6Hz,
206  Bin 74-77; duration = 108 ms; range: t(21) = 2.1 — 2.2, p = .05 —.03); and, Channel FCz (6-8Hz,
207  Bin 79-86; duration = 210 ms; range: t(21) = 2.1 — 3.4, p =.05 —.002). As the subjects began their
208  approach towards the goal location (S2a-S2b), there was a strong increase in delta-theta power at
209  channel Cz for the left alley relative to the right alley: (3-5Hz, Bin 81-100; duration = 567 ms;
210  range: t(21) = 2.2 - 4.8, p = .03 to <.00001). In addition, theta-alpha activity (8-9 hz) at channel
211 P3displayed a sensitivity to rightward trajectories (8-9Hz, Bin 53-54; duration = 84 ms; range:
212 t(21) =2.2-4.8, p=.02 —.009). It is also worth noting that the effects observed over channel P3
213 where not observed over channel P4 (channel P4 did not display any significant Bins for any

214  frequency). Together, these results indicate that theta power was sensitive to the participant’s

215  trajectory from the start location to the goal location in the T-maze.

216

217 ***Figure 4.***

218

219 In regards to speed (Figure 5 and 6), there was an initial increase in delta-theta power at

220  the beginning of the stem, which was stronger for slow trials relative to fast trials at channel P8:
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(3-4Hz, Bin 39-40; duration = 84 ms; range: t(21) = 2.2 — 3.0, p = .04 —.007). Shortly after this
response (approx. 800 ms), a theta burst emerged as the participant approached the junction
region, and was stronger for slow trials: Channel FCz (5-6 Hz, Bin 51-54; duration = 168 msec;
t(21) =2.1-2.2, p =.04 —.02), and Channel P3 (6-7 Hz, Bin 56-59; duration = 168 ms; range:
t(21) =2.1-3.1, p =.04 —.006). By contrast, as subjects approached the goal location after the
turn, a second burst of theta could be seen across several channels and all displayed an increase in
power for fast trials: Channel FCz (7-8Hz, Bin 79-81; duration = 81 ms; range: t(21) = -2.1 — -3.5,
p = .03 -.001); Channel Cz (4-7Hz, Bin 86-93; duration = 216 ms; range: t(21) =-2.1--3.2,p =
.04 —.004); and, Channel P3 (4-6Hz, Bin 83-95; duration = 315 ms; range: t(21) =-2.2--3.1,p =
.04 —.004). Together, these results indicate that theta power was also sensitive to the participant’s
speed in the T-maze, but was stronger for slow trials as participants approached the junction
point, and stronger for fast trials as participants approached the goal location.

***Ejgure 5.***

***Eigure 6.***

Discussion

In the present study, we combined mobile-EEG and head-mounted VR technology to investigate
whether behavior (direction and speed) and task (rewards) variables modulate scalp-recorded
theta activity in humans freely navigating a T-maze task. In line with animal and computational
work, our results provide compelling evidence that theta power was dynamically modulated as
participants traversed the T-maze towards the goal location and received reward feedback.
Previous research in rodents, non-human primates, and humans suggests that at least three types
of theta oscillations exist during navigation: one elicited during movement in space(1), another in
response to planning and decision-making(42), and a third in response to reward processing(37).
Our findings suggest that such theta-related responses were expressed across time and topography
during the traversal of the T-maze.

The Stem Shortly after participants began their movement down the stem of the T-maze, a large
increase in delta power was observed over the right medial temporal (P8) and frontal-midline (Cz)
electrodes. Prior rodent and human studies have also revealed similar patterns of movement-
related increases in delta activity(15, 30, 43, 44). For example, EEG studies using joystick-based
movements through 2D rendered virtual environments suggest that movement-related oscillations
based on optic flow tend to manifest specifically within the 1-8 Hz frequency range (31, 43).
More recently, Liang and colleagues (2018) demonstrated that frontal-midline delta-theta
oscillations (2—7.21 Hz) exhibit higher power and are more sustained during physical movement
than when standing still on an omnidirectional treadmill coupled with 3D immersive virtual
reality. Delaux et al. (2021) also observed greater delta power as participants began walking down
the starting arm of a fully immersive 3D Y-maze. Together, these data suggest that delta-theta
oscillations can be induced by movement via a combination of visual, vestibular, and
proprioceptive information. Further, while this emerging pattern of delta activity advocates for a
mere signature of locomotion, its worth noting that delta-theta (3-4 Hz) activity recorded over
right medial temporal cortex (electrode P8) proved to be condition sensitive, i.e., higher power for
slow walking trajectories relative to fast walking trajectories. Consistent with this finding, Delaux
et al. reported stronger delta response during learning phases of their Y-maze task, and intra-
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268  hippocampus EEG recordings found a delta-theta sensitivity to different types of real-world

269  movements (e.g. during searching, recall and walking) during real and virtual navigation (31).
270  Further, several human studies suggest that virtual navigation tends to result in low-frequency
271 hippocampal oscillations peaking around 3.3 Hz, whereas freely ambulating humans show

272 increased hippocampal oscillations ranging from 1-12 Hz compared with a standing position (15,
273 31, 43, 45). Although parallels exist between scalp recorded EEG and intracranial EEG

274 recordings, the hippocampus is located too deep in the brain to be detected with electrodes placed
275  at the scalp and because of its spiral organization, would likely produce a closed electromagnetic
276 field (17, 40). This concern notwithstanding, movement-related signals conveyed by the

277 hippocampus project to and regulate navigation regions in temporal, parietal, and prefrontal

278  cortex (15, 23, 46), and these regions are amenable to investigate with scalp EEG(28, 47). Thus,
279  the movement-related delta-theta activity observed here, and in other mobile EEG-VR studies,
280  may be a cortical reflection of the movement-specific firing patterns of the hippocampal circuitry
281  observed in intracranial EEG studies, and highlight the importance of ambulation to the induction
282  of low-frequency oscillations and to spatial processing(13, 29).

