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2 Epigenetic clocks, DNA methylation based chronological age prediction models,
3 are commonly employed to study age related biology. The error between the predicted
4+ and observed age is often interpreted as a form of biological age acceleration and many
s studies have measured the impact of environmental and other factors on epigenetic
6 age. Epigenetic clocks are fit using approaches that minimize the error between the
7 predicted and observed chronological age and as a result they reduce the impact of
s factors that may moderate the relationship between actual and epigenetic age. Here we
o compare the standard methods used to construct epigenetic clocks to an evolutionary
10 framework of epigenetic aging, the epigenetic pacemaker (EPM) that directly models
11 DNA methylation as a function of a time dependent epigenetic state. We show that
12 the EPM is more sensitive than epigenetic clocks for the detection of factors that
13 moderate the relationship between actual age and epigenetic state (ie epigenetic age).
14 Specifically, we show that the EPM is more sensitive at detecting sex and cell type
15 effects in a large aggregate data set and in an example case study is more sensitive
16 sensitive at detecting age related methylation changes associated with polybrominated
17 biphenyl exposure. Thus we find that the pacemaker provides a more robust framework
18 for the study of factors that impact epigenetic age acceleration than traditional clocks
19 based on linear regression models.

20

2 1 Introduction

» Epigenetic clocks, accurate age prediction models made using DNA methylation, are
23 promising tools for the study of aging and age related biology. Beyond predicting the
2 age of an individual to within a couple of years, multiple studies have shown that
»s  the difference between the observed and expected epigenetic age can be interpreted
2 as a measure of biological age acceleration [1|. Age acceleration observed using the
27 first generation of epigenetic clocks |2} [3] has been associated with a variety of health
23 outcomes including mortality risk[4} [5], cancer risk [6], cardiovascular disease[7| and
20 other negative health outcomes[8H10]. However, as epigenetic clocks become more
3 accurate, epigenetic age acceleration is no longer associated with mortality [11].

31 Epigenetic clocks are generally trained using a regularized regression model. Given
32 an elastic net model of the form y = X the goal of penalized regression is to max-
33 imize the likelihood by reducing the prediction error of the model, L(A1,\2,3) =
s |y—XB|> + 2|82 +|A18|. In the case of epigenetic clocks, the likelihood is maximized
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35 by minimizing the difference between the observed and predicted age subject to the
36 elastic net penalty,A\; and A2. . Methylation sites that increase modeled error but con-
37 tain biologically meaningful information may be discarded during model fitting. This
33 problem is magnified in the case of epigenetic clocks where the relationship between
ss  methylation and time is nonlinear|12].

40 An alternative and complementary approach to studying epigenetic aging is to
21 model how methylation changes for a predetermined collection of sites with respect
2 to time. To this end, we have developed the epigenetic pacemaker (EPM) [13| [14]
43 to model methylation changes with age. Given j individuals and i methylation sites,
4 under the EPM an individual methylation site can be modeled as 77;; = m? 47355+ €i5
s where 17 is the observed methylation value, m? is the initial methylation value, r;
4 is the rate of change, s; is the epigenetic state, and €;; is a normally distributed error
47 term. The r; and m? are characteristic of the sites across all individuals and the
4 epigenetic state of an individual s; is set using information from all modeled sites.
w Given an input matrix M = [,5] the EPM utilizes a fast conditional expectation
5o maximization algorithm to find the optimal values of m?, r;, and s; to minimize the
51 error between the observed and predicted methylation values across a set of sites. This
sz is accomplished by first fitting a linear model per site using age as the initial s;. The
53 s; of the modeled samples is then updated to minimize the error between the observed
s« and predicted methylation values. This process is performed iteratively until the
55 reduction in error is below a specified threshold or the maximum number of iterations
s6 is reached. Under the EPM, the epigenetic state has a linear relationship with the
57 modeled methylation data, but not necessarily with chronological age. This allows
s3  for nonlinear relationships between time and methylation to be modeled without prior
5o knowledge of the underlying form. Every modeled methylation site has a characteristic
oo mY and r; that describes the site in relation to other modeled sites and the output
61 epigenetic states. In the current work, we ask whether the EPM formalism can be
62 utilized for the identification of moderators that impact the association between age
63 and epigenetic state (i.e factors that accelerate or decelerate the changes in epigenetic
6+ states with time). To this end we extend the EPM model to simulate methylation
65 matrices associated with age and age accelerating phenotypes. We then evaluate the
66 ability of regularized regression and EPM models to detect age acceleration traits that
67 have linear and nonlinear associations with age. Utilizing a large aggregate data set
es we validate the simulation results and in one illustrative example further assess the
6o ability of both approaches to detect age related methylation changes associated with
70 PBB exposure.

