

1

2 **Title**

3 • Power dynamics of theta oscillations during goal-directed navigation in freely moving
4 humans: A mobile EEG-virtual reality T-maze study
5 • Theta dynamics during navigation in freely moving humans

6

7 **Authors**

8 Mei-Heng Lin,¹ Omer Liran,² Neeta Bauer,¹ Travis E. Baker,^{1*}

9

10

11 **Affiliations**

12 ¹Center for Molecular and Behavioral Neuroscience, Rutgers University, New Jersey

13 ²Department of Psychiatry & Behavioral Neurosciences, Cedars-Sinai, California

14

15 **Abstract**

16 Theta oscillations (~4–12 Hz) are dynamically modulated by speed and direction in freely moving
17 animals. However, due to the paucity of electrophysiological recordings of freely moving
18 humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully
19 immersive virtual-reality to investigate theta dynamics in twenty-two healthy adults (aged 18–29
20 years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods
21 of theta modulation: 1) theta power increases coincided with the participants' decision-making
22 period; 2) theta power increased for fast and leftward trials as subjects approached the goal
23 location; and 3) feedback onset evoked two phase-locked theta bursts over the right temporal and
24 frontal-midline channels. These results suggest that recording scalp EEG in freely moving
25 humans navigating a simple virtual T-maze can be utilized as a powerful translational model by
26 which to map theta dynamics during “real-life” goal-directed behavior in both health and disease.

27

28

29

30 Introduction

31 Decades of single-unit electrophysiological recordings of freely moving rodents navigating
32 towards a selected goal (e.g. food, water, mates, shelter or avoiding danger) have produced a
33 wealth of information about the neural mechanisms underlying goal-directed navigation (1-4).
34 From this work, the consensus view is the precise firing rates of hippocampal place cells and
35 parahippocampal grid cells with respect to the theta rhythm (4–12 Hz in rodents) constitute a
36 temporal mechanism for encoding spatial position and information during navigation (1). In
37 particular, theta oscillations have been shown to encode movement speed, direction, distance
38 traveled, and proximity to spatial boundaries(1, 5). When salient events or cues such as rewards
39 and navigationally-relevant landmarks are presented in the animal's environment, the phase of the
40 theta rhythm is reset, a process that appears to facilitate the encoding of salient information within
41 the hippocampal-parahippocampal circuitry (6). Further, recent studies suggest that resetting the
42 phase of the ongoing theta rhythm to endogenous or exogenous cues facilitates coordinated
43 information transfer within hippocampal-parahippocampal circuits and between distributed brain
44 areas involved in navigation (7). Computational work leverages such theta mechanisms to
45 simulate the spatial distribution of firing fields of place and grid cells (8, 9). For example,
46 computational models integrating spatial representations in the hippocampal-parahippocampal
47 circuit explicitly require velocity-dependent modulation of theta oscillations (both frequency and
48 power) in their contribution to path integration and navigation (6, 10, 11). Further, grid cell
49 models require an input conveying the speed and direction of motion (i.e. velocity), information
50 carried by theta rhythmicity, so that this spatial information can be integrated to estimate changes
51 in location based on the distance and direction travelled(8, 9). Grid cells models also require
52 phase-resetting of velocity dependent theta oscillations by location-specific input from place cells
53 to prevent accumulation of error (6, 8, 10). Although theta dynamics during navigation have been
54 well studied in non-human animal and computational work, whether theta oscillations are
55 fundamental components of the brain's navigation system in freely moving humans remains
56 elusive.

57 This apparent lack of knowledge is likely due to the necessarily limited options for using invasive
58 recording techniques in healthy humans subjects (12), and whilst animals can be examined during
59 free movement, human studies employing virtual reality to simulate aspects of “real-world”
60 navigation rarely achieve equivalent realism (13). Virtual reality can refer to one of three types of
61 system: a virtual environment presented on a flat screen display (2D), a room-based system such
62 as a CAVE, or a head-mounted VR display (3D). Traversing through any rendered environment
63 via button presses or a joystick while physically immobile can result in motion sickness, sensory
64 conflict, impair spatial navigation, and clearly influence the degree of immersion and presence in
65 the virtual environment (13, 14). Notwithstanding, intracranial EEG recording in epilepsy patients
66 have demonstrated the presence of movement-related theta oscillations in both the neocortex and
67 hippocampus during immobile virtual navigation(15, 16). EEG and MEG studies have also
68 identified functional parallels between theta oscillations (4-8 Hz in humans) recorded during
69 immobile virtual navigation and those found in rodents during active navigation (e.g. self-initiated
70 movement, processing of landmarks, path integration, orientation) (17-23). And two decades of
71 fMRI studies have consistently demonstrated the involvement of several nodes of the navigation
72 network (e.g. hippocampus, parahippocampal cortex, posterior parietal cortex, precuneus, the
73 retrosplenial complex, and a region around the transverse occipital sulcus) during immobile
74 virtual navigation tasks(1, 2, 24-26). Notably, Doeller et al. (2010) observed that the fMRI BOLD
75 response in human right parahippocampal cortex exhibited a speed-modulated six-fold rotational
76 symmetry in running direction as predicted by theoretical models of theta phase coding of grid
77 cells(27).

78 While there is no doubt that the integration of neuroimaging and videogame design techniques
79 have advanced our understanding of spatial navigation in humans, fMRI data lack the temporal
80 and frequency information needed to study theta oscillations during navigation tasks(28), and
81 immobile navigation lacks the self-motion information from visual, vestibular, proprioceptive and
82 motor systems needed to generate the theta-dependent firing patterns of place and grid cells
83 observed in rodent studies(13, 29). Thus, previous research has been unable to fully address
84 whether freely moving humans also exhibit theta dynamics (e.g. phase-reset, movement speed and
85 direction modulation) during mobile navigation. In recent years, several technological and
86 methodological advances in electrophysiological research (mobile-EEG) and fully immersive
87 virtual-reality (head mount display) have made mobile spatial navigation amenable for
88 investigation in humans(13, 14, 30). Such investigation have already shown compelling results.
89 For example, relative to standing still, delta-theta (2–7.21 Hz) power has been shown to increase
90 during walking in an immersive virtual city (omnidirectional treadmill)(30) and in an virtual Y-
91 maze housed in a large physical room(14), findings consistent with intra-hippocampus EEG
92 recordings during real and virtual navigation(31).

93 Here, we leveraged this advancement to investigate theta dynamics in humans freely navigating a
94 T-maze to find rewards. T-maze paradigms have been used extensively across several animal
95 species (e.g. mice, rodents, ferrets, cats, squirrel monkeys, horses, cows, goats and sheep) to
96 investigate “real-life” goal-directed navigation(4, 32, 33). The simplicity of the T-maze paradigm
97 belies its utility and versatility for examining goal-directed navigation, and such investigations
98 have produced a wealth of information about spatial learning and memory, reinforcement
99 learning, and effort-based decision-making(4, 32, 34–36). Thus, the T-maze constitutes a natural
100 application for mobile-EEG and immersive VR, providing a means for building a translational
101 model of goal-directed navigation across species. Here, we recorded EEG from humans actively
102 navigating a fully immersive virtual reality T-maze task to find rewards. Our purpose was 2-fold.
103 First, given the novelty of the task, we wished to demonstrate that reward cues presented in the T-
104 maze would evoke two well-established phase-locked theta responses, frontal-midline theta
105 (FMT)(37) and right-posterior theta (RPT)(17). Second, in line with animal and computational
106 work, we wish to demonstrate that the participant’s walking trajectory (leftward vs rightward
107 trials) and speed (fast vs slow trials) towards the feedback location would differently modulate
108 theta activity. Taken together, these results provide converging evidence for the proposal that task
109 and behavioral variables (reward, direction, and speed) are responsible for modulating theta
110 activity during active navigation, and hold out promise for integrating experimental,
111 computational, and theoretical analyses of goal-directed navigation in animals within the field of
112 human EEG research.

113

114 Results

115 **Behavior:** In this study, twenty-two young adults (20 right-handed [laterality index = 68], 9 male
116 and 13 female, aged 18–29 years old [$M = 21$, $SE = .61$]) freely navigated a T-maze to find
117 rewards (Fig. 1A). On average, participants completed 148 trials ($SE = 7.03$, range = 100 – 238),
118 and took 4.2 seconds ($SE = .14$, range = 2.97 – 5.63) to reach the feedback location (1.83 m).
119 Overall, no differences were observed between the percentage of leftward ($M = 48\%$, $SE = 4.3$)
120 and rightward ($M = 52\%$, $SE = 3.6$) trajectories, $t(21) = -1.6$, $p = .123$, nor their velocity
121 (leftward: $M = .449$ m/s, $SE = .015$ | rightward: $M = .448$ m/s, $SE = .016$) towards the feedback
122 location, $t(21) = .364$, $p = .719$. It is worth noting that participant first 15 trials were biased
123 towards rightward turns, $t(21) = 2.6$, $p < .01$. In regards to post-feedback behavior, participants
124 adopted a Lose-shift strategy ($M = 71\%$, $SE = 3.28$), $t(21) = -6.05$, $p < .001$, and were faster for
125 Win-stay trials ($M = .46$ m/s, $SE = .017$) relative to Win-shift trials ($M = .44$ m/s, $SE = .016$),
126 $t(21) = 3.7$, $p < .001$.

127

128 *****Figure 1.*****

129

130 ***Feedback-related Theta Responses:*** Given the novelty of the mobile-EEG T-maze paradigm, a
131 necessary precursor would be to replicate two well-studied feedback-related EEG responses
132 observed using conventional computer-based 2D tasks, frontal-midline theta (FMT)(37) and right-
133 posterior theta (RPT)(17, 26). FMT describes an obligatory pattern of phase reset and power
134 enhancement in frontal-midline electrodes (4–8 Hz: 220–300 msec) found to be sensitive to the
135 valence of the feedback (e.g. increase in power and phase consistency following negative
136 feedback), and has been associated with midcingulate cortex processes related to cognitive control
137 and reinforcement learning (37, 38). This phenomenon is also observed in the time domain as a
138 component of the event-related brain potential (ERP), called the feedback-related negativity or
139 N200. RPT describes a pattern of phase reset and power enhancement in right-posterior electrodes
140 (4–8 Hz: 160-220 msec) found to be sensitive to the spatial position of the feedback (e.g. greater
141 power and phase consistency for feedback found following rightward turns relative to leftward
142 turns), and associated with parahippocampal processes related to spatial navigation(17, 26, 39,
143 40). This phenomenon is also observed in the time domain as an ERP component called the
144 topographical N170. To examine these two oscillatory components, we computed a standard
145 single trial wavelet-based time-frequency analysis to the EEG signal time-locked to the onset of
146 positive and negative feedback (FMT) following leftward and rightward turns (RPT).

147

148 *****Figure 2.*****

149

150 Visual inspection of Fig. 2 reveals a clear enhancement of FMT power between 220 and
151 260 ms (peak power: $M = 250$ msec, $SE = \pm .14$) and RPT power between 180 and 220 ms (peak
152 power: $M = 211$ msec, $SE = \pm .14$) following the onset of feedback stimulus. In regards to FMT, a
153 repeated measures ANOVA on mean band power measured at Fz as function of Frequency (delta,
154 theta, alpha, beta) and Valence (positive vs negative feedback) revealed a main effect of
155 Frequency ($F_{(3, 63)} = 19.67$, $p < .001$, $\eta_p^2 = .48$), and Valence ($F_{(1, 21)} = 5.13$, $p < .05$, $\eta_p^2 = .20$), and
156 an interaction between Frequency and Valence, $F_{(3, 63)} = 3.31$, $p < .05$, $\eta_p^2 = .144$. Post-hoc
157 analysis indicated that the EEG was characterized by greater power in the theta band (FMT, $M =$
158 $.30$ dB, $SE = \pm .05$) than at each of the other frequency bands ($p < .01$), and FMT power was
159 greater for negative feedback ($M = .36$ dB, $SE = \pm .06$) relative to positive feedback ($M = .24$ dB,
160 $SE = \pm .04$), $t(21) = -2.3$, $p < .05$, Cohen's $d = .52$ (See Figure 2A). No other frequency bands
161 displayed power differences between positive and negative feedback ($p > .05$). In regards to RPT,
162 a repeated measures ANOVA on mean band power measured at P8 as function of Frequency
163 (delta, theta, alpha, beta) and Trajectory (leftward vs rightward) revealed a main effect of
164 Frequency, $F_{(3, 63)} = 22.82$, $p < .001$, $\eta_p^2 = .50$, indicating that the EEG was characterized by
165 greater power in the theta ($M = .57$ dB, $SE = \pm .09$) and alpha ($M = .44$ dB, $SE = \pm .09$) band than
166 at each of the other frequency bands ($p < .001$). However, no other main effects nor an interaction
167 were detected ($p > .05$). Together, these results are characteristic of FMT and RPT, and indicate
168 that the feedback processing in the virtual reality T-maze task is capable of eliciting these phased-
169 locked theta responses during active navigation.