283  The Junction As participants approached the junction section of the T-maze, a burst of frontal-
284  midline theta power emerged and exhibited an increase in power for slow and leftward

285  trajectories. Although this theta response deviates from previous observations of proportional

286  increases in delta/theta activity with increases in velocity, it’s worth noting that this increase in
287  theta power coincided with the participants’ decision-making period, and before the turning

288  motion itself. For these reasons, we propose this increase in frontal-midline theta activity may be
289  more in line with route planning and decision-making. In particular, when animals come to a

290  decision point in a T-maze, they sometimes pause or slow down as if deliberating over the choice
291  (i.e. mentally searching future trajectories) (42). Neurophysiological data in rodents suggest that
292  increases in hippocampal place cell activity during this period represent the process in which the
293 animal is serially exploring the paths towards future outcomes (42, 48). Several researchers have
294  further suggested that coherent oscillations between prefrontal cortex and hippocampus create
295  such imagined episodic futures for this purpose (42, 49, 50). Further, hippocampal theta-

296  entrainment of the rodent medial prefrontal cortex is strongest near the decision-making period of
297  spatial memory tasks, which serves to focus attention on the prefrontal representations that are
298  relevant for task performance (51-54). For example, a previous study revealed increased theta-
299  entrainment between medial prefrontal and hippocampal neurons at the choice point of a working
300 memory T-maze task (55). In humans, deliberative decision-making is also hypothesized to

301 involve the prefrontal cortex and medial temporal lobe structures, suggesting that there are direct
302  parallels between animal and human findings(42). For instance, neuroimaging evidence revealed
303 that the hippocampus is both necessary for and active during episodic future thinking(56), and
304  several EEG studies have also shown that when subjects engage in control processes

305 characterized by goal-directed influence, there is an increase in frontal theta activity(7, 37, 57-59).
306  Together, these studies highlight the role of hippocampal-prefrontal theta interactions across

307  different cognitive domains, such as goal-directed behavior(7), episodic memory (23), decision-
308 making (42) and spatial learning (52). By extension, we propose that the observed increase in
309 right posterior delta-theta power and frontal-midline theta power during slow trials may dovetail
310  the neural processes and theoretical assumptions of deliberative decision-making observed across
311  species. These findings imply that when reward-delivery contingencies are variable, humans at
312  decision points in a T-maze, like rodents, are actually searching through possibilities, evaluating
313  those possibilities, and making decisions that are based on those evaluations, a process reflected
314 by an increase in both response time (i.e. slowing or pausing) and the presence of temporal-frontal
315 theta oscillations near decision points(42), as we observed here.

316 Moreover, we propose that the observed increase in frontal-midline theta power for
317  leftward trajectories may reflect additional control processes by frontal cortex during the
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318  decision-making period. Studies in rodents, non-human primates, and humans have uncovered
319  signals in the anterior midcingulate cortex that reflect the pressure to switch away from an

320  ongoing behavioral strategy or default action (60). Frontal-midline theta activities, which are

321 proposed to be generated in anterior midcingulate cortex(37), have also been shown to predict
322 behavioral switching in simple reinforcement learning tasks(38), and are enhanced during more
323 cognitively demanding navigation periods in spatial tasks (18, 19, 57). In parallel, since the 1920s
324  preferences in turning direction have been reported in several animal species, including

325  humans(61, 62). For instance, a rightward turning bias in humans can be observed when walking
326 around obstacles or making turns in a T-maze(62). Consistent with this turning bias, 65% of

327  participants in the present study displayed a rightward turning bias at the beginning stages of the
328  task, possibly reflecting the default action in the T-maze. In consideration of these observations,
329  we propose that the increase in frontal-midline theta power prior to the junction point of the T-
330  maze may reflect anterior midcingulate cortex control response to switch from the default action
331 of turning right, to the non-preferred action of turning left. In other words, the observed increase
332 in frontal-midline theta activity reflects the increased switch demand by anterior midcingulate
333 cortex that would be required to implement top-down control across disparate brain regions to
334  override the tendency to turn right. Although admittedly speculative, we hope these findings will
335  motivate future experimental and theoretical analysis of the neural determinants of human

336 behavior at a choice-point in a T-maze.

337  The turn and goal approach From the junction point throughout the traversal of the turning

338  section of the maze, the increase in frontal-midline theta power for leftward trials was sustained,
339 possibly reflecting the maintenance period of the selected leftward action. Consistent with this
340  observation, a previous mobile virtual reality study demonstrated a sustained theta response from
341  the center zone of a Y-maze to the finish arm (14). We propose that this sustained frontal-midline
342 theta response is likely generated by prefrontal cortex (e.g. anterior midcingulate cortex).