» 2 Results

~» 2.1 Simulation of Trait Associated Methylation Matrices

73 Under the EPM the epigenetic state for individual j, S;, can be interpreted as a
74 form of biological age that represents a weighted sum of aging associated phenotypes
75 S; =Y p_,01p1,; + ... + agprj. Under this model as is the weight for phenotype
7%k and pg,; is the value of phenotype k. Phenotypes may contribute to increased or
77 decreased aging respectively and when considered as a whole contribute to the overall
78 aging rate observed for an individual.

79 As shown in our previous work|[12], the relationship between px,; and time is not
so necessarily linear. When simulating age associated phenotypes, each phenotype can
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st be represented as py ; = Age;”c k., where 7y is a phenotype specific parameter shared
&2 among all individuals and g;  represents the magnitude of exposure for a simulated
83 trait and is personal to an individual. The observed phenotype is modeled as an
s interaction between age and an exposure of varying magnitude among individuals.
g5 This formulation is flexible as non-age dependent traits can be easily simulated by
s setting v = 0,pr,; = qr,; = Age?qk,]-. Individual sites can be described as a linear
sz model where m; ; = m? +7riP; j+e€i . Pijis a weighted sum of phenotypes influencing
ss the methylation status of an individual site, P;; = >_}_, vip1,j + ... + UkPk,j-

89 To assess the sensitivity of the EPM and penalized regression approaches at de-
90 tecting moderator of epigenetic aging we simulated a methylation matrix contain-

ot ing linear and nonlinear age associated traits of form py ; = Age;\f(o.s,o.m)th and

2 Prj = Age?/(l‘o'm)qk,j. The trait v parameter was generated by sampling from a nor-

03 mal distribution A(0.5,0.01) to generate traits with varying relationships with time
o (Figure 1). Samples were simulated by assigning an age from a uniform distribution,
os  U(0,100) and setting sample health by sampling from a normal distribution. Sam-
96 ple health is a sample specific metric that influences the magnitude and direction of
o7 the simulated age accelerating trait. Simulated traits included a binary phenotype
¢ (P =0.5), continuous phenotypes influenced by only age, or by age and sample health
9o (Table 1). The effect, ¢, of a binary trait was varied from 0.995 to 1.0 over 5 equally
100 spaced intervals. Given a binary trait form of py; = Age?ﬁq;w- a 0.001 decrease in
101 g corresponds to a 1 percent decrease in epigenetic state by age 100 relative to sam-
102 ples not assigned the binary trait. Within each interval the standard deviation of the
103 sample health sampling distribution was varied from 0.0 to 0.01 over 5 equally spaced
104 intervals. The simulation was repeated 50 times for each binary, continuous trait com-
105 bination with 500 simulated samples within each simulation. Additionally, at a binary
106 g of 0.995 the range of continuous traits was expanded over a broader range to assess
107 the model sensitivity for detecting the continuous trait. Five methylation sites for all
108 continuous traits were then simulated and 50 methylation sites for the binary trait.
100 An additional 50 sites were simulated that were equally influenced by a mixture of
10 four continuous traits and the simulated binary trait. The resulting simulation matrix
u1  contains 450 methylation sites.

112 Given a simulation data set, the samples were split randomly in half for model
us  training and testing. EPM and penalized regression models were fit for each simulation
14 training set and epigenetic state and age predictions were made for the testing set.
us e then fit a regression model where the epigenetic age or state is dependent on the
16 age, square-root of the age, the health status, and binary trait status of the sample
w (S; = Age++/Age + health; + binary;). The square-root of the age is included in the
s regression model to account for the nonlinear relationship between the simulated age
110 and methylation data.