170

Movement-related Theta Responses: In line with animal and computational work, which have
171 demonstrated that theta oscillations encode movement speed and direction during navigation, we
172 examined whether the participant's trajectory (leftward vs rightward trials) and walking speed
173 (fast vs slow trials) towards the feedback location would differently modulate theta activity. We

174 used the subjects median RT from start to feedback onset (distance travelled: 1.83 meters) to
175 create two speed-dependent conditions (e.g., fast [median = .385 m/s, SE = .019] vs slow [median
176 = .520 m/s, SE = .011]) and two direction-dependent conditions (e.g., leftward vs rightward
177 trajectories). Fig. 3 illustrates the topography results of the time frequency analysis from the start
178 location to the feedback location averaged across all conditions. Visual inspection of Fig. 3
179 reveals notable enhancements of theta power (as well as delta power) over frontal-midline (FCz
180 and Cz) and posterior (P3, Pz) channels while traversing the stem (S1a and S1b) and turn (S2a
181 and S2b) sections of the T-maze. We confined the statistical comparisons of the time-frequency
182 space to these frontal and posterior electrodes (see Fig. 4). We also included an analysis of P8
183 because of its robust theta responses during feedback processing in the maze (Fig. 2B and 2C).
184 Statistical comparisons of data for each grand averaged time-frequency plot were calculated using
185 paired-samples t-tests (left vs right; fast vs slow). Given the large search space and novelty of this
186 experiment, the alpha value was set at $p < .05$ (uncorrected) for each t-test conducted. To provide
187 partial control for Type I error inflation, at least two consecutive significant comparisons (2 Bins
188 of time data [approx. 50-100 ms] across two frequency steps [2 hz]) were required before a
189 specific value was portrayed on the graph (41). This value was chosen as it provided the best
190 visual representation of the differences between the conditions of interest, and a necessary
191 precursor if we are to begin developing empirically driven and realistic representations of the
192 oscillatory dynamics used to encode, represent, and process information during active navigation.

193

194 *****Figure 3.*****

195

196 To help visualize the subject's location during their trajectory, we segmented the stem
197 (S1a [Bin 1-30]; S1b [Bin 31-60]) and turn (S2a [Bin 61-90]; S2b [91-120]) sections of the T-
198 maze (see Figure 3A). In regards to direction travelled, the first theta burst (6-7 Hz; channel Cz)
199 occurred as participant approached the junction region of the T-maze (S1b Bin 48-49; duration =
200 84 msec), and displayed a sensitivity to leftward relative to rightward trajectories (range: $t(21) =$
201 2.2 – 2.7, $p = .04 – .02$). Channel FCz also displayed a similar pattern of results in the stem, but
202 closer to the junction point of the maze (6-8Hz, Bin 59-64; duration = 192 ms; range: $t(21) = 2.1$
203 – 2.7, $p = .05 – .01$). As subjects arrived at the junction point (S2a), a second burst of theta could
204 be seen across several channels, all of which maintaining a leftward sensitivity: Channel P3 (5-
205 8Hz, Bin 68-72; duration = 135 ms; range: $t(21) = 2.1 – 2.8$, $p = .05 – .01$); Channel Cz (5-6Hz,
206 Bin 74-77; duration = 108 ms; range: $t(21) = 2.1 – 2.2$, $p = .05 – .03$); and, Channel FCz (6-8Hz,
207 Bin 79-86; duration = 210 ms; range: $t(21) = 2.1 – 3.4$, $p = .05 – .002$). As the subjects began their
208 approach towards the goal location (S2a-S2b), there was a strong increase in delta-theta power at
209 channel Cz for the left alley relative to the right alley: (3-5Hz, Bin 81-100; duration = 567 ms;
210 range: $t(21) = 2.2 – 4.8$, $p = .03$ to $< .00001$). In addition, theta-alpha activity (8-9 hz) at channel
211 P3 displayed a sensitivity to rightward trajectories (8-9Hz, Bin 53-54; duration = 84 ms; range:
212 $t(21) = 2.2 – 4.8$, $p = .02 – .009$). It is also worth noting that the effects observed over channel P3
213 where not observed over channel P4 (channel P4 did not display any significant Bins for any
214 frequency). Together, these results indicate that theta power was sensitive to the participant's
215 trajectory from the start location to the goal location in the T-maze.

216

217 *****Figure 4.*****

218

219 In regards to speed (Figure 5 and 6), there was an initial increase in delta-theta power at
220 the beginning of the stem, which was stronger for slow trials relative to fast trials at channel P8:

221 (3-4Hz, Bin 39-40; duration = 84 ms; range: $t(21) = 2.2 - 3.0$, $p = .04 - .007$). Shortly after this
222 response (approx. 800 ms), a theta burst emerged as the participant approached the junction
223 region, and was stronger for slow trials: Channel FCz (5-6 Hz, Bin 51-54; duration = 168 msec;
224 $t(21) = 2.1 - 2.2$, $p = .04 - .02$), and Channel P3 (6-7 Hz, Bin 56-59; duration = 168 ms; range:
225 $t(21) = 2.1 - 3.1$, $p = .04 - .006$). By contrast, as subjects approached the goal location after the
226 turn, a second burst of theta could be seen across several channels and all displayed an increase in
227 power for fast trials: Channel FCz (7-8Hz, Bin 79-81; duration = 81 ms; range: $t(21) = -2.1 - -3.5$,
228 $p = .03 - .001$); Channel Cz (4-7Hz, Bin 86-93; duration = 216 ms; range: $t(21) = -2.1 - -3.2$, $p =$
229 $.04 - .004$); and, Channel P3 (4-6Hz, Bin 83-95; duration = 315 ms; range: $t(21) = -2.2 - -3.1$, $p =$
230 $.04 - .004$). Together, these results indicate that theta power was also sensitive to the participant's
231 speed in the T-maze, but was stronger for slow trials as participants approached the junction
232 point, and stronger for fast trials as participants approached the goal location.

233

234

235 *****Figure 5.*****

236

237 *****Figure 6.*****

238

239

240 **Discussion**

241 In the present study, we combined mobile-EEG and head-mounted VR technology to investigate
242 whether behavior (direction and speed) and task (rewards) variables modulate scalp-recorded
243 theta activity in humans freely navigating a T-maze task. In line with animal and computational
244 work, our results provide compelling evidence that theta power was dynamically modulated as
245 participants traversed the T-maze towards the goal location and received reward feedback.
246 Previous research in rodents, non-human primates, and humans suggests that at least three types
247 of theta oscillations exist during navigation: one elicited during movement in space(1), another in
248 response to planning and decision-making(42), and a third in response to reward processing(37).
249 Our findings suggest that such theta-related responses were expressed across time and topography
250 during the traversal of the T-maze.

251 *The Stem* Shortly after participants began their movement down the stem of the T-maze, a large
252 increase in delta power was observed over the right medial temporal (P8) and frontal-midline (Cz)
253 electrodes. Prior rodent and human studies have also revealed similar patterns of movement-
254 related increases in delta activity(15, 30, 43, 44). For example, EEG studies using joystick-based
255 movements through 2D rendered virtual environments suggest that movement-related oscillations
256 based on optic flow tend to manifest specifically within the 1–8 Hz frequency range (31, 43).
257 More recently, Liang and colleagues (2018) demonstrated that frontal-midline delta-theta
258 oscillations (2–7.21 Hz) exhibit higher power and are more sustained during physical movement
259 than when standing still on an omnidirectional treadmill coupled with 3D immersive virtual
260 reality. Delaux et al. (2021) also observed greater delta power as participants began walking down
261 the starting arm of a fully immersive 3D Y-maze. Together, these data suggest that delta-theta
262 oscillations can be induced by movement via a combination of visual, vestibular, and
263 proprioceptive information. Further, while this emerging pattern of delta activity advocates for a
264 mere signature of locomotion, its worth noting that delta-theta (3-4 Hz) activity recorded over
265 right medial temporal cortex (electrode P8) proved to be condition sensitive, i.e., higher power for
266 slow walking trajectories relative to fast walking trajectories. Consistent with this finding, Delaux
267 et al. reported stronger delta response during learning phases of their Y-maze task, and intra-

268 hippocampus EEG recordings found a delta-theta sensitivity to different types of real-world
269 movements (e.g. during searching, recall and walking) during real and virtual navigation (31).
270 Further, several human studies suggest that virtual navigation tends to result in low-frequency
271 hippocampal oscillations peaking around 3.3 Hz, whereas freely ambulating humans show
272 increased hippocampal oscillations ranging from 1–12 Hz compared with a standing position (15,
273 31, 43, 45). Although parallels exist between scalp recorded EEG and intracranial EEG
274 recordings, the hippocampus is located too deep in the brain to be detected with electrodes placed
275 at the scalp and because of its spiral organization, would likely produce a closed electromagnetic
276 field (17, 40). This concern notwithstanding, movement-related signals conveyed by the
277 hippocampus project to and regulate navigation regions in temporal, parietal, and prefrontal
278 cortex (15, 23, 46), and these regions are amenable to investigate with scalp EEG(28, 47). Thus,
279 the movement-related delta-theta activity observed here, and in other mobile EEG-VR studies,
280 may be a cortical reflection of the movement-specific firing patterns of the hippocampal circuitry
281 observed in intracranial EEG studies, and highlight the importance of ambulation to the induction
282 of low-frequency oscillations and to spatial processing(13, 29).

283 *The Junction* As participants approached the junction section of the T-maze, a burst of frontal-
284 midline theta power emerged and exhibited an increase in power for slow and leftward
285 trajectories. Although this theta response deviates from previous observations of proportional
286 increases in delta/theta activity with increases in velocity, it's worth noting that this increase in
287 theta power coincided with the participants' decision-making period, and before the turning
288 motion itself. For these reasons, we propose this increase in frontal-midline theta activity may be
289 more in line with route planning and decision-making. In particular, when animals come to a
290 decision point in a T-maze, they sometimes pause or slow down as if deliberating over the choice
291 (i.e. mentally searching future trajectories) (42). Neurophysiological data in rodents suggest that
292 increases in hippocampal place cell activity during this period represent the process in which the
293 animal is serially exploring the paths towards future outcomes (42, 48). Several researchers have
294 further suggested that coherent oscillations between prefrontal cortex and hippocampus create
295 such imagined episodic futures for this purpose (42, 49, 50). Further, hippocampal theta-
296 entrainment of the rodent medial prefrontal cortex is strongest near the decision-making period of
297 spatial memory tasks, which serves to focus attention on the prefrontal representations that are
298 relevant for task performance (51-54). For example, a previous study revealed increased theta-
299 entrainment between medial prefrontal and hippocampal neurons at the choice point of a working
300 memory T-maze task (55). In humans, deliberative decision-making is also hypothesized to
301 involve the prefrontal cortex and medial temporal lobe structures, suggesting that there are direct
302 parallels between animal and human findings(42). For instance, neuroimaging evidence revealed
303 that the hippocampus is both necessary for and active during episodic future thinking(56), and
304 several EEG studies have also shown that when subjects engage in control processes
305 characterized by goal-directed influence, there is an increase in frontal theta activity(7, 37, 57-59).
306 Together, these studies highlight the role of hippocampal-prefrontal theta interactions across
307 different cognitive domains, such as goal-directed behavior(7), episodic memory (23), decision-
308 making (42) and spatial learning (52). By extension, we propose that the observed increase in
309 right posterior delta-theta power and frontal-midline theta power during slow trials may dovetail
310 the neural processes and theoretical assumptions of deliberative decision-making observed across
311 species. These findings imply that when reward-delivery contingencies are variable, humans at
312 decision points in a T-maze, like rodents, are actually searching through possibilities, evaluating
313 those possibilities, and making decisions that are based on those evaluations, a process reflected
314 by an increase in both response time (i.e. slowing or pausing) and the presence of temporal-frontal
315 theta oscillations near decision points(42), as we observed here.