343 According to an influential learning theory of anterior midcingulate cortex function, this region
344 not only selects sequences of actions during the decision making process, but also determines the
345  level of effort to be applied toward executing the action and maintaining this level of activity until
346  the organism reaches its goal(63). Consistent with this view, a multitude of studies have indicated
347  that frontal-midline theta power correlates positively with levels of cognitive effort, working

348  memory load and attention, especially for tasks that demand sustained effort and control(37, 64).
349  Based on this theoretical and empirical work, we propose that the frontal-midline theta activity
350  observed following the junction point represents the continued engagement of the anterior

351  midcingulate cortex and it’s role in maintaining vigilance and control of the leftward trajectory
352  towards the goal location.

353 Following the junction point, leftward trajectories towards the goal location produced a
354  strong theta burst over the left posterior channel P3. To note, this pattern of theta activity (or the
355  inverse of) was not observed over the right posterior channel P4, ruling out the possibility that this
356  enhancement of power was related to head-direction, motion artifacts, or stemmed from a

357  hemispheric bias associated with the retinotopic position of the goal target stimuli (floating orb)
358  during the turn. While the topography of this theta response was not anticipated, the robustness of
359 its effects warrants a closer look. Based on the literature and topography of this theta response,

360  one possible generator is the posterior parietal cortex(65). A large number of studies across

361  species have related posterior parietal cortex activity to the control of body movements (e.g. eyes,
362  head, limbs, and body), decision-making, and spatial navigation (66-72). In particular, posterior
363  parietal cortex firing patterns in rodents are often determined by conjunctions of body position or
364  orientation, positions in a path, and concurrent movement type (i.e., turns or forward

365 locomotion)(68, 73, 74). For example, Krumin and colleagues (2018) trained mice to use vision to
366  make decisions while navigating a virtual reality task, and found that posterior parietal cortex

367  activity can be accurately predicted based on the position of the animal along the corridor and
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368  heading angle. These data, along with others, have led to the idea that posterior parietal cortex

369  activity form an integration of spatial representations of objects and scenes with motor

370  representations to support accurate eye, head, and whole body movements towards selected goal
371 or target (69, 75). Relevant to motor coordination during the pursuit of goals, posterior parietal
372 cortex activity also exhibits a sensitivity to self-motion (e.g. linear and angular speed), visual

373  target position, and movement direction in egocentric coordinates. These findings help support
374  the idea that posterior parietal cortex may subserve online sensorimotor coordination necessary
375  for goal pursuit behavior or target chasing in egocentric space(76). By extension, we propose the
376  theta activity recorded over the left parietal cortex during the turn may reflect the sensorimotor
377 coordination process of pursuit navigation, (i.e., the continuous adjustment of movement plans
378  relative to the position of the floating goal orb in the left or right alley of the T-maze). Further, the
379  heightened activity for leftward trajectories likely represents the allocation of top-down control by
380  anterior midcingulate cortex over posterior parietal cortex activity during the active pursuit of the
381  leftward goal. We hope these findings will warrant future investigations.

382 Lastly, an increase in theta power over frontal-midline (FCz and Cz) and left posterior
383  (P3) electrodes was observed during fast walking trajectories towards the goal target, findings
384  consistent with previous observations of proportional increases in theta activity with increases in
385  speed. In particular, animal and computational work indicate that theta oscillations coordinate the
386  firing patterns of hippocampal place cells and parahippocampal grid cells during navigation,

387  providing the rodents spatial position in the environment(1, 6, 11). Central to this idea is the

388  observation that the power (and frequency) of hippocampal and parahippocampal theta activity
389 increases linearly with movement speed, and such speed-related changes in theta oscillations is
390  essential to calculate the distance travelled through the place field(20, 44, 77). Speed-related

391  changes in theta power have also been linked to changes in sensorimotor integration, the flow of
392 sensory input, as well as cognitive/memory functions(44). For instance, the sensorimotor

393 integration hypothesis posits that rodent hippocampal theta oscillations incorporate incoming

394  sensory information with existing motor plans to guide movement, and more rapid traversals

395  require faster sensorimotor transformations, resulting in higher theta activity(20, 57). Regardless
396  of the theoretical interpretation of speed-related changes in theta power during navigation, the
397  observed speed- and direction-related increase in theta power during the approach to the goal

398  location draw strong parallels with animal and computational studies. Further, although these

399  specialized neural representations have been identified in humans during virtual movement at
400  various levels of analysis - i.e., ranging from intracranial EEG recordings of local field potentials
401  to the fMRI blood oxygen level-dependent (BOLD) signal - virtual movement and real movement
402  are fundamentally different(13). Virtual movement requires subjects to press buttons or move a
403  joystick to process optic flow in order to compute their speed, direction, and location in space,
404  and to initiate and maintain virtual movement toward the target location, all while physically

405  immobile(13, 14, 30). By contrast, self-motion information from visual, vestibular, proprioceptive
406  and motor systems are needed to generate the theta-dependent firing patterns of hippocampal-
407  parahippocampal system. Thus, our findings here confirms that spatial navigation and free

408  ambulation are potential drivers of multiple theta generators in healthy human participants, and
409 likely reflects the common theta state the navigation system is synchronized to(15). More

410  specifically, given the role of hippocampal theta in synchronizing network activity during

411  navigation, these results outline a dynamic and distributed pattern of theta activity across the

412 nodes of the navigation system (e.g. prefrontal cortex, posterior parietal cortex,

413  parahippocampus), and highlight the utility of scalp recorded theta measures as potential indices
414  of neural network function and hippocampal-parahippocampal physiology during navigation. We
415  hope these findings warrant future investigations.