120 As the exposure size of the binary trait is decreased from 1.00 to 0.995 the ability
121 to detect the influence of the trait on the epigenetic state and age is improved (Figure
12 2A and B). At an effect size of 0.995 the estimated effect of the binary trait on the
123 epigenetic state is significant (1 = 0.035, 0 = 0.089) while the effect on the epigenetic
124 age it is not (p = 0.269,0 = 0.282). At an exposure size of 1.0, where the simulated
125 binary trait has no effect, the distribution of p values forEPM and linear models is ran-
126 domly distributed. The ability to observe the health effect of the simulated continuous
127 traits improves in both the linear and EPM models as the standard deviation of the
s sample health sampling distribution is increased (Figure 2 C and D). At an exposure
120 size of 0.002 and 0.0025 the average EPM model is significant (ux = 0.0194, 0 = 0.0436)
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130 while the average linear model is not (u = 0.0607,0 = 0.128). At a continuous trait
131 standard deviation above 0.005 both models produce significant results.

12 2.2 Universal Blood EPM and Penalized Regression Mod-
133 els

13« We validated the simulation results using a large aggregate data set composed of
135 Illumina 450k array data[15+27] deposited in the Gene Expression Omnibus[28] (GEO).
136 All methylation array data sets were processed using a unified pipeline from raw array
137 intensity data (IDAT) files using minfi (Aryee et al., 2014). Sex and blood cell type
13 abundance predictions were made for each processed as previously described[29] [30].
139 The aggregate data set contains 6,251 whole blood tissue samples representing 16 GEO
4o series.

141 We trained EPM and penalized regression models using data assembled from four
12 GEO series|31H34] (n = 1605) with samples spanning a wide age range (0.01 - 94.0
13 years). The training set was split by predicted sex, within each sex we used stratified
s sampling by age to select 95% of the samples for model training. The selected samples
us from each sex were combined (n = 1524) and the remaining samples (n = 81) left out
us for model evaluation. Methylation values for all samples were quantile normalized by
w7 probe type|2] using the median site methylation values across all training samples for
us each methylation site. Principal component analysis (PCA) was performed on the cell
1o type abundance estimates using the training data. The trained PCA model was used
150 to predict the cell type PCs for the testing and validation data sets.

151 We fit a penalized regression model to the training matrix as follows. The normal-
152 ized training methylation matrix was first filtered to remove sites with a variance below
153 0.001, resulting in a training matrix with 183,114 sites. A cross validated (cv = 5)
154 elastic net model was trained against training sample ages using the filtered methy-
155 lation matrix. The trained model performed well on the training (R* = 0.981) and
156 testing (R? = 0.940) data sets (S.Figure 2).

157 In contrast to penalized regression based approaches, site selection for the EPM
158 model is performed outside of model fitting. Methylation sites were selected for model
150 training if the absolute Pearson correlation coefficient between methylation values and
10 age was greater than 0.4 (n = 16,880). A per site regression model was fit using
161 the observed methylation value as the dependent variable and age as the explanatory
12 variable. Sites with a mean absolute error (MAE) less than 0.025 between the predicted
13 and observed methylation values were retained for further analysis (n = 7,013). An
1« EPM model was fit using these sites (Figure 3A). We then sought to identify subsets of
165 sites that had functionally similar forms between age and methylation. This was done
166 to filter sites that were associated with age by chance and to select clusters of sites with
167 low prediction error. Subsets of sites with similar functional form were identified by
18 clustering sites using affinity propagation [35]) by the euclidean distance between the
10 single site regression model residuals. Cross validated EPM and penalized regression
1o models were trained for all clusters with greater than ten sites (n = 55). The cluster
i1 EPM models show varying associations between the epigenetic state and age relative
172 to the EPM model fit with all sites initially selected by absolute PCC(Figure 3B).
173 Clusters with an observed EPM and penalized regression MAE less than 6 (n = 5)
174 were combined to fit final EPM and penalized regression models. This resembles
175 the simulated methylation matrices where sites with differing functional forms are
176 modeled collectively. The combined cluster EPM and combined cluster regression
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177 model performed well on the training and testing data sets (S.Figure 1).