316 Moreover, we propose that the observed increase in frontal-midline theta power for
317 leftward trajectories may reflect additional control processes by frontal cortex during the

318 decision-making period. Studies in rodents, non-human primates, and humans have uncovered
319 signals in the anterior midcingulate cortex that reflect the pressure to switch away from an
320 ongoing behavioral strategy or default action (60). Frontal-midline theta activities, which are
321 proposed to be generated in anterior midcingulate cortex(37), have also been shown to predict
322 behavioral switching in simple reinforcement learning tasks(38), and are enhanced during more
323 cognitively demanding navigation periods in spatial tasks (18, 19, 57). In parallel, since the 1920s
324 preferences in turning direction have been reported in several animal species, including
325 humans(61, 62). For instance, a rightward turning bias in humans can be observed when walking
326 around obstacles or making turns in a T-maze(62). Consistent with this turning bias, 65% of
327 participants in the present study displayed a rightward turning bias at the beginning stages of the
328 task, possibly reflecting the default action in the T-maze. In consideration of these observations,
329 we propose that the increase in frontal-midline theta power prior to the junction point of the T-
330 maze may reflect anterior midcingulate cortex control response to switch from the default action
331 of turning right, to the non-preferred action of turning left. In other words, the observed increase
332 in frontal-midline theta activity reflects the increased switch demand by anterior midcingulate
333 cortex that would be required to implement top-down control across disparate brain regions to
334 override the tendency to turn right. Although admittedly speculative, we hope these findings will
335 motivate future experimental and theoretical analysis of the neural determinants of human
336 behavior at a choice-point in a T-maze.

337 *The turn and goal approach* From the junction point throughout the traversal of the turning
338 section of the maze, the increase in frontal-midline theta power for leftward trials was sustained,
339 possibly reflecting the maintenance period of the selected leftward action. Consistent with this
340 observation, a previous mobile virtual reality study demonstrated a sustained theta response from
341 the center zone of a Y-maze to the finish arm (14). We propose that this sustained frontal-midline
342 theta response is likely generated by prefrontal cortex (e.g. anterior midcingulate cortex).
343 According to an influential learning theory of anterior midcingulate cortex function, this region
344 not only selects sequences of actions during the decision making process, but also determines the
345 level of effort to be applied toward executing the action and maintaining this level of activity until
346 the organism reaches its goal(63). Consistent with this view, a multitude of studies have indicated
347 that frontal-midline theta power correlates positively with levels of cognitive effort, working
348 memory load and attention, especially for tasks that demand sustained effort and control(37, 64).
349 Based on this theoretical and empirical work, we propose that the frontal-midline theta activity
350 observed following the junction point represents the continued engagement of the anterior
351 midcingulate cortex and it's role in maintaining vigilance and control of the leftward trajectory
352 towards the goal location.

353 Following the junction point, leftward trajectories towards the goal location produced a
354 strong theta burst over the left posterior channel P3. To note, this pattern of theta activity (or the
355 inverse of) was not observed over the right posterior channel P4, ruling out the possibility that this
356 enhancement of power was related to head-direction, motion artifacts, or stemmed from a
357 hemispheric bias associated with the retinotopic position of the goal target stimuli (floating orb)
358 during the turn. While the topography of this theta response was not anticipated, the robustness of
359 its effects warrants a closer look. Based on the literature and topography of this theta response,
360 one possible generator is the posterior parietal cortex(65). A large number of studies across
361 species have related posterior parietal cortex activity to the control of body movements (e.g. eyes,
362 head, limbs, and body), decision-making, and spatial navigation (66-72). In particular, posterior
363 parietal cortex firing patterns in rodents are often determined by conjunctions of body position or
364 orientation, positions in a path, and concurrent movement type (i.e., turns or forward
365 locomotion)(68, 73, 74). For example, Krumin and colleagues (2018) trained mice to use vision to
366 make decisions while navigating a virtual reality task, and found that posterior parietal cortex
367 activity can be accurately predicted based on the position of the animal along the corridor and

368 heading angle. These data, along with others, have led to the idea that posterior parietal cortex
369 activity form an integration of spatial representations of objects and scenes with motor
370 representations to support accurate eye, head, and whole body movements towards selected goal
371 or target (69, 75). Relevant to motor coordination during the pursuit of goals, posterior parietal
372 cortex activity also exhibits a sensitivity to self-motion (e.g. linear and angular speed), visual
373 target position, and movement direction in egocentric coordinates. These findings help support
374 the idea that posterior parietal cortex may subserve online sensorimotor coordination necessary
375 for goal pursuit behavior or target chasing in egocentric space(76). By extension, we propose the
376 theta activity recorded over the left parietal cortex during the turn may reflect the sensorimotor
377 coordination process of pursuit navigation, (i.e., the continuous adjustment of movement plans
378 relative to the position of the floating goal orb in the left or right alley of the T-maze). Further, the
379 heightened activity for leftward trajectories likely represents the allocation of top-down control by
380 anterior midcingulate cortex over posterior parietal cortex activity during the active pursuit of the
381 leftward goal. We hope these findings will warrant future investigations.

382 Lastly, an increase in theta power over frontal-midline (FCz and Cz) and left posterior
383 (P3) electrodes was observed during fast walking trajectories towards the goal target, findings
384 consistent with previous observations of proportional increases in theta activity with increases in
385 speed. In particular, animal and computational work indicate that theta oscillations coordinate the
386 firing patterns of hippocampal place cells and parahippocampal grid cells during navigation,
387 providing the rodents spatial position in the environment(1, 6, 11). Central to this idea is the
388 observation that the power (and frequency) of hippocampal and parahippocampal theta activity
389 increases linearly with movement speed, and such speed-related changes in theta oscillations is
390 essential to calculate the distance travelled through the place field(20, 44, 77). Speed-related
391 changes in theta power have also been linked to changes in sensorimotor integration, the flow of
392 sensory input, as well as cognitive/memory functions(44). For instance, the sensorimotor
393 integration hypothesis posits that rodent hippocampal theta oscillations incorporate incoming
394 sensory information with existing motor plans to guide movement, and more rapid traversals
395 require faster sensorimotor transformations, resulting in higher theta activity(20, 57). Regardless
396 of the theoretical interpretation of speed-related changes in theta power during navigation, the
397 observed speed- and direction-related increase in theta power during the approach to the goal
398 location draw strong parallels with animal and computational studies. Further, although these
399 specialized neural representations have been identified in humans during virtual movement at
400 various levels of analysis - i.e., ranging from intracranial EEG recordings of local field potentials
401 to the fMRI blood oxygen level-dependent (BOLD) signal - virtual movement and real movement
402 are fundamentally different(13). Virtual movement requires subjects to press buttons or move a
403 joystick to process optic flow in order to compute their speed, direction, and location in space,
404 and to initiate and maintain virtual movement toward the target location, all while physically
405 immobile(13, 14, 30). By contrast, self-motion information from visual, vestibular, proprioceptive
406 and motor systems are needed to generate the theta-dependent firing patterns of hippocampal-
407 parahippocampal system. Thus, our findings here confirms that spatial navigation and free
408 ambulation are potential drivers of multiple theta generators in healthy human participants, and
409 likely reflects the common theta state the navigation system is synchronized to(15). More
410 specifically, given the role of hippocampal theta in synchronizing network activity during
411 navigation, these results outline a dynamic and distributed pattern of theta activity across the
412 nodes of the navigation system (e.g. prefrontal cortex, posterior parietal cortex,
413 parahippocampus), and highlight the utility of scalp recorded theta measures as potential indices
414 of neural network function and hippocampal-parahippocampal physiology during navigation. We
415 hope these findings warrant future investigations.

416 Feedback processing Consistent with previous work, the presentation of feedback stimuli in the
417 T-maze elicited a large, focally distributed theta burst over the right temporal cortex (17). The

418 topography and timing of this response are characteristic of RPT and indicate that the virtual
419 reality T-maze paradigm is capable of eliciting this oscillatory response. Using a desktop version
420 of the T-maze task, we demonstrated that RPT reflects a stimulus-induced partial phase reset (i.e.
421 increase in power and enhanced phase consistency) of theta oscillations, and source localization,
422 fMRI, and simultaneous EEG-fMRI data point to a neural generator in the right parahippocampal
423 cortex(17, 26, 39, 40). In line with these observations, animal and computational work suggest
424 that theta phase-coding and resetting are crucial during navigation as it sets the internal map of
425 space encoded by the parahippocampal cortex(6, 7, 10, 78, 79). In order to prevent error
426 accumulation of phase information during navigation, the phase of the theta rhythm may be reset
427 to some predefined value (e.g. zero phase) by salient cues such as landmarks or rewards, a process
428 thought to contribute to reward- and emotion-related spatial learning and memory(6, 8). Current
429 thinking holds that this reset signal is provided by hippocampal place cells, which fire when the
430 rodent enters the preferred field (or peak phase) of the place cell(8, 78, 79). More so, goal
431 locations within a maze induces an accumulation of place fields and higher firing rates, which
432 suggests that hippocampal place cells over-represent goal locations that generate emotional
433 valence(35). Theta resets are also believed to be a mechanism for phase-locking hippocampal-
434 parahippocampal activity to behaviorally relevant events and thereby may enhance cognitive
435 processing (7, 78, 80, 81). By extension, we propose that the left and right goal locations within
436 the T-maze were represented by it's own place field.ⁱ In particular, when the participant actively
437 entered the goal location and received feedback, the phase of the parahippocampal theta oscillation
438 was reset by the location-specific input from place cells, thereby concomitantly increasing theta
439 phase coherence across trials. Further, the over-representation of goal locations by place cells (35)
440 may have potentiated parahippocampal activity, thereby leading to an overall increase in regional
441 spectral power. Accordingly, such stimulus-induced theta dynamics would be reflected in the
442 EEG as enhanced theta phase consistency and spectral power, as we observed here with RPT
443 power. In line with animal and computational work, we propose that RPT reflects a macroscopic
444 proxy of the sum of parahippocampal theta activity, possibly the phase resetting of grid cells by
445 place cells during feedback processing in the T-maze.

446 Next, we found that negative feedback relative to positive feedback yielded a significant
447 increase in theta activity over frontal-midline electrodes, replicating the standard FMT effect(37,
448 38). At a behavioral level, participants exhibited a lose-switch strategy and walked faster on Win-
449 stay trialsⁱⁱ, results suggesting that participants' choices were influenced by the maze feedback.
450 Over two decades of research using standard reinforcement learning paradigms (e.g. two-arm
451 bandit task, gambling tasks, probabilistic reward tasks) have reliably demonstrated that FMT
452 activities reflect the evaluation of negative and positive feedback for the purpose of the adaptive
453 modification of behaviour (37, 38, 64). An accumulating body of evidence point to the anterior
454 midcingulate cortex, as well as pre-supplemental motor area, as the source of FMT oscillations,
455 and FMT power is thought to be modulated by a dopaminergic teaching signal tethered to
456 prediction of reward outcomes during trial-and-error learning (i.e., reward prediction error
457 signals, RPEs)(37, 38). RPEs constitute the learning term in powerful reinforcement learning
458 algorithms that indicate when events are "better" or "worse" than expected (82), and it is
459 becoming increasing clear that positive and negative RPEs are encoded as phasic increases and
460 decreases in the firing rate of midbrain dopamine neurons, respectively(83). FMT activities have
461 also been shown to reflect a common computation used to identify and communicate the need for
462 cognitive control, and subsequently organize prefrontal neuronal processes to implement top-
463 down control across disparate brain regions(37, 64). By replicating the standard FMT response to
464 reinforcers, in addition to the observed adaptive modification of behavior following feedback, we
465 can infer the engagement of a reinforcement learning and control system during active navigation
466 in this task.

