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Abstract 15 

Theta oscillations (~4–12 Hz) are dynamically modulated by speed and direction in freely moving 16 

animals. However, due to the paucity of electrophysiological recordings of freely moving 17 

humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully 18 

immersive virtual-reality to investigate theta dynamics in twenty-two healthy adults (aged 18–29 19 

years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods 20 

of theta modulation: 1) theta power increases coincided with the participants’ decision-making 21 

period; 2) theta power increased for fast and leftward trials as subjects approached the goal 22 

location; and 3) feedback onset evoked two phase-locked theta bursts over the right temporal and 23 

frontal-midline channels. These results suggest that recording scalp EEG in freely moving 24 

humans navigating a simple virtual T-maze can be utilized as a powerful translational model by 25 

which to map theta dynamics during “real-life” goal-directed behavior in both health and disease. 26 
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Introduction 30 

Decades of single-unit electrophysiological recordings of freely moving rodents navigating 31 

towards a selected goal (e.g. food, water, mates, shelter or avoiding danger) have produced a 32 

wealth of information about the neural mechanisms underlying goal-directed navigation (1-4). 33 

From this work, the consensus view is the precise firing rates of hippocampal place cells and 34 

parahippocampal grid cells with respect to the theta rhythm (4–12 Hz in rodents) constitute a 35 

temporal mechanism for encoding spatial position and information during navigation (1). In 36 

particular, theta oscillations have been shown to encode movement speed, direction, distance 37 

traveled, and proximity to spatial boundaries(1, 5). When salient events or cues such as rewards 38 

and navigationally-relevant landmarks are presented in the animal's environment, the phase of the 39 

theta rhythm is reset, a process that appears to facilitate the encoding of salient information within 40 

the hippocampal-parahippocampal circuitry (6). Further, recent studies suggest that resetting the 41 

phase of the ongoing theta rhythm to endogenous or exogenous cues facilitates coordinated 42 

information transfer within hippocampal-parahippocampal circuits and between distributed brain 43 

areas involved in navigation (7). Computational work leverages such theta mechanisms to 44 

simulate the spatial distribution of firing fields of place and grid cells (8, 9). For example, 45 

computational models integrating spatial representations in the hippocampal-parahippocampal 46 

circuit explicitly require velocity-dependent modulation of theta oscillations (both frequency and 47 

power) in their contribution to path integration and navigation (6, 10, 11). Further, grid cell 48 

models require an input conveying the speed and direction of motion (i.e. velocity), information 49 

carried by theta rhythmicity, so that this spatial information can be integrated to estimate changes 50 

in location based on the distance and direction travelled(8, 9). Grid cells models also require 51 

phase-resetting of velocity dependent theta oscillations by location-specific input from place cells 52 

to prevent accumulation of error (6, 8, 10). Although theta dynamics during navigation have been 53 

well studied in non-human animal and computational work, whether theta oscillations are 54 

fundamental components of the brain’s navigation system in freely moving humans remains 55 

elusive.  56 

This apparent lack of knowledge is likely due to the necessarily limited options for using invasive 57 

recording techniques in healthy humans subjects (12), and whilst animals can be examined during 58 

free movement, human studies employing virtual reality to simulate aspects of “real-world” 59 

navigation rarely achieve equivalent realism (13). Virtual reality can refer to one of three types of 60 

system: a virtual environment presented on a flat screen display (2D), a room-based system such 61 

as a CAVE, or a head-mounted VR display (3D). Traversing through any rendered environment 62 

via button presses or a joystick while physically immobile can result in motion sickness, sensory 63 

conflict, impair spatial navigation, and clearly influence the degree of immersion and presence in 64 

the virtual environment (13, 14). Notwithstanding, intracranial EEG recording in epilepsy patients 65 

have demonstrated the presence of movement-related theta oscillations in both the neocortex and 66 

hippocampus during immobile virtual navigation(15, 16). EEG and MEG studies have also 67 

identified functional parallels between theta oscillations (4-8 Hz in humans) recorded during 68 

immobile virtual navigation and those found in rodents during active navigation (e.g. self-initiated 69 

movement, processing of landmarks, path integration, orientation) (17-23). And two decades of 70 

fMRI studies have consistently demonstrated the involvement of several nodes of the navigation 71 

network (e.g. hippocampus, parahippocampal cortex, posterior parietal cortex, precuneus, the 72 

retrosplenial complex, and a region around the transverse occipital sulcus) during immobile 73 

virtual navigation tasks(1, 2, 24-26). Notably, Doeller et al. (2010) observed that the fMRI BOLD 74 

response in human right parahippocampal cortex exhibited a speed-modulated six-fold rotational 75 

symmetry in running direction as predicted by theoretical models of theta phase coding of grid 76 

cells(27).  77 
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While there is no doubt that the integration of neuroimaging and videogame design techniques 78 

have advanced our understanding of spatial navigation in humans, fMRI data lack the temporal 79 

and frequency information needed to study theta oscillations during navigation tasks(28), and 80 

immobile navigation lacks the self-motion information from visual, vestibular, proprioceptive and 81 

motor systems needed to generate the theta-dependent firing patterns of place and grid cells 82 

observed in rodent studies(13, 29). Thus, previous research has been unable to fully address 83 

whether freely moving humans also exhibit theta dynamics (e.g. phase-reset, movement speed and 84 

direction modulation) during mobile navigation. In recent years, several technological and 85 

methodological advances in electrophysiological research (mobile-EEG) and fully immersive 86 

virtual-reality (head mount display) have made mobile spatial navigation amenable for 87 

investigation in humans(13, 14, 30). Such investigation have already shown compelling results. 88 

For example, relative to standing still, delta-theta (2–7.21 Hz) power has been shown to increase 89 

during walking in an immersive virtual city (omnidirectional treadmill)(30) and in an virtual Y-90 

maze housed in a large physical room(14), findings consistent with intra-hippocampus EEG 91 

recordings during real and virtual navigation(31).  92 

Here, we leveraged this advancement to investigate theta dynamics in humans freely navigating a 93 

T-maze to find rewards. T-maze paradigms have been used extensively across several animal 94 

species (e.g. mice, rodents, ferrets, cats, squirrel monkeys, horses, cows, goats and sheep) to 95 

investigate “real-life” goal-directed navigation(4, 32, 33). The simplicity of the T-maze paradigm 96 

belies its utility and versatility for examining goal-directed navigation, and such investigations 97 

have produced a wealth of information about spatial learning and memory, reinforcement 98 

learning, and effort-based decision-making(4, 32, 34-36). Thus, the T-maze constitutes a natural 99 

application for mobile-EEG and immersive VR, providing a means for building a translational 100 

model of goal-directed navigation across species. Here, we recorded EEG from humans actively 101 

navigating a fully immersive virtual reality T-maze task to find rewards. Our purpose was 2-fold. 102 

First, given the novelty of the task, we wished to demonstrate that reward cues presented in the T-103 

maze would evoke two well-established phase-locked theta responses, frontal-midline theta 104 