178 We evaluated the combined cluster EPM, combined cluster penalized regression,
170 and the full penalized regression models against a validation data set consisting of 14
10  GEO series experiments representing 4,600 whole blood tissue samples. Each model
181 accurately predicted the epigenetic state or epigenetic age of the validation samples
12 (Figure 4). We then fit an ordinary least squares regression model for every validation
183 experiment individually to predict the observed epigenetic age or state using the sample
184 age, the square root of age, cell type PCs, and predicted sex (S; = Age + /Age +
s PC1+ PC2+ PC3+ Sex + Intercept). If the proportion of female samples to the
186 total number of samples was greater than 0.7 the sex term was dropped from the
187 regression model. Significant cell type PC2 coefficients were observed for all EPM
18 models and the majority of the cluster and full penalized regression models (Figure
19 bA). Significant cell type PC1 and PC3 coefficients were observed for the majority of
10 the EPM models but not for the cluster or full penalized regression models. Significant
11 sex effects (p < 0.0038) were observed for 9, 4, 0 out of 15 models for the EPM, cluster
102 penalized regression, and full penalized regression respectively (Figure 5B).

w3 2.3 Polybrominated Biphenyls Exposure

14 Polybrominated biphenyls (PBB) were widely used throughout the United States in the
15 1960’s and 1970’s for a variety of industrial applications. Widespread PBB exposure
106 occurred in the state of Michigan from the summer of 1973 to later spring of 1974 when
107 an industrial PBB mixture was incorrectly substituted for a nutritional supplement
18 used in livestock feed[36]. PBB is biologically stable and has a slow biological half life;
190 individuals exposed during the initial 1973 - 1974 incident still have detectable PBB
200 in their blood|37]. PBB is an endocrine-disrupting compound and exposure has been
20 linked to numerous adverse health outcomes in Michigan residents such as thyroid
22 dysfunction|38, 39] and various cancers|40, |41]. A study by Curtis et al. showed total
203 PBB exposure is associated with altered DNA methylation at CpG sites enriched for
24 an association with endocrine-related autoimmune disease [42]. Utilizing the publicly
205 available Illumina Methylation EPIC array [43] profiles (n = 679), that covered a wide
206 age range (23 - 88 years), we sought to compare the ability of penalized regression and
207 the EPM to detect epigenetic age acceleration associated with PBB exposure.

208 Briefly, 50% of samples (n = 339) were selected for model training using strat-
200 ified cross validation by age. A cross validated elastic net model was trained us-
210 ing all methylation sites with a site variance above 0.001, (n = 529,703). The
a1 trained model performed well on the training and testing data sets (R? = 1.00, R*> =
a2 0.740, S.Figure2A — B). EPM sites were selected and models fit as described with the
213 universal blood EPM. Four EPM clusters (M AE < 6) were merged for a combined
211 EPM model built using 413 CpG sites. The combined EPM model performed well in
215 training and testing data sets (R2 =0.794, R? = 0.812, S.Figure2C — D). Epigenetic
216 age and epigenetic state predictions were then made for the testing samples using the
217 penalized regression and EPM models.

218 We then fit an OLS regression model to predict the epigenetic age or state depen-
210 dent on PBB-153 exposure, h age, the square root of age, cell type PCs, and predicted
20 sex (S; = Age++/Age+ PC1+PC2+ PC3+ Sex+ PBB—153+ Intercept). PBB-153
221 exposure was highly significant in the EPM regression model (p = 5.9¢ — 10) but not
22 the penalized regression model (p = 0.141).
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» 3 Discussion

2¢ A long standing question in the field of epigenetics was whether biomarkers could be
25 trained to predict various traits using methylation measurements. The most successful
26 biomarkers to date have been epigenetic clocks that can accurately predict the age of
227 an individual based on their methylation pattern. These have been shown to be
28 useful for human studies of aging, as well as for animal studies, including mice[44)
29 and dogs|45]. DNA methylation biomarkers are typically constructed using penalized
230 regression approaches. Given a large enough matrix, penalized regression will select
231 sites that minimize the prediction error given a modeled trait. Epigenetic clocks are
232 examples of such models. Beyond predicting actual ages, these models have also been
233 used to measure the influence of external factors on the rates of aging, and multiple
24 studies have shown that the resulting age accelerations (i.e the differences between
235 actual and predicted ages) are significantly associated with multiple factors such as
26 cardiovascular disease|7] and mortality risk[4} |5].

237 While epigenetic clocks have proven to be useful they have significant limitations.
233 Because they are based on linear models, it may be difficult to model aging when the
239 underlying methylation changes are non-linear in time. Moreover, epigenetic clocks
20 are prone to over fitting, and while cross validation schemes are often used to construct
21 robust clocks, they often do not yield accurate estimates for other data sets. Finally,
22 epigenetic clocks are not very interpretable, and highly degenerate, so that it is difficult
23 to extract biological insights from the weights of the models.