467 In summary, successful goal-directed navigation requires highly specialized neural
468 representations that encode information about the location, direction, and speed of the navigating
469 organism, as well as stimulus events, actions, and reinforcers for the purpose of optimizing
470 behavior. Although substantial evidence from animal studies indicates that the theta rhythm plays
471 a vital role in these neural representations during goal-directed navigation, they remain poorly
472 understood in freely moving humans. In the present study, the multiplicity of human theta
473 patterns observed during decision-making points, goal pursuits, and reward locations details how
474 theta oscillations coordinate and support a diverse set of brain-wide neural assemblies and
475 functions during goal-directed navigation. Foremost, measuring theta oscillatory activity from the
476 scalp during active navigation allowed us to address our main objective: whether theta power
477 increases with increases in speed, as shown previously in the rodent. This crucial finding opens a
478 new door of investigative possibilities by which to integrate mobile-EEG measures of “real-life”
479 goal-directed behavior with extensive animal, human, and computational work on spatial learning
480 and memory based on Tolman's seminal cognitive map theory.

481
482 **Materials and Methods**

483 In this study, twenty-two young adults (20 right-handed [laterality index = 68], 9 male and 13
484 female, aged 18–29 years old [$M = 21$, $SE = .61$]) freely navigated a T-maze to find rewards (Fig.
485 1A). Participants were recruited from Rutgers University Department of Psychology subject pool
486 using the SONA system. Each subject received course credit for their participation. Before the
487 experiment, participants were screened for neurological symptoms and histories of neurological
488 injuries (e.g., head trauma), and then asked to fill out the Edinburgh Handedness Inventory(84).
489 After the experiment, participants filled out the Everyday Spatial Questionnaire. Ethical approval
490 was obtained from the Institutional Review Board of the local university, and all participants
491 provided written consent before the experiment.

492 In keeping with the classical design of the T-maze, this immersive virtual reality version consisted
493 of a stem and 2 alleys extending at 90° angles out from a junction point and was located on a
494 virtual enclosed landscape (20m x 20m) with an open ceiling exposed to a cloudy blue sky (Fig.
495 1; top panel). The virtual structure of the T-maze was enclosed inside the lab's physical space of
496 2.13m by 2.13m room, with virtual meshed walls marking the boundaries. The T-maze was
497 constructed using commercially available computer software (Unity version 2019.2,
498 <https://unity.com>) and the virtual reality environment was provided through an HTC Vive head-
499 mounted display system, which tracked participants' head positions during navigation (HTC
500 Corp., Taiwan). Continuous EEG was recorded with a mobile V-Amp amplifier from 16 actiCAP
501 slim electrodes (Brain Products, Munich, Germany).

502 At the start of the experiment, a light beam marked the starting position of the T-maze, and the
503 subjects had to step into that beam to start each trial. On each trial, participants walked down the
504 stem of the maze until they reached a junction point, in which they were required to turn down the
505 left or right alley and move towards a yellow orb floating at eye level at the end of the alley. The
506 height of the icons was dynamically adjusted at the beginning of the experiment to match the
507 subject's eye-level. Once the participants were within 1.07 meters from the end of the alley, the
508 floating yellow orb turned either green with a check mark (✓) or red (x) for 1000 msec, signifying
509 the alley they selected contained 5 cents (reward) or was empty (no-reward), respectively.
510 Following the feedback, the maze would disappear, and participants were required to walk across
511 an open field towards a purple beam of light. Once standing inside the beam of light and facing
512 forward, the T-maze would re-appear, signifying the start the next trial. Participants were given
513 20 minutes to maximize their rewards. Unbeknownst to them, on each trial the type of feedback

514 was selected at random (50% probability for each feedback type). At the end of the experiment,
515 participants were informed about the probabilities and were given a \$10 performance bonus.

516 The application contemporaneously communicated the subject's position and the outcome of each
517 trial by transmitting position values via a parallel port which took an integer from 0 to 255 and
518 converted it to a voltage spike that was in turn marked by the EEG device. The rate of data
519 updates was limited by the application's running rate of 90 frames-per-second. Each signal was
520 active for approximately 0.45 seconds, followed by transmitting a rest period of approximately
521 0.05 seconds in order to allow for clear separation of the signals. However, the outcomes of each
522 trial were recorded immediately, even if the aforementioned delay needed to be interrupted. The
523 subject's position was encoded as a 15 by 15 grid using integers 1 to 226, while outcomes were
524 encoded using higher integers.

525 **Electrophysiological Data Recording** The electroencephalogram (EEG) data were collected
526 using a 16-channel BrainVision actiCAP snap system (Brain Products GmbH, Munich, Germany)
527 with 12 scalp electrode sites (Fp2, Fp1, Fz, Cz, FC5, FC6, Pz, Oz, P3, P4, P7, P8) and four
528 external electrodes. One external electrode was placed on the right infraorbital region to record
529 vertical eye movements (channel VEOG), and one was placed lateral to the outer canthus of the
530 right eye to measure horizontal eye movements (channel RH). By convention, mastoid sites (M1
531 and M2) were collected to re-reference offline (see section below). EEG signals were recorded
532 using Brain Vision Recorder software (Brain Products GmbH, Munich, Germany), online-
533 referenced to channel FCz, a ground at AFz, and amplified using the portable V-Amp system
534 (Brain Products GmbH, Munich, Germany). The sampling rate was set to 1000 Hz.

535 **Electrophysiological Data Reduction** Raw EEG recordings were analyzed offline using
536 BrainVision Analyzer 2 (Brain Products GmbH, Munich, Germany). The first five trials were
537 considered practice for each subject and were not included in the data analyses. We also excluded
538 trials with response times (RTs) faster than 2.5% of the RT lower bound and slower than 2.5% of
539 the RT upper bound to ensure the data quality. Raw EEG signals were filtered offline using a
540 fourth-order digital Butterworth filter with a bandpass of .10-40 Hz. Activity at the online
541 reference electrode FCz was recreated. Filtered signals were then subjected to ocular correction
542 via independent component analysis (ICA). A mean slope algorithm was applied for blink
543 detection, and an infomax-restricted algorithm was used for the ocular artifact correction. Channel
544 Fp2 was used to detect vertical eye activity, and channel RH was used to detect horizontal eye
545 activity. We then performed ICA correction on signals from 12 scalp electrodes (Fz, Cz, FC5,
546 FC6, Pz, Oz, P3, P4, P7, P8, FCz, Fp1). Next, we divided the analysis stream into two pipelines:
547 one for feedback-locked analyses and another for path analyses (i.e., from the starting point of
548 one trial to the starting point of the next trial). For the feedback-locked analysis pipeline, signals
549 were segmented into 5000 ms duration epochs spanning from -2500 ms to 2500 ms and time-
550 locked to feedback onset. For the path analysis pipeline, signals were segmented into 25000 ms
551 epochs time-locked to trial onset, spanning from -2500 ms to 22500 ms. Here, we used the
552 prolonged epoch length for two reasons: (1) to ensure that the epoch was long enough to include
553 the entire trial duration (i.e., from the start of one trial to the start of the next), and (2) to prevent
554 the edge artifacts from time-frequency analyses. Following this, data were re-referenced using an
555 average reference created from the following channels: FCz, Cz, FC5, FC6, Fz, Oz, P3, P4, P7,
556 P8, and Pz. To note, by convention mastoid sites (M1 and M2) were collected to re-reference
557 offline. However, these electrodes were removed from the dataset due to excessive noise and
558 were not used in any of the analysis. Although mastoid references are commonly used in EEG
559 research, future mobile virtual reality studies should avoid using this method as these channels
560 tend to be contaminated by muscles involving in head rotation (e.g., sternocleidomastoid muscle).

561 For both pipelines, segmented data were then baseline-corrected using a mean voltage range from
562 200 ms to 0 ms preceding time 0. For feedback-locked segments, artifact rejection was conducted
563 on the full segment with the following criteria: (1) a maximally allowed voltage step of 50
564 μ V/ms, (2) a maximally allowed difference of values in intervals of 250 μ V, and (3) lowest
565 allowed activity values in intervals of 0.5 μ V. For full-path segments, the search for artifacts was
566 conducted within a customized window for each subject. The starting point of this customized
567 window was -2500 ms relative to time 0. The endpoint of the window was the averaged RTs from
568 the onset of one trial to the next across all trials plus 2500 ms. Due to the long epoch (25000 ms)
569 used here, one segment often contained data from more than one trial—particularly for subjects
570 with shorter RTs. By applying this customized window for each subject, we rejected epochs with
571 artifacts that occurred within this interval of interest and preserved trials with artifacts that
572 occurred outside of this interval (e.g., at the next trial) but not within. We added 2500 ms here to
573 ensure that data points for convolution during time-frequency analyses were free from edge-
574 artifacts to the greatest extent possible. On average, the duration of the customized window was
575 13014 ms ($SD = 1304$; $min = 10789$ ms; $max = 15856$ ms) across subjects included in the final
576 data analyses ($n = 22$). After artifact rejection, bad channels (those with artifacts exceeding 5% of
577 the data) were identified and interpolated using their four nearest neighbors' signals for both
578 pipelines (Hjorth, 1975). For subjects in the final analyses ($n = 22$), we interpolated data from one
579 channel for four subjects (FC6: 1 subject; Oz: 1 subject; Cz: 1 subject; and FC5: 1 subject). All
580 segmented data were written to individual MATLAB files for further processing using MATLAB
581 software (MathWorks, Inc., 2019a). Out of 31 subjects whose EEGs were collected, data from 9
582 were excluded from final analyses due to multiple bad channels ($n = 5$), limited trial count ($n = 2$),
583 extreme data outliers ($n = 2$), and failure to complete the experiment ($n = 1$).

584 **Time-frequency analyses** We conducted continuous wavelet transformation to decompose EEG
585 oscillations into magnitude and phase information in the frequency range of 1 to 40 Hz for
586 feedback-locked and full-path segments using a MATLAB program. For feedback-locked
587 segments, the analysis was performed on four conditions: positive and negative feedback,
588 rightward and leftward turns. For each condition, averaged evoked power was calculated by
589 averaging the square of magnitude at each time point and frequency across trials. For feedback-
590 locked segments, the analysis was performed on four conditions: positive and negative feedback,
591 rightward and leftward turns. For each condition, averaged evoked power was calculated by
592 averaging the square of magnitude at each time point and frequency across trials. To control for a
593 potential difference in power spectrum before stimulus onset, we used a condition-average
594 baseline of -300 to -150 ms pre-feedback onset averaging across all segments regardless of
595 conditions for baseline normalization (28). For each subject, the power spectrum for the theta
596 band (4-8 Hz) was averaged across all segments. We then identified the peak latency in the
597 window of 0–600 ms post-stimulus for Fz and P8 (peak latency at Fz: 226 ms; peak latency at P8:
598 211 ms). The window for mean power extraction was then determined by +/- 25 ms around the
599 peak latency for Fz and P8. We then used the window to extract mean amplitude for positive and
600 negative feedback at Fz (window: 201–251 ms) and for leftward and rightward turns at P8
601 (window: 186–236 ms).

602 For the path analysis, we divided the segments into leftward and rightward turns based on their
603 path choice for each subject. We also split the segments into fast and slow conditions based on the
604 median RTs measured from trial onset to feedback across all segments for each subject. The
605 averaged median RT was 3923 ms ($SD = 624$; $min = 2893$; $max = 5473$) across 22 subjects. The
606 segments were then subjected to continuous wavelet transformation for each condition. After the
607 transformation, a critical challenge for creating an average power spectrum was that the timing of
608 event triggers marking the turn and feedback location in time relative to time 0 (i.e., trial onset)

609 varied across segments. Such variation made it challenging to obtain a robust averaged power
610 spectrum using the conventional averaging approach. Therefore, we applied a data binning
611 strategy used in animal studies to examine neurophysiology in freely moving rats to address
612 timing variation across trials (e.g., Kyriazi, Headley, & Pare, 2020).