416  Feedback processing Consistent with previous work, the presentation of feedback stimuli in the
417  T-maze elicited a large, focally distributed theta burst over the right temporal cortex (17). The
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418  topography and timing of this response are characteristic of RPT and indicate that the virtual

419  reality T-maze paradigm is capable of eliciting this oscillatory response. Using a desktop version
420  of the T-maze task, we demonstrated that RPT reflects a stimulus-induced partial phase reset (i.e.
421 increase in power and enhanced phase consistency) of theta oscillations, and source localization,
422 fMRI, and simultaneous EEG-fMRI data point to a neural generator in the right parahippocampal
423 cortex(17, 26, 39, 40). In line with these observations, animal and computational work suggest
424  that theta phase-coding and resetting are crucial during navigation as it sets the internal map of
425  space encoded by the parahippocampal cortex(6, 7, 10, 78, 79). In order to prevent error

426 accumulation of phase information during navigation, the phase of the theta rhythm may be reset
427  to some predefined value (e.g. zero phase) by salient cues such as landmarks or rewards, a process
428  thought to contribute to reward- and emotion-related spatial learning and memory(6, 8). Current
429  thinking holds that this reset signal is provided by hippocampal place cells, which fire when the
430  rodent enters the preferred field (or peak phase) of the place cell(8, 78, 79). More so, goal

431 locations within a maze induces an accumulation of place fields and higher firing rates, which
432 suggests that hippocampal place cells over-represent goal locations that generate emotional

433 valence(35). Theta resets are also believed to be a mechanism for phase-locking hippocampal-
434  parahippocampal activity to behaviorally relevant events and thereby may enhance cognitive

435  processing (7, 78, 80, 81). By extension, we propose that the left and right goal locations within
436 the T-maze were represented by it’s own place field.' In particular, when the participant actively
437  entered the goal location and received feedback, the phase of the parahippcampal theta oscillation
438 was reset by the location-specific input from place cells, thereby concomitantly increasing theta
439  phase coherence across trials. Further, the over-representation of goal locations by place cells (35)
440  may have potentiated parahippocampal activity, thereby leading to an overall increase in regional
441 spectral power. Accordingly, such stimulus-induced theta dynamics would be reflected in the

442  EEG as enhanced theta phase consistency and spectral power, as we observed here with RPT

443 power. In line with animal and computational work, we propose that RPT reflects a macroscopic
444  proxy of the sum of parahippocampal theta activity, possibly the phase resetting of grid cells by
445  place cells during feedback processing in the T-maze.

446 Next, we found that negative feedback relative to positive feedback yielded a significant
447  increase in theta activity over frontal-midline electrodes, replicating the standard FMT effect(37,
448  38). At a behavioral level, participants exhibited a lose-switch strategy and walked faster on Win-
449 stay trials", results suggesting that participants’ choices were influenced by the maze feedback.
450  Over two decades of research using standard reinforcement learning paradigms (e.g. two-arm

451 bandit task, gambling tasks, probabilistic reward tasks) have reliably demonstrated that FMT

452 activities reflect the evaluation of negative and positive feedback for the purpose of the adaptive
453  modification of behaviour (37, 38, 64). An accumulating body of evidence point to the anterior
454  midcingulate cortex, as well as pre-supplemental motor area, as the source of FMT oscillations,
455  and FMT power is thought to be modulated by a dopaminergic teaching signal tethered to

456 prediction of reward outcomes during trial-and-error learning (i.e., reward predication error

457  signals, RPES)(37, 38). RPEs constitute the learning term in powerful reinforcement learning

458  algorithms that indicate when events are “better” or “worse” than expected (82), and it is

459  becoming increasing clear that positive and negative RPESs are encoded as phasic increases and
460  decreases in the firing rate of midbrain dopamine neurons, respectively(83). FMT activities have
461  also been shown to reflect a common computation used to identify and communicate the need for
462  cognitive control, and subsequently organize prefrontal neuronal processes to implement top-

463  down control across disparate brain regions(37, 64). By replicating the standard FMT response to
464  reinforcers, in addition to the observed adaptive modification of behavior following feedback, we
465  can infer the engagement of a reinforcement learning and control system during active navigation
466 in this task.
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467  In summary, successful goal-directed navigation requires highly specialized neural

468  representations that encode information about the location, direction, and speed of the navigating
469  organism, as well as stimulus events, actions, and reinforcers for the purpose of optimizing

470  behavior. Although substantial evidence from animal studies indicates that the theta rhythm plays
471 avital role in these neural representations during goal-directed navigation, they remain poorly
472 understood in freely moving humans. In the present study, the multiplicity of human theta

473  patterns observed during decision-making points, goal pursuits, and reward locations details how
474  theta oscillations coordinate and support a diverse set of brain-wide neural assemblies and

475  functions during goal-directed navigation. Foremost, measuring theta oscillatory activity from the
476  scalp during active navigation allowed us to address our main objective: whether theta power

477  increases with increases in speed, as shown previously in the rodent. This crucial finding opens a
478 new door of investigative possibilities by which to integrate mobile-EEG measures of “real-life”
479  goal-directed behavior with extensive animal, human, and computational work on spatial learning
480  and memory based on Tolman's seminal cognitive map theory.