(FMT)(37) and right-posterior theta (RPT)(17). Second, in line with animal and computational 105 

work, we wish to demonstrate that the participant’s walking trajectory (leftward vs rightward 106 

trials) and speed (fast vs slow trials) towards the feedback location would differently modulate 107 

theta activity. Taken together, these results provide converging evidence for the proposal that task 108 

and behavioral variables (reward, direction, and speed) are responsible for modulating theta 109 

activity during active navigation, and hold out promise for integrating experimental, 110 

computational, and theoretical analyses of goal-directed navigation in animals within the field of 111 

human EEG research. 112 

 113 

Results  114 

Behavior: In this study, twenty-two young adults (20 right-handed [laterality index = 68], 9 male 115 

and 13 female, aged 18–29 years old [M = 21, SE =.61]) freely navigated a T-maze to find 116 

rewards (Fig. 1A). On average, participants completed 148 trials (SE = 7.03, range = 100 – 238), 117 

and took 4.2 seconds (SE = .14, range = 2.97 – 5.63) to reach the feedback location (1.83 m). 118 

Overall, no differences were observed between the percentage of leftward (M = 48%, SE = 4.3) 119 

and rightward (M = 52%, SE = 3.6) trajectories, t(21) = -1.6, p = .123,  nor their velocity 120 

(leftward: M = .449 m/s, SE = .015 | rightward: M = .448 m/s, SE = .016) towards the feedback 121 

location, t(21) = .364, p = .719. It is worth noting that participant first 15 trials were biased 122 

towards rightward turns, t(21) = 2.6, p < .01.  In regards to post-feedback behavior, participants 123 

adopted a Lose-shift strategy (M = 71%, SE = 3.28), t(21) = -6.05, p < .001, and were faster for 124 

Win-stay trials (M = .46 m/s, SE = .017) relative to Win-shift trials (M = .44 m/s, SE = .016), 125 

t(21) = 3.7, p < .001.  126 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.05.463245doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 of 27 

 

 127 

***Figure 1.*** 128 

 129 

Feedback-related Theta Responses: Given the novelty of the mobile-EEG T-maze paradigm, a 130 

necessary precursor would be to replicate two well-studied feedback-related EEG responses 131 

observed using conventional computer-based 2D tasks, frontal-midline theta (FMT)(37) and right-132 

posterior theta (RPT)(17, 26). FMT describes an obligatory pattern of phase reset and power 133 

enhancement in frontal-midline electrodes (4–8 Hz: 220–300 msec) found to be sensitive to the 134 

valence of the feedback (e.g. increase in power and phase consistency following negative 135 

feedback), and has been associated with midcingulate cortex processes related to cognitive control 136 

and reinforcement learning (37, 38). This phenomenon is also observed in the time domain as a 137 

component of the event-related brain potential (ERP), called the feedback-related negativity or 138 

N200. RPT describes a pattern of phase reset and power enhancement in right-posterior electrodes 139 

(4–8 Hz: 160-220 msec) found to be sensitive to the spatial position of the feedback (e.g. greater 140 

power and phase consistency for feedback found following rightward turns relative to leftward 141 

turns), and associated with parahippocampal processes related to spatial navigation(17, 26, 39, 142 

40). This phenomenon is also observed in the time domain as an ERP component called the 143 

topographical N170. To examine these two oscillatory components, we computed a standard 144 

single trial wavelet-based time-frequency analysis to the EEG signal time-locked to the onset of 145 

positive and negative feedback (FMT) following leftward and rightward turns (RPT).  146 

 147 

***Figure 2.*** 148 

 149 

Visual inspection of Fig. 2 reveals a clear enhancement of FMT power between 220 and 150 

260 ms (peak power: M = 250 msec, SE = ±.14) and RPT power between 180 and 220 ms (peak 151 

power: M = 211 msec, SE = ±.14) following the onset of feedback stimulus.  In regards to FMT, a 152 

repeated measures ANOVA on mean band power measured at Fz as function of Frequency (delta, 153 

theta, alpha, beta) and Valence (positive vs negative feedback) revealed a main effect of 154 

Frequency (F(3, 63) = 19.67, p < .001, ηp
2= .48), and Valence (F(1, 21) = 5.13, p < .05, ηp

2= .20), and 155 

an interaction between Frequency and Valence, F(3, 63) = 3.31, p < .05, ηp
2= .144. Post-hoc 156 

analysis indicated that the EEG was characterized by greater power in the theta band (FMT, M = 157 

.30 dB, SE = ±.05) than at each of the other frequency bands (p < .01), and FMT power was 158 

greater for negative feedback (M = .36 dB, SE = ±.06) relative to positive feedback (M = .24 dB, 159 

SE = ±.04), t(21) = -2.3, p < .05, Cohen's d = .52 (See Figure 2A). No other frequency bands 160 

displayed power differences between positive and negative feedback (p > .05). In regards to RPT, 161 

a repeated measures ANOVA on mean band power measured at P8 as function of Frequency 162 

(delta, theta, alpha, beta) and Trajectory (leftward vs rightward) revealed a main effect of 163 

Frequency, F(3, 63) = 22.82, p < .001, ηp
2= .50, indicating that the EEG was characterized by 164 

greater power in the theta (M = .57 dB, SE = ±.09) and alpha (M = .44 dB, SE = ±.09) band than 165 

at each of the other frequency bands (p<.001). However, no other main effects nor an interaction 166 

were detected (p>.05). Together, these results are characteristic of FMT and RPT, and indicate 167 

that the feedback processing in the virtual reality T-maze task is capable of eliciting these phased-168 

locked theta responses during active navigation. 169 

Movement-related Theta Responses: In line with animal and computational work, which have 170 

demonstrated that theta oscillations encode movement speed and direction during navigation, we 171 

examined whether the participant’s trajectory (leftward vs rightward trials) and walking speed 172 

(fast vs slow trials) towards the feedback location would differently modulate theta activity. We 173 
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used the subjects median RT from start to feedback onset (distance travelled: 1.83 meters) to 174 

create two speed-dependent conditions (e.g., fast [median = .385 m/s, SE = .019] vs slow [median 175 

= .520 m/s, SE = .011]) and two direction-dependent conditions (e.g., leftward vs rightward 176 

trajectories).  Fig. 3 illustrates the topography results of the time frequency analysis from the start 177 

location to the feedback location averaged across all conditions. Visual inspection of Fig. 3 178 

reveals notable enhancements of theta power (as well as delta power) over frontal-midline (FCz 179 

and Cz) and posterior (P3, Pz) channels while traversing the stem (S1a and S1b) and turn (S2a 180 

and S2b) sections of the T-maze.  We confined the statistical comparisons of the time-frequency 181 

space to these frontal and posterior electrodes (see Fig. 4). We also included an analysis of P8 182 

because of its robust theta responses during feedback processing in the maze (Fig. 2B and 2C). 183 

Statistical comparisons of data for each grand averaged time-frequency plot were calculated using 184 

paired-samples t-tests (left vs right; fast vs slow). Given the large search space and novelty of this 185 

experiment, the alpha value was set at p < .05 (uncorrected) for each t-test conducted. To provide 186 

partial control for Type I error inflation, at least two consecutive significant comparisons (2 Bins 187 

of time data [approx. 50-100 ms] across two frequency steps [2 hz]) were required before a 188 

specific value was portrayed on the graph (41). This value was chosen as it provided the best 189 

visual representation of the differences between the conditions of interest, and a necessary 190 

precursor if we are to begin developing empirically driven and realistic representations of the 191 

oscillatory dynamics used to encode, represent, and process information during active navigation. 192 

 193 

***Figure 3. *** 194 

 195 

To help visualize the subject’s location during their trajectory, we segmented the stem 196 