613 To apply the binning strategy, we divided each segment into two sections (Stem and Turn)
614 according to the triggers marking participants' movement trajectories in the T-maze. The Stem
615 section was defined as the period between trial onset and the intersection of the T-maze. The Turn
616 section was defined as the period between the junction of the T-maze and feedback onset. We
617 then binned the power spectrum into 60 bins for each defined maze section using the *histcounts*
618 function written in MATLAB (Mathworks Inc., Natick, MA). Specifically, for a given section, the
619 program divided the interval in milliseconds into approximately equally spaced bins and defined
620 the bin edges (i.e., the starting point and the endpoint in milliseconds). We then averaged the total
621 power across the time points in milliseconds within each bin. For example, for a given trial, the
622 duration of the Stem section was 1500 ms, indicating that the width of each bin is 25 ms. We
623 would then average the total power across 1-25 ms to get the total power for bin 1; average the
624 total power across 26-50 ms to get the total power for bin 2; average the total power across 51-75
625 ms to get the total power for bin 3, etc. We did this for each frequency in every trial. We then
626 averaged single-trial binned total power across segments for each condition to obtain the averaged
627 binned total power for each subject. For both the path analyses, the averaged binned total power
628 was then baseline normalized using a condition-average baseline (i.e. all conditions averaged
629 together) in the period of -1000 ms to -100 ms before the trial onset. Across these 22 subjects, the
630 averaged milliseconds per bin were 42 ms for the Stem section and 27 ms for the Turn section.
631 The mean power was extracted across all channels for delta, theta, and alpha bands for the
632 following sections (Figure 3): (1) S1a: Stem section – first half (Bins 1-30: first half of trajectory
633 from start location to junction point); (2) S1b: Stem section – second half (Bins 31-60: second
634 half of trajectory from start location to junction point); (3) S2a: Turn section – first half (Bins 61-
635 90: first half of trajectory from junction point to left or right feedback location); and (4) S2b: Turn
636 section – second half (Bins 91-120: second half of trajectory from junction point to left or right
637 feedback location. To note, because of the inter-trial and inter-subject variation in return strategies
638 (e.g. turn counter-clockwise vs clockwise to return to start location; walk forward vs backwards to
639 start location – information was not recorded), we did not include an analysis of the return
640 segment of the task and leave this for future investigations. All statistical analyses were
641 performed using SPSS 24.0 for Windows (IBM SPSS Statistics, IBM Corporation).

642 Footnotes

643 i. This idea may explain why we failed to replicate the rightward turning bias on RPT power
644 and latency (phase) observed in our previous 2D T-maze tasks(17). For instance, during
645 active navigation, if the two goal locations were represented by their own place fields, and
646 the feedback-induced reset occurred at the center of each place field, then the resulting
647 RPT phase and power would be identical between the two goal locations. By contrast, if
648 the two goal locations in the 2D version of T-maze task were only represented by one
649 place field — since subjects were only sitting in one physical location and pressing
650 buttons to move between different spatial locations digitally drawn on the screen — it is
651 possible that the left and right goal location were represented by different phase positions
652 along the theta cycle of a single place field. If true, one might expect to see commensurate
653 differences in RPT power and phase between left and right goal locations following phase
654 reset, as we observed previously(17).

655 ii. Its interesting to note that we failed to replicate the standard win-stay behavior, a heuristic
656 learning strategy used to model learning in decision situations and has been applied
657 towards theory development in psychology, game theory, statistics, economics, and
658 machine learning (38, 85, 86). In particular, when subjects are simply pressing buttons to
659 make decisions on a computer, this win-stay pattern emerges (87, 88), but when subjects
660 are required to move their entire body to make decisions, this pattern disappears. While
661 this is a surprising result and needs to be explored further, it is our best guess that the win-
662 stay and win-shift decisions during active navigation reflects an increase in strategy
663 exploration (testing win-shift behavior more often) or there are differences in the
664 computations between active navigation (i.e. calculating the physical and cognitive
665 energy needed to navigate our bodies towards a goal), and simple button presses.

666
667
668

669 **References**

- 673 1. R. A. Epstein, E. Z. Patai, J. B. Julian, H. J. Spiers, The cognitive map in humans: spatial
674 navigation and beyond. *Nat Neurosci* **20**, 1504-1513 (2017).
- 675 2. H. Eichenbaum *et al.*, Hippocampus at 25. *Hippocampus* **26**, 1238-1249 (2016).
- 676 3. J. O'Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from
677 unit activity in the freely-moving rat. *Brain Res* **34**, 171-175 (1971).
- 678 4. M. R. Penner, S. J. Mizumori, Neural systems analysis of decision making during goal-
679 directed navigation. *Prog Neurobiol* **96**, 96-135 (2012).
- 680 5. B. L. McNaughton, C. A. Barnes, J. O'Keefe, The contributions of position, direction, and
681 velocity to single unit activity in the hippocampus of freely-moving rats. *Exp Brain Res*
682 **52**, 41-49 (1983).
- 683 6. N. Burgess, C. Barry, J. O'Keefe, An oscillatory interference model of grid cell firing.
684 *Hippocampus* **17**, 801-812 (2007).
- 685 7. B. Voloh, T. Womelsdorf, A Role of Phase-Resetting in Coordinating Large Scale Neural
686 Networks During Attention and Goal-Directed Behavior. *Front Syst Neurosci* **10**, 18
687 (2016).
- 688 8. M. E. Hasselmo, Grid cell mechanisms and function: contributions of entorhinal persistent
689 spiking and phase resetting. *Hippocampus* **18**, 1213-1229 (2008).
- 690 9. M. E. Hasselmo, J. Hay, M. Ilyn, A. Gorchetchnikov, Neuromodulation, theta rhythm and
691 rat spatial navigation. *Neural Netw* **15**, 689-707 (2002).
- 692 10. N. Burgess, Grid cells and theta as oscillatory interference: theory and predictions.
693 *Hippocampus* **18**, 1157-1174 (2008).
- 694 11. C. Barry, D. Bush, J. O'Keefe, N. Burgess, Models of grid cells and theta oscillations.
695 *Nature* **488**, E1-2; discussion E2-3 (2012).
- 696 12. T. Hartley, C. Lever, N. Burgess, J. O'Keefe, Space in the brain: how the hippocampal
697 formation supports spatial cognition. *Philos Trans R Soc Lond B Biol Sci* **369**, 20120510
698 (2014).
- 699 13. J. L. Park, P. A. Dudchenko, D. I. Donaldson, Navigation in Real-World Environments:
700 New Opportunities Afforded by Advances in Mobile Brain Imaging. *Front Hum Neurosci*
701 **12**, 361 (2018).
- 702 14. A. Delaux *et al.*, Mobile brain/body imaging of landmark-based navigation with high-
703 density EEG. *Eur J Neurosci*, (2021).
- 704 15. L. Kunz *et al.*, Mesoscopic Neural Representations in Spatial Navigation. *Trends Cogn Sci*
705 **23**, 615-630 (2019).
- 706 16. D. Chen *et al.*, Hexadirectional Modulation of Theta Power in Human Entorhinal Cortex
707 during Spatial Navigation. *Curr Biol* **28**, 3310-3315 e3314 (2018).
- 708 17. T. E. Baker, C. B. Holroyd, The topographical N170: electrophysiological evidence of a
709 neural mechanism for human spatial navigation. *Biol Psychol* **94**, 90-105 (2013).
- 710 18. M. J. Kahana, R. Sekuler, J. B. Caplan, M. Kirschen, J. R. Madsen, Human theta
711 oscillations exhibit task dependence during virtual maze navigation. *Nature* **399**, 781-784
712 (1999).
- 713 19. M. J. Kahana, D. Seelig, J. R. Madsen, Theta returns. *Curr Opin Neurobiol* **11**, 739-744
714 (2001).
- 715 20. A. D. Ekstrom *et al.*, Human hippocampal theta activity during virtual navigation.
716 *Hippocampus* **15**, 881-889 (2005).

717 21. J. Jacobs, G. Hwang, T. Curran, M. J. Kahana, EEG oscillations and recognition memory:
718 theta correlates of memory retrieval and decision making. *Neuroimage* **32**, 978-987
719 (2006).

720 22. J. Jacobs *et al.*, Right-lateralized brain oscillations in human spatial navigation. *J Cogn
721 Neurosci* **22**, 824-836 (2010).

722 23. N. A. Herweg, E. A. Solomon, M. J. Kahana, Theta Oscillations in Human Memory.
723 *Trends Cogn Sci* **24**, 208-227 (2020).

724 24. H. J. Spiers, E. A. Maguire, A 'landmark' study on the neural basis of navigation. *Nat
725 Neurosci* **7**, 572-574 (2004).

726 25. E. A. Maguire *et al.*, Knowing where and getting there: a human navigation network.
727 *Science* **280**, 921-924 (1998).

728 26. T. E. Baker, A. Umemoto, A. Krawitz, C. B. Holroyd, Rightward-biased hemodynamic
729 response of the parahippocampal system during virtual navigation. *Sci Rep* **5**, 9063 (2015).

730 27. C. F. Doeller, C. Barry, N. Burgess, Evidence for grid cells in a human memory network.
731 *Nature* **463**, 657-661 (2010).

732 28. M. X. Cohen, It's about Time. *Front Hum Neurosci* **5**, 2 (2011).

733 29. J. S. Taube, S. Valerio, R. M. Yoder, Is navigation in virtual reality with fMRI really
734 navigation? *J Cogn Neurosci* **25**, 1008-1019 (2013).

735 30. M. Liang, M. J. Starrett, A. D. Ekstrom, Dissociation of frontal-midline delta-theta and
736 posterior alpha oscillations: A mobile EEG study. *Psychophysiology* **55**, e13090 (2018).

737 31. V. D. Bohbot, M. S. Copara, J. Gotman, A. D. Ekstrom, Low-frequency theta oscillations
738 in the human hippocampus during real-world and virtual navigation. *Nat Commun* **8**,
739 14415 (2017).

740 32. R. M. Deacon, J. N. Rawlins, T-maze alternation in the rodent. *Nat Protoc* **1**, 7-12 (2006).

741 33. E. Hosoi, D. M. Swift, L. R. Rittenhouse, R. W. Richards, Comparative foraging strategies
742 of sheep and goats in a T-maze apparatus. *Applied Animal Behaviour Science* **44**, 37-45
743 (1995).

744 34. Q. Zhang, Y. Kobayashi, H. Goto, S. Itohara, An Automated T-maze Based Apparatus and
745 Protocol for Analyzing Delay- and Effort-based Decision Making in Free Moving
746 Rodents. *J Vis Exp*, (2018).

747 35. S. Okada, H. Igata, T. Sasaki, Y. Ikegaya, Spatial Representation of Hippocampal Place
748 Cells in a T-Maze with an Aversive Stimulation. *Front Neural Circuits* **11**, 101 (2017).

749 36. R. M. Deacon, Appetitive position discrimination in the T-maze. *Nat Protoc* **1**, 13-15
750 (2006).

751 37. J. F. Cavanagh, M. J. Frank, Frontal theta as a mechanism for cognitive control. *Trends
752 Cogn Sci* **18**, 414-421 (2014).

753 38. J. F. Cavanagh, M. J. Frank, T. J. Klein, J. J. Allen, Frontal theta links prediction errors to
754 behavioral adaptation in reinforcement learning. *Neuroimage* **49**, 3198-3209 (2010).

755 39. M. R. Gueth, Shafeek, P., Mill, R., Cole, M.W., & Baker, T.E. , in *Society for
756 Psychophysiology (PSYCHOPHYSIOLOGY*, Quebec, Canada, 2019), vol. 56, pp. S47-
757 S47

758 40. T. E. Baker, C. B. Holroyd, Which way do I go? Neural activation in response to feedback
759 and spatial processing in a virtual T-maze. *Cereb. Cortex* **19**, 1708-1722 (2009).

760 41. J. E. Crasta, M. H. Thaut, C. W. Anderson, P. L. Davies, W. J. Gavin, Auditory priming
761 improves neural synchronization in auditory-motor entrainment. *Neuropsychologia* **117**,
762 102-112 (2018).

763 42. A. D. Redish, Vicarious trial and error. *Nat Rev Neurosci* **17**, 147-159 (2016).

764 43. J. Jacobs, Hippocampal theta oscillations are slower in humans than in rodents:
765 implications for models of spatial navigation and memory. *Philos Trans R Soc Lond B
766 Biol Sci* **369**, 20130304 (2014).