481

482  Materials and Methods

483 In this study, twenty-two young adults (20 right-handed [laterality index = 68], 9 male and 13
484  female, aged 18-29 years old [M = 21, SE =.61]) freely navigated a T-maze to find rewards (Fig.
485  1A). Participants were recruited from Rutgers University Department of Psychology subject pool
486  using the SONA system. Each subject received course credit for their participation. Before the
487  experiment, participants were screened for neurological symptoms and histories of neurological
488  injuries (e.g., head trauma), and then asked to fill out the Edinburgh Handedness Inventory(84).
489  After the experiment, participants filled out the Everyday Spatial Questionnaire. Ethical approval
490  was obtained from the Institutional Review Board of the local university, and all participants

491  provided written consent before the experiment.

492 In keeping with the classical design of the T-maze, this immersive virtual reality version consisted
493  of a stem and 2 alleys extending at 90° angles out from a junction point and was located on a

494  virtual enclosed landscape (20m x 20m) with an open ceiling exposed to a cloudy blue sky (Fig.
495 1, top panel). The virtual structure of the T-maze was enclosed inside the lab’s physical space of
496  2.13m by 2.13m room, with virtual meshed walls marking the boundaries. The T-maze was

497  constructed using commercially available computer software (Unity version 2019.2,

498  https://unity.com) and the virtual reality environment was provided through an HTC Vive head-
499  mounted display system, which tracked participants’ head positions during navigation (HTC

500  Corp., Taiwan). Continuous EEG was recorded with a mobile V-Amp amplifier from 16 actiCAP
501  slim electrodes (Brain Products, Munich, Germany).

502 At the start of the experiment, a light beam marked the starting position of the T-maze, and the
503  subjects had to step into that beam to start each trial. On each trial, participants walked down the
504  stem of the maze until they reached a junction point, in which they were required to turn down the
505 left or right alley and move towards a yellow orb floating at eye level at the end of the alley. The
506  height of the icons was dynamically adjusted at the beginning of the experiment to match the

507  subject’s eye-level. Once the participants were within 1.07 meters from the end of the alley, the
508  floating yellow orb turned either green with a check mark () or red (x) for 1000 msec, signifying
509 the alley they selected contained 5 cents (reward) or was empty (no-reward), respectively.

510  Following the feedback, the maze would disappear, and participants were required to walk across
511  an open field towards a purple beam of light. Once standing inside the beam of light and facing
512  forward, the T-maze would re-appear, signifying the start the next trial. Participants were given
513 20 minutes to maximize their rewards. Unbeknownst to them, on each trial the type of feedback
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514  was selected at random (50% probability for each feedback type). At the end of the experiment,
515  participants were informed about the probabilities and were given a $10 performance bonus.

516  The application contemporaneously communicated the subject’s position and the outcome of each
517  trial by transmitting position values via a parallel port which took an integer from 0 to 255 and
518  converted it to a voltage spike that was in turn marked by the EEG device. The rate of data

519  updates was limited by the application’s running rate of 90 frames-per-second. Each signal was
520  active for approximately 0.45 seconds, followed by transmitting a rest period of approximately
521 0.05 seconds in order to allow for clear separation of the signals. However, the outcomes of each
522 trial were recorded immediately, even if the aforementioned delay needed to be interrupted. The
523  subject’s position was encoded as a 15 by 15 grid using integers 1 to 226, while outcomes were
524  encoded using higher integers.

525  Electrophysiological Data Recording The electroencephalogram (EEG) data were collected

526  using a 16-channel BrainVision actiCAP snap system (Brain Products GmbH, Munich, Germany)
527  with 12 scalp electrode sites (Fp2, Fpl, Fz, Cz, FC5, FC6, Pz, Oz, P3, P4, P7, P8) and four

528  external electrodes. One external electrode was placed on the right infraorbital region to record
529  vertical eye movements (channel VEOG), and one was placed lateral to the outer canthus of the
530  right eye to measure horizontal eye movements (channel RH). By convention, mastoid sites (M1
531 and M2) were collected to re-reference offline (see section below). EEG signals were recorded
532 using Brain Vision Recorder software (Brain Products GmbH, Munich, Germany), online-

533  referenced to channel FCz, a ground at AFz, and amplified using the portable V-Amp system

534  (Brain Products GmbH, Munich, Germany). The sampling rate was set to 1000 Hz.

535  Electrophysiological Data Reduction Raw EEG recordings were analyzed offline using

536  BrainVision Analyzer 2 (Brain Products GmbH, Munich, Germany). The first five trials were

537 considered practice for each subject and were not included in the data analyses. We also excluded
538 trials with response times (RTs) faster than 2.5% of the RT lower bound and slower than 2.5% of
539  the RT upper bound to ensure the data quality. Raw EEG signals were filtered offline using a

540  fourth-order digital Butterworth filter with a bandpass of .10-40 Hz. Activity at the online

541  reference electrode FCz was recreated. Filtered signals were then subjected to ocular correction
542  via independent component analysis (ICA). A mean slope algorithm was applied for blink

543  detection, and an infomax-restricted algorithm was used for the ocular artifact correction. Channel
544  Fp2 was used to detect vertical eye activity, and channel RH was used to detect horizontal eye
545  activity. We then performed ICA correction on signals from 12 scalp electrodes (Fz, Cz, FC5,
546  FC6, Pz, Oz, P3, P4, P7, P8, FCz, Fpl). Next, we divided the analysis stream into two pipelines:
547  one for feedback-locked analyses and another for path analyses (i.e., from the starting point of
548  one trial to the starting point of the next trial). For the feedback-locked analysis pipeline, signals
549  were segmented into 5000 ms duration epochs spanning from -2500 ms to 2500 ms and time-