(S1a [Bin 1-30]; S1b [Bin 31-60]) and turn (S2a [Bin 61-90]; S2b [91-120]) sections of the T-197 

maze (see Figure 3A). In regards to direction travelled, the first theta burst (6-7 Hz; channel Cz) 198 

occurred as participant approached the junction region of the T-maze (S1b Bin 48-49; duration = 199 

84 msec), and displayed a sensitivity to leftward relative to rightward trajectories (range: t(21) = 200 

2.2 – 2.7, p = .04 – .02). Channel FCz also displayed a similar pattern of results in the stem, but 201 

closer to the junction point of the maze (6-8Hz, Bin 59-64; duration = 192 ms; range: t(21) = 2.1 202 

– 2.7, p = .05 – .01). As subjects arrived at the junction point (S2a), a second burst of theta could 203 

be seen across several channels, all of which maintaining a leftward sensitivity: Channel P3 (5-204 

8Hz, Bin 68-72; duration = 135 ms; range: t(21) = 2.1 – 2.8, p = .05 – .01); Channel Cz (5-6Hz, 205 

Bin 74-77; duration = 108 ms; range: t(21) = 2.1 – 2.2, p = .05 – .03); and, Channel FCz (6-8Hz, 206 

Bin 79-86; duration = 210 ms; range: t(21) = 2.1 – 3.4, p = .05 – .002). As the subjects began their 207 

approach towards the goal location (S2a-S2b), there was a strong increase in delta-theta power at 208 

channel Cz for the left alley relative to the right alley: (3-5Hz, Bin 81-100; duration = 567 ms; 209 

range: t(21) = 2.2 – 4.8, p = .03 to < .00001). In addition, theta-alpha activity (8-9 hz) at channel 210 

P3 displayed a sensitivity to rightward trajectories (8-9Hz, Bin 53-54; duration = 84 ms; range: 211 

t(21) = 2.2 – 4.8, p = .02 – .009). It is also worth noting that the effects observed over channel P3 212 

where not observed over channel P4 (channel P4 did not display any significant Bins for any 213 

frequency). Together, these results indicate that theta power was sensitive to the participant’s 214 

trajectory from the start location to the goal location in the T-maze. 215 

 216 

***Figure 4.***  217 

 218 

In regards to speed (Figure 5 and 6), there was an initial increase in delta-theta power at 219 

the beginning of the stem, which was stronger for slow trials relative to fast trials at channel P8: 220 
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(3-4Hz, Bin 39-40; duration = 84 ms; range: t(21) = 2.2 – 3.0, p = .04 – .007). Shortly after this 221 

response (approx. 800 ms), a theta burst emerged as the participant approached the junction 222 

region, and was stronger for slow trials: Channel FCz (5-6 Hz, Bin 51-54; duration = 168 msec;  223 

t(21) = 2.1 – 2.2, p = .04 – .02), and Channel P3 (6-7 Hz, Bin 56-59; duration = 168 ms; range: 224 

t(21) = 2.1 – 3.1, p = .04 – .006). By contrast, as subjects approached the goal location after the 225 

turn, a second burst of theta could be seen across several channels and all displayed an increase in 226 

power for fast trials: Channel FCz (7-8Hz, Bin 79-81; duration = 81 ms; range: t(21) = -2.1 – -3.5, 227 

p = .03 – .001); Channel Cz (4-7Hz, Bin 86-93; duration = 216 ms; range: t(21) = -2.1 – -3.2, p = 228 

.04 – .004); and, Channel P3 (4-6Hz, Bin 83-95; duration = 315 ms; range: t(21) = -2.2 – -3.1, p = 229 

.04 – .004). Together, these results indicate that theta power was also sensitive to the participant’s 230 

speed in the T-maze, but was stronger for slow trials as participants approached the junction 231 

point, and stronger for fast trials as participants approached the goal location.  232 

 233 

 234 

***Figure 5.*** 235 

 236 

***Figure 6.*** 237 

 238 

 239 

Discussion  240 

In the present study, we combined mobile-EEG and head-mounted VR technology to investigate 241 

whether behavior (direction and speed) and task (rewards) variables modulate scalp-recorded 242 

theta activity in humans freely navigating a T-maze task. In line with animal and computational 243 

work, our results provide compelling evidence that theta power was dynamically modulated as 244 

participants traversed the T-maze towards the goal location and received reward feedback. 245 

Previous research in rodents, non-human primates, and humans suggests that at least three types 246 

of theta oscillations exist during navigation: one elicited during movement in space(1), another in 247 

response to planning and decision-making(42), and a third in response to reward processing(37). 248 

Our findings suggest that such theta-related responses were expressed across time and topography 249 

during the traversal of the T-maze. 250 

The Stem Shortly after participants began their movement down the stem of the T-maze, a large 251 

increase in delta power was observed over the right medial temporal (P8) and frontal-midline (Cz) 252 

electrodes.  Prior rodent and human studies have also revealed similar patterns of movement-253 

related increases in delta activity(15, 30, 43, 44). For example, EEG studies using joystick-based 254 

movements through 2D rendered virtual environments suggest that movement-related oscillations 255 

based on optic flow tend to manifest specifically within the 1–8 Hz frequency range (31, 43). 256 

More recently, Liang and colleagues (2018) demonstrated that frontal-midline delta-theta 257 

oscillations (2–7.21 Hz) exhibit higher power and are more sustained during physical movement 258 

than when standing still on an omnidirectional treadmill coupled with 3D immersive virtual 259 

reality. Delaux et al. (2021) also observed greater delta power as participants began walking down 260 

the starting arm of a fully immersive 3D Y-maze. Together, these data suggest that delta-theta 261 

oscillations can be induced by movement via a combination of visual, vestibular, and 262 

proprioceptive information. Further, while this emerging pattern of delta activity advocates for a 263 

mere signature of locomotion, its worth noting that delta-theta (3-4 Hz) activity recorded over 264 

right medial temporal cortex (electrode P8) proved to be condition sensitive, i.e., higher power for 265 

slow walking trajectories relative to fast walking trajectories. Consistent with this finding, Delaux 266 

et al. reported stronger delta response during learning phases of their Y-maze task, and intra-267 
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hippocampus EEG recordings found a delta-theta sensitivity to different types of real-world 268 

movements (e.g. during searching, recall and walking) during real and virtual navigation (31). 269 

Further, several human studies suggest that virtual navigation tends to result in low-frequency 270 

hippocampal oscillations peaking around 3.3 Hz, whereas freely ambulating humans show 271 

increased hippocampal oscillations ranging from 1–12 Hz compared with a standing position (15, 272 

31, 43, 45). Although parallels exist between scalp recorded EEG and intracranial EEG 273 

recordings, the hippocampus is located too deep in the brain to be detected with electrodes placed 274 

at the scalp and because of its spiral organization, would likely produce a closed electromagnetic 275 

field (17, 40). This concern notwithstanding, movement-related signals conveyed by the 276 

hippocampus project to and regulate navigation regions in temporal, parietal, and prefrontal 277 

cortex (15, 23, 46), and these regions are amenable to investigate with scalp EEG(28, 47). Thus, 278 

the movement-related delta-theta activity observed here, and in other mobile EEG-VR studies, 279 

may be a cortical reflection of the movement-specific firing patterns of the hippocampal circuitry 280 

observed in intracranial EEG studies, and highlight the importance of ambulation to the induction 281 

of low-frequency oscillations and to spatial processing(13, 29).  282 

The Junction As participants approached the junction section of the T-maze, a burst of frontal-283 

midline theta power emerged and exhibited an increase in power for slow and leftward 284 

trajectories. Although this theta response deviates from previous observations of proportional 285 

increases in delta/theta activity with increases in velocity, it’s worth noting that this increase in 286 

theta power coincided with the participants’ decision-making period, and before the turning 287 

motion itself. For these reasons, we propose this increase in frontal-midline theta activity may be 288 

more in line with route planning and decision-making. In particular, when animals come to a 289 

decision point in a T-maze, they sometimes pause or slow down as if deliberating over the choice 290 