767 44. A. J. Watrous, I. Fried, A. D. Ekstrom, Behavioral correlates of human hippocampal delta
768 and theta oscillations during navigation. *J Neurophysiol* **105**, 1747-1755 (2011).

769 45. A. J. Watrous, J. Miller, S. E. Qasim, I. Fried, J. Jacobs, Phase-tuned neuronal firing
770 encodes human contextual representations for navigational goals. *Elife* **7**, (2018).

771 46. L. Kunz *et al.*, Hippocampal theta phases organize the reactivation of large-scale
772 electrophysiological representations during goal-directed navigation. *Sci Adv* **5**, eaav8192
773 (2019).

774 47. G. Buzsaki, C. A. Anastassiou, C. Koch, The origin of extracellular fields and currents--
775 EEG, ECoG, LFP and spikes. *Nat Rev Neurosci* **13**, 407-420 (2012).

776 48. A. E. Papale, M. C. Zielinski, L. M. Frank, S. P. Jadhav, A. D. Redish, Interplay between
777 Hippocampal Sharp-Wave-Ripple Events and Vicarious Trial and Error Behaviors in
778 Decision Making. *Neuron* **92**, 975-982 (2016).

779 49. B. Schmidt, A. A. Duin, A. D. Redish, Disrupting the medial prefrontal cortex alters
780 hippocampal sequences during deliberative decision making. *J Neurophysiol* **121**, 1981-
781 2000 (2019).

782 50. B. Schmidt, A. Papale, A. D. Redish, E. J. Markus, Conflict between place and response
783 navigation strategies: effects on vicarious trial and error (VTE) behaviors. *Learn Mem* **20**,
784 130-138 (2013).

785 51. R. A. Wirt, J. M. Hyman, Integrating Spatial Working Memory and Remote Memory:
786 Interactions between the Medial Prefrontal Cortex and Hippocampus. *Brain Sci* **7**, (2017).

787 52. J. M. Hyman, M. E. Hasselmo, J. K. Seamans, What is the Functional Relevance of
788 Prefrontal Cortex Entrainment to Hippocampal Theta Rhythms? *Front Neurosci* **5**, 24
789 (2011).

790 53. J. M. Hyman, E. A. Zilli, A. M. Paley, M. E. Hasselmo, Working Memory Performance
791 Correlates with Prefrontal-Hippocampal Theta Interactions but not with Prefrontal Neuron
792 Firing Rates. *Front Integr Neurosci* **4**, 2 (2010).

793 54. J. M. Hyman, E. A. Zilli, A. M. Paley, M. E. Hasselmo, Medial prefrontal cortex cells
794 show dynamic modulation with the hippocampal theta rhythm dependent on behavior.
795 *Hippocampus* **15**, 739-749 (2005).

796 55. M. W. Jones, M. A. Wilson, Theta rhythms coordinate hippocampal-prefrontal
797 interactions in a spatial memory task. *PLoS Biol* **3**, e402 (2005).

798 56. D. L. Schacter, R. G. Benoit, K. K. Szpunar, Episodic Future Thinking: Mechanisms and
799 Functions. *Curr Opin Behav Sci* **17**, 41-50 (2017).

800 57. J. B. Caplan *et al.*, Human theta oscillations related to sensorimotor integration and spatial
801 learning. *J Neurosci* **23**, 4726-4736 (2003).

802 58. J. F. Cavanagh, A. J. Shackman, Frontal midline theta reflects anxiety and cognitive
803 control: meta-analytic evidence. *J Physiol Paris* **109**, 3-15 (2015).

804 59. J. F. Cavanagh, L. Zambrano-Vazquez, J. J. Allen, Theta lingua franca: a common mid-
805 frontal substrate for action monitoring processes. *Psychophysiology* **49**, 220-238 (2012).

806 60. D. G. R. Tervo *et al.*, The anterior cingulate cortex directs exploration of alternative
807 strategies. *Neuron* **109**, 1876-1887 e1876 (2021).

808 61. Y. Toussaint, J. Fagard, A counterclockwise bias in running. *Neurosci Lett* **442**, 59-62
809 (2008).

810 62. A. A. Scharine, M. K. McBeath, Right-handers and Americans favor turning to the right.
811 *Hum Factors* **44**, 248-256 (2002).

812 63. C. B. Holroyd, N. Yeung, Motivation of extended behaviors by anterior cingulate cortex.
813 *Trends Cogn Sci* **16**, 122-128 (2012).

814 64. C. B. Holroyd, A. Umemoto, The research domain criteria framework: The case for
815 anterior cingulate cortex. *Neurosci Biobehav Rev* **71**, 418-443 (2016).

816 65. S. Raghavachari *et al.*, Theta oscillations in human cortex during a working-memory task: evidence for local generators. *J Neurophysiol* **95**, 1630-1638 (2006).

817 66. O. Baumann, J. B. Mattingley, Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. *Hippocampus* **31**, 640-657 (2021).

818 67. E. H. Silson *et al.*, A Posterior-Anterior Distinction between Scene Perception and Scene Construction in Human Medial Parietal Cortex. *J Neurosci* **39**, 705-717 (2019).

819 68. D. Lyamzin, A. Benucci, The mouse posterior parietal cortex: Anatomy and functions. *Neurosci Res* **140**, 14-22 (2019).

820 69. J. R. Whitlock, Navigating actions through the rodent parietal cortex. *Front Hum Neurosci* **8**, 293 (2014).

821 70. T. Ohnishi, H. Matsuda, M. Hirakata, Y. Ugawa, Navigation ability dependent neural activation in the human brain: an fMRI study. *Neurosci Res* **55**, 361-369 (2006).

822 71. A. E. Cavanna, M. R. Trimble, The precuneus: a review of its functional anatomy and behavioural correlates. *Brain* **129**, 564-583 (2006).

823 72. A. Berthoz, Parietal and hippocampal contribution to topokinetic and topographic memory. *Philos Trans R Soc Lond B Biol Sci* **352**, 1437-1448 (1997).

824 73. M. Minderer, K. D. Brown, C. D. Harvey, The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation. *Neuron* **102**, 232-248 e211 (2019).

825 74. M. Krumin, J. J. Lee, K. D. Harris, M. Carandini, Decision and navigation in mouse parietal cortex. *Elife* **7**, (2018).

826 75. A. Guterstam, M. Björnsdotter, G. Gentile, H. H. Ehrsson, Posterior cingulate cortex integrates the senses of self-location and body ownership. *Curr Biol* **25**, 1416-1425 (2015).

827 76. J. R. Whitlock, R. J. Sutherland, M. P. Witter, M. B. Moser, E. I. Moser, Navigating from hippocampus to parietal cortex. *Proc Natl Acad Sci U S A* **105**, 14755-14762 (2008).

828 77. J. Jacobs, M. J. Kahana, A. D. Ekstrom, M. V. Mollison, I. Fried, A sense of direction in human entorhinal cortex. *Proc Natl Acad Sci U S A* **107**, 6487-6492 (2010).

829 78. C. C. Canavier, Phase-resetting as a tool of information transmission. *Curr Opin Neurobiol* **31**, 206-213 (2015).

830 79. J. D. Monaco, J. J. Knierim, K. Zhang, Sensory feedback, error correction, and remapping in a multiple oscillator model of place-cell activity. *Front Comput Neurosci* **5**, 39 (2011).

831 80. H. McCartney, A. D. Johnson, Z. M. Weil, B. Givens, Theta reset produces optimal conditions for long-term potentiation. *Hippocampus* **14**, 684-687 (2004).

832 81. J. M. Williams, B. Givens, Stimulation-induced reset of hippocampal theta in the freely performing rat. *Hippocampus* **13**, 109-116 (2003).

833 82. R. S. Sutton, A. G. Barto, Reinforcement learning: an introduction. *IEEE Trans. Neural Netw* **9**, 1054 (1998).

834 83. W. Schultz, Getting formal with dopamine and reward. *Neuron* **36**, 241-263 (2002).

835 84. R. C. Oldfield, The assessment and analysis of handedness: the Edinburgh inventory. *Neuropsychologia* **9**, 97-113 (1971).

836 85. P. Reed, Win-stay and win-shift lever-press strategies in an appetitively reinforced task for rats. *Learn Behav* **44**, 340-346 (2016).

837 86. D. A. Worthy, W. T. Maddox, A Comparison Model of Reinforcement-Learning and Win-Stay-Lose-Shift Decision-Making Processes: A Tribute to W.K. Estes. *J Math Psychol* **59**, 41-49 (2014).

838 87. T. E. Baker, T. Stockwell, G. Barnes, R. Haesevoets, C. B. Holroyd, Reward Sensitivity of ACC as an Intermediate Phenotype between DRD4-521T and Substance Misuse. *J Cogn Neurosci* **28**, 460-471 (2016).

864 88. T. E. Baker, M. H. Lin, M. Gueth, K. Biernacki, S. Parikh, Beyond the Motor Cortex:
865 Theta Burst Stimulation of the Anterior Midcingulate Cortex. *Biol Psychiatry Cogn
866 Neurosci Neuroimaging* **5**, 1052-1060 (2020).

867

868

869 **Acknowledgments**

870 We are grateful to D.H., M.X.C., J.C., and J.R. for consultation on the time-frequency analysis
871 and to the research assistants of the Laboratory for Cognitive Neuroimaging and
872 Stimulation for help with data collection.