244 To overcome some of these limitations, we have previously developed the epigenetic
25 pacemaker formalism. In this approach, rather than building a model for the age,
us we construct a model for the observed methylation data that depends on age. The
27 advantage of this approach is that this formalism allows us to identify non-linear
s associations between methylation and age across a lifespan. Moreover, these models
29 tend to be robust to training as they are fit to large methylation matrices rather than
20 age vectors. Finally, the model describes the change in methylation at each site with
251 respect to a time dependent epigenetic state, and therefore all parameters of the model
22 are directly interpretable as either initial values of methylation or rates of change of
23 methylation.

254 Depending on the context, epigenetic clocks are both more and less effective than
25 the EPM. The penalized regression models provide more accurate age predictions
6 (R? = 0.875,0.911) than the EPM model (R?* = 0.821), and the model output can
27 be directly compared to the age of a sample. However, because these models are
28 optimized to reduce the error between actual and predicted age, they tend to minimize
29 the effect of extraneous factors on the predicted age. As such, epigenetic clocks are
260  not optimal for identifying external factors that moderate the relations between actual
261 and predicted age. By contrast, the EPM models are not optimized to minimize the
262 difference between predicted and actual age, but rather try to minimize the difference
263 between observed and modeled methylation values. As such, they retain many of
%4 the effects that other factors may have on the association between methylation and
265 epigenetic states.

266 In this study we find that while the penalized regression models were more ac-
%7 curate for predicting age, the epigenetic state generated by the EPM is significantly
s impacted by cell type and sex effects in both simulations and real data. We also
260 found that The EPM model generated for individuals exposed to PBB was sensitive
270 to e PBB exposure, which has been linked to negative health outcomes, while the
onn penalized regression epigenetic aging model was not. Additionally, the sensitivity of
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o2 the EPM to moderators of epigenetic aging has been supported by two two recent
2713 studies investigating epigenetic aging in marmots[46| and zebras[47]. In the first of
274 these studies, EPM models showed an association between hibernation and slowed
275 epigenetic aging in marmots and in the second an increased epigenetic age associated
276 with zebra inbreeding; no such associations were observed with penalized regression
a7 epigenetic age models.

278 Most studies of human epigenetic aging are not motivated by the development of
279 accurate age predictors, since ages are nearly always known in studies, but rather by
250 the discovery of biological aging moderators. The EPM is a more sensitive approach
281 than epigenetic clocks for the detection of factors other than age that influence the
22 epigenome and therefore potentially more useful for discovering moderators of biolog-
283 ical aging.

» 4 Methods

w 4.1 Simulation

256 We implemented the simulation framework as a python package with numpy(>v1.16.3)[48|
27 and scikit-learn(v0.24) [49] as dependencies. A simulation run generates a trait-associated
238 methylation matrix and samples are tied to the simulated traits. The simulation pro-

280 cedure is implemented as follows:

200 e Traits are intialized that contain the information about the trait relationship
201 with age and a simulated sample phenotype. Given the structure py,; = Age;k qk,j,
202 and k samples and j traits -y is characteristic of the trait. When a sample is
203 passed to a trait, a value of g is generated for the sample by sampling from a
204 normal distribution with a variance characteristic of the simulation trait. Ad-
205 ditionally, each trait can be optionally influenced by a characteristic measure of
296 sample health, h;. Given, a normally distributed trait N (u, 02) and a health
207 effect h;, the sampled distribution for individual j is N' (4 h;, o2). Continuous
208 and binary traits can be simulated. If a binary trait is simulated, a g other than
299 1 is assigned at a specified probability.

300 e Samples are simulated by setting the age by sampling from a uniform distribu-
301 tion over a specified range and by setting a sample health metric A by sampling
302 from a normal distribution centered on zero with a specified variance. Traits
303 passed to a sample simulation object are then set according to the age and health
304 of the sample. Simulated samples retain all the set phenotype information for
305 downstream reference.

306 o Methylation sites are simulated by randomly setting the initial methylation
307 value, maximum observable methylation value, the rate of change at the site,
308 and the error observed at each site. Sites are then assigned traits that influence
300 the methylation values at each site.

310 e Methylation values are simulated for each site for every individual given the
311 simulated phenotypes with a specified amount of random noise.