(i.e. mentally searching future trajectories) (42). Neurophysiological data in rodents suggest that 291 

increases in hippocampal place cell activity during this period represent the process in which the 292 

animal is serially exploring the paths towards future outcomes (42, 48). Several researchers have 293 

further suggested that coherent oscillations between prefrontal cortex and hippocampus create 294 

such imagined episodic futures for this purpose (42, 49, 50).  Further, hippocampal theta-295 

entrainment of the rodent medial prefrontal cortex is strongest near the decision-making period of 296 

spatial memory tasks, which serves to focus attention on the prefrontal representations that are 297 

relevant for task performance (51-54). For example, a previous study revealed increased theta-298 

entrainment between medial prefrontal and hippocampal neurons at the choice point of a working 299 

memory T-maze task (55). In humans, deliberative decision-making is also hypothesized to 300 

involve the prefrontal cortex and medial temporal lobe structures, suggesting that there are direct 301 

parallels between animal and human findings(42). For instance, neuroimaging evidence revealed 302 

that the hippocampus is both necessary for and active during episodic future thinking(56), and 303 

several EEG studies have also shown that when subjects engage in control processes 304 

characterized by goal-directed influence, there is an increase in frontal theta activity(7, 37, 57-59). 305 

Together, these studies highlight the role of hippocampal-prefrontal theta interactions across 306 

different cognitive domains, such as goal-directed behavior(7), episodic memory (23), decision-307 

making (42)  and spatial learning (52). By extension, we propose that the observed increase in 308 

right posterior delta-theta power and frontal-midline theta power during slow trials may dovetail 309 

the neural processes and theoretical assumptions of deliberative decision-making observed across 310 

species. These findings imply that when reward-delivery contingencies are variable, humans at 311 

decision points in a T-maze, like rodents, are actually searching through possibilities, evaluating 312 

those possibilities, and making decisions that are based on those evaluations, a process reflected 313 

by an increase in both response time (i.e. slowing or pausing) and the presence of temporal-frontal 314 

theta oscillations near decision points(42), as we observed here.  315 

Moreover, we propose that the observed increase in frontal-midline theta power for 316 

leftward trajectories may reflect additional control processes by frontal cortex during the 317 
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decision-making period.  Studies in rodents, non-human primates, and humans have uncovered 318 

signals in the anterior midcingulate cortex that reflect the pressure to switch away from an 319 

ongoing behavioral strategy or default action (60). Frontal-midline theta activities, which are 320 

proposed to be generated in anterior midcingulate cortex(37), have also been shown to predict 321 

behavioral switching in simple reinforcement learning tasks(38), and are enhanced during more 322 

cognitively demanding navigation periods in spatial tasks (18, 19, 57). In parallel, since the 1920s 323 

preferences in turning direction have been reported in several animal species, including 324 

humans(61, 62). For instance, a rightward turning bias in humans can be observed when walking 325 

around obstacles or making turns in a T-maze(62). Consistent with this turning bias, 65% of 326 

participants in the present study displayed a rightward turning bias at the beginning stages of the 327 

task, possibly reflecting the default action in the T-maze.  In consideration of these observations, 328 

we propose that the increase in frontal-midline theta power prior to the junction point of the T-329 

maze may reflect anterior midcingulate cortex control response to switch from the default action 330 

of turning right, to the non-preferred action of turning left. In other words, the observed increase 331 

in frontal-midline theta activity reflects the increased switch demand by anterior midcingulate 332 

cortex that would be required to implement top-down control across disparate brain regions to 333 

override the tendency to turn right. Although admittedly speculative, we hope these findings will 334 

motivate future experimental and theoretical analysis of the neural determinants of human 335 

behavior at a choice-point in a T-maze. 336 

The turn and goal approach From the junction point throughout the traversal of the turning 337 

section of the maze, the increase in frontal-midline theta power for leftward trials was sustained, 338 

possibly reflecting the maintenance period of the selected leftward action. Consistent with this 339 

observation, a previous mobile virtual reality study demonstrated a sustained theta response from 340 

the center zone of a Y-maze to the finish arm (14). We propose that this sustained frontal-midline 341 

theta response is likely generated by prefrontal cortex (e.g. anterior midcingulate cortex). 342 

According to an influential learning theory of anterior midcingulate cortex function, this region 343 

not only selects sequences of actions during the decision making process, but also determines the 344 

level of effort to be applied toward executing the action and maintaining this level of activity until 345 

the organism reaches its goal(63). Consistent with this view, a multitude of studies have indicated 346 

that frontal-midline theta power correlates positively with levels of cognitive effort, working 347 

memory load and attention, especially for tasks that demand sustained effort and control(37, 64). 348 

Based on this theoretical and empirical work, we propose that the frontal-midline theta activity 349 

observed following the junction point represents the continued engagement of the anterior 350 

midcingulate cortex and it’s role in maintaining vigilance and control of the leftward trajectory 351 

towards the goal location.  352 

Following the junction point, leftward trajectories towards the goal location produced a 353 

strong theta burst over the left posterior channel P3. To note, this pattern of theta activity (or the 354 

inverse of) was not observed over the right posterior channel P4, ruling out the possibility that this 355 

enhancement of power was related to head-direction, motion artifacts, or stemmed from a 356 

hemispheric bias associated with the retinotopic position of the goal target stimuli (floating orb) 357 

during the turn. While the topography of this theta response was not anticipated, the robustness of 358 

its effects warrants a closer look. Based on the literature and topography of this theta response, 359 

one possible generator is the posterior parietal cortex(65). A large number of studies across 360 

species have related posterior parietal cortex activity to the control of body movements (e.g. eyes, 361 

head, limbs, and body), decision-making, and spatial navigation (66-72). In particular, posterior 362 

parietal cortex firing patterns in rodents are often determined by conjunctions of body position or 363 

orientation, positions in a path, and concurrent movement type (i.e., turns or forward 364 

locomotion)(68, 73, 74). For example, Krumin and colleagues (2018) trained mice to use vision to 365 

make decisions while navigating a virtual reality task, and found that posterior parietal cortex 366 

activity can be accurately predicted based on the position of the animal along the corridor and 367 
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heading angle. These data, along with others, have led to the idea that posterior parietal cortex 368 

activity form an integration of spatial representations of objects and scenes with motor 369 

representations to support accurate eye, head, and whole body movements towards selected goal 370 

or target (69, 75). Relevant to motor coordination during the pursuit of goals, posterior parietal 371 

cortex activity also exhibits a sensitivity to self-motion (e.g. linear and angular speed), visual 372 

target position, and movement direction in egocentric coordinates. These findings help support 373 

the idea that posterior parietal cortex may subserve online sensorimotor coordination necessary 374 

for goal pursuit behavior or target chasing in egocentric space(76). By extension, we propose the 375 

theta activity recorded over the left parietal cortex during the turn may reflect the sensorimotor 376 

coordination process of pursuit navigation, (i.e., the continuous adjustment of movement plans 377 

relative to the position of the floating goal orb in the left or right alley of the T-maze). Further, the 378 

heightened activity for leftward trajectories likely represents the allocation of top-down control by 379 

anterior midcingulate cortex over posterior parietal cortex activity during the active pursuit of the 380 

leftward goal. We hope these findings will warrant future investigations.  381 

Lastly, an increase in theta power over frontal-midline (FCz and Cz) and left posterior 382 