873

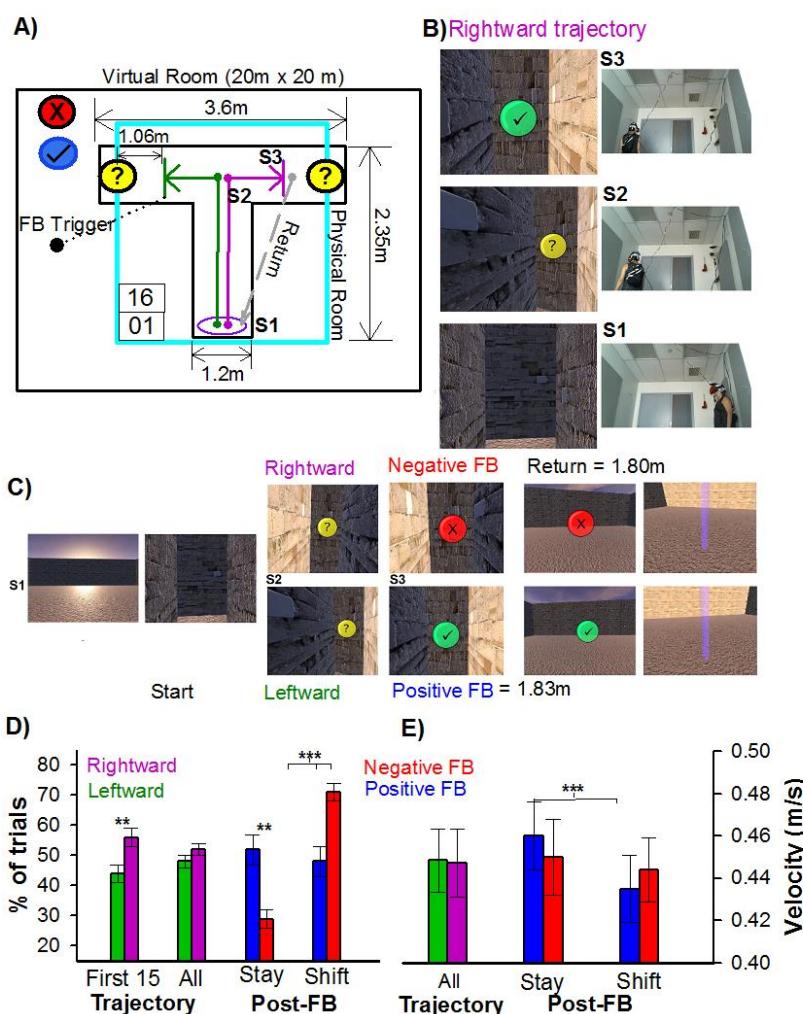
874

875

876

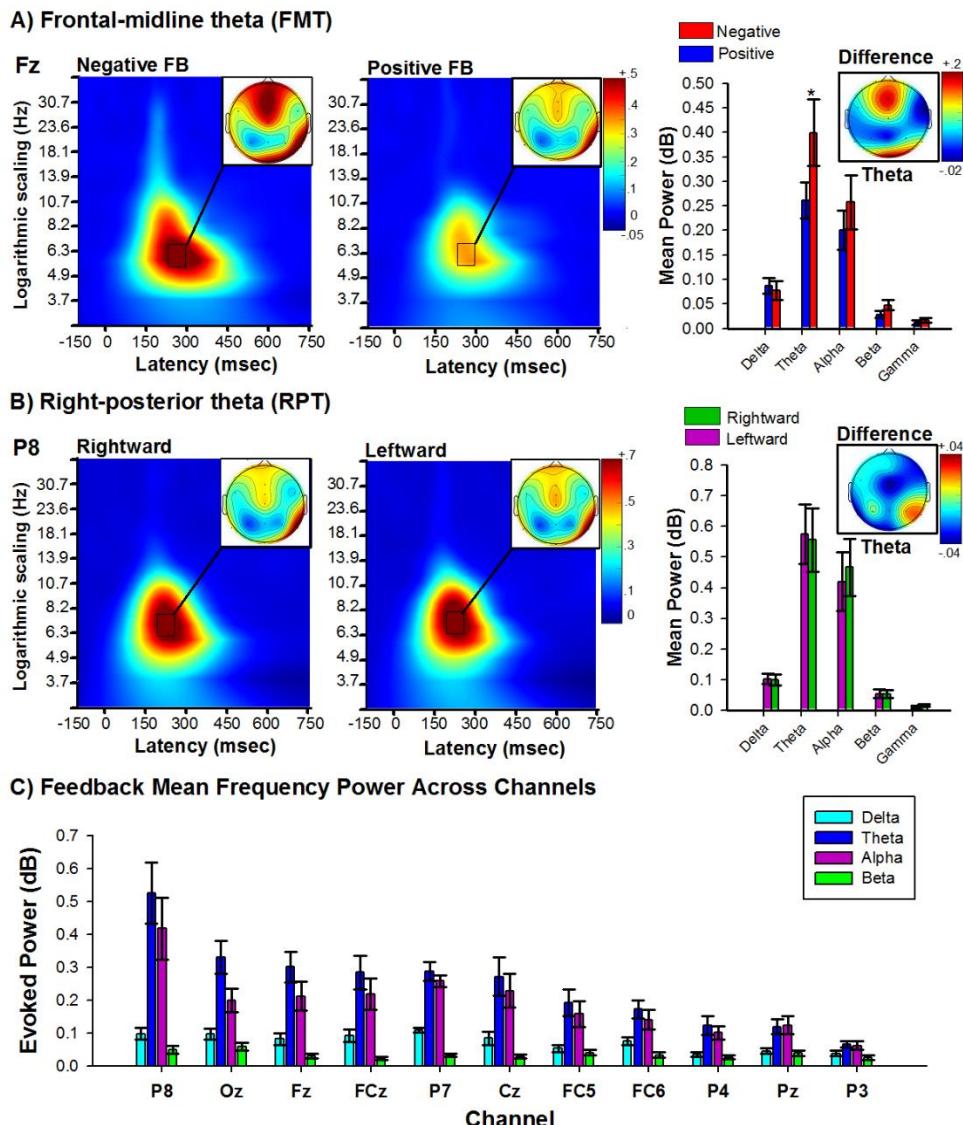
Figures and Tables

877



878

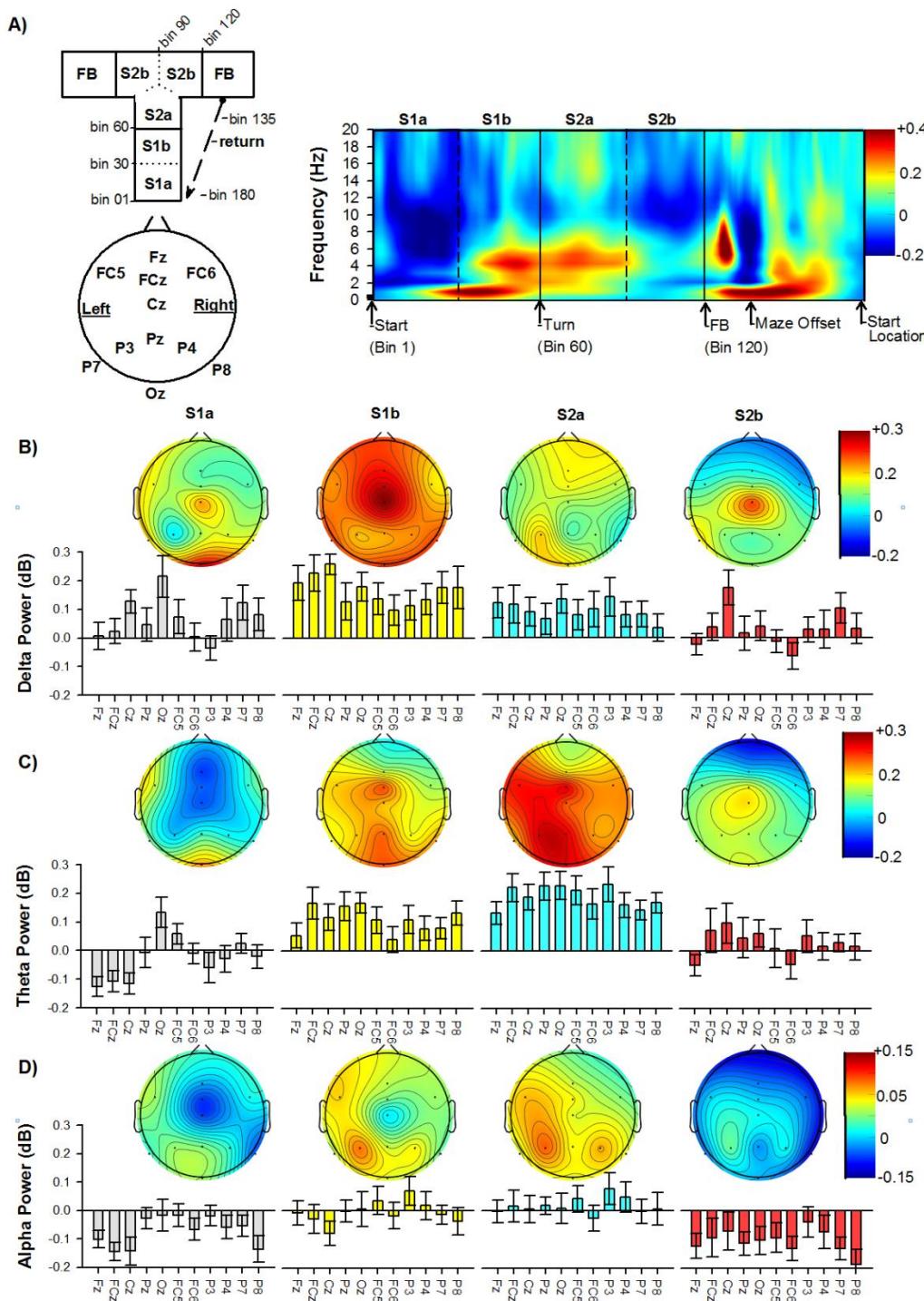
Figure 1. Mobile virtual reality T-maze paradigm and associated behavior. **A)** Dimensions of the virtual (black border) and physical (cyan border) room and T-maze (S1: start location, S2: junction point, S3: feedback location). Purple and green lines denotes rightward and leftward trajectories, respectively. **B)** An example of a rightward trajectory in the T-maze, **(C)** and trial-to-trial sequence of events. Behavioral analysis for choice **(D)** and velocity **(E)**. Green and purple bars denote leftward and rightward trajectories, and Blue (positive) and Red (negative) bars denote post-feedback behavior.



887

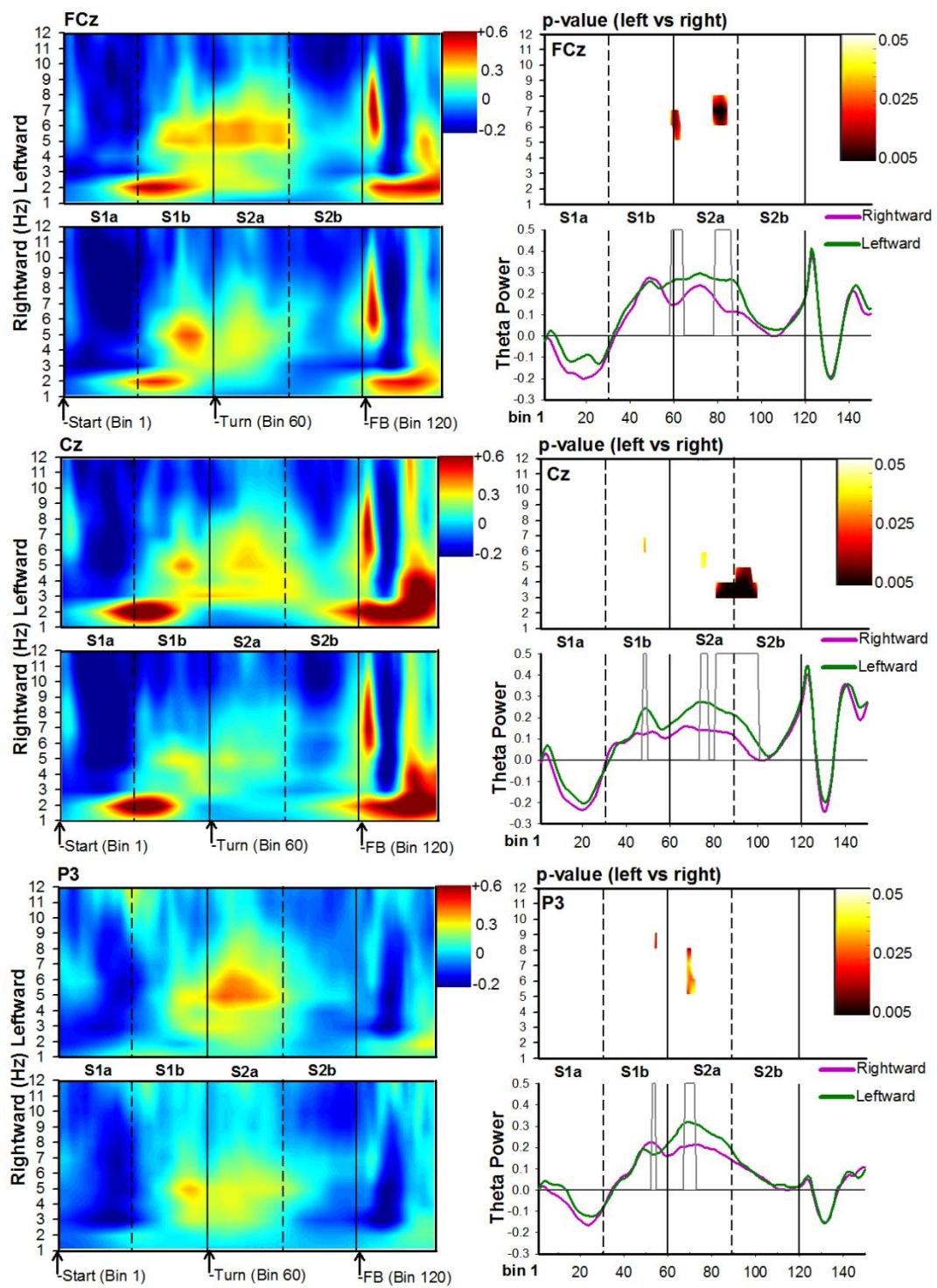
888 **Figure 2. Feedback processing during active navigation.** A) Panels indicate changes in power
889 for each frequency band with respect to baseline (-300 to -100 ms period prior to feedback stimulus)
890 elicited by negative (left) and positive (right) feedback stimuli. Right bar graph depicts peak power
891 across frequency bands delta [1–3 Hz], theta [4–8 Hz], alpha [8–13 Hz], [13–20 Hz], and gamma
892 [20–40 Hz] associated with the response to negative (red bars) and positive (Blue bars) feedback.
893 Note highest power in the theta band, and stronger for negative feedback. Data recorded at channel
894 Fz. (B) Panels indicate changes in power for each frequency band with respect to baseline (-300 to
895 -100 ms period prior to feedback stimulus) elicited by feedback stimuli presented in the right alley
896 (left) and in the left alley (right). Right bar graph. Peak power across frequency bands associated
897 with the response to feedback in left (green bars) and right (purple bars) alley. Note highest power
898 in the theta band, for both left and right alleys. Data recorded at channel P8. C). Bar graph illustrates
899 the mean feedback power (150 – 300 ms) across frequency bands delta [1–3 Hz], theta [4–8 Hz],
900 alpha [9–12 Hz], and beta [13–20 Hz] evaluated at all electrode channels, ordered by size. Bars
901 indicate the standard error of the mean. Note highest power was in the theta band, and this increase
902 in power exhibited a maximal at right posterior (channel P8). Error bars indicate the standard error
903 of the mean.