2 4.2 Simulation EPM and Penalized Regression Models

a3 Simulation data was randomly split in half into training and testing sets. EPM models
314 were fit using the simulated methylation matrix against age. Penalized regression
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ais models were fit using scikit-learn(v0.24)[49] ElasticNet (alpha=1, 11_ratio=0.75, and
si6  selection=random). All other parameters were set to their default values. Ordinary
a7 least squares regression as implemented in statsmodels (0.11.1)[50] was utilized to
ais  describe the epigenetic state or age with the following form (S; = Age + /Age +
si0  health; + binary;). Full analysis is found in the EPMSimulation.ipynb supplementary
320 ﬁle

= 4.3 Methylation Array Processing

32 Metadata for Illumina methylation 450K Beadchip methylation array experiments
;3 deposited in the Gene Expression Omnibus (GEO) [28] with more than 50 samples
324 were parsed using a custom python tool set. Experiments that were missing methy-
325 lation beadchip array intensity data (IDAT) files, made repeated measurements of
326 the same samples, utilized cultured cells, or assayed cancerous tissues were excluded
327 from further processing. IDAT files were processed using minfi[30] (v1.34.0). Sample
328 IDAT files were processed in batches according to GEO series and Beadchip identi-
30 fication. Methylation values within each batch were normal-exponential normalized
30 using out-of-band probes|51]. Blood cell types counts were estimated using a regres-
31 sion calibration approach|29] and sex predictions were made using the median intensity
sz measurements of the X and Y chromosomes as implemented in minfi[30]. Whole blood
333 array samples were used for downstream analysis if the sample median methylation
s34 probe intensity was greater than 10.5 and the difference between the observed and
335 expected median unmethylation probe intensity is less than 0.4, where the expected
a6 median unmethylated signal is described by (y = 0.66x + 3.718).

w 4.4 Blood EPM and Penalized Regression Models

333 Methylation sites with an absolute Pearson correlation coefficient between methyla-
339 tion values and age greater than 0.40 and 0.45 for the unified whole blood and PBB
a0 data sets respectively were initially selected for EPM model training. A linear model
s was generated using numpy polyfit [48] with age and the independent variable and
sz methylation values as the dependent variable. Mean absolute error (MAE) was calcu-
33 lated as the mean absolute difference between the observed and predicted meth values
34 according to the site linear models. A vector of residuals generated using these models
us  were utilized for clustering by affinity propagation[35]) as implemented in scikit-learn
us  (v0.24)|49] with a random state of 1 and a cluster preference of -2.5. Cross-validated
sz EPM, and penalized regression models for the universal blood analysis, were trained
as  for all clusters containing greater than ten sites. Clusters with an observed EPM and
a0 penalized regression MAE less than 6.0 were combined to fit final EPM and regression
350 models.

351 Penalized regression models were fit using scikit-learn(v0.24)[49] ElasticNetCV
2 (cv=5 alpha=1, 11_ratio=0.75, and selection=random). All other parameters were
353 set to their default values. Principal Component Analysis as implemented in scikit-
3¢ learn was utilized with default parameters to perform PCA on training sample cell type
355 abundances. The trained PCA was utilized to calculate cell type PCs for the testing
36 and validation samples. Ordinary least squares regression as implemented in statsmod-
37 els (0.11.1)[50] was utilized describe the epigenetic state or age with the following form
ss (S = Age++/Age+CellType PC1+CellType PC2+CellType PC3+ Sex+ Intercept).
350 Full analysis is found in the EPMUniversalClock.ipynb supplementary file.
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w 4.5 Analysis Environment

st Analysis was carried out in a Jupyter|52] analysis environment. Joblib|53], SciPy[54],
2 Matplotlib[55], Seaborn[56|, Pandas[57] and TQDM|58] p ackages were utilized during
363 analysis.

s 4.6 Supplementary Information

35 Analysis code and notebooks can be found at https://github.com/NuttyLogic/EPM-
36  ModeratorsOfAging.
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Table 1: Simulated Trait Conditions

Trait Form | Beta Gamma Gamma Sample Ef- | Age Only Generated
Std. Dev. fect Pheno-
types
Continuous | 0.1 N(0.5,0.01) | 0.05 Yes No 10
Continuous | 0.1 N(1.0,0.01) | 0.05 Yes No 10
Continuous | 0.1 N(0.5,0.01) | 0.05 No Yes 20
Continuous | 0.1 N(1.0,0.01) | 0.05 No Yes 20
Binary 0.1 0.5 0 Yes No 1
(Pr=0.5)
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