(P3) electrodes was observed during fast walking trajectories towards the goal target, findings 383 

consistent with previous observations of proportional increases in theta activity with increases in 384 

speed. In particular, animal and computational work indicate that theta oscillations coordinate the 385 

firing patterns of hippocampal place cells and parahippocampal grid cells during navigation, 386 

providing the rodents spatial position in the environment(1, 6, 11). Central to this idea is the 387 

observation that the power (and frequency) of hippocampal and parahippocampal theta activity 388 

increases linearly with movement speed, and such speed-related changes in theta oscillations is 389 

essential to calculate the distance travelled through the place field(20, 44, 77). Speed-related 390 

changes in theta power have also been linked to changes in sensorimotor integration, the flow of 391 

sensory input, as well as cognitive/memory functions(44). For instance, the sensorimotor 392 

integration hypothesis posits that rodent hippocampal theta oscillations incorporate incoming 393 

sensory information with existing motor plans to guide movement, and more rapid traversals 394 

require faster sensorimotor transformations, resulting in higher theta activity(20, 57). Regardless 395 

of the theoretical interpretation of speed-related changes in theta power during navigation, the 396 

observed speed- and direction-related increase in theta power during the approach to the goal 397 

location draw strong parallels with animal and computational studies. Further, although these 398 

specialized neural representations have been identified in humans during virtual movement at 399 

various levels of analysis - i.e., ranging from intracranial EEG recordings of local field potentials 400 

to the fMRI blood oxygen level-dependent (BOLD) signal - virtual movement and real movement 401 

are fundamentally different(13). Virtual movement requires subjects to press buttons or move a 402 

joystick to process optic flow in order to compute their speed, direction, and location in space, 403 

and to initiate and maintain virtual movement toward the target location, all while physically 404 

immobile(13, 14, 30). By contrast, self-motion information from visual, vestibular, proprioceptive 405 

and motor systems are needed to generate the theta-dependent firing patterns of hippocampal-406 

parahippocampal system. Thus, our findings here confirms that spatial navigation and free 407 

ambulation are potential drivers of multiple theta generators in healthy human participants, and 408 

likely reflects the common theta state the navigation system is synchronized to(15). More 409 

specifically, given the role of hippocampal theta in synchronizing network activity during 410 

navigation, these results outline a dynamic and distributed pattern of theta activity across the 411 

nodes of the navigation system (e.g. prefrontal cortex, posterior parietal cortex, 412 

parahippocampus), and highlight the utility of scalp recorded theta measures as potential indices 413 

of neural network function and hippocampal-parahippocampal physiology during navigation. We 414 

hope these findings warrant future investigations.  415 

Feedback processing Consistent with previous work, the presentation of feedback stimuli in the 416 

T-maze elicited a large, focally distributed theta burst over the right temporal cortex (17). The 417 
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topography and timing of this response are characteristic of RPT and indicate that the virtual 418 

reality T-maze paradigm is capable of eliciting this oscillatory response. Using a desktop version 419 

of the T-maze task, we demonstrated that RPT reflects a stimulus-induced partial phase reset (i.e. 420 

increase in power and enhanced phase consistency) of theta oscillations, and source localization, 421 

fMRI, and simultaneous EEG-fMRI data point to a neural generator in the right parahippocampal 422 

cortex(17, 26, 39, 40). In line with these observations, animal and computational work suggest 423 

that theta phase-coding and resetting are crucial during navigation as it sets the internal map of 424 

space encoded by the parahippocampal cortex(6, 7, 10, 78, 79). In order to prevent error 425 

accumulation of phase information during navigation, the phase of the theta rhythm may be reset 426 

to some predefined value (e.g. zero phase) by salient cues such as landmarks or rewards, a process 427 

thought to contribute to reward- and emotion-related spatial learning and memory(6, 8). Current 428 

thinking holds that this reset signal is provided by hippocampal place cells, which fire when the 429 

rodent enters the preferred field (or peak phase) of the place cell(8, 78, 79). More so, goal 430 

locations within a maze induces an accumulation of place fields and higher firing rates, which 431 

suggests that hippocampal place cells over-represent goal locations that generate emotional 432 

valence(35). Theta resets are also believed to be a mechanism for phase-locking hippocampal-433 

parahippocampal activity to behaviorally relevant events and thereby may enhance cognitive 434 

processing (7, 78, 80, 81). By extension, we propose that the left and right goal locations within 435 

the T-maze were represented by it’s own place field.i  In particular, when the participant actively 436 

entered the goal location and received feedback, the phase of the parahippcampal theta oscillation 437 

was reset by the location-specific input from place cells, thereby concomitantly increasing theta 438 

phase coherence across trials. Further, the over-representation of goal locations by place cells (35) 439 

may have potentiated parahippocampal activity, thereby leading to an overall increase in regional 440 

spectral power. Accordingly, such stimulus-induced theta dynamics would be reflected in the 441 

EEG as enhanced theta phase consistency and spectral power, as we observed here with RPT 442 

power. In line with animal and computational work, we propose that RPT reflects a macroscopic 443 

proxy of the sum of parahippocampal theta activity, possibly the phase resetting of grid cells by 444 

place cells during feedback processing in the T-maze.  445 

Next, we found that negative feedback relative to positive feedback yielded a significant 446 

increase in theta activity over frontal-midline electrodes, replicating the standard FMT effect(37, 447 

38). At a behavioral level, participants exhibited a lose-switch strategy and walked faster on Win-448 

stay trialsii, results suggesting that participants’ choices were influenced by the maze feedback. 449 

Over two decades of research using standard reinforcement learning paradigms (e.g. two-arm 450 

bandit task, gambling tasks, probabilistic reward tasks) have reliably demonstrated that FMT 451 

activities reflect the evaluation of negative and positive feedback for the purpose of the adaptive 452 

modification of behaviour (37, 38, 64). An accumulating body of evidence point to the anterior 453 

midcingulate cortex, as well as pre-supplemental motor area, as the source of FMT oscillations, 454 

and FMT power is thought to be modulated by a dopaminergic teaching signal tethered to 455 

prediction of reward outcomes during trial-and-error learning (i.e., reward predication error 456 

signals, RPEs)(37, 38). RPEs constitute the learning term in powerful reinforcement learning 457 

algorithms that indicate when events are “better” or “worse” than expected (82), and it is 458 

becoming increasing clear that positive and negative RPEs are encoded as phasic increases and 459 

decreases in the firing rate of midbrain dopamine neurons, respectively(83). FMT activities have 460 

also been shown to reflect a common computation used to identify and communicate the need for 461 

cognitive control, and subsequently organize prefrontal neuronal processes to implement top-462 

down control across disparate brain regions(37, 64). By replicating the standard FMT response to 463 

reinforcers, in addition to the observed adaptive modification of behavior following feedback, we 464 

can infer the engagement of a reinforcement learning and control system during active navigation 465 

in this task.  466 
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In summary, successful goal-directed navigation requires highly specialized neural 467 