904



905

906 **Figure 3. Frequency power and topography across the T-maze traversal. A** Top-left panel. A
907 diagram illustrating the maze subsections and their associated Bin range. Bottom-left panel depicts
908 the channel locations. Right panel indicate changes in power for each frequency band (with respect
909 to baseline) averaged across all conditions and subjects at FCz. Topographical maps representing
910 the mean frequency power at each channel for **B** delta [1–3 Hz], **C** theta [4–8 Hz], and **D** alpha
911 [9–12 Hz] for each subsection (S1a, S1b, S2a, S2b) of the path from the start to feedback location.
912 Bars indicate the standard error of the mean.

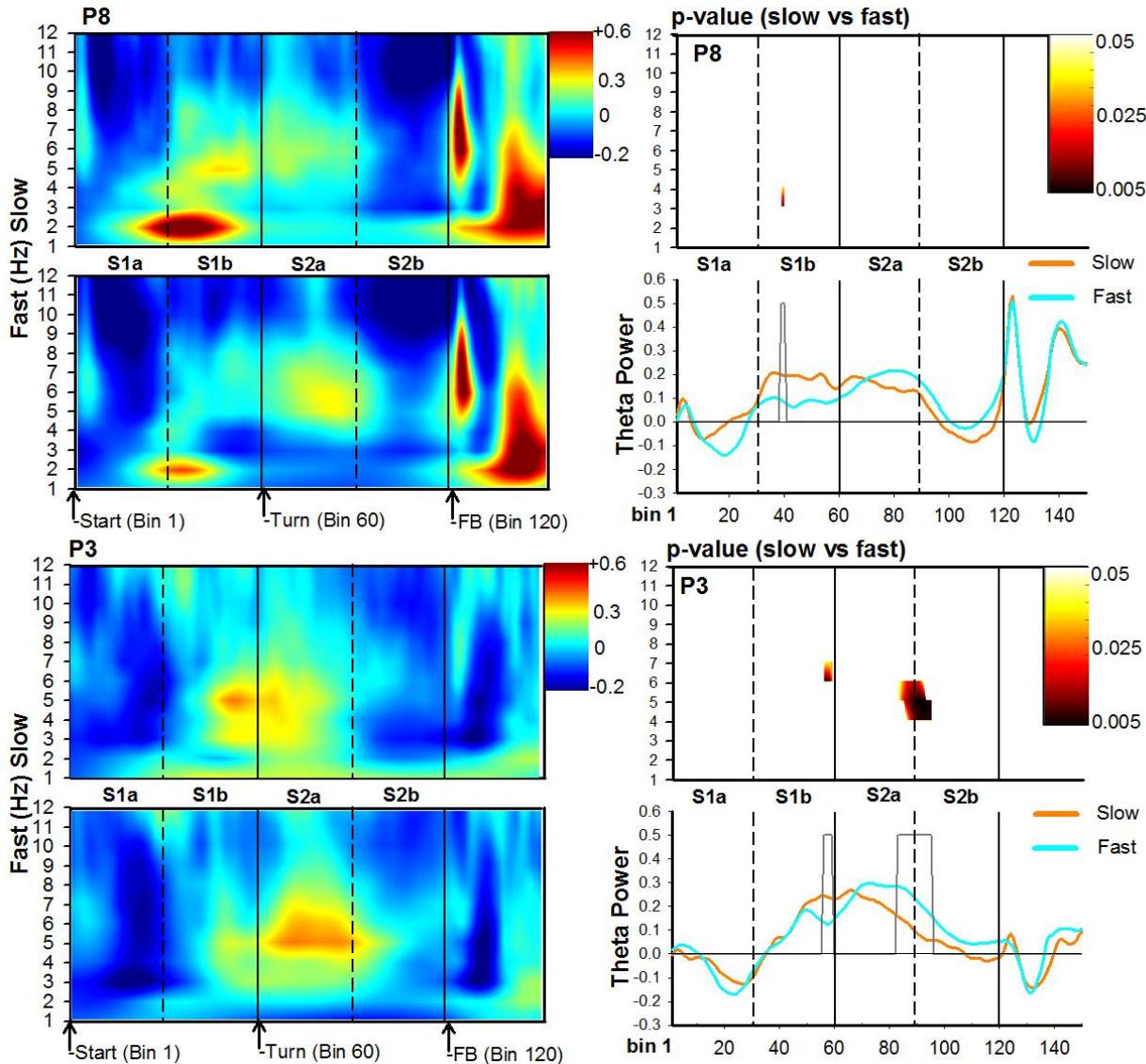


913
914
915
916
917
918
919
920
921
922

Figure 4. Time-frequency analysis associated with maze trajectories. For each channel location, FCz (top), Cz (middle), and P3 (bottom), panels depict time-frequency power maps (left panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the leftward (green solid lines) and rightward (purple solid lines) conditions. The X-axis represents Bin location and maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0 to 12 Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions, Bin 0 represents the start of the trial. The color bar for time-frequency plots represents the power of the oscillations depicting greater activity in warm colors. The heat-maps (left-top panel) represents the p-values (range .05 to .005) comparing leftward vs rightward trajectories. In

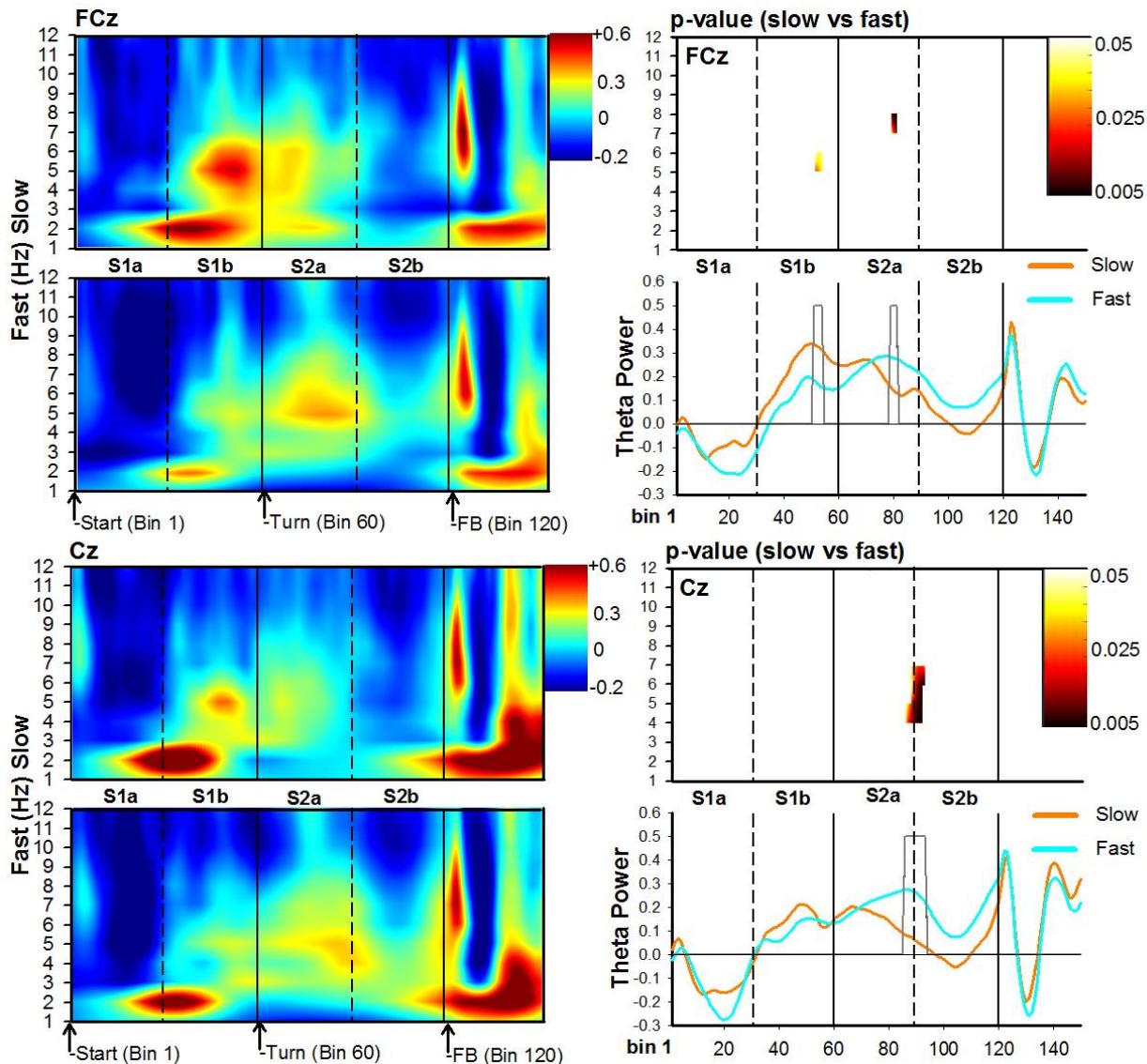
923 particular, paired comparisons of data used to generate each grand averaged heat-map were
924 calculated using paired-samples t-tests. The alpha value was set at .05 for each t-test conducted.
925 However, to provide partial control for Type I error inflation, at least two consecutive significant
926 comparisons around the target value were required before a specific value was portrayed on the
927 graph(41). The grey bars depicted in the theta-time course maps represent significant Bins identified
928 in the heat-maps.

929



930
931 **Figure 5. Time-frequency analysis associated with trial walking speed for posterior channels**
932 **P8 (top) and P3 (bottom).** For each channel location, panels depict time-frequency power maps
933 (left panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the slow
934 (orange solid lines) and fast (cyan solid lines) conditions. The X-axis represents Bin location and
935 maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0 to 12
936 Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions, Bin
937 0 represents the start of the trial. The color bar for time-frequency plots represents the power of the
938 oscillations depicting greater activity in warm colors. The heat-maps (left-top panel) represents the
939 p-values (range .05 to .005) comparing slow vs fast trials. The grey bars depicted in the theta-time
940 course maps represent significant Bins identified in the heat-maps.

941



942

943

944

945

946

947

948

949

950

951

952

953

Figure 6. Time-frequency analysis of the EEG associated with trial walking speed for frontal-midline channels FCz (top) and Cz (bottom). For each channel location, panels depict time-frequency power maps (left panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the slow (orange solid lines) and fast (cyan solid lines) conditions. The X-axis represents Bin location and maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0 to 12 Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions, Bin 0 represents the start of the trial. The color bar for time-frequency plots represents the power of the oscillations depicting greater activity in warm colors. The heatmaps (left-top panel) represent the p-values (range .05 to .005) comparing slow vs fast trials. The grey bars depicted in the theta-time course maps represent significant Bins identified in the heatmaps.

954

955 **Funding:** This research was supported by departmental research start-up funds from Rutgers
956 University (to TEB).
957
958

959 **Author contributions:**

960 Conceptualization: TEB, OL
961 Methodology: TEB, OL, ML
962 Investigation: ML, NB, TEB
963 Visualization: TEB
964 Supervision: TEB
965 Writing—original draft: TEB, ML
966 Writing—review & editing: OL
967

968 **Competing interests:** All other authors declare they have no competing interests.
969

970 **Data and materials availability:** The data that support the findings of this study are available
971 from the corresponding author (TEB) on request.
972
973