550  locked to feedback onset. For the path analysis pipeline, signals were segmented into 25000 ms
551  epochs time-locked to trial onset, spanning from -2500 ms to 22500 ms. Here, we used the

552 prolonged epoch length for two reasons: (1) to ensure that the epoch was long enough to include
553  the entire trial duration (i.e., from the start of one trial to the start of the next), and (2) to prevent
554  the edge artifacts from time-frequency analyses. Following this, data were re-referenced using an
555  average reference created from the following channels: FCz, Cz, FC5, FC6, Fz, Oz, P3, P4, P7,
556 P8, and Pz. To note, by convention mastoid sites (M1 and M2) were collected to re-reference

557 offline. However, these electrodes were removed from the dataset due to excessive noise and

558  were not used in any of the analysis. Although mastoid references are commonly used in EEG
559  research, future mobile virtual reality studies should avoid using this method as these channels
560 tend to be contaminated by muscles involving in head rotation (e.g., sternocleidomastoid muscle).

Page 12 of 27


https://doi.org/10.1101/2021.10.05.463245
http://creativecommons.org/licenses/by-nc-nd/4.0/

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

602
603
604
605
606
607
608

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463245; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

For both pipelines, segmented data were then baseline-corrected using a mean voltage range from
200 ms to 0 ms preceding time 0. For feedback-locked segments, artifact rejection was conducted
on the full segment with the following criteria: (1) a maximally allowed voltage step of 50
pHV/ms, (2) a maximally allowed difference of values in intervals of 250 pV, and (3) lowest
allowed activity values in intervals of 0.5 pV. For full-path segments, the search for artifacts was
conducted within a customized window for each subject. The starting point of this customized
window was -2500 ms relative to time 0. The endpoint of the window was the averaged RTs from
the onset of one trial to the next across all trials plus 2500 ms. Due to the long epoch (25000 ms)
used here, one segment often contained data from more than one trial—particularly for subjects
with shorter RTs. By applying this customized window for each subject, we rejected epochs with
artifacts that occurred within this interval of interest and preserved trials with artifacts that
occurred outside of this interval (e.g., at the next trial) but not within. We added 2500 ms here to
ensure that data points for convolution during time-frequency analyses were free from edge-
artifacts to the greatest extent possible. On average, the duration of the customized window was
13014 ms (SD = 1304; min = 10789 ms; max = 15856 ms) across subjects included in the final
data analyses (n = 22). After artifact rejection, bad channels (those with artifacts exceeding 5% of
the data) were identified and interpolated using their four nearest neighbors’ signals for both
pipelines (Hjorth, 1975). For subjects in the final analyses (n = 22), we interpolated data from one
channel for four subjects (FC6: 1 subject; Oz: 1 subject; Cz: 1 subject; and FC5: 1 subject). All
segmented data were written to individual MATLAB files for further processing using MATLAB
software (MathWorks, Inc., 2019a). Out of 31 subjects whose EEGs were collected, data from 9
were excluded from final analyses due to multiple bad channels (n = 5), limited trial count (n = 2),
extreme data outliers (n = 2), and failure to complete the experiment (n = 1).

Time-frequency analyses We conducted continuous wavelet transformation to decompose EEG
oscillations into magnitude and phase information in the frequency range of 1 to 40 Hz for
feedback-locked and full-path segments using a MATLAB program. For feedback-locked
segments, the analysis was performed on four conditions: positive and negative feedback,
rightward and leftward turns. For each condition, averaged evoked power was calculated by
averaging the square of magnitude at each time point and frequency across trials. For feedback-
locked segments, the analysis was performed on four conditions: positive and negative feedback,
rightward and leftward turns. For each condition, averaged evoked power was calculated by
averaging the square of magnitude at each time point and frequency across trials. To control for a
potential difference in power spectrum before stimulus onset, we used a condition-average
baseline of -300 to -150 ms pre-feedback onset averaging across all segments regardless of
conditions for baseline normalization (28). For each subject, the power spectrum for the theta
band (4-8 Hz) was averaged across all segments. We then identified the peak latency in the
window of 0-600 ms post-stimulus for Fz and P8 (peak latency at Fz: 226 ms; peak latency at P8:
211 ms). The window for mean power extraction was then determined by +/- 25 ms around the
peak latency for Fz and P8. We then used the window to extract mean amplitude for positive and
negative feedback at Fz (window: 201-251 ms) and for leftward and rightward turns at P8
(window: 186-236 ms).

For the path analysis, we divided the segments into leftward and rightward turns based on their
path choice for each subject. We also split the segments into fast and slow conditions based on the
median RTs measured from trial onset to feedback across all segments for each subject. The
averaged median RT was 3923 ms (SD = 624; min = 2893; max = 5473) across 22 subjects. The
segments were then subjected to continuous wavelet transformation for each condition. After the
transformation, a critical challenge for creating an average power spectrum was that the timing of
event triggers marking the turn and feedback location in time relative to time O (i.e., trial onset)
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609  varied across segments. Such variation made it challenging to obtain a robust averaged power
610  spectrum using the conventional averaging approach. Therefore, we applied a data binning
611  strategy used in animal studies to examine neurophysiology in freely moving rats to address
612  timing variation across trials (e.g., Kyriazi, Headley, & Pare, 2020).