representations that encode information about the location, direction, and speed of the navigating 468 

organism, as well as stimulus events, actions, and reinforcers for the purpose of optimizing 469 

behavior. Although substantial evidence from animal studies indicates that the theta rhythm plays 470 

a vital role in these neural representations during goal-directed navigation, they remain poorly 471 

understood in freely moving humans. In the present study, the multiplicity of human theta 472 

patterns observed during decision-making points, goal pursuits, and reward locations details how 473 

theta oscillations coordinate and support a diverse set of brain-wide neural assemblies and 474 

functions during goal-directed navigation. Foremost, measuring theta oscillatory activity from the 475 

scalp during active navigation allowed us to address our main objective: whether theta power 476 

increases with increases in speed, as shown previously in the rodent. This crucial finding opens a 477 

new door of investigative possibilities by which to integrate mobile-EEG measures of “real-life” 478 

goal-directed behavior with extensive animal, human, and computational work on spatial learning 479 

and memory based on Tolman's seminal cognitive map theory.  480 

 481 

Materials and Methods 482 

In this study, twenty-two young adults (20 right-handed [laterality index = 68], 9 male and 13 483 

female, aged 18–29 years old [M = 21, SE =.61]) freely navigated a T-maze to find rewards (Fig. 484 

1A). Participants were recruited from Rutgers University Department of Psychology subject pool 485 

using the SONA system. Each subject received course credit for their participation. Before the 486 

experiment, participants were screened for neurological symptoms and histories of neurological 487 

injuries (e.g., head trauma), and then asked to fill out the Edinburgh Handedness Inventory(84). 488 

After the experiment, participants filled out the Everyday Spatial Questionnaire. Ethical approval 489 

was obtained from the Institutional Review Board of the local university, and all participants 490 

provided written consent before the experiment.  491 

In keeping with the classical design of the T-maze, this immersive virtual reality version consisted 492 

of a stem and 2 alleys extending at 90° angles out from a junction point and was located on a 493 

virtual enclosed landscape (20m x 20m) with an open ceiling exposed to a cloudy blue sky (Fig. 494 

1; top panel). The virtual structure of the T-maze was enclosed inside the lab’s physical space of 495 

2.13m by 2.13m room, with virtual meshed walls marking the boundaries. The T-maze was 496 

constructed using commercially available computer software (Unity version 2019.2, 497 

https://unity.com) and the virtual reality environment was provided through an HTC Vive head-498 

mounted display system, which tracked participants’ head positions during navigation (HTC 499 

Corp., Taiwan). Continuous EEG was recorded with a mobile V-Amp amplifier from 16 actiCAP 500 

slim electrodes (Brain Products, Munich, Germany).  501 

At the start of the experiment, a light beam marked the starting position of the T-maze, and the 502 

subjects had to step into that beam to start each trial. On each trial, participants walked down the 503 

stem of the maze until they reached a junction point, in which they were required to turn down the 504 

left or right alley and move towards a yellow orb floating at eye level at the end of the alley. The 505 

height of the icons was dynamically adjusted at the beginning of the experiment to match the 506 

subject’s eye-level. Once the participants were within 1.07 meters from the end of the alley, the 507 

floating yellow orb turned either green with a check mark (√) or red (x) for 1000 msec, signifying 508 

the alley they selected contained 5 cents (reward) or was empty (no-reward), respectively. 509 

Following the feedback, the maze would disappear, and participants were required to walk across 510 

an open field towards a purple beam of light. Once standing inside the beam of light and facing 511 

forward, the T-maze would re-appear, signifying the start the next trial. Participants were given 512 

20 minutes to maximize their rewards. Unbeknownst to them, on each trial the type of feedback 513 
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was selected at random (50% probability for each feedback type). At the end of the experiment, 514 

participants were informed about the probabilities and were given a $10 performance bonus.  515 

The application contemporaneously communicated the subject’s position and the outcome of each 516 

trial by transmitting position values via a parallel port which took an integer from 0 to 255 and 517 

converted it to a voltage spike that was in turn marked by the EEG device. The rate of data 518 

updates was limited by the application’s running rate of 90 frames-per-second. Each signal was 519 

active for approximately 0.45 seconds, followed by transmitting a rest period of approximately 520 

0.05 seconds in order to allow for clear separation of the signals. However, the outcomes of each 521 

trial were recorded immediately, even if the aforementioned delay needed to be interrupted. The 522 

subject’s position was encoded as a 15 by 15 grid using integers 1 to 226, while outcomes were 523 

encoded using higher integers. 524 

Electrophysiological Data Recording The electroencephalogram (EEG) data were collected 525 

using a 16-channel BrainVision actiCAP snap system (Brain Products GmbH, Munich, Germany) 526 

with 12 scalp electrode sites (Fp2, Fp1, Fz, Cz, FC5, FC6, Pz, Oz, P3, P4, P7, P8) and four 527 

external electrodes. One external electrode was placed on the right infraorbital region to record 528 

vertical eye movements (channel VEOG), and one was placed lateral to the outer canthus of the 529 

right eye to measure horizontal eye movements (channel RH). By convention, mastoid sites (M1 530 

and M2) were collected to re-reference offline (see section below). EEG signals were recorded 531 

using Brain Vision Recorder software (Brain Products GmbH, Munich, Germany), online-532 

referenced to channel FCz, a ground at AFz, and amplified using the portable V-Amp system 533 

(Brain Products GmbH, Munich, Germany). The sampling rate was set to 1000 Hz.  534 

Electrophysiological Data Reduction Raw EEG recordings were analyzed offline using 535 

BrainVision Analyzer 2 (Brain Products GmbH, Munich, Germany). The first five trials were 536 

considered practice for each subject and were not included in the data analyses. We also excluded 537 

trials with response times (RTs) faster than 2.5% of the RT lower bound and slower than 2.5% of 538 

the RT upper bound to ensure the data quality. Raw EEG signals were filtered offline using a 539 

fourth-order digital Butterworth filter with a bandpass of .10-40 Hz. Activity at the online 540 

reference electrode FCz was recreated. Filtered signals were then subjected to ocular correction 541 

via independent component analysis (ICA). A mean slope algorithm was applied for blink 542 

detection, and an infomax-restricted algorithm was used for the ocular artifact correction. Channel 543 

Fp2 was used to detect vertical eye activity, and channel RH was used to detect horizontal eye 544 

activity. We then performed ICA  correction on signals from 12 scalp electrodes (Fz, Cz, FC5, 545 

FC6, Pz, Oz, P3, P4, P7, P8, FCz, Fp1). Next, we divided the analysis stream into two pipelines: 546 

one for feedback-locked analyses and another for path analyses (i.e., from the starting point of 547 

one trial to the starting point of the next trial). For the feedback-locked analysis pipeline, signals 548 

were segmented into 5000 ms duration epochs spanning from -2500 ms to 2500 ms and time-549 

locked to feedback onset. For the path analysis pipeline, signals were segmented into 25000 ms 550 

epochs time-locked to trial onset, spanning from -2500 ms to 22500 ms. Here, we used the 551 

prolonged epoch length for two reasons: (1) to ensure that the epoch was long enough to include 552 

the entire trial duration (i.e., from the start of one trial to the start of the next), and (2) to prevent 553 

the edge artifacts from time-frequency analyses. Following this, data were re-referenced using an 554 

average reference created from the following channels: FCz, Cz, FC5, FC6, Fz, Oz, P3, P4, P7, 555 

P8, and Pz. To note, by convention mastoid sites (M1 and M2) were collected to re-reference 556 

offline. However, these electrodes were removed from the dataset due to excessive noise and 557 

were not used in any of the analysis. Although mastoid references are commonly used in EEG 558 

research, future mobile virtual reality studies should avoid using this method as these channels 559 

tend to be contaminated by muscles involving in head rotation (e.g., sternocleidomastoid muscle). 560 
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For both pipelines, segmented data were then baseline-corrected using a mean voltage range from 561 

200 ms to 0 ms preceding time 0. For feedback-locked segments, artifact rejection was conducted 562 

on the full segment with the following criteria: (1) a maximally allowed voltage step of 50 563 

µV/ms, (2) a maximally allowed difference of values in intervals of 250 µV, and (3) lowest 564 

allowed activity values in intervals of 0.5 µV. For full-path segments, the search for artifacts was 565 

conducted within a customized window for each subject. The starting point of this customized 566 

window was -2500 ms relative to time 0. The endpoint of the window was the averaged RTs from 567 

the onset of one trial to the next across all trials plus 2500 ms. Due to the long epoch (25000 ms) 568 

used here, one segment often contained data from more than one trial—particularly for subjects 569 

with shorter RTs. By applying this customized window for each subject, we rejected epochs with 570 

artifacts that occurred within this interval of interest and preserved trials with artifacts that 571 

occurred outside of this interval (e.g., at the next trial) but not within. We added 2500 ms here to 572 

ensure that data points for convolution during time-frequency analyses were free from edge-573 

artifacts to the greatest extent possible. On average, the duration of the customized window was 574 

13014 ms (SD = 1304; min = 10789 ms; max = 15856 ms) across subjects included in the final 575 

data analyses (n = 22). After artifact rejection, bad channels (those with artifacts exceeding 5% of 576 

the data) were identified and interpolated using their four nearest neighbors’ signals for both 577 

pipelines (Hjorth, 1975). For subjects in the final analyses (n = 22), we interpolated data from one 578 

channel for four subjects (FC6: 1 subject; Oz: 1 subject; Cz: 1 subject; and FC5: 1 subject). All 579 

segmented data were written to individual MATLAB files for further processing using MATLAB 580 

software (MathWorks, Inc., 2019a). Out of 31 subjects whose EEGs were collected, data from 9 581 

were excluded from final analyses due to multiple bad channels (n = 5), limited trial count (n = 2), 582 

extreme data outliers (n = 2), and failure to complete the experiment (n = 1).   583 

Time-frequency analyses We conducted continuous wavelet transformation to decompose EEG 584 

oscillations into magnitude and phase information in the frequency range of 1 to 40 Hz for 585 

feedback-locked and full-path segments using a MATLAB program. For feedback-locked 586 

segments, the analysis was performed on four conditions: positive and negative feedback, 587 

rightward and leftward turns. For each condition, averaged evoked power was calculated by 588 

averaging the square of magnitude at each time point and frequency across trials. For feedback-589 

locked segments, the analysis was performed on four conditions: positive and negative feedback, 590 

rightward and leftward turns. For each condition, averaged evoked power was calculated by 591 

averaging the square of magnitude at each time point and frequency across trials. To control for a 592 

potential difference in power spectrum before stimulus onset, we used a condition-average 593 

baseline of -300 to -150 ms pre-feedback onset averaging across all segments regardless of 594 

conditions for baseline normalization (28). For each subject, the power spectrum for the theta 595 

band (4-8 Hz) was averaged across all segments. We then identified the peak latency in the 596 

window of 0–600 ms post-stimulus for Fz and P8 (peak latency at Fz: 226 ms; peak latency at P8: 597 

211 ms). The window for mean power extraction was then determined by +/- 25 ms around the 598 

peak latency for Fz and P8. We then used the window to extract mean amplitude for positive and 599 

negative feedback at Fz (window: 201–251 ms) and for leftward and rightward turns at P8 600 

(window: 186–236 ms). 601 

For the path analysis, we divided the segments into leftward and rightward turns based on their 602 

path choice for each subject. We also split the segments into fast and slow conditions based on the 603 

median RTs measured from trial onset to feedback across all segments for each subject. The 604 

averaged median RT was 3923 ms (SD = 624; min = 2893; max = 5473) across 22 subjects. The 605 

segments were then subjected to continuous wavelet transformation for each condition. After the 606 

transformation, a critical challenge for creating an average power spectrum was that the timing of 607 

event triggers marking the turn and feedback location in time relative to time 0 (i.e., trial onset) 608 
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varied across segments. Such variation made it challenging to obtain a robust averaged power 609 

spectrum using the conventional averaging approach. Therefore, we applied a data binning 610 

strategy used in animal studies to examine neurophysiology in freely moving rats to address 611 

timing variation across trials (e.g., Kyriazi, Headley, & Pare, 2020).  612 

To apply the binning strategy, we divided each segment into two sections (Stem and Turn) 613 

according to the triggers marking participants’ movement trajectories in the T-maze. The Stem 614 

section was defined as the period between trial onset and the intersection of the T-maze. The Turn 615 

section was defined as the period between the junction of the T-maze and feedback onset. We 616 

then binned the power spectrum into 60 bins for each defined maze section using the histcounts 617 

function written in MATLAB (Mathworks Inc., Natick, MA). Specifically, for a given section, the 618 

program divided the interval in milliseconds into approximately equally spaced bins and defined 619 

the bin edges (i.e., the starting point and the endpoint in milliseconds). We then averaged the total 620 

power across the time points in milliseconds within each bin. For example, for a given trial, the 621 

duration of the Stem section was 1500 ms, indicating that the width of each bin is 25 ms. We 622 

would then average the total power across 1-25 ms to get the total power for bin 1; average the 623 

total power across 26-50 ms to get the total power for bin 2; average the total power across 51-75 624 

ms to get the total power for bin 3, etc. We did this for each frequency in every trial. We then 625 

averaged single-trial binned total power across segments for each condition to obtain the averaged 626 

binned total power for each subject. For both the path analyses, the averaged binned total power 627 

was then baseline normalized using a condition-average baseline (i.e. all conditions averaged 628 

together) in the period of -1000 ms to -100 ms before the trial onset. Across these 22 subjects, the 629 

averaged milliseconds per bin were 42 ms for the Stem section and 27 ms for the Turn section. 630 

The mean power was extracted across all channels for delta, theta, and alpha bands for the 631 

following sections (Figure 3): (1) S1a: Stem section – first half (Bins 1-30: first half of trajectory 632 

from start location to junction point); (2) S1b: Stem section – second half (Bins 31-60: second 633 

half of trajectory from start location to junction point); (3) S2a: Turn section – first half (Bins 61-634 

90: first half of trajectory from junction point to left or right feedback location); and (4) S2b: Turn 635 

section – second half (Bins 91-120: second half of trajectory from junction point to left or right 636 

feedback location. To note, because of the inter-trial and inter-subject variation in return strategies 637 

(e.g. turn counter-clockwise vs clockwise to return to start location; walk forward vs backwards to 638 

start location – information was not recorded), we did not include an analysis of the return 639 

segment of the task and leave this for future investigations. All statistical analyses were 640 

performed using SPSS 24.0 for Windows (IBM SPSS Statistics, IBM Corporation). 641 