613  To apply the binning strategy, we divided each segment into two sections (Stem and Turn)

614  according to the triggers marking participants’ movement trajectories in the T-maze. The Stem
615  section was defined as the period between trial onset and the intersection of the T-maze. The Turn
616  section was defined as the period between the junction of the T-maze and feedback onset. We

617  then binned the power spectrum into 60 bins for each defined maze section using the histcounts
618  function written in MATLAB (Mathworks Inc., Natick, MA). Specifically, for a given section, the
619  program divided the interval in milliseconds into approximately equally spaced bins and defined
620  the bin edges (i.e., the starting point and the endpoint in milliseconds). We then averaged the total
621  power across the time points in milliseconds within each bin. For example, for a given trial, the
622  duration of the Stem section was 1500 ms, indicating that the width of each bin is 25 ms. We

623  would then average the total power across 1-25 ms to get the total power for bin 1; average the
624  total power across 26-50 ms to get the total power for bin 2; average the total power across 51-75
625  ms to get the total power for bin 3, etc. We did this for each frequency in every trial. We then

626  averaged single-trial binned total power across segments for each condition to obtain the averaged
627  binned total power for each subject. For both the path analyses, the averaged binned total power
628  was then baseline normalized using a condition-average baseline (i.e. all conditions averaged

629  together) in the period of -1000 ms to -100 ms before the trial onset. Across these 22 subjects, the
630  averaged milliseconds per bin were 42 ms for the Stem section and 27 ms for the Turn section.
631  The mean power was extracted across all channels for delta, theta, and alpha bands for the

632  following sections (Figure 3): (1) S1la: Stem section — first half (Bins 1-30: first half of trajectory
633  from start location to junction point); (2) S1b: Stem section — second half (Bins 31-60: second

634  half of trajectory from start location to junction point); (3) S2a: Turn section — first half (Bins 61-
635  90: first half of trajectory from junction point to left or right feedback location); and (4) S2b: Turn
636  section — second half (Bins 91-120: second half of trajectory from junction point to left or right
637  feedback location. To note, because of the inter-trial and inter-subject variation in return strategies
638  (e.g. turn counter-clockwise vs clockwise to return to start location; walk forward vs backwards to
639  start location — information was not recorded), we did not include an analysis of the return

640  segment of the task and leave this for future investigations. All statistical analyses were

641  performed using SPSS 24.0 for Windows (IBM SPSS Statistics, IBM Corporation).

642 Footnotes

643 i.  This idea may explain why we failed to replicate the rightward turning bias on RPT power
644 and latency (phase) observed in our previous 2D T-maze tasks(17). For instance, during
645 active navigation, if the two goal locations were represented by their own place fields, and
646 the feedback-induced reset occurred at the center of each place field, then the resulting
647 RPT phase and power would be identical between the two goal locations. By contrast, if
648 the two goal locations in the 2D version of T-maze task were only represented by one

649 place field — since subjects were only sitting in one physical location and pressing

650 buttons to move between different spatial locations digitally drawn on the screen — it is
651 possible that the left and right goal location were represented by different phase positions
652 along the theta cycle of a single place field. If true, one might expect to see commensurate
653 differences in RPT power and phase between left and right goal locations following phase
654 reset, as we observed previously(17).
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Its interesting to note that we failed to replicate the standard win-stay behavior, a heuristic
learning strategy used to model learning in decision situations and has been applied
towards theory development in psychology, game theory, statistics, economics, and
machine learning (38, 85, 86). In particular, when subjects are simply pressing buttons to
make decisions on a computer, this win-stay pattern emerges (87, 88), but when subjects
are required to move their entire body to make decisions, this pattern disappears. While
this is a surprising result and needs to be explored further, it is our best guess that the win-
stay and win-shift decisions during active navigation reflects an increase in strategy
exploration (testing win-shift behavior more often) or there are differences in the
computations between active navigation (i.e. calculating the physical and cognitive
energy needed to navigate our bodies towards a goal), and simple button presses.
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879  Figure 1. Mobile virtual reality T-maze paradigm and associated behavior. A) Dimensions

880 of the virtual (black border) and physical (cyan border) room and T-maze (S1: start

881 location, S2: junction point, S3: feedback location). Purple and green lines denotes

882 rightward and leftward trajectories, respectively. B) An example of a rightward trajectory
883 in the T-maze, (C) and trial-to-trial sequence of events. Behavioral analysis for choice (D)
884 and velocity (E). Green and purple bars denote leftward and rightward trajectories, and
885 Blue (positive) and Red (negative) bars denote post-feedback behavior.

886
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888  Figure 2. Feedback processing during active navigation. A) Panels indicate changes in power
889  for each frequency band with respect to baseline (-300 to -100 ms period prior to feedback stimulus)
890 elicited by negative (left) and positive (right) feedback stimuli. Right bar graph depicts peak power
891  across frequency bands delta [1-3 HZz], theta [4-8 Hz], alpha [8-13 HZz], [13-20 Hz], and gamma
892  [20-40 Hz] associated with the response to negative (red bars) and positive (Blue bars) feedback.
893  Note highest power in the theta band, and stronger for negative feedback. Data recorded at channel
894  Fz. (B) Panels indicate changes in power for each frequency band with respect to baseline (-300 to
895  -100 ms period prior to feedback stimulus) elicited by feedback stimuli presented in the right alley
896  (left) and in the left alley (right). Right bar graph. Peak power across frequency bands associated
897  with the response to feedback in left (green bars) and right (purple bars) alley. Note highest power
898  inthe theta band, for both left and right alleys. Data recorded at channel P8. C). Bar graph illustrates
899  the mean feedback power (150 — 300 ms) across frequency bands delta [1-3 Hz], theta [4-8 HZ],
900 alpha [9-12 Hz], and beta [13-20 Hz] evaluated at all electrode channels, ordered by size. Bars
901 indicate the standard error of the mean. Note highest power was in the theta band, and this increase
902  in power exhibited a maximal at right posterior (channel P8). Error bars indicate the standard error
903  of the mean.
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Figure 3. Frequency power and topography across the T-maze traversal. A) Top-left panel. A
diagram illustrating the maze subsections and their associated Bin range. Bottom-left panel depicts
the channel locations. Right panel indicate changes in power for each frequency band (with respect
to baseline) averaged across all conditions and subjects at FCz. Topographical maps representing
the mean frequency power at each channel for B) delta [1-3 HZz], C) theta [4-8 Hz], and D) alpha
[9-12 Hz] for each subsection (S1a, S1b, S2a, S2b) of the path from the start to feedback location.
Bars indicate the standard error of the mean.
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Figure 4. Time-frequency analysis associated with maze trajectories. For each channel
location, FCz (top), Cz (middle), and P3 (bottom), panels depict time-frequency power maps (left
panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the leftward
(green solid lines) and rightward (purple solid lines) conditions. The X-axis represents Bin location
and maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0
to 12 Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions,
Bin O represents the start of the trial. The color bar for time-frequency plots represents the power
of the oscillations depicting greater activity in warm colors. The heat-maps (left-top panel)
represents the p-values (range .05 to .005) comparing leftward vs rightward trajectories. In
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particular, paired comparisons of data used to generate each grand averaged heat-map were
calculated using paired-samples t-tests. The alpha value was set at .05 for each t-test conducted.
However, to provide partial control for Type I error inflation, at least two consecutive significant
comparisons around the target value were required before a specific value was portrayed on the
graph(41). The grey bars depicted in the theta-time course maps represent significant Bins identified
in the heat-maps.
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Figure 5. Time-frequency analysis associated with trial walking speed for posterior channels
P8 (top) and P3 (bottom). For each channel location, panels depict time-frequency power maps
(left panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the slow
(orange solid lines) and fast (cyan solid lines) conditions. The X-axis represents Bin location and
maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0 to 12
Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions, Bin
0 represents the start of the trial. The color bar for time-frequency plots represents the power of the
oscillations depicting greater activity in warm colors. The heat-maps (left-top panel) represents the
p-values (range .05 to .005) comparing slow vs fast trials. The grey bars depicted in the theta-time
course maps represent significant Bins identified in the heat-maps.

is preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Page 25 of 27


https://doi.org/10.1101/2021.10.05.463245
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463245; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

941
p-value (slow vs fast)
2 T T 0.05
1FCz | | 1
i I I "
] I I
] I 1! 0.025
] I |
] I I
] I I
2 1 | | 0.005
2 1 | |
a2 - | |
= . Sta Slb Sz s —— Sow
g : [
® 1 ” 05 : | Fast
L‘E o 04 | | [
203 Iy |
(<) I /N7 I
o 02 | d‘f A A\
@ 0.1 / I M
"d; 00 L‘fl I\\ /
= \ _~/| ] ™
= N | J
42 | |
03 L
bin1 20 40 60 80 100 120 140
p-value (slow vs fast)
2 T 1 0.05
1Cz | | 1
] [ | y
g 1 | |
7 1 : [ 0.025
6 T [
5 1 [
z 4 1 I 0.005
22 1 | |
B % ! 1 | |
T 1o S1a S1b S2a S2b S1a s1b S2a  s2b
— 06 | | — Slow
w11 0% |
@10 — | Fast
w 9 o 04 | ! A
8 2 03 I | 1Y
7 [ [ | y
o 02 oA 1
6 @ 0.1 I / © \ /11 1}
2 ® 00 y | AN
4 0 13 § A —
= \ 1 | ‘
3 aid & I | ‘ j
2 -0.2 | | v
1 03
942 “Start (Bin 1) “Turn (Bin 60) B (Bin 120) bin1 20 40 60 80 100 120 140

943  Figure 6. Time-frequency analysis of the EEG associated with trial walking speed for frontal-
944  midline channels FCz (top) and Cz (bottom). For each channel location, panels depict time-
945  frequency power maps (left panels), p-value maps (right-top panel), and theta time-course (right-
946  bottom panel) for the slow (orange solid lines) and fast (cyan solid lines) conditions. The X-axis
947  represents Bin location and maze subregion. The Y-axis for power and p-value maps represents
948  frequency ranges from 0 to 12 Hz, and the Y-axis for the theta time-course represents a change in
949  power. For all conditions, Bin 0 represents the start of the trial. The color bar for time-frequency
950  plots represents the power of the oscillations depicting greater activity in warm colors. The heat-
951  maps (left-top panel) represents the p-values (range .05 to .005) comparing slow vs fast trials. The
952  grey bars depicted in the theta-time course maps represent significant Bins identified in the heat-
953  maps.
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