Footnotes 642 

i. This idea may explain why we failed to replicate the rightward turning bias on RPT power 643 

and latency (phase) observed in our previous 2D T-maze tasks(17). For instance, during 644 

active navigation, if the two goal locations were represented by their own place fields, and 645 

the feedback-induced reset occurred at the center of each place field, then the resulting 646 

RPT phase and power would be identical between the two goal locations. By contrast, if 647 

the two goal locations in the 2D version of T-maze task were only represented by one 648 

place field ⸺ since subjects were only sitting in one physical location and pressing 649 

buttons to move between different spatial locations digitally drawn on the screen ⸺ it is 650 

possible that the left and right goal location were represented by different phase positions 651 

along the theta cycle of a single place field. If true, one might expect to see commensurate 652 

differences in RPT power and phase between left and right goal locations following phase 653 

reset, as we observed previously(17).   654 
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ii. Its interesting to note that we failed to replicate the standard win-stay behavior, a heuristic 655 

learning strategy used to model learning in decision situations and has been applied 656 

towards theory development in psychology, game theory, statistics, economics, and 657 

machine learning (38, 85, 86). In particular,  when subjects are simply pressing buttons to 658 

make decisions on a computer, this win-stay pattern emerges (87, 88), but when subjects 659 

are required to move their entire body to make decisions, this pattern disappears. While 660 

this is a surprising result and needs to be explored further, it is our best guess that the win-661 

stay and win-shift decisions during active navigation reflects an increase in strategy 662 

exploration (testing win-shift behavior more often) or there are differences in the 663 

computations between active navigation (i.e.  calculating the physical and cognitive 664 

energy needed to navigate our bodies towards a goal), and simple button presses.  665 

 666 

 667 

  668 
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Figures and Tables 876 

 877 

.  878 

Figure 1.  Mobile virtual reality T-maze paradigm and associated behavior. A) Dimensions 879 

of the virtual (black border) and physical (cyan border) room and T-maze (S1: start 880 

location, S2: junction point, S3: feedback location). Purple and green lines denotes 881 

rightward and leftward trajectories, respectively. B) An example of a rightward trajectory 882 

in the T-maze, (C) and trial-to-trial sequence of events. Behavioral analysis for choice (D) 883 

and velocity (E). Green and purple bars denote leftward and rightward trajectories, and 884 

Blue (positive) and Red (negative) bars denote post-feedback behavior. 885 

 886 
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 887 

Figure 2. Feedback processing during active navigation. A) Panels indicate changes in power 888 

for each frequency band with respect to baseline (-300 to -100 ms period prior to feedback stimulus) 889 

elicited by negative (left) and positive (right) feedback stimuli.  Right bar graph depicts peak power 890 

across frequency bands delta [1–3 Hz], theta [4–8 Hz], alpha [8–13 Hz], [13–20 Hz], and gamma 891 

[20–40 Hz] associated with the response to negative (red bars) and positive (Blue bars) feedback. 892 

Note highest power in the theta band, and stronger for negative feedback. Data recorded at channel 893 

Fz. (B) Panels indicate changes in power for each frequency band with respect to baseline (-300 to 894 

-100 ms period prior to feedback stimulus) elicited by feedback stimuli presented in the right alley 895 

(left) and in the left alley (right). Right bar graph. Peak power across frequency bands associated 896 

with the response to feedback in left (green bars) and right (purple bars) alley. Note highest power 897 

in the theta band, for both left and right alleys. Data recorded at channel P8.  C). Bar graph illustrates 898 

the mean feedback power (150 – 300 ms) across frequency bands delta [1–3 Hz], theta [4–8 Hz], 899 

alpha [9–12 Hz], and beta [13–20 Hz] evaluated at all electrode channels, ordered by size. Bars 900 

indicate the standard error of the mean. Note highest power was in the theta band, and this increase 901 

in power exhibited a maximal at right posterior (channel P8). Error bars indicate the standard error 902 

of the mean. 903 

 904 
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 905 

Figure 3. Frequency power and topography across the T-maze traversal. A) Top-left panel. A 906 

diagram illustrating the maze subsections and their associated Bin range. Bottom-left panel depicts 907 

the channel locations.  Right panel indicate changes in power for each frequency band (with respect 908 

to baseline) averaged across all conditions and subjects at FCz. Topographical maps representing 909 

the mean frequency power at each channel for B) delta [1–3 Hz], C) theta [4–8 Hz], and D) alpha 910 

[9–12 Hz] for each subsection (S1a, S1b, S2a, S2b) of the path from the start to feedback location. 911 

Bars indicate the standard error of the mean. 912 
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 913 
Figure 4.  Time-frequency analysis associated with maze trajectories. For each channel 914 

location, FCz (top), Cz (middle), and P3 (bottom), panels depict time-frequency power maps (left 915 

panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the leftward 916 

(green solid lines) and rightward (purple solid lines) conditions.  The X-axis represents Bin location 917 

and maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0 918 

to 12 Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions, 919 

Bin 0 represents the start of the trial. The color bar for time-frequency plots represents the power 920 

of the oscillations depicting greater activity in warm colors. The heat-maps (left-top panel) 921 

represents the p-values (range .05 to .005) comparing leftward vs rightward trajectories. In 922 
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particular, paired comparisons of data used to generate each grand averaged heat-map were 923 

calculated using paired-samples t-tests. The alpha value was set at .05 for each t-test conducted. 924 

However, to provide partial control for Type I error inflation, at least two consecutive significant 925 

comparisons around the target value were required before a specific value was portrayed on the 926 

graph(41). The grey bars depicted in the theta-time course maps represent significant Bins identified 927 

in the heat-maps.  928 

 929 

 930 
Figure 5. Time-frequency analysis associated with trial walking speed for posterior channels 931 

P8 (top) and P3 (bottom). For each channel location, panels depict time-frequency power maps 932 

(left panels), p-value maps (right-top panel), and theta time-course (right-bottom panel) for the slow 933 

(orange solid lines) and fast (cyan solid lines) conditions.  The X-axis represents Bin location and 934 

maze subregion. The Y-axis for power and p-value maps represents frequency ranges from 0 to 12 935 

Hz, and the Y-axis for the theta time-course represents a change in power. For all conditions, Bin 936 

0 represents the start of the trial. The color bar for time-frequency plots represents the power of the 937 

oscillations depicting greater activity in warm colors. The heat-maps (left-top panel) represents the 938 

p-values (range .05 to .005) comparing slow vs fast trials. The grey bars depicted in the theta-time 939 

course maps represent significant Bins identified in the heat-maps.  940 
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 941 

 942 
Figure 6. Time-frequency analysis of the EEG associated with trial walking speed for frontal-943 

midline channels FCz (top) and Cz (bottom). For each channel location, panels depict time-944 

frequency power maps (left panels), p-value maps (right-top panel), and theta time-course (right-945 

bottom panel) for the slow (orange solid lines) and fast (cyan solid lines) conditions.  The X-axis 946 

represents Bin location and maze subregion. The Y-axis for power and p-value maps represents 947 

frequency ranges from 0 to 12 Hz, and the Y-axis for the theta time-course represents a change in 948 

power. For all conditions, Bin 0 represents the start of the trial. The color bar for time-frequency 949 

plots represents the power of the oscillations depicting greater activity in warm colors. The heat-950 

maps (left-top panel) represents the p-values (range .05 to .005) comparing slow vs fast trials. The 951 

grey bars depicted in the theta-time course maps represent significant Bins identified in the heat-952 

maps.  953 

  954